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Abstract 

Project 1. Genetic variation in key immune system components 

Genes underpinning the diversity and plasticity of the human adaptive immune 

system, such as the HLA and immunoglobulins, are known for their complex 

structures and polymorphism. The emergence of long-read sequencing 

technologies has revolutionised genomics research, in particular the 

characterisation of segmental duplications and structural variation. Here, using 

long-read sequencing and additional genomics data from a healthy donor 

identified as HV31, I built two iterations of de novo personal genome assemblies 

for HV31 as a foundation to study the genetic variation of the immune system. I 

analysed complex structural variants found in genomic regions encoding key 

immune system components, and validated them against sequencing data. I also 

evaluated long-read sequencing accuracy and developed a tool for genomic data 

visualisation. Collectively, these efforts demonstrate the applications of personal 

genome assemblies in studying the immune system. 

Project 2. Effects of low-dose IL-2 immunotherapy in T and NK cells 

Low-dose interleukin-2 (IL-2) immunotherapy is a promising treatment for type 1 

diabetes (T1D). IL-2 supresses autoimmune reactions by increasing the number 

of regulatory T cells (Tregs). To better understand the mechanism of action of low-

dose IL-2 immunotherapy, I analysed single-cell multiomics data of T and NK cells 

collected from T1D patients before and after low-dose IL-2 treatment. I confirmed 

that low-dose IL-2 selectively expanded thymic-derived FOXP3+ HELIOS+ 

regulatory T cells and CD56br NK cells, and showed that the treatment reduced 

the frequency of IL-21-producing CD4+ T cells. In addition, I identified a long-lived 

gene expression signature induced by IL-2, which featured the upregulation of 

CISH and downregulation of AREG. Notably, I found that the signature remained 
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detectable one month after the treatment. Further analyses of publicly available 

COVID-19 cohort data revealed that SARS-CoV-2 infection induced opposite 

changes that persisted for several months after recovery. These findings 

suggested potential mechanisms of long COVID and longer-term benefits of IL-2 

immunotherapy. 
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Project 1. Genetic Variation in Key 

Immune System Components 

1.1. Introduction 

1.1.1 Genetics of the human adaptive immune system 

The adaptive immune system is critical for the body's defence against myriad 

environmental pathogens. The adaptive immune system found in human and 

other mammals is referred to as the BCR-TCR-MHC-based adaptive immune 

system6, emphasising the central roles of three key components: the major 

histocompatibility complex (MHC), B cell receptors (BCR) and T cell receptors 

(TCR), each with specialised functions that work together to provide a coordinated 

immune response.  

The human leukocyte antigen (HLA) 

The human MHC, commonly known as the human leukocyte antigen (HLA), is a 

group of cell surface proteins that play a critical role in the recognition and 

presentation of foreign antigens to T cells7. HLA molecules, encoded by the HLA 

locus on chromosome 6 (p22.1), consist of two main classes: class I and class II. 

HLA class I molecules, encoded by HLA-A, HLA-B, and HLA-C genes, are 

expressed on the surface of almost all nucleated cells and are responsible for 

presenting intracellular antigens to CD8+ T cells. These antigens are typically 

derived from viral or tumour proteins that are synthesised within the infected or 

abnormal cell. HLA class II molecules, encoded by HLA-DP, HLA-DQ, and HLA-

DR genes, are expressed on the surface of specialised antigen-presenting cells 

(APCs) such as dendritic cells, macrophages, and B cells, and are responsible for 
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presenting extracellular antigens to CD4+ T cells. These antigens are typically 

derived from the surface or internal compartments of pathogens that have been 

engulfed and degraded by APCs.  

HLA genes are highly polymorphic, with multiple alleles encoding different HLA 

molecules within the same individual and across the population, enabling the 

immune system to recognise a vast array of foreign antigens and respond 

accordingly. Genome-wide association studies (GWAS) have shown that the HLA 

locus is a major genetic risk factor for autoimmune diseases, such as type 1 

diabetes8, rheumatoid arthritis9, and multiple sclerosis10.  

B cell receptors and immunoglobulins 

BCRs are the membrane-bound form of immunoglobulins (IGs), commonly known 

as antibodies, which recognise and bind to specific antigens, leading to their 

neutralization or elimination. BCRs and IGs are encoded by three loci in humans: 

the immunoglobulin heavy chain (IGH) locus, the immunoglobulin κ (IGK) locus, 

and the immunoglobulin λ (IGL) locus, each of which encodes a different peptide 

chain of the antibody. The IGH locus, located on chromosome 14 (q32.33), 

contains the highest number of gene segments and encodes the heavy chain of 

immunoglobulins. The IGK locus on chromosome 2 (p11.2) and the IGL locus on 

chromosome 22 (q11.22) encode the κ chain and the λ chain, which form the 

immunoglobulin light chain in humans.  

In most cells of the human body, the three IG loci exist in their germline 

configurations in the genome, which include a number of variable (V) and joining 

(J) gene segments. The IGH locus additionally contains diverse (D) segments. 

Gene segments of the same type share similar sequences. In B cells, before 

immunoglobulins can be produced, a genetic process called the V(D)J 

recombination11 removes certain V, D, and J segments, leaving the remaining 

segments randomly recombined. The outcome of this random process is the 
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generation of a unique and diverse repertoire of immunoglobulins within each 

individual's B cells. In addition to the V(D)J recombination, the IGH locus also 

undergoes somatic hypermutation12, which further expands the diversity of the 

immunoglobulin repertoire. 

T cell receptors 

TCRs are heterodimeric proteins expressed on the surface of T cells and, 

analogous to BCRs, function as receptors for specific antigens. In humans, there 

are two types of TCRs: αβ TCRs, which are composed of α and β chains, and γδ 

TCRs, which are composed of γ and δ chains. The α and δ chains are encoded 

by the overlapping TRA and the TRG loci on chromosome 14 (q11.2), respectively, 

while the β and γ chains are encoded by the TRB locus on chromosome 14, and 

the TRG locus on chromosome 7 (q34). Similar to IG loci in B cells, TCR loci 

undergo V(D)J recombination in T cells, yielding an individual-specific diverse 

repertoire of TCRs.  

Killer-cell immunoglobulin-like receptors (KIRs) 

Killer-cell immunoglobulin-like receptors (KIRs) are a group of transmembrane 

glycoproteins that are expressed on the surface of natural killer (NK) cells and a 

subset of CD8+ T cells. By binding to specific HLA molecules, KIRs are involved 

in the recognition of self and non-self, and play a crucial role in the regulation of 

immune responses. Although KIRs are part of the innate immune system rather 

than the adaptive immune system, the genetics of KIRs is complex and diverse, 

resembling that of the HLA in terms of a high degree of polymorphism and 

variability between individuals. This likely originated from the coevolution of KIR 

and HLA, as the product of each KIR gene specifically recognises a distinct subset 

of HLA allotypes13.  
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The KIR locus is located on chromosome 19 (q13.42) and are organised into two 

clusters, KIR A and KIR B14. The KIR A cluster contains genes encoding inhibitory 

receptors, while the KIR B cluster contains genes encoding both inhibitory and 

activating receptors.   

1.1.2. DNA sequencing technologies 

Sanger sequencing 

Over the past 50 years, the development of DNA sequencing technologies has 

revolutionized genomics research. Sanger sequencing, named after its inventor 

Frederick Sanger, contributed significantly to the success of the Human Genome 

Project, and remains widely used today15. Also known as chain termination 

sequencing, Sanger sequencing was based on the selective incorporation of 

chain-terminating dideoxynucleotides (ddNTPs) during DNA synthesis. The 

original process16 involves four separate DNA sequencing reactions, each 

containing a small amount of one of the four ddNTPs (ddATP, ddCTP, ddGTP, 

and ddTTP) mixed with ordinary deoxyribonucleotide triphosphates (dNTPs). In a 

given sequencing reaction, when the DNA polymerase incorporates the ddNTP 

instead of an ordinary dNTP, DNA synthesis is prematurely terminated at the 

current location due to the lack of the 3’ hydroxyl group in ddNTP necessary for 

the ligation of the next nucleotide. This random process produces a series of 

fragments with varying lengths, corresponding to the locations of the given base 

in the template DNA. These fragments are subsequently separated using gel 

electrophoresis to reveal the template DNA sequence. Modern versions of the 

Sanger sequencing reaction typically include two major improvements over the 

original process: (i) each of the four ddNTPs is labelled with a unique fluorophore 

and mixed together with normal dNTPs in one sequencing reaction, eliminating 

the need for four separate reactions; (ii) capillary electrophoresis combined with 

multi-channel fluorescence detectors replaced gel electrophoresis, enabling 
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better resolution for longer DNA fragments and automation of the whole 

sequencing process17,18.  

Short-read high-throughput sequencing 

High-throughput sequencing (HTS), also known as massive parallel sequencing 

(MPS) or next-generation sequencing (NGS), inherited the chain termination 

chemistry from Sanger sequencing and upgraded the technology to allow the 

parallel sequencing of millions of DNA fragments17. Various implementations of 

HTS platforms have been successfully commercialized by manufacturers such 

Illumina, Roche and MGI, all of which are based on a workflow termed cyclic 

reversible termination17, which significantly improves throughput over Sanger 

sequencing by monitoring the fluorescence signal generated during DNA 

synthesis in parallel in situ, rather than sequentially after size separation. To 

achieve this, DNA fragments are typically first tethered to a surface and then 

amplified using localized PCR, producing a large number of colonies each 

containing identical copies of a fragment. During the sequencing reaction, 

fluorophore-labelled reversible DNA synthesis terminators are used in place of the 

mixture of ddNTPs and dNTPs, so that DNA synthesis is synchronised to 

terminate after the incorporation of each new base and resume after recording the 

fluorescence signal of each colony, which reveals the identity of the incorporated 

base.  

HTS significantly facilitated genomics research by enabling the routine 

sequencing of whole animal or plant genomes. However, applications of HTS are 

limited by the length of sequence that can be reliably read from a given DNA 

molecule, known as the read length, which is typically 100 to 250 base pairs (bp) 

from both ends of the DNA molecule. Genomic regions that contain repeat 

sequences longer than the typical read length, which are common in animal and 

plant genomes19,20, are challenging to analyse, mainly due to the difficulty in 
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mapping each read to the correct copy of the repeat. For example, 3804 protein 

coding genes in the human genome, including key immune system genes such as 

HLA-DRB5, have been identified as containing regions challenging for high-

throughput short-read sequencing technologies21.  

Technically, the read lengths of current short-read HTS platforms are primarily 

limited by the reliance upon the cyclic reversible termination workflow, whereas 

the sequencing chemistry does not yet allow rapid and synchronized termination 

and reversal of all local DNA synthesis reactions22. Within each cycle, a small 

fraction of molecules in each colony falls out of phase, meaning that either zero 

or more than one nucleotide is incorporated, which will produce noise in the 

fluorescent signal in future cycles. As the sequencing proceeds and the reads 

grow longer, this issue accumulates and leads to signal deterioration23. In addition, 

the termination and reversal reactions place a cap on the speed of sequencing 

reactions, limiting the number of bases that can be sequenced within a given time 

limit24. The cyclic reversible termination workflow, despite its limitations, is 

essential to short-read HTS platforms due to the technical difficulty in monitoring 

the DNA polymerase reaction at the single-molecule resolution25. Therefore, it is 

necessary to generate colonies of identical DNA fragments and ensure the 

synchronization of DNA synthesis within each colony using reversible terminators.   

Long-read sequencing 

Long-read sequencing, sometimes known as third-generation sequencing (TGS), 

first made it possible to sequence single DNA molecules in real time and therefore 

circumvents the issues associated with the cyclic reversible termination workflow 

that limited the read length. Two distinct solutions of the single-molecule 

sequencing problem are implemented by the two major manufacturers of long-

read sequencing platforms, Pacific Biosciences (PacBio) and Oxford Nanopore 

Technologies (ONT), both of which enabled the generation of read lengths on the 
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order of 10-100 kb. The PacBio solution, termed single-molecule real-time (SMRT) 

sequencing, is based on a nanophotonic structure called the zero-mode 

waveguide (ZMW), which are essentially nanometre-scale chambers in which 

single-molecule DNA polymerase reactions can be monitored continuously26. The 

ONT solution, on the other hand, does not rely on the sequencing-by-synthesis 

paradigm established by Sanger sequencing and HTS. Instead of harnessing the 

natural DNA replication process mediated by DNA polymerases, ONT sequencing 

is based on ionic current changes detected near a protein nanopore when a single 

DNA molecule passes through, which fluctuates as different nucleotides interact 

with the nanopore, depending on the chemical structure of the base27,28.  

Both PacBio and ONT sequencing initially suffered from higher error rates (~10%) 

compared to short-read HTS (< 1%), which improved as the technologies 

matured29. Most notably, PacBio HiFi sequencing, which is based on the circular 

consensus sequencing (CCS)30 chemistry, where each DNA molecule is 

circularised and sequenced multiple times before a consensus sequence is 

generated computationally, provided considerable accuracy improvements over 

the raw reads yielded from ZMWs31, the latter also referred to as continuous long 

reads (CLR). ONT, on the other hand, achieved progressively higher accuracy 

though iterated optimisation of the nanopore structure and the base calling 

algorithm that decode ionic current changes into DNA sequences32.  

Linked-read sequencing and optical mapping 

In addition to PacBio and ONT long-read sequencing, other technologies also 

achieved success in obtaining long-range genomic information useful for 

challenging applications such as long-range phasing, structural variation 

detection and de novo assembly33–35. 10X Genomics linked-read sequencing36 and 

MGI single-tube long-fragment read (stLFR) sequencing33 enhance standard 

short-read HTS by labelling each DNA molecule with a unique barcode prior to 
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fragmentation. When the DNA molecule is sequenced, multiple reads are yielded 

which all share the same barcode information, which can be computationally 

linked together to provide information at a range longer than individual reads. 

Meanwhile, Bionano optical mapping37 directly analyses the physical structure of 

long DNA molecules using fluorescence imaging. Unlike sequencing-based 

methods, optical mapping works by first labelling specific sequence motifs in DNA 

molecules with fluorescent dyes, and then image the labelled molecule using 

fluorescence microscopy. The resulting high-resolution images are 

computationally analysed to provide approximate information about the relative 

positions of sequence motifs, revealing any large structural variants.  

1.1.3. Applications of long-read sequencing 

Structural variation detection 

Structural variation (SV) is a class of genetic variants that involve large-scale 

changes in the structure of DNA sequence, typically categorised into insertions, 

deletions, duplications, inversions, translocations, copy number variants (CNVs), 

and complex SVs that involve a combination of different types of changes. In 

practice, SVs are commonly defined DNA sequence alterations larger than 50 bp38. 

The genomic difference between two randomly selected humans are expected to 

be predominantly (> 90%) attributed to SVs rather than single-nucleotide variants 

(SNVs)39. Specific SVs have been shown to play important roles in human diseases. 

For example, the Huntington’s disease is a genetic disorder caused by the 

expansion of CAG repeats in the HTT gene40. In addition, HER2+ breast cancer, 

characterized by overexpression or amplification of the human epidermal growth 

factor receptor 2 (HER2) gene, contributed by various types of somatic SVs 

including HER2 gene amplification and chromosomal rearrangements41.  
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Despite their contribution to genetic diversity and disease susceptibility, SVs 

remain less studied compared to SNVs, due to the technical challenges involved 

in SV detection using short-read sequencing, as SVs are often larger than the read 

length, involve complex sequence alternations, or exist in repetitive regions38. 

Long-read sequencing provides better opportunities to span SV sequences and 

resolve long repeats, which greatly facilitated SV detection. Various tools for long-

read SV calling are available, many of which have been tailored for PacBio or ONT 

platforms, such as pbsv42, Sniffles43 and NanoSV44.  

De novo assembly 

De novo assembly refers to the computational process to fully or partially 

construct a genome without relying on a reference sequence, typically by piecing 

together a large number of sequencing reads each representing a small fragment 

of the target genome45. For species without existing reference genomes, de novo 

assembly is performed to build the first genomic sequences which can be used 

as reference genomes for future analyses. The Human Genome Project is a well-

known de novo assembly effort, yielding the first human reference genome in 2003. 

The GRCh38 reference genome46, the latest successor of the original sequences 

published by the Human Genome Project, was released in 2013 and remains 

widely used today.  

For species with existing high-quality reference genomes available, in particular 

humans, model organisms, and domesticated animals and plants, de novo 

assembly is also applied to study individual genomes while eliminating reference 

bias, which refers to the problem that genomic regions that diverge from the 

reference genome are systematically harder to analyse compared to those 

identical to the reference genome47. As whole-genome sequencing continues to 

become cheaper and more accessible, personal genomes build from de novo 
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assembly are gaining importance in precision medicine48 and promoting deeper 

understanding of human genetic diversity49.  

Long-read sequencing provides the ability to generate contiguous and 

comprehensive assemblies of complex genomes such as the human genome, by 

allowing each read to represent a significantly larger fraction of the genome, which 

help bridge repetitive regions and resolve structural variants50. Various 

computational tools for long-read de novo assembly have been developed to 

address the relatively higher error rate and to accommodate the computational 

challenges associated with increased read lengths. Similar to SV callers, many 

long-read de novo assemblers are tailored for specific sequencing chemistries 

and sometimes support hybrid assembly from multiple platforms51–53. Widely used 

long-read de novo assemblers include Canu54–56, Flye57,58, wtdbg259, Falcon31,60,61, 

Shasta62, hifiasm63, and Verkko64, among others, many of which have shown 

success in generating personal assemblies with quality similar to, or even better 

than, existing human reference genomes. In particular, the T2T CHM13 

assembly65, which was based on a custom approach using both PacBio and ONT 

sequencing, among other technologies, and published in 2022 by the Telomere-

to-Telomere (T2T) consortium, became the first complete human genome 

sequence without unresolved gaps.    

The human genome is diploid, with two sets of 23 chromosomes, each of which 

is inherited from one of the parents. Ideally, a human de novo assembly should 

faithfully represent both alleles of any given locus, while preserving information 

about which alleles belong to the same haplotype. However, due to the technical 

difficulties in differentiating highly similar heterozygous alleles, especially in 

repetitive regions, early de novo assembly efforts mostly focused on producing 

mixed-haplotype assemblies, also referred to as consensus assemblies or haploid 

assemblies, in which only one arbitrarily selected allele is assembled for a given 

locus1,56,57,62. The T2T CHM13 assembly, on the other hand, circumvented this 
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problem by sequencing a hydatidiform mole which is essentially haploid65. As the 

sequencing technology and assembly algorithms matured, it became feasible to 

produce high-quality haplotype-resolved assemblies, also referred to as phased 

assemblies or diploid assemblies, which contain both alleles of a locus, often with 

the help of phasing information from parental sequencing data54,66, Hi-C67 or 

Strand-seq68.  

DNA modifications 

DNA modifications are chemical modifications that yield various modified bases, 

such as 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC), and N6-

methyladenine (6-mA), in place of the corresponding unmodified bases. As an 

important focus of epigenetics research, DNA modifications have been shown to 

play a crucial role in regulating gene expression, genome stability, development, 

and various biological processes69. In short-read HTS, information about DNA 

modification is erased by the localised PCR amplification process, and by the 

inability of known DNA polymerases to synthesise modified DNA. Therefore, 

specialised chemical or enzymatic methods, such as bisulfite sequencing70 and  

TAB-Seq71, have been developed to specifically label modified bases so that their 

locations can be revealed through HTS.  

In contrast, PacBio and ONT sequencing platforms are able to sequence single 

DNA molecules without amplification, thus preserving epigenetic modifications in 

the input DNA. In PacBio sequencing chemistry, the fluorescence signal is 

characterised not only by the emission spectra (i.e., colours), but also by the 

kinetics (i.e., timing) of fluorescence pulses. This kinetics information proved 

useful for inferring methylated bases including 6-mA, 5-mC and 5-hmC, as 

methylated bases are processed at different rate by the DNA polymerase, 

compared to their unmodified counterparts72. As such differences are subtle, 
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methylation detection currently relies on the aggregation of kinetics signals using 

the CCS chemistry and is not available for the CLR chemistry72,73.  

As previously described, in ONT sequencing chemistry, the raw electrical current 

signal generated by each nanopore depends on the chemical structure of the base 

passing through, which allows each modified base to have its own signature that 

can be decoded using hidden Markov models74. The accuracy of ONT methylation 

calling was historically burdened by the low accuracy of base calling, but has 

significantly improved since the release of the ONT R10 chemistry75,76. 

Full-length transcriptome  

The median length of human gene transcripts is estimated to be between 2000 

and 4000 nucleotides77. Unlike short-read sequencing, of which each read 

typically only captures a fraction of an exon, long-read sequencing allows for full-

length transcript sequencing, capturing complete RNA molecules as individual 

reads. This enables more accurate identification of alternative splicing events, 

isoforms, and gene fusions with higher accuracy, providing a deeper 

understanding of gene regulation, transcript diversity, and functional 

implications78.  

PacBio Iso-Seq, which is HiFi sequencing applied to full-length cDNA, has shown 

success in identifying novel isoforms79,80. Taking advantage of the fact that HiFi 

reads are typically several times longer than mRNA transcripts, PacBio MAS-Seq 

optimises throughput for single-cell RNA sequencing by concatenating multiple 

transcripts from the same cell during library preparation, each which are then 

retrieved computationally by breaking the reads into corresponding segments81,82.  

On the other hand, thanks to its DNA polymerase-independent chemistry, ONT is 

uniquely capable for direct sequencing of native RNA strands, eliminating 

sequencing biases associated with reverse transcription and PCR amplification, 
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while also unlocking the possibility to detect RNA modifications such as N6-

methyladenosine (m6A) and 5-methylcytosine (5-mC)83,84. 

1.1.4. Research objectives 

The overarching objective of this project is to explore possibilities of personalised 

genomic and functional analyses, enabled by the recent emergence of 

revolutionising sequencing technologies. We started from the blood sample of 

one healthy consenting participant, whom we refer to as HV31, and generated a 

broad set of genomic (long-read sequencing, short-read sequencing and genomic 

mapping) and functional (ATAC-Seq, ChIP-Seq, RNA-Seq) data. From there, we 

aimed at building a high-quality personal de novo assembly, which would not only 

reveal genetic variants that are challenging for previous methods, but also serve 

as the reference genome for joint interrogation of DNA modifications, chromatin 

accessibility and histone modifications, and mRNA transcription.  
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1.2. Results 

1.2.1. Overview of genomic and functional data collected for HV31 

Over the course the project, we generated genomic and functional data using 

multiple platforms using blood sample from a single individual identified as HV31 

(Table 1). HV31 was recruited as a healthy female volunteer and identified as 

having European ancestry. Based on the time of collection and type of platform, 

the datasets available for HV31 can be categorised into three groups: 2019 

genomics data, 2019 functional data, and 2022-23 genomics data. A large portion 

of analyses work in the HV31 project were conducted in the period between 

September 2019 and August 2021, before the 2022-23 genomics data became 

available.  
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Name Platform Cell type 
Coverage 

depth 
Read length 

HiFi-2019 

PacBio Sequel II Circular 

Consensus Sequencing 

(CCS) 

CD14+ 12.3× 
N50 = 12.7 

kb 

CLR-2019 

PacBio Sequel II 

Continuous Long Reads 

(CLR) 

CD14+ 35× 
N50 = 25.9 

kb 

ONT-2019 

Oxford Nanopore 

PromethION R9.4.1 

chemistry 

CD14+ 63× N50 = 10.9kb 

Bionano 

Bionano Saphyr Direct 

Label and Stain (DLS) 

optical mapping 

PBMC 152.7× 
N50 = 216.4 

kb 

MGI-standard 

MGI DNA nanoball 

sequencing (DNBSEQ), 

StandardMPS chemistry, 

standard WGS library 

PBMC 56.8× 
100 bp 

paired-end 

MGI-

CoolMPS 

MGI DNA nanoball 

sequencing (DNBSEQ), 

CoolMPS chemistry, 

standard WGS library 

PBMC 56.9× 
100 bp 

paired-end 
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MGI-stLFR 

MGI DNA nanoball 

sequencing (DNBSEQ), 

StandardMPS chemistry, 

single-tube long-fragment 

read (stLFR) WGS library  

CD14+ 51.3× 
100 bp 

paired-end 

10X 
10X Linked-Read 

sequencing 
CD14+ 40.2× 

150 bp 

paired-end 

Illumina 

Illumina PCR-free short-

read sequencing on 

NovaSeq 6000 

PBMC 44.2× 
151 bp 

paired-end 

RNA-Seq Illumina NovaSeq 6000 
CD4+, CD8+, 

CD14+, CD19+ 
- 

75 bp 

paired-end 

ATAC-Seq Illumina NovaSeq 6000 
CD4+, CD8+, 

CD14+, CD19+ 
- 

75 bp 

paired-end 

ChIP-

H3K4me3 
Illumina NovaSeq 6000 

CD4+, CD8+, 

CD14+, CD19+ 
- 

75 bp 

paired-end 

ChIP-

H3K27ac 
Illumina NovaSeq 6000 

CD4+, CD8+, 

CD14+, CD19+ 
- 

75 bp 

paired-end 

HiFi-2022 PacBio Sequel IIe CCS PBMC 12.6× 
N50 = 17.0 

kb 

HiFi-2023 PacBio Revio CCS PBMC 58.8× 
N50 = 15.9 

kb 

ONT-2022 

Oxford Nanopore 

PromethION R10.4.1 

chemistry 

PBMC 
68× simplex 

3.7× duplex 

N50 = 27.7 

kb 
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Table 1. Overview of genomic and functional data collected for HV31. 

The 2019 genomic data 

The 2019 genomic data were collected between 2018 and 2019, shortly after the 

recruitment of the HV31 individual. Sample processing and sequencing was 

primarily the work of Antony Cutler and Andrew Brown, supervised by Prof John 

Todd and Prof Julian Knight. Hannah Roberts and Gavin Band contributed to the 

pre-processing of sequencing data. By the time I joined the project in September 

2019, the 2019 genomic data had been fully collected and ready for analyses.  

 

Figure 1. Read/molecule length distribution of PacBio HiFi, PacBio CLR, ONT and 

Bionano optical mapping datasets in 2019 genomic data. 

Red and grey vertical lines denote the N50 and mean read/molecule length for each 

dataset, respectively. N50 was defined as the maximal length such that reads/molecules 

longer than this length cumulatively account for at least 50% of the total length of 

reads/molecules in the dataset. 
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The 2019 genomic data were generated to cover a broad range of long-read and 

short-range sequencing platforms, which were considered complementary to 

each other in terms of read length, accuracy and coverage depth (Table 1 and 

Figure 1). Specifically, PacBio Sequel II circular consensus sequencing (obtaining 

12.3× genome coverage by ~12 kb HiFi reads), MGI short-read sequencing (56.8×) 

and Bionano Saphyr Direct Label and Stain (DLS) optical mapping (152.7× 

coverage by imaged molecules) data were collected. In addition, long-read and 

short-read sequencing data from PacBio continuous long read (CLR; 35×), Oxford 

Nanopore Technologies (ONT) PromethION (63×), 10x Genomics linked-reads 

(40.2×), Illumina NovaSeq PCR-free (44.2×), MGI single-tube long fragment read 

(stLFR) (51.3×) and MGI CoolMPS (56.9×) platforms were also generated from the 

same blood sample. To minimize the impact of cell-specific events including V(D)J 

recombination and somatic hypermutation and enable accurate assembly of the 

germline genome in immunoglobulin and T cell receptor regions, all long-read and 

linked-read datasets were collected from CD14+ monocytes isolated from 

peripheral blood mononuclear cells (PBMCs) with antibody-conjugated beads. 

Bionano optical mapping data, as well as several short-read datasets, were 

generated directly from PBMCs.  

The 2019 genomic data have been deposited to the European Genome-Phenome 

Archive (EGA), under the accession number EGAS00001005046. 

The 2019 functional data 

Apart from long-read and short-read genomic data, which were useful for 

detecting genetic variants, the HV31 project aimed at investigating the functional 

impact of genetic variants, with a focus on immune cells. Therefore, transcriptome 

(RNA-Seq), chromatin accessibility (ATAC-Seq), and histone modification (ChIP-

Seq; H3K4me3 and H3K27ac) data were also collected for CD4+, CD8+, CD14+, 

and CD19+ cells from PBMCs (Table 1). These functional datasets were generated 
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around the same time when the 2019 functional data were collected, primarily by 

Antony Cutler and Andrew Brown, and preprocessed by Hannah Roberts and 

Gavin Band.  

