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Turbulence, driven by microscale instabilities, is known to reduce the performance

of fusion devices by exacerbating the radial transport of heat and particles from the

high-pressure core where fusion can occur. In this Thesis, we study two ways of reduc-

ing this turbulent transport, focusing in particular on microstability and turbulence at

high plasma pressure where electromagnetic effects are important. Local δf gyrokinetic

simulations are used throughout. We uncover a novel destabilizing effect of increased

elongation that is manifest in plasmas with steep pressure gradients. This is explained

as the competition between local magnetic shear and finite-Larmor-radius damping as

elongation is varied. At high β, we show that this effect can lead to the removal of sec-

ond stability of the kinetic ballooning mode (KBM) with increased elongation, which

could have severe implications for future high-performance tokamaks for which access

to second stability is crucial for good performance. In the second half of the Thesis, we

study a JET pulse exhibiting an internal transport barrier in the ion temperature. By

a combination of linear and nonlinear studies, we determine a mechanism that allows

the steepest radial gradients of temperature to coexist with low levels of transport. We

propose that electromagnetic effects stabilize the ion-temperature-gradient instabilities

that otherwise drive significant transport well above experimental levels. The KBM

that is usually destabilized at high plasma β is stabilized by significant negative mag-

netic shear, and equilibrium flow shear should be avoided as it rapidly destabilizes the

KBM via the parallel velocity gradient. In determining this mechanism, we matched

experimental fluxes simultaneously in multiple transport channels at multiple radial

locations, validating the use of local δf gyrokinetics for the further study of transport

barriers.
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Chapter 1

Introduction

The challenge of effecting terrestrial nuclear fusion for energy production is fasci-

nating and complex. It brings together scientists and engineers from a wide variety

of fields including plasma physics, materials science and structural engineering. Not

only does it require the understanding of complex phenomena to control and harness

the energy source that powers our sun, but it also provides an opportunity to tackle

significant real-world issues such as climate change. In this Thesis, we will explore

the plasma instabilities and turbulence that exist in magnetic confinement fusion de-

vices called tokamaks. Specifically, we focus on relatively exotic equilibria that contain

steep gradients of mean plasma parameters such as temperature and pressure. In doing

so, we answer questions about the validity of the so-called gyrokinetic framework to

model these exotic systems, and unearth novel phenomena along the way that may

have significant consequences for transport in high-performance tokamaks.

In the remainder of this Chapter, we will introduce some basic concepts and themes

that are used and developed throughout this Thesis. We begin in Section 1.1 by

introducing the motivation behind the use of terrestrial nuclear fusion as a source of

energy. In Section 1.2, we introduce some of the fundamental concepts central to

magnetic confinement fusion, including the microscale instabilities that drive ‘stiff’

transport in tokamaks. Section 1.3 introduces the local δf gyrokinetic framework that

is often used to study microscale instabilities and transport via codes such as GS2,

which is used throughout this Thesis [1, 2]. In Section 1.4, we present the physical

basis for some mechanisms, referenced throughout this Thesis, that can mitigate the
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microinstabilities. Finally, in Section 1.5, we present the main contributions of this

Thesis along with an outline of the remaining chapters.

1.1 Motivation

It is generally accepted within the relevant scientific communities that one of the major

threats to humanity is man-made climate change caused by the release of greenhouse

gases into the Earth’s atmosphere [3]. These gases are generally produced by burning

traditional fuels, such as oil and gas, for energy. Alternative energy sources exist,

but all have associated drawbacks that hinder their uptake as significant contributors

to the grid. Nuclear fission, for example, can produce significant energy on demand,

but its public perception is tainted by the very-real issues that it produces long-lived

radioactive waste and has the potential for catastrophic failure [4]. Renewables such

as wind and solar produce no by-products, but cannot be relied upon for constant

energy production without significant improvements being made to electricity storage

infrastructure [5]. In comparison, nuclear fusion, the process by which a heavier final-

state nucleus is produced from multiple lighter initial-state nuclei, is relatively flawless.

It produces no carbon emissions or long-lived radioactive waste, has abundant fuel and

is not reliant on weather for continuous power output. However, until late 2022, the

scientific community had failed to demonstrate net energy production using terrestrial

nuclear fusion [6]. In fact, the closest to break-even up to that point was at the Joint

European Torus (JET) experiment in 1997, which produced via fusion 62% of the input

heating power [7]. This, however, does not take into account the power required to

generate the magnetic fields used to confine the fusion plasma. Nor does it take into

account the engineering losses associated with transforming the heat energy extracted

to electrical energy. Before we explain some of the key challenges facing nuclear fusion

from a microstability perspective, we first describe the process itself and how we try

to effect it on Earth.
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1.2 Fundamentals of Terrestrial Nuclear Fusion

Nuclear fusion is governed by the competing effects of the mutual electrostatic repulsion

between nuclei and the attractive strong nuclear force. The electrostatic Coulomb force

is weak but long ranged compared to the strong nuclear force, which can only act over

nuclear length scales. To get close enough for fusion to occur, nuclei must be energetic

enough to overcome the electrostatic potential barrier. The temperatures1 required for

an appreciable fusion rate are of order 104 − 105 eV, depending on the reactants. At

these energies, atoms are fully ionized and exist in a plasma state with free nuclei and

electrons. Without applying any confinement measures, a volume of such hot plasma

would expand rapidly and damage whatever material vessel were being used to contain

it. For context, the energy stored within the JET tokamak is of order 107 J – enough

to melt around 10 kg of steel initially at room temperature.

1.2.1 Tokamak equilibria

Stars, which are powered by nuclear fusion, use their own gravity to confine the plasma,

but this is clearly not feasible on Earth. Instead, we confine plasma using the fact

that moving charged particles, under the influence of the Lorentz force, follow helical

orbits around magnetic field lines. The orbit radius is known as the gyro- or Larmor

radius. Consequently, the plasma’s constituent particles are confined perpendicular to

field lines but can stream rapidly along them. As a result, any device with magnetic

field lines that intersect exclusively the device walls will still exhibit poor confinement.

To avoid this, most modern fusion devices, known as tokamaks, use an axisymmetric

toroidal magnetic field topology. The equilibrium magnetic field is comprised of toroidal

and poloidal components as illustrated schematically in Figure 1.1. We denote the

toroidal and poloidal angles via ζ and θ, respectively. The toroidal component of

the confining magnetic field is generated by external field coils that wrap around the

plasma, much like a solenoid bent around on itself. The poloidal component is sourced

by a current that runs through the plasma itself; this current can be induced externally

1Throughout this Thesis, we will use energy and temperature interchangeably, ignoring the Boltz-
mann constant for brevity.
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Figure 1.1: A schematic illustration of the topology of a torus. The axis of symmetry,
known as the major axis, is shown by the green dashed line, and is in the Z direction.
The minor axis is denoted by the black arrow traced through the core of the torus;
the poloidal direction is around this minor axis. The toroidal and poloidal angles are
denoted by ζ and θ, respectively. The major radius, denoted by R, is the perpendicular
distance from the major axis.

(e.g. via transformer action or the injection of radio-frequency (RF) waves into the

plasma) or generated intrinsically (e.g. via the toroidal bootstrap current which is

driven in the presence of an inhomogeneous magnetic field and pressure gradients [8]).

Mathematically, the equilibrium magnetic field B can be expressed in multiple

ways. The first of these is the Clebsch representation [9]:

B = ∇α̃×∇ψ̃, (1.1)

where α̃ labels a field line and ψ̃ is the poloidal magnetic flux. Tildes are used to

distinguish these coordinates from other quantities, such as the ballooning parameter

αMHD, that have a well-established notation in the literature. The other representation

we will use explicitly separates the toroidal and poloidal components of the magnetic

field:

B = I∇ζ︸︷︷︸
toroidal

+∇ζ ×∇ψ̃︸ ︷︷ ︸
poloidal

, (1.2)

where I is the poloidal current function2. By combining these two representations of

B, we can derive an expression for α̃:

α̃ = ζ −
∫ θ

0

dθ′q̃(ψ̃, θ′), (1.3)

2The poloidal current function is named as such because it represents the poloidal current that
sources the toroidal magnetic field.
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where q̃ ≡ B · ∇ζ/B · ∇θ is the local safety factor, which is a function of poloidal

angle. The global safety factor is defined as

q ≡ 1

2π

∫ 2π

0

q̃(ψ̃, θ)dθ, (1.4)

although we will henceforth refer to it simply as the safety factor for brevity. The safety

factor is a measure of the relative strength of the toroidal and poloidal components of

the magnetic field – when it is an irrational number, a field line traces out an infinite

path without ever intersecting itself. The resulting 2D surface traced out by this path

is known as a flux surface, since the poloidal magnetic flux is constant on it. The core

of the tokamak, where magnetic field lines do not intersect the device walls at any

point, can be described as a nested set of closed flux surfaces.

In equilibrium, the magnetic and thermal forces that exist in magnetized plasma are

balanced. One way of determining a self-consistent equilibrium is to model the plasma

as a conducting fluid – this is known as magnetohydrodynamics (MHD). Assuming

the plasma has zero resistivity and exists in steady state, the equation that describes

force-balance reduces to

j ×B = ∇p, (1.5)

where j and p are the equilibrium current density and pressure, respectively. Noting

that B · ∇p = 0, we see that the pressure is constant on magnetic flux surfaces. This

is a natural consequence of particles’ ability to move rapidly parallel to the magnetic

field to eliminate inhomogeneities in equilibrium parameters such as temperature and

density. By combining Ampère’s law, Equation 1.2 and Equation 1.5 in cylindrical

{R, ζ, Z} coordinates, one can derive the Grad-Shafranov equation:

∆∗ψ = −4πR2 dp

dψ
− I

dI

dψ
, (1.6)

where

∆∗ ≡ ∂2

∂R2
− 1

R

∂

∂R
+

∂2

∂Z2
, (1.7)

and R and Z are defined in Figure 1.1 [10, 11]. This is a nonlinear, elliptical partial

differential equation (PDE) that can generally only be solved numerically.
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Figure 1.2: An illustration of the E × B drift. In a), an ion orbits in the plane
perpendicular to a magnetic field B that points into the page. In b), a constant
electric field E is applied. This applies to the ion an acceleration parallel to E. This
acceleration increases the ion’s orbit radius as it travels parallel to E, and vice versa.
As a result, there is a net motion of the particle perpendicular to both E and B.

1.2.2 Transport in tokamaks

At the edge of a tokamak, field lines intersect the physical walls of the device at

designated strike points which can be actively cooled to further resist the thermal

damage from plasma that impinges upon them [12]. Nevertheless, there are material

limits to the durability of these strike points, so the plasma at the edge of the device

should be sufficiently cool and diffuse to not damage them. This requires that gradients

of temperature and density exist from the core of the plasma, where conditions must

be fusion-relevant, to the cool, diffuse edge region. To maximise the volume of fusing

plasma, we require a steep pressure gradient close to the edge of the plasma. However,

particles confined to one flux surface can collide with those confined to nearby (i.e.

within a few Larmor radii) flux surfaces, leading to collisional transport of heat. This

collisional transport limits the maximum temperature gradient that can be sustained

for a given heat loss rate.

However, collisional transport contributes relatively little towards the overall trans-

port, which typically is driven primarily by turbulence. To understand the origin of

turbulence in tokamaks, we must first introduce the concept of magnetic drifts. When

a charged particle moves in constant electric and magnetic fields E and B that are

perpendicular to one another, it undergoes a net drift perpendicular to both fields.

This process is illustrated in Figure 1.2. This magnetic drift is known as the E ×B
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drift, since the drift velocity is

vE×B =
c

B2
E ×B, (1.8)

where the speed of light in a vacuum c enters as we work in Gaussian units. For similar

reasons, magnetic drifts also occur in the presence of non-constant magnetic fields.

Most notable are the ∇B and curvature drifts, whose drift velocities for a particle

species labelled by s are given by

v∇B =
msc|v⊥|2
2ZseB

B ×∇B
B2

and vκ =
mscv

2
∥

ZseB

B × κ
B

, (1.9)

respectively. In the above expressions, ms is the mass of the species, v⊥ and v∥ are

the perpendicular and parallel components of the particle velocity, Zse is the charge of

the species and κ ≡ b · ∇b, where b ≡ B/B. Note that the ∇B and curvature drifts

scale with the particle energy, so particles drift faster on average in hotter plasmas

than they do in colder plasma. In a tokamak, the equilibrium magnetic field scales as

B ∼ 1/R, so ∇B and curvature drifts are ubiquitous. In combination with gradients

in equilibrium parameters such as temperature, magnetic drifts can drive microscale3

instabilities in tokamak plasmas. One of the most important microinstabilities is the

toroidal ion-temperature-gradient (ITG) instability [13, 14]. A simplified illustration

of the feedback loop that underpins this instability is presented in Figure 1.3.

The microinstabilities present in tokamak plasmas drive turbulence which is under-

stood to be the dominant contributor to the radial transport of heat and particles in

tokamaks [15–17]. As one might expect for ITG-driven turbulence, increased ion tem-

perature gradients typically lead to increased turbulent radial transport. This means

that for steady-state operation at a higher temperature gradient, increased heating

power must be provided. This is problematic because the transport is usually ‘stiff’,

meaning that above a threshold temperature gradient, the transport increases rapidly

with increasing temperature gradient. This is illustrated in Figure 1.4. As a result,

a significant increase in auxiliary heating power leads to a relatively small increase in

3The scales can range from a few ion gyro-radii to a few electron-gyro-radii, depending on the
relevant instability.
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Figure 1.3: A simplified illustration for the mechanism of the toroidal ITG instability
at the outboard midplane of a tokamak. In a), a boundary is defined between two
regions of plasma with different ion temperatures Ti,1 and Ti,2 such that Ti,1 > Ti,2.
The equilibrium magnetic field B is into the page. In b), the boundary is perturbed.
Due to the ∇B and curvature drifts, ions drift upwards at an average speed VD,i
that scales with the equilibrium temperature, creating alternating regions of increased
and decreased ion density at the boundaries between hot and cold regions. These
are indicated by + and −, respectively. In c), the resulting electric field E leads to
an E × B drift that amplifies the initial perturbation. If the curvature is reversed
relative to the temperature gradient, as is the case on the inboard side of the tokamak,
the perturbation is stabilized. The inboard side is therefore described as the good-
curvature region.

fusion power. This stiffness limits energy production, which relies on the fusion power

being orders of magnitude larger than the auxiliary heating power. This usually con-

strains temperature length scales LT ≡
(
d(log T)/dr

)−1
to be larger than a few times

smaller than the minor radius of the last (outermost) closed flux surface (LCFS). Here

T is the temperature and r, which is often used as a flux-surface label, is the half-

diameter of a given flux surface at the outboard midplane. As a result, only a fraction

of the plasma volume typically has conditions suitable for fusion. A significant amount

of research effort is spent trying to alleviate this problem of stiff transport, either by

shifting the stiffness threshold LT or by reducing the stiffness.

1.3 Gyrokinetic modelling

Understanding the microinstabilities that drive turbulence can help us mitigate

their influence. One framework for studying microstabilty and microturbulence is

25



L−1
T

Q

L̂−1
T

Qin

L̃−1
T

Figure 1.4: A schematic illustration of the radial heat flux Q as a function of inverse
temperature scale length L−1

T . In steady state, the heat flux is equal to the input
power flux Qin. As L

−1
T increases beyond the linear instability threshold L̃−1

T , the linear

instability begins to drive turbulence. Above a threshold L̂−1
T , the radial transport

becomes ‘stiff’, increasing rapidly with L−1
T . A large increase in the input heat flux

Qin is then required to increase L−1
T by a small amount. Transport can be reduced

in three ways (or a combination of the three), illustrated by the three coloured lines.
By changing equilibrium parameters that govern the underlying instabilities, either
the transport could become less stiff (shown by the dotted blue line), the threshold
for stiffness could shift (shown by the dashed green line), or the threshold for linear
instability could shift (shown by the dash-dotted red line). In the intermediate regime
where L̃−1

T < L−1
T < L̂−1

T , the turbulence is thought to be damped by zonal flows, which
are primarily-poloidal flows that act to break up turbulent structures by shearing them
[18–20].

δf -gyrokinetics, which describes the evolution of microscale, rapidly fluctuating elec-

tromagnetic fields and distribution functions. Numerical codes, such as the local δf

gyrokinetic code GS2 used throughout this work, can be used to study the evolution

of the fluctuating quantities [1, 2]. At small perturbation amplitude the nonlinear

terms are negligible (and can be dropped) and local equilibrium parameters including

the driving gradients can be varied. This allows us to more easily study the underly-

ing linear microinstabilities that drive the turbulence. Alternatively, simulations can

be performed with the nonlinear terms included to make predictions or comparisons

against transport levels measured in experiments. This gives us the freedom to iso-

late physical effects that can be controlled in experiments to improve performance and

advise the design of new confinement devices.
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1.3.1 The δf-gyrokinetic framework

δf gyrokinetics is an expansion of general kinetic theory that can be used to describe

the interaction between plasma and electromagnetic fields at spatial scales as small as

the Larmor radius and temporal scales much slower than the Larmor frequency. The

full 6-dimensional Fokker-Planck equation is

∂f̃s
∂t

+ v · ∇f̃s +
Zse

ms

(
Ẽ +

v

c
× B̃

)
· ∂f̃s
∂v

= C[f̃s] + Ss (1.10)

where f̃s is the distribution function that describes the 6-d phase-space density of a

particle species labelled by s, t is the time, v is the velocity, Zs is the species charge

number, e is the elementary unit of charge,ms is the species mass, Ẽ is the total electric

field, B̃ is the total magnetic field, C is the collision operator and Ss is a source term

that accounts for other physical processes such as external heating. In combination

with Maxwell’s equations, this forms a closed set of equations that can be solved

simultaneously. However, it is not computationally tractable to solve these equations

whilst resolving both microscopic and macroscopic behaviour in all 6 dimensions. δf -

gyrokinetics ameliorates this problem by taking advantage of the spatial and temporal

scale separations that exist in magnetized plasmas.

To do this, it is assumed that the distribution functions and electromagnetic fields

can each be split into a mean and fluctuating piece [21]. For example, the distribution

function is expressed as

f̃s = fs + δfs, (1.11)

and there are similar expressions for B̃ and Ẽ. The mean quantities vary spatially on

macroscopic scales, such as the minor radius of the LCFS a, and temporally on the

scale of the energy confinement time τE. The fluctuating quantities have an anisotropy

that reflects how strongly-magnetized particles can stream rapidly along field lines

but travel slowly perpendicular to them due to the Lorentz force. As such, fluctuating

quantities vary spatially on scales of the Larmor radius ρs perpendicular to the magnetic

field but macroscopic scales parallel to it. In a Fourier representation of the fluctuating

quantities, this could be expressed mathematically using the parallel and perpendicular
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wavenumbers via k∥ ≪ |k⊥|. The turbulent fluctuations are assumed to evolve on a

timescale ω−1, which is intermediate to the short Larmor rotation timescale Ω−1
s ≪ ω−1

and the long mean evolution time τE ≫ ω−1. The disparity between the Larmor and

macroscopic spatial scales allows for the definition a small parameter ρ∗ ≡ ρs/a that is

used as a formal expansion parameter to order quantities as follows:

ρ∗ ≡ ρs
a

∼ δfs
fs

∼ |δE|
|E| ∼ |δB|

|B| ∼ k∥
|k⊥|

∼ ω

Ωs

. (1.12)

These orderings are a natural consequence of scale separation in magnetized plasmas.

The spatial scale of turbulent structures can only result in changes to macroscopic

quantities on similar spatial scales. These spatially-small changes naturally restrict

the fluctuating quantities to be similarly small relative to the macroscopic profiles.

By rigorously expanding Equation 1.10 in orders of ρ∗ and averaging over the rapid

gyromotion, the mean piece of the distribution function is found to be a Maxwellian f0,s,

and the fluctuating distribution function can be split into adiabatic and non-adiabatic

parts according to:

δfs = hs −
Zse

Ts

(
δϕ− u

c
· δA

)
fs

︸ ︷︷ ︸
adiabatic response

, (1.13)

where δϕ is the fluctuating electrostatic potential, δA is the fluctuating magnetic vector

potential, and u is the toroidal mean flow. With the exception of hs, which is evaluated

at the guiding-centre position Rs ≡ r − Ω−1
s b × w⊥, the fields are evaluated at the

particle position r. We use w ≡ v − u to denote the peculiar velocity, and w⊥ is the

component of w perpendicular to the equilibrium magnetic field. The non-adiabatic

piece of the fluctuating distribution function hs evolves according to the gyrokinetic

equation [21]:

dhs
dt

+
(
w∥b+ VD,s + ⟨Vχ⟩Rs

)
· ∇hs − ⟨C[hs]⟩Rs = (1.14)

Zsef0,s
Ts

d⟨χ⟩
Rs

dt
−
{
∂f0,s

∂ψ̃
+
msf0,s
Ts

[
Iw∥

B
+ ωψR

2

]
∂ωψ

∂ψ̃

}
⟨Vχ⟩Rs · ∇ψ̃.

Here, d/dt ≡ ∂/∂t + u · ∇ is a convective derivative and the component of peculiar

velocity parallel to the equilibrium magnetic field is denoted by w∥. The toroidal
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angular velocity ωψ can be related to u by u = ωψR
2∇ζ. The first term on the right

hand side of Equation 1.14 represents the evolution of the gyrokinetic potential

χ ≡ δϕ− v

c
· δA, (1.15)

whereas the other terms in ∂f0,s/∂ψ̃ and ∂ωψ/∂ψ̃ can drive turbulence via the tem-

perature and density gradients, and the toroidal velocity gradient, respectively. The

equilibrium magnetic drifts, such as the curvature, ∇B, centrifugal, Coriolis and mean

first-order E ×B drifts, are contained within VD,s, while Vχ ≡ cB−1b×∇χ contains

the fluctuating E×B drift, the motion along fluctuating magnetic field lines, and the

fluctuating ∇B drift [21]. Finally, ⟨. . . ⟩
Rs

represents a gyroaverage at fixed guiding

centre. Like with the Fokker-Planck equation, Maxwell’s equations can be ordered in a

similar way to close the system of equations. They are expressed via the quasineutrality

equation and Ampère’s law, given below in order:

∑

s

Z2
s e

2ns
Ts

(
δϕ− u

c
· δA

)
=
∑

s

Zse

∫
d3w⟨hs⟩r; (1.16)

∇× δB =
4π

c

∑

s

Zse

∫
d3w⟨whs⟩r. (1.17)

The species density is denoted by ns and the gyroaverages in these expressions are

performed at fixed particle position r rather than Rs.

1.3.2 Local gyrokinetic simulations with GS2

Although δf gyrokinetics already reduces computational expense via scale separation

and a reduction in dimensionality, simulating the entire core of a tokamak is still

computationally expensive. To reduce this expense, some codes such as GS2 use a

‘local’ approach, restricting the simulation domain to a narrow, extended filament that

follows a magnetic field line as it wraps around a flux surface. This simulation domain

is known as a flux tube, and twists along its axis to take into account magnetic shear

[22]. A schematic illustration of this is shown in Figure 1.5, which is adapted from

[23]. The perpendicular extent of the flux tube should be larger than the turbulence

correlation length. This allows the use of periodic boundary conditions perpendicular

to the magnetic field because the turbulence on one side of the domain can then be
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Figure 1.5: A schematic illustration of part of a flux tube (blue) on a flux surface (red).
The grey shaded region defines the θ = 0 plane.

assumed to be statistically identical to that on the opposite side. It is assumed that

these statistically identical regions can be set to be exactly identical. In practice, the

turbulence correlation length is typically of the order ρi, so the flux tube is a few ion

gyro-radii wide. Equilibrium parameters that depend only on ψ̃, such as Ts and L
−1
Ts
,

can then be treated as locally-constant throughout the simulation domain. The use of

periodic boundary conditions in the plane perpendicular to the magnetic field permits

the perpendicular components of the fluctuating fields to be represented spectrally

by Fourier components. Recalling the Clebsch representation of the magnetic field in

Equation 1.1, a natural pair of perpendicular coordinates are ψ̃ and α̃, which label

a flux surface and field line, respectively. This leaves us to choose a coordinate that

determines the distance along a given field line – we choose the poloidal angle θ. A

fluctuating quantity D can therefore be written as

D(t, ψ̃, α̃, θ) =
∑

kψ̃

∑

kα̃

D̂kψ̃ ,kα̃
(t, θ)eikψ̃(ψ̃−ψ̃0)eikα̃(α̃−α̃0), (1.18)

where a subscript zero here indicates the value at the centre of the flux tube. The

parallel domain extends along a field line for a complete poloidal turn. Such a length

is typically known as the connection length and is approximately 2πqR0.