The 2022/23 genomic data 

Between 2019 and 2023, the two leading companies in long-read sequencing, 

PacBio and Oxford Nanopore, developed multiple generations of their respective 

long-read sequencing platforms, and achieved considerable improvements in 

terms of cost, throughput and accuracy through innovations in chemistry and 

bioinformatics. In particular, the PacBio Sequel IIe85 and Revio86 platforms 

improved throughput and cost efficiency compared to the previous Sequel II 

platform, while the ONT R10 chemistry were reported to yield more accurate reads 

compared to the previous R9 chemistry32,87,88. The 2022/23 genomic data were 

generated in collaboration with PacBio and Oxford Nanopore, separately, to 

evaluate these technical improvements and explore opportunities to build more 

complete and accurate personal genomes that harness these new platforms. 

Genomic sequencing data based on PacBio Sequel IIe, PacBio Revio, and Oxford 

Nanopore R10.4.1 chemistry platforms were collected (Table 1). All datasets were 

generated from frozen PBMCs.  

1.2.2. A mixed-haplotype assembly of immune system regions  

Immune system loci display a spectrum of complexity in the human reference 

sequence 

Eight genomic regions were selected as the focus of this assembly, namely those 

encoding the HLA, immunoglobulins (IGH, IGL, IGK), T cell receptors (TRA, TRB, 

TRD, TRG), and the killer-cell immunoglobulin-like receptors (KIR) (Table 2). 

Immunoglobulin and T cell receptor regions were defined based on NCBI RefSeq 

locus definitions89. HLA and KIR regions were defined based on previously 
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published gene ranges14,90. All regions were specified using GRCh38 coordinates, 

with an additional 1 Mb flanking sequence added to both sides (detailed on page 

123). In the IGK region, I additionally expanded the range to include a ~1 Mb 

heterochromatin gap present in GRCh38. The expanded regions range from 2–6 

Mb in length and vary considerably in terms of repetitive structure and haplotype 

diversity. The least reference sequence complexity was observed in the T cell 

receptor α, δ and γ regions (which contain < 2% repeat sequence and no listed 

alternate haplotypes). Meanwhile, the regions encoding immunoglobulin subunits 

contain the highest levels of duplication. Previous analyses91,92 have also 

demonstrated significant structural diversity among known haplotypes in these 

regions. 



 35 

Name 
Coordinates 

and length 

# core 

gene 

% 

repeat 

% 

SD 
# gap 

# alt. 

hap. 

% 

novel 

# 

patch 

Immuno-

globulin 

heavy chain 

(IGH) 

chr14 

104,586,437 - 

107,043,718 

(2.46 Mb) 

164 6.8 
31.1 

(0.5) 
0 2 44.7 0 

Immuno-

globulin κ 

(IGK) 

chr2 

87,857,361 – 

91,902,511 

(4.05 Mb) 

84 22.7 
44.8 

(22.7) 
3 2 31.5 1 

Immuno-

globulin λ 

(IGL) 

chr22 

21,026,076 - 

23,922,913 

(2.90 Mb) 

89 7.4 
34.0 

(15.3) 
0 3 47.4 0 

Human 

leukocyte 

antigen 

(HLA) 

chr6 

28,602,238 - 

34,409,896 

(5.81 Mb) 

39 2.7 
6.5 

(1.1) 
0 8 0 0 

T cell 

receptor α 

and δ (TRA) 

chr14 

20,621,904 - 

23,552,132 

(2.93 Mb) 

115 1.9 
3.5 

(0) 
0 0 37.6 0 
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T cell 

receptor β 

(TRB) 

chr7 

141,299,011 - 

143,813,287 

(2.51 Mb) 

78 5.3 
19.5 

(9.0) 
1 2 34.2 1 

T cell 

receptor γ 

(TRG) 

chr7 

37,240,024 - 

39,368,055 

(2.13 Mb) 

22 1.3 
3.1 

(0) 
0 0 0.2 0 

Killer-cell 

immune-

globulin-like 

receptors 

(KIR) 

chr19 

53,724,447 - 

55,867,209 

(2.14 Mb) 

10 4.7 
12.9 

(0) 
0 50 47.4 0 

Table 2. Overview of eight selected immune system loci in GRCh38.  

% repeat, the proportion of repetitive DNA calculated as the proportion of 31-mers that 

are repeated at least once. % SD, the percentage of the region that is annotated as lying 

in a segmental duplication or (in brackets) a highly identical (≥ 95%) segmental duplication. 

# gap, the number of gaps (sequences of ‘N’ bases) in GRCh38. % novel, the percentage 

length of contigs that are new to GRCh38 rather than carried forward from GRCh37. # 

patch, the number of fix patches intersecting the locus in GRCh38 patch release 13. The 

GRCh38 segmental duplication, alternative haplotypes and fix patches annotations were 

downloaded from the UCSC Table Brower93 based on the genomicSuperDups, 

altSeqLiftOverPsl and fixSeqLiftOverPsl datasets, respectively. 

To confirm the effect of V(D)J recombination in PBMC-derived sequencing data, I 

aligned each sequencing dataset to the GRCh38 reference genome, and 

inspected the coverage depth patterns in the eight selected regions. I found that 
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the coverage depth by PBMC-derived reads drops significantly around T cell 

receptor genes (Figure 2), consistent with an effect of V(D)J recombination in T 

cells which are the predominant cell type in PBMC, accounting for 70–85% to 

total cells94. Decrease of sequencing depths is not identified in immunoglobulin 

regions, presumably due to the relatively low fraction (5–10%) of B cells in PBMC7. 

Despite γδ T cells being rarer than αβ T cells, the coverage drop around T cell 

receptor γ and δ genes can be explained by the fact that the TRG and TRD loci 

undergo rearrangement in most αβ T cells in addition to γδ T cells95,96.  
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Figure 2. Depth of coverage of sequencing reads across 2019 genomics datasets, in 

the eight select regions. 
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Coverage depths of various sequencing datasets (colours) aligned to the GRCh38 

reference genome for the eight selected regions (Table 2). Depths were normalized by the 

average depth across each region for each dataset. Areas with reduced coverage depths 

are highlighted with black triangles. Datasets generated using DNA from CD14+ monocyte 

and PBMC samples are denoted with solid and dashed lines, respectively. Locations with 

zero coverage depths reflect gaps in the GRCh38 reference genome.  

Design of the de novo assembly pipeline 

Our initial attempt to build a personal genome assembly for HV31 was conducted 

between September 2019 and July 2020, at a time when long-read sequencing, 

in particular PacBio HiFi sequencing (known then as circular consensus 

sequencing, CCS)31 began to show its promise in resolving complex regions of 

the genome. Following the approach previously developed by Hannah Roberts, I 

started by testing several popular long-read de novo assembly tools available at 

that time, including wtdbg259, Flye57, and Canu56, all of which had been designed 

to generate mixed-haplotype assemblies, in which only one of the two inherited 

haplotypes, selected arbitrarily, is represented for any given locus. I generated 

local de novo assembly in the selected regions using HiFi-2019 data, and found 

that Canu yielded the most continuous assembly, with lowest fraction of assembly 

errors such as collapsed duplications or missing sequences (Figure 3). Meanwhile, 

Falcon31,60,61, one of the few tools available then that supported the generation of 

haplotype-resolved assemblies, tended to generate highly fragmented assemblies 

for HV31, likely due to the relative low sequencing depth of the HiFi-2019 data, 

which was equivalent to around 6× coverage per haplotype.  
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Figure 3. wtdbg2, Canu and Flye assembles in the HLA region.  

Integrative Genome Viewer (IGV) screenshot showing wtdbg2, Canu and Flye local 

assembles in the HLA region aligned to the GRCh38 reference genome. Each assembly 

was generated using the same subset of HiFi-2019 reads that were extracted by 

alignment to the GRCh38 reference genome in the HLA region.  

Considering the challenges involved in generating a haplotype-resolved assembly, 

in which both inherited haplotypes are represented and phased correctly, I took a 

pragmatic approach to generate an accurate representation of the eight regions 

in the HV31 genome, by developing a mixed-haplotype assembly for each region 

and listing heterozygous structural variants (SVs) that were not included in the 

assembly. The mixed-haplotype assembly, hereby referred to as the HV31-V1 

assembly, and the SV list were used to jointly describe the HV31 genome. The 

overall pipeline consisted of four stages: initial assembly, scaffolding, gap closure, 

and polishing, as described below.  
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Figure 4. Workflow diagram for the HV31-V1 assembly. 

Schematic representation of the HV31-V1 assembly workflow. Boxes with rounded 

corners represent input and output data and intermediate results. Boxes with square 

corners represent computational processes. 

Initial assembly 

I used the Canu assembler, which had yielded the best results in previous 

evaluations, to produce a draft whole-genome assembly based on HiFi-2019 data. 

I aligned the resulting contigs to GRCh38 and extracted all contigs that overlap 

with the predefined regions of interest, hereafter referred to as local contigs, for 

further processing. Local contigs were highly fragmented (Figure 5 and Figure 6), 

reflecting the unusual genomic complexity in these regions. The assembly also 

contained multiple shorter contigs aligning to the same location as longer contigs 

in some regions, which either represent assembly errors or genuine differences 
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between haplotypes (Figure 6). These shorter contigs are hereby referred to as 

haplotigs. 

 

Figure 5. Continuity of HV31-V1 assembly. 

Contig/scaffold continuity (NG50, y axis) for local contigs (grey) and finished HV31-V1 

assembly scaffolds (red) in each region (x axis). NG50 is defined as the length of the 

longest contig/scaffold that, along with longer contigs/scaffolds, covers 50% percent of 

each locus, as determined by alignment to GRCh38. The size of the selected region on 

the GRCh38 reference is also shown. To ensure comparable results, for each 

contig/scaffold, only the length within region boundaries is taken into NG50 calculation. 

 

Figure 6. Canu whole-genome assembly contigs aligned to GRCh38.  
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Alignment of local contigs extracted from the draft HV31 whole-genome assembly 

produced by Canu for each of the eight selected regions (Table 2). 

Scaffolding 

I next used the local contigs with Bionano optical imaging data to produce longer 

continuous scaffolds. Imaged DNA molecules had an observed mean length of 

149 kb, substantially longer than reads from other datasets involved in this study 

(Figure 1). I assembled these molecules using the proprietary Bionano Access 

software. As expected, the resulting Bionano contigs tended to be substantially 

longer than those in the draft whole-genome assembly (Figure 7), which allowed 

us to utilise the long-range information in Bionano contigs to order and orient the 

local contigs. I used the Bionano Solve algorithm to align the local contigs to the 

Bionano-assembled contigs and implemented a modified version of the BiSCoT 

algorithm97 to generate local scaffolds (detailed on page 124). This process also 

removes or merges in haplotigs that can be effectively aligned to the local 

scaffolds. Finally, I confirmed that the remaining haplotigs represented substantial 

duplication of scaffolded contigs using a k-mer based method (detailed on page 

124), and removed these from downstream analysis. The scaffolds generated by 

this process fully covered six of the eight regions with a single scaffold, while the 

IGL and IGK regions were assembled with two scaffolds each (Figure 8). 

 

Figure 7. Comparison of contig lengths and counts of Bionano DLE-1 markers. 
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(A-B) Number of DLE-1 labels (y axis) plotted against contig length (x axis) for draft whole-

genome assembly contigs (A) and Bionano contigs (B). For reference, grey vertical and 

horizontal lines in panel A denote 50 kb length and 10 DLE-1 labels, respectively.  

(C) Cumulative length of contigs (y axis) containing at least the given number of DLE-1 

labels (x axis) is shown for whole-genome assembly contigs (orange) and Bionano contigs 

(blue). For reference, the grey vertical line denotes 10 DLE-1 labels. 

 

Figure 8. Overview of assembled scaffolds in eight selected regions. 

Heterozygous SVs on the unassembled haplotype that are larger than 1 kb in size are 

shown as orange diamonds or red triangles. The assembled scaffolds (grey) were often 

larger than the predefined immune system regions (blue) in Table 2.  

Gap filling and polishing 

The assembly quality was further improved by carrying out a gap-closing step 

(which fills in nucleotide information for missing bases between adjacent contigs 

in a scaffold) using TGS-GapCloser98 applied to local HiFi reads, resulting in the 

closing of seven gaps. I also implemented a polishing step using Pilon99 applied 

to local HiFi and MGI reads, correcting erroneous bases in the assembly that likely 

originate from sequencing errors. To avoid bias due to read selection, the relevant 

reads were selected using a double-alignment process that first aligns all reads 

to the initial whole-genome assembly, and then realigns the subset of reads 

mapping to local contigs to the fully scaffolded assembly. This process left six 
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gaps in the HV31 scaffolds (Figure 8), which lie outside regions aligning to core 

immune system genes but could potentially be improved with additional 

processing. The resulting assembly sequences that covered the eight selected 

genomic regions are referred to as the HV31-V1 assembly hereafter.  

Structural variant calling 

The HiFi-2019, CLR-2019 and ONT-2019 datasets were used to call heterozygous 

SVs using the HV31-V1 assembly as reference. In brief, SVs were called 

separately from locally aligned HiFi-2019, CLR-2019 and ONT-2019 long reads 

using PBSV42 (for HiFi and CLR) and Sniffles43 (for HiFi, CLR and ONT). A 

computational approach based on unique k-mers100 was used to refine read 

alignment before variant calling (detailed on page 126). Across the eight regions, 

1,366 SVs were reported by PBSV or Sniffles, 491 of which were jointly supported 

by two or more dataset-software combinations (Figure 9), as reported by 

SVanalyzer101, which analyses the sequence information of each variant and 

identifies groups of compatible variants. As these numbers indicated, 

considerable discrepancy was observed between the individual SV calling 

approaches (Figure 10), reflecting the difficulty of aligning reads and calling SVs 

in paralogous regions.  
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Figure 9. Comparison of insertions and deletions identified by alignment-based 

structural variant calling methods. 

The number of insertions (blue) and number of deletions (red) identified by each 

combination of method and sequencing data (x axis) based on read alignment using the 

HV31-V1 assembly as the reference. SVs were broadly classified as insertions or 

deletions according to whether the alternative haplotype was longer or shorter than the 

HV31 haplotype. The number of SVs called by multiple methods, as identified by 

SVanalyzer101, is indicated by shading. 

 

Figure 10. Concordance of structural variants called by various methods. 

Each row shows the fraction of variants called by the corresponding method (y axis) that 

are also called by the method in the relevant column (x axis). Concordance of SVs is as 

determined by SVanalyzer101. 

1.2.3. Validation of the HV31-V1 assembly  

Comparing the HV31-V1 assembly with GRCh38 

Below I use k-mer sharing dot plots102 (Figure 11) to visually compare the HV31-

V1 assembly with reference sequences. Each point in a k-mer sharing dot plot 
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represents a short sequence of length k that is shared by both the reference 

sequence and the HV31-V1 assembly, with k = 50 for most such plots in this thesis. 

Patterns formed by these points provide a visualization of similarities and 

differences between the two sequences.  

 

Figure 11. Sequence duplications and structural variants demonstrated with k-mer 

sharing dot plots. 

Schematic examples of k-mer sharing dot plots demonstrating various sequence patterns. 

Each panel compares a reference sequence (x axis) with an alternate sequence (y axis). 

X, Y, and Z denote three sequence fragments that are mutually different. Y’ denotes the 

reverse complement of Y. 

Comparing the HV31-V1 assembly with GRCh38 confirmed that the HV31-V1 

assembly was highly accurate and complete for the eight regions, without 

apparent chimera sequences or missing sequences, apart from the six gaps 

described above (Figure 8). the HV31-V1 assembly contained two scaffold breaks 

at the IGK and IGL loci, both of which were located near long (≥ 100 kb) SDs that 

are highly identical (≥ 99%). In contrast, genomic loci with higher proportions of 
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shorter, low-similarity SDs, such as the HLA and KIR, were fully resolved in the 

HV31-V1 assembly. 

Close inspection of these plots revealed many large (≥ 1 kb) SVs that differ 

between GRCh38 and the HV31-V1 assembly. To systematically characterize 

these SVs, we aligned the assembly to GRCh38 and applied Assemblytics103. 

Assemblytics reported 145 SVs, 55 of which were ≥ 1 kb in size (Figure 8). The 

majority (65.5%) of the reported SVs involved expansions or contractions of 

repeat elements, while the rest were insertions or deletions of unique sequences. 

The KIR region harboured the highest number (29) of SVs, followed by IGH (28) 

and IGK (24) regions. 

 

Figure 12. Comparing the HV31-V1 assembly with GRCh38. 
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k-mer sharing dot plots comparing the HV31-V1 assembly (y axis) with the GRCh38 

reference (x axis) for the eight selected regions. Multiple scaffolds in the HV31-V1 

assembly are separated with orange horizontal dashed lines. Gene, core genes of each 

locus. SegDup, segmental duplications defined as sequence fragments that are ≥ 1 kb in 

length and ≥ 90% identical to another fragment. Segmental duplications with identity ≥ 

99% are highlighted in orange. Reference gaps are shown in grey. SV, structural variants 

detected in the HV31-V1 assembly relative to GRCh38. Structural variants larger than 1 

kb are highlighted in dark red. 

Reference-free evaluation of structural errors 

Given that the HV31-V1 assembly differed structurally from GRCh38, it was 

important to validate the structure of the HV31-V1 assembly, and identify 

assembly errors, without reliance on a reference sequence as the truth. Motivated 

by previous works104,105, I considered raw sequencing reads for HV31, in particular 

those with high accuracy, a bias-free source of information for assembly validation. 

I utilised the correspondence between the number of occurrences of each k-mer 

in the genome (typically referred to as the copy number of the k-mer), and the 

number of occurrences of that k-mer in the sequencing reads (typically referred 

to as the multiplicity, depth, or frequency of the k-mer). Specifically, given a 

sequencing dataset of average coverage depth !, a k-mer with copy number " is 

expected to have depth # that equals "!/2, which allowed the inference of " 

based on #, or vice versa105,106.  
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Figure 13. Error rate estimation of PacBio HiFi and various short read datasets in 2019 

genomic data using GenomeScope. 

The distribution of k-mer depths in each dataset after scaling depth values (x axis) and k-

mer numbers (y axis) so that the peak of unique homozygous k-mers in each dataset 

overlap. k = 22. Est. error rate, the estimated per-base error rate of each dataset as 

estimated using GenomeScope105.  
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Figure 14. Reference-free assembly validation based on k-mer depths. 

(A-B) Distribution of k-mer depths in the validation dataset. Vertical lines indicate local 

peaks. Het., heterozygous. Hom., homozygous; CN, the diploid copy number of a k-mer 

in the diploid HV31 genome. k = 31. The observed peak depth of one-copy k-mers (152×) 

are lower than the overall coverage depth of the validation dataset (262×) due to 

sequencing errors and the underrepresentation of both ends of short reads in 31-mers.  

(C) Validation k-mer depths (y axis) plotted against k-mer position for a repeat-rich 

sequence fragment in the IGH region of the HV31-V1 assembly. Colours denote the copy 

number of a given k-mer in the HV31-V1 assembly.  

(D) Normalised k-mer depths for the same sequence fragment as in (C). Depth values 

were normalized by dividing by the peak depths of unique homozygous k-mers as shown 

in (A). The location of a complex heterozygous duplication around IGHV3-30 is labelled.  
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In (C) and (D), k-mers with depths beyond the axis limits are stacked at the top of the 

plots. Non-specific k-mers, which exist both inside and outside the IGH region, are shown 

in grey.  

Based on the principles described above, I used GenomeScope105 to estimate the 

error rates of each short-read dataset in the 2019 genomics data, as well as the 

HiFi-2019 dataset, which confirmed that all of the evaluated datasets had error 

rates below 1% (Figure 13). These datasets were selected for the validation of the 

assembly. Collectively, the validation datasets had 262× genomic coverage depth, 

which was sufficient for inferring the copy number of each k-mer based on its 

depth (Figure 14, A-B). I assumed that any systematic discrepancies between the 

inferred copy number of each k-mer in the validation dataset, and the actual copy 

number of that k-mer in the HV31-V1 assembly, indicated either heterozygous 

variation or assembly errors. To leverage this, I plotted validation depths in 

comparison to scaffold depths (Figure 14, C-D). I found that most large regions 

showed validation k-mer depths compatible with assembly copy number, 

including several repetitive regions with higher k-mer copy numbers, indicating a 

good agreement between the HV31-V1 assembly and the validation dataset.  

 

Figure 15. Detecting heterozygous SVs and assembly errors from k-mer depths and 

coverage depth patterns in the HLA region. 

(A) A 63.9 kb heterozygous deletion in the HLA locus is revealed by the reduction in the 

normalised coverage depths of ONT-2019 reads (orange) and validation k-mers (blue).  
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(B) A collapsed duplication in the HLA locus is revealed by the elevation in the normalised 

coverage depths of ONT-2019 reads (orange) and validation k-mers (blue).  

In (A) and (B), k-mers with depths beyond the axis limits are stacked at the top of the 

plots. Non-specific k-mers, which exist both inside and outside the HLA region, are 

shown in grey.  

Nevertheless, several locations showed larger discrepancies between assembly 

and validation data (Appendix Figure 1). I examined these locations in detail and 

found that many of the discrepancies reflected heterozygous structural variants. 

For example, I found a heterozygous deletion in the HLA region, manifesting as 

the k-mer depths in the validation data being approximately half of expected k-

mer depth assuming homozygosity (Figure 15A), suggesting the existence of 

another, unassembled haplotype that did not have the corresponding sequence. 

Meanwhile, a small subset of these locations indicated potential structural errors 

in the HV31-V1 assembly, including a ~30 kb SD region in the HLA region, of 

which two copies should exist in each haplotype according to the k-mer depth 

data, while only one copy was found in the HV31-V1 assembly (Figure 15B), 

suggesting that the HV31-V1 likely failed to represent any one haplotype correctly 

for this SD. In addition, I found several stretches of elevated depths in the IGK 

region, but failed to fully confirm the assembly structure due to the lack of long-

range information for resolving the long SDs in the region (Appendix Table 1). 

Overall, this analysis indicated that the HV31-V1 assembly was generally accurate 

even in complex regions, although several repeat-rich segments in the IGK and 

HLA regions likely still contained errors. 

Estimation of per-base error rates 

In addition to the structural errors described above, small errors that involved the 

substitution, insertion or deletion of several bases, were analysed using a k-mer-

based method similar to Merqury104 (detailed on page 126). I estimated the 
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presence 18.1 error bases per 1 Mb sequence in the HV31-V1 assembly averaged 

across the eight selected regions, which was comparable to other de novo 

assemblies based on PacBio HiFi data published at the time55,66, and showed a 

significant improvement over the intermediate contigs generated before the 

polishing step, which had 85.3 error bases per 1 Mb sequence (Figure 16).  

 

Figure 16. Estimated per-base error rates in the HV31-V1 assembly. 

The number of errors per megabase in each region, before and after assembly polishing, 

estimated using a modified version of the Merqury algorithm104 (detailed on page 126).  

Comparing the HV31-V1 assembly with other de novo assemblies 

I compared the HV31-V1 assembly with several published de novo 

assemblies54,55,57,61,62,65,65,66,100,107 based on long-read sequencing available at the 

time, by visualising contig alignment to GRCh38. I found that, in terms of 

completeness and continuity in the eight selected regions, the HV31-V1 assembly 

was comparable to exiting assemblies generated using various combinations of 

sequencing platforms and assembly tools, including the Telomere-to-Telomere 

(T2T) consortium assembly of the homologous CHM13 cell line65,65, the first 

complete human genome assembly. 
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Figure 17. Comparison of published assemblies and alternative assembly methods in 

the eight selected regions. 
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Alignment of published assembly sequences to the GRCh38 reference genome. 

Duplicate contigs (cyan) were defined as shorter contigs that align within the span of a 

longer contig. Contig breaks (orange) were defined as endpoints of non-duplicate contigs. 

Regions of the GRCh38 reference that were not covered by the aligned assembly contigs 

denoted by red lines. Each assembly is labelled in the following order: publication, sample, 

key algorithms, key technology, and haplotype. OM, optical mapping. Hi-C, the Hi-C 

chromosome conformation capture approach. N, not haplotype-resolved. M, maternal 

haplotype. P, paternal haplotype. H1, haplotype 1. H2, haplotype 2. CHM, complete 

hydatidiform mole. Relevant publications are: T2T 2021108, Chin 201661, Koren 201854, 

Nurk 202055, Miga 2020100, Shafin 202062, Kolmogorov 201957, Garg 2021107, Ebert 202166. 

Genes and segmental duplications are annotated above as in Figure 12. 

1.2.4. Allelic and structural variants in the immune system 

A map of key immune gene allotypes 

As detailed above, a number of large structural variants exist between GRCh38 

and HV31 as well as between the two haplotypes of HV31. To assess the impact 

of these SVs on core genes, I used an alignment process to identify the best-

matching allotype of each IG and TCR variable gene segment, and each HLA and 

KIR gene within the relevant IMGT or IPD database (Figure 18). The identified 

allotypes in the HLA region were compatible with HV31 HLA genotyping results 

(Table 3 and Table 4). Relative to GRCh38, the HV31-V1 assembly contain both 

insertions and deletions of gene sequence in the IGH, IGK, IGL and TRB regions, 

as well as allelic variation in all regions except TRG. A small number of genes that 

differed from the best matching IMGT allele, which may represent novel 

sequences. I note that HV31 gene allotypes also differ substantially from the 

GRCh37 assembly in the IGH region based on published results91.  
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Figure 18. Allotypes of immune genes in the HV31-V1 assembly compared with 

GRCh38. 
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In immunoglobulin and T cell receptor regions, only V genes are shown. Genes in each 

region are arranged, from left to right, according to their relative order on the positive-

sense strand, which may be either the plus (+) strand (with 5’ terminus at the p arm) or 

the minus (-) strand (with 5’ terminus at the q arm) of GRCh38. Pseudogenes are not 

shown. Allelic variants refer to genes where the best-matching HV31-V1 allele differs from 

the GRCh38 allele. Insertions refer to genes in the HV31-V1 assembly that cannot be 

matched to a GRCh38 gene. Alleles with identical sequences, such as TRBV6-2*01 and 

TRBV6-3*01, are not distinguished. Alleles that carry additional SNPs compared to the 

best-matching reference allele are marked with stars. The sequence fragment between 

IGK proximal and distal clusters that remains not fully resolved is denoted as a red line.  

Gene Haplotype 1 Haplotype 2 

HLA-A 03:01 03:01 

HLA-C 07:02 07:02 

HLA-B 07:02 07:02 

HLA-DRB1 15:01 15:01 

HLA-DQA1 01:02 01:02 

HLA-DQB1 06:02 06:02 

Table 3. HLA class I and class II genotyping results for HV31. 

Gene Haplotype 1 Haplotype 2 

HLA-DPA1 01:03 01:03 

HLA-DPB1 02:01 04:01 

Table 4. HLA-DP genotyping results for HV31. 

In interpreting these results, some care must be taken because of the consensus 

nature of the HV31 scaffolds, which do not necessarily represent a single 
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haplotype at each locus. To elucidate underlying genetic variation, we 

investigated the genetic basis of the observed copy number changes in detail, 

focusing on the IGH and TRB regions and described in the following sections. 

A tandem repeat within a 45 kb CNV involving IGHV1-69 and IGHV2-70 

Variation in the copy number of IGHV1-69 and IGHV2-70 has previously been 

reported91. Both genes are present in two copies in GRCh38. In the HV31-V1 

assembly, I found only one copy of IGHV1-69 and IGHV2-70 remaining, as the 

result of a 45 kb copy number contraction relative to GRCh38 (Figure 19A). The 

earlier GRCh37 reference genome shared a similar haplotype in the IGH region, 

with only one copy of IGHV1-69 and IGHV2-70. This haplotype has been 

suggested to be more common worldwide than the GRCh38 haplotype91,109 and 

comparison to validation k-mers indicates it is homozygous in HV31 (Figure 14). 

This CNV manifested as a coverage gap in aligned HiFi-2019 reads aligned to 

GRCh38 (Figure 19B), suggesting the feasibility of accurate detection using 

alignment-based methods.  

 

Figure 19. A tandem repeat within a 45 kb CNV involving IGHV1-69 and IGHV2-70. 
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(A) k-mer sharing dot plot comparing the HV31-V1 assembly with GRCh38 in the IGH 

region, showing a 45 kb CNV (grey). Tandem repeats that were incorrectly assembled in 

a single copy are highlighted with red arrows.  

(B) HiFi-2019 reads aligned to GRCh38 in the same region as in (A). The coverage gap 

corresponded to the 45 kb CNV in (A). The tandem repeats in (A) are highlighted with red 

arrows. Insertions, deletions, and alignment breakpoints are shown in purple, red, and 

orange, respectively.  

 

Figure 20. GRCh38 and GRCh37 represent different haplotypes for IGHV genes. 
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(A) k-mer sharing dot plot comparing the HV31-V1 assembly (y axis) with GRCh37 (x axis) 

in the IGH region. Similar to HV31, GRCh37 has only one copy of IGHV1-69 and IGHV2-

70 genes. Locations corresponding to the 45 kb CNV and the tandem repeats in Figure 

19 are highlighted with grey shade and a red arrow, respectively.  

(B) Schematic representation of GRCh38, GRCh37 and the HV31-V1 assembly near 

the IGHV1-69 and IGHV2-70 genes. Fragment R denotes the tandem repeats in Figure 

19, which was fully assembled in HV31. 

Within this 45 kb CNV, I also noticed a 2.66 kb cluster of tandem repeats with a 

59-mer motif (Figure 19 and Figure 20) that was not correctly assembled in either 

GRCh37 or GRCh38 (see GenBank sequence AC245369.4). Similar repeat 

clusters have also been reported for CHM1 (from which the GRCh38 sequence 

for IGH region was derived) and NA19240 samples, though the copy numbers of 

the 59-mer motif varied110. 

A compound heterozygous CNV involving IGHV3-30  

A second prominent feature of the IGH region is the loss of one copy of IGHV3-

30. GRCh38 carries two copies of IGHV3-30, which are named IGHV3-30 and 

IGHV3-33109. I found that IGHV3-33 was removed in the HV31-V1 assembly, 

together with IGHV4-31 (Figure 21A). However, inspection of Bionano contigs 

covering this region revealed a further unusual feature (Figure 21B): one of the two 

Bionano contigs covering this region contains a corresponding three-fold copy 

number expansion. To confirm this, I inspected validation k-mer depths in the 

surrounding area, and observed elevated depths compatible with a 3-fold 

expansion on the unassembled haplotype (Figure 14D). To confirmation this 

further, I fetched raw sequencing reads spanning this region, and observed a 

CLR-2019 read consistent with the expanded haplotype (Figure 22). These results 

indicate that the unassembled haplotype carries three copies of the region 

surrounding IGHV3-30, such that HV31 carries both a contraction and expansion 
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of this region relative to GRCh38. This CNV was not called accurately by any of 

the SV calling methods I employed. I speculated that this type of copy number 

variation was particularly challenging for variant calling methods that depend on 

read alignment, considering the lack of overall diploid copy number changes of 

IGHV3-30 genes.  

The observation of this compound heterozygous CNV was also compatible with 

previous work91 which reported this region as a hotspot for SVs, with the diploid 

copy number of IGHV3-30 and related genes ranging from zero to six.  

 

Figure 21. Complex structural variation involving IGHV genes. 

(A) k-mer sharing dot plot showing complex structural variations found between IGHV3-

21 and IGHV3-43, including a 25 kb CNV (blue) and an 80 kb complex duplication event 

(orange).  
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(B) Alignment patterns of HV31-V1 assembly and two Bionano contigs covering the 

region shown in (A). The four rows represent the HV31-V1 assembly (green horizontal 

bars) and two Bionano contigs (blue horizontal bars). Aligned and unaligned DLE-1 

recognition markers are shown as dark blue and yellow vertical lines, respectively. 

Aligned markers are connected by grey lines. The approximate regions corresponding to 

the 25 kb CNV and the 80 kb complex duplication in (A) are highlighted in blue and orange, 

respectively. Locations of the repeat units of the 25 kb CNV are labelled with black 

numbers. Distances between adjacent DLE-1 markers are labelled with blue numbers for 

selected locations.  

 

Figure 22. A compound heterozygous CNV involving IGHV3-30 confirmed by a CLR 

read. 

k-mer sharing dot plot comparing the CLR-2019 read with ID 92801871/034335 (y axis) 

with the HV31-V1 assembly (x axis). The read is consistent with the presence of a three-

copy unassembled haplotype (Figure 21). Each copy of the repeat unit is annotated with 

a number and an arrow for clarity. k = 20. 
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An 80 kb complex duplication involving multiple IGHV genes  

The HV31-V1 assembly carried additional copies of IGHV1-38, IGHV3-43, IGHV4-

38 and IGHV3-38 compared to GRCh38 (Figure 18), which were contained in an 

80 kb duplication with a complex structure (Figure 21). Inspection of k-mer depth 

data implies this duplication is homozygous (Appendix Figure 1). This duplication 

was not called by any of the methods used to call SVs, which likely resulted from 

the difficulty in correctly aligning HV31 reads to GRCh38, given that the HV31 

genome was considerably different from the GRCh38 sequence at this location. 

Consistent with this, the HiFi-2019 reads from this location displayed suspicious 

alignment patterns when mapped to GRCh38, while using the HV31-V1 assembly 

as the reference enabled the same set of reads to be aligned correctly (Figure 23). 
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Figure 23. Misalignment resulting from large structural rearrangements in the IGH 

locus. 

(A) k-mer sharing dot plot comparing the HV31-V1 assembly (y axis) with GRCh38 (x axis), 

showing the 80 kb insertion between IGHV3-37 and IGHV7-40 (highlighted in orange in 

Figure 21). The region further inspected in (B) and (C) is highlighted in blue.  
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(B) Alignment HiFi-2019 reads to GRCh38 in the region highlighted in (A). Each row 

represents a read. Insertions, deletions, and alignment breakpoints are shown in purple, 

red, and orange, respectively. 

(C) Same as (B), with reads aligned to the HV31-V1 assembly. 

Large insertions incorporating novel TRBV genes 

In the TRB region, I identified a ~11 kb homozygous insertion near TRBV6-2 and 

another ~19 kb insertion near TRBV5-7 (Figure 24A). Both insertions are 

supported by Bionano contigs (Figure 24B) and incorporated sequence fragments 

that are not found in GRCh38, with limited homology to adjacent sequences 

(Figure 24A). Comparison to k-mer validation implies both insertions are 

homozygous (Appendix Figure 1). Assemblytics103 identified duplications at both 

locations but with inaccurate length and sequence content. The HV31 scaffold 

was consistent with an alternative reference sequence for the TRB locus (NCBI 

Reference Sequence: NG_001333.2) which was part of GRCh38 alternative 

haplotypes (Figure 25). By comparing NG_001333.2 with the GRCh38 primary 

sequence, I confirmed that the 11 kb insertion introduced two new genes (TRBV4-

3 and TRBV6-2) and a pseudogene (TRBV3-2), while the 19 kb insertion 

introduced three new genes (TRBV6-9, TRBV7-8 and TRBV5-8; Figure 25). 
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Figure 24. Large insertions in the TRB region. 

(A) k-mer sharing dot plot comparing the HV31-V1 assembly (y axis) with GRCh38 (x axis), 

showing a 11 kb insertion (blue) and another 19 kb insertion (green).  

(B) A Bionano contig (blue) aligned to GRCh38 (green), confirming the two insertions in 

(A). 

 

Figure 25. The HV31-V1 assembly is consistent with NCBI RefSeq NG_001333.2. 
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k-mer sharing dot plot comparing the HV31-V1 assembly (y axis) with the NG_001333.2 

contig from NCBI RefSeq (x axis). TRBV genes not included in GRCh38 are highlighted 

in green. 

Reference gaps amidst complex segmental duplications resolved in the 

HV31-V1 assembly  

In addition to the complexities engendered by structural variation, gaps in the 

reference genome constitute another potential impediment to the analysis of 

genetic variation. Large gaps typically arise due to highly repetitive sequence that 

is challenging to assemble, such as heterochromatin regions which often consist 

of megabase-scale tandem microsatellite repeats, whose functional significance 

remains largely unexplored111. Eleven heterochromatin gaps exist in GRCh38, with 

estimated sizes ranging from 20 kb to 30 Mb, all of which, except the largest 

heterochromatin gap in chromosome X100, remained unresolved in de novo 

assemblies, until the publication of the T2T CHM13 assembly65. This part of the 

analyses, in which I analysed the structure of a 600 kb heterochromatin sequence 

assembled near the IGK locus, was conducted at around same time when the first 

draft of the T2T CHM13 assembly112 was released.  

 

Figure 26. A 50 kb GRCh38 gap flanked by segmental duplications closed in the HV31-

V1 assembly. 
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(A) k-mer sharing dot plot comparing the chr7_KZ208912v1_fix patch sequence (y axis) 

with GRCh38 (x axis), highlighting the genomic position corresponding to the 140 kb 

inversion in the HV31-V1 assembly (green region) and a 50 kb gap in GRCh38 (grey region) 

which is closed in the HV31-V1 assembly.  

(B) The HV31-V1 assembly (x axis) is consistent with chr7_KZ208912v1_fix sequence 

(y axis) except for the 21.9 kb gap (brown) and the 140 kb inversion (green). 

 

Figure 27. Three gaps flanked by high-identity repeats were filled in the HV31-V1 

assembly. 
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(A) k-mer sharing dot plot comparing GRCh38 (x axis) with the HV31-V1 assembly (y axis). 

The 2.56 Mb scaffold and the 1.97 Mb scaffold in the HV31-V1 assembly are shown in 

blue and green, respectively. Coverage depths of ONT-2019 reads aligned to GRCh38, 

and locations of the proximal and distal IGK gene clusters, are shown above the dot plot. 

Gaps in GRCh38 are shaded in grey. Novel sequence junctions in the HV31-V1 assembly 

are annotated with red arrows. Sequence fragments of which extra copies were 

introduced in the HV31-V1 assembly to fill in the gaps between IGK proximal and distal 

gene clusters in GRCh38 are highlighted in yellow; corresponding read coverage peaks 

confirm increased copy numbers of these fragments.  

(B) Alignment of Bionano contigs (blue) to the 2.56 Mb scaffold in the HV31-V1 assembly 

(green). DLE-1 labels and their alignments are denoted by coloured lines within and 

between sequences. The approximate sequence region that maps to the GRCh38 gaps 

between IGK proximal and distal gene clusters is shaded in grey. For clarity, 

corresponding positions in the HV31-V1 assembly in (A) and (B) are labelled with red 

arrows.  

(C) Alignment of Bionano contigs (blue) to the 1.97 Mb scaffold in the HV31-V1 assembly 

(green). Approximate sequence region that maps to the GRCh38 heterochromatin gap is 

shaded in grey.  
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Figure 28. The heterochromatin gap in the IGK locus was filled with 650 kb complex 

repeat sequence. 

(A) k-mer sharing dot plot comparing the HV31-V1 assembly with itself in the IGK 

heterochromatin region. Purple lines show the occurrence of a 22 bp HSat2B repeat 

signature sequence (TTCGATTCCATTTGATGATTCCAT). A 32 kb unique sequence fragment 

is highlighted in blue.  

(B) Details of k-mer sharing dot plot in (A), zoomed to reveal details of the unique 

sequence fragment and repeat structure.  
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(C) Comparison of HV31 contigs and Bionano contigs as in Figure 27C, zoomed in to 

show that the 32 kb unique fragment (blue shaded region) contained a DLE-1 recognition 

label that was confirmed by Bionano contigs.  

(D) k-mer sharing dot plot comparing the HV31-V1 assembly (y axis) with the GenBank 

AP023554.1 contig in the JG1 assembly51 (x axis).  

In (A), (B), and (D), the orange boxes denote approximately the same region. 

The HV31-V1 assembly closed three large gaps in the GRCh38 reference 

sequence, and partially closed a fourth. One of the gaps was located within a 400 

kb region of high-identity segmental duplications113 ~1 Mb downstream of TRB 

genes (Figure 26), while the other three of these gaps were located in the IGK 

region (Figure 27 and Figure 28). The largest of them, a ~1 Mb gap annotated as 

heterochromatin in GRCh38, was located between the distal cluster of IGK genes 

and the centromere of chromosome 2 (Figure 18 and Figure 28). Examination of 

this gap revealed a ~650 kb sequence assembled as an array of approximately 

115 imperfect tandem copies of 6 kb repeat units (Figure 28). Most of the repeat 

units contain a 22-bp signature sequence (TTCGATTCCATTTGATGATTCCAT), 

indicating that the heterochromatin sequence belongs to the human satellite 

HSat2B family111. 
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Figure 29. Comparison of the HV31 and the T2T CHM13 assemblies in the IGK region. 

(A) k-mer sharing dot plot comparing the HV31-V1 assembly (y axis) with the T2T CHM13 

assembly (x axis) in the IGK region. The 2.56 Mb scaffold and the 1.97 Mb scaffold in the 

HV31-V1 assembly are shown in blue and green, respectively.  

(B) k-mer sharing dot plot as in (A), zoomed in to show details of the heterochromatin 

region. The 32 kb unique sequence fragment is highlighted with a red arrow. 

Notably, the assembled heterochromatin sequence also contained a nonrepetitive 

sequence fragment within the assembled heterochromatin sequence (Figure 28). 

This 32 kb fragment appears unique to the region, sharing no significant homology 

with either the rest of the heterochromatin region nor any part of GRCh38. The 

heterochromatin sequence does not contain the recognition motif of DLE-1 

(CTTAAG) used optical mapping, and I was therefore unable to directly confirm the 

arrangement using Bionano contigs, though a marker corresponding to the 32 kb 

unique sequence could be identified (Figure 28C). 

I compared the HV31-V1 assembly with the recently reported T2T CHM13 

assembly65 (GenBank sequence: GCA_009914755.2), where the IGK region is fully 

reconstructed in one contig. The corresponding heterochromatin sequence in the 
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T2T CHM13 assembly is consistent with the HV31-V1 assembly in terms of total 

length and repeat unit sequences, though the specific order and orientation of 

these repeat units differ (Figure 29). This is of interest because it potentially 

reflects the structural variability in this heterochromatin region. A similar 32 kb 

unique sequence is also found in the T2T CHM13 assembly, though at a different 

location (Figure 29B). In addition, I found this 32 kb unique fragment, along with 

76.8 kb flanking sequences, was highly consistent (Figure 28D) with a 108.8 kb 

unplaced sequence (GenBank AP023554.1) in the JG1 assembly51, which was 

built from individuals of Japanese ethnicity. Additional analyses of this 32 kb 

unique fragment are described on page 101. Similar islands of unique sequence 

amid heterochromatin regions have previously been suggested for chromosome 

Y114 and chromosome 21115. 

1.2.5. A haplotype-resolved personal genome for HV31 

The first phase of the HV31 project, conducted between September 2019 and July 

2021 and centred around a mixed-haplotype assembly of immune system regions 

for HV31, was summarized and published in August 20211. Since then, I continued 

to work on the second phase of the HV31 project, with the two objectives as 

initially envisioned: (i) build a haplotype-resolved assembly for HV31, and (ii) 

investigate applications of the 2019 functional data. The two objectives were 

related in the sense that inter-haplotype comparisons were deemed useful for 

associating gene expression profiles in the functional data with specific genetic 

variants.  

In late 2022, I began to develop a workflow for building a high-quality haplotype-

resolved genome assembly for HV31, motivated by the arrival of the 2022/23 

genomics data (Table 1) from collaborations with PacBio and ONT, and recent 

reports of advanced de novo assembly algorithms63,64,116. The following sections 

describe my current progress from this on-going effort. 
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Overview of the haplotype-resolved assembly workflow 

A major obstacle for building a haplotype-resolved de novo assembly in the first 

phase of the HV31 project was the lack of high-quality sequencing data with deep 

genomic coverage1: the high-accuracy HiFi-2019 dataset had only 12.3× 

coverage depth, while the CLR-2019 and ONT-2019 datasets, despite their 

relatively higher coverage depth, were based on error-prone PacBio CLR and ONT 

R9 chemistries (Table 1), with reported error rates of ~10%76,117,118. As a result, it 

was difficult to obtain sufficient information from sequencing reads for 

differentiating subtle differences between the two haplotypes, and among 

individual repeat units of segmental duplications119,120.  

This issue was largely alleviated by the arrival of 2022/23 genomic data, namely 

the HiFi-2022, HiFi-2023, and ONT-2022 datasets (Table 1). The new PacBio HiFi 

data, in particular the HiFi-2023 dataset, which was generated from the PacBio 

Revio platform86 that featured throughput improvements over previous PacBio 

platforms, significantly increased the amount of high-accuracy sequencing data 

available for HV31, with a cumulative PacBio HiFi coverage reaching 83.7×, 

exceeding the coverage depth of PacBio HiFi reads (32.4×) used for initial 

assembly graph construction in the T2T CHM13 assembly65. The HiFi-2022 and 

HiFi-2023 datasets also had slightly better read lengths compared to the HiFi-

2019 dataset (Table 1).  

 

Figure 30. ONT-2022 had longer reads compared to ONT-2019. 
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(A) Read length distribution of ONT-2019 and ONT-2022 datasets, represented as the 

fraction of total bases (y axis) that exist in reads longer than a given threshold (x axis). No 

filtering was applied to either dataset.  

(B) Same as (A), showing only the ONT-2022 dataset, zoomed out to highlight reads 

longer than 100 kb. The grey dashed vertical line denotes the 100 kb threshold.  

The ONT-2022 dataset was based on the ONT R10.4.1 chemistry, which had been 

reported to feature significant accuracy improvements32,87,88. Evaluations of the 

ONT-2019 and ONT-2022 datasets, described in a separate section below (page 

105), confirmed that the ONT-2022 dataset had an overall error rate of ~2%, which 

could be further improved to ~1% after applying a basic filtering strategy (Figure 

51). In addition, the ONT-2022 dataset also contained longer reads compared to 

the ONT-2019 dataset, with a small fraction of reads (~3% of total bases) longer 

than 100 kb (Figure 30), which was commonly considered the threshold for “ultra-

long” reads that proved to be useful in resolving repeats and producing highly 

continuous assemblies64,65,121.  

 

Figure 31. Overview of the HV31-V2 assembly workflow. 
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Schematic representation of the HV31-V2 assembly workflow. Boxes with rounded 

corners represent input and output data and intermediate results. Boxes with square 

corners represent computational processes.  

Taking advantage of this rich category of sequencing data for HV31, I constructed 

a haplotype-resolved assembly for HV31, hereby referred to as the HV31-V2 

assembly. The HV31-V2 assembly was build using a hybrid workflow that was 

primarily derived from the Verkko assembler64 and modified to incorporate 

available sequencing data from PacBio HiFi, ONT R10 chemistry, MGI stLFR and 

Bionano optical mapping platforms, along with k-mer depth information generated 

from long-read and short-read sequencing (Figure 31).  

Assembly graph construction using Verkko 

Assembly graphs are data structures widely used to represent sequencing reads 

and their overlaps. In an assembly graph, nodes typically represent sequences 

and edges their overlaps (Figure 32), such that a traversal of the graph, 

represented by contigs, reconstructs the underlying genome from which the 

sequencing data are generated. Assembly graphs broadly consist of two classes: 

de Bruijn graphs (DBGs) and string graphs. Depending on specific 

implementations, DBGs usually represent exact overlaps between fixed-length k-

mers, while string graphs typically represent inexact overlaps between variable-

length substrings of sequencing reads122. Given the large amount of input 

sequencing data, dentification of overlaps and graph building are often the most 

computationally intensive step in de novo assembly116,122,123.  
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Figure 32. Assembly graphs represent sequencing reads and their overlaps. 

Schematic illustration of assembly graph construction. Green and blue colours represent 

two hypothetical sequencing reads that overlap with each other. In the assembly graph, 

both reads are represented as nodes and their overlap is represented as an edge between 

the two nodes. In practice, the nodes in an assembly graph do not necessarily represent 

entire sequencing reads, but also fixed-length k-mers (as in de Bruijn graphs) or variable-

length substrings (as in string graphs) in sequencing reads, and edges may represent 

inexact overlaps. The graph structure can be equivalently visualised in the “double” style 

(top) or the “single” style (bottom)124. All graph visualisations below use the “single” style.  

The Verkko assembler64 was applied for initial assembly graph construction in the 

HV31-V2 workflow. Verkko is a modular multiple-step de novo assembly pipeline 

that first builds a de Bruijn graph (DBG) from PacBio HiFi reads using MBG, which 

is then simplified by incorporating long-range information from ultra-long ONT 

reads64. Here, the collection of available PacBio HiFi reads, namely HiFi-2019, 

HiFi-2022, and HiFi-2023 (Table 1), were used for graph building, while the ONT-

2022 dataset, filtered and trimmed to improve accuracy (detailed on page 106), 
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was used for graph simplification (Figure 31). The simplified assembly graph, often 

referred to as the unitig graph, contains nodes that represent long sequences, or 

unitigs, concatenated from stretches of non-branching nodes, and edges that 

represent overlaps between them64. For the HV31 genome, the unitig graph 

generated by Verkko displayed linear topology for most chromosomes with very 

high contiguity (Figure 33), which was comparable to the reported HG002 Verkko 

assembly64 and the T2T CHM13 assembly65. Out of the 23 chromosomes in the 

HV31 genome, 17 were assembled telomere-to-telomere for both haplotypes. 

Chromosome 3 was assembled in two parts, while the five acrocentric 

chromosomes (13, 14, 15, 21, and 22) formed a single connected component due 

to the similarity among their short arms, which contain ribosome DNA clusters 

(Figure 33). Similar graph structures were also observed in the HG002 Verkko 

assembly64 and the T2T CHM13 assembly65. 



 80 

 

Figure 33. Verkko produced telomere-to-telomere graphs of most chromosomes. 
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Unitig graph of the HV31 genome generated using Verkko based on the HiFi-2019, HiFi-

2022, HiFi-2023 and ONT-2022 datasets. Chromosomes were labelled based on 

alignment to the T2T reference sequence. Inlets show enlarged versions of selected 

regions. Unitigs with only low-quality alignments (length < 10 kb or mapping quality < 30) 

are coloured light grey. Visualisation was made using Bandage-NG124. 

With a high-quality unitig graph, the next step was to generate long, linear, 

haplotype-resolved sequences (contigs) by traversing each connected 

component in the graph. By design, following assembly graph building and 

simplification, Verkko produces haplotype-resolved contigs by resolving paths 

from the assembly graph using Rukki, which extracts long-range phasing 

information from specific types of data including trio sequencing, Hi-C, or Strand-

Seq64. Considering the unavailability of such data for HV31, I developed methods 

to build contig paths across the assembly graph using information from MGI 

stLFR reads and k-mer depths, as described below, and engineered the Verkko 

pipeline to generate contigs directly from these externally built paths, skipping the 

Rukki step (Figure 31). 

Enumerating bubbles in the assembly graph 

In a de novo assembly unitig graph, most nodes, except those containing complex 

repeats, typically exist in specific structures termed bubbles and bubble chains125 

(Figure 34). Here a bubble is loosely defined as a subgraph that contains a source 

node, a sink node, and one or more internal nodes between the source and the 

sink, and a bubble chain is a linear sequence of bubbles. Bubbles that contain 

only two internal nodes are called simple bubbles, while bubbles that contain 

more than two internal nodes, but no cycles (paths that visit the same node more 

than once), are called super bubbles (Figure 34). The definitions above are 

adapted from Onodera et al.126, modified slightly to improve naming clarity. In 

addition, bubbles that contain cycles are referred to as cyclic bubbles here (Figure 
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35). Formal definitions of bubble classes and bubble chains are detailed on page 

130. 

 

Figure 34. Examples of bubbles and bubble chains. 

Two bubble chains are shown. The top chain contains three simple bubbles, and the 

bottom chain contains one super bubble. Node colours denote two possible paths that 

traverse the bubble chain, with path 1 private nodes, path 2 private nodes, and shared 

nodes, are shown in red, blue, and pink, respectively. Nodes not included in either path 

are shown in grey. In a diploid genome, the two paths that traverse a bubble chain likely 

represent the two haplotypes of the locus, in which case nodes not included in these two 

paths likely originate from sequencing errors, or similar sequences located in different 

parts of the genome. Formal definitions of bubbles and bubble chains are described on 

page 130. 
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Figure 35. An example of a cyclic bubble. 

A cyclic bubble in shown, which contains valid paths that visit the same node more than 

once. For example, it is possible to leave from the node at the bottom-left corner and 

return to the same node via multiple valid paths. Node colours denote two possible paths 

that traverse the bubble chain, with path 1 private nodes, path 2 private nodes, shared 

nodes, and nodes not included in either path coloured red, blue, pink, and grey, 

respectively. 

Bubble chains are key structures in assembly graphs, as they can be traversed 

bubble by bubble, through source and sink nodes125, while non-bubble structures 

likely involve complex branching patterns that sometimes require manual 

resolution65. Here I used BubbleGun125, which implements the linear-time 

algorithm proposed by Onodera et al.126, to enumerate all the simple and super 

bubbles from the unitig graph built using Verkko. Cyclic bubbles were identified 

up to a depth limit using a custom algorithm (detailed on page 130). Given that 
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the human genome is diploid, and that internal nodes in bubbles typically arise 

from heterozygosity or sequencing errors125, the de novo assembly problem here 

can be framed as finding two paths across each bubble chain that are collectively 

most consistent with the available data, among all valid paths. The identification 

of such traversal paths is described below.  

Resolving complex bubbles by k-mer depth modelling 

Complex bubbles, here referring to the union of super and cyclic bubbles, typically 

represent segmental duplications, and are sometimes further complicated by 

sequencing errors. The interior nodes of complex bubbles cumulatively account 

for 10.1% of total sequence length in the Verkko unitig graph (Figure 36). In 

principle, the worst-case number of valid traversal paths within a complex bubble 

increases exponentially with the distance between the source and the sink nodes, 

measured as the number of branching internal nodes. Nevertheless, I observed 

that most complex bubbles in the Verkko unitig graph contained less than 15 

internal nodes (Figure 36), making it possible to enumerate all traversal paths 

connecting the source node and the sink node of a complex bubble using a brute-

force search algorithm. This reduces the problem of optimal path finding to the 

problem of path ranking, that is, deriving a metric to indicate the relative 

plausibility of each pair of paths given the available sequencing data.  
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Figure 36. Composition of node types in the Verkko unitig graph. 

The total homopolymer-compressed lengths (y axis) of each type of nodes in the Verkko 

unitig graph grouped by bubble topology (x axis).  

 

Figure 37. Most complex bubbles had fewer than 15 internal nodes. 

The distribution of internal node counts for super bubbles (top) and cyclic bubbles 

(bottom) in the Verkko unitig graph.  
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Within a super bubble, valid paths differ only in terms of inclusion or exclusion of 

certain nodes (Figure 34). Within a cyclic bubble, valid paths may additionally 

differ in terms of node revisits, orders, and orientations (Figure 35). In both super 

bubbles and cyclic bubbles, including or revisiting a node manifests in the 

resulting assembly as differences in the copy number of the node sequence, 

which can be zero, one, two, or more. As described previously (Figure 14), the 

copy number of a sequence in the genome can be inferred from k-mer coverage 

depths in the sequencing data. Thus, k-mer coverage depths should be 

informative of the relative plausibility of path pairs. In other words, when selecting 

a pair of haplotype paths, nodes with higher k-mer depths should be included, or 

even revisited, while nodes with lower k-mer depths likely originate from 

sequencing errors and should be ignored.  

Inferring the most plausible copy numbers of a given node based on the depths 

of its k-mers requires a quantitative model that describes the relationship between 

k-mer depths and k-mer copy numbers. Designed for this purpose, 

GenomeScope105,127 is a mixture model that decomposes the k-mer profile, also 

known as the k-mer spectrum, which is the distribution of k-mer depths in a 

sequencing dataset, as the sum of several evenly spaced peaks. Each peak 

represents k-mers of a given copy number, and is modelled as the probability 

density function of a negative binomial distribution105. However, GenomeScope 

only considers peaks with copy numbers of one to four, while peaks with copy 

numbers of zero, which represent sequencing errors, and those with copy 

numbers greater than four, which represent multi-copy repeats, also need to be 

modelled for complex bubble resolution. Therefore, I extended the original 

GenomeScope implementation to allow for explicit modelling of sequencing errors 

and an arbitrary number of peaks (detailed on page 131).  

For the HV31 genome, k-mer depth modelling was based on available accurate 

sequencing data, which included the HV31-V1 validation dataset (Figure 14), and 
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additionally the HiFi-2022 and HiFi-2023 datasets, with an overall coverage depth 

of 333× (Table 1). The high coverage depth of accurate sequencing data enabled 

the k-mer profile to be decomposed into 13 peaks by fitting the extended model 

that I developed, including an error peak and 12 peaks corresponding to k-mers 

with diploid copy numbers from one to twelve (Figure 38).  

 

Figure 38. Decomposition of the k-mer profile from sequencing data. 

(A) Observed (black line) and predicted (grey line) k-mer counts (y axis) for each k-mer 

coverage depth (x axis). Predicted k-mer counts were calculated using a modified version 

of the GenomeScope model fitted to selected HV31 sequencing datasets (detailed on 

page 131). Peaks corresponding to each diploid copy number are shown in coloured lines. 

k = 22. Homopolymer-compressed sequences were used for k-mer analyses.   