Rather than a periodic boundary condition in the parallel direction, GS2 uses the

‘twist-and-shift’ boundary condition [22], which enforces that fluctuations perpendicu-

lar to a magnetic field line are periodic in θ whilst holding ψ̃ and ζ fixed, rather than
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ψ̃ and α̃:

D
(
t, ψ̃, α̃(ψ̃, θ + 2π, ζ), θ + 2π

)
= D

(
t, ψ̃, α̃(ψ̃, θ, ζ), θ

)
(1.19)

This boundary condition couples the Fourier coefficient at one end of a flux tube to the

Fourier coefficient of a mode with the same kα̃ but a different kψ̃ at the opposite end

of its parallel domain. This is a consequence of magnetic shear, which results in the

modes with different kψ̃ having the same radial wavenumber at opposing ends of the flux

tube. By coupling many such 2π segments together according to Equation 1.19, one can

construct a ‘ballooning chain’. We distinguish ballooning chains by labelling each one

with the poloidal angle θ0 between −π and π at which the chain has no radial structure

– i.e. k⊥ ·∇ψ̃ = 0, where k⊥ ≡ kψ̃∇ψ̃+kα̃∇α̃ is the mode’s perpendicular wavevector.

This is known as the ballooning angle, and the linear growth-rate of a ballooning chain

is 2π-periodic in θ0. If we neglect nonlinear terms, then each ballooning chain evolves

independently of the others.

We can now rewrite Equation 1.14 in the flux-tube representation used by GS2 for

Fourier coefficients D̂, but dropping theˆs and wavenumber labels for brevity:

∂hs
∂t

+
[
v∥b · ∇+ ik⊥ · VD,s

]
hs =

Zsef0,s
Ts

∂⟨χ⟩
Rs

∂t
− ⟨Vχ⟩Rs · ∇ψ̃

∂f0,s

∂ψ̃
. (1.20)

To draw attention to the basic linear physics, we have omitted the nonlinear term

⟨Vχ⟩Rs · ∇hs, and ignored collisions. We also set u = 0 and neglected flow shear, i.e.
∂ωψ

∂ψ̃
= 0. For details of the implementation including flow shear in GS2, see [24]4. The

spectral representation perpendicular to the magnetic field allows us to easily evaluate

the gyroaverage so that

⟨χ⟩
Rs

= J0(αs)

(
δϕ− v∥

c
δA∥

)
+
J1(αs)

αs

ms|v⊥|2
Zse

δB∥

B
, (1.21)

where Jn(. . . ) are the nth order Bessel functions of the first kind, αs ≡ |k⊥||v⊥|/Ωs

and v⊥ is the perpendicular component of the velocity. These Bessel functions are the

mathematical manifestation of the gyroaverage, which allows us to cast the v⊥ · δA⊥

contribution in terms of the single scalar field δB∥. To close the system of equations,

4Notably, GS2’s treatment of flow shear does not include the centrifugal drift or the centrifugal
drive term (the second term multiplying

∂ωψ
∂ψ̃

in Equation 1.14)
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we require expressions for the three scalar fields δϕ, δA∥ and δB∥. For δϕ, we rewrite

Equation 1.16 as follows:

0 =
∑

s

Zse

∫
d3v

(
hsJ0(αs)−

Zseδϕ

Ts
f0,s

)
; (1.22)

For the magnetic scalar fields, we can use Ampère’s law. The expression for the parallel

magnetic potential can be derived by expanding the left hand side of Equation 1.17

using δB = ∇× δA, and taking the scalar product of both sides with b:

|k⊥|2δA∥ =
4π

c

∑

s

Zse

∫
d3v v∥hsJ0(αs); (1.23)

The expression for δB∥ can be derived in a similar way by taking the curl of Equation

1.17, followed by the scalar product of both sides with b:

|k⊥|δB∥ = −4π

c

∑

s

Zse

∫
d3v|v⊥|hsJ1(αs), (1.24)

1.3.3 Normalizations

Before continuing, we note that the flux-tube coordinates ψ̃ and α̃ are recast in GS2 as

x and y:

x ≡ q0
r0B0

(ψ̃ − ψ̃0); (1.25)

y ≡ ψ̃′
0

B0

(α̃− α̃0), (1.26)

where B0 is the reference magnetic field, chosen here to be the toroidal magnetic field

on the magnetic axis where r = 0. The perpendicular wavevector is then defined

in terms of these coordinates such that k⊥ = kx∇x + ky∇y. The wavenumbers kx

and ky can be related to kψ̃ and kα̃ by using the above expressions for x and y. All

variables are subsequently normalized by appropriate quantities such that they are

dimensionless. Perpendicular turbulent length scales are normalized by the main-ion

thermal gyro-radius, while equilibrium length scales are normalized by a. All time-

scales are normalized by a/vth,ref , where vth,ref is the thermal velocity of the main

ion species. Densities are normalized to the electron density at the magnetic axis,

temperatures are normalized to the ion temperature at the magnetic axis, masses
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are normalized by the main-ion species mass and magnetic fields are normalized by

B0. Fluxes are normalized by the gyro-Bohm quantities, which can be derived via

a random walk argument and are defined in Appendix B. Throughout the remainder

of this Thesis, we will not include the various normalization factors, unless explicitly

stated (i.e. kyρi → ky). For reference, a complete list of the normalizations used is

given in Appendix B. If a quantity is not defined in this Appendix then it is already

dimensionless in its given form.

1.4 Stabilization Mechanisms

Not every tokamak plasma is made equal. There are a multitude of parameters that

determine transport levels; these include the flux-surface shape, field-line pitch angles

and much more. In this way, we can think of there being some N -dimensional pa-

rameter space, where each dimension corresponds to a different parameter. Any given

equilibrium corresponds to a single point in this parameter space. The explorable pa-

rameter space can be constrained to some extent by ensuring that it is self-consistent,

for example, via the Grad-Shafranov equation [10, 11]. One goal of much microstability

analysis is to find an equilibrium in this parameter space that minimizes the turbulent

transport for fixed driving gradients of temperature and density. This is not a trivial

task, as the dimensionality N of the parameter space is very large. Instead of using

brute-force to solve this problem by simulating an extraordinary number of equilibria,

we often explore how physically-motivated stabilization mechanisms may be affected

by changing each of these parameters. Throughout this Thesis we will explore the in-

fluence of three particular stabilization mechanisms: magnetic shear, equilibrium flow

shear and electromagnetic effects. We proceed to explain how these mechanisms affect

stability.

1.4.1 Magnetic shear

In a tokamak, the safety factor varies as a function of flux-surface label. This radial

variation is characterized by the magnetic shear:

ŝ(r) ≡ r

q(r)

dq(r)

dr
. (1.27)
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We can also define a local magnetic shear using the derivative of the local safety factor:

s̃(r, θ) ≡ r

q̃(r, θ)

dq̃(r, θ)

dr
, (1.28)

where we have explicitly indicated the extra θ-dependence of the local quantities. We

note that since both r and ψ̃ label flux surfaces, we can rewrite functions of ψ̃ as

functions of r, and vice versa. As coherent structures (such as those generated as a

result of the microinstabilities present in tokamak plasmas) travel along the field line,

they are tied to the magnetic field lines due to Larmor motion of their constituent

particles. This means that, for a given distance travelled along the field line, different

radial sections (which are tied to different field lines with different pitch angles) move

by different amounts in the poloidal (or toroidal) plane. As a result, the structures

are sheared to finer scales as they move along the field line. To see this, starting from

Equation 1.3 we expand the perpendicular wavenumber by expressing ∇α̃ in toroidal

{ψ̃, θ, ζ} coordinates:

∇α̃ = ∇ζ − q̃∇θ −∇ψ̃
∫ θ

0

dθ′
∂q̃(ψ̃, θ′)

∂ψ̃
. (1.29)

The radial component of perpendicular wavenumber gains a contribution as it moves

along the field line, of the form:

k⊥ · ∇ψ̃ = |∇ψ̃|2
(
kψ̃ − kα̃

[
q̃
∇ψ̃ · ∇θ
|∇ψ̃|

+

∫ θ

0

dθ′
∂q̃(ψ̃, θ′)

∂ψ̃

])
. (1.30)

This expression above indicates that the radial component of k⊥ changes along the field

line due to the poloidally-integrated effect of the local magnetic shear. Irrespective of

the sign of the magnetic shear, |k⊥| tends to increase along a field line. This leads to

increased stabilization along the field line due to finite-Larmor-radius (FLR) effects,

which can be seen from the appearance of |k⊥| in the argument of the various Bessel

functions which appear in Equations 1.21 to 1.24. These Bessel functions, which are

the mathematical manifestation of the gyroaverage, have an envelope that decreases as

their argument increases. In this regard, increasing the modulus of the magnetic shear

is beneficial for reducing transport. For the remainder of this Thesis, we refer to this

as the FLR-damping effect.
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A second stabilizing effect of magnetic shear is particularly relevant for ballooning-

type instabilities whose virulence depends on the spatial alignment of fluctuations with

the magnetic drifts that drive them [25, 26]. As shown in Figure 1.3, curvature driven

modes such as ITG rely on magnetic drifts to couple the equilibrium gradients to

temperature perturbations. The term in Equation 1.20 that does this is k⊥ · VD,shs.
This means that the magnetic drift tends to couple to the fluctuations more strongly

when they are spatially oriented such that their perpendicular wavevector aligns with

the drift direction. In a conventional tokamak, the magnetic drifts are predominantly

vertical – this is a result of the magnetic field being primarily toroidal, and the magnetic

curvature and ∇B vectors pointing mainly along ∇R. We focus first on modes that

grow at the outboard midplane, where the magnetic drifts are tangential to the flux

surface, i.e. VD,s · ∇ψ̃ = 0. Any component of k⊥ that is not parallel to VD,s will

not contribute to the drive term, but can still result in FLR damping. The most

strongly-driven mode for a given kα̃ is the therefore the one with kψ̃ = 0. Further

along the field line at a different poloidal location, the mode’s wavenumber can gain a

∇ψ̃ component, depending on the magnetic shear. At this different poloidal location,

the magnetic drifts will typically have a ∇ψ̃ component. Depending on the sign and

magnitude of the magnetic shear, fluctuations can gain a ∇ψ̃ component that either

strengthens or weakens the drive term. As illustrated and explained in Figure 1.6,

negative (or very large) s̃ tends to weaken the drive, whereas moderate (∼ 1) positive

s̃ strengthens it [25]. We refer to this as the drive-damping effect of magnetic shear for

the remainder of this Thesis.

1.4.2 Equilibrium flow shear

Part of the heating (and fuelling) in tokamak plasmas is often provided by neutral beam

injection (NBI), whereby a net-neutral stream of plasma is accelerated to high energies

before being forced to recombine and directed into the tokamak plasma [27]. As this

energetic beam interacts with the core plasma, it exerts a torque on the plasma, giving

it a toroidal component of angular velocity [28]. The torque is applied across a specific

region in the plasma rather than uniformly across its volume, generating gradients in

the mean toroidal flow. The radial gradient can be decomposed into two parts – parallel
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ŝ = 0 ŝ ≃ 1 ŝ < 0

Figure 1.6: The drive-damping effect of magnetic shear on a ballooning-type instability,
represented by a perturbation in the surface separating two regions of different tem-
perature – blue is colder than orange. An instability is driven strongly at the outboard
midplane where VD,s · k⊥ is maximal. The perturbations are advected along the field
lines to a different poloidal (and toroidal) position. With moderate positive magnetic
shear, the outboard side lags behind the inboard side poloidally, so the perturbation
retains some major-radial extent and remains strongly driven. For negative magnetic
shear, the inboard side lags and the perturbation gains more vertical extent, and thus
couples more weakly to the predominantly vertical magnetic drifts.

and perpendicular to the magnetic field. The gradient in the parallel component of

the velocity gradient (PVG) tends to destabilize microinstabilities present in tokamak

plasmas [29–31]. The radial gradient in the component of the velocity perpendicular

to the magnetic field, often known as the background E ×B shear, is defined as:

γE×B ≡ −r
q

dωψ
dr

. (1.31)

The presence of significant E ×B shear typically leads to a reduction in radial trans-

port both experimentally and numerically [18, 32–35]. Drift-wave microinstabilities

such as ITG are linearly stabilized by perpendicular flow shear [36, 30]. This can be

understood in a similar context to the FLR- and drive-damping effects described in

the previous Section. The sheared flow perpendicular to the field line applies a time-

dependent shearing effect on fluctuations. In GS2 coordinates, this means that the

radial wavenumber acquires a time-dependence, such that

k∗x = kx + kyγE×Bt, (1.32)
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where the asterisk denotes a time-dependent quantity. Correspondingly, the ballooning

angle, defined in GS2 coordinates as

θ0 ≡
kx
ŝky

, (1.33)

gains a similar time dependence:

θ∗0 ≡
k∗x
ŝky

= θ0 +
γE×Bt

ŝ
. (1.34)

Keep in mind that a mode’s growth rate is 2π-periodic in θ0 (and θ
∗
0). Typically, modes

with θ0 = 0 are more strongly driven than those with finite θ0 due to the FLR-damping

effects discussed in the previous Section. As a result, fluctuating quantities evolve in

an oscillatory fashion, with a period Tf known as the Floquet period:

Tf =

∣∣∣∣
2πŝ

γE×B

∣∣∣∣. (1.35)

When determining growth rates of linear instabilities in the presence of E×B shear,

two types of growth rates can be measured. One option is to track the maximum

amplitude of the potential along a field line in time over many Floquet periods. The

growth rate is then the time average of this maximum potential over several Floquet

oscillations to get a time-averaged growth rate. We note that this leads to discontinuous

behaviour in the growth rate when comparing values at a single θ0 without flow shear

to those with infinitesimally small flow-shear. This is because Floquet oscillations allow

the mode to sample all of the θ0 values over a single Floquet period Tf so the time

average, as long as it is taken over at least a full Floquet oscillation, will be affected by

the increased stability of the modes at finite θ0. The other choice is to pick maximum

instantaneous growth rate during the course of several Floquet oscillations. In contrast

to the average growth-rate, this measurement will tend to exceed the linear growth

rate without flow shear. This is because the linear growth rates at a given θ0 tend to

increase with the inclusion of PVG.
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1.4.3 Electromagnetic effects

In high-performance plasmas, the thermal pressure should be sufficiently high for

nuclear fusion to take place. In tokamak plasmas, the ratio of the thermal and magnetic

pressures is known as the plasma β parameter. β is an important quantity in the

context of microstability as it defines the importance of microscale field-line bending

and compression effects. To see this, we note that instabilities such as ITG can generate

flows perpendicular to the equilibrium magnetic field. If the magnetic field is ‘frozen-

in’ to the plasma, these flows will deform the magnetic field [37]. The length scale

associated with flux-freezing is the electron skin depth de ≡ c/ωp,e, where c is the speed

of light in a vacuum and ωp,e is the electron plasma frequency. For the magnetic field to

be frozen-in, the electron skin depth must be smaller than the typical length scale of the

instability. For the ion-scale instabilities that tend to be the main contributors to the

turbulent drive, the relevant length scale is the ion Larmor radius ρi. The ratio de/ρi

scales like 1/
√
β, so for magnetic field lines to be deformed by ion-scale instabilities

√
β must begin to approach ρe/ρi, where ρe is the electron Larmor radius. Once the

field lines are allowed to respond to these instability-driven flows, effects associated

with the field-line compression and bending can become manifest.

The stability of large-scale MHD modes is known to have a β threshold that de-

pends on the plasma parameters [38]. The microinstabilities that exist in tokamak

plasmas are also affected by electromagnetic (EM) effects. It has been shown numer-

ically and analytically that the ITG instability is linearly stabilized by the inclusion

of perpendicular magnetic fluctuations in both sheared slab and toroidal geometries at

finite β [39–45]. Nonlinear simulations have also demonstrated that EM effects reduce

the radial heat transport more than would be expected due to the EM reduction in

linear drive [44, 46, 45]. This nonlinear enhancement in confinement is attributed to

an increased coupling to zonal flows when EM effects are included [47]. The physical

mechanism for the stabilization of ITG is not generally discussed in the literature in de-

tail. However, it is clear that field-line-bending fluctuations, rather than compressional

ones, provide the stabilizing influence. One can therefore form a simple explanation for

the stabilization mechanism whereby the magnetic tension generated in deformed field
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lines acts to damp the flows that deform them. As well as stabilizing ITG, EM effects

are required to destabilize other modes such as kinetic ballooning modes (KBMs) via

a coupling with shear- and compressional Alfvén waves [48–50, 44]. The KBM is a

ballooning-type instability that is a kinetic analogue of the MHD ballooning instability

typically thought to provide a β limit. There are different types of KBM that rely on

the coupling of shear or compressional Alfvén waves to the usual ITG instability [51–

53]. The critical β for the onset of KBM instability is often less than the ideal MHD

limiting β [49, 50]. The KBM linear stability β-dependence is typically non-monotonic

because β appears in the underlying equations in a variety of ways. There is the intrin-

sic effect described in the previous paragraph that influences how strongly magnetic

fields respond to the flows, but also an equilibrium effect due to the appearance of the

radial derivative of β in the Grad-Shafranov equation. This equilibrium effect typically

acts to provide stability via local magnetic shear as β is increased, as will be discussed

in Chapter 2 in more detail. Linear growth rates for KBMs typically increase with

β at first, before being partially stabilized by the equilibrium effect in a phenomenon

known as second stability [54–57].

1.5 Goals/Outline

In this Thesis, we will explore the microstability (and the resulting microturbulence) of

high-performance tokamak core plasmas which contain steep gradients in temperature

and pressure. We now give a brief summary of the contents and key contributions of

each chapter. In Chapter 2, we compare the effects of plasma flux-surface shaping on

microstability between a low- and high-β equilibrium. We explain how the flux surface

affects microstability via its effect on local magnetic shear. We find the novel result

that increased elongation can further destabilize the linear ITG instability, and use

nonlinear simulations to show the same trend in the turbulent transport. We explain

this effect as a competition between opposing effects of the drive- and FLR-damping

discussed in Section 1.4.1. The novel effect with elongation is still present when fully-

electromagnetic fluctuations are considered, and has the potential to degrade the region

of second stability which, if accessible in experiments, may have profound implications
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for stability in high-performance tokamaks. In Chapter 3, we focus on the study of a

JET discharge that exhibits a strong ITB in the ion temperature. We match multiple

transport channels to experimental levels using nonlinear simulations to determine that

local δf gyrokinetics can describe the formation of this ITB. In doing so, we establish

that electromagnetic effects and negative magnetic shear are crucial for providing sta-

bilization at the radial part of the barrier with the most extreme value of L−1
T . Shear

in the toroidal equilibrium flow was not a key stabilization mechanism at this radial

location. In studying the linear stability of several experimentally relevant equilibria,

we show that slab ITG competes with, and modifies, the toroidal ITG usually present

at ion gyro-radius scales. We also study the radial location outside the foot of the

barrier and are able to match experimental fluxes there. We observed that purely-

perpendicular flow shear has the potential to decrease linear stability and increase

transport, and discuss briefly how this may arise, via transient effects. In Chapter 4,

we provide the main conclusions of this work.
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Chapter 2

Effect of flux-surface shaping on
turbulent transport

The contents of this Chapter is based on Reference [58].

In Section 1.2.2, we explained how one of the performance-limiting factors on toka-

mak experiments is the significant turbulence-dominated radial transport of heat, mo-

mentum and particles from the core plasma out to the edge. It is well-known that

this turbulent transport can be affected by changing the shape of the poloidal cross

section of the axisymmetric flux-surfaces traced out by the confining magnetic field.

This has been validated both experimentally and via numerical simulations [59–66].

The flux-surface shape is often characterized by parameters such as elongation κ and

triangularity δ. It can be specified at the edge of the plasma by tuning currents car-

ried by external electromagnetic coils, but changes moving radially inwards to satisfy

the Grad-Shafranov equation. In particular, the elongation penetrates deep into the

plasma, while triangularity does not [67]. For flux-surfaces with symmetry about the

midplane, known as up-down symmetry, we can define these shaping parameters with

κ(r) ≡ Z(r, θmax)/r and δ(r) ≡ [R0(r)−R(r, θmax)]/r, where R(r, θ) is the plasma ma-

jor radius, θ is the poloidal angle, Z(r, θ) is the vertical distance above the midplane,

r ≡ [R(r, 0) − R(r, π)]/2 is the plasma half-diameter at the flux-surface midplane,

R0(r) ≡ [R(r, 0) + R(r, π)]/2 is the major radius of the flux-surface center and θmax is

the poloidal angle of the maximum Z. A labelled example flux-surface shape is shown

in Figure 2.1. Plasma shaping is known to affect the stability of the large-scale MHD

modes mentioned in Section 1.2. Specifically, increased elongation and triangularity
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Figure 2.1: A typical flux-surface shape, with r, R0 and θmax labelled. We define the
midplane as the horizontal plane that intersects the widest point of the flux-surface;
θ = 0 coincides with the midplane on the outboard side.

increase the threshold “Troyon” plasma β above which dangerous (e.g. external kink-

ballooning) MHD instabilities are triggered: βTroyon = βNIp/(aB0), where β is the

ratio of thermal to magnetic pressure, βN ≃ 2% is an empirically calculated scaling

factor, a is the minor radius of the last (outermost) closed flux surface (LCFS) and B0

is the reference magnetic field, defined as the on-axis toroidal field [68]. The Troyon

beta limit increases linearly with plasma current Ip which, for fixed safety factor q, is

increased by elongation and triangularity. Shaping can however have other important

consequences, particularly for vertical displacement events (VDEs) which are associ-

ated with disruptions. Whilst increased elongation can ameliorate the aforementioned

MHD instabilities, more severe controls for VDEs are then required. This necessitates

the careful investigation of shaping effects from both MHD/disruption and transport

perspectives.

The impact of shaping on transport due to microinstabilities has been less-thoroughly

studied, and those studies that have been performed have focused only on a relatively

small region of the vast multi-dimensional shaping parameter space. Despite this,

increased elongation is generally thought to be stabilizing [59–62], whereas triangularity

can have varying effects. Both the TCV and DIII-D experiments have reported that

negative triangularity yields improved performance, allowing performance comparable
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to discharges that feature an ETB, but without an ETB [63–65]. Reference [60] reports

that the effect of triangularity depends on the elongation. At low to moderate κ,

increased triangularity was destabilizing, whilst at high κ, increased triangularity was

stabilizing. There are various hypotheses for these observed effects on the turbulence.

Some suggest that the flux-surface shaping affects the density of flux-surfaces as a

function of θ, thereby locally (in θ) modifying the driving gradients [63]. Others believe

that the effects of shaping on microstability can be explained by its effect on the local

magnetic shear s̃.

As discussed in Section 1.4.1, local magnetic shear has an impact on stability via

drive-damping and FLR-damping effects, via its influence on k⊥. To connect quantities

like s̃ (and thus k⊥) to the flux-surface shape, one can specify analytical expressions

for R(r, θ) and Z(r, θ). A typical parametrization which often well-approximates ex-

perimental flux-surface shapes, and the one used by GS2, is the Miller parametrization

[69] which uses nine parameters to specify the poloidal cross section. The flux-surface

cross-section is parametrized as follows:

R(r, θ) = R0(r) + r cos
[
θ + (arcsin δ(r)) sin θ

]
; (2.1)

Z(r, θ) = κ(r)r sin θ. (2.2)

The flux-surface shape can be parametrized by the inverse aspect ratio ϵ ≡ r/R0, the

elongation and the triangularity. In order to calculate the poloidal magnetic field, we

must also specify the safety factor as well as the radial gradients of R0, elongation

and triangularity. Finally, to ensure that the Grad-Shafranov equation is locally sat-

isfied, we must specify ŝ and β′ ≡ β(log p)′ [69]. Note that while one can change

any of the nine Miller parameters at will to explore its effect on microstability, the

equilibrium is not guaranteed to represent a realistic equilibrium that globally satis-

fies the Grad-Shafranov equation throughout the plasma. In a real experiment, it is

not typically feasible to change just one parameter in isolation. In Appendix A.1, we

present a detailed exposition on how to obtain expressions for s̃ and |k⊥|2 using a Miller

parametrization. In Appendix A.2, we guide the reader through the calculation of s̃

and |k⊥| with the inclusion of κ in the limit of small inverse aspect ratio.
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In the remainder of this Chapter, we present qualitative differences in microstability

between low- and high-performance tokamak plasmas when shaping effects are consid-

ered. In Section 2.1 we will introduce two equilibria whose primary difference is in the

value of plasma β. Using these equilibria, we present a simple benchmark of GS2 and

GKV, which are two local, flux-tube δf gyrokinetic codes [1, 70, 71]. We then extend

these simulations to include additional effects of kinetic electrons and magnetic fluctu-

ations, commenting on the spectra of instabilities present. In Section 2.2, we present

electrostatic linear and nonlinear scans in elongation and triangularity, uncovering a

novel result that at low triangularity, elongation can be destabilizing in the presence

of steep pressure gradients. We explore this phenomenon further in Section 2.3, where

we present linear simulation results including the effects of magnetic fluctuations. We

comment on how the different instabilities present in electromagnetic simulations re-

spond to changes in shaping parameters and show that in steep-pressure-gradient re-

gions with access to KBM-second-stability, increased elongation can severely degrade

stability. Finally, Section 2.4 summarizes the work presented in this Chapter.

2.1 Equilibria and microstability properties

For the remainder of this Chapter, we focus on results of local flux-tube gyrokinetic

simulations. We study in detail two particular equilibria previously studied in Reference

[72] that are relevant to the JT-60SA tokamak which is currently being commissioned

in Japan. The equilibria are not calculated from experiment but modelled; more details

on their origin can be found in Reference [72]. The primary difference between them

is in their value of plasma beta, so they will be referred to as low (1.5%1) and high

(3.7%) β – this is the plasma β on the magnetic axis. The equilibrium data were

supplied in the standard GEQDSK format, but flux-surface shapes were approximated

from this data using the Miller parametrization [73]. We focus on three flux-surfaces,

labelled using ρ, the square root of the toroidal magnetic flux normalized to its value at

the LCFS. The extracted flux-surface shapes and equilibrium parameters are given in

1We note that β = 1.5% is not an insignificant value, and one should expect fully-electromagnetic
simulations to give qualitatively different results for both equilibria. We use ‘low’ to emphasize that
β is small relative to the high-β case.
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Figure 2.2 and Table 2.1. As mentioned, the key difference between the two equilibria
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Figure 2.2: Surfaces of constant magnetic flux for the a) low- and b) high-β equilibria.
White contours, labelled by their values of ρ, denote surfaces used in the simulations.

is in the value of β. This difference in β is expected to affect microstability not only in

the ways discussed in Section 1.4.3, but also via its effect on αMHD ≡ −β(log p)′q2R0,

which affects the local magnetic shear as demonstrated in Equation A.23. The flux-

surface shaping in the high-β equilibrium is more extreme at the edge of the plasma,

but converges towards the low-β shape as ρ decreases. This reflects the fact that

shaping, aside from elongation, does not penetrate deep into the core [67]. Both ŝ and

the driving gradients are slightly larger in the high-β case. As this work is an extension

to the work of Nakata et al. in Reference [72], which uses a local flux-tube gyrokinetic

code GKV, we first present a benchmark of GS2 and GKV with these two equilibria. The

benchmark was performed with only electrostatic fluctuations (δA∥ = δB∥ = 0) and

adiabatic electrons with a single ion species (he = 0). Collisions were not included in

any simulations in this Chapter. In Figure 2.3 we show growth-rate and real-frequency

spectra for this benchmark. The two codes use different normalizations as detailed in

Appendix B.1, so the results from GS2 were re-normalized for direct comparison with

GKV.
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Table 2.1: Equilibrium parameters for the two equilibria. R′
0 is the radial derivative of

the Shafranov shift, αMHD ≡ −β(log p)′q2R0, and Te = Ti for both equilibria.

Low-β High-β

ρ 0.3 0.5 0.75 0.3 0.5 0.75

ϵ 0.10 0.17 0.25 0.12 0.21 0.30

q 1.85 2.02 2.66 1.37 1.55 2.23

ŝ 0.09 0.34 1.44 0.12 0.48 1.96

αMHD 0.48 0.83 1.19 0.62 1.13 1.66

−R′
0 0.07 0.11 0.17 0.08 0.14 0.21

κ 1.50 1.52 1.58 1.49 1.52 1.61

κ′ 0.04 0.10 0.33 0.05 0.14 0.47

δ 0.08 0.14 0.23 0.10 0.17 0.29

δ′ 0.26 0.29 0.48 0.31 0.36 0.66

(log Ts)
′ 2.33 2.42 2.72 2.69 2.84 3.33

(log ns)
′ 0.78 0.81 0.91 0.90 0.95 1.11

β (%) 0.69 0.41 0.22 1.74 1.05 0.56

At all scales simulated, the toroidal ITG is the dominant instability. The bench-

mark shows good agreement between the two codes in both the growth-rate and real-

frequency spectra. The small mismatch in growth rates and real frequencies between

GS2 and GKV was not eliminated with increasing resolution or by using the numerical

equilibrium as a direct input. However, we note that a similar discrepancy was previ-

ously observed in a benchmark between the two codes; this was understood to be due

to algorithmic differences between the two codes that affect the numerical dissipation

[74]. We extended the study of these equilibria to include additional effects. Linear

growth-rate and real-frequency spectra comparing the extensions to the original GS2

results are shown in Figure 2.4. The addition of electrons as a kinetic species (i.e.

he ̸= 0) approximately doubles growth rates at all ky and ρ. For both equilibria, the

ρ = 0.3 and 0.5 radii show that the dominant mode changes for ky ≳ 1.2. In general, a

change in dominant mode is indicated by a discontinuous change in the real-frequency

spectrum. The mode structure parallel to the field line often shows clear differences
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Figure 2.3: Benchmark results showing normalized real-frequency ω and growth-rate γ
spectra at three different radial positions for the a) low-β and b) high-β equilibria. The
GS2 variables have been renormalized to their GKV equivalents according to Appendix
B.1.

if there are different driving mechanisms for the underlying instabilities either side

of the transition. In this case, the trapped-electron-mode (TEM) instability becomes

dominant above the threshold ky; one indication of this is the shift to a negative real

frequency, which indicates a drift in the electron diamagnetic direction. In addition to

kinetic electrons, both magnetic field components δA∥ and δB∥ were then included –

these are expected to be particularly important for the high-β equilibrium. The intro-

duction of both fluctuating magnetic field components δA∥ and δB∥ destabilizes KBMs

for both equilibria at all radii. In simulations, we used the same value of local plasma β

(1.5% for the low-β equilibrium and 3.7% for the high-β one) on each radial surface for

a given equilibrium, which does not reflect the true behaviour in tokamaks with peaked

pressure profiles where inner flux surfaces should have a higher associated β than the

outer ones. Nevertheless, we have noted more representative local β values in Table 2.1.

As discussed in Section 1.4.3, we expect the addition of magnetic fluctuations, in par-

ticular the δA∥ field-line bending, to stabilize the ITG instability. This can be observed

more readily in the low-β equilibrium, since the KBM and TEM are not the dominant

47



0.0

0.1

0.2
γ

Low-β

0.0

0.2

0.4

γ

High-β

0.0

0.5

1.0

ω

0

1

ω
0.0

0.1

γ

0.0

0.2

0.4

γ

0.00

0.25

0.50

ω

0

1

ω

0.0

0.1

0.2

0.3

γ

Adiabatic electrons Kinetic clectrons
Electromagnetic +
kinetic electrons

0.0

0.5γ

0.5 1.0 1.5
ky

0.00

0.25

0.50

ω

0.5 1.0 1.5
ky

0

1

ω

a)

b)

c)

Figure 2.4: Linear growth-rate and real-frequency spectra for the two equilibria, show-
ing the effects of adding kinetic electrons and electromagnetic perturbations. This was
performed at all three radii of a) ρ = 0.3, b) ρ = 0.5 and c) ρ = 0.75.
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mode at all ky. The real frequency ω of the KBM is observed to be higher than for

ITG by a factor of approximately 1/
√
β. This increase in frequency is indicative of

the dynamics being driven by Alfvén-speed dynamics, which occur on a timescale
√
β

shorter than thermal dynamics. This sensitivity of ω to ky is a feature that we use

throughout the Thesis as a signature of the KBM. Studies were also performed with

only δA∥ or δB∥ fluctuations. The electrostatic spectra were insensitive to the addition

of δB∥ compressive magnetic fluctuations – no KBM was destabilized and the ITG was

not stabilized. With only δA∥ field-line bending fluctuations, ITG stabilization was

observed and a KBM appeared at low ky but with a growth rate approximately 50%

smaller than with both fluctuating magnetic components. The inclusion of kinetic

electrons and magnetic fluctuations has important consequences for linear stability in

both equilibria. In the next two Sections we study the effects of flux-surface shaping

including kinetic electrons with and without magnetic fluctuations, respectively.

2.2 Electrostatic shaping studies

In this Section, we study the effect of flux-surface shaping on electrostatic microsta-

bility in the two equilibria. In particular, we focus on the effects of elongation and

triangularity on the microstability of the ρ = 0.5 surface. As such, the equilibrium

parameters for the following simulations are from either of the columns with ρ = 0.5

in Table 2.1. In our electrostatic studies of the two equilibria (with β = 1.5% and

3.7%), we neglect magnetic perturbations and fix β′ to maintain the same magnetic

geometry2. Since these are electrostatic studies, calling the two equilibria low-β and

high-β is misleading. We instead choose to label them as low-(log p)′ and high-(log p)′,

respectively3.

2In GS2, β and β′ can be set independently of one another.
3The rationale behind this choice of labelling is that by ignoring electromagnetic terms, we have

artificially set β ∼ 0. By fixing β′ ≡ β(log p)′, we argue that we are increasing (log p)′ by different
amounts to compensate for the artificial reduction in β. The distinction between the two equilibria
then becomes one of (log p)′ rather than β.
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Figure 2.5: Scans in triangularity and elongation for two equilibria, showing a) max-
imum growth rates, b) local magnetic shear at the outboard midplane, c) integral of
|k⊥|2 over −π/2 ≤ θ ≤ π/2. The black crosses indicate the nominal shapes. We note
that the differences in local shear and

∫
|k⊥|2 between the two equilibria are small.

This is because whilst the low-(log p)′ equilibrium has a normalized pressure gradient
almost three times smaller than the high-(log p)′ one, the increased q and R0 result
in a comparatively similar value of αMHD, which governs the overall effect of pressure
gradient on the geometrical coefficients. The colours have been chosen such that blue
indicates increased stability.

2.2.1 Linear studies

We performed scans in elongation and triangularity with the nonlinear term in GS2

disabled. All simulations were performed for ballooning chains with θ0 = 0, with

ky ranging up to ky = 2 and |θ − θ0| ≤ 7π. In Figure 2.5a), we show maximum4

growth rates as a function of δ and κ. We did not expect scanning simultaneously

in κ′ and δ′ to be necessary, as wherever they appear in analytical expressions for

k⊥ or s̃, they are accompanied by an extra factor of ϵ ≃ 0.2 compared with κ and

4This is the growth rate of the fastest-growing eigenfunction out of all the different-{kx, ky} modes
simulated. It is used throughout this Section as an indicator of stability.
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δ. To confirm this, we also performed coarse scans simultaneously scaling κ′ and δ′

with κ and δ by fixing κ′/κ and δ′/δ. This had no effect on the qualitative trends

observed in Figure 2.5a). The maximum growth rates changed by less than 10% for

the majority of the {δ, κ} space, but reached ∼ 25% at δ = 0.5 and κ = 1. For the sake

of simplicity, we did not simultaneously scale δ′ and κ′ in any further simulations. The

growth-rate spectra for all {δ, κ} peak in the ITG-dominated region. The high-(log p)′

equilibrium has a lower maximum growth rate at every {δ, κ} compared with the low-

(log p)′ case. For the low-(log p)′ equilibrium, increasing the elongation has an almost

universal stabilizing effect. The only exception is at low δ, where small increases in κ

are slightly destabilizing. The same behaviour is much more noticeable in the high-

(log p)′ equilibrium, where the maximum growth rate (for δ = 0) occurs at κ ≃ 1.4.

This destabilizing effect of elongation has not previously been reported in the literature.

As triangularity increases, the elongation becomes monotonically stabilizing for both

equilibria. The threshold δ at which increased elongation becomes stabilizing is around

0.1 and 0.3 for the low- and high-(log p)′ equilibria, respectively. In both equilibria, the

triangularity is destabilizing at low elongation and stabilizing at high elongation. The

threshold κ at which increased triangularity becomes stabilizing is around 1.4 for both

equilibria. In both equilibria, maximal shaping minimizes the linear ITG instability. In

the high-(log p)′ equilibrium, the unshaped (i.e. circular flux-surface) equilibrium has

a maximum growth-rate almost as small as with the maximal shaping. To see whether

a circular flux surface can minimize the maximum growth rate, we artificially increased

|(log p)′| by 50% for the high-(log p)′ case. In this case, the {δ, κ} = {0, 1} toroidal ITG

is almost completely stabilized, with a maximum growth rate of around 0.01 compared

to around 0.08 for {δ, κ} = {0.5, 2} We note that for the high-(log p)′ equilibrium scans

with κ′/κ and δ′/δ fixed, the circular flux-surface shape has the smallest maximum

growth rate.

To explain the trends seen in the growth rates, we define two metrics to try to

capture the effects of drive and FLR damping which were introduced in Section 1.4.1.

For drive damping, we use the local magnetic shear at the outboard midplane where

θ = 0 and ballooning modes such as ITG are driven most strongly. For FLR damping,
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we take the integral of |k⊥|2 over the bad-curvature side of the tokamak where −π
2
<

θ < π
2
. A more negative value of s̃(θ = 0) will have a stabilizing effect, and we

expect a larger value of
∫ π/2
−π/2|k⊥|2 to have a stabilizing effect. In Figures 2.5b) and

c) we show these two parameters as a function of the shaping parameters. These

were calculated numerically by following the procedure described in Appendix A.1.

To demonstrate that the behaviour of these quantities can qualitatively predict the

trends shown in maximum growth rates, we study the dependence of each one to one

shaping parameter whilst the other is fixed at an extremal value. For κ ≃ 1, the

outboard magnetic shear is rapidly made less negative by increasing triangularity. In

contrast, the integrated wavenumber is quite insensitive to changes in triangularity,

and so cannot compete with the change in the local shear. The expected net effect

is therefore a strong destabilization, as is borne out in the growth rates. At κ ≃ 2,

the outboard magnetic shear is quite insensitive to changes in triangularity, so the

increasing integrated |k⊥|2 gives a net stabilization as δ increases. At δ ≃ 0.5, increased

elongation boosts both drive damping and FLR stabilization, reducing the growth rate

of ITG. Both effects work in tandem to provide the strong stabilizing effect of elongation

at large δ. We finally turn our attention to the novel destabilization with increased

elongation observed at δ ≃ 0. At this value of triangularity, increased elongation makes

both the outboard magnetic shear and the integrated wavenumber more positive. These

two effects can therefore compete to provide a non-monotonic behaviour in the growth

rate. The position of the local maximum in the maximum growth rate depends on the

sensitivity of both parameters to changes in κ.

Since one of the most notable difference between these two equilibria is the normal-

ized pressure gradient, it should come as no surprise that the sensitivity of outboard

magnetic shear to elongation changes with (log p)′. To show this, we present in Figure

2.6 a scan in αMHD with κ for the nominal values of the high-(log p)′ equilibrium. In

this {αMHD, κ} scan, increased elongation is stabilizing up to αMHD ≃ 1, beyond which

point it becomes destabilizing. The metrics for drive- and FLR-damping effects are in-

cluded and are able to account for the qualitative behaviour observed. At small αMHD,
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Figure 2.6: Electrostatic scans in αMHD and elongation for the high-(log p)′ equilibrium
at nominal triangularity (δ = 0.17), showing a) linear growth rates maximised over
ky, b) local magnetic shear at the outboard midplane, c) integral of |k⊥|2 over the
bad curvature region. The green and black crosses indicate the nominal parameters
for the low- and high-β equilibria, respectively. The scan in αMHD was performed at
fixed q and R0, so it corresponds to a scan in (log p)′. The nominal {αMHD, κ} value
for the low-(log p)′ equilibrium is also shown by a green cross; a similar scan with the
low-(log p)′ equilibrium parameters gives qualitatively similar results.

both the outboard magnetic shear and the integrated wavenumber act to increase sta-

bility. As αMHD increases, the dependence of outboard magnetic shear on elongation

reverses, so that above αMHD ≃ 0.5, the local magnetic shear counteracts the FLR-

stabilization afforded by increased elongation. At around αMHD ≃ 1, we argue that the

outboard magnetic shear becomes sensitive enough to changes in local magnetic shear

that it out-competes the FLR stabilization, reversing the trend shown in the linear

growth rates. With this in mind, we can understand why the low-(log p)′ equilibrium,

which has a slightly lower value of αMHD, does not exhibit the non-monotonic stability

trend with elongation as strongly as the high-(log p)′ equilibrium. In Appendix A.2,

we use a simplified analytical model that includes only the effect of κ and αMHD to give

expressions for s̃ and |k⊥| that reflect the behaviour shown in the full equilibrium. We

note that quasilinear heat-flux estimates were also calculated; however these predicted
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the low-(log p)′ equilibrium to have a lower radial heat flux than the high-(log p)′ case,

which was not borne out in the nonlinear simulations presented in the next Section.

2.2.2 Electrostatic, nonlinear shaping scans
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Figure 2.7: a) Ion heat flux and b) fraction of zonal energy as a function of elongation
for each equilibrium. The dotted line indicates the nominal elongation.

Linear simulation results can give an indication of the trends expected to be ob-

served in transport levels. In the following simulations in this Section, we include the

nonlinear term in GS2 to show transport levels as a function of triangularity and elon-

gation. In all of the following simulations δϕ was initialized with low-level (10−3) noise

in all of its three coordinates. The resolutions of the simulations are given in Table

2.2. These resolutions were guided by a thorough sensitivity study, which found that

∆ky = 0.048 was sufficiently small to resolve the turbulence, and that the shortest

ballooning chains in the simulation should consist of no fewer than four 2π segments

– this necessitated a large number of kx values. Unlike the linear simulations, we did

not perform a full 2D scan as that would have been too computationally expensive.

Instead we focus on testing how robust the novel destabilizing effect of elongation is

when nonlinear effects are included. We performed scans in elongation in three cases;

ion heat fluxes are presented in Figure 2.7. Electron heat fluxes are not shown but are
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Table 2.2: Resolution parameters for nonlinear simulations in the three κ scans.

Item Value Description

ntheta 32 Parallel grid points per 2π domain

negrid 16 Number of energy grid points

2 · ngauss 10 Number of passing pitch angles per sign of v∥

vcut 3 Ratio of v to vth,s above which hs = 0 is forced

∆ky 0.048 Grid spacing in ky

ky,max 1 Maximum ky

2πŝ∆ky/∆kx 4 Sets kx grid spacing

Nkx 256 Number of kx values

qualitatively similar to the ion fluxes. For both the low-(log p)′, δ = 0 and high-(log p)′,

δ = 0.5 cases, the ion heat flux is a monotonically decreasing function of elongation.

For the high-(log p)′, δ = 0 case, increased elongation increases the ion heat flux up

to κ ≃ 1.6. By further increasing elongation above this value, the ion heat flux be-

comes a decreasing function of κ. The qualitative trends in radial fluxes of heat are

therefore the same as is observed in the maximum linear growth rates. Assuming that

the linear interpolation between κ = 1.3 and 1.6 is correct, the exact value of κ that

maximises the heat flux is not the same as that which maximizes the linear growth rate.

These results suggest that, for a β ≃ 0 equilibrium with a steep pressure gradient, the

turbulent transport might be minimized by using circular flux-surfaces as opposed to

non-triangular highly-elongated flux-surfaces. However, for a low or moderate pressure

gradient, increased elongation is expected to reduce the radial turbulent transport.

As well as the ion heat fluxes, we show in Figure 2.7 the fraction of energy in the

zonal flow. To calculate this, we take the ratio of the following proxies for the zonal

and total energy contributions (WZF and Wtot, respectively) [75]:

WZF ∝
〈∑

kx

(
1− Γkx,ky=0(θ)

)∣∣δϕkx,ky=0(θ)
∣∣2
〉

θ

;

Wtot ∝
〈∑

kx,ky

(
1− Γkx,ky(θ)

)∣∣δϕkx,ky(θ)
∣∣2
〉

θ

,
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where Γkx,ky(θ) ≡ I0(b)e
−b where I0(b) is the zeroth-order modified Bessel function

of the first kind acting on b ≡ k2y/2 and ⟨ . . . ⟩θ indicates an average over poloidal

angle. For the low-(log p)′ equilibrium at δ = 0 and the high-(log p)′ at δ = 0.5 the

zonal energy fraction increases monotonically with elongation, reflecting the decreased

transport. Similarly, for the high-(log p)′, δ = 0 simulation the minimum zonal energy

fraction coincides with the maximum heat flux. These results suggest that the effect of

elongation on turbulent transport is closely linked to its effect on the relative strength

of the zonal flow.

2.3 Electromagnetic shaping studies

We now turn our attention to studies of the effect of shaping with magnetic fluctua-

tions included. We will therefore once again refer to the equilibria as low and high β.

We previously showed in Figure 2.4 that the inclusion of electromagnetic fluctuations

has a significant effect on the linear growth-rate spectra, destabilizing the KBM and

stabilizing ITG. We performed a scan in δ and κ while including both δA∥ and δB∥

fluctuations; maximum growth rates are shown in Figure 2.8a) and b) for the low-

and high-β equilibria, respectively. The metrics for measuring the {δ, κ}-response of

drive and FLR damping are unchanged from Figure 2.5. In the high-β equilibrium, a

KBM is excited for all {δ, κ} and the maximum growth rates are everywhere higher

than the electrostatic case. Increased flux-surface shaping has a uniformly stabiliz-

ing effect, except at κ = 1 where the maximum growth rate is insensitive to δ. In

the low-β equilibrium, the KBM is the dominant mode for the region of {δ, κ} space

bounded by the green line in Figure 2.8a). Within the KBM-dominated region, the

shaping is uniformly stabilizing, except at κ = 1 where we see the same behaviour

as the high-β case. Increasing κ at low-triangularity does not destabilize the KBM

in either equilibrium. In the ITG-dominated region outside of the green bounds, we

generally see that increased triangularity has a weak destabilizing effect at all values

of κ, and increased elongation can be either destabilizing or stabilizing. In both the

ITG- and KBM-dominated regions the observed trends are qualitatively different to
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Figure 2.8: Electromagnetic scans in triangularity and elongation for the a) low-β
and b) high-β equilibria, showing maximum growth rates. For the low-β case, KBMs
dominate in the region enclosed by the green line, whilst ITG is otherwise dominant.
All dominant modes in the high-β equilibrium are KBMs. The crosses indicate the
nominal shape.

the electrostatic results, suggesting that flux-surface shaping affects electromagnetic

instabilities in a way that is distinct from electrostatic ones.