(B) Same as (A), with y axis shown in log scale.  
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(C) Inferred probabilities of each copy number (y axis) conditioned on the coverage depth 

of a given k-mer (x axis), based on the k-mer profile model in (A).  

(D) Same as (C), with y axis shown in log scale.  

This figure is related to Figure 14. 

Based on the fitted k-mer profile model described above, the valid path pairs from 

each complex bubble were enumerated and ranked (detailed on page 133). For 

each node, private k-mers were identified as k-mers that appear only in this node, 

but not elsewhere in the assembly graph. The best path pair was defined as the 

pair of paths whose joint copy numbers of nodes had the highest likelihood given 

the private k-mer coverage depths of the corresponding nodes, assuming each k-

mer was independent, and selected for subsequent contig construction (Figure 

39). 

 

Figure 39. An example of complex bubble resolution. 

(A) Resolution of two cyclic bubbles found in chromosome 20 in the HV31 genome. The 

source and sink nodes for each cyclic bubble are labelled. Each node in the cyclic 

bubbles is labelled by the median coverage depths of its private k-mers. Nodes without 

unique k-mers are coloured grey.  
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(B) Resolved haplotype paths of the two cyclic bubbles in (A). Nodes visited twice in a 

single path are labelled “×2”.  

The current approach for complex bubble resolution had several limitations. First, 

brute-force path enumeration was computationally intractable for large bubbles 

with complex internal structures, and requires a sufficiently simplified assembly 

graph to start with. Second, this method did not consider node order and 

orientation differences, though these differences were empirically rare in the 

Verkko assembly graph for HV31. Third, the lengths and number of private k-mers 

of a give node, which likely contains valuable information for path selection, was 

not specifically considered. Finally, the coverage depths of private k-mers within 

a node were assumed to be independent, which might not be true for k-mers in 

close proximity. Further development of this method will likely lead to more 

general, robust, and efficient approaches for complex bubble resolution.  

Phasing simple bubbles using MGI stLFR data 

Unlike super and cyclic bubbles, which may contain one or more branching 

internal nodes, simple bubbles allow only two traversal paths, each though one of 

the two internal nodes (Figure 34), which often represent the two haplotypes. 

Nevertheless, to phase the simple bubbles relative to each other in a bubble chain, 

that is, to determine which internal nodes belong to the same haplotype, usually 

requires additional information, such as parental sequencing data, Strand-Seq, or 

Hi-C54,64,128. Here I took advantage of the MGI single-tube long-fragment read 

(stLFR) data available for HV31 to facilitate bubble phasing.  

stLFR is a sequencing technology developed by MGI to produce barcoded short 

reads, such that reads sharing the same barcode usually originate from the same 

input DNA fragment33, thereby retaining long-range information for the sequenced 

short reads. In the HV31 stLFR data, I observed the stLFR fragments were 
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significantly longer than PacBio or ONT sequencing reads, with nearly 20% of 

total bases found in fragments longer than 100 kb (Figure 40). 

 

Figure 40. MGI stLFR fragment lengths. 

(A) Empirical probability density function (green) and cumulative density function (black) 

of MGI stLFR fragment lengths.  

(B) Empirical probability density function (green) and cumulative density function (black) 

of MGI stLFR fragment lengths weighted by the total number of bases sequenced in each 

fragment.  

In (A-B), MGI stLFR fragment lengths were estimated by aligning stLFR reads to the T2T 

reference genome. A fragment was defined as one or more reads sharing the same 

barcode, aligned to the same chromosome within a 1 Mb region. The fragment length 

was calculated as the distance between the start of the first read and the end of the last 

read.  

Each stLFR read contains multiple tandem barcodes, which has been reported to 

improve barcoding uniqueness compared to 10x Linked-Reads sequencing, 

which uses a single barcode33. In the 2019 genomics data, the MGI-stLFR dataset 

contained a 30-nt barcode for each read pair, in the form of three tandem 10-nt 

segments, while the 10x dataset contains a 16-nt barcode for each read pair. 

Previous results also suggested that the MGI-stLFR dataset had significantly 

better accuracy compared to the 10x dataset (Figure 13). 
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Each 10-nt segment in a 30-nt stLFR barcode is randomly selected from a library 

of 1536 unique segments33, which allows the 10-nt segment to encode up to 10.6 

bit of information, assuming a uniform distribution and the absence of sequencing 

errors. Therefore, despite the fact that 30 bases are devoted to barcodes, less 

than 31.8 bit of barcoding information is available for each read pair. As a result, 

it remains possible for reads from multiple unrelated DNA fragments to share the 

same stLFR barcodes. Empirically, I found that over 35% of all stLFR fragments, 

or over 25% of fragments longer than 2 kb, were labelled with unique barcodes 

not shared by other fragments (Figure 41). Despite the random noise generated 

by fragments that happen to share the same barcode, stLFR reads have been 

successfully used for variant phasing in the human genome, yielding phase blocks 

with N50 up to 34 Mb33. Therefore, I developed a k-mer-based method that utilised 

the accurate long-range phasing information provided by stLFR data, which was 

complementary to PacBio HiFi and ONT long-read sequencing, to phase simplex 

bubble paths in a bubble chain relative to each other, as described below.  

 

Figure 41. stLFR fragments feature largely unique barcodes. 

(A-B) Fractions of fragments grouped by the number of fragments per barcode, for all 

fragments (A) or for fragments with length ≥ 2 kb (B).  

A common approach for diploid phasing is to identify heterozygous SNPs from 

sequencing reads aligned to a reference genome, and representing them as an 

allele matrix. The correct haplotype of these SNPs can then be inferred by solving 
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a minimum error correction (MEC) problem129–131. The MEC problem provides a 

general, noise-tolerant framework for haplotype phasing of diploid genomes. 

Various algorithms have been developed to solve the MEC problem efficiently in 

the context of variant phasing, such as WhatsHap132,133, HapCUT134, and 

HapCUT2135. 

However, the current approach based on variant calling has several limitations, 

especially in diverse, repeat-rich regions of the genome, such as those encoding 

key immune system components (Table 2). In particular, aligning reads to a 

reference genome is likely to introduce reference bias or alignment errors in the 

presence of repeats or large structural variants (Figure 23). Moreover, structural 

variants, which are clearly informative for phasing, are challenging to detect using 

alignment-based methods (Figure 21).  

As almost all heterozygous SNPs can be captured by heterozygous k-mers 

without dependence on reference genomes136,137, I used heterozygous k-mers 

(diploid copy number = 1) identified from the k-mer profile model described above 

(Figure 38) instead of heterozygous SNPs to alleviate the aforementioned issues 

of reference bias and alignment errors, without losing compatibility to existing 

MEC solvers. I expected that most of the heterozygous k-mers overlapped with 

heterozygous SNPs, while others were k-mers that existed only on one haplotype 

due to structural variation. An example of a structural variant capture by 

heterozygous k-mers is shown in Figure 15A. 

The heterozygous k-mers were used to associate stLFR fragments with specific 

internal nodes of simple bubbles (detailed on page 89). The resulting allele matrix, 

in which every row represented a stLFR fragment and every column represented 

a simple bubble, was solved as a MEC problem using the HapCUT2 heuristic 

algorithm135, producing two haplotype paths for simple bubbles in each bubble 

chain (Figure 42),. 
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The stLFR-based bubble phasing practice developed here has several limitations. 

First, the method assumes that the two internal nodes of each simple bubble 

represent the two haplotypes, while in practise one of the nodes may actually 

originate from sequencing errors. Second, accurate identification of heterozygous 

k-mers depends on deep sequencing coverage and is affected by random local 

fluctuations in the sequencing depth, which may lead to more false positives and 

false negatives in heterozygous variant detection compared to alignment-based 

methods. Third, due to the lack of alternative sources of phasing information for 

the HV31 genome, I was not able to systematically evaluate the accuracy of 

stLFR-based bubble phasing. Finally, it is possible, in principle, to phase resolved 

paths in complex bubbles using a similar manner, which is not implemented 

currently.  
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Figure 42. Phasing bubbles using MGI stLFR linked reads. 
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Procedure of phasing bubbles in a bubbles chain using long-range information from MGI 

stLFR linked reads. Starting from an assembly graph, the objective was to identify a pair 

of haplotypes for each bubble chain that are most consistent with stLFR data, among all 

possible haplotype combinations. Heterozygous k-mers, i.e., k-mers with copy numbers 

of one in a diploid genome, were used to associate stLFR barcoded fragments with 

specific bubble nodes, represented as an allele matrix for the minimum error correction 

(MEC) problem130,131, which was resolved using HapCUT2135 to obtain the target 

haplotypes (detailed on page 133). In the allele matrix, each cell represents the numbers 

of heterozygous k-mer labels that a given stLFR fragment (rows) contains for a given pair 

of nodes (columns). For example, 8/0 denotes a fragment contains 8 labels for the first 

node in a pair, and 0 labels for the second node in the same pair. 0/0 is represented by 

dashes (-) for clarity. In this hypothetical example, the MEC solution identified one error 

in the allele matrix to be corrected, which is marked by a red cross.  

After the optimal haplotype paths of each simple or complex bubble in the 

assembly graph were identified as described above, these paths were finally 

processed by Verkko, to produce contigs from the consensus of HiFi reads along 

each haplotype path64 (Figure 31). In addition, unresolved unitigs which were not 

part of any simple or complex bubble were each included as a separate contig. 

The resulting collection of contigs is hereby referred to as the HV31-V2 assembly. 

Evaluation of the HV31-V2 assembly 

The HV31-V2 assembly contained roughly 2.9 Gb resolved sequence for each of 

the two haplotypes, in addition to 264 Mb unresolved sequence for which 

haplotype information was missing. Aligning the HV31-V2 assembly to the T2T 

reference genome revealed that several chromosomes, including chromosomes 

1, 7, 10, 12, 18, and X, were assembled with near telomere-to-telomere contiguity, 

while several other chromosomes reached telomere-to-centromere contiguity 

(Figure 43). 
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Figure 43. The HV31-V2 assembly contains entire chromosome arms. 

Alignment of the HV31-V2 assembly to the T2T reference genome. Chromosome names 

are labelled next to corresponding HV31-V1 contigs. Each horizontal bar represents a 

contig. Each pair of haplotype contigs is assigned a random colour. Contigs that 

originated from unresolved unitigs are shown in grey.  

More than half of the genome in each haplotype were assembled in contigs longer 

than 100 Mb (Figure 44), which was higher than GRCh38 and several published 

high-quality haplotype-resolved assemblies49,128. Although all simple and complex 

bubbles were resolved using methods described above, the Verkko assembly 

graph also contained complex non-bubble structures, such as the highly-

connected structure representing the short arms of the five acrocentric 

chromosomes (Figure 33), which I was not able to resolve algorithmically. As a 

result, the HV31-V2 assembly contigs (Figure 43) were less contiguous than the 

corresponding assembly graph (Figure 33). 
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Figure 44. The HV31-V2 assembly is highly contiguous. 

Distribution of HV31-V2 assembly contig lengths, presented as the fraction of genome 

assembled (y axis) in contigs longer than a given minimum length cut-off (x axis), for each 

haplotype (red and blue) and for unresolved contigs originating from complex non-bubble 

structures (grey). Contig lengths of the GRCh38 reference sequence, after splitting at 

unknown (N) bases, are shown in green. Chromosome lengths in the T2T reference 

sequence, which represent the upper limit of assembly contiguity, are shown in yellow. 

The dashed grey horizontal line represents the threshold where 50% of the genome is 

assembled, corresponding to NG50 values. Genome fractions were calculated based on 

the estimated female human genome of 3.05 Gb65. 

As mentioned previously, the coverage depth of a given k-mer is expected to be 

proportional to its copy number (CN) in the genome (Figure 38). This linear 

correlation between k-mer coverage depth and k-mer copy number, especially for 

low-copy (CN ≤ 4) k-mers, is commonly used to evaluate the error rate and 

completeness of a haplotype-resolved de novo assembly104.  In the HV31-V2 

assembly, I observed a highly consistent correlation between assembly k-mer 

copy numbers and corresponding k-mer coverage depths from the validation data 
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(Figure 45). In particular, almost all assembled heterozygous (CN = 1) and 

homozygous k-mers (CN = 2) had expected coverage depths, suggesting a 

reasonably complete representation of both haplotypes. Mismatches between the 

assembly copy number and the k-mer depths, manifesting as additional peaks in 

the k-mer depth distribution not corresponding to the expected copy numbers, 

likely resulted from various artefacts, such as incomplete or erroneous graph 

construction. In addition, for some local structures, the assumptions based on 

which optimal paths were computed might be broken. For example, in a simple 

bubble, it was likely that one of the internal nodes represented sequencing errors, 

as mentioned above, in which case both paths should go through the other node, 

instead of using both nodes. Further investigation will be required to develop more 

sophisticated algorithms for path resolution.  

 

Figure 45. HV31-V2 assembly k-mer copy numbers are consistent with sequencing 

data. 

(A) Distribution of k-mer coverage depths (x axis) in selected sequencing datasets, 

grouped by the corresponding k-mer copy numbers in the HV31-V2 assembly (colours). 

k = 31. 

(B) Same as (A), with the y axis shown in log scale.  



 99 

1.2.6. Genetic variation analyses facilitated by a personal genome 

The HV31-V2 assembly represents both haplotypes of the HV31 genome and 

provides a more complete view of genetic variation compared to the mixed-

haplotype HV31-V1 assembly. To demonstrate the potential applications of the 

HV31-V2 assembly, I revisited the eight genomic regions encoding key immune 

system components investigated previously, and analysed how a haplotype-

resolved assembly could contribute to a more complete understanding of these 

complex regions, as described below.  

A haplotype-resolved map of key immune gene allotypes 

A major limitation of the HV31-V1 assembly, as mentioned above, was that only 

one of the two inherited alleles of each gene, arbitrarily selected by the assembler, 

was represented in the assembly. Despite my previous effort to capture 

information about the unassembled alleles by detecting heterozygous structural 

variants from read alignment, it remained unclear which subset of the assembled 

alleles belonged to the same haplotype. Such information, once validated, could 

help investigate the functional impacts of allelic and structural variants, and 

contribute to the existing population panels of known haplotypes in complex 

regions49,109,138.  



 100 

 

Figure 46. Allotypes of immune genes in the HV31-V2 assembly.  
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Heterozygous alleles in haplotype 1 (H1) and haplotype 2 (H2) are shown in red and blue, 

respectively. Homozygous alleles are shown in pink. Alleles represented in the HV31-V1 

assembly are labelled with yellow dots. In immunoglobulin and T cell receptor regions, 

only V genes are shown. Genes in each region are arranged, from left to right, according 

to their relative order on the positive-sense strand, which may be either the plus (+) strand 

(with 5’ terminus at the p arm) or the minus (-) strand (with 5’ terminus at the q arm) of 

GRCh38. Pseudogenes are not shown. Alleles with identical sequences, such as TRBV6-

2*01 and TRBV6-3*01, are not distinguished. This figure is related to Figure 18.  

Here, I compared the allotypes of immune genes in both haplotypes revealed by 

the HV31-V2 assembly (Figure 46), which were identified by search the relevant 

IMGT or IPD databases (detailed on page 128). As expected, genomic loci of the 

greatest population diversity, namely the HLA, KIR, IGH and TRB loci, also 

featured the highest levels of heterozygosity. The HV31-V2 assembled confirmed 

all allotypes represented in the HV31-V1 assembly (Figure 18), and clearly showed 

how the HV31-V1 assembly wiggled through both haplotypes in most loci (Figure 

46). 

Revisiting complex structure variants in the immune system 

The complex structural variants in the IGH region revealed by the HV31-V1 

assembly (Figure 19 and Figure 21) were confirmed by the HV31-V2 assembly 

(Figure 47). The 45 kb CNV involving IGHV1-69 and IGHV2-70 and the 80 kb 

complex duplication near IGHV3-38 were homozygous in the HV31-V2 assembly 

(Figure 47), consistent with previous results (Figure 19 and Figure 21). In addition, 

the compound heterozygous CNV involving IGHV3-30 was directly constructed in 

the HV31-V2 assembly, showing three copies of IGHV3-30 genes on haplotype 1 

and one copy on haplotype 2 (Figure 47).  
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Figure 47. The HV31-V2 assembly confirmed complex structural variants in the IGH 

region. 

k-mer sharing dot plots comparing the HV31-V2 assembly (y axis) with the GRCh38 

reference genome (x axis) in the IGH region, highlighting complex structural variants in 

haplotype 1 (left) and haplotype 2 (right). Enlarged views of structural variants near IGHV3-

30 and IGHV3-38 are shown (inset). This figure is related to Figure 19 and Figure 21. 

The IGK region was fully assembled in one contig for each haplotype in the HV31-

V2 assembly (Figure 48), an improvement over the HV31-V1 assembly, which 

assembled the region in two contigs, with missing sequences between them 

(Figure 27). The heterochromatin sequence near IGK genes described above 

(Figure 28) was constructed for both haplotypes, confirming the existence and 

location of the 32 kb unique fragment, and suggested that the heterochromatin 

had different sizes in the two haplotypes. Due to the highly repetitive nature of the 

heterochromatin sequence, it remains to be confirmed whether this size difference 

reflected heterozygosity or an assembly error. The locations of the 32 kb unique 

fragment within the heterochromatin sequence in the HV31 assemblies, including 

the HV31-V1 assembly and both haplotypes of the HV31-V2 assembly, were 

consistent with each other and with the JG1 assembly built from Japanese 
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individuals51 (Figure 28), but differed from the T2T reference genome, as 

previously described. Interrogation of individual ONT long reads from available 

CHM13 and HV31 sequencing data supported both locations of this 32 kb unique 

fragment in the corresponding genome (Appendix Figure 2 and Appendix Figure 

3), suggesting that this difference was due to a structural variant rather than an 

assembly error.  

 

Figure 48. The HV31-V2 assembly correctly reconstructed the IGK region.  

k-mer sharing dot plots comparing the HV31-V2 assembly (y axis) with the T2T reference 

genome (x axis) in the IGK region. Assembled heterochromatin sequences are highlighted 

in orange boxes. The assembly sequences were reversed and clipped for visual clarity. 

This figure is related to Figure 27, Figure 28 and Figure 29. 

Allele-specific expression of HLA-DPB1 

Allele-specific expression (ASE) is the quantification of relative expression levels 

of the two alleles of a given gene in an individual, which helps to identify DNA 

polymorphism that regulates gene expression139–141. HLA has been a focus of ASE 

studies because of its disease associations as well as its high level of haplotype 

diversity, and by extension, high rate of heterozygosity in individuals142–144. ASE is 
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typically identified by aligning RNA-Seq data to the reference genome and 

attributing reads to the two haplotypes based on SNP markers140,145,146. Here, the 

HV31-V2 assembly enabled personal-genome-based identification of allele-

specific expression by aligning functional data to both haplotypes and count the 

number or coverage depths of reads on each haplotype (detailed on page 135). 

ASE analysis of the HLA-DPB gene estimated that DPB1*236:01:01 had roughly 

40% more copies of mRNA transcripts compared to the other allele, 

DPB1*04:01:01:06 (Figure 49). This allelic imbalance was also associated with 

higher chromatin accessibility for DPB1*236:01:01 compared to 

DPB1*04:01:01:06, as measured by ATAC-Seq, and a similar, yet less 

pronounced, difference in histone modifications, as measured by ChIP-Seq 

(Figure 49). As an illustrative example, these preliminary results highlight the 

potential of joint analyses of genomic and functional data for the HV31 individual, 

though more sophisticated methods will be needed to evaluate ASE robustly 

across the whole genome.   
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Figure 49. Allele-specific expression of HLA-DPB1 

Coverage depths of RNA-Seq, ATAC-Seq and ChIP-Seq data aligned to the two 

haplotypes of the HV31-V2 assembly. Sequencing reads were assigned to haplotypes 

based on the edit distance of alignment. Reads assigned to haplotype 1 and haplotype 2 

are represented in red and blue lines, respectively. Reads shared by the two haplotypes 

are represented in pink lines. Transcript annotations of the HV31-V2 assembly are shown 

at the bottom.  

1.2.7. The error profile of the Oxford Nanopore R10.4.1 chemistry 

Although long-read sequencing has greatly enhanced the accuracy and 

completeness of genome assemblies and enabled the investigation of challenging 

genomic features, such as structural variants and haplotype phasing, applications 
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of long-read sequencing technologies have previously been limited by their 

relatively low accuracy compared to short-read sequencing147. Recently, Oxford 

Nanopore Technologies (ONT) released its R10 chemistry, a major platform 

upgrade which the company claimed to be significantly more accurate compared 

to its previous R9 chemistry148. In collaboration with ONT, we obtained genomic 

sequencing data for HV31 based on the latest available R10.4.1 chemistry in 2022 

(Table 1). Here, I systematically evaluated sequencing accuracy improvements of 

the ONT-2022 data, compared to the ONT-2019 data which was based on the 

R9.4.1 chemistry. Results from these analyses later guided applications of ONT 

sequencing data in the design of the HV31-V2 assembly pipeline.  

Overall error profiles 

One of the major challenges for accurately estimating sequencing errors in the 

HV31 genomic data was the lack of an established gold standard reference for 

HV31. The HV31-V2 assembly described above was partly based on the ONT data 

evaluated here, constructed at a later timepoint, and not fully validated. Hence, I 

was not able to use the HV31-V2 assembly as a gold standard for benchmarking 

ONT datasets. Considering this practical limitation, I evaluated the sequencing 

accuracy of ONT data against the T2T CHM13 reference genome, after excluding 

genomic regions of known repeats, to minimise alignment errors, and genetic 

variation between HV31 and CHM13, to avoid mistreating true variants as errors 

(Figure 50). This approach was similar those applied in previous analyses of 

sequencing accuracy in microbial genomes32,76, and those in well-characterised 

human cell lines31,121, such as NA12878, for which extensive sequencing data had 

been available149. I selected T2T genomic regions with no known microsatellites, 

segmental duplications, transposable elements or other types of repeats, and no 

SNPs, indels or SVs identified by independent short-read or long-read datasets, 

as high-confidence regions (detailed on page 137). Within the high-confidence 

regions, I defined the sequencing error rate in a given dataset as the total number 
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of substituted, inserted and deleted bases, divided by the total number of 

sequenced bases (detailed on page 138). 

 

Figure 50. Schematic overview of the sequencing accuracy evaluation pipeline. 

Variant calling was performed separately for MGI short reads using DeepVariant150, and 

for HiFi long reads using pbsv42. 

 

Figure 51. Overall error profiles of evaluated ONT datasets. 
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The contribution of each type of errors (colours) to the overall error rate (y axis) in each 

ONT dataset (x axis). Error rates were defined as the number of error bases divided by 

the number of total sequenced bases.  

These analyses confirmed the sequencing accuracy of R10.4.1 chemistry was 

considerably improved over the previous R9.4.1 chemistry. The overall error rates 

were 2.03% for ONT-2022-simplex data and 3.00% for ONT-2022-duplex data, 

both of which were generated from the same R10.4.1 sequencing run, compared 

to 8.81% for the ONT-2019 data based on the R9.4.1 chemistry (Figure 51). 

Considering that simplex reads represented 94.6% of total data yielded from the 

R10.4.1 sequencing run (Table 1), these estimates suggested the R10.4.1 

chemistry had an over four-fold accuracy improvement compared to the R9.4.1 

chemistry.  

Basecalling, which is the conversion from raw data generated from the 

sequencing chemistry (usually in the form of optical or electrical signals) to nucleic 

acid sequences, is a critical step for generating accurate long reads29. The ONT-

2019 data was generated using Guppy v3.1.5, a proprietary basecalling software 

developed by ONT for which multiple iterations of optimisation had taken place 

ever since. Therefore, it was likely that part of the accuracy improvement observed 

for the ONT-2022 data was caused by improvements of the basecalling software, 

rather than the underlying sequencing chemistry. This distinction was important 

because basecalling only accounts for a small fraction of the overall cost of 

sequencing, and could be rerun at a low marginal cost when new basecalling 

software became available. To test this hypothesis, I re-basecalled the ONT-2019 

data with Guppy v6.4.2, the latest version available then. I found that the resulting 

data had an overall error rate of 4.87%, which was considerably better than the 

original ONT-2019 data but still less accurate compared to the ONT-2022-simplex 

data (Figure 51). This confirmed the contribution of the basecalling method in the 
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improved accuracy, and suggested a cost-effective way to obtain more accurate 

information from existing ONT sequencing data.  

 

Figure 52. Per-read accuracy distribution of evaluated ONT datasets. 

(A) The maximum proportional of total bases retained after filtering (y axis) plotted against 

the minimum required per-read accuracy (x axis) for each evaluated dataset (colours). 

(B) Same as (A), zoomed in for clarity. 

Despite the overall accuracy improvement of the R10.4.1 chemistry described 

above, the duplex reads appeared less accurate compared to the simplex reads 

(Figure 51), inconsistent with the claimed higher accuracy of duplex reads148. To 

investigate this, I calculated the accuracy for each individual read in the evaluated 

datasets, and found that the minimum per-read accuracy of ONT-2022-duplex 

reads could be improved to 99% after filtering out less than 30% of total bases, 

while almost no read in the ONT-2022-simplex data could fulfil this criterion 

(Figure 52). This observation suggested that the apparent lower accuracy of 

duplex reads was due to the presence of a small number of low-quality reads in 

addition to a majority of high-quality reads, the latter having better accuracy than 

simplex reads. 

Meanwhile, Gavin Band found that (i) part, but not all, of low-quality reads in the 

ONT-2022-simplex and ONT-2022-duplex data were explained by around 0.5% 
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of total reads being contamination; and (ii) both ends of each read in all evaluated 

ONT datasets were enriched of sequencing errors, compared to other parts of the 

read. Qijing Shen confirmed that the base quality scores of evaluated ONT 

datasets were predictive, to varying degrees depending on the specific dataset, 

of sequencing errors. In response to these findings, Gavin Band produced filtered 

subsets of ONT-2022-simplex and ONT-2022 data, by removing reads with low 

mean base qualities (12% of simplex reads and 23% of duplex reads) and 

trimming 100 bases from each end of remaining reads. The resulting filtered 

datasets displayed significantly higher accuracies compared to their unfiltered 

counterparts (Figure 51). In particular, filtered ONT-2022-duplex data had an error 

rate of only 0.28%, which was higher than the filtered ONT-2022-simplex data, 

and was better than the estimated error rate of 0.42% for HiFi-2022 data (data not 

shown). In light of this finding, I subsequently based the HV31-V2 assembly on 

the filtered ONT-2022 simplex and duplex reads.  

Substitution errors 

Substitution errors, defined as a base being mistakenly sequenced as a single, 

different base, are analogous to SNPs and may cause false positives in SNP 

calling151. ONT R9.4.1 chemistry has been shown to produce a disproportionally 

large amount of A-to-G and G-to-A substitution errors76, likely due to the similar 

chemical structure of adenosine and guanosine bases. For the same reason, A-

to-G and G-to-A transitions are also the most common types of human SNPs, 

accounting for about 32% of all SNPs, followed by C-to-T and T-to-C transitions, 

accounting for about 29% of all SNPs152.  
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Figure 53. Substitution error rates of evaluated sequencing datasets. 

For each dataset, the x axis shows possible types of substitution errors, represented as 

the true base, an arrow, and the read base. For example, A→G denotes an adenosine 

base mistakenly sequenced as a guanosine base. The y axis shows the corresponding 

substitution error rate, conditioned upon the true base. For example, if the A→G 

substitution has an error rate of 1%, then 1% of all adenosine bases will be mistakenly 

sequenced as guanosine bases.  



 112 

Here I analysed substitution error rates grouped by the nucleotides involved, and 

confirmed the enrichment of A-to-G and G-to-A errors in the ONT-2019 data from 

R9.4.1 chemistry (Figure 53). I also observed similar enrichment in the ONT-2022-

simplex data from R10.4.1 chemistry, despite improved overall accuracy, but not 

ONT-2022-duplex data from the same chemistry. The filtering strategy 

significantly reduced the substitution error rates, while the relative contribution of 

each type of substitution remained largely the same.  

Homopolymer errors 

Homopolymers are repeats of identical bases, such as GGGG. Homopolymer errors, 

loosely defined as expansions or contractions of homopolymer lengths relative to 

true lengths, have been known to contribute to a large proportion of total errors in 

PacBio55 and ONT76 sequencing data. This phenomenon is unique to long-read 

sequencing, presumably due to the fact that long-read sequencing happen in real 

time by design, without chemically interrupted cycles present in Sanger or Illumina 

sequencing29,31, preventing homopolymer lengths to be reliably inferred from the 

number of cycles.  
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Figure 54. Homopolymer accuracy of evaluated sequencing datasets. 

For each dataset, the length distribution of sequenced homopolymers (y axis) relative to 

the true homopolymer lengths (x axis) is visualised. Text labels indicate the proportions 

of each group. Visualisation made by Gavin Band.  