To explain this difference, we note that there are extra coefficients of |k⊥|2 and |k⊥|
in Equations 1.23 and 1.24 for the parallel and perpendicular current, respectively. We

suggest that increasing |k⊥| will therefore act to reduce the effects of these magnetic

fluctuations. This is distinct from FLR stabilization, and originates from the curl of

the magnetic field. We hereafter refer to the effect of increased shaping (and thus

|k⊥|) on the magnetic fluctuations as the ‘magnetic-damping’ effect. This damping

manifests itself in two distinct ways via its opposing effects on the KBM and ITG. In

particular, increased magnetic damping should act to stabilize the KBM and destabilize

the ITG. The magnetic-damping stabilization of the KBM is synergistic with the FLR

damping, but opposes the FLR damping of ITG. Like FLR damping, we choose to use
∫
|k⊥|2 as a metric for the strength of the magnetic-damping effect. In practise, we

can therefore view the magnetic damping as adding extra weight to the FLR damping

when considering electromagnetic instabilities, but reducing its weight for ITG.

57



We can now explain the observed phenomena in the context of these three effects

of shaping. At δ = 0, increasing elongation leads to a competition between the desta-

bilizing effect of more-positive outboard magnetic shear and the stabilizing effects of

larger averaged perpendicular wavenumber. For the electrostatic ITG instability, the

outboard magnetic shear only needs to outcompete the FLR stabilization for increased

elongation to have an overall destabilizing effect. However, for the KBM, the outboard

shear competes against both FLR- and magnetic-damping effects. For both equilibria

studied here, the outboard magnetic shear is not sensitive enough to elongation to

provide a net destabilization of the KBM. A similar story presents itself for the effect

on KBM-stability of increased triangularity at all values of κ. The more-positive out-

board magnetic shear competes against both FLR and magnetic damping. Since FLR

and magnetic stabilization effects are less sensitive to δ than κ, the outboard magnetic

shear is able to balance the combination of |k⊥| effects, but only at κ = 1. We argue

that this results in the constant maximum growth rate there. Outside of the KBM

regime, the FLR- and magnetic-damping mechanisms oppose each other. If both of

the FLR and EM effects are of similar magnitude, we expect the overall shaping de-

pendence of the ITG stability to approximately reflect that of the outboard magnetic

shear. By studying Figure 2.5b), it can be seen that as the triangularity decreases

from 0.5 and the elongation increases from 1 (i.e. diagonally up and to the left), the

outboard magnetic shear tends to become less positive. We expect this to have a sta-

bilizing effect on the ITG instability. By focusing only on the region of Figure 2.8a)

that is outside the KBM regime (i.e. the upper-right-hand region, not enclosed by the

green line), it is observed that the linear growth rates tend to decrease very slightly5 as

the triangularity decreases from 0.5 and the elongation increases from 1.3. This is in

agreement with the expected effect of the outboard magnetic shear, lending credence

to our argument.

5The maximum linear growth rate for {δ, κ} = {0.5, 1.4} is 0.12, whereas at {0.0, 2.0}, the maximum
linear growth rate is 0.08.
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One can question whether the local magnetic shear can ever be sensitive enough to

changes in elongation that one can recover the destabilizing effect of increasing κ for

a KBM. Recall that in Figure 2.6 we showed that increased αMHD leads to increased

sensitivity of the outboard magnetic shear to elongation. This suggests that a threshold

for the KBM being destabilized by elongation may exist if αMHD is large enough. To

show this, we performed a scan in β at fixed (log p)′ for the high-β equilibrium. Two

such scans were performed – one at the nominal value of (log p)′ and one with a value

50% higher. The driving gradients were not simultaneously changed in the increased-

(log p)′ case. The maximum growth rates for the two scans are presented in Figure

2.9. Both scans share some features. At low β, increasing β stabilizes the dominant
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Figure 2.9: Electromagnetic scans in β and elongation for the high-β equilibrium, with
(log p)′ held fixed at a) nominal and b) 1.5 times nominal. The crosses indicate the
nominal {β, κ}. Separate colour-bars are used to improve the contrast in the high-
(log p)′ case.

ITG mode, before destabilizing a KBM. The threshold value of β for the KBM to

be destabilized increases with κ. As mentioned in Section 1.4.3, the KBM is partially

stabilized at sufficiently high β via second stability. This occurs in the high-αMHD region
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of ŝ−αMHD space where the MHD ideal ballooning mode is stable. The KBM persists

(albeit with significantly reduced growth rates) into the region of second stability, as

previously reported in [57], for sufficiently high β ≃ 10%. This stabilization can be

attributed to the increasing local-magnetic-shear stabilization due to larger αMHD ∝ β.

As αMHD increases, the local magnetic shear becomes increasingly sensitive to changes

to κ. Therefore, as elongation is increased in the region of second stability the local-

shear stabilization is eroded rapidly enough that it outcompetes the FLR stabilization.

As a result, increasing κ moves the equilibrium out of the second-stability region,

decreasing stability dramatically. As β is increased, so does αMHD, in turn reducing

the outboard magnetic shear and providing a stabilizing effect. By increasing (log p)′

by 50%, αMHD is 50% more sensitive to changes in β. As a result, the region of second

stability is accessed at lower β ≲ 5%, and the degrading effect of κ is correspondingly

observed at lower β.

2.4 Conclusions

In this Chapter we presented a study of the effects of flux-surface shaping on two

equilibria primarily distinguished by their value of plasma β. We prefaced this study

by introducing the basic δf -gyrokinetic framework, as well as some of the key concepts

of the local flux-tube approach used in gyrokinetic codes such as GS2. In doing so,

we explained how shaping effects can enter the governing gyrokinetic-Maxwell system

of equations, via the perpendicular wavenumber that appears when the equations are

cast in spectral representation. The component of the perpendicular wavenumber in

the field-line-label direction ∇α̃ was shown to include the local magnetic shear that is

tied to drive damping, whilst the FLR damping is manifest as Bessel functions whose

argument scales with k⊥. Following this, we introduced the two equilibria in detail

before presenting a successful benchmark between the two local gyrokinetic codes GS2

and GKV for electrostatic fluctuations and adiabatic electrons. We then presented the

effects of including kinetic electrons and fluctuating magnetic fields in these two equi-

libria to show that the KBM is destabilized. With these preliminaries out of the way,

we showed linear, electrostatic scans in the Miller parameters κ and δ that govern the
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flux-surface shape. We found the novel result that, at small triangularity, elongation

can increase the maximum linear growth rates of equilibria with steep pressure gradi-

ents. We explained, by defining metrics for the drive- and FLR-damping effects, all

of the trends observed in the maximum growth rates. In particular, we noted that at

small triangularity and large αMHD, the local magnetic shear at the outboard midplane

can be made more positive by increasing elongation. This destabilizing effect can com-

pete with the FLR-stabilization afforded by increased k⊥ to give the non-monotonic

maximum-growth-rate behaviour observed. We showed nonlinear simulation results of

scans in elongation to show that increased elongation can result in increased transport

levels. These electrostatic results correspond to β ≃ 0 electromagnetic simulations

with very steep pressure gradients. As such, one may argue that they are unimportant

for high-performance experiments where both β and pressure gradients are typically

expected to be high. Nevertheless, the concepts developed via these electrostatic sim-

ulations laid the foundation for studying the effects of flux-surface shaping in tandem

with fully electromagnetic fluctuations.

We presented fully electromagnetic scans in triangularity and elongation for both

equilibria. The inclusion of electromagnetic fluctuations leads to qualitatively differ-

ent behaviour to the electrostatic case, as the KBM reacts differently to the shaping

compared with the ITG instability. Namely, increased shaping has a stronger stabi-

lizing influence on the KBMs. We explained all of the trends observed in the context

of increased shaping damping the influence of the magnetic fluctuations. KBMs are

more readily stabilized by increased shaping, and the ITG can be destabilized by

more extreme shapes, due to the erosion of the EM stabilization. Nevertheless, we

showed that for high performance plasmas with β sufficient to access the region of

KBM second-stability, the novel destabilizing effect of elongation can be reproduced.

This has potentially significant ramifications for high-performance tokamaks expecting

to utilize second-stability to gain improved performance at high β. Although nonlinear

simulations were not performed with fully electromagnetic effects included, our linear

results indicate that highly-elongated plasmas may significantly worsen the turbulent

transport in such experiments. We note, however, some caveats. Whilst our conclusions
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hold for the presented shaping studies in which only elongation and triangularity were

varied, they will not necessarily hold if other shaping parameters such as Shafranov

shift and aspect ratio are varied. In real tokamak experiments, attempts to change the

elongation and triangularity in isolation locally are extremely difficult, and generally

result in changes to many other local equilibrium parameters. As a result, the findings

of this Chapter may not readily be borne out in experiments. Additionally, there are

implications of reduced shaping in terms of destabilizing dangerous MHD instabilities.

The study of such MHD instabilities was beyond the scope of this work.
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Chapter 3

Gyrokinetic studies of an internal
transport barrier

Under certain circumstances, so-called transport barriers can form in tokamak plas-

mas. These are radially thin regions of the plasma where much-higher driving gradients

can exist without extreme levels of transport, i.e. the heat conductivity of the plasma

is significantly lower than usual. The confinement in tokamak plasmas that exhibit

transport barriers is much improved [76, 77]. So long as the plasma is stable and can

be sustained, this certainly improves the prospects of delivering fusion energy from a

commercially-viable toroidal confinement device. The first transport barrier was ob-

served in ASDEX at the edge of the plasma – similarly located transport barriers are

known as edge transport barriers (ETBs) and are now routinely produced in experi-

ments to improve confinement [7, 76].

Transport barriers can also be found in the core of the plasma – these are known

as internal transport barriers (ITBs). ITBs have been observed in all of the major

tokamaks across a variety of transport channels (i.e. ion and/or electron temperature

and/or density) [77, 78]. For steady-state tokamak operation, the plasma current that

generates the poloidal magnetic field should be driven via fully non-inductive methods.

Moreover, efficient steady state operation is possible if the intrinsic current comprises

a significant portion of the plasma current, reducing the need for external current

drive. ITBs are considered important for efficient steady-state operation because the

bootstrap current typically provides in excess of 50% of the plasma current, reaching
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as much as 80% in some JT-60U shots [79, 80]. The steep-gradient equilibria observed

in transport barriers are not as well-studied as a typical tokamak equilibrium; as such

there is no full understanding of an ITB formation mechanism. Nevertheless, there are

several experimental observations that guide us towards some potentially important

stabilization mechanisms. Typically, but not always, ITBs are observed coincidentally

with regions of small or negative magnetic shear, once the input power is sufficiently

high [81, 78, 82–87]. Since the magnetic shear appears to be a crucial ingredient in

triggering ITB formation, the current drive is often tailored to create a non-monotonic

q profile that has a minimum at mid minor radius in the plasma [7]. ITB formation

is also often correlated with steep gradients in the equilibrium plasma flow velocity

perpendicular to the magnetic field [88–90]. As well as the above observations, ITBs

are occasionally observed to form near low-order rational flux-surfaces [91, 92]. It is

hypothesized that the MHD modes destabilized at these low-order rational surfaces can

transiently increase the equilibrium flow shear which, in turn, stabilizes the microscopic

instabilities driving turbulent transport [77]. We will not study such MHD activity in

any detail in this work, but simply view it as a means of increasing the mean flow

shear. Towards the top of an ITB, the plasma β can become significant (β ≳ 1%)

– electromagnetic effects are expected to be have a significant on microstability in

this case. Recent work has also predicted a completely distinct class of ITBs that is

triggered by a resonant interaction between ion-driven turbulence and fast particles

[93, 94]. This Thesis does not explore that class of ITBs, but we rather note in passing

that there is likely no single mechanism for ITB formation.

In this Chapter, we continue our study of microstability in high-performance toka-

mak plasmas as we focus on a JET pulse that exhibited a strong internal transport

barrier. In doing so, we will attempt to determine whether local δf gyrokinetics con-

tains the physics necessary to describe ITB formation. We begin in Section 3.1 by

introducing the general features of the experiment, along with three different equilibria

that are consistent with experimental measurements. We compare their key differences

at two radial locations corresponding to the peak of the respective L−1
Ti

profiles and
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Figure 3.1: Time traces of the various sources of external heating power for JET pulse
#53521.

outside the foot of the barrier. As discussed in Section 1.3.3, we present all quanti-

ties in a normalized form according to Appendix B. We focus first on the mid-barrier

region in Section 3.2. Using both linear and nonlinear gyrokinetic simulations, we es-

tablish the key microscale instabilities that drive turbulence, and how the stability and

transport responds to changes in key equilibrium parameters such as β, equilibrium

flow shearing rate, and magnetic shear. In doing so, we determine the most impor-

tant stabilization mechanisms in this mid-barrier location of the plasma. In Section

3.3, we present simulations of the outer region, which has more standard equilibrium

parameters. Again, linear and nonlinear gyrokinetic simulations are used to study the

stability and transport levels. We end in Section 3.4 by summarizing our findings.

3.1 Experiment and equilibria

We study JET pulse #53521, which ran in 2001 with an optimized magnetic shear

profile [95]. Notably, this pulse was one of the longest duration optimised Shear JET

discharges, running for 27 confinement times [96]. In Figure 3.1, we show the time traces

of various sources of heating power as given in [97]. The ITB, typically characterized

by a jump in the neutron rate, lasts from 5 to 13 seconds, coinciding with the addition

of significant external heating. The plasma was heated by a variety of sources: 2.6-

2.9 MW of the heating power was supplied by lower hybrid (LH) waves, 14.9 MW via

deuterium neutral beam injection (NBI) and 4 MW by ion-cyclotron-resonance heating
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(ICRH) of a hydrogen minority species. The use of LH heating also provides a source

of current drive and is considered to be important for tailoring the q-profile to give

small or negative magnetic shear in both JET and other devices [98, 99]. The main ion

species was deuterium. This experiment was performed before the ITER-like wall was

installed in JET. The most significant impurity source, and indeed the only one taken

into account in this study, is carbon from the device wall. A strong ITB was observed

in the ion temperature profile around 5 seconds into the pulse.

Experimental measurements were available for several key equilibrium parameters.

Charge exchange measurements were used to calculate the ion temperature and toroidal

rotation profiles, whilst the electron temperature was measured primarily via electron

cyclotron emission. The electron density profile was measured using LIDAR. Visible

bremsstrahlung radiation measurements were used to infer Zeff ≡ n−1
e

∑
i niZ

2
i , with the

summation over each ion species i. However, these were not considered to be reliable as

Zeff was reported as large (∼ 4) and constant across the entire radial profile. Some equi-

librium information was not directly available from the experimental measurements,

such as the plasma geometry, safety-factor and transport profiles. To generate these

profiles in a self-consistent way (and therefore infer the missing equilibrium profiles),

we used the JETTO transport code [100]. This solves a set of transport equations given

sources of particles, momentum and heat, together with the Grad-Shafranov equation,

in general toroidal geometry. These transport equations generally take the form

1

V ′
∂

∂t

∣∣∣∣
ψ̃

V ′⟨A⟩ψ̃ +
1

V ′
∂

∂ψ̃
V ′⟨aA⟩ψ̃ = ⟨SA⟩ψ̃, (3.1)

where ψ̃ is the flux-surface label first defined in Chapter 1, V is the volume enclosed

by a flux surface, a derivative with respect to ψ̃ is denoted by a ′, ⟨. . . ⟩ψ̃ indicates a

flux-surface average, and A denotes a macroscopic quantity such as density, angular

momentum or temperature [21]. The corresponding radial flux is denoted by aA, and

SA indicates the external source.
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JETTO was run in interpretive mode for the ion temperature, electron density and

temperature, and toroidal angular velocity – this means that these profiles were pro-

vided and used to calculate other profiles such as safety factor or fluxes. The plasma

boundary was computed using EFIT [101]. Since JETTO was run in interpretive mode,

its main purpose was to provide self-consistent magnetic geometry and heat, particle

and momentum fluxes. To enable JETTO to calculate the fluxes, we supplied it with

the various relevant sources, as well as fitting profiles at multiple times during the pulse.

In practice, to calculate each flux, we assembled the relevant outputs of JETTO accord-

ing to Equation 3.1 and rearranged for ⟨aA⟩ψ̃. The particle fluxes were sourced by NBI,

ionization and recombination. The momentum flux was sourced by the torque on the

plasma, e.g. from NBI, and also contains a contribution from the particle flux due to

the bulk rotation of the plasma. The calculated heat flux took into account sources of

heat from NBI, RF heating, LH heating, radiative losses such as Bremsstrahlung, and

ion-electron energy exchange. We supplied various models for the source terms. For

NBI, the PENCIL code was used [102]; this was set up according to the experimental

logs that described how each NBI module was configured experimentally. Similarly,

for the LH and ICRH sources, we used FRTC and PION codes, respectively [103, 104].

There are assumptions inherent in these codes that lead to sources of uncertainty be-

yond those of the raw experimental data itself. For example, the PENCIL code assumes

that Zeff is constant across the radial profile and that Ti(ψ̃) = Te(ψ̃)Ti(0)/Te(0). In

particular the assumption that the ion and electron temperatures can be associated

by a constant is rather crude, and introduces further uncertainties into the predicted

profiles. Nevertheless, we have not assigned specific quantitative uncertainties to any

outputs of JETTO.

The profiles were fitted by using a combination of spline (in Profile Maker [105]) and

manual (i.e. by eye with simple functions) fitting. All simulations were performed 8

seconds into the pulse because a strong ITB was present at that time. The simulation

profiles were interpolated between the two nearest times for which experimental data

was provided. There are significant error estimates on the experimental profiles which

allows for a broad range of profiles to be fitted to the different data. To illustrate this,
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Figure 3.2: Two different fits to the experimental data in the mid-barrier region, using
offset tanh functions of varying widths. The radial coordinate ρ is the square root of
the toroidal magnetic flux, normalized to its value at the last closed flux surface. No
attempt was made to fit the data beyond the point at ρ > 0.7 – we merely aim to show
how the sparsity of measurements and their significant error bars allow us to fit such
a broad variety of ion temperatures in the mid-barrier region.

we show in Figure 3.2 the ion temperature data along with two fits in the mid-barrier

region 8.12 seconds into the pulse. As is shown, it is eminently possible to fit a wide

range of profiles to the ion temperature profile. The two simple fits shown are close

to the bounding cases for a simple tanh fit, but more complex fits can achieve more

extreme values of L−1
Ti

if desired.

Since there is such significant uncertainty in the experimental profiles, some of the

key parameters such as ŝ, L−1
Ti
, γE×B and β can vary significantly depending on exactly

how one chooses to fit the data. In this Thesis, we study three reasonable fits to the

equilibrium at the chosen time, to study microstability and microturbulence over a

range of equilibria that are broadly consistent with the available measurements. We

label these equilibria as A, B and C; the next subsections provide details on the rationale

behind the three different fits, whilst Figure 3.3 shows some of the key profiles for each

equilibrium.
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3.1.1 Equilibrium A

To generate equilibrium A, we used spline fitting for the ion and electron temperatures,

the electron density and the toroidal mean flow. The ion densities were determined by

using Zeff calculated from visible bremsstrahlung radiation. This large and constant

value of Zeff used for equilibrium A means that the deuterium density is 60% of the

electron density at all radii. One key feature of equilibrium A is the tall and narrow

peak in L−1
Ti

that approximately corresponds with the also-narrow peak in the γE×B

profile. Although the density profiles in equilibrium A vary relatively slowly with r,

the total pressure gradient is sufficiently large to create a region of negative magnetic

shear that coincides with the barrier1.

3.1.2 Equilibrium B

In Equilibrium B, we relaxed the temperature and toroidal flow gradients as much as

possible within experimental error, whilst keeping the barrier location approximately

the same as for Equilibrium A. To achieve this, equilibrium B was fitted manually by

using a combination of linear and tanh functions for the ion and electron temperatures,

electron density and toroidal flow. In contrast to equilibrium A, charge exchange data

was used to infer a Zeff profile by directly measuring the thermal hydrogenic ion density.

As a result, the deuterium density was much closer to the electron density compared

with equilibrium A. Notably, the shallow gradient of this fit to the ion temperature was

less proficient at generating a bootstrap current, resulting in a magnetic shear profile

that does not go significantly negative at any radius.

3.1.3 Equilibrium C

Equilibrium C was fitted with the aim of generating a region of strong negative magnetic

shear along with a reduced peak L−1
Ti
. Similar to equilibrium B, we fitted manually

the ion and electron temperatures, electron density and toroidal flow, using linear and

tanh functions, and used charge-exchange data to infer the ion density. Similar to

equilbrium A the Ti profile was fitted to have a flat top, which has been observed in

1Note that the safety factor depends on the pressure profile due to the bootstrap current – steep
pressure gradients result in a strong toroidal plasma current that locally adjusts q and therefore ŝ.
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other ITB pulses [106, 107]. This leads to a strongly asymmetric L−1
Ti

profile and lends

itself well to generating a strongly negative magnetic shear via the bootstrap current.

Another consequence of this Ti fit is that the minor radius at which L−1
Ti

is maximal

moves radially inwards from r ≃ 0.4 to r ≃ 0.3. This means that the peak in L−1
Ti

is not

coincident with the peak in γE×B and that the plasma β at the peak L−1
Ti

is well above

that of equilibria B and C. The electron density profile for equilibrium C was fitted

to enhance the peak in L−1
ne and L−1

ni
profiles as much as possible within experimental

error bars. As a result, the peak moves to lower r. Finally, the toroidal flow profile

was fitted in a similar way to equilibrium B.

3.2 Mid-barrier simulations

In this Section we focus on microstability and turbulence in the mid-barrier, which we

define as the radial position where the inverse temperature length scale is maximal.

The physical parameters of the three equilibria at their respective mid-barrier positions

are given in Table 3.1. We note that the profile of triangularity contained small (am-

plitude ∼ 0.01) oscillations around δ ≃ 0.05. This leads to large variations in δ′, which

is likely not representative of its true behaviour. We performed sensitivity scans which

confirmed that the variation in δ′ had no significant effect on linear stability. We first

focus on the trends in linear stability observed with electrostatic and fully electromag-

netic fluctuations. In doing so, we will identify a candidate equilibrium that can be

studied in more detail, for example via the inclusion of equilibrium flow shear. These

linear results will guide us towards a set of equilibrium parameters, with which we

can match experimental flux levels, that are at the very least close to a self-consistent

equilibrium.

3.2.1 Identifying a candidate equilibrium

Given the steep temperature gradients combined with low heat diffusivity inherent in a

transport barrier, we expect that the challenge in matching experimental flux levels will

come in getting the simulated fluxes small enough. We will use the linear growth rates

as a proxy for nonlinear saturated flux levels to identify the candidate equilibrium
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Table 3.1: Physical parameters for the three equilibria in the mid-barrier region. These
values are normalized according to Appendix B. The contribution to β of a species s
can be calculated by multiplying βref , Ts and ns.

Parameter A B C

r 0.405 0.39 0.27

R 3.21 3.272 3.29

ŝ -0.431 0.226 -0.68

q 1.783 1.738 1.651

R′
0 -0.241 -0.297 -0.249

κ 1.47 1.48 1.50

κ′ -0.24 -0.35 -0.43

δ 0.049 0.052 0.057

δ′ 0.005 0.274 -0.062

βref (%) 4.77 5.04 4.87

−β′ 0.317 0.294 0.362

γE×B 0.254 0.139 0.074

ωψ 0.155 0.168 0.238

Ti 0.616 0.471 0.7898

L−1
Ti

13.46 7.597 7.327

Te 0.472 0.492 0.602

L−1
Te

2.818 2.39 0.76

nD 0.323 0.727 0.806

L−1
nD

1.659 1.743 1.999

ne 0.808 0.835 0.890

L−1
ne 1.659 1.486 1.629

nC 0.081 0.018 0.014

L−1
nC

1.659 -0.242 -1.893

νD(×10−5) 6.04 8.99 4.64

νe(×10−3) 5.41 5.07 4.19

νC(×10−3) 0.89 1.32 0.68

likely to exhibit the best confinement. To identify such a candidate from our three

equilibria, we will study the linear stability with and without magnetic fluctuations and
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equilibrium flow shear. As with Chapter 2, all of the simulations in this Chapter are

performed using the local gyrokinetic code GS2. Unless otherwise stated, all simulations

in this Section use 32 grid points per 2π segment in poloidal angle (which parametrizes

the distance along a field line).

3.2.1.1 Electrostatic fluctuations

We initially present results of simulations that exclude magnetic fluctuations, i.e.

δA∥ = δB∥ = 0. Growth-rate and real-freqency spectra at θ0 = 0 are presented in

Figure 3.4, up to at most ky = 2. At the scales simulated, all of the spectra are

dominated by drift-wave instabilities in the ion diamagnetic direction, as identified by

the positive real frequency at all unstable wavenumbers. The spectra all peak close

to ky = 1. We identify this as the toroidal ITG instability by noting the ballooning

(peaked at θ − θ0 = 0) nature of the eigenmodes. A typical mode structure is shown

in Figure 3.6 for ky = 0.97. At low ky (i.e. ky ≲ 0.5) the dominant mode for all

equilibria is no longer the toroidal branch of ITG. Instead, a series of distinct modes

dominates the low-ky spectrum, as indicated by a staircase of discontinuous jumps in

the real-frequency spectrum of each equilibrium. We will temporarily refer to these

modes as ‘auxiliary’ modes. The width of the auxiliary modes (in ky) changes with the

equilibrium. For equilibrium A and C, they are quite broad, whilst they are narrow and

most clearly distinguishable in equilibrium B. For equilibria A and B, the impact of

the auxiliary modes appears to be restricted to ky ≲ 0.5. For equilibrium C, however,

they have a subtle impact on the growth-rate spectrum up to at least ky ≃ 1: several

peaks are just visible on top of the toroidal ITG continuum. These modifications to

the growth rate are not distinguishable on the real-frequency spectrum. Equilibrium

C is also the most stable at all scales simulated.

3.2.1.2 Electromagnetic fluctuations

The values of electron2 β are 1.8%, 2.1% and 2.6% for equilibria A, B and C re-

spectively. The same respective main-ion contributions to β are 0.9%, 1.7% and 3.1%.

At such values of β, magnetic fluctuations are expected to be important, either by

2Electron β is relevant because the electrons typically carry the majority of the fluctuating current.
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Figure 3.4: Electrostatic a) growth-rate and b) real-frequency spectra at θ0 = 0 for
the three equilibria. The low-ky portions ky ≲ 0.5 of these ballooning-space simulations
were run with ∆ky = 0.01 with highly-extended ballooning chains |θ| ≤ 19π since the
low-ky auxiliary modes extended far along the field lines. At higher ky, the simulations
were run with ∆ky = 0.1 and shorter ballooning chains with |θ| ≲ 9π.

stabilizing ITG or destabilizing kinetic ballooning modes (KBMs) as was observed in

Chapter 2. Growth-rate and real-frequency spectra from simulations that included

magnetic fluctuations δA∥ and δB∥ are shown in Figure 3.5. At ky ≃ 0.2, a KBM is

destabilized in all three equilibria. We identify the KBM via its structure along the

field line (ballooning, peaked at the outboard midplane) and by the sensitivity of its

real frequency to ky as discussed in Chapter 2. In all three equilibria, the toroidal ITG

branch is more stable than in the electrostatic case, as expected. The toroidal ITG in

equilibrium A is stabilized the least, with the maximum growth rate decreasing by 20%.

Similarly, the maximum growth-rates in equilibria B and C are reduced by around 40%

and 50%, respectively. As with the electrostatic simulations, these results continue to

suggest that of the three equilibrium studied, C would minimize the radial transport.

Therefore, in what follows, we will focus only on the stability of equilibrium C. We

note that the auxiliary modes are still present. This can be seen via the humps on top

of the usually-smooth toroidal-ITG branch. This suggests that the auxiliary modes are

not as strongly stabilized by field-line bending and compression as the toroidal ITG. At
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Figure 3.5: Fully electromagnetic (both δB∥ and δA∥) a) growth-rate and b) real-
frequency spectra at θ0 = 0 for the three equilibria. The simulations were performed
with ∆ky = 0.03 and a maximum |θ| ≤ 19π.

low-ky, we hypothesize that the auxiliary modes are subdominant to the KBM, though

an eigensolver has not been used to confirm this.

3.2.1.3 Origin of the auxiliary modes

Before presenting further results on the effects of flow-shear and variations to mag-

netic shear, we discuss the origin of the low-ky auxiliary modes and how they modify

the toroidal ITG spectrum. We begin by focusing on purely-electrostatic results. As

can be seen from Figure 3.4, the auxiliary modes are most discernible in the electro-

static low-ky growth-rate and real-frequency spectra of equilibrium B. The eigenmode

structure for these auxiliary modes is distinct from that of the toroidal-ITG. We show

in Figure 3.6 a selection of four eigenfunctions at different values of ky. The first three

values of ky coincide with the local maxima of each ‘band’ of the auxiliary modes,

whilst the fourth lies in the toroidal-ITG branch. The simulated θ domain extended

up to θ − θ0 = ±19π, but we show only a zoomed-in portion of it.

There are several key features of this Figure. At all values of ky shown, the eigenfunc-

tions have a local maximum at θ − θ0 = 0. Only for ky = 0.97, which is representative

of the dominant modes for ky ≳ 0.5, is this also the global maximum. At the three
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Figure 3.6: Mode structures along the field line for equilibrium B at four values of ky
with θ0 = 0.

lowest values of ky shown, the global maximum of the eigenfunction is at θ−θ0 ≃ 2.3π.

For the low-ky modes, the eigenfunction has multiple local maxima in the intermediate

region between θ − θ0 = 0 and the global maximum3. These local maxima appear on

both the good- and bad-curvature sides of the device, indicating that their drive mech-

anism is not necessarily dependent on curvature or ∇B drifts. As ky increases from

0.24 to 0.32 and then to 0.38, the number of local maxima in the intermediate region

increases with each jump in ky. Other than that, these low-ky eigenfunctions exhibit

no qualitative differences to one another. This suggests that the different bands in the

auxiliary mode spectrum are a consequence of the different modes in the intermediate

region. As a result, we focus first on identifying the origin of these local maxima. In a

loose sense, the increased number of local maxima with ky indicates an increased k∥,

even though simple periodic solutions cannot be used to describe modes living in a

toroidal system with finite magnetic shear. With this in mind, we propose that these

auxiliary modes could be slab-ITG modes that are able to compete with and modify

the toroidal ITG that usually dominates ion scales. Unlike the toroidal branch, slab

ITG requires finite k∥ for instability, and does not depend upon the magnetic drifts to

couple together the density and temperature fluctuations. Instead, it relies on parallel

3Local maxima are also visible for |θ− θ0| > 2.3π but these are less obvious so we do not focus on
them.
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ion dynamics to generate density fluctuations that drive E × B flows in a feedback

loop [108]. An infinite parallel domain can support a continuous set of modes with in-

finitesimally small k∥ spacing. One can plot a complex-frequency spectrum ω(|k⊥|, k∥)
for such a domain and trace out the contour that maximizes γ at each |k⊥|. This will
be a smooth line in the {|k⊥|, k∥} space, so the real frequency is a smooth function of

the perpendicular wavenumber. Alternatively, in a domain with finite parallel extent,

only a discrete set of parallel wavenumbers can be supported, so we would expect dis-

continuities in the real-frequency spectrum along the contour. In the simulations, the

parallel domain extends far beyond the extent of the mode, so the discrete nature of the

real-frequency spectrum is not a numerical artefact caused by low parallel resolution.

This indicates that the parallel extent of the mode is constrained by a physical mech-

anism. We suggest that this mechanism is FLR damping brought about by magnetic

shear. FLR damping can place an upper limit on the parallel domain length in which

modes can exist, and allows for a scenario where discrete bands of slab-ITG modes can

be observed in a toroidal system.

The above argument does not explain why the global maximum of the eigenfunction

for low-ky modes exists at θ − θ0 ≃ 2.3π. Well-versed readers may spot similarities

between this study and recent work by Parisi et al., which presented microstability

analysis of electron-temperature-gradient (ETG) modes in the pedestal [109]. In that

work, Parisi found that the strong magnetic shear and short temperature length scales

present in pedestal conditions lend themselves to driving dominantly the toroidal-ETG

at kyρe ≪ 1 and slab ETG at kyρe ∼ 1. Given the inherent similarities between the

pedestal and the ITB studied in this work, we are compelled to consider whether the

dominant peak in the eigenfunction at low kyρi is due to toroidal ITG. We first consider

what is required for slab and toroidal ITG (or ETG) to be driven strongly. For strong

slab-ITG drive, we require that the drive frequency ω∗,ηi and the parallel streaming

frequency k∥vth,i are of similar size, where

ω∗,i ≡
kycTi

ZieBLni
. (3.2)
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This requires that
ky
k∥

ρi
LTi

∼ 1. (3.3)

When the ion temperature length scale is very short, i.e. R0L
−1
Ti

≫ 1, slab ITG can

remain strongly driven by increasing k∥ accordingly. A similar condition can be calcu-

lated for toroidal ITG by balancing the drive frequency and magnetic drift frequency

VD,i · k⊥ to generate the following condition for strong drive:

R0

LTi
∼ |k⊥|

ky
. (3.4)

For short ion temperature length scales, toroidal ITG may only be driven strongly

when |k⊥| ≫ ky. By inspection of Equation A.28, it can be seen that this condition

on |k⊥| and ky can be satisfied if ŝ(θ − θ0) ∼ R0L
−1
Ti
. The small magnetic shear

(ŝ = 0.23) for equilibrium B in the simulation shown limits how readily this condition

can be achieved4. The dominant peak in the eigenfunctions of three lowest-ky modes

shown in Figure 3.6 corresponds to |ŝ(θ − θ0)| ≃ 1, whilst R0L
−1
Ti

≃ 25. As such, the

condition for strong drive is not met. Nevertheless, even weakly-driven toroidal ITG

could be responsible for the dominant peak in the eigenfunction at low ky. We have

not performed any further studies to validate this.

To convince the reader that the auxiliary modes do indeed originate at least in part

from slab ITG, we strip out much of the physics that should not be needed to drive the

instability. We remove both the carbon impurity and electrons as kinetic species, turn

off collisions, use circular flux surfaces, set L−1
ni

= 0 and set ŝ = 0 (in practice we set

ŝ = 10−6 to avoid numerical divide-by-zero errors, but this value of ŝ is small enough

that periodic boundary conditions can be imposed along the magnetic field). The local

magnetic shear is still allowed to vary, e.g. due to finite β′ and R′
0, but this is not

incompatible with periodic parallel boundary conditions. The growth-rate and real-

frequency spectra up to ky = 1 are shown for this case in Figure 3.7 along with mode

structures at several values of ky. Despite stripping out much of the physics, we are

still able to observe qualitatively similar behaviour to that seen in the full equilibrium

4For comparison, the equilibria studied by Parisi had ŝ ≃ 3 and R0L
−1
Te

≃ 130.
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Figure 3.7: a) Electrostatic growth-rate and real-frequency spectra for a stripped-
down version of equilibrium B with a single ion species, no collisions, circular geometry
and no magnetic shear. The jumps in real-frequency at 0.4 < ky < 0.6 are not spurious
– they reflect the fact that modes with very similar growth rates are competing with
one another in this range of ky. b) Mode structures along the field line for this stripped-
down equilibrium at various values of ky. The ky-resolution is ∆ky = 0.01 and 64 points
were used parallel to the field line.

– a staircase of auxiliary modes at lower ky followed what was assumed to be a toroidal-

ITG branch at higher ky. It is also clear from Figure 3.7 that the auxiliary modes can

happily exist in the good-curvature region of the where π/2 < |θ| < π and ωD,i < 0.

We believe that this is sufficient evidence to label the auxiliary modes as predominantly

slab ITG, and the higher-ky modes as regular toroidal ITG. The different steps in the

real-frequency spectrum correspond to slab modes with different parallel wavenumbers,

though the eigenmodes are not purely sinusoidal as one might expect from slab ITG.

This is due to the presence of magnetic drifts and local magnetic shear. The magnetic

drifts modify the response in an order-unity way, whilst the local magnetic shear FLR

damps the mode by modifying the perpendicular wavenumber. The transition from

slab to toroidal ITG is evident in the eigenfunction, which becomes strongly peaked

at the outboard midplane above ky ≃ 0.6. Nevertheless, for ky ≳ 0.6, the modulation

in the growth rate (and also subtly in the real frequency) spectrum indicates that

some remnant of the slab modes is present. Sure enough, we see that the tails of the

eigenmodes contain oscillations whose wavelength decreases as ky increases.
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The toroidal branch of ITG is typically the dominant mode observed for ky ≲ 1 in

core simulations of tokamak plasmas. This raises the question of why we observe slab

ITG in competition with the toroidal branch in these equilibria. One key feature of

all three equilibria is that the inverse temperature length scale is several times shorter

compared with non-ITB equilibria, for which L−1
Ti

≃ 1−3 typically. The ratio of density

to temperature length scales, ηi, can range anywhere from 3 to 10 depending on how we

fit the ion temperature and density profiles. We can compare the dispersion relations for

toroidal and slab ITG to see how they scale with the driving gradients of temperature

and density well above marginal stability. Ignoring magnetic-fluctuation effects, the

toroidal-ITG growth-rate well above marginal stability scales like γ ∼ (ω∗,iωD,iηi)
1/2 ∝

(L−1
Ti
)1/2 [14], where ω∗,s ≡ −kycTs/(ZseBLns) and ωD,s ≡ VD,s · k⊥. The slab-ITG

growth rate scales like L−1
Ti
, as is shown in Appendix C.2. The toroidal branch tends to

dominate at lower L−1
Ti

due to order-unity differences in the coefficients. However, at

sufficiently high L−1
Ti
, the slab branch is able to compete with the toroidal ITG due to

the stronger scaling. In the steep-gradient region of a transport barrier where L−1
Ti

can

be ∼ 10, it is therefore unsurprising that the slab modes are dominant at some scales

[109].

Up until this point, we have only considered auxiliary modes in the context of elec-

trostatic fluctuations – we now consider electromagnetic effects. We noted in the linear

nominal simulations of all three equilibria that the inclusion of fully electromagnetic

fluctuations makes the slab-ITG modifications to the toroidal-ITG branch more pro-

nounced. As discussed in Section 1.4.3, it is well known that field-line bending can

stabilize slab and toroidal ITG. We observe that slab ITG becomes more important

than the toroidal branch when EM effects are included, which suggests that the slab

branch is stabilized less effectively than the toroidal one. In Appendix C we derive

a dispersion relation for a deuterium-electron plasma in unsheared slab geometry in-

cluding FLR effects and δA∥ fluctuations. We show in Figure 3.8 how the slab-ITG

growth-rate and real-frequency spectra are affected in such a system for k∥ = 0.5. Our

calculation suggests that the slab ITG is not significantly stabilized at higher ky. In

contrast, the toroidal branch of ITG is stabilized more strongly by similar increases in
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Figure 3.8: Numerical solutions for a) growth-rate and b) real-frequency spectra in
unsheared slab geometry with fluctuating electric and parallel magnetic vector potential
(including FLR effects). Results are shown for a deuterium-electron plasma with Ti =
Te, ne = ni, L

−1
ni

= L−1
ne = 0, L−1

Ti
= 15 L−1

Te
= 2, kx = 0 and k∥ = 0.5.

β. This is consistent with the increased prominence of the slab ITG modes once fully

EM effects are included.

In the following Sections, we will explore the response of equilibrium C to both flow

shear and variations in parameters such as ŝ and L−1
Ti
. We expect the slab modes

to respond differently to these effects compared with toroidal ITG and KBMs. As

discussed, the slab-mode drive is not dependent on magnetic drifts, and the mode

appears to be less sensitive to EM effects. As a result, we expect that the slab modes

should primarily respond to magnetic shear via its effect on the FLR damping rather

than drive or magnetic damping5. In the same way, the slab modes are expected

to be less-strongly stabilized by perpendicular sheared flows compared with toroidal

ITG. Nevertheless, the parallel component of equilibrium flow shear is still expected

to have a destabilizing effect on the slab modes – this is discussed in Appendix C. The

5The concept of magnetic damping was introduced in Chapter 2.
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combination of these two flow-shear effects suggests that the slab branch of ITG could

be dominant over a wider range of scales when flow-shear effects are considered.

3.2.2 Equilibrium C – parameter scans

Based on the linear stability of the three equilibria studied in the previous Section, we

concluded that equilibrium C is the most appropriate starting point for determining a

self-consistent equilibrium that is also consistent with experimental profiles and fluxes.

In this Section, we present sensitivity scans in a variety of parameters that are expected

to be important for transport levels. In particular, we study the effect of varying γE×B,

ŝ, L−1
Ti

and β.

3.2.2.1 Equilibrium flow shear

Since γE×B is thought to be one of the main candidates for facilitating the formation

of transport barriers, and since the flow-shear profile in the mid-barrier region can be

peaked, we have studied the effect of flow-shear on the linear stability in some detail.

Just like the temperature profiles, there is plenty of freedom to choose the flow-shear

profile due to the significant error bars on the experimental data. We therefore per-

formed scans in shearing rate γE×B, independent of any other parameters, with the

various components of flow-shear enabled. This means that we performed simulations

including the effects of both perpendicular and parallel flow shear, as well as with just

perpendicular or parallel flow shear. The latter simulations are not self-consistent, as

the parallel and perpendicular components are fixed by the magnetic geometry. How-

ever, they are useful for studying separately the effects of the parallel and perpendicular

shear.

We expect the gradient in the parallel component of the toroidal velocity (PVG) to

generally increase linear growth rates, whilst we can infer the effect of perpendicular

shear by studying the growth-rate spectra in both ky and θ0. Such growth-rate spectra

with and without magnetic fluctuations for equilibrium C are shown in Figure 3.9.

Only positive θ0 values are shown, but negative values give the same results. In both

cases, we see finger-like structures extending in θ0 away from the toroidal-ITG stability
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Figure 3.9: Growth-rate spectra for equilibrium C a) without and b) with magnetic
fluctuations included. Only positive θ0 are shown, but negative θ0 values are identical
by symmetry. Flow shear effects are not included. For ky ≤ 0.5, simulations were
performed with ∆θ0 = 0.06 and ∆ky = 0.01. For ky > 0.5, simulations were performed
with ∆θ0 = 0.06 and ∆ky = 0.03.

boundary. These structures coincide with the slab-ITG modifications to the θ0 = 0

growth-rate spectra shown in Figures 3.4 and 3.5. As expected, the slab character

of these modes is less-affected by changes to |k⊥|. We also see that the slab-ITG

modes move to different ky as we scan in θ0, so the position and width of peaks in the

Floquet-averaged growth-rate spectrum are expected to change with the addition of

perpendicular flow shear. The inclusion of magnetic fluctuations makes the extended

structures even more prominent by stabilizing the toroidal ITG branch.

With the {ky, θ0} spectra in mind, we proceed to present results from scans in

γE×B, varying which components of flow shear are enabled. We scanned γE×B ∈
{0.04, 0.08, 0.12, 0.16} to cover a spread of shearing rates that could all be plausible in

the mid-barrier region. All simulations including perpendicular flow shear were per-

formed with the continuous-in-time flow shear algorithm recently implemented in GS2

[24]. These linear simulations were performed with 32 grid points per 2π in poloidal

angle and 16 values of θ0 in the range ±π. The number of kx grid points was chosen to

ensure that fluctuation amplitudes were sufficiently small at the ends of each parallel
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Figure 3.10: Linear growth-rate spectra for equilibrium C with a) only PVG, b) only
perpendicular shear and c) both PVG and perpendicular shear. Only electrostatic
fluctuations are included. Where perpendicular shear is included, the growth rate
shown is the average over 15 Floquet periods. Growth rates with only PVG are averaged
over θ0. The ky resolution is ∆ky = 0.03.

domain: approximately 70 and 270 values of kx were used for the largest and smallest

values of ky, respectively. Electrostatic scan results are presented in Figure 3.10.

By increasing the shearing rate with only the PVG included, the growth rates increase

at almost all scales as expected. The exception is for an increase of shearing rate from

zero to 0.04 where the stability increases at ky ≳ 1.3, which is not understood. As

γE×B is increased, the prominence of the bumps in the growth-rate spectrum that

originate from slab-like modes decreases; by γE×B = 0.16, the toroidal ITG is barely

affected by the slab branch. This suggests that the toroidal ITG is destabilized more

aggressively by the PVG than the slab-like modes at high shearing rates. When any

purely-perpendicular flow shear is included, the Floquet-averaged growth rate at each

ky is universally lower than with no flow shear at all. This can be seen by comparing the

maximum growth rate at a given ky from Figure 3.9a) with the Floquet-averaged growth

rates at each ky in Figure 3.10b). Continuing with the purely-perpendicular results, we

find that the Floquet-averaged growth rates are fairly insensitive to changes in γE×B
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from 0.04 up to around 0.12. There is little qualitative difference between γE×B values of

0.04 and 0.08, although the growth rates do unexpectedly increase with increasing γE×B

for ky ∼ 1. We will explore this observation further after presenting the electromagnetic

results, as the behaviour is more exaggerated there. Once γE×B is raised well above

the maximum linear growth rate in the unsheared case, we see stabilization up to

ky ≃ 1.5. This is consistent with the usual idea that the perpendicular shearing rate

should exceed the linear growth rate of a given instability in the presence of no flow

shear for there to be a significant stabilizing effect [110].

When both parallel and perpendicular flow-shear effects are included, we expect to

see a competition between the two effects. Perhaps the most straightforward conclusion

to be drawn from Figure 3.10c) is that at γE×B = 0.16, the destabilizing effect of PVG

outcompetes the perpendicular-shear stabilization for ky ≲ 1. At smaller shearing rates,

the picture is less clear; the growth-rate spectra for γE×B ∈ {0.04, 0.08, 0.12} are similar

and it is unclear which value of γE×B would minimize the turbulent transport. However,

we expect that shearing rates larger than 0.12 would lead to increased transport due

to strong PVG destabilization. We also note that while both PVG and perpendicular

shear individually allow for unstable modes at ky ≳ 1.3, the combination of the two

does not – this is not understood.

We next present the effects of flow-shear when full electromagnetic effects (δA∥ and

δB∥) are included. As before, we present in Figure 3.11 growth-rate spectra with

and without the different flow-shear components. Focusing on the effect of PVG first,

we note that as the strength of the PVG is increased, the linear growth rates tend

to increase. A KBM is destabilized at around ky ≃ 0.2. This is shown in more

detail by Figure 3.12, which compares the linear growth-rate spectra for γE×B = 0

and γE×B = 0.04 with only PVG included. At θ0 ≃ 0, the toroidal-ITG branch is

stabilized, leaving behind just the slab branch. At low-ky and finite θ0, a KBM is

strongly destabilized. These two effects are indicative of an increased effect of δA∥,

suggesting a coupling mechanism between δA∥ and PVG as previously reported in

[111]. The slab bands that extend away from θ0 = 0 are more extended with the
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Figure 3.11: Linear growth-rate spectra for equilibrium C with a) only PVG, b) only
perpendicular shear and c) both PVG and perpendicular shear. Fully electromagnetic
fluctuations, with both δA∥ and δB∥ fluctuations, are included. Where perpendicular
shear is included, the growth rate shown is the average over 15 Floquet periods. Growth
rates with only PVG are averaged over θ0. The ky resolution is ∆ky = 0.03.

inclusion of parallel flow-shear effects, which was also observed for purely electrostatic

fluctuations.

We next shift our attention to the results with purely-perpendicular flow shear. As

with the electrostatic case, the inclusion of finite shear reduces the growth rates at all

ky. As the shearing rate is increased from 0.04 to 0.08, the Floquet-averaged growth

rates at all ky increase unexpectedly. At higher shearing rates, the Floquet-averaged

growth rates generally fall again, as expected. The unexpected increase in Floquet-

averaged growth rates between γE×B = 0.04 and 0.08 is more exaggerated than was

observed in the electrostatic case. Furthermore, it cannot be explained by the presence

of centrifugal drive terms in the gyrokinetic equation, because such terms are not

included in GS2. In Appendix D we present a possible explanation for this apparently

surprising transient effect from competing modes; this ‘transient’ effect could become

perpetual for beating modes with almost-identical Floquet-averaged growth rates.
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Figure 3.12: Linear growth-rate spectra for equilibrium C with a) no flow shear, b) only
the parallel component of flow shear and γE×B = 0.04. Both δA∥ and δB∥ fluctuations
are included. The θ0 resolution for a) and b) are ∆θ0 = 0.06 and 0.12, respectively.
The ky resolution for a) is ∆ky = 0.01 for ky ≤ 0.5 and ∆ky = 0.04 otherwise. For b),
∆ky = 0.02 everywhere.