Here, I analysed the distributions of homopolymer errors grouped by true 

homopolymer lengths (Figure 54). I found that homopolymers sequenced with the 

R9.4.1 chemistry, especially those longer than five nucleotides, were significantly 

biased towards shorter lengths. This bias was likely a compromise by design to 

achieve higher overall homopolymer accuracy, given that longer homopolymers 

are proportionally rarer in the human genome. In comparison, simplex reads from 
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the R10.4.1 chemistry showed less bias in homopolymer lengths, while duplex 

reads showed almost no bias, enabling the accurate estimation of true 

homopolymer lengths from multiple overlapping reads. I also noted that 

homopolymer error rates for R10.4.1 chemistry only started to rise sharply above 

10 nucleotides, presumably because of the improved pore design29.  

Short tandem repeats 

In addition to homopolymers, short tandem repeats (STRs) were shown to be 

difficult targets for ONT sequencing29. Certain STRs are strongly associated with 

genetic disorders, such as the Huntington’s disease and the fragile X syndrome153. 

Here, I visualised the distribution of repeat lengths in ONT reads that covered the 

HTT tandem repeats which is linked to the Huntington’s disease, along with 

PacBio HiFi reads for comparison (Figure 55). The HTT tandem repeats consists 

of two repeat units, CAG and CCG, and excessive (36 or more) copies of the CAG 

repeat predisposes the carrier to the Huntington’s disease in a autosomal 

dominant manner154. The repeat length distributions of suggested that HV31 

carried 13 copies of CAG (39 nucleotides) on one haplotype, and 20 copies (60 

nucleotides) on the other haplotype (Figure 55). I found that ONT-2022 reads from 

the R10.4.1 chemistry displayed a tight distribution in repeat length, similar to that 

of HiFi-2022 data, in which most reads reported the expected repeat length, while 

ONT-2019 reads from the R9.4.1 chemistry had a broader repeat length 

distribution, which could cause ambiguities in determining the exact repeat 

lengths on each haplotype.  
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Figure 55. Short tandem repeats associated with the Huntington’s disease. 
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Sequencing reads covering short tandem repeats associated with the Huntington’s 

disease. Each row represents a single read, shown in three parts: the tandem repeat 

sequence (middle) and 5 kb flanking sequence upstream (left) and downstream (right) to 

the tandem repeats. CAG and CGG repeat units within each repeat sequence are shown in 

blue and green, respectively. Single-nucleotide mismatches in each flanking sequence 

that are different from the T2T reference sequence are shown as vertical line segments 

coloured according to the sequenced base. ONT reads were downsampled to 30× 

coverage depth for clarity. Visualisation inspired by TRGT155.  

1.2.8. Lakeview: a modular framework for genomic data 
visualisation 

Data visualisation is an integral part of genomics analyses156. Various tools have 

been development for genomic data visualisation, most notably the Integrative 

Genome Viewer (IGV)157, which provides a versatile and user-friendly interface for 

visualising common bioinformatics data formats. Designed for interactive 

exploration, the IGV provides only limited support for programmatic access, which 

restricts its application in certain use cases. For example, it remains challenging 

to use IGV for plotting bulk or clinically sensitive data stored on a remote server 

without a display device. In addition, although data-dependent customisation of 

plots, such as highlighting sequencing reads that satisfy certain predefined rules, 

is possible in IGV, such customisation often leads to difficulties in reproducing the 

plot once the underlying data changes. Apart from functionality issues, the visual 

design of IGV is also oriented towards interactive use, which necessitates post-

processing steps when using IGV output in publications, such as removing control 

elements and increasing text label sizes (Figure 3). Various alternatives for 

genomic data visualisation have been developed158–160, each with their own design 

focus, but these tools typically lack the visual clarity of IGV that many researchers 

have already been familiar with.  



 117 

Here, motivated by the specific needs arising from the HV31 project, I developed 

Lakeview, a modular framework for genomic data visualisation, available as an 

open-source Python library (https://pypi.org/project/lakeview/). Built on top of 

Matplotlib161, Lakeview is a Python 3 library for creating publication-quality 

genomic visualizations. Lakeview inherits the familiar and intuitive visual style of 

IGV, with a clear layout designed for publication and presentation (Figure 56). For 

remote data, visualisations can be programmatically created on the server storing 

the data files, and transmitted to the user for inspection. By avoiding the direct 

transfer of the genomic data to the user, this workflow saves local storage, 

computation and network resources, and may be desirable for bulk data or data 

that contains clinically sensitive information. Various figures included in this thesis 

were created using Lakeview following this workflow.  
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Figure 56. Lakeview enables clear and reproducible visualisation of genomic data. 

A demonstrational code example (top) for plotting the coverage depths and alignment 

patterns in a given genomic region from a BAM file using Lakeview, and the 

corresponding output.  

Designed with a focus on reproducibility, the output figures produced by Lakeview, 

including any customisations or annotations, are uniquely defined by the input 
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data and the specific code used for creating the visualisation (Figure 56). This 

makes Lakeview suitable for making visualisations that need to be reproduced for 

multiple samples or genomic regions of interest, at a later time when the data 

changes, or by a different user working in a different environment.  

Lakeview is a collection of several modular components, each responsible for 

parsing and visualising a certain type of genomic data. Currently, Lakeview 

supports the visualisation of sequence alignment (Figure 23, Figure 43, Figure 55, 

Appendix Figure 2, and Appendix Figure 3), coverage depth (Figure 27A and 

Figure 49), gene annotation (Figure 21, Figure 24 and Figure 49), and sequence 

comparison (Figure 12, Figure 27A, Figure 47, Appendix Figure 2, and Appendix 

Figure 3). Support for additional data types can be added in the future as 

additional modules that follow a consistent interface design. Lakeview was 

published under the GNU General Public License v3.0, with comprehensive 

documentation and automated testing available for prospective users and 

developers.  
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1.3. Discussion 

The human adaptive immune system is encoded by a set of complex and highly 

diverse genes which protects the body from myriad environmental pathogens 

both at the individual level and for the long-term survival of the species. Genetic 

variation in these genes, such as those encoding the HLA and immunoglobulins, 

despite the technical difficulties in their characterisation, have been associated 

with various infection and autoimmune diseases162–165. Here, taking advantage of 

recent advances of high-throughput, long-range genomics technologies, in 

particular long-read sequencing from PacBio and ONT, I explored the frontier of 

human de novo genome assemblies based on the rich collection of genomic data 

available for the HV31 individual, and investigated complex structural variation 

found inside the HV31 personal genome. 

In the first phase of the HV31 project, I constructed the HV31-V1 assembly, 

focusing on the eight selected genomic loci encoding key components of the 

immune system. Despite being a mixed-haplotype assembly due to technical 

limitations, the HV31-V1 assembly, after Bionano scaffolding and short-read 

polishing steps, was reasonably complete, accurate and contiguous in the 

selected regions. This revealed several large structural variants involving key 

immune genes which were otherwise challenging to characterise, many of which 

were inspected in depth and validated using a combination of methods based on 

k-mer coverage depths, read alignment, and optical mapping.  

Further collaboration with PacBio and ONT, and the rapid development of 

bioinformatics algorithms tailored for long-read sequencing, enabled the second 

phase of the HV31 project aimed at building a complete personal genome. 

Assembly graph construction based on PacBio and ONT long reads, followed by 

path resolution based on MGI stLFR linked reads and k-mer profile modelling, 

yielded the HV31-V2 assembly, a haplotype-resolved assembly reaching 

telomere-to-telomere contiguity for multiple chromosomes. Revisiting the 
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complex structural variants identified previously, I showed that the HV31-V2 

assembly provided the missing pieces required for mapping the HV31 personal 

genome.  

Nevertheless, several aspects of the current HV31-V2 workflow warrant further 

improvement. For example, the resolved paths of complex bubbles should 

optimally be phased using stLFR data in a way similar to simple bubble paths. In 

addition, given that MEC is an NP-hard problem129, tailoring the HapCUT2 

heuristic algorithm135 based on unique features of bubble phasing and stLFR 

fragments may yield improved phasing results.  

The analyses of ONT sequencing accuracy were an effort to understand the 

technical characteristics of ONT sequencing, the result of which guided the read 

filtering strategy applied in the HV31-V2 workflow. A recurring challenge of the 

HV31 project is the lack of a known ground truth for the HV31 genome, which was 

alleviated, in the case of error rate analyses, by comparing the sequencing data 

with the T2T reference genome after excluding regions of identified genetic 

variants. The considerable accuracy improvements achieved by the ONT R10.4.1 

chemistry, as confirmed here, showed promise towards a future of affordable 

high-quality personal genomes.  

Lakeview is a standalone Python library for genomic data visualisation, which 

evolved from specific use cases in the HV31 project, and underpinned many 

figures included here. With continued iterations, the library will likely become a 

modular toolbox for versatile visualisation of various genomic data formats, from 

which more sophisticated and user-friendly applications might be built.  

I envision that the progress made in HV31 project will eventually contribute to the 

scientific community from three aspects: (i) the data generated from the HV31 

individual will serve as a rich resource, similar to the Genome in a Bottle project, 

that fuels technical understanding of the underlying platforms and methodology 

development in bioinformatics; (ii) the bioinformatic approaches I developed for 
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sequencing quality analyses, de novo assembly, assembly validation and 

functional data analyses may be reused by future researchers interested in 

personal genomes; (ii) specific findings from the HV31 project, such as structural 

variants in the IGH region, the heterochromatin structure in the IGK region, or 

allelic imbalance of HLA genes, may shed some light on the genetic complexity of 

the human adaptive immune system. With a long-standing focus on the 

application of personal genomes in the immune system, the HV31 project will 

move from current analyses which primarily investigate DNA sequences, towards 

a more comprehensive exploration of genetic variants in the immune system in 

terms of proteins, pathways, cells and diseases.  



 123 

1.4. Methods 

1.4.1. Ethics statement 

HV31 was recruited as a healthy volunteer under approval by the Oxfordshire 

Research Ethics Committee (COREC reference 06/Q1605/55). The donor 

provided written informed consent for the use of their blood in research. 

1.4.2. Definition of regions of interest 

Eight genomic regions encoding key components of the human immune system, 

including HLA, IG, TCR and KIR were selected for investigation (Table 2). Each 

region was defined as a core range in GRCh38 that contained genes related to 

immune system components, with additional flanking sequences added to both 

sides. For IG and TCR regions, the core range were selected based on the 

respective reference sequences in the NCBI RefSeq database89. For the HLA 

region, the core range was defined as the genomic range from GABBR1 to 

KIFC190. For the KIR region, the core range was defined as the genomic range 

from KIR3DL3 to KIR3DL214. The flanking sequence was typically 1 Mb on either 

side. As exceptions, the telomeric flanking sequence in the IGH region was limited 

to 164 kb by the length of chromosome 14. In addition, I expanded the 

centromeric flanking sequence in the IGK region by 0.67 Mb to bridge a 1 Mb 

heterochromatin gap present in GRCh38. A similar approach was applied to 

retrieve the corresponding coordinates of each region of interest in the T2T 

reference genome.  

1.4.3. Construction of the HV31-V1 mixed-haplotype assembly 
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Canu whole-genome de novo assembly 

Canu v1.956 was used to perform whole-genome de novo assembly for HV31 

based on HiFi-2019 reads, with the following command:  

canu \ 
  -pacbio-hifi FASTQ_PATH \ 
  genomeSize=3235000000 \ 
  -minInputCoverage=1 \ 
  -stopOnLowCoverage=1 

The resulting contigs were mapped to GRCh38 using Minimap2166 with the 

following parameters: -ax asm5 --secondary=no. Contigs that mapped to the 8 

loci of interest were extracted as local contigs.  

Peregrine whole-genome assembly 

For comparison purposes, Peregrine167 was used to generate a whole-genome de 

novo assembly for HV31 based on HiFi-2019 reads, with the following command:  

python PEREGRINE_SCRIPT \ 
  asm FASTQ_LIST \ 
  16 16 16 16 16 16 16 16 16 \ 
  --with-consensus 

Hybrid scaffolding 

Hybrid scaffolding was performed using Bionano Solve, a proprietary software 

provided by Bionano Genomics (https://bionanogenomics.com/), with default 

parameters. I used a custom script based on BiSCoT168 to improve the contiguity 

and quality of the resulting scaffolds. Specifically, I merged adjacent contigs in a 

scaffold if they overlap with each other, as inferred from shared enzymatic 

labelling sites or sequence alignment. If the two adjacent contigs were expected 

to be non-overlapping, they were joined with a gap (a sequence of “N” bases) 

between them, the size of which was estimated based on the distance of nearest 

labelling sites. In addition, I incorporated shorter contigs into longer ones if the 
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shorter contig represented a subsequence of the longer contig, and aligned better 

with the Bionano genome maps. 

After scaffolding, I removed duplicated contigs or scaffolds that presumably 

represent alternative haplotypes (haplotigs) using a custom k-mer based method. 

In brief, I listed all unique 22-mers for each contig or scaffold and compare these 

sets of 22-mers in a pairwise manner. If a shorter contig had more than 80% of 

unique 22-mers shared with a longer contig, then the former was considered as a 

haplotig and removed from the assembly. 

Read mapping 

Sequencing reads from each locus of interest were required for various purposes 

including gap closing, polishing, error rate estimation and assembly validation 

based on alignment coverage and patterns. In order minimize reference bias, I first 

mapped the reads from each sequencing dataset using Minimap2, and then 

extracted reads that mapped to contigs that represent each locus of interest133. 

The extracted reads were again mapped with Minimap2 to the scaffolded or 

finalized assembly as appropriate for specific applications. 

A unique k-mer anchoring method100 was used to improve the mapping of long 

reads in repetitive regions. In brief, given a set of locus-specific reads and a 

corresponding reference sequence, I first defined a set of anchoring k-mers for 

each locus of interest. Only k-mers that appeared to be unique in both short read 

sequencing datasets (31 ≤ depth ≤ 231) and the reference sequence (copy 

number = 1; no occurrence outside the locus) were selected as anchoring k-mers. 

Then, I mapped the reads to the reference with Minimap2 using parameters -n 

50 -r 10000, which enabled the output of up to 50 alignments for each read, 

with gap sizes up to 10 kb in each alignment. An optimal alignment for each read 

was then selected based on the number of bases shared with the reference that 

were part of an anchoring k-mer. These selected alignments were pooled into a 
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new BAM file, after filtering out alignments that were shorter than 5 kb. The 

resulting BAM file were used for polishing and reference-free alignment validation. 

Gap closing and polishing 

Gap closing was performed using TGS-GapCloser98 v1.0.1 with HiFi-2019 reads. 

Sequencing reads were first mapped to the whole genome assembly produced 

by Canu, which enabled locus-specific read extraction. The extracted reads were 

used as input for TGS-GapCloser, which was executed using the following 

parameters: -ne --tgstype pb --g_check. Polishing was performed using 

Pilon99 with HiFi-2019 reads and MGI-standard reads extracted in a similar 

manner. The default parameters were used. For clarity, the finalized scaffolds 

were displayed and coordinated based on the relative order and orientations of 

the corresponding sequence in GRCh38 in visualisation steps. 

1.4.4. Evaluation of the HV31-V1 assembly 

Per-base error rate estimation 

Jellyfish169 was used to count the depth of each k-mer (k = 22 or 31) from a pooled 

FASTQ dataset consisting of the following datasets: HiFi-2019, MGI-standard, 

MGI-CoolMPS, MGI-stLFR, 10X and Illumina (Table 1), with the following 

parameters: jellyfish count -m K -s 30G —min-qual-char "?" -C. The 

cumulative sequencing depth of the pooled FASTQ dataset was 262×. In each 

read, k-mers that include bases with base quality < 20 were excluded. For error 

rate estimation, I applied a modified version of the Merqury104 method. I estimated 

the error rates based on clusters of kmers with low validation coverage, which 

produced slightly higher error rate estimates empirically, compared to the original 

Merqury method, which counts each error k-mer individually104 (Table 5). 

Specifically, k-mers (k = 22) in the HV31-V1 assembly with depth < 5 were 

classified as erroneous k-mers, and clustered by their positions in the assembly, 
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allowing a maximum of & − 1correct k-mers between two adjacent erroneous k-

mers in each cluster. The number of erroneous k-mer clusters per Mb assembled 

sequence was used as an indicator of the error rate of the HV31-V1 assembly. 

 
Merqury This work 

 Before polishing After polishing Before polishing After polishing 

IGH 88.5 6.7 86.6 8.1 

IGK 223.2 24.2 183.0 42.3 

IGL 78.8 8.0 68.2 11.9 

HLA 32.4 3.3 39.5 5.1 

TRA 71.7 18.9 85.7 22.8 

TRB 62.6 7.4 52.2 9.6 

TRG 76.6 18.1 86.0 21.2 

KIR 78.1 18.1 94.2 25.0 

Table 5. Comparison of original and modified Merqury error rate estimation results. 

Per-base error rate estimates for local scaffolds and the finished HV31-V1 assembly 

(Figure 16) using the Merqury algorithm, and the modified algorithm applied here.  

Identification of potential structural errors 

For reference-free identification of potential structural errors, I define the 

normalized depth ()) of each k-mer (k = 31) in the HV31-V1 assembly as )	 =

	!	/	(-	 × 	/), in which ! is the depth of that k-mer in the validation dataset, - is 

the copy number of that k-mer in the HV31-V1 assembly, and / is the mode depth 

of unique homozygous k-mers in the validation dataset, as estimated from the k-

mer depth histogram (Figure 14). The normalized k-mer coverage was visualized 

against the position of the k-mer, along with the normalized coverage of ONT-
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2019 reads aligned to the assembly using the k-mer anchoring method. Regions 

where the normalized k-mer coverage or normalized ONT coverage deviated from 

1 were labelled and inspected for potential assembly errors (Appendix Figure 1). 

1.4.5. Characterisation of allelic and structural variation 

Allelic variant detection 

Reference variant sequences of IGHV, IGKV, IGLV, TRAV, TRDV, TRBG and TRGV 

genes were downloaded from the IMGT reference directory170. Reference variant 

sequences of HLA genes were downloaded from the IPD-IMGT/HLA database171. 

Reference variant sequences of KIR genes were downloaded from the IPD-KIR 

database172. The reference gene variant sequences were mapped to GRCh38, the 

HV31-V1 assembly, or the HV31-V2 assembly using Minimap2 with the following 

parameters: -a -w1 -f1e-9. I extracted subsequences in regions where at least 

one reference gene was mapped, with 20 bp flanking sequence at either side. 

These query sequence fragments were submitted to NCBI IgBLAST173 (for IGHV, 

IGKV, IGLV, TRAV, TRDV, TRBV and TRGV genes) or NCBI BLAST+174 (for HLA 

and KIR genes) to search for matching sequences in the relevant databases, with 

default parameters. The top hit variant with the highest match score returned by 

NCBI IgBLAST or NCBI BLAST+ were assigned to each query fragment. Query 

fragments shorter than the top hit variant were considered to represent partial 

alignment and discarded. 

Structural variant calling 

PBSV42, a subprogram of SMRT tools was used to call heterozygous SVs from 

HiFi-2019 and CLR-2019 reads with default parameters. Sniffles43 was used to 

call heterozygous SVs from HiFi-2019, CLR-2019 and ONT-2019 reads with the 

following parameters: -s 3 -q 20 --ccs_reads --min_het_af 0.2 (HiFi), -s 

8 -q 20 --min_het_af 0.2 (CLR), or -s 15 -q 20 --min_het_af 0.2 (ONT). 
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Unique k-mer anchoring was applied prior to SV calling. SVmerge, a subprogram 

of SVanalyzer101 was used to cluster and merge SV records from output VCF files 

of PBSV and Sniffles, with default parameters.  

1.4.6. Construction of the HV31-V2 haplotype-resolved assembly 

Trimming and filtering low-quality sequences in the ONT-2022 dataset 

Filtered versions of the ONT-2022-simplex and ONT-2022-duplex datasets were 

generated based on base quality scores, excluding reads that had less than 80% 

(for simplex reads) or less than 96% (for duplex reads) bases that had quality 

scores of at least 20. 100 base pairs were subsequently trimmed off both ends of 

each read.  

The trimming and filtering strategy was developed by Gavin Band based on 

empirical evidence gathered by Gavin Band, Qijing Shen, and from my analyses 

of ONT sequencing accuracy.  

Verkko de novo assembly 

Verkko v1.3.164 was run twice during the HV31-V2 assembly workflow, first to 

generate the assembly graph, and then to construct contigs from read consensus 

along resolved paths. The first run was executed using pooled PacBio HiFi reads 

from HiFi-2019, HiFi-2022 and HiFi-2023 datasets, and trimmed filtered ONT-

2019 reads, as inputs. The following command was used:  

verkko \ 
  -d OUTPUT_FOLDER \ 
  --hifi INPUT_HIFI_FASTQ \ 
  --nano INPUT_ONT_FASTQ 

After the first run, haplotype paths were identified from the assembly graph by 

resolving complex bubbles and phasing simple bubbles, as described below. The 

resulting haplotype paths were then used to replace the original paths generated 
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by Verkko during the first run, which, in the absence of parental sequencing data 

or other forms of long-range phasing information natively supported by Verkko, 

represented each unitig as a path. Finally, Verkko was run for the second time 

using the same command, producing the HV31-V2 assembly. 

Enumeration of bubbles and bubble chains 

Simple and supper bubbles were defined according to Onodera et al.126. For 

naming consistency, here “simple bubble” refers to “bubble” in the work of 

Onodera et al., and “super bubble” refers to “superbubble”. Cyclic bubbles were 

defined as subgraphs that contain cycles but otherwise satisfy the definition of 

“superbubbles” in the work of Onodera et al.126 Formal definitions are described 

below: 

Let 1 = (2, 4) be a directed assembly graph, where 2 is the set of nodes and 4 is 

the set of edges. If an ordered pair of distinct nodes (5, 6)  in 1  satisfies the 

following conditions:  

(i) 6 is reachable from 5;  

(ii) the set of nodes reachable from 5 without passing through 6 is equal to the 

set of nodes reachable from 6 without passing through 5; 

(iii) no node in 7 other than 6 forms a pair with 5 that satisfies conditions (i) and 

(ii), where 7 the subgraph induced by the set of nodes in condition (ii), 

then the subgraph 7 defined in condition (iii) is said to be a bubble, for which 5 

and 6 are referred to as the source and sink nodes, respectively. Other nodes in 

7 are referred to as internal nodes. If 7 satisfies the following conditions: 

(iv) no cyclic paths, defined as paths that visit the same node more than once, 

exist in 7;  

(v) only two internal nodes exist in 7, both of which are directly connected to 5,  
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then 7 is said to be a simple bubble, for which the two internal nodes in condition 

(v) are referred to as arms. If 7 satisfies condition (iv) but does not satisfy condition 

(v), then 7 is said to be a super bubble. If 7 does not satisfy condition (iv), then 7 

is said to be a cyclic bubble. A bubble chain is defined as an ordered sequence 

of bubbles 7!, 7", … , 7# such that the sink node of bubble 7$ is the source node 

of bubble 7$%! for any 9	 ∈ {1, 2, … , < − 1}. 

Simple and supper bubbles, and bubble chains consisting of simple and supper 

bubbles, were enumerated from the assembly graph generated by Verkko using 

BubbleGun125. Cyclic bubbles were identified using a breath-first search algorithm 

implemented in a custom script, using entrance and exit nodes of known bubble 

chains as candidate source and sink nodes, implemented in a custom script. For 

performance reasons, cyclic bubbles for which the minimum numbers of 

connecting edges between the source and sink nodes were greater than 20 were 

not included.  

Decomposition of the k-mer profile from sequencing data 

GenomeScope105,127 is a tool widely used for modelling the k-mer profile, which 

uses a mixture of four evenly spaced binomial probability density distribution 

functions, corresponding to k-mers with copy number of one to four, respectively, 

to model the empirical distribution of k-mer depths (Figure 57). The GenomeScope 

model does not model k-mers resulting from sequencing errors.  

Here, considering the need to explicitly model sequencing errors, and the 

possibility to model k-mers with higher copy numbers given the high coverage 

depth of HV31 sequencing data, I generalised the GenomeScope model to include 

additional peaks for error k-mers and k-mers with copy numbers up to a user-

defined limit n (Figure 57). Similar to the GenomeScope model, the generalised 

model was fitted to the empirical distribution of k-mer depths using a least-

squares optimiser implemented in the Scipy library175. The likelihood of each copy 
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number given each depth value was estimated based on the relative contribution 

of each peak for that depth value (Figure 38). The custom code used for 

implementing and fitting the generalised model is available from GitHub 

(https://github.com/jzhang-dev/kmer-profile-decomposer).  

 

Figure 57. The generalised k-mer profile model.  

The k-mer profile model used by GenomeScope105 and the generalised model used in this 

work.  

Eight HV31 datasets were used for k-mer profile modelling, including 10X, Illumina, 

MGI-CoolMPS, MGI-standard, MGI-stLFR, HiFi-2019, HiFi-2022, HiFi-2023 

(Table 1). Meryl104 was used for k-mer counting. For complex bubble resolution 

(Figure 38 and Figure 39) and simple bubble phasing (Figure 42), 22-mers from 

homopolymer-compressed sequences were analysed. For assembly validation 

(Figure 45), 31-mers from unmodified sequences were analysed.  
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Resolving complex bubbles using k-mer coverage depths 

For each complex bubble, all paths connecting the source node to the sink node 

were enumerated using a breadth-first search algorithm implemented in a custom 

script. For performance reasons, paths longer than 25, as measured by the 

number of path nodes, were not included. For each pair > of identified paths with 

<  nodes in total, a score ?  was calculated as ?& =	∑ log!' D(E$|)$)
#
$(! , where 

D(E$|)$) was the likelihood of the copy number of the a node 9 in the path pair >, 

given the median depth )$of the private k-mers of node 9, as estimated from the 

fitted k-mer profile model (Figure 38). For the complex bubble, the path pair with 

the highest score was selected and randomly assigned to the two haplotypes.  

Phasing simple bubbles using MGI stLFR data 

Heterozygous k-mers, i.e., k-mers with inferred diploid copy numbers of one, were 

identified using the fitted k-mer profile model (Figure 38). For a given node, k-mers 

that appeared only once in that node and not found in any other nodes were 

defined as the unique private k-mers of that node. For each simple bubble, unique 

private k-mers of each of the two internal nodes that were also identified as 

heterozygous k-mers were used as heterozygosity markers. For each set of stLFR 

reads sharing the same barcode, the numbers of heterozygosity markers in the 

reads for each internal node was calculated. A barcode was assigned to an 

internal node of a simple bubble if the barcode had at least ten more markers for 

the node compared to the other node in that simple bubble. Otherwise, the 

barcode was treated as being not informative for that bubble. The resulting 

barcode assignment data, represented as an allele matrix, a sparse matrix 

implemented using the Scipy library175, with each row representing a barcode, 

each column representing a bubble, and each value representing an optional 

assignment to one of the two internal nodes, was solved as an MEC problem using 

HapCUT2135 (Figure 42). stLFR reads whose barcodes were not on the list of 
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known barcodes were excluded. The custom code used for solving a general 

allele matrix using HapCUT2 is available from GitHub (https://github.com/jzhang-

dev/hapcut2-mec-solver). The haplotypes produced by HapCUT2 were used to 

phase simple bubbles relative to each other in building haplotype paths from each 

bubble chain (Figure 42).  

1.4.7. Functional data analyses based on the HV31-V2 assembly 

Gene annotation of the HV31-V2 assembly 

Gene annotation of the HV31-V2 assembly was performed for each haplotype 

separately using LiftOff176 v1.6.3, based on GENCODE v38 annotations177, using 

default parameters.  

RNA-Seq alignment  

RNA-Seq data was aligned to each haplotype of the HV31-V2 assembly 

separately using STAR178 v 2.7.10b, based on LiftOff annotations. First, reference 

indices were built for each haplotype using the following command:  

STAR \ 
  --runThreadN 8 \ 
  --runMode genomeGenerate \ 
  --genomeDir OUTPUT_FOLDER \ 
  --genomeFastaFiles ASSEMBLY_FASTA \ 
  --sjdbGTFfile ANNOTATION_GFF3 \ 
  --sjdbGTFtagExonParentTranscript Parent \ 
  --sjdbOverhang 74 \ 
  --outTmpDir OUTPUT_TEMP_FOLDER 

Next, alignment was performed using the following command:  

STAR \ 
  --runThreadN 4 \ 
  --runMode alignReads \ 
  --genomeDir REFERENCE_INDEX_FOLDER \ 
  --readFilesIn RNASEQ_FASTQ \ 
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  --readFilesCommand zcat \ 
  --genomeSAindexNbases 14 \ 
  --outSAMattributes All \ 
  --outSAMtype BAM SortedByCoordinate \ 
  --outFileNamePrefix OUTPUT_PREFIX \ 
  --outTmpDir OUTPUT_TEMP_FOLDER 

ATAC-Seq and ChIP-Seq alignment and peak calling 

Duplicates in ATAC-Seq and ChIP-Seq data were removed using Picard Tools179 

v2.18.7, using default parameters. Deduplicated ATAC-Seq and ChIP-Seq data 

were aligned to each haplotype of the HV31-V2 assembly separately using 

Bowtie2180 v2.5.1. First, Bowtie2 reference indices were built using default 

parameters. Next, the following command was used for alignment:   

bowtie2 \ 
  -k 4 --minins 38 --maxins 2000 \ 
  --seed 489534229 \ 
  -x REFERENCE_INDEX_PREFIX \ 
  -1 READ1_FASTQ -2 READ2_FASTQ \ 
  -S /dev/stdout \ 
| samtools sort -m 6G -T TEMP_FOLDER -@ 4 -o OUTPUT_BAM 

Allele-specific expression 

For each RNA-Seq, ATAC-Seq and ChIP-Seq read, the total edit distance 

between the aligned segments of the read and the reference haplotype of the 

HV31-V2 assembly, as recorded in the NM tag, was calculated. Secondary or 

unmapped segments, segments failing quality control, and segments there were 

not properly paired, were excluded. Each read was assigned to the haplotype with 

lower edit distance. In case of a draw, the read was assigned to both haplotypes. 

Coverage depths were calculated, for the overall alignment, and for haplotype 

specific reads, using bedtools181 with the following command:  

bedtools genomecov \ 
  -ibam INPUT_BAM -bg -split \ 
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| LC_COLLATE=C sort -k1,1 -k2,2n > OUTPUT_BEDGRAPH 

For ATAC-Seq and ChIP-Seq data, the -split parameter was omitted.  

1.4.8. Long-read sequencing error profiling 

ONT base-calling 

Guppy v6.4.2, a proprietary software developed by Oxford Nanopore 

Technologies, was used to perform basecalling from the FAST5 files generated in 

the 2019 sequencing run, using the associated configuration file 

dna_r9.4.1_450bps_modbases_5mc_cg_sup_prom.cfg, which specified 

basecalling in the super accuracy (SUP) mode with 5-methylated cytosine 

detection. 

Strand-specific read alignment 

It has been reported that heuristic algorithms implemented in read alignment tools 

may introduce alignment bias by discriminating reads that originate from different 

strands of the genomic DNA76. To eliminate such potential bias and to simplify the 

analyses workflow, I aligned each read separately to the forward strand and to the 

reverse strand of the T2T reference genome, while restricting reads to be only 

aligned in the forward orientation, and assign each read to the strand it aligns 

better, as suggested previously76. Specifically, I first generated a FASTA file 

containing the reverse complement of each chromosome sequence in the T2T 

CHM13 v2.0 reference genome, and then used Minimap2 v2.24 to align reads 

(downsampled to ~5× coverage depth) separately to the original reference 

genome and to its reverse complement, using the following command:  

minimap2 \ 
  -ax map-ont REFERENCE QUERY \ 
  -secondary=no --MD --eqx --cs=short --for-only \ 
  --sam-hit-only -Y -I 10G -t 8 
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For downstream analyses, I retained only the longest aligned segment for each 

read that satisfied the following criteria: (i) aligned segment length / read length ≥ 

0.5; and (ii) phred-scale mapping quality ≥ 30. Reads that failed to align were 

excluded.  

Short-read SNP and indel calling 

MGI-standard short reads were aligned to the T2T reference genome using BWA-

MEM182 with default parameters. Variant calling was performed using 

DeepVariant150 with default parameters for the WGS model. 

Long-read structural variant calling 

HiFi-2019 reads were aligned to the T2T reference genome using pbmm2183 with 

the following command:  

pbmm2 \ 
  align REFERENCE QUERY OUTPUT_BAM \ 
  --preset CCS --sort -j 8 -J 8 --log-level INFO 

Structural variant calling was performed using pbsv42 with default parameters for 

HiFi reads.  

Definition of high-confidence regions 

The high-confidence regions for sequencing error analyses were defined as T2T 

genome regions that appeared in none of following four sets of masked regions: 

(i) microsatellites, segmental duplications, transposable elements and other types 

of repeats annotated in a previous report184; (ii) regions with one base pair distance 

from homozygous or heterozygous SNPs and indels identified from MGI-standard 

reads using DeepVariant as described above; (iii) regions with one base pair 

distance from homozygous or heterozygous SVs identified from HiFi-2019 reads 

using pbsv as described above.  
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Sequencing error rate estimation 

Sequencing errors were defined as sequences that aligned to and differed from 

the high-confidence regions of the T2T reference genome, including substitutions, 

insertions and deletions. The error rate of a given dataset was defined as the total 

number of error bases divided by the total number of sequenced bases from the 

high-confidence regions.  

To implement the definition above, I inspected the CIGAR string of each read 

alignment, and counted the occurrence of each base that was substituted, 

inserted or deleted, as well as the length of the overlap between the alignment 

and the high-confidence regions, using a custom Python script based on pysam185, 

a wrapper around htslib186. The results were summarised across the high-

confidence regions of the reference genome.  

Homopolymer error analyses 

Homopolymer length errors were analysed using an approach similar to 

counterr187. Gavin Band implemented a custom C++ program, find-

homopolymers, which was applied to efficiently enumerate all homopolymer 

locations in the T2T reference genome. For each homopolymer in the T2T 

reference genome, I analysed the read sequences covering the homopolymer, and 

recorded the reference and read homopolymer lengths. Read homopolymer 

lengths were calculated as the corresponding reference length, plus bases 

inserted next to and consistent with the homopolymer, minus any deleted bases 

in the homopolymer. The results were summarised across the high-confidence 

regions of the reference genome.  

Homopolymer error analyses were conducted by Gavin Band and me in close 

collaboration. Gavin Band implemented a custom C++ programme find-

homopolymers and visualised the final output. I analysed the length of each 
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homopolymer in the aligned reads based on find-homopolymers output, and 

generated a summary file for visualisation.  
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Project 2. Effects of Low-dose IL-2 

Immunotherapy in T and NK Cells 

2.1. Introduction 

2.1.1. Type 1 diabetes  

Type 1 diabetes (T1D) is a chronic autoimmune disorder that results in the 

destruction of pancreatic beta cells, leading to a deficiency in the production of 

insulin, a key hormone responsible for regulating glucose metabolism. As a result, 

individuals with T1D suffer from hyperglycaemia, which can lead to a range of 

acute and chronic complications affecting various organs and systems in the body. 

T1D is typically diagnosed in childhood or adolescence, with higher incidence 

rates observed Europe188. T1D prevalence in children is estimated to be doubling 

approximately every 20 years in Europe189. In 2021, about 8.4 million individuals 

lived with T1D worldwide, a number that has been projected to increase to 13.5-

17.4 million in 2040 (ref190). 

Currently, there is no cure for T1D, and disease management requires lifelong 

insulin therapy and blood glucose monitoring, which only delays disease 

progression. Despite significant advances in diabetes care, individuals with T1D 

still face significant challenges in achieving optimal glycaemic control and 

maintaining a good quality of life191, and suffer from the loss of 11-13 years of life 

expectancy192. Ongoing research efforts are focused on developing new therapies 

to treat this complex and debilitating disease, such as beta cell replacement 

therapy, which involves transplanting functional beta cells into individuals with 

T1D to restore insulin production193. In addition, immunotherapies that aim to 

modulate the immune response that leads to beta cell destruction in T1D have 
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shown promise. For example, teplizumab, an anti-CD3 monoclonal antibody, has 

been shown to delay the onset of T1D in individuals at high risk of developing the 

disease194. Low-dose IL-2 immunotherapy, which constrains autoimmunity by 

boosting the number of regulatory T cells, is another promising approach for T1D 

treatment, as detailed below.  

2.1.2. Regulatory T cells 

Regulatory T cells (Tregs) are a specialized subset of T lymphocytes that plays a 

crucial role in maintaining immune tolerance and preventing excessive immune 

responses against self-antigens. Tregs are heterogeneous and can be broadly 

classified into two main subtypes: thymically-derived Tregs (tTregs) and 

peripherally induced Tregs (pTregs)195. tTregs develop in the thymus during T cell 

maturation, where they acquire self-tolerance and constitutively express the 

transcription factor FOXP3, which is the master controller for their suppressive 

function196. The majority of tTregs also express the transcription factor HELIOS197. 

On the other hand, pTregs are generated in the periphery from naïve conventional 

T cells (Tconvs) through induction by specific environmental factors, such as 

exposure to antigens in the presence of the anti-inflammatory cytokine TGF-β. 

pTregs only transiently express FOXP3 and are therefore less functionally stable 

compared to tTregs. Under certain conditions, pTregs may differentiate into 

effector cells that are pathogenic in autoimmune diseases198.   

Tregs can inhibit the activation and effector functions of T cells through various 

mechanisms199,200, such as: (i) constitutive expression of CTLA-4, which 

outcompetes CD28 for the binding of CD80/CD86 on APCs, thus depriving the 

co-stimulation signal required for TCR activation; (ii) the production of inhibitory 

cytokines such as IL-10 and TGF-β; (iii) granzyme- and perforin-dependent killing 

of effector T cells; (iv) metabolic disruption mediated by IL-2-deprivation, cAMP, 
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or adenosine receptor 2A; (v) inhibition of dendric cell (DC) maturation and 

function, causing the release of immunosuppressive molecule 2,3-dioxygenase.  

Tregs play a crucial role in controlling the autoimmune attack on pancreatic beta 

cells in T1D, and Treg dysfunction has been suggested as a cause for T1D201,202. 

Therefore, Tregs have been established as an important therapeutic target for T1D. 

Adoptive transfer of Tregs has been shown to protect insulin production capacity 

in animal models203 and newly diagnosed T1D patients204. In vivo induction of 

Tregs via low-dose IL-2 immunotherapy is another research focus for T1D 

treatment, as detailed below.  

2.1.3. Low-dose IL-2 immunotherapy 

Low-dose IL-2 immunotherapy is an emerging treatment approach for T1D that 

aims to restore immune tolerance and preserve beta cell function by boosting Treg 

numbers205. IL-2 is a 15-kDa cytokine with pleiotropic effects on the immune 

system and plays a critical role in the regulation of the immune response206. At 

higher doses, IL-2 promotes T and NK cell activation, expansion, and cytokine 

production, which is mediated through the low-affinity dimeric IL-2 receptor 

consisting of CD122 and CD132 expressed on effector-type lymphocytes206, IL-2 

promotes T and NK cell activation, expansion, and cytokine production, which is 

mediated through the low-affinity dimeric IL-2 receptor consisting of CD122 and 

CD132 expressed on effector-type lymphocytes206. High-dose IL-2 

immunotherapy has been approved for the treatment of several types of cancer, 

including metastatic melanoma and renal cell carcinoma, by enhancing the 

immune response against cancer cells207. In contrast, low-dose IL-2 has been 

shown to selectively expand IL-2-dependent Tregs, which constitutively express 

the high-affinity trimeric IL-2 receptor consisting of CD25, CD122, and CD132, 

and play a critical role in maintaining immune tolerance. Low-dose IL-2 

immunotherapy has shown safety and efficacy in several inflammatory and 
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autoimmune conditions208, such as graft-versus-host disease209, systemic lupus 

erythematosus210, and rheumatic diseases211. 

Genetic studies of T1D have also highlighted the roles of IL-2 and related genes 

in T1D. Multiple genes in the IL-2 pathway, including IL2RA (encoding CD25), IL-

2, IL-21, BACH2, PTPN2 and IL-10 have been linked to T1D susceptibility in 

genome-wide association studies212,213. In particular, lower expression of the 

CD25 subunit of the IL-2 trimeric receptor was found to be correlated with 

increased risk of T1D214.  

Motivated by these findings, various clinical trials have been conducted to 

evaluate the potential of low-dose IL-2 immunotherapy in boosting Treg function 

and restoring immune tolerance in T1D patients. One clinical trial confirmed the 

safety of low-dose IL-2 immunotherapy in adult T1D patients 215. The DILT1D 

trial216 led by Prof John Todd’s group found that Tregs were desensitised for at 

least 24 hours after IL-2 injection, while single doses over 0.38 × 106 IU/m2 

activated conventional T cells in addition to Tregs. In addition, sustained activation 

of memory effector T (Teff) cells was observed for doses over 1.0 × 106 IU/m2. 

These findings signified the importance of appropriate IL-2 dosing regimen. 

Subsequently, the DILfrequency study3 led by Prof John Todd’s group confirmed 

an optimal three-day IL-2 dosing interval, with doses ranging from 0.20–0.47 × 106 

IU/m2. This part of my thesis analyses samples collected from the DILfrequency 

study, and focuses on understanding the effects of interval administration of low-

dose IL-2 in T and NK cells using a single-cell multiomics approach, as detailed 

below. 

2.1.4. Single-cell sequencing 

Single-cell sequencing has revolutionised our understanding of cellular 

composition, heterogeneity and development, and has emerged as a crucial tool 

in various research areas such as cancer, neuroscience and immunology217. 
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Unlike bulk sequencing approaches, which analyse a population of cells together 

and provide an averaged representation of their gene expression profiles, single-

cell sequencing operates on isolated cells and allows the identification of cell-to-

cell variability with unprecedented resolution.  

In a typical single-cell sequencing experiment, a single-cell suspension is first 

prepared from the biological sample of interest, using various methods such as 

enzymatic digestion, mechanical dissociation, or fluorescence-activated cell 

sorting (FACS), while preserving cell integrity and viability. Individual cells are then 

partitioned into droplets containing molecular barcodes and lysis reagents using 

microfluidics devices. Next, library preparation is conducted according to the 

specific type and platform of sequencing. For example, in single-cell RNA 

sequencing using the 10x Genomics Chromium platform, mRNA molecules in 

each cell are captured and reverse-transcribed into complementary DNA (cDNA), 

which then undergoes fragmentation, end repair, adapter ligation, and PCR 

amplification processes218. Finally, the sequencing library is loaded onto a 

sequencer, which yields barcoded reads that can be traced back to individual 

cells using bioinformatics approaches219,220.  

In immunology research, single-cell sequencing has been instrumental in 

understanding immune responses, immune cell development, and immune-

related diseases221. In particular, single-cell sequencing approaches have been 

extensively used in identifying and characterising immune cell types and 

subtypes222,223, revealing heterogeneity within cell types224, tracing immune cell 

development and lineages225–227, and profiling the T and B cell receptor 

repertoires228,229.  

2.1.5. Research objectives 

This project aims to explore in depth the effects of interval low-dose IL-2 

immunotherapy, based on blood samples collected from participants of the 
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DILfrequency clinical trial3. I analysed single-cell multiomics data from isolated T 

and NK cells using a targeted approach based on the BD Rhapsody platform, 

which enabled simultaneous measurement of selected mRNA and surface protein 

markers at single-cell resolution. Specific research objectives include: (i) perform 

a detailed immunophenotypic characterisation of both T and NK cell 

compartments, (ii) confirm that low-dose IL-2 immunotherapy selectively 

expanded functional Treg subsets, without activating effector T cells, (iii) identify 

short-term and long-term changes in cellular composition and gene expression 

profiles induced by low-dose IL-2 immunotherapy, and (iv) provide guidance for 

future clinical studies T1D treatment using low-dose IL-2 immunotherapy.  
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2.2. Results 

2.2.1. Targeted single-cell multiomics 

The DILfrequency study was a nonrandomized, open-label, response-adaptive 

clinical trial  aimed at identifying the optimal IL-2 dosing regimen in patients with 

T1D3. During the study, dosing regimens with varying dose and frequency were 

tested on 38 adult participants with T1D, leading to the conclusion that a three-

day IL-2 dosing interval with doses ranging from 0.20–0.47 × 106 IU/m2 (Figure 58) 

was able to elicit and maintain the desired steady-state increase in Tregs without 

Tconv expansion3.  

 

Figure 58. IL-2 dosing regimen and sampling timepoints. 

Schematic representation of the optimal IL-2 dosing regimen and sampling timepoints 

used in the current study3. 13 participants were selected for single-cell analyses. For each 

participant, three longitudinal blood samples were used, which were taken on Day 0 

(before the first IL-2 injection), Day 27 (before the last IL-2 injection), and Day 55. 

To further investigate the effects of interval low-dose IL-2 (iLD-IL-2) 

immunotherapy, here I profiled T and NK cells from 13 selected DILfrequency 

participants treated with the optimal dosing regimen (0.20-0.47 × 106 IU/m2 

injection once every three days) using a targeted single-cell multiomics approach 

based on the BD Rhapsody platform, which enabled the parallel quantification of 

preselected mRNA and cell-surface proteins in each cell (Figure 59).  
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Figure 59. Single-cell sequencing experiment design. 

Schematic representation of the single-cell sequencing experiments conducted to study 

the effects in low-dose IL-2 in T and NK cells. 39 PBMC samples the 13 selected 

participants taken at three timepoints were sorted using flow cytometry to isolate and 

enrich five major cell populations: CD4+ Tregs (30%), CD4+ Tconvs (25%), CD8+ T cells 

(25%), CD56br NK cells (12%) and CD56dim NK cells (8%), where the numbers in the 

brackets represent the approximate proportion of each cell type included in the single-

cell sequencing experiments.  Roughly half of the cells were stimulated in vitro using 

phorbol myristate acetate and ionomycin (PMA+I). Both stimulated and unstimulated cells 

were then tagged using BD AbSeq oligo-conjugated antibodies, and sequenced on the 

BD Rhapsody platform. All flow cytometry and sequencing experiments were conducted 

by Ricardo Ferreira.  
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Figure 60. FACS gating strategy for the delineation of T and NK populations. 

Representative illustration of the FACS gating strategy applied to isolate the five T and 

NK cell populations analysed using single-cell sequencing. All flow cytometry 

experiments were conducted by Ricardo Ferreira. Visualisation made by Ricardo Ferreira.  

From each participant, three longitudinal blood samples were selected (Figure 58): 

Day 0 (baseline), Day 27 (immediately before the last IL-2 injection) and Day 55 

(four weeks after the last IL-2 dose). From each cryopreserved PBMC sample, five 

immune cell populations were isolated using fluorescence-activated cell sorting 

FACS (Figure 60), including CD4+ Treg (defined as CD3+ CD4+ CD127low CD25hi), 

CD4+ Tconv (defined as CD3+ CD4+ CD127hi), CD8+ T (defined as CD3+ CD8+), 

CD56br NK (defined as CD56hi), and CD56dim NK (defined as CD56low CD127low). 
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Among the five isolated populations, only CD4+ Treg and CD56br NK were shown 

to expand significant after IL-2 treatment3,5. However, the two populations 

collectively account for less than 5% of PBMCs. Therefore, to maximize the 

statistical power to detect small changes elicited by IL-2 in CD4+ Treg and CD56br 

NK, a cell enrichment strategy was adopted to increase the numbers cells from 

these two populations profiled in single-cell sequencing experiments (Figure 59). 

Specifically, the five isolated populations were labelled with oligo-conjugated 

sample multiplexing antibodies, which enabled the separation of sequenced cells 

by their original FACS gate, and mixed according to the following proportions: 30% 

CD4+ Treg, 25% CD4+ Tconv, 25% CD8+ T, 12% CD56br NK, and 8% CD56dim NK 

(Figure 59). As a result of this enrichment strategy, the composition of each cell 

population in the sequencing data did not reflect the corresponding composition 

in PBMC samples. Therefore, most downstream analyses were conducted within 

specific cell populations.  

The cell mixtures were split into two batches, one of which were sequenced 

directly, while the other were stimulated in vitro prior to sequencing. Single-cell 

sequencing was conducted using a custom multiomics panel previously 

developed by Ricardo Ferreira specifically for the investigation of T and NK cell 

populations230, which consisted of 565 mRNA probes and 65 oligo-labelled 

antibodies that target cell-surface proteins (Figure 59). Compared to whole-

transcriptome single-cell sequencing, this targeted approach based on the BD 

Rhapsody platform enabled deeper sequencing of key differentiation markers for 

T and NK cells at a lower cost, which was essential for mapping the heterogeneity 

within these immune cell subsets222,230.  
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Figure 61. Integration of the single-cell multiomics data. 

(A, D) Uniform Manifold Approximation and Projection (UMAP) embedding of 

unstimulated (A) and stimulated (D) cells in T and NK populations. Cells were coloured 

according to the FACS-isolated T and NK populations. Sparse grey dots in the CD56br 

clusters correspond to a small fraction of untagged CD56br NK cells, whose sample 

barcode information are missing due to suboptimal sample tagging efficiency.  

(B, E) Same as (A) and (D), respectively, with cells coloured according to the 

DILfrequency participants. 

(C, F) Relative proportion of unstimulated (C) or stimulated (F) cells from each participant 

in each of the isolated populations. Areas of grey circles represent the number of cells 

sequenced in each population.   

Batch effects represent an important technical challenge in single-cell 

sequencing231. To minimise the impact of batch effects in the identification of IL-

2-induced changes, I applied a combination of canonical correlation analysis and 

identification of mutual nearest neighbours, implemented in Seurat232,233, to 

correct for batch effects among samples from different participants (detailed on 
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page 189). Following the batch-effect correction, I observed good overlap among 

cells from different participants, all of whom were well represented in the dataset 

(Figure 61).  

2.2.2. Selective expansion of thymically derived Tregs during iLD-
IL-2 treatment 

Based on specific cell types identified using unsupervised clustering methods, I 

first investigated whether the iLD-IL-2 regimen applied here altered the relative 

composition of cells in the PBMC. Because of the cell subset enrichment strategy 

adopted in designing the single-cell sequencing experiments (Figure 59), the 

proportion of each major cell population did not reflect the corresponding 

physiological proportion in PBMC. Therefore, I conducted the differential 

abundance analyses separately for each of the five major cell types defined by the 

corresponding FACS sorting gates (detailed on page 191).  
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Figure 62. iLD-IL-2 selectively expanded naïve tTreg subsets. 

(A, C) UMAP embedding of unstimulated (A) and stimulated (C) cells from the CD4+ Treg 

population, coloured by identified clusters. Clusters were manually annotated based on 

the expression of key mRNA and protein markers. Clusters classified as naïve tTregs 

(FOXP3+ HELIOS+ CD45RA+), memory tTregs (FOXP3+ HELIOS+ CD45RA-), and CD25+ 

Teffs (FOXP3– HELIOS– CD45RA–) are annotated in green, blue and orange, respectively. 

Other miscellaneous clusters are annotated in black. Selected markers of each cluster 

are shown in Appendix Figure 4. 
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(B, D) Abundance changes of naïve tTreg, memory tTreg, and CD25+ Teff subsets on Day 

27 compared to Day 0, for unstimulated (B) and stimulated (D) cells. Each dot represents 

cells from a single participant. Dots with the same colour represent the same participant. 

Calculations of fold changes and P values are described on page 191. 

 

Figure 63. Expression of FOXP3, IKZF2 and IL2 differentiates functional CD4+ Treg and 

Tconv subsets. 

(A-B) UMAP embedding of unstimulated cells in the CD4+ Treg population coloured by 

the expression levels of FOXP3 (A) and IKZF2 (B). 

(C) Distribution of FOXP3 and IKZF2 expression levels in each cluster in the unstimulated 

CD4+ Treg population.  

(D-E) Same as (A) and (B), respectively, for stimulated cells.  

(F) Distribution of FOXP3, IKZF2, and IL2 expression levels in each cluster in the 

stimulated CD4+ Treg population.  
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In (C) and (F), clusters classified as naïve tTregs, memory tTregs, and CD25+ Teffs are 

annotated in green, blue and orange, respectively. Other miscellaneous clusters are 

annotated in black. 

 

Figure 64. Compositional changes in the CD4+ Treg population on Day 55. 

(A-B) Abundance changes of naïve tTreg, memory tTreg, and CD25+ Teff subsets on Day 

55 compared to Day 0, for unstimulated (A) and stimulated (B) cells. 

Expression of FOXP3 and HELIOS are considered canonical markers for stable 

Tregs198,234, usually tTregs. However, the quantification of these two transcriptional 

factors required intracellular staining, which was incompatible with downstream 

single-cell sequencing. Therefore, the CD4+ Treg population isolated using FACS 

was defined by the low expression of CD127 and high expression of CD25, as 

mentioned above (Figure 60). The Treg population defined this way was known to 

be heterogeneous, containing not only tTregs, which express FOXP3 and HELIOS, 

but also a fraction activated Teffs that express high levels of CD25 and low levels 

of CD127198, which may be pathogenic in T1D patients.  
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13 clusters were identified and annotated in the CD4+ Treg population using 

single-cell sequencing (Figure 62 and Appendix Figure 4). Analysis of the mRNA 

levels of FOXP3 and IKZF2 (encoding HELIOS) and IL2 (encoding cytokine IL-2) 

in the CD4+ Treg population allowed the stratification of naïve tTregs (FOXP3+ 

HELIOS+ CD45RA+), memory tTregs (FOXP3+ HELIOS+ CD45RA-), and CD25+ 

Teffs (FOXP3- HELIOS- CD45RA-), among other subsets (Figure 62 and Figure 63). 

Differential abundance analysis revealed an increase in the abundance of naïve 

tTregs and a concomitant reduction of CD25+ Teffs on Day 27, after the 

conclusion of the four-week IL-2 dosing phase, which was replicated in stimulated 

cells (Figure 62). This compositional change of the CD4+ Treg population reverted 

to baseline on Day 55 (Figure 64). Abundance changes of specific CD4+ Treg 

clusters can be found in Appendix Figure 5. 

 

Figure 65. Estimated absolute Treg cell numbers in circulation 
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Absolute cell numbers of naïve tTregs, memory tTregs, and CD25+ Teffs on Day 0, Day 

27, and Day 55, estimated from unstimulated and stimulated cells in the CD4+ Treg 

population. Absolute cell numbers of the Treg subsets were calculated by multiplying the 

absolute number of cells in the CD4+ Treg population, which was measured by FACS and 

reported previously3, and the relative abundance of the respective subset, which was 

measured by single-cell sequencing. Error bars denote the standard error of mean (SEM). 

Ricardo Ferreira contributed to this analysis.  

Previous analyses of flow cytometry data from the same DILfrequency samples 

had shown a ~50% overall expansion of cell counts in the CD4+ Treg population, 

which sustained during the IL-2 treatment and returned to the baseline on Day 

553,5. Combining this result with the compositional changes within the CD4+ Treg 

population described above (Figure 62), I calculated the absolute numbers of each 

Treg subset, and found that the IL-2-induced expansion on Day 27 was restricted 

to the naïve and memory tTreg subsets (Figure 65). I observed very good 

concordance between unstimulated and stimulated conditions, with naïve tTregs 

showing a two-fold increase and memory tTregs displaying a ~70% increase in 

cell numbers compared to pre-treatment levels. In contrast, the number of CD25+ 

Teffs within this population, despite their expression of the high affinity trimeric IL-

2 receptor, showed no signs of increase (Figure 65). 

2.2.3. Reduction of IL-21-producing T cells induced by IL-2  

IL-21 signalling play a critical role in the development of T1D235,236. In particular, 

IL-21 production by T follicular helper (TFH) cells is increased in T1D patients237,238, 

and anti-interleukin-21 antibody, combined with liraglutide, is able to preserve β-

cell function in recently diagnosed T1D patients239. In addition to cytokine IL-21, 

canonical markers for TFH cells include cell surface receptors CXCR5, ICOS, and 

PD-1, and transcription factors MAF and BCL6240.  
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Within the unstimulated CD4+ Treg and Tconv populations, two clusters were 

identified with transcriptional profiles resembling TFH, including a cluster in the 

CD25+ Teff subset, which expressed CXCR5, PD-1, ICOS, and MAF, and was 

annotated as CD25+ TFH (Appendix Figure 4). Another cluster in the CD4+ Tconv 

population that expressed CXCR5 and showed a profile consistent with central 

memory (TCM) cells, a subset known to be enriched with circulating precursors of 

TFH cells241, was annotated as CXCR5+ TCM (Appendix Figure 6). After IL-2 

treatment, CD25+ TFH showed a slight decrease in abundance on Day 27, which 

returned to baseline on Day 55 (Appendix Figure 5), while CXCR5+ TCM abundance 

displayed no significant changes.  