We finally focus on the results when both parallel and perpendicular components of

flow shear are combined. At low-ky, the perpendicular shear is insufficient to suppress

the KBM destabilized by PVG – this grows monotonically as a function of γE×B. To

avoid the KBM featuring heavily, we should stick to shearing rates of γE×B < 0.08.

In the modified toroidal-ITG branch, we see little difference between the two lowest

values of γE×B; beyond that the toroidal and slab branch are clearly stabilized by flow

shear. It is difficult to say whether we would expect the transport to be reduced by

any change in γE×B at all at this level of βD. We note that the ratio of the parallel and

perpendicular components of flow shear scales like q/ϵ, which is approximately 20 in

the mid-barrier region of equilibrium C. In contrast, the relative strength of the PVG

drive in a spherical tokamak, for which ϵ ∼ 1, would be significantly reduced. [113].

3.2.2.2 Magnetic shear

As discussed at the start of this Chapter, small or negative magnetic shear is thought

to be important for ITB formation. In this Section, we study the response of equilib-

rium C to changes in magnetic shear. We performed linear scans around the nominal
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Figure 3.13: Growth-rate and real-frequency spectra for equilibrium C with various
values of ŝ at θ0 = 0. Both δA∥ and δB∥ fluctuations are included. The ky resolution
is ∆ky = 0.01.

value of ŝ = −0.68. Growth-rate and real-frequency spectra are shown in Figure 3.13.

An increase in ŝ from its nominal value to −0.4 and to −0.1 increases the prominence of

slab-ITG bands. We note that as |ŝ| gets smaller, the modes become highly oscillatory

in θ, i.e. the k∥ of the slab modes increases. The reason for this is not understood. As

a result of this, the 32 θ grid points per 2π segment was insufficient to resolve well the

modes, especially at higher ky ≃ 1. We performed a sensitivity study that suggested

that at least 128 θ grid points per 2π would be required to properly resolve the modes

at ŝ = 0.1 up to ky ≃ 1. As the parallel resolution was increased, the linear growth

rates also increased. Nevertheless, the qualitative behaviour was unchanged with only

32 grid points. Aside from the destabilization of the slab/toroidal ITG modes, we

observe that as ŝ is increased from −1 to −0.1, a low-ky mode is destabilized. We label

this mode a KBM as it disappears with the removal of δA∥ fluctuations and its real

frequency is much higher than that of the ITG branches. We note that the KBM mode

structure is extended and broad, peaking far along the field line at multiple θ − θ0

locations that lie in the bad-curvature region. Examples of the eigenmode structures

are shown in Figure 3.14 for ŝ = −0.1. The splitting of the KBM at ky ≃ 0.1 corre-

sponds to the mode structure shifting to lower |θ − θ0|. Increasing −ŝ to 1.0 almost
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Figure 3.14: a) Growth-rate spectrum and b) eigenmode structures for equilibrium C
with ŝ = −0.1. Both δA∥ and δB∥ fluctuations are included. The colours of markers
on a) indicate the ky for the similarly coloured eigenmodes in b).

completely stabilizes the KBM, but has little effect on the slab and toroidal branches

of ITG. The key conclusions that can be drawn are that increasingly negative magnetic

shear primarily acts to suppress the KBM, whilst providing only modest stabilization

of the toroidal and slab branches of ITG.

3.2.2.3 Ion temperature

We study electromagnetic effects by scanning in ion temperature between 0.4 to

1.0, which corresponds to values of βD ranging from 1.57% to 3.93%. The value of

β′ ≡ β(log p)′ was changed consistently with Ti by keeping (log p)′ fixed for each species

and scaling the ion contributions to β linearly with the ion temperature. All of the

temperature and density length scales were kept fixed. Te was similarly kept fixed, so

this also constitutes a scan in Ti/Te. Increased Ti/Te is understood to have a stabilizing

effect on the ITG instability [114]. The species collisionalities were not changed in this

scan. Growth-rate spectra are shown in Figure 3.15. As β increases, the ky ≃ 1

toroidal ITG branch that extends to θ0/π ≃ 0.25 is stabilized, as expected. The slab

ITG modes, distinguished by their extent in θ0, are stabilized less aggressively than the

toroidal branch. At sufficiently high Ti, a KBM is destabilized at low ky across a broad
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Figure 3.15: Growth-rate spectra for equilibrium C as the ion temperature is switched
between a) 0.4, b) 0.6, c) 0.79 (nominal) and d) 1.0. Both δA∥ and δB∥ fluctuations
are included. β′ is changed consistently with Ti. The θ0 resolution is ∆θ0 = 0.12 and
∆ky = 0.02, except for the nominal case whose resolutions are as above.

range of θ0, peaking at finite θ− θ0. Compared to a typical β scan as shown in Figure

2.9a) in which the stabilization of the ITG is followed by aggressive destabilization

of a KBM, the electromagnetic mode destabilized at Ti = 1 here is relatively weak.

Further increases of Ti to 1.2 and 1.4, not shown, only slightly destabilize the KBM.

This may indicate access to the KBM second-stability region; this is aided by increased

−β′, which was changed consistently with Ti.

3.2.2.4 Ion temperature gradient

The αMHD parameter, which scales with the normalized pressure gradient, is known to

stabilize microinstabilities via its effect on local magnetic shear. An attractive scenario

for ITB formation is one in which an increase in driving gradients decreases the local

magnetic shear through αMHD, which in turn reduces the transport via stabilizing the

driving instabilities. We study this by scanning in L−1
Ti

for both ion species and changing

β′ consistently. We do not take into account the effect of steeper temperature gradients

on the global magnetic shear ŝ, e.g. via the bootstrap current. Growth-rate spectra

90



0.0 0.5 1.0
θ0/π

0.5

1.0

k
y

a)

0.0 0.5 1.0
θ0/π

b)

0.0 0.5 1.0
θ0/π

c)

0.0 0.5 1.0
θ0/π

d)

0.00 0.02 0.04 0.06 0.08 0.10

γ

Figure 3.16: Growth-rate spectra for equilibrium C as L−1
Ti

is switched between a) 7.3
(nominal), b) 9, c) 11 and d) 15. Both δA∥ and δB∥ fluctuations are included. β′ is
changed consistently with L−1

Ti
. The θ0 resolution is ∆θ0 = 0.12 and ∆ky = 0.02, except

for the nominal case whose resolutions are as above.

are shown in Figure 3.16. As L−1
Ti

is increased from 7.3 to 15, growth rates tend to

increase at all scales. The slab branch of ITG is destabilized more aggressively than the

toroidal branch. We note two plausible reasons for this. As discussed in Appendix C.2,

the slab branch scales more aggressively with L−1
Ti

compared with the toroidal branch.

The toroidal branch is also more responsive to the stabilizing effects of magnetic shear,

being affected by both drive and FLR damping. As L−1
Ti

is increased, the slab branch

becomes most unstable at θ0 = ±π. This can be explained by the variation of the

Bessel function as θ0 varies. At θ0 = 0, J0(αi) for this equilibrium is sharply peaked

around θ − θ0 = 0, which is favourable for the growth of ballooning-type modes that

are driven strongly at the outboard midplane6. In contrast, slab-ITG modes can be

driven anywhere along a field line as long as they are not FLR-damped by magnetic

shear. For this equilibrium, the Bessel function at θ0 = ±π has a lower maximum

value compared to at θ0 = 0, since |k⊥| tends to increase with |θ0|. However, it is

6The Bessel function J0(αs) that appears in Equation 1.21 is a good indicator of the strength of
FLR damping – a large Bessel function indicates less damping.
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much broader in θ − θ0. This property lends itself to stronger growth of the slab-ITG

modes closer to θ0 = ±π. As with the scan in ŝ, the slab modes at higher ky oscillate

too rapidly along the field along to be captured well by just 32 parallel grid points

per 2π in θ. Nevertheless, the qualitative trends remain unchanged when the parallel

resolution is increased by a factor of 4.

3.2.3 Nominal transport levels

In this section we present results of nonlinear simulations using GS2. The aim of this

section is to convince the reader that local gyrokinetic simulations using self consistent

equilibria that include the steep driving gradients observed in ITBs can simultaneously

predict experimental fluxes in multiple transport channels. The experimental fluxes are

Table 3.2: Experimental flux levels calculated using JETTO in the mid-barrier region
for the three equilibria. The total momentum flux (Π) and species-s heat (Qs) and
particle (Γs) fluxes are normalized to the gyro-Bohm values defined in Appendix B.

Parameter A B C

Qi(×10−2) 3.47 3.34 3.28

Qe(×10−2) 1.93 1.36 1.29

Π(×10−2) 7.47 6.80 6.35

Γi(×10−2) 1.04 0.93 0.92

Γe(×10−2) 1.02 0.93 0.91

given in Table 3.2. To this end, we will present simulations from the mid-barrier using

equilibrium C, as it exhibited the maximum linear stability of the three equilibria stud-

ied. All of the nonlinear simulations used the same resolution parameters, which are

shown in Table 3.3, unless stated otherwise. Exploratory simulations were performed

to investigate the maximum required ky – for equilibrium C, there was little quanti-

tative difference between ky,max = 1 and ky,max = 2, suggesting sufficient resolution in

that regard. As with Chapter 2, we performed sensitivity scans to the number of kx

values needed to converge for the nominal equilibrium C parameters. The inclusion of

electromagnetic effects and collisions in these simulations increased the computational
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Table 3.3: Resolution parameters for nonlinear simulations in the mid-barrier region.

Item Value Description

ntheta 32 Parallel grid points per 2π domain

negrid 16 Number of energy grid points

2 · ngauss 10 Number of passing pitch angles per sign of v∥

vcut 3 Ratio of v to vth,s above which hs = 0 is forced

∆ky 0.048 Grid spacing in ky

ky,max 1.0 Maximum ky

2πŝ∆ky/∆kx 4 Sets kx grid spacing

Nkx 256 Number of kx values

cost significantly, so care was taken to adequately resolve the physics whilst remaining

within the allocated computational budget.

We first present electrostatic results with and without flow shear; time traces of the

various flux channels are shown in Figure 3.17. These simulations were initialized with

low-level (ϕ ∼ 10−3) noise. Regardless of whether flow shear is included, the heat

fluxes predicted from simulation are far higher than experiment. In particular the ion

heat fluxes are around 40 times larger than experiment. The addition of flow shear

has little effect on the heat and particle transport levels. This is consistent with the

linear-growth-rate trends observed in Figure 3.10. The momentum flux is also well

above the experimental level.

With the failure of electrostatic simulations to match experimental fluxes, we turn

our attention to electromagnetic simulations. The linear studies suggested that mag-

netic fluctuations provide significant stabilization, and nonlinear simulations have pre-

viously been observed to have enhanced stability with the inclusion of EM effects [47].

Nonlinear electromagnetic simulations are known to be challenging for a variety of

reasons. One of these is that the time step can become prohibitively small with the

inclusion of the v∥δA∥/c term that appears in the gyrokinetic potential and represents

streaming along perturbed field lines. To explain this, we note that the nonlinear term
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Figure 3.17: Time traces of a) total ion heat flux, b) electron heat flux, c) total
momentum flux, d) total ion particle flux and e) electron particle flux for a set of
electrostatic simulations. Experimental flux levels are shown by the dashed lines. The
ion heat flux is dominated by the contribution from deuterium, which is two orders of
magnitude higher than that of carbon.
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in GS2 is treated explicitly. This requires that the time step size must not exceed the

Courant-Friedrichs-Lewy (CFL) constraint in order to avoid numerical instability from

information propagating through the spatial grid in an unphysical way [115]. The lin-

ear part of the equation, which is evolved using an implicit time-stepping algorithm,

is not constrained by the CFL condition. When δA∥ fluctuations are included, the

nonlinear term acquires a contribution to the gyrokinetic potential from v∥δA∥. The

electrons stream rapidly along field lines at v∥ ∼ vth,e, so the nonlinear term can be

dominated by the v∥δA∥ term, despite δA∥ often not being the dominant field. This

can reduce the CFL time step to be smaller than in electrostatic simulations, even if δϕ

is smaller with the inclusion of magnetic fluctuations. This CFL constraint, combined

with the fact that the coupled system of equations triples in size with the addition

of the parallel and perpendicular current equations, makes nonlinear electromagnetic

simulations computationally expensive.

Numerical observations also indicate that above a threshold β many fully electro-

magnetic simulations either do not appear to saturate, or at least become prohibitively

computationally expensive to run [116, 44]. With CBC equilibrium parameters, the

non-saturation threshold β is approximately 0.8%, which is well-below the β ≃ 1.2% at

which the KBM is destabilized. Some suggest that the origin of this non-saturation is

down to computational expense; both larger and finer simulation domains are required

as β increases [116]. Others propose a physical origin, such as the nonzonal transition

(NZT) [117, 118]. The NZT is posited to occur above a critical value of β, where

sufficiently large fluctuations in the radial magnetic field can break up magnetic flux

surfaces, increasing magnetic stochasticity [119]. This results in radial currents that

short out structures such as the zonal flows that saturate ITG turbulence. With this

reduced zonal flow activity, the ITG (or other dominant instability) can continue to

grow and drive strong transport until another saturation mechanism is activated.

Despite these challenges, our GS2 simulations produce a saturated state for equilib-

rium C with the addition of δA∥ and δB∥ fluctuations. In Figure 3.18, we show a time

trace of the different ion and electron heat and particle fluxes without flow shear. This
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simulation was initialized from the saturated state of a nearby, self-consistent equilib-

rium with a slightly different density profile fitted7. That saturated state, in turn, was

initialized with low amplitude noise as in the electrostatic simulations above. The tur-

bulence appears to saturate at around t = 1000, with electron heat fluxes and both ion

and electron particle fluxes closely matching to experiment. Different transport ‘chan-

nels’ correspond to the different field components of the radial drift Vχ ≡ cB−1b×∇χ,
where χ contains the fluctuating electromagnetic fields. The majority of the ion heat

flux, which saturates approximately 3 times too high at Qi ≃ 0.1, comes from the elec-

trostatic channel. The electron heat flux is also predominantly from the electrostatic

component, but a significant amount also comes from the field-line bending component

(δA∥). The addition of electromagnetic effects provides a reduction in the turbulent

transport of an order of magnitude, primarily in the ion-transport channel. Notably,

we did not encounter particular difficulties when simulating this system with finite-

β effects included, other than the expected increased computation cost. Figure 3.19

shows the energy spectra as a function of ky for the three electromagnetic fields present

in this simulation.

Using the first half of the simulation presented above as an initial condition, we then

added equilibrium-flow-shear effects. We present time-traces of heat, momentum and

particle fluxes in Figure 3.20, whilst energy spectra are presented in Figure 3.21. From

t = 1130 to 1370, both parallel and perpendicular components of flow-shear were in-

cluded. From the initial state, the fluxes initially jump up significantly, before relaxing

to a level where Qi ≃ 0.17, Qe ≃ 0.08, Π ≃ 0.15 and Γi ≃ Γe ≃ 0.03. All of the fluxes

increase, are higher than experiment, and become highly oscillatory in comparison to

the behaviour without flow shear. This increase in transport, particularly via the δA∥

contribution to the electron heat flux, is consistent with the linear results of Figure

3.20c) where the KBM is destabilized at low-ky with increasing γE×B. These results

suggest that the nominal (for equilibrium C) level of flow shear is not consistent with

the experimental observations. One might expect that the shearing rate should be

7This initial condition was used because previous exploratory simulations had been performed with
this equilibrium before equilibrium C was simulated. We have not tested whether there is sensitivity
to the initial condition.
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Figure 3.18: Time traces of a) ion heat flux, b) electron heat flux, c) ion particle flux
and d) electron particle flux for fully electromagnetic simulations without equilibrium
flow shear. Different transport channels, corresponding to different fluctuating fields,
are shown in different colours. Experimental flux levels are shown by the dashed lines.
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Figure 3.19: Energy spectra for equilibrium C, averaged over t > 1200 and |kx| < 1.5.
Different colours correspond to different electromagnetic fields.
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decreased to bring all of the fluxes down and closer to experimental levels. This will

be confirmed by results given in the next Section.

As noted in Section 3.2.2.1, the linear stability decreases when increasing γE×B to

0.08 when the parallel component of flow-shear is neglected. We tested this unex-

pected result to see whether a similar trend is observed in transport levels. To this

end, we disable the parallel component of velocity shear for t ≳ 1370. The transport

levels initially drop rapidly, before recovering and growing to some of the highest lev-

els observed in the entire simulation. It was deemed computationally uneconomical

to continue the simulation beyond the point shown since the time step size was pro-

hibitively small – a single restart advanced t by just 42 normalized units. A saturated

state was therefore not reached, although we cannot say with certainty that saturation

is a hopeless endeavour. Several features of the transition between self-consistent and

purely-perpendicular flow-shear indicate a qualitative difference between the nature of

turbulence between the two states. Perhaps the most obvious is the extreme nature of

the transition itself – every flux channel drops close to zero before recovering. This is

indicative of a significant re-structuring of the turbulence. Both the sign-change in the

momentum flux and the less-oscillatory nature of the turbulence are also indicators of

a qualitative difference between the two states. The fact that the linear stability trend

is observed also in the overall transport levels may have implications for real fusion de-

vices, although we cannot yet say whether the destabilization via purely-perpendicular

flow shear might work in tandem with the destabilizing effect of the PVG. If not, then

this effect would be unimportant in a real system, as we do not expect purely perpen-

dicular flow shear, which would require q ∼ ρ∗ [21], to exist in conventional tokamaks8.

Such a small safety factor would breach the external-kink MHD stability limit [120, 121]

and lead to a rapid loss of confinement. Nevertheless, this is an interesting result that

warrants further study of the possible (de)stabilizing effect of equilibrium flow shear.

8In spherical tokamaks, the local safety factor can be small on the outboard side, so this effect
could have more relevance there.
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Figure 3.20: Time traces of a) ion heat flux, b) electron heat flux, c) species-summed
momentum flux, d) ion particle flux and e) electron particle flux, with fully electromag-
netic fluctuations and flow shear. Different transport channels are shown in different
colours, and experimental flux levels are shown by the dashed lines. Both parallel and
perpendicular flow shear are included for 1130 < t < 1370, whilst only perpendicular
flow shear is included for t > 1370.
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Figure 3.21: Energy spectra for equilibrium C with both parallel and perpendicular
components flow shear enabled, averaged over 1250 < t < 1370 and |kx| < 1.5. Differ-
ent colours correspond to different electromagnetic fields.

3.2.4 Nonlinear parameter scans

In the next Section, we present a variety of one-dimensional scans in the parameters

shown to have a significant impact on the linear stability in Section 3.2.2. In doing

so, we aim to determine how one might need to change the equilibrium parameters in

order to match experimental fluxes in multiple channels simultaneously. We carried

out parameter scans in γE×B, ŝ, Ti and L−1
Ti
, with fully electromagnetic fluctuations

considered. The non-γE×B scans were performed without the inclusion of equilibrium

flow-shear effects in order to isolate the effects of changing each parameter. For a

proper comparison with experimental results, a realistic level of flow shear should be

included in all simulations. This was not done for the scans in Ti, L
−1
Ti

and ŝ, so they

should not be used for full comparisons with experiment.

3.2.4.1 Flow shear

We present first the results of a scan in γE×B. The fluxes across all transport channels

are shown in Figure 3.22 as a function of γE×B. We note that the γE×B = 0.12 case

may not be in a fully saturated state because the simulation cost became too high

with the decreasing time step. We expect the saturated flux levels to be slightly lower

than reported because at smaller shearing rates, the fluxes transiently increased above

their saturated level. Nevertheless, the trends in the transient behaviour indicate that

it should still saturate at a higher level than the smaller shearing rates. The inclusion
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Figure 3.22: A scan in γE×B showing total and constituent contributions to the a)
ion heat flux, b) electron heat flux, c) total momentum flux, d) ion particle flux and
e) electron particle flux. The grey dashed line shows the experimental level. The error
bars show the standard deviation around the time-averaged value. The shaded regions
show the range of γE×B that is bounded by different fits to the experimental toroidal
velocity profile at r = 0.27. Since the γE×B profile of equilibrium C is fitted to be as
broad as possible within experimental bounds, the nominal values are on the upper
limit of the shaded region. Narrower fits to the toroidal flow profile result in lower
shearing rates at this radius.
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of finite flow shear up to γE×B = 0.04 leads to a reduction of fluxes in all channels

other than momentum flux, which is a monotonically increasing function of γE×B.

Above γE×B = 0.04, the heat and particle fluxes increase monotonically for both ions

and electrons. The δA∥ electromagnetic contribution to the electron heat flux becomes

increasingly dominant as γE×B increases, which is again consistent with the linear result

that at low-ky, an EM mode is rapidly destabilized as the PVG strength increases. The

results confirm that if any flux channels are to be matched to experiment, the shearing

rate must be smaller than the fitted value for equilibrium C. A rough estimate for the

value of toroidal flow shearing rate that minimizes the deviation from experimental

flux levels is γE×B ≃ 0.05. We can conclude from this scan that significant levels

of equilibrium flow shear are not compatible with low transport in the high-β, high-

pressure-gradient conditions of the mid-barrier.

3.2.4.2 Ion temperature

A scan in Ti for the two ion species is shown in Figure 3.23. As with the linear

simulations presented in Section 3.2.2, increasing Ti (and not Te) affects βD, αMHD and

Ti/Te, but the species collisionalities were not changed. We observe monotonic decrease

in all flux channels as β is increased. This reflects the linear stability trends observed

in Figure 3.15. This scan fails to predict a simultaneous unification of the experimental

fluxes at any value of Ti: increasing Ti above nominal values brings the ion heat flux to

experimental levels, but under-predicts the electron heat flux and particle fluxes. We

included a value of Ti = 1.15 in this scan, despite this being far from consistent with the

experimental measurements. This was done to test the response of the transport to the

low-ky EM modes observed in the linear simulations. Those EM modes were relatively

insensitive to changes in β, and had a growth rate of just 0.03 even at β = 1.4. As such,

it is perhaps unsurprising that the heat flux is increasingly stabilized by increasing Ti.

The heat flux is very sensitive to a reduction of Ti (and therefore β) from its nominal

value to 0.7. This result further supports the observation that electromagnetic effects

are critical for sustaining this transport barrier in JET. The fact that increasing Ti to
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Figure 3.23: A scan in Ti showing total and constituent contributions to a) the ion
heat flux and b) the electron heat flux. The grey dashed line shows the experimental
level. The error bars show the standard deviation around the time-averaged value. The
nominal value of Ti is 0.79.
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1.15 continues to reduce the transport also suggests that the triggering of turbulence-

enhancing KBMs may be avoided even at higher core pressures that would improve

plasma performance further.

We would also like to comment on a possible mechanism for the saturation of the

transport barrier – i.e. what process acts to limit the barrier height. The simulations

suggest that even moderate increases in β at otherwise-fixed equilibrium parameters

would be insufficient to trigger barrier saturation. This is not to say that the onset of a

virulent (possibly electromagnetic) mode does not lead to a deterioration of confinement

at the top of the barrier. Rather, the mechanism that stabilizes such a mode is not

rapidly removed by increasing β alone within the range we have considered.

3.2.4.3 Magnetic shear

We scanned in ŝ from −0.2 to −1.0 without equilibrium flow shear. The species

heat and particle fluxes associated with the three fluctuating electromagnetic fields

are shown in Figure 3.24. As −ŝ is decreased from its nominal value to 0.2, both

ion and electron fluxes increase well above experimental levels. One notable feature

of this increase is that the magnetic contribution to the fluxes (in particular from

δA∥) becomes significant to the extent that the electron heat flux is dominated by the

contribution from δA∥. The flux contribution is predominantly from ky ≲ 0.3 and is

broad in kx, extending to kx ≃ ±1. Both the significant magnetic contribution to the

heat fluxes and the shift in ky of the dominant flux contribution suggest that the low-

ky electromagnetic instability shown in Figure 3.13, which is destabilized by increased

magnetic shear, is the dominant driver of heat flux. The linear simulation results

also imply that ŝ = −1 would have reduced transport compared with the nominal

equilibrium due to the increased stability at low ky. However, the heat flux increases

in all channels as −ŝ is increased from its nominal value to 1.0.