In vitro stimulation was able to elicit the expression of cytokine IL-21 in T cells, 

allowing better discrimination of the TFH clusters. This led to the identification of 

four clusters with IL-21 expression and transcriptional profiles resembling TFH from 

stimulated CD4+ Treg and Tconv populations, including two clusters in the CD4+ 

Tconv population annotated as CXCR5+ TCM and CXCR5low IL-21+, and another 

two clusters in the CD4+ Treg population annotated as CD25+ TFH and CD25+ IL-

21+ TFH (Appendix Figure 4, Appendix Figure 7, and Figure 66). After IL-2 treatment, 

CXCR5+ TCM showed no abundance changes, while CXCR5low IL-21+, CD25+ TFH, 

and CD25+ IL-21+ TFH displayed various degrees of decrease in abundance on Day 

27, which returned to baseline on Day 55 (Appendix Figure 5 and Appendix Figure 

7).  

Meanwhile, a cluster in the unstimulated CD4+ Treg population that with distinct 

Treg features, such as the expression of POU2AF1 and CCR9, in addition to a TFH 

transcription profile, was annotated as FOXP3+ T follicular regulatory (TFR) cells 

(Appendix Figure 4). Unlike other TFH clusters, FOXP3+ did not show a significant 

reduction in abundance on Day 27 (Appendix Figure 5).   
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Figure 66. IL-2 inhibited the differentiation of IL-21-producing CD4+ T cells 

(A) Expression levels of 30 differentially expressed mRNA and protein markers in four IL-

21-producing subsets from stimulated cells in the CD4+ Treg and Tconv populations. 

(B) Distribution of expression levels of CXCR5 protein and IL21 mRNA in the four subsets 

described in (A). 

(C) UMAP embedding of stimulated cells in the CD4+ Treg and Tconv populations. The 

four subsets described in (A) are highlighted cyan, green, red, and brown. Other cells 

from the CD4+ Treg and Tconv populations were shown in dark and light grey, 

respectively.  

(D) Same as (C), with cells coloured by IL-21 expression levels.  
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(E) Gene expression changes between IL-21+ and IL-21– cells within each of the four 

subsets described in (A). Genes with absolute log2 fold change ≥ 1.2 and FDR-adjusted 

P < 0.01 in at least one subset are shown. Calculations of fold changes and P values are 

described on page 193. 

(F) Abundance changes of IL-21+ cells within the CXCR5low IL-21+ and CD25+ IL-21+ TFH 

subsets, comparing Day 27 or Day 55 with Day 0.  

Next, I compared the transcriptional profile of the four IL-21-producing TFH-like 

clusters identified in the stimulated CD4+ Treg and Tconv populations. I found a 

continuum of TFH differentiation among these clusters, with CD25+ IL-21+ TFH 

representing the terminal stage of TFH maturation in blood, as illustrated by their 

classical TFH profile and high IL-21 production (Figure 66). Analysis of the co-

expression of CXCR5 and IL-21 suggested that IL-21 was predominantly 

expressed in the CXCR5+ cells rather than CXCR5- cells, with the exception that, 

in the CXCR5low IL-21+ cluster, 50% of IL-21+ cells express low levels of CXCR5 

(Figure 66B). These IL-21+ cells likely corresponded to circulating T peripheral 

helper (TPH) cells, a cell type that was defined as CXCR5− PD-1hi and previously 

shown to be increased in T1D patients242. In addition, though originating from 

different isolated populations, CXCR5+ TCM in CD4+ Tconv and CD25+ TFH in CD4+ 

Treg shared similar transcriptional profiles (Figure 66A), with the latter likely 

representing an earlier stage of TFH differentiation. In agreement with this shared 

identity and developmental stage, CXCR5+ TCM and CD25+ TFH clusters had largely 

overlapping UMAP embeddings among all stimulated CD4+ T cells (Figure 66C). 

In contrast to the other three TFH-like subsets, the CXCR5low IL-21+ cluster in the 

CD4+ Teff population represented a much more heterogeneous subset with 

scattered UMAP embedding and high IL-21 production (Figure 66C-D). 

To better discriminate the effect of IL-2 on IL-21 production, I stratified cells in 

these four TFH-like subsets according to their expression of IL-21 (Figure 66E). This 

revealed a reduction in the relative proportion of IL-21+ cells on Day 27 in CXCR5low 
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IL-21+ and CD25+ IL21+ TFH subsets (Figure 66F), both of which displayed high 

levels of IL-2 production (Figure 66B).  

 

Figure 67. Pseudotime analysis of the TFH differentiation trajectory. 

(A) UMAP embedding of stimulated cells in the CD4+ Treg and Tconv populations, 

coloured by pseudotime. The black line denotes an identified pseudotime trajectory that 

was related to TFH differentiation. The white arrow denotes the predefined starting point 

of the pseudotime trajectory. Identification of pseudotime trajectories is described on 

page 192. 

(B) Distribution of cells along the pseudotime trajectory described in (A), stratified by 

cluster labels.  

(C) Fitted expression curves of selected TFH marker genes along the pseudotime 

trajectory described in (A).  

(D) Same as (B), with cells stratified by timepoints.  

Finally, I used pseudotime analysis to confirm the differentiation trajectory of TFH 

cells. Pseudotime analysis is a computational approach for trajectory inference 

using single-cell sequencing data243. Conceptually speaking, pseudotime analysis 
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works by ordering the cells linearly so that similar cells are close to each other. A 

cross-sectional sample of living humans, properly ordered, reveals the temporal 

trajectory of growth and aging. Analogously, a cross-sectional sample of single-

cells often contains cells at various development stages that can be used to build 

pseudotime trajectories, which often resemble trajectories of cell 

differentiation226,227,244.  

Here, pseudotime analysis in stimulated CD4+ Treg and Tconv cells revealed a 

trajectory of TFH cell differentiation characterised by the acquisition of a TFH 

phenotype and production of IL-21 (Figure 67A-C). The distribution of cells along 

this pseudotime differentiation trajectory confirmed that Day 27 samples had 

fewer differentiated TFH cells compared to Day 0 samples (Figure 67D), consistent 

with differential abundance results described above (Appendix Figure 5 and 

Appendix Figure 7). In addition, the TFH cells on Day 27 appeared to have a lower 

degree of differentiation compared to those on Day 0 (Figure 67D). Meanwhile, the 

pseudotime distribution on Day 55 was similar to that on Day 0. These results 

further supported a potential effect of iLD-IL-2 immunotherapy in inhibiting the 

differentiation of IL-21-producing cells, which had not been reported previously. 

In addition IL-21-producing cells, I also found evidence for the reduction of 

another cytokine-producing subset in the stimulated CD4+ Treg population 

annotated as CD25+ TH2 TEM, which expressed various pro-inflammatory cytokines 

including GM-CSF, IL-21 and IL-2, IL-4 and IL-13 (Appendix Figure 4 and 

Appendix Figure 5B). 

2.2.4. Effects of iLD-IL-2 on CD8+ T and CD56+ NK cells 
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Figure 68. IL-2 reduced MAIT and Vγ9Vδ2 T cells and increased HLA-II+ CD56br NK cells. 

(A) UMAP embedding of unstimulated cells in the CD8+ T population, coloured by 

identified clusters. Selected markers of each cluster are shown in Appendix Figure 8A. 

(B) Abundance changes of five selected clusters in (A), comparing Day 27 with Day 0. 

(C) Abundance of innate-like mucosal-associated invariant T cells (MAIT) and Vγ9Vδ2 

clusters within the CD8+ T population on Day 0, Day 27, and Day 55. Each line represents 

cells from a participant. Lines with the same colour represent the same participant. 

(D) UMAP embedding of unstimulated cells in the CD56br and CD56dim NK populations 

coloured by identified clusters. Selected markers of each cluster are shown in Appendix 

Figure 9A. 
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(E) Same as (D), showing the CD56br and CD56dim NK populations separately.  

(F-G) Abundance changes of five selected clusters in the CD56br (F) or CD56dim (G) NK 

populations in (D), comparing Day 27 with Day 0.  

In the CD8+ T population, differential abundance analyses revealed the reduction 

of two clusters annotated as mucosal-associated invariant T cells (MAIT) and 

Vγ9Vδ2, both of which were innate-like CD8+ T cells (Figure 68A-B and Appendix 

Figure 8). Unlike compositional changes in the CD4+ Treg and Tconv populations, 

the reduction of MAIT and Vγ9Vδ2 cells sustained on Day 55, one month after the 

last dose of IL-2 (Figure 68C). Meanwhile, no discernible differences were found 

in the abundance of the other clusters, which represented conventional αβ CD8+ 

T cell subsets. 

CD56br and CD56dim NK populations had relative low heterogeneity compared to 

T cell populations (Figure 68D-E). Similar to CD4+ Treg, the number of cells in the 

CD56br NK population increased significantly during IL-2 treatment in the 

DILfrequency participants, as previously reported3,5. Here, I found that this 

increase of CD56br NK was particularly driven by a subset annotated as HLA-II+ 

CD56br, which had an increased fraction on Day 27 (Figure 68F) but not Day 55 

(Appendix Figure 9B-C), compared to Day 0. Meanwhile, I found no compositional 

changes in the CD56dim NK population (Figure 68G and Appendix Figure 9), except 

the reduction of a small fraction of contaminating cells in both CD56br and CD56dim 

NK populations on Day 27, including CD56dim sorted as CD56br, and CD56br sorted 

as CD56dim (Figure 68F-G). 

2.2.5. Reduction of cycling Treg and CD56br NK cells in blood 

Cycling cells express a set of specific marker genes, such as MCM4, TOP2A, and 

MKI67 (encoding Ki-67). Based on a proliferation score derived from 11 cell-cycle 

markers (detailed on page 194), I identified subsets of cycling cells in the 
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unstimulated T and NK populations (Figure 69A). Cycling cells were not present in 

the stimulated populations, likely due to the high susceptibility of cycling cells to 

apoptosis following activation245. Comparing Day 27 with Day 0, I found a 

reduction in the fractions of proliferating cells within the CD56br NK and CD4+ Treg 

populations (Figure 69B). This was inconsistent with previous reports that the 

fractions of Tregs and CD56br NK cells expressing Ki-67, a proliferation marker 

widely used in flow cytometry, increased after LD-IL-2 treatment210,246,247. A 

possible explanation of this discrepancy is that Ki-67 is not an optimal proliferation 

marker in this context. Ki-67 is a long-lived protein that is synthesised during the 

S and G2/M phases of the cell cycle, which remains detectable in the G1 phase 

after cell division248. Therefore, the increased levels of Ki-67+ cells identified 

previously by FACS likely reflected protein accumulation in recently divided cells 

in the G1 phase, whereas the reduction of proliferating cells shown here (Figure 

69) reflects a reduction of actively dividing cells in blood. This reduction was 

possibly due to an increased likelihood for cells to enter the cell cycle in tissues 

rather than blood, as IL-2 accumulates on the extracellular matrix during dosing249–

251.  

 

Figure 69. IL-2 reduced proliferating Treg and CD56br NK cells in blood. 
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(A) UMAP embedding of unstimulated cells in the five T and NK populations sequenced, 

coloured by a predefined proliferation score. Calculation of the proliferation score is 

described on page 194.  

(B) Abundance of proliferating cells within each T or NK population sequenced on Day 0, 

Day 27, and Day 55. Proliferating cells were defined based on identified clusters marked 

by high proliferation scores. Dots denote mean values across 13 participants. Error bars 

denote 95% confidence intervals of mean values. 

2.2.6. A long-lasting anti-inflammatory gene expression signature 

In addition to differential expression analyses described above, I investigated 

whether IL-2, induced short-term or long-term changes in the gene expression 

profile of each T and NK population. On Day 27, I identified 40 genes that were 

differentially expressed in one or more populations of unstimulated and stimulated 

cells (Figure 70). Consistent with previous flow cytometry analyses3, CD25 was 

strongly upregulated on Tregs on Day 27. The differentially expressed genes were 

mostly restricted to the CD4+ Treg and CD56br NK populations, which were 

known to be sensitive to IL-2 treatment3,5. These genes could be broadly 

categorised into CD4+ Treg and CD56br NK signature genes, reflecting the 

increased abundance of naïve tTregs (Figure 64) after iLD-IL-2 treatment, as well 

as the decrease of contaminating CD56dim NK cells (Figure 68F). In addition, 

several genes related to cell cycle, including TK1, TYMS, PCLAF and TOP2A, were 

found downregulated in the CD56br NK population, and to a lesser degree in the 

CD4+ Treg population (Figure 70), which was consistent with the decrease of 

cycling cells in the CD4+ Treg and CD56br NK populations described above (Figure 

69). 
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Figure 70. iLD-IL2 selectively modulated gene expression of Tregs and CD56br NK cells 

on Day 27. 

(A) Volcano plots showing differential expression between Day 0 and Day 27 for the five 

T and NK populations sequenced. Significantly upregulated and downregulated genes 

are coloured in red and blue, respectively. Names of the top five upregulated and 

downregulated genes as defined by fold change values are labelled on each panel. 

Calculations of fold changes and P values and the definition of significantly differential 

expression are described on page 193. 
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(B) Differential expression of the 40 genes that are significantly differentially expressed in 

at least one population in (A). Dot colours represent log2 fold changes between Day 0 and 

Day 27. Larger dots represent genes that are significantly differentially expressed in the 

respective cell population. Manually annotated gene subsets are labelled with dashed 

boxes.  

 

Figure 71. iLD-IL2 induced a long-lasting anti-inflammatory gene expression signature. 
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(A) Volcano plots showing differential expression between Day 0 and Day 55 for the five 

T and NK populations sequenced. Significantly upregulated and downregulated genes 

are coloured in red and blue, respectively. Names of the top five upregulated and 

downregulated genes as defined by fold change values are labelled on each panel.  

(B) Differential expression of the 41 genes that are significantly differentially expressed in 

at least one population in (A). Dot colours represent log2 fold changes between Day 0 

and Day 55. Larger dots represent genes that are significantly differentially expressed in 

the respective cell population.  

Comparing Day 55 with Day 0, I found a consistent differential expression pattern 

in unstimulated cells in all five T and NK populations (Figure 71). This shared gene 

expression signature induced by the iLD-IL-2 dosing regimen, which was 

sustained one month after the last IL-2 injection, featured most prominently the 

upregulation of Cytokine Inducible SH2 Containing Protein (CISH), a gene 

encoding a well-characterised negative regulator of cytokine signalling, and the 

downregulation of Amphiregulin (AREG), a secreted protein with pleiotropic roles 

in inflammation252. This Day 55 differential expression signature were enriched of 

genes associated with cytokine signalling, most notably in the TNF signalling 

pathway, which, in addition to CISH and AREG, also included TNFSF14, TNFSF10, 

STAT1, SGK1, NFKBIZ, NFKBIA, DUSP2, DUSP4, DUSP5, RGS1 and TNFAIP3 

(Figure 71B). Furthermore, I observed a downregulation of several TNF-inducible 

genes that play a central role in curtailing TNF signalling, including the inhibitors 

of NFκB, NFKBIZ and NFKBIA, RGS1, TNFAIP3 and AREG. Consistent with this 

observation, Oncostatin M (OSM), a pro-inflammatory cytokine shown to be 

increased in inflammatory bowel disease patients with poor response to anti-TNF 

therapy253, was also downregulated after iLD-IL-2 treatment. Increased 

expression of TNFSF14, which encodes LIGHT, is notable as decreased 

expression is associated with higher susceptibility to multiple sclerosis (MS)254. In 
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addition, in a MS mouse model, LIGHT expression in the brain limits disease 

severity255.  

Based on the function of involved genes, I refer to this gene expression signature 

as the IL-2-induced anti-inflammatory signature (IL2-AIS) hereafter, which 

includes 41 differentially expressed genes identified from Day 55 samples in one 

or more populations (Figure 71B).  

 

Figure 72. Induction of IL2-AIS on Day 27 is IL-2 dose-dependent. 
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(A) Participant-specific differential expression in CD8+ T cells comparing Day 27 (top) or 

Day 55 (bottom) with Day 0. Top 5 upregulated and downregulated genes ranked by Day 

55/Day 0 fold-changes in CD8+ T cells are shown. Participant receiving IL-2 doses of 0.2 

×106 IU/m2, 0.32 ×106 IU/m2, and 0.47 ×106 IU/m2 are labelled in cyan, grey, and purple, 

respectively. Day 55 data for participant P8 was excluded due to technical reasons 

detailed on page 189. 

(B) IL2-AIS scores on Day 0, Day 27, and Day 55, stratified by participant (colours) and 

cell type (rows). Calculation of IL2-AIS scores is described on page 195. P values were 

calculated using a two-tailed paired t test comparing Day 27 or Day 55 with Day 0. 

(C-D) Differences of the IL2-AIS scores between Day 27 (C) or Day 55 (D) and Day 0 

averaged across the five T and NK populations stratified by IL-2 doses. Each dot 

represents a participant. P values were calculated using linear regression, with IL-2 doses 

treated as a continuous variable.  

In contrast to the consistent observation of the IL2-AIS on Day 55 across different 

participants, the expression changes of IL2-AIS genes on Day 27 displayed 

considerable heterogeneity among participants (Figure 72A). Some participants 

exhibited concordant expression changes on Day 27 and Day 55, compared to 

Day 0, while others showed discordant expression profiles, with CISH being 

downregulated and AREG upregulated on Day 27, which likely explained why the 

IL2-AIS could not be identified by comparing Day 27 with Day 0.  

Considering this correlation among different IL2-AIS genes, I derived a linear 

score to quantify IL2-AIS changes for each participant, referred to as the IL2-AIS 

score, with higher scores reflecting higher expression of signature genes 

upregulated in IL2-AIS, such as CISH, and lower expression of signature genes 

downregulated in IL2-AIS, such as AREG. As expected, the IL2-AIS score showed 

considerable inter-individual variation that was consistent across different cell 

types (Figure 72B). Correlation between the IL2-AIS scores and IL-2 doses 
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suggested that participants receiving higher doses of IL-2 were more likely to have 

increased IL2-AIS scores on both Day 27 and Day 55 compared the baseline, 

while participants receiving lower doses tended to show such increases only on 

Day 55, but not Day 27 (Figure 72C-D). The mechanism of action of this dose-

dependent induction of IL2-AIS on Day 27 remains unknown.  

2.2.7. A pro-inflammatory gene expression signature related to IL2-
AIS in COVID-19 patients 

Since 2019, the COVID-19 pandemic has led to unprecedented collaborative 

efforts to elucidate the mechanisms of the immune response to SARS-CoV-2 

infection. In particular, recent reports highlighted the differential expression of 

several key IL2-AIS genes in COVID-19 patients, including CISH, AREG, DUSP2, 

NFKBIA and TNFAIP3229,256. In light of this, I examined the dynamics of IL2-AIS in 

the context of the inflammatory responses in immune cell samples from two large-

scale COVID-19 cohorts, the COMBAT cohort229 and the INCOV cohort256 (Figure 

73).  

 

Figure 73. Study design of the DILfrequency, COMBAT and INCOV cohorts. 

Schematic representation of the study design of the DILfrequency3,5, COMBAT229 and 

INCOV256 cohorts. Only participants included in the current analyses are shown.  
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Figure 74. Differential expression of IL2-AIS genes in COVID-19 patients. 
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(A-B) Differential expression of the 41 IL2-AIS genes in the COMBAT (A) or INCOV (B) 

cohort. Differential expression was identified by comparing the expression between 

COVID-19 patients of varying disease severity with healthy controls in COMBAT (A), and 

by comparing post-acute phase (29 to 84 days post symptoms) samples to acute phase 

(1-14 days post symptoms) samples of the same COVID-19 participants in INCOV (B). 

Dot colours represent log2 fold change values. Larger dots represent genes with FDR-

adjusted P < 0.05. Calculations of fold change and P values are described on page 193. 

Differential expression analyses suggested that many IL2-AIS genes were 

regulated in the opposite direction in COVID-19 patients compared to healthy 

controls (Figure 71 and Figure 74A). For example, in direct contrast to the 

observed transcriptional changes induced by iLD-IL-2 in T1D patients, I observed 

the downregulation of CISH and the upregulation of AREG in COVID-19 patients 

during acute infection, across multiple immune cell types.  

 

Figure 75. IL2-AIS scores decreased in COVID-19 patients of varying severity. 

(A) IL2-AIS scores in T cells from each participant group in the COMBAT cohort. Data 

was stratified by disease group and COVID-19 disease severity. P values were calculated 

by comparing each patient group with healthy controls using two-sided Mann–Whitney 

U test followed by FDR adjustment based on the six comparisons.  
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(B) Mean IL2-AIS scores in CD8+ T cells from each participant group in the INCOV cohort 

from samples collected during the first 14 days after symptoms onset. Data was stratified 

by COVID-19 disease severity. For participants with multiple longitudinal samples 

available, mean IL2-AIS scores across these samples are shown. P values are calculated 

by comparing the severe or critical COVID-19 group with the mild COVID-19 group using 

two-sided Mann–Whitney U test.  

Evaluation of the IL2-AIS score in the COMBAT and INCOV cohorts revealed that 

this inverted modulation of the IL2-AIS was specifically observed in COVID-19 

patients, but not in hospitalised patients in the COMBAT cohort who had other 

pro-inflammatory conditions, such as severe influenza or sepsis (Figure 75A). 

Furthermore, the COVID-19-specific decrease of the IL2-AIS scores was 

observed across all disease severity groups and did not appear to be correlated 

with COVID-19 severity (Figure 75). 

2.2.8. Sustained transcriptional changes in COVID-19 patients 

 

Figure 76. IL2-AIS scores progressively decreased after SARS-CoV-2 infection. 
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(A-B) Decrease of IL2-AIS scores after the onset of symptoms in COVID-19 patients from 

the COMBAT cohort (A) or INCOV (B) cohorts. Each dot represents a clinical sample, and 

colours depict the different COVID-19 disease severity groups. In the INCOV cohort, 

patients are grouped by their worst recorded COVID-19 severity. Dashed black lines 

represent locally weighted scatterplot smoothing (LOWESS) curves. The IL2-AIS score 

was calculated in T cells and CD8+ T cells in the COMBAT and INCOV cohorts, 

respectively. P values were computed using Spearman's rank correlation. IL2-AIS scores 

for additional cell types are shown in Appendix Figure 10. IL2-AIS scores for specific cell 

subsets in the COMBAT cohort are shown in Appendix Figure 11. 

Considering that the IL2-AIS was observed one month after the final IL-2 injection 

(Figure 72), and that the decrease of the IL2-AIS score was especially pronounced 

in a group of community COVID-19 patients in the COMBAT cohort (Figure 75) 

who were recruited from healthcare works and sampled relatively late (at least 

seven days post symptoms) compared to other patient groups229, I speculated 

that IL2-AIS changes were progressively induced in both iLD-IL-2 and COVID-19 

contexts. In support of this, analyses of IL2-AIS score dynamics in both COMBAT 

and INCOV cohorts revealed a progressive decrease during the first 2-3 weeks 

after SARS-CoV-2 infection (Figure 76). In addition, in the INCOV cohort, where 

longer-term follow-up samples were available, the decrease of IL2-AIS scores 

sustained for 2-3 months before showing slight signs of recovery towards the 

baseline (Figure 76B). The dynamics of the IL2-AIS transcriptional changes were 

largely consistent in all immune populations assessed in both COVID-19 cohorts, 

while the magnitude was largest in T and NK cells and smallest in B cells 

(Appendix Figure 10). Based on available cell-type annotations in the COMBAT 

dataset, I also investigated the dynamics of IL2-AIS in specific cell subsets, which 

confirmed that almost all evaluated cell subsets displayed IL2-AIS score changes 

(Appendix Figure 11) similar to that observed for the aggregated cell types (Figure 

76A and Appendix Figure 10). This suggested that the IL2-AIS changes reflected 
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differential expression within each cell subset, rather than relative compositional 

changes among different subsets. 

 

Figure 77. Modelling the dynamics of IL2-AIS scores in the INCOV cohort. 

Posterior mean values (dots) and 95% confidence intervals (error bars) of the expected 

IL2-AIS scores (y axis) for each time range after COVID-19 symptoms onset (x axis). The 

expected IL2-AIS scores were estimated using a Bayesian linear model with regularising 

priors, detailed on page 195. 

Considering that most participants in the INCOV cohort were sampled multiple 

times after symptom onset, I modelled the participant-specific effects and time-

specific effects to the IL2-AIS scores in the INCOV cohort (detailed on page 195), 

which confirmed the progressive decline during the first 90 days post infection in 

CD4+ T, CD8+ T and NK cells, followed by a slow recovery (Figure 77). In 

monocytes and B cells, this pattern was less clear, though a general trend of 

decline was evident. 
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Figure 78. Severe/critical patients reporting post-acute sequelae symptoms had lower 

IL2-AIS scores. 

Time-adjusted IL2-AIS scores for patients with or without post-acute sequelae of COVID-

19 (PASC) symptoms, shown for the five cell types in the INCOV cohort. Each dot 

represents a patient. Patients are stratified by their maximum COVID-19 severity (colours), 

with mild patients shown on the top row, and severe/critical patients shown on the bottom 

row. The P values were calculated using two-sided Mann–Whitney U test and corrected 

for multiple testing using the Benjamini–Hochberg procedure. 

The specificity of the IL2-AIS changes towards SARS-CoV-2 infection (Figure 75) 

and its persistence in samples taken months after the acute phase (Figure 76) 

implied the existence of potential long-term impairment of the immune response, 

which could underpin the manifestation of post-acute sequalae symptoms of 

COVID-19 (PASC). In agreement with this hypothesis, I found that severe and 

critical COVID-19 patients in the INCOV cohort who reported one or more PASC 

symptoms had lower IL2-AIS scores compared to those reporting no PASC 

symptoms (Figure 78). However, although this trend was consistently observed in 

all analysed immune subsets, the effect size was relatively small compared to 

intra-group variance, likely due to the heterogeneity of PASC symptoms256.  
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In all three datasets analysed, I found the IL2-AIS score was not correlated with 

age or sex (Appendix Figure 12), although both factors were found to be 

associated with COVID-19 severity and PASC symptoms257,258.  

 

Figure 79. Replicating a subset of IL2-AIS using the NanoString nCounter 

transcriptomics platform. 

(A) Overview of the Gedda et al. 2022 cohort259.  
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(B) Distribution of the IL2-AIS* scores from 139 convalescent COVID-19 patients and 40 

healthy control participants in the Gedda et al. 2022 cohort. The IL2-AIS* scores were 

calculated using a subset of 16 IL2-AIS constituent genes profiled using the NanoString 

nCounter Human Host Response panel: MYC, CXCR1, OAS1, TNFSF10, FASLG, CCR10, 

STAT1, CX3CR1, CD40LG, IL32, EOMES, CCR1, OSM, SLC2A3, CXCR4, and CCL5. 

Each dot represents a whole-blood sample from a participant visit. Each participant has 

up to five longitudinal samples. P values are calculated by comparing each group of 

COVID-19 patients with healthy controls using two-sided Mann–Whitney U test followed 

by FDR adjustment. 

To obtain further evidence of these transcriptional changes, I assessed data from 

a recent study published by Gedda et al.259, which used the NanoString nCounter 

platform to profile the transcriptional landscape of red blood cell-depleted whole-

blood samples taken from 162 convalescent COVID-19 patients and 40 healthy 

controls (Figure 79A). The NanoString nCounter Human Host Response panel 

used in this study included 16 of the 41 IL2-AIS genes, allowing us to derive a 

signature score capturing a subset of the original IL2-AIS, referred to as the IL2-

AIS* score. Consistent with previous observations, the IL2-AIS* score showed a 

progressive decrease during the first two months after infection, followed by a 

gradual recovery towards the baseline level measured in healthy control 

participants (Figure 79B). Despite the limited overlap between the IL2-AIS genes 

and the NanoString transcriptional panel, as well as differences in cell types, the 

consistency observed in the Gedda et al. cohort provides additional validation of 

the longevity of the transcriptional alterations induced by SARS-CoV-2 infection. 

2.2.9. Network analysis of transcriptional changes in COVID-19 
patients 

As the IL2-AIS was initially identified in the DILfrequency study using a targeted 

panel of 565 transcripts designed for profiling T and NK cells, I sought to interpret 
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the observed changes in the broader transcriptional landscape of immune cells in 

COVID-19 patients. In the COMBAT study, the authors employed a multi-

parametric tensor decomposition analysis combining gene expression, surface 

protein expression (CITE-seq), plasma proteomics and cell subset abundance 

(flow cytometry) data, to identify 130 COVID-19-associated gene expression 

components categorized into 14 clusters, with each component containing a large 

number of weighted genes likely differentially expressed in COVID-19 patients229. 