We turn our attention to the role of the zonal flow (ZF) in providing a saturation

mechanism for the turbulence, and note that its structure (in kx) changes qualitatively

as ŝ is varied. This is shown in Figure 3.25, which compares the non-zonal {kx, ky}
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Figure 3.24: A scan in ŝ showing total and constituent contributions to the a) ion
heat flux, b) electron heat flux, c) ion particle flux and d) electron particle flux. The
grey dashed line shows the experimental level. Error bars show the standard deviation
around the time-averaged value. The nominal value of ŝ is −0.68.
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ŝ = −1.00

−5 0 5
kx

b)

Figure 3.25: Non-zonal {kx, ky} contributions to the potential for a) ŝ = −0.68 and
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components of δϕ and its corresponding zonal flow for two values of ŝ. All other

simulation parameters were held fixed as ŝ was changed, so ∆kx increased by a factor

of almost 50% as |ŝ| was increased. This means that the ŝ = −1.0 simulation has worse

resolution (due to the increased ∆kx) than the one with nominal ŝ. Additionally, since

the number of kx values simulated was fixed, kx,max was higher for the ŝ = 1 simulation.

This is unlikely to have had an effect since both zonal and non-zonal mode amplitudes

are orders of magnitude smaller at the highest kx values in the simulation, compared

with modes at smaller kx. Nevertheless, future investigations could simulate the same

kx,max to check this. We note that at the nominal value of ŝ, the ZF spectrum is

more oscillatory than at ŝ = −1, and peaks at kx = 4∆kx compared with kx = 2∆kx

for the ŝ = −1 case. The nominal-ŝ ZF spectrum also features strong zonal flows

around kx = 1, which are not present for ŝ = −1. When ŝ is decreased to −1, the

relative importance of the low-ky modes decreases, and the spectrum becomes less

broad in kx. With the above observations in mind, we suggest a couple of possible

explanations for the unexpected behaviour as ŝ is decreased. First, we note that the

particularly oscillatory nature of the nominal-ŝ ZF spectrum requires a fine-enough kx

grid to resolve it. It is possible that by increasing ∆kx by 50% this oscillatory structure,

which was resolved in the nominal-ŝ simulation, could not be resolved in the increased-

|ŝ| case. We have not performed a simulation with increased kx resolution to validate

this suggestion. An alternative explanation is connected to the qualitative change in

the turbulent drive when ŝ is changed. At the nominal value of ŝ, the long-wavelength

EM linear instability appears to drive turbulence at low-ky. As discussed in Section

3.2.2.2, decreasing ŝ to −1 almost entirely stabilizes this linear EM instability. It may

be possible that the low-ky modes couple more strongly to the zonal mode compared

with the higher-ky ones, thereby increasing its stabilizing effect. We note that the

linear simulations were only performed for θ0 = 0, whilst finite θ0 values are included

in the nonlinear simulations. Further investigation is required to understand whether

more negative magnetic shear really can increase transport, and if so – how.
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Figure 3.26: A scan in L−1
Ti

showing total and constituent contributions to a) the ion
heat flux and b) the electron heat flux. The grey dashed line shows the experimental
level. Error bars show the standard deviation around the time-averaged value. The
nominal value of L−1

Ti
is 7.3.

3.2.4.4 Inverse ion temperature length scale

In Figure 3.16 we show the results of a nonlinear scan in L−1
Ti

for both ion species

where β′ was changed consistently. As is expected from the linear simulation results,

the heat flux increases monotonically with L−1
Ti

in all flux channels. The ratio of elec-

trostatic to magnetic contributions to the fluxes is relatively insensitive to changes in

L−1
Ti
, suggesting that the nature of the turbulent drive does not change qualitatively as

L−1
Ti

is increased with these equilibrium parameters.
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3.2.5 Possible steps for matching fluxes

Equilibrium C was constructed by varying the magnetic shear, ion density and ion

temperature profiles to reduce the linear growth rates. However, there are still some

plausible ways that it could be adapted to move the fluxes even closer to experimental

levels. Based on the above scans, one of the obvious ways to do this is to re-fit the global

toroidal velocity profile to one that is intermediate to equilibria A and C. Adjusting the

velocity profile is not expected to significantly affect the other equilibrium parameters

such as magnetic shear and temperature gradient.

Although there are a multitude of order-unity changes that could be made to the

equilibrium to match the ion heat flux more closely, we have not attempted to optimize

further the profiles. We are satisfied that local δf gyrokinetics is able to capture the

key stabilizing mechanism in the most exotic part of the particular transport barrier

studied. This is evidenced by the close matching of experimental fluxes in multiple

transport channels for equilibrium C, within experimentally relevant adjustments to

the level of equilibrium flow shear. The general picture that we have built up from

the studies in the mid-barrier region is that electromagnetic effects are critical for

reducing transport by partially stabilizing the toroidal and slab-ITG instabilities that

drive the turbulence. The strong negative magnetic shear is important in this part

of the barrier for reducing the growth-rate of the virulent electromagnetic instability

that is driven unstable at such high β. Moderate to strong levels of equilibrium flow-

shear actually have a destabilizing impact in this high-β region of the plasma, as

the parallel component of flow shear can destabilize the electromagnetic instability.

To reach sufficiently high pressures for electromagnetic stabilization to be important,

enhanced confinement is required closer to the wall. This is explored in the next

Section, where we study the region outside the foot of the ITB in more detail.

3.3 Outside the barrier

In this Section, we study the microstability and transport outside the bottom of the

transport barrier, where r = 0.65. By matching experimental fluxes at multiple points
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in the radial profile, we can pin down various equilibrium profiles at these locations.

This can constrain profiles in the intermediate regions. One example of this is the

toroidal velocity gradient profile. We already saw in the previous Section that γE×B is

expected to be around 0.05 in the mid barrier, which is smaller than the nominal flow

shear for equilibrium C. To reduce the shearing rate at the mid-barrier radius, the flow

shear profile could be fitted differently. As demonstrated by the toroidal flow profile

fitted in equilibrium A, this can be achieved by fitting a narrower profile. By studying

the transport in the outer-region we can understand whether fitting a narrower toroidal

flow profile increases consistency with experimental fluxes at multiple radial locations.

The equilibrium parameters at r = 0.65 for the three equilibria are shown in Table 3.4.

At this radius, the three sets of equilibrium parameters are fairly similar, though the

densities and density scale-lengths do differ significantly. This is due to the different

fits to the density profiles and Zeff. The most dramatic differences compared with the

mid-barrier equilibria are in ŝ, β′, L−1
Ti

and Ti. The flow-shear rate is also smaller for all

three equilibria at the outer-region. At this radius, electromagnetic effects are expected

to be unimportant since the approximate values of β for the deuterium and electrons

are 0.2% and 0.5%, respectively.

3.3.1 Linear stability

We begin by studying the linear stability of the three equilibria without equilibrium flow

shear. In Figure 3.27 we show growth-rate spectra for each equilibrium as a function

of ky and θ0 with and without fully electromagnetic fluctuations. The linear growth

rates are broad in ky, peaking between ky = 2 and 3 depending on the equilibrium.

The growth rates are sensitive to θ0, so perpendicular flow-shear is expected to have a

strongly stabilizing effect. The dominant instability at all of the scales simulated is the

ITG instability. There are no qualitative differences between the three equilibria, but C

is the most stable at practically every {ky, θ0}. As expected, the addition of magnetic

fluctuations has little effect on the linear stability; this can be seen by comparing the

growth-rate spectra in Figures 3.27d) to f) to the electrostatic results in Figures 3.27a)

to c).
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Figure 3.27: Electrostatic (top row) and electromagnetic (bottom row) growth-rate
spectra for equilibria A (a and d), B (b and e) and C (c and f).

111



Table 3.4: Physical parameters for the three equilibria outside the foot of the barrier.
As noted in Table 3.1, the contribution to β for a given species s can be calculated by
multiplying βref by Ts and ns.

Parameter A B C

r 0.65 0.65 0.65

R 3.18 3.19 3.18

ŝ 0.516 0.550 0.565

q 2.012 2.023 2.021

−R′
0 0.257 -0.290 0.269

κ 1.43 1.43 1.42

κ′ 0.02 0.02 0.084

δ 0.065 0.060 0.063

δ′ 0.105 0.200 0.37

βref(%) 4.77 5.04 4.87

−β′ 0.087 0.097 0.081

γE×B 0.034 0.06 0.062

ωψ 0.06 0.056 0.057

Ti 0.222 0.181 0.201

L−1
Ti

1.788 1.480 1.386

Te 0.234 0.232 0.239

L−1
Te

1.717 1.732 1.757

nD 0.194 0.380 0.314

L−1
nD

2.063 2.818 1.487

ne 0.485 0.487 0.402

L−1
ne 2.063 2.078 0.734

nC 0.049 0.018 0.015

L−1
nC

2.063 -0.555 -1.96

β(%) 0.80% 0.89% 0.77%

νD(×10−4) 1.61 2.13 1.59

νe(×10−3) 8.91 8.85 7.34

νC(×10−3) 2.37 3.14 2.34
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Figure 3.28: Electrostatic Floquet-averaged growth-rate spectra for equilibrium a) A,
b) B and c) C. Both parallel and perpendicular components of equilibrium flow-shear
are included.

We also studied the effect of adding both components of equilibrium flow shear

for each equilibrium. Scans in the shearing rate were not performed as there is less

uncertainty in the toroidal velocity profile outside the barrier. The Floquet-averaged

growth rates are shown in Figure 3.28 as a function of ky. Electromagnetic effects are

not included. By comparison with Figures 3.27a) to c), one can see that the inclusion

of flow shear has a significant stabilizing effect at all ky for all three equilibria. In

particular, equilibrium C is almost completely stable over the course of a Floquet

oscillation at all ky. This does not guarantee that the turbulent transport will be zero –

the transient growth cycle of the Floquet modes can still, in principle, drive ‘subcritical’

turbulence [122, 35, 123]. Nevertheless, the inclusion of flow-shear is expected to reduce

the heat and particle fluxes.

3.3.2 Nonlinear results

We next present the results of nonlinear simulations in the outer region. We performed

nonlinear electrostatic simulations of all three equilibria with and without equilibrium

flow shear. The resolutions for all simulations were identical, and are shown in Table

3.5. Experimental flux levels are shown in Table 3.6. Electromagnetic simulations were

performed but their results are not shown – the inclusion of magnetic fluctuations had
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Table 3.5: Resolution parameters for nonlinear simulations in the outer region.

Item Value Description

ntheta 32 Parallel grid points per 2π domain

negrid 16 Number of energy grid points

2 · ngauss 10 Number of passing pitch angles per sign of v∥

vcut 3 Ratio of v to vth,s above which hs = 0 is forced

∆ky 0.150 Grid spacing in ky

ky,max 3.153 Maximum ky

2πŝ∆ky/∆kx 4 Sets kx grid spacing

Nkx 256 Number of kx values

Table 3.6: Experimental flux levels calculated using JETTO, normalized to the gyro-
Bohm values defined in Appendix B, for the three equilibria outside the foot of the
barrier.

Parameter A B C

Qi(×10−2) 3.52 3.50 3.79

Qe(×10−2) 2.62 1.94 2.07

Π(×10−2) 8.26 7.56 8.01

Γi(×10−2) 1.16 1.06 1.14

Γe(×10−2) 1.18 1.07 1.16

little quantitative effect on any of the transport channels. Time traces of the heat,

particle and momentum fluxes with and without equilibrium flow shear are shown in

Figure 3.29. Without flow shear, both equilibria B and C are able to match the ion

heat flux, whilst equilibrium A underpredicts it significantly. With the inclusion of

flow shear, all equilibria underpredict the ion heat flux. Equilibrium B overpredicts all

other transport channels with and without the inclusion of flow shear. Equilibria A

and C are close to the experimental electron transport with and without flow shear,

though A tends to overpredict it. C overpredicts the ion particle transport, but the

addition of flow shear brings it closer to the experimental level, while A matches closely

without flow shear. In general, all transport levels increase slightly for equilibrium
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Figure 3.29: Time traces of a) ion heat flux, b) electron heat flux and c) momentum
flux for equilibria A, B and C with and without equilibrium flow-shear effects (FS).
Experimental flux levels corresponding to equilibrium C are shown by the dashed lines.
Results are also shown for a modified version of equilibrium B where L−1

nD
= 3.4,

L−1
ne = 1.7, L−1

Ti
= 1.8, L−1

Te
= 1.2 and αMHD was changed consistently. The discrepancies

between ion and electron particle fluxes arise due to the presence of the carbon impurity
– this also enables the electron particle flux to be lower than the total ion flux when
the carbon particle flux is negative.
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A when flow shear is added, despite the increased linear stability. The momentum

transport matches closely for equilibrium C, whilst A and B are too low and too high,

respectively. Whilst none of the three equilibria are able to match simultaneously every

single transport channel, equilibrium C agrees with experiment across three of the five

transport channels. Rather than further tweaking various gradients and parameters by

10% to obtain an exact match to every flux at once, we simply state that it is likely that

a set of equilibrium profiles can be fitted within error bars that matches all transport

channels closely. To illustrate this, we adjusted equilibrium B so that L−1
nD

= 3.4,

L−1
ne = 1.7, L−1

Ti
= 1.8 and L−1

Te
= 1.2, with αMHD changed consistently. By doing so,

the flux matching was improved for electron heat flux, momentum flux and electron

particle flux. However, not much insight can be gained from this process, so we did

not persist with adjusting other equilibria. Nevertheless, we have shown that multiple

flux channels can be matched outside the transport barrier with local, electrostatic

δf gyrokinetic simulations, and that experimentally-relevant levels of equilibrium flow

shear can have a significant impact.

3.4 Conclusions

In this Chapter we presented a study of a JET pulse that featured a strong ITB

in the ion temperature. Due to the relatively large error bars on experimental mea-

surements of key plasma parameters such as temperature and toroidal velocity, we

fitted three profiles to the experimental data. This allowed us to sample a variety

of possible self-consistent barrier configurations. By performing linear studies of the

three equilibria in the mid-barrier region where the inverse temperature length scale

is maximal, we established that the slab and toroidal ITG branches exist in competi-

tion. Electromagnetic effects were found to be stabilizing for both ITG branches, while

a KBM was destabilized at low ky. At sufficiently negative magnetic shear, it was

shown that the KBM is stabilized. When full equilibrium flow-shear effects are consid-

ered, the KBM can be destabilized by PVG, suggesting that significant levels of flow

shear might increase transport. This was confirmed by nonlinear simulations. Both

116



electrostatic and electromagnetic nonlinear simulations were performed, and electro-

magnetic effects were critical for matching multiple transport channels to experimental

levels. The addition of small amounts of flow shear has the potential to further improve

the matching, but fluxes rapidly increase above experimental levels for γE×B ≳ 0.04.

Nonlinear scans in the global magnetic shear ŝ showed that at smaller −ŝ, the KBM

contributes to significant transport in all channels, well above experimental levels. In-

terestingly, increasing −ŝ beyond the nominal levels also increased the transport. We

suggested that this is due to a weaker coupling to the zonal mode, though it is unclear

whether this is an issue of resolution, or if there may be a physical basis. We also

simulated the region outside the foot of the barrier. From linear simulations, it was

determined that the three equilibria display similar linear stability properties, with the

growth rate spectra being dominated by a broad ITG mode. Electromagnetic effects

are unimportant outside the barrier, and equilibrium flow shear was shown to have an

important stabilizing effect both linearly and nonlinearly. From nonlinear simulations

of the three equilibria with and without flow shear, we determined that multiple flux

channels could be matched to experiment, and that plausible changes to the driving

gradients could allow simultaneous matching to experiment of all transport channels.

From the simulations in these two radial locations, we have built up a physical pic-

ture of the key mechanisms that reduce turbulent transport in the transport barrier.

At the mid-barrier region where the inverse temperature length scale is maximal, elec-

tromagnetic effects provide an order-of-magnitude reduction in the fluxes due to the

high β ∼ 3%. The KBM that is typically driven unstable at such high β is stabilized by

the strongly negative magnetic shear that arises from the sharp cut-off in the pressure

gradient at the upper end of the barrier. At such high β, equilibrium flow shear is not

the dominant stabilizing effect. In fact, we suggest that it is counterproductive to have

strongly sheared flows deep in the barrier. We claim that the strong equilibrium flow

shear observed in many ITBs may be important for accessing this high-β region, damp-

ing the electrostatic turbulence and enabling barrier formation at low β. However, we

suggest that too high γE×B in the high-β region would limit the maximum achievable
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β by destabilizing magnetic instabilities. Further work must be done to confirm that

the increased confinement in the low-barrier region is provided by flow shear.
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Chapter 4

Concluding remarks

In this Chapter we will present the key contributions of the Thesis, as well as outlin-

ing possible future work to build upon the findings discussed. This Thesis has primar-

ily used local gyrokinetic simulations to make key discoveries about microstability in

tokamak plasmas, particularly in high-performance conditions with high β and steep

pressure gradients. We find that experimental fluxes can be matched both deep in the

ITB and outside the foot of the barrier with local δf gyrokinetic simulations. The

inclusion of electromagnetic fluctuations is critical for suppressing ITG in the region of

steep temperature gradients, whilst negative magnetic shear is necessary to suppress

the KBM. While flow shear is beneficial near the foot of the barrier for stabilizing

ITG, it is deleterious for confinement deep inside the ITB. Flux surface elongation was

also found to deteriorate the region of KBM second stability, contrary to the general

understanding that elongation is uniformly stabilizing.

In Chapter 2, we focused on two JT-60SA-relevant equilibria and studied the effect

of flux-surface shaping on their microstability and confinement. Electrostatic studies

of these equilibria provided two important contributions. Firstly, we observed that

in the equilibrium with a steep normalized pressure gradient αMHD, both the linear

stability and turbulent transport with maximally shaped {δ, κ} = {0.5, 2} flux surfaces

were comparable to that with circular ones. This is in contrast to the lower pressure

gradient equilibrium, where maximal shaping minimized the turbulent transport. As

such, we might expect plasmas exhibiting steep pressure gradients to benefit from min-

imal shaping, which is in opposition to the typical picture presented in the literature.
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This phenomenon is explained by the second key result of the electrostatic studies in

Chapter 2: increased elongation can decrease stability at low triangularity. This can

be understood as a competition between the FLR- and drive-damping effects intro-

duced in Section 1.4.1, which is manifest once the normalized pressure gradient αMHD

exceeds a certain value. As demonstrated in Figure 2.6b), for the nominal equilibrium

parameters simulated here, that value is around 0.5. For small β ≪ 1%, where EM

effects are unimportant, typical values of q2R(log p)′ must be of order 100 to reach

αMHD ∼ 1. This occurs only in the pedestal region of plasmas containing edge trans-

port barriers, so one may not expect these results to be relevant in the core of most

tokamak plasmas. By extrapolation of the trends in Figure 2.5, this destabilizing effect

of elongation may become more readily observable for negative triangularity. However,

this has not been investigated, and is suggested as a possible topic for further explo-

ration. These electrostatic studies guided us to search for similar results with fully EM

fluctuations considered. With EM effects included, the KBM was destabilized at high

β. We found that at sufficiently high β, increased shaping monotonically stabilized the

KBM. We showed that this result can be understood as shaping reducing the effect

of the magnetic fluctuations, and we refer to this as magnetic damping. Nevertheless,

at sufficiently high β where KBM second stability is accessible, we demonstrated in

Figure 2.9 that increased elongation can remove second stability, rapidly increasing

growth rates. Only linear simulations were performed with electromagnetic fluctua-

tions included, and we suggest that nonlinear simulations be used to indicate whether

the transport trends echo the linear stability at high β. At these high values of β, the

trends suggest that decreasing κ below unity may provide access to second stability at

even lower β. Further studies would be required to validate this, and we acknowledge

that MHD analysis predicts worse β limits for less-elongated plasmas [68].

In Chapter 3, we studied a JET pulse containing an ion-temperature ITB, paying

particular attention to the region of the ITB where L−1
Ti

was maximal. Linear local,

δf gyrokinetic simulations were used to study the dominant microinstabilities, deter-

mining that slab and toroidal branches of ITG can coexist at these steep temperature

gradients. The inclusion of electromagnetic fluctuations partially stabilized both ITB
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branches, and also allowed for the destabilization of a KBM. The addition of signif-

icant negative magnetic shear was shown to suppress the KBM. Strong equilibrium

flow shear (γE×B ≳ 0.08) was shown, linearly, to destabilize the KBM in these plas-

mas. Nonlinear gyrokinetic simulations were also performed; by and large, the trends

in transport levels follow those observed in linear stability. Notably, the inclusion of

EM effects in nonlinear simulations resulted in a more significant reduction in trans-

port than might be expected from the reduced linear growth rates. This is consistent

with previous studies of electromagnetic turbulence [47]. By performing a range of

nonlinear gyrokinetic simulations, we were able to find local equilibrium parameters

consistent with experimental measurements where multiple transport channels could

simultaneously be matched to experimental levels at two radial locations. Linear and

nonlinear parameter scans have allowed us to build up a picture of the key stabiliza-

tion mechanisms in the mid-barrier. The EM effects stabilize the toroidal and slab ITG

turbulence, whilst the stabilization of the KBM by magnetic shear is crucial for the

reduction of transport levels. The addition of significant levels of flow shear destabilizes

the KBM via the velocity shear parallel to the mean magnetic field, leading to a signif-

icant increase in transport, notably in the electron δA∥ heat flux. We therefore suggest

that the coincidence of significant equilibrium flow shear and high-β is not compatible

with the reduced transport levels and steep driving gradients of a transport barrier.

However, the presence of strongly sheared equilibrium flows may enable the formation

of transport barriers at low β. The matching of experimental fluxes demonstrates the

viability of local gyrokinetics for studying transport barriers, and opens up the pos-

sibility of using a first principles model to simulate the formation of an ITB. To do

this, one would need to be confident that fluxes could be matched across a wider range

of radial positions than we have studied so far. In particular, we suggest that similar

studies could be carried out at the barrier foot and top. Study of the top of the barrier

is important to understand the barrier saturation mechanism, i.e. why high L−1
Ti

cannot

be sustained deeper into the core plasma for this pulse. Similarly, the physics at the

foot of the barrier is critical for understanding how L−1
Ti

is able to ramp up without

increased transport. We believe, based on constraints placed on the equilibrium flow

shear profiles in this study, that the flow shear profile should be peaked around the foot

121



of the barrier, and is expected to provide significant stabilization until β becomes high

enough to significantly reduce the transport. If these proposed studies are successful in

reproducing experimental transport levels, we are confident that a 1D transport solver,

coupled to GS2, could demonstrate the formation of an ITB. Such simulations would

be possible using TRINITY coupled to GS2[124].

One unanswered question that requires further study relates to the role of magnetic

shear in stabilizing the KBM. We observed that at magnetic shear that is more negative

than nominal, the transport levels increased despite the reduction in the KBM linear

growth rates. Further work should be carried out to ensure that this result is not a

consequence of insufficient simulation resolution. We suggest performing a simulation

with the same ∆kx as the nominal case. The persistence of increased transport with

increased resolution would indicate a physical origin for our observation. Our studies

indicate that the coupling of the zonal mode with EM effects could be an important

starting point for such studies. The effect of magnetic shear on the magnetic damping

may play a role – it was observed in Chapter 2 that when the KBM was stabilized by

increased |k⊥|, the ITG was destabilized, possibly by the reduced δA∥ stabilization.

Alongside the above studies, ITB pulses from other tokamaks should be studied to see

whether similar pictures of the ITB formation can be built up. The JT-60U tokamak,

which was run with an optimized magnetic shear profile in a similar way to the JET

pulse studied here, would be a good starting point for such studies.
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Appendix A

Calculating geometric effects within
the local framework

A.1 Calculation of the local magnetic shear and

perpendicular wavenumber

In this section we flesh out the details of how to determine the effect of shaping pa-

rameters on stability. As an example, we show an analytic calculation of the effect of

elongation to leading order in ϵ ≪ 1. As discussed in Chapter 2, this involves deter-

mining the local magnetic shear and the perpendicular wavenumber. We note that the

quantities in this Appendix are not normalized as in the rest of the Thesis.

The local safety factor q̃ is the ratio of the toroidal to poloidal component of the

magnetic field:

q̃ ≡ B · ∇ζ
B · ∇θ =

IJr
R2ψ′ (A.1)

where we used the axisymmetric form of the magnetic field:

B = I∇ζ +∇ζ ×∇ψ (A.2)

and defined the Jacobian JX for the transformation between {R, ζ, Z} → {X, θ, ζ}
where X is any flux-surface label. This also allows us to define ψ′ in terms of the safety

factor q:

ψ′ =
I

2πq

∫ 2π

0

dθ
Jr
R2
, (A.3)
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where ′ indicates a derivative with respect to r. Therefore, the local magnetic shear is

s̃ ≡ r
q̃′

q̃
= r

(
I ′

I
+

J

Jr
− 2

R′

R

)
. (A.4)

where J ≡ J ′
r − Jrψ′′/ψ′. To evaluate this, we use the Grad-Shafranov equation:

R2∇ ·
(∇ψ
R2

)
= −II

′ + 4πR2p′

ψ′ . (A.5)

By expanding the divergence and substituting explicit forms for ∇r and ∇θ in terms

of R(r, θ) and Z(r, θ):

∇r = R

Jr

(
∂R

∂θ
∇Z − ∂Z

∂θ
∇R

)
; (A.6)

∇θ = R

Jr

(
∂Z

∂r
∇R− ∂R

∂r
∇Z
)
, (A.7)

we arrive at the following expression for J/Jr:

J

Jr
=

R2

J 2
r |∇r|2

[
2

(
R′θRθ + Z ′θZθ

)
− Jr

∂

∂θ

(
1

Jr

[
R′Rθ + Z ′Zθ

])]

+
II ′ + 4πR2p′

|∇ψ|2 , (A.8)

where superscript θ indicates a θ-derivative. To get an expression for I ′/I, we take the

r-derivative of Equation (A.3) and move all terms under the integral:

0 =

∫ 2π

0

dθ

[
J

R2
+

Jr
R2

(
I ′

I
− q′

q
− 2R′

R

)]
. (A.9)

This can be used in conjunction with Equation (A.8) integrated over θ to give an

expression for I ′:

I ′

I

∫ 2π

0

dθ
Jr
R2

(
1 +

I2

|∇ψ|2
)

=

∫ 2π

0

dθ
Jr
R2

(
q′

q
+

2R′

R
− 4πR2p′

|∇ψ|2
)

+

∫ 2π

0

dθ

|∇r|2

(
∂

∂θ

(
1

Jr

[
R′Rθ + Z ′Zθ

])
− 2

Jr

(
R′θRθ + Z ′θZθ

))
. (A.10)

With these expressions, one can generate expressions for s̃ and thus |k⊥|2.
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A.2 Analytical expressions for concentric elliptical

flux-surfaces

We next use a simplified Miller parametrization that includes only elongation to de-

termine the effect of elongating a circular plasma:

R(r, θ) = R0 + r cos θ (A.11)

Z(r, θ) = κ(r)r sin θ (A.12)

We choose to order κ′ ∼ κ/R0 – this means that κ′ does not enter to leading order in

small inverse aspect ratio (ϵ≪ 1):

Z ′(r, θ) = κ sin θ + κ′ϵR0 sin θ = κ sin θ +O(ϵ). (A.13)

We proceed in this limit to determine s̃ and |k⊥|2, beginning with the following quan-

tities:

Jr(r, θ) = R
(
R′Zθ −RθZ ′) = κrR (A.14)

|∇r|2 ≡ R2

J 2
r

((
Rθ
)2

+
(
Zθ
)2
)

=
1 + (κ2 − 1) cos2 θ

κ2
(A.15)

|∇θ|2 ≡ R2

J 2
r

((
R′)2 +

(
Z ′)2

)
=

1 + (κ2 − 1) sin2 θ

r2κ2
(A.16)

∇r · ∇θ ≡ −R2

J 2
r

(
R′Rθ + Z ′Zθ

)
= −(κ2 − 1) sin θ cos θ

rκ2
(A.17)

ψ′ =
Iκϵ

q
+O(Iϵ3). (A.18)

To determine I ′/I, we calculate each of the three integrals that appear in Equation

A.10 separately: ∫ 2π

0

dθ
Jr
R2

(
1 +

I2

|∇ψ|2
)

=
2πq2

ϵ
+O(ϵ) (A.19)

∫ 2π

0

dθ
Jr
R2

(
q′

q
+

2R′

R
− 4πR2p′

|∇ψ|2
)

=
2π

ϵR0

{
κϵŝ+

αMHD

2

}
+O(ϵ/R0) (A.20)

∫ 2π

0

dθ

|∇r|2

(
∂

∂θ

(
1

Jr

[
R′Rθ+Z ′Zθ

])
− 2

Jr

(
R′θRθ+Z ′θZθ

))
= −2π

R0

(
κ2 + 1

)
+O(ϵ/R0).

(A.21)
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In the above, αMHD ≡ −β(log p)′q2R0. Combining these expressions, we find that

I ′

I

q2

ϵ
R0 = κ

(
ŝ− κ2 + 1

κ

)
+
αMHD

2

1

ϵ
+O(ϵ). (A.22)

Later, when calculating s̃ using Equation A.4, we will find that the leading order

contribution cancels with a term in J/Jr, so we retain the O(1) terms. Using this, we

find:
J

Jr
=

1

ϵR0

{
κŝ− αMHD cos θ

1 + (κ2 − 1) cos2 θ

}
.

Comparing the size of the terms that comprise s̃ in Equation A.4, the largest is J/Jr.
Then, to leading order, we find

s̃ =
κŝ− αMHD cos θ

1 + (κ2 − 1) cos2 θ
. (A.23)

Now we can use s̃ to find ∇α̃ and thus |k⊥|2. This requires us to evaluate the following

integral as: ∫ θ

0

dθ̂q̃′ =
q

r

[
ŝϑ− αMHDΛ

]
, (A.24)

where

Λ(θ, κ) ≡ 1

2κ
√
κ2 − 1

log

(
1 +

√
1− κ−2 sin θ

1−
√
1− κ−2 sin θ

)
(A.25)

and

ϑ(θ, κ) ≡ arctan

(
tan θ

κ

)
. (A.26)

By expressing k⊥ in the normalized GS2 coordinates x and y defined in Section

1.3.3, we can write

|k⊥|2 = k2y

[
(ŝθ0)

2|∇x|2 + 2ŝθ0∇x · ∇y + |∇y|2
]
, (A.27)

where θ0 ≡ kx/(ŝky). Evaluating this yields the following expression for |k⊥|2:

|k⊥|2 = k2y

[
(
ŝ(ϑ− θ0)− αMHDΛ

)2(
1 + (κ2 − 1) cos2 θ

)
+ 1 + (κ2 − 1) sin2 θ

−2
(
ŝ(ϑ− θ0)− αMHDΛ

)
(κ2 − 1) sin θ cos θ

]
+O(ϵ). (A.28)

We note that the normalizing coefficients of x and y in Equations 1.25 and 1.26 act

to cancel out factors of q, κ, ψ̃′ and so forth, such that the only common prefactor
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is k2y. These expressions reduce to the typical ŝ − αMHD results when κ = 1, since

Λ(θ, 1) = sin θ and ϑ(θ, 1) = θ. In Figure A.1 we plot for this model the local shear at

the outboard midplane, and the integral of |k⊥|2 over the outboard side, as a function

of αMHD and κ. Comparing Figures A.1a) and b) to Figures 2.6b) and c), we see

good agreement despite ignoring the effects of triangularity, Shafranov shift and finite-

aspect-ratio.

κ

αMHD αMHD

Figure A.1: Profiles calculated from our simple analytical model that includes just
elongation and pressure-gradient effects in the small-inverse-aspect-ratio limit. We
show a) the local magnetic shear at the outboard midplane and b) the integral of |k⊥|2
over −π/2 ≤ θ ≤ π/2, as a function of αMHD and κ. The value of ŝ is 0.48, ky = 1 and
kx = 0.
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Appendix B

Normalizations

B.1 Converting between normalizing quantities in

GS2 and GKV

GS2 and GKV use different variables to normalize the various dimensional quantities

appearing in the governing equations. In this section, we will explicitly include all

normalizing quantities for clarity. Unlike GS2, GKV uses Rax, the major radius of the

magnetic axis, to normalize macroscopic length scales such as L−1
T . GKV uses different

flux-tube coordinates compared with GS2:

xGKV = aGKV(ρ− ρ0) (B.1)

yGKV =
aGKVρ0
q(ρ0)

(q(ρ)θ − ζ) (B.2)

where aGKV ≡
√

2ΦLCFS/Bax is the plasma minor radius, ρ ≡
√
Φ/ΦLCFS, Φ is the

toroidal magnetic flux and the subscript (LCFS) indicates its value at the last closed

flux surface. Inverse length scales L−1
X in GKV are defined correspondingly as

Rax

L−1
X

∣∣∣∣
GKV

≡ −Rax
d logX

dxGKV
= −Rax

aGKV

d logX

dρ
, (B.3)

so can be related to GS2 quantities as:

a

L−1
X

∣∣∣∣
GS2

≡ −ad logX
dr

=
Rax

L−1
X

∣∣∣∣
GKV

aGKV
Rax

a
dρ

dr
, (B.4)

where a is the minor radius of the LCFS.
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With the different definitions for flux-tube coordinates, wavenumbers must also be

renormalized for direct comparison between the two codes. We focus only on ky as

all the simulations in Section 2.1 are performed at kx = 0 for both codes. Using the

definitions for y and yGKV given in Equations 1.26 and B.2, respectively, we can relate

ky for the two codes as follows:

ky,GKV = ky,GS2
ψ̃′
0q(ρ0)

B0aGKVρ0
(B.5)

In GS2, the reference gyroradius to which the wavenumber is normalized is defined as

ρref|GS2 ≡
√
2Trefmrefc

ZrefeB0

, (B.6)

where Tref is the reference species temperature (we use the main-ion temperature at

r = 0), mref is the reference species mass (we use the main-ion mass) and Zref is the

reference species charge (we use unity for a deuterium plasma). A similar normalization

is used in GKV, except the reference species is presumed to be hydrogen, and the thermal

speed is defined to be smaller by a factor of
√
2:

ρref|GKV ≡
√
TrefmHc

eBax

. (B.7)

By combining Equations B.5, B.6 and B.7, we can relate the normalized wavenum-

ber in GKV to that of GS2 according to:

(kyρref)|GKV = (kyρref)|GS2
q(ρ0)

ρ0

ψ̃′
0

aGKVBax

Zref

√
mH

2mref

. (B.8)

Time scales in GKV are normalized by the ratio of Rax to the thermal velocity of

the reference hydrogen species. This means that the mode frequencies ω in GS2 can be

related to those of GKV via:
(
ω
Rax

vth,ref

)∣∣∣∣
GKV

=

(
ω

a

vth,ref

)∣∣∣∣
GS2

√
2Rax

a

√
mH

mref

. (B.9)

B.2 Normalized quantities in GS2

In Table B.1 we present the dimensional parameters as given in the text, along with the

quantities used to normalize them. We note that a is the minor radius of the LCFS,

ρ∗ ≡ ρref/a, nref is the electron density at r = 0 and the reference thermal speed is

vth,ref ≡
√

2Tref/mref.
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Table B.1: All dimensional parameters used throughout this thesis that are presented
without their normalizations for brevity. The quantities used to normalize them are
shown along with a description of the parameter. Quantities with(without) an asterisk
in their description are divided(multiplied) by the normalizing factor.

Parameter Normalizing factor Description

|k⊥|, kx, ky ρref Perpendicular wavenumber

k∥ a Parallel wavenumber

ω a/vth,ref Real frequency of fluctuations

γ a/vth,ref Linear growth rate

Qs nrefvth,refTrefρ
∗2 Heat flux for species s *

Πs nrefamrefv
2
th,refρ

∗2 Momentum flux for species s *

Γs nrefvth,refρ
∗2 Particle flux for species s *

r a Flux-surface minor radius *

R a Major radius of flux-surface centre *

κ′ a Radial derivative of κ

δ′ a Radial derivative of δ

β′ a Normalized p′

γE×B a/vth,ref Toroidal flow shear rate

ωψ a/vth,ref Toroidal angular velocity

ms mref Mass of species s *

Ts Tref Temperature of species s *

ns nref Density of species s *

cs vth,ref Sound speed *

L−1
X a Inverse scale length of X

νs a/vth,ref Collisionality of species s
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Appendix C

Slab ITG

C.1 Derivation of the dispersion relation

In this Appendix we present an analytical study of the slab branch of the ITG in-

stability. We derive a dispersion relation for a deuterium-electron plasma in unsheared

slab geometry, including FLR effects, δA∥ fluctuations and PVG. The background mag-

netic field is B = Bẑ, the mean flow velocity u ≡ u(x)ẑ is low (u≪ vth,s), and the two

species are assumed to have equal temperature and density. We solve the linearized

gyrokinetic equation in this geometry for a species s:

dhs
dt

+ v∥b · ∇hs =
ef0,s
Ts

dχ

dt
− c

B

(
b×∇⟨χ⟩

Rs

)
·
(
∇f0,s + v∥∇u

)
, (C.1)

where d/dt ≡ ∂/∂t+u · ∇ and χ = J0(αs)(ϕ− (v∥/c)δA∥) since we ignore compressive

magnetic fluctuations. We can neglect the advective terms (u · ∇) since u ≪ vth,ref

and fluctuations are assumed to vary slowly parallel to the magnetic field. We assume

solutions for fluctuating quantities D of the form:

D(t, y, z) =
∑

ky ,k∥,ω

D̂ky ,k∥,ω exp(−iωt) exp(ikyy) exp(ik∥z) (C.2)

for a complex frequency ω, and choose only x-variation in the background temperature

and density profiles, which allows us to set |k⊥| = ky. This allows us to get a form for

each Fourier component of hs (dropping ŝ and wavenumber labels for convenience) as

hs =
ef0,s
Ts

ω − ωT∗,s
ω − v∥k∥

[
ϕ− v∥

c
δA∥

]
J0(αs), (C.3)
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where

ωT∗,s ≡ ω∗,s

[
1 + ηs

(
msv

2

2Ts
− 3

2

)
− msv∥u

′Lns
Ts

]

and ω∗,s ≡ −kycTs/(ZseBLns). We explicitly normalize quantities in this derivation for

clarity. To relate δϕ and δA∥ and thus close the problem we use the quasineutrality and

parallel current equations (Equations 1.22 and 1.23, respectively). After some algebra

we reach the dispersion relation:

[
bi − β

(
Γ̃2,i +

mi

me

Γ̃2,e

)](
2 + Γ̃0,i + Γ̃0,e

)
+ β

[
Γ̃1,i +

√
mi

me

Γ̃1,e

]2
= 0, (C.4)

where bs ≡ (kyρs)
2/2, and

Γ̃n,s ≡ ζsZn,s − ζ̄∗,s

{
Γ0(bs)Zn,s + ηs

(
Γ0(bs)

[
Zn+2,s −

3

2
Zn,s

]
+ Γ1(bs)Zn,s

)

− 2Γ0(bs)Zn+1,s
u′Lns
vth,s

}
. (C.5)

Here, ζ̄∗,s ≡ ω∗,s/(k∥vth,s), ζs ≡ ω/(|k∥|vth,s) and the Γn(bs) come from integrating the

Bessel functions; the relevant orders are:

Γ0(bs) = I0(bs)e
−bs (C.6)

and

Γ1(bs) =
(
(1− bs)I0(bs) + bsI1(bs)

)
e−bs , (C.7)

while the

Zn,s ≡
1√
π

∫ ∞

−∞
du
une−u

2

u− ζs

result from integrating over parallel velocity with the resonant denominator for finite

k∥. Each order can be related back to the zeroth order expression via:

Z1,s = 1 + ζsZ0,s

Z2,s = ζsZ1,s

Z3,s =
1

2
+ ζ2sZ1,s

Z4,s = ζsZ3,s
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Although one can simplify this dispersion relation significantly by only keeping terms

to leading order in
√
mi/me, we solve this dispersion numerically without making any

further approximations to find how the linear spectra respond to changes in various

parameters.

C.2 Parameter dependence of slab ITG

In this Section we present the dependence of slab ITG growth-rate spectra on pa-

rameters such as L−1
Ti
, β and γE×B, with all quantities now in their normalized form

according to Appendix B. It is known from the literature that slab ITG scales like

ω ∼ (k2∥c
2
sω∗,iηi/2)

1/3, where cs ≡
√

2Te/mi is the sound speed [14]. At first glance, this

suggests that the linear slab-ITG growth rate scales like (LTi)
−1/3. We show in Figure

C.1 a contour map of the growth rate as a function of k∥ and L−1
Ti

at fixed kyρref = 1.

For a given k∥, the growth rate is indeed not a linear function of L−1
Ti
. However, the

k∥ of the fastest growing mode also increases with L−1
Ti

such that the maximum overall

growth rate (i.e. for any k∥) actually scales linearly with L−1
Ti
.

We show in Figure 3.8 a coarse scan in β for a single k∥ = 0.5 with kx = 0, Ti = Te,

L−1
Ti

= 15, L−1
Te

= 2 and L−1
ni

= L−1
ne = 0. The addition of field line bending only

weakly stabilizes the slab branch of ITG at low ky, whilst very slightly destabilizing

the high-ky end of a given mode. Increasing the strength of PVG by increasing u′ has

a destabilizing effect on the electrostatic slab modes at all ky, as illustrated in Figure

C.2. This result is qualitatively similar at finite β.
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k
∥

L−1
Ti

Figure C.1: Numerical solutions for the slab-ITG growth rate as a function of k∥ and
L−1
Ti

at fixed ky = 1. For the results shown, adiabatic electrons were used, kx = 0,
β = 0, u′ = 0 and L−1

ni
= 0.01. The solver did not converge well for the white region in

the top left or the large light-red region in the bottom right.
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Figure C.2: Numerical solutions for a) growth-rate and b) real-frequency spectra
in unsheared slab geometry with electrostatic fluctuations (including FLR effects).
The fixed parameters for the deuterium-electron plasma shown are Ti = Te, ne = ni,
L−1
ni

= L−1
ne = 0, L−1

Ti
= 15 L−1

Te
= 2, kx = 0 and k∥ = 0.2.
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Appendix D

Purely-perpendicular flow shear

In this Appendix, we provide a possible explanation for the unexpected behaviour

seen in Figures 3.10b) and 3.11b), whereby increasing γE×B from 0.04 to 0.08 led to

increased Floquet-averaged growth rates at some values of ky. GS2 has no centrifugal

term built into it, which might otherwise explain this observation. We begin with a

simple thought experiment, which we will then tie into the implementation of flow

shear when solving the gyrokinetic equation using GS2.

D.1 Simple model

Consider a system that has the potential to support two modes labelled by their

distinct eigenfunctions (χ̂1, χ̂2), with different real frequencies (ω1, ω2) and growth

rates (γ1, γ2). Expressing the overall potential as a linear superposition of these eigen-

functions with complex coefficients c1 and c2 that are representative of the initial state,

we can write an expression for the absolute value of the potential:

|χ̂|2 = |c1|2χ̂2
1e

2γ1t + |c2|2χ̂2
2e

2γ2t + 2|c1c∗2|χ̂1χ̂2e
(γ1+γ2)t cos

(
τ
)
, (D.1)

where τ ≡ t|∆ω| ± arg[c1c
∗
2], ∆ω ≡ ω1 − ω2 and the ± corresponds to ∆ω ≷ 0. The

third term represents beating between the two competing modes and is a transient

phenomenon that decays with a timescale that depends on the difference between the

modes’ growth rates. To see this, we consider a case where γ1 > γ2 and calculate the

instantaneous growth rate of |χ̂| as

d log|χ̂|
dt

= γ1

[
1−

|A|e−t∆γ
(

∆γ
γ1

(
|A|e−t∆γ + cos(τ)

)
+ |∆ω|

γ1
sin(τ)

)

1 + |A|e−t∆γ
[
|A|e−t∆γ + 2 cos(τ)

]
]
, (D.2)
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where A∗ ≡ c2χ̂2/c1χ̂1, φ ≡ arg[A] and ∆γ ≡ γ1 − γ2. In the case where γ1 ∼ γ2, the

growth-rate relative to γ1 is a slowly-decaying oscillatory function with a frequency that

tends to increase with the difference between the real-frequencies of the two modes.

The amplitude of the oscillations also increases with ∆ω.

D.2 Connection to GS2’s flow-shear algorithm

To tie this simple model for competing modes together with the effect of flow shear,

we note that the only effect of perpendicular flow shear in GS2 is to make kx time-

dependent according to Equation 1.32. For all flow-shear simulations shown in this

Thesis, kx changes continuously in time, however the original implementation in GS2

was discrete [112]. For the purposes of this simple model of two competing modes, we

invoke the discrete implementation of flow-shear as it is simpler to understand. In this

algorithm, a finite number N0 of extended θ domains are simulated, each of which can

be labelled by a different value of θ0. During the course of one Floquet oscillation, θ0

for a given extended twist-and-shift chain changes with time. As an approximation,

the nearest value of θ0 to the true value is used. This means that after one remapping

time tr ≡ 2π/(N0γE×B), a chain which evolves with one value of θ0 is mapped onto a

chain with an adjacent value of θ0. This is a discrete process, and so at every remap,

there will be a transient period whereby the initial state evolves towards the dominant

eigenmode for the new value of θ0.

For an infinitesimally small perpendicular shearing rate such that tr ≫ (∆γ)−1, each

remap will occur long after the transient period has expired. The resultant average

growth rate between remaps will therefore be γ1, the growth rate of the dominant mode

without flow shear. If the shearing rate is larger, such that tr ∼ (∆γ)−1, remapping

will truncate the transient period before it has completed. The average growth rate in

this case is dependent on the amplitude of oscillations in the growth rate relative to

γ1, as well as the point in the transient period at which the truncation occurs. This

truncation of the transient behaviour by increased perpendicular flow shear is critical

to the stabilizing effect of increased perpendicular flow shear. It can also be used to
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Figure D.1: Time traces of transient relaxation towards a dominant mode using Equa-
tion D.2 showing a) the growth rate relative to γ1 and b) the average growth rate
relative to γ1. The colours of shaded regions in b) indicate the net effect of truncating
the transience in each region – green indicates stabilization, red destabilization and
yellow no significant change relative to γ1. Large (small) truncation times, such as
those in the yellow (green) region, correspond to a small (large) shearing rate. The
parameters used to generate this Figure are c1 = 0.9, c2 = −0.01 − 0.1i, ω1 = 0.5,
ω2 = −0.5, γ1 = 1.0 and γ2 = 0.9.

explain why in certain scenarios, an increased rate of purely-perpendicular equilibrium

flow shear could have a destabilizing effect on the Floquet-averaged growth rate. This

is illustrated schematically using Figure D.1, which shows a transient period and the

associated average growth during that transient period, relative to the dominant growth

rate γ1. If tr lies in the red shaded region, the effect of perpendicular flow shear can be

to increase the Floquet-averaged growth rate relative to the unsheared case. This is,

of course, an overly simplistic model. The physical system can naturally support more

than two modes, which complicates the picture mathematically. More importantly,

the study of a single transient period cannot be used to prove that over the course

of an entire Floquet period the average growth rate is increased above the unsheared

case. Each transient phase is seeded via another (partially completed) previous one,

creating a complex history of initial conditions c1, c2, etc. Interestingly, this model

suggests that degenerate modes with the same growth rate but equal and opposite real

frequencies could be particularly susceptible to the transient effects discussed above

(since ∆γ → 0). This is particularly relevant to the equilibria studied in Chapter 3,
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since the slab-ITG auxiliary modes were found to be made up of two degenerate modes

with opposing signs of k∥ (and thus ω).
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