I analysed whether IL2-AIS genes, compared to other genes assayed in the 

DILfrequency study, were enriched in specific components. I found three similar 

components in Cluster 3 (Component 211, Component 187 and Component 178), 

each showing strong enrichment (odds ratio > 8) of the 41 IL2-AIS genes (Figure 

80A). From these three components in Cluster 3, Component 187 was highlighted 

by the authors as the most significant COVID-19-specific signature out of all the 

identified signatures229. Furthermore, I found that among the signatures 

associated with COVID-19 disease severity, Component 187 was unique in the 

longevity of the signature (Figure 81). In contrast, all other COVID-19-associated 

Components were only transiently modulated immediately after the onset of 

symptoms, indicating pathogenic alterations in cell composition and activation 

state during the acute phase of the disease, as illustrated for example by the 

classical monocyte-derived type 1 interferon (IFN) signature (Figure 81). Therefore, 

I focused on Component 187 for further analyses. 
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Figure 80. NF-kB is central to the transcriptional alterations in COVID-19 patients. 

(A) Enrichment of IL2-AIS constituent genes in each gene expression component 

reported in the COMBAT study. Each dot represents a disease-associated gene 

expression component identified in the COMBAT study. Dot sizes represent the number 

of shared genes between the respective component and the 41 IL2-AIS constituent genes. 

The top 50 components are shown, ranked by their odds ratios of enrichment (x axis). 

Colours depict cluster membership as reported in the COMBAT study. Components in 

the same cluster are associated with diseases in a similar way. Cluster 3 is associated 

with all severity groups of COVID-19. The three components with odds ratio ⩾ 5 are 

highlighted with a dashed blacked box.  
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(B) Component 187 loading scores were negatively correlated with fold change values of 

differential expression after iLD-IL2 treatment. Of the 1,419 genes included in Component 

187, 69 were also present in the target transcriptional panel applied to the DILfrequency 

dataset. The effects of iLD-IL2 immunotherapy and SARS-CoV-2 infection on the 

induction of these genes are compared by correlating component gene loading score (y 

axis) with log2 fold change (x axis) in the CD8 population. The positive and negative values 

in Component 187 loading scores represent the upregulation and downregulation of the 

corresponding gene, respectively, after SARS-CoV-2 infection. Each dot represents a 

gene. Larger dots represent genes with FDR-adjusted P values < 0.01 on Day 55 after 

iLD-IL2 treatment.  

(C) Correlation between the IL2-AIS score and the Component 187 sample loading score. 

Each dot represents a participant in the COMBAT cohort and colours depict the different 

participant groups.  

(D) STRING260 protein interaction network of top 50 genes in Component 187. Each node 

represents a gene. Node colours represent Component 187 gene loading scores. IL2-AIS 

genes are labelled in bold text with directions of IL-2-induced differential expression 

shown in arrows. Each edge represents experimental or inferred protein-protein 

interaction between two genes. Edge widths and colours represent interaction scores, 

with thicker lines and darker colours representing higher scores.  

Of the 1,419 genes contributing to Component 187, 77 were present in the 

transcriptional panel used in the DILfrequency study. I found that virtually all genes 

upregulated in IL2-AIS had negative loading scores in Component 187, and vice 

versa (Figure 80B), indicating a strong inverse correlation between the differential 

gene expression induced by IL-2 treatment in T1D patients and the response to 

infection in COVID-19 patients. Correspondingly, I observed a strong negative 

correlation between the mean Component 187 sample loading score and the 
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mean IL2-AIS score among COMBAT participants (Figure 80C), suggesting that 

Component 187 and the IL2-AIS likely shared common underlying mechanisms. 

 

Figure 81. Temporal patterns of selected gene expression components in COMBAT. 

The sample loading scores of seven gene expression components identified in the 

COMBAT dataset as being correlated with COVID-19 infection. Descriptions of each 

component are shown in italics. For each component, the direction of changes carries no 

predefined meaning and needs to be interpreted with respect to specific genes. Each dot 

represents a participant. Dashed black lines represent LOWESS curves. 

Given the strong correlation between these two transcriptional signatures, I next 

performed a network analysis on the top 50 genes of Component 187 to gain 

some insight into the putative biological mechanism underpinning the identified 

IL2-AIS. This analysis highlighted a central role of the transcription factor NF-κB 

on the regulation of this transcriptional programme, as evidenced by a number of 

target genes previously shown261 to be modulated by NF-κB in SARS-CoV-2 

infected CD8+ T cells, including NFKBIA, NFKBIZ, TNFAIP3 and CXCR4 (Figure 

80D). Furthermore, I also observed a significant enrichment of known NF-kB 

target genes262 within the top 50 genes of Component 187, including RELB, 

NR4A2, DUSP1, CD69 and the AP-1 transcription factor complex genes (FOS, 

FOSB, JUN, JUNB and JUND). However, I note that these core NF-kB target 



 184 

genes, including the AP-1 genes, were not identified in the IL2-AIS (Figure 81D), 

suggesting that they were not significantly modulated by low-dose IL-2 therapy 

and are specifically modulated by SARS-CoV-2 infection. Notably, all identified 

NF-kB target genes show positive Component 187 loading scores (Figure 81D), 

suggesting that increased expression of early response factors such as NF-kB 

and the transcription factor complex AP-1 is involved in sustaining the pro-

inflammatory gene expression profile in circulating immune cells during the post-

acute phase of COVID-19.  
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2.3. Discussion 

The findings reported here extended previous studies on the clinical application 

of low-dose IL-2 immunotherapy in T1D patients215,263,264, and provided further 

insight into the mechanism of action of LD-IL-2, as detailed below. 

First, I showed that low-dose IL-2 administered every three days for a period of 

one month was able to selectively increase the number of tTregs, which express 

FOXP3 and HELIOS, markers for stable Treg function, while showing no 

detectable impact on the expansion or cytotoxic gene expression of conventional 

effector T or CD56dim NK cells, demonstrating the high sensitivity of these immune 

subsets to LD-IL-2 treatment. I observed a particularly pronounced increase in the 

frequency of naïve FOXP3+ HELIOS+ Tregs after iLD-IL-2 therapy, suggesting that 

the Treg increases are caused by an increased representation of thymic-derived 

Tregs, and not the proliferation of peripherally-induced Tregs. This finding was 

consistent with the increased clonal diversity in T cells following an escalating LD-

IL-2 regimen reported previously in graft-versus-host disease patients265,266. In 

addition to Tregs, the CD56br NK cell population is probably also contributing to 

the overall anti-inflammatory effects of iLD-IL-2, in an immunoregulatory role, as 

previously described267,268. 

Second, I found that iLD-IL-2 was associated with a reduction in IL-21-producing 

T cells, consistent with previous reports247,269,270 that LD-IL-2 decreased the 

frequency of TFH cells in systemic lupus erythematosus patients. The effect was 

likely mediated through the inhibition of TFH differentiation, as IL-2 signalling has 

been shown to inhibit the differentiation of TFH cells in vivo in mice271, and in an in 

vitro model in humans272. In humans, IL-21 has been implicated in the 

pathogenesis of several autoimmune diseases273,274 including T1D237,238,242. In 

particular, an anti-IL-21 monoclonal antibody in combination with liraglutide 

showed promising results in preserving pancreatic beta cell function239. The 

observations here provided further support for the use of iLD-IL-2 in T1D, as well 
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as other diseases associated with increased IL-21 production, such as systemic 

lupus erythematosus, rheumatoid arthritis, and psoriasis. 

Third, I observed a decrease in circulating innate-like CD8+ MAIT and Vγ9Vδ2 T cell 

subsets during treatment and one month after. Since both subsets function in 

anti-viral and anti-bacterial defence275,276, these findings suggest a role of IL-2 

immunotherapy in the recruitment of MAIT and Vγ9Vδ2 T cells to tissues following 

treatment, thereby increasing defence against viral and bacterial infections277. This 

could provide a mechanism for the previously observed decreased incidence of 

viral infections in SLE patients undergoing LD-IL-2 immunotherapy278. 

Finally, I identified a long-lived gene expression signature (IL2-AIS) in all assessed 

immune populations, which suggest a novel immunoregulatory mechanism of iLD-

IL-2. IL2-AIS was marked by the upregulation of CISH, a well-characterised 

negative regulator of cytokine signalling279, and the downregulation of key TNF-

inducible genes such as TNFAIP3, RGS1 and AREG, suggesting that iLD-IL-2 can 

decrease the homoeostatic levels of TNF for at least one month after the cessation 

of dosing. The mechanism of the dose-dependent establishment of the IL2-AIS 

observed on Day 27 remained unknown.  

In light of the unprecedented breath of single-cell transcriptome datasets 

generated in COVID-19 patient cohorts, in particular the COMBAT cohort229 and 

the INCOV cohort256, which associated several key IL2-AIS genes with SARS-

CoV-2 infection, I investigated IL2-AIS dynamics in the context of COVID-19. I 

found that SARS-CoV-2 infection leads to a long-lived alteration of the 

transcriptional profile of immune cells in blood for over three months after the 

onset of the clinical symptoms, which resembled the opposite of IL2-AIS, 

manifesting as the progressive and sustained decrease of IL2-AIS scores. 

The longevity of transcriptional changes represented by the IL2-AIS in both iLD-

IL-2 and COVID-19 context pointed to cytokines bound to the extracellular matrix 

as one possible explanation for the increased period of biological activity. Both 



 187 

TNF and IL-2 are among the cytokines known to bind to the extracellular matrix, 

leading to their retention in within tissues extending far beyond their initial 

release249–251,251. The balance between pro- and anti-inflammatory cytokines 

bound to the extracellular matrix likely provides a regulatory mechanism to control 

immune responses. A perturbation of this balance via a sustained regulatory (e.g. 

iLD-IL-2 immunotherapy) or inflammatory (e.g. COVID-19) environment is 

therefore likely to remodel the transcriptional profile of immune cells and an alter 

their threshold for further stimulation, leading to long-term effects such as the 

PASC.  

Analyses of top constituent genes of the Component 187 identified in the 

COMBAT study229, which likely provides a more complete picture of the 

transcriptional changes related to the IL2-AIS in the COVID-19 context, revealed 

a central role of the NF-κB signalling pathway. This was supported by the 

upregulation of the NF-κB inhibitor genes NFKBIA and NFKBIZ, the AP-1 

transcription factor complex genes FOS, JUN, FOSB and JUNB, as well as other 

NF-κB target genes such as TNFAIP3, RELB, NR4A2, DUSP1 and CD69. The 

significance of the NF-κB pathway in COVID-19 patients was confirmed in a 

recent study and contrasted against influenza patients, who displayed a stronger 

type I interferon response280. Cell-line models infected with SARS-CoV-2 also 

highlighted the upregulation of NF-κB pathway genes including NFKBIA, FOS, 

JUN and TNFAIP3281,282. 

An important limitation of this study is the lack of mechanistic insights 

underpinning the induction of transcriptional changes related to IL2-AIS in either 

iLD-IL2 immunotherapy or COVID-19 contexts. Regarding the application of low-

dose IL2 immunotherapy in T1D patients, which was the initial motivation of this 

study, it remains unclear whether the specific dosing regimen adopted in the 

DILfrequency study is necessary or sufficient to induce the IL2-AIS, how long does 

the transcriptional changes last beyond one month, and whether these changes 
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can be translated into clinical benefits. Further investigations on the IL2-AIS, and 

more broadly the clinical effects of iLD-IL2 immunotherapy, have been planned 

by Prof John Todd’s lab based on samples from the Interleukin-2 Therapy of 

Autoimmunity in Diabetes (ITAD) trial283 and follow-up clinical studies, which would 

help answer these questions and eventually contribute to the possible future use 

of iLD-IL-2 treatment in the prevention of T1D diagnosis.  
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2.4. Methods 

2.4.1. Study design and ethics statement 

The study was performed in accordance with the guidelines for good clinical 

practice and the Declaration of Helsinki. Study participants included T1D patients 

enrolled in the adaptive study of IL-2 dose frequency on regulatory T cells in type 

1 diabetes (DILfrequency), a response-adaptive trial of repeated doses of IL-2 

administered using an interval dosing approach3. All 13 study participants, who 

were all adult patients diagnosed with T1D over 60 months before recruitment into 

the study, were selected from the 3-day interval dosing group and were treated 

with IL-2 with doses ranging from 0.2 to 0.47 × 106 IU/m2. 

Approval was obtained from the Health Research Authority, National Research 

Ethics Service (14/EE/1057), London, United Kingdom. The trials were registered 

at the International Standard Randomised Controlled Trial Number Register 

(ISRCTN40319192) and ClinicalTrials.gov (NCT02265809). The study protocols 

were published in advance of the completion and final analysis of the trials284. All 

participants provided written informed consent prior to their participation in the 

studies. 

2.4.2. Normalisation, integration, dimensionality reduction and 
clustering  

Preprocessing of single-cell sequencing data, including read filtering, read 

alignment, error correction, doublet removal, and additional quality control were 

conducted by Dominik Trzupek and Fiona Hamey.  

After preprocessing, data normalisation was performed using Seurat232. The RNA 

count matrices were normalised by log normalisation. Specifically, the RNA 

counts for each cell were (i) divided by the total counts for that cell, (ii) multiplied 



 190 

by a scale factor of 10,000, and (iii) natural-log transformed after adding one 

pseudo count. The AbSeq counts for each cell were considered compositional 

and normalised by a centred log ratio transformation285. Normalised RNA and 

AbSeq expression matrices were then centred and scaled. Specifically, each 

feature was linearly regressed against selected latent variables including the 

number of RNA and AbSeq features, and the donor of origin, where appliable. The 

resulting residuals were mean-centred and divided by their standard deviations. 

Integration of the scaled AbSeq expression matrices from different participants 

was performed using a combination of canonical correlation analysis and 

identification of mutual nearest neighbours, implemented in Seurat232. After 

integration was performed, the updated AbSeq expression matrices produced by 

the integration algorithm were used in subsequent dimensionality reduction and 

clustering. 

Dimensionality reduction and clustering were performed using Seurat232. 

Specifically, principal components (PCs) were calculated separately for each 

assay using the top variable features of the scaled or integrated expression 

matrices, and a weighted nearest neighbour (WNN) graph as well as a weighted 

shared nearest neighbour (WSNN) graph were generated on the ten top PCs from 

each assay, unless otherwise specified. I used k = 30 nearest neighbours for each 

cell. Uniform Manifold Approximation and Projection (UMAP)286 embeddings were 

then calculated based on the WNN graph. The Louvain algorithm287 was applied 

to identify clusters of cells based on a WSNN graph, at the selected resolution 

level. Clusters with fewer than ten cells were removed. The resulting clusters were 

manually annotated by Ricardo Ferreira based on marker genes and sorting gate 

information to elucidate cell types and label suspicious clusters. 

During preprocessing, a subset of cells, most of which inferred to be CD56br NK 

cells, were identified to lack barcoding information that were used to delimitate 

FACS-isolated cell populations and the time of sampling. Although the reason for 
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this barcode loss was unclear, the data quality for these cells was acceptable. 

Therefore, CD56br NK cells missing barcode information were preserved in 

dimensionality reduction and clustering (Figure 61), but excluded in analyses for 

which timepoint information was relevant, such as differential abundance and 

differential expression analyses. Other cells missing barcode information were 

excluded. 

I observed that the PBMC aliquot corresponding to the Day 55 sample of 

Participant 8 yielded very low cell numbers (603 unstimulated and 67 stimulated 

cells) and displayed a compromised FACS staining profile. These cells were 

preserved in dimensionality reduction and clustering procedures but excluded 

from downstream analyses. All other 38 samples corresponding to 38 visits 

yielded the expected cell frequencies and numbers. 

2.4.3. Differential abundance analysis 

To identify specific cell abundance changes across different sampling timepoints, 

I calculated the abundance of each cell subset in the five T and NK populations. 

A cell subset was defined as a group of cells from the same cluster, or several 

clusters deemed to be similar. The abundance of each cell subset for each 

participant and each timepoint was calculated as the proportion of that cell subset 

within all cells from the same participant, timepoint and FACS-isolated population. 

For each cell subset, a two-sided Wilcoxon signed-rank test was performed to 

compare the abundance values on Day 0 with the abundance values on Day 27 

or Day 55 in the 13 participants selected for single-cell analysis. Benjamini-

Hochberg FDR correction was applied after pooling all resulting P values. For each 

cell type and each participant, the log2 fold change values between corresponding 

abundance values were calculated and visualised. Cells were compared only if 

they were from the same FACS-isolated population, as cells from different 

populations were mixed in predefined proportions that are not biologically relevant. 
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2.4.4. Pseudotime trajectory analysis 

Pseudotime trajectory analysis was performed using Slingshot226 and tradeSeq288. 

First, 10-dimensional UMAP embeddings were generated for stimulated cells in 

the CD4+ Treg and Tconv populations based on RNA and AbSeq data, as 

described above. Second, the Slingshot algorithm was applied to UMAP 

embedding data and manually annotated cluster labels, with the naïve Tconv 

subset selected as the starting point, and other parameters set to the default. 

Finally, the resulting pseudotime data were used as the input for the tradeSeq 

algorithm to model the expression levels of each gene along each trajectory. 

2.4.5. Generation and normalisation of pseudo-bulk expression 
data 

Pseudo-bulk expression were calculated for three datasets: DILfrequency (this 

study), COMBAT229 and INCOV256. For each dataset, pseudo-bulk expression 

matrices were generated by aggregating mRNA counts from cells from the same 

donor, timepoint (if applicable) and cell population. For the DILfrequency dataset, 

which was based on a custom mRNA panel of 585 transcripts, pseudo-bulk 

samples with less that 100 total mRNA counts were removed. For the COMBAT 

and INCOV datasets, which were based on whole-transcriptome sequencing, 

pseudo-bulk samples with less than 2,000 total mRNA counts or less than 500 

IL2-AIS mRNA counts were removed. The pseudo-bulk expression matrices for 

each dataset were normalised by dividing raw counts with sample-specific scale 

factors calculated using the median-of-ratios method previously described289. The 

total mRNA counts of pseudo-bulk samples in the COMBAT and INCOV datasets 

are summarised in Table 6. 
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Dataset Cell type Median count IQR Excluded 

COMBAT T 10892548.5 9297326.5 2 

B 875124 862786.25 16 

NK 1274245.5 1499071.25 3 

MNP 6964687.5 5177158.25 4 

INCOV CD4 1374058 1678171.5 0 

CD8 703045 843708.5 0 

B 151089 203788 0 

Monocytes 1040401 1642817.5 0 

NK 357648 495790.5 0 

Table 6. Summary statistics of total mRNA counts of pseudo-bulk samples. 

Median and interquartile range (IQR) of total mRNA counts in each group of pseudo-bulk 

samples in the COMBAT and INCOV cohorts, and the number of excluded samples in 

each group. MNP, mononuclear phagocytes. 

2.4.6. Differential expression analysis 

Differential expression analyses were performed separately for each dataset 

based on the pseudo-bulk expression matrix using DESeq2290. For the 

DILfrequency dataset, the likelihood ratio test was used, with a full model 

including timepoints and the participants as independent variables, and a reduced 

model including only participants as the independent variable. For the COMBAT 

dataset, the Wald test was used, with patient groups (COVID-19 or healthy control) 

as the independent variable. For the INCOV dataset, considering the samples 

were taken during a wide range of time post COVID-19 symptoms, for each 

participant, I assigned the earliest sample taken 0-14 days post COVID-19 
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symptoms as the acute phase sample, and the earliest sample taken 29-84 days 

post COVID-19 symptoms as the post-acute phase sample. Only participants that 

have both acute and post-acute phase samples available were included in the 

differential expression analysis. The cut-off timepoints for acute and post-acute 

phase samples were selected to maximise the number of available participants, 

while minimizing the heterogeneity within each group. The likelihood ratio test was 

used, with a full model including sampling timepoints (acute or post-acute phase) 

and participants as independent variables, and a reduced model including only 

participants as the independent variable. For all datasets, the apeglm method291 

was applied to shrink the resulting fold change values, and the Benjamini-

Hochberg FDR correction was applied after pooling all resulting P values. 

2.4.7. Deriving the cell proliferation score 

Single-cell proliferation scores were calculated using a previously described 

approach292 based on the average normalised expression levels of a pre-selected 

set of 11 mRNA features related to cell cycle (AURKB, HMGB2, HMMR, MCM4, 

MKI67, PCLAF, PCNA, TK1, TOP2A, TYMS, and UBE2C), subtracted by the 

aggregated expression of a control set of 50 randomly selected mRNA features. 

The proliferation scores were used to identify two cycling clusters from the 15 

functional T and NK cell subsets identified in blood from the initial clustering 

(Figure 69A). I noted that the distinct co-expression of these cell-cycle genes 

present in the targeted transcriptional panel superseded more subtle functional 

differences and aggregated all cycling T and NK cells into two respective clusters, 

regardless of their original FACS-isolated population. Given this lack of functional 

differentiation and to avoid the potential overwhelming effect of these cell-cycle 

genes on the resulting clustering visualisation, I opted to separate these cycling T 

and NK cells from the rest of the cells included in subsequent clustering steps to 

assess IL-2-induced changes in their relative abundance in blood. 
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2.4.8. Deriving the IL2-AIS score 

For the DILfrequency dataset, the IL2-AIS scores were calculated based on the 

normalised pseudo-bulk expression levels of the 20 upregulated signature genes 

(CISH, TNFSF14, OAS1, GIMAP7, GIMAP5, TNFSF10, TAGAP, STAT1, MYC, 

FASLG, CX3CR1, PTGDR2, CRTAM, EOMES, IL32, CCR10, CCR1, CXCR1, 

CD40LG, and ID3) and the 21 downregulated signature genes (AREG, DUSP5, 

TNFAIP3, RGS1, CXCR4, DUSP2, DUSP4, DDIT4, NFKBIA, FOSL2, NFKBIZ, 

ZBTB16, SLC2A3, BTG2, SOX4, OSM, SGK1, TGFBR3, OTUD1, COLQ, and 

CCL5). For the COMBAT and INCOV datasets, a similar approach was applied to 

calculate the IL2-AIS scores for each pseudo-bulk sample. Specifically, z-scores 

of normalised expression levels of the 41 signature genes were first calculated for 

each pseudo-bulk sample within each major cell type. The IL2-AIS scores were 

then derived as the sum of z-scores of upregulated signature genes, subtracted 

by that of downregulated signature genes. As the z-scores were calculated from 

samples within a dataset, one important limitation of this definition was that 

comparisons of IL2-AIS scores were only allowed within the same dataset, but 

not across different datasets. 

2.4.9. Modelling the dynamics of the IL2-AIS score 

For the INCOV cohort, where multiple longitudinal samples are available for most 

individuals, I modelled the IL2-AIS scores using a Bayesian linear model to 

account for the inter-individual variation: 

?$,*	~	NormalMN$,* , OP 

N$,* =	Q$ +	S* 

Q$ 	~	Normal(0, 15)		for	9 = 1. .168 

	S*	~	Normal(0, 10)		for	6 = 1. .7 
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O	~	LogNormal(0, 5) 

where ? is the observed IL2-AIS scores, 9 is the index of the individual, and 6 is 

the index of sampling time represented as a categorical variable with seven levels: 

0-7 days, 8-14 days, 15-28 days, 29-60 days, 61-90 days, 91-150 days, and ≥ 

151 days. Q$  and S*  represent the individual-specific effect and the effect of 

sampling time, respectively. As the IL2-AIS score was formulated as the sum of 

z-scores of the 41 IL2-AIS genes, E(?) = 0. Therefore, an intercept term for N$,* 

was not included. I interpreted Q$ as the time-adjusted IL2-AIS score of individual 

9, and S* as the expected IL2-AIS score given sampling time 6. Regularising priors 

were used for Q$ and S*. Posterior mean values and 95% confidence intervals of 

parameters were estimated using a Markov Chain Monte Carlo approach 

implemented in Turing.jl293. 

2.4.10. NanoString transcriptomic data analysis 

The processed NanoString bulk transcriptomic data for the Gedda 2022 cohort259 

was accessed from Gene Expression Omnibus using accession code GSE211378. 

Among the 162 convalescent COVID-19 participants, 23 were excluded due to 

the lack of precise date of onset of COVID-19 symptoms. All 40 healthy control 

participants were included. Among the 785 genes profiled in the dataset using the 

NanoString nCounter Human Host Response panel, 16 IL2-AIS genes were 

present, including 12 upregulated genes (MYC, CXCR1, OAS1, TNFSF10, FASLG, 

CCR10, STAT1, CX3CR1, CD40LG, IL32, EOMES, and CCR1) and four 

downregulated genes (OSM, SLC2A3, CXCR4, and CCL5). The IL2-AIS* scores 

were defined for each sample as the sum of z-scores of normalised transcription 

levels of upregulated IL2-AIS genes, subtracted by that of downregulated IL2-AIS 

genes. 

2.4.11. STRING network analysis 
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From the 1,419 constituent genes of COMBAT Component 187, the top 50 genes 

with the highest loading scores were selected for STRING protein interaction 

network analysis260. Given the very strong correlation between the relative 

contribution of the same core set of genes to both the IL2-AIS and Component 

187, the selection of the top 50 genes of Component 187 not only facilitated the 

visualisation of the gene network, but also allowed to focus on the main biological 

pathways contributing specifically to the IL2-AIS identified in this study. A gene 

network and pathway analysis on the full 1,419 constituent genes of Component 

187 is provided in the COMBAT study229. Physical and functional interactions 

identified from text mining, experimental evidence, annotated databases, and co-

expression were used. The minimum required interaction score was set to 0.15. 
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General discussions 

This thesis includes two projects that are connected scientifically by their 

implications to autoimmune diseases and technically by the application of high-

throughput sequencing. Underpinning these connections is the complexity of the 

human immune system in terms of the diversity of immune genes and the 

heterogeneity of immune cells. 

The achievements made in the de novo assembly of the human genome during 

the past few years were largely driven by the emergence of better sequencing 

platforms, new bioinformatics algorithms, and growing computational 

infrastructure. With the T2T reference genome65, a manually curated, gap-free, 

haploid assembly, and the draft human pan-genome references49, a collection of 

algorithmically built, high-quality, diploid assemblies, it is easy to envision an era 

when complete personal diploid assemblies, along with multi-modal, high-

resolution functional data, become widely accessible. What that will reveal about 

the immune system, human genetics, and life sciences in general, remains to be 

seen.  

The development of low-dose IL-2 immunotherapy as a treatment for T1D and 

other autoimmune diseases, if clinically proved, may become a textbook example 

of interdisciplinary drug discovery that pieced together key information from a 

broad spectrum of research, such as the high affinity of the trimeric IL-2 receptor 

encoded by IL2RA294, the genetic associations between IL2RA and T1D213,295, the 

heterogeneity of Tregs296,297, recombination IL-2 and its application in cancer 

immunotherapy207, and the optimal dosing region of IL-2 in T1D patients3,216. The 

key question of whether low-dose IL-2 immunotherapy provides clinical benefits 

to T1D patients, is currently under active investigation. With the development of 

other treatments targeting early-stage T1D, such as anti-CD3194, anti-IL-21239 and 
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Treg cell therapies298, the prospect of identifying high-risk individuals genetically 

and delay or even prevent T1D onset clinically is becoming increasingly realistic.  
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Appendix 

Appendix figures 
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Appendix Figure 1. Assembly validation based on k-mer depths. 

(A) Validation k-mer depths for each region in the HV31-V1 assembly. Colours denote the 

copy number of a given k-mer in the HV31-V1 assembly. k = 31.  
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(B) Normalised k-mer depths for each region in the HV31-V1 assembly. Depth values 

were normalized by dividing by the peak depths of unique homozygous k-mers as shown 

in Figure 14A. Orange lines show ONT-2019 read coverage depth normalized to the 

genome-wide average coverage depth (63×). 

In (A-B), k-mers that found both inside and outside the given regions are shown in grey. 

Additional information about each numbered location is detailed in Appendix Table 1. 
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Appendix Figure 2. Validation of IGK heterochromatin sequence in the T2T CHM13 

assembly. 

(A) k-mer sharing dot plot comparing the heterochromatin sequence near the IGK locus 

in the T2T CHM13 v1.1 assembly to itself.  
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(B) Alignment of publicly available ONT sequencing data299 to the T2T CHM13 v1.1 

assembly. ONT read 4c220f9d9aba covering the 32 kb unique sequence is highlighted in 

green. 

(C) k-mer sharing dot plot comparing ONT read 4c220f9d9aba to the T2T CHM13 v1.1 

assembly. 
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Appendix Figure 3. Validation of IGK heterochromatin sequence in the HV31-V2 

assembly. 

(A) k-mer sharing dot plot comparing the heterochromatin sequence near the IGK locus 

in the HV32-V1 assembly haplotype 1 (y axis) with the same region in the T2T CHM13 

v1.1 assembly (x axis).  
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(B) Alignment of HV31 ONT-2022 simplex sequencing to the T2T CHM13 v1.1 assembly. 

ONT read f194e4e03441 covering the 32 kb unique sequence is highlighted in green. 

(C) k-mer sharing dot plot comparing ONT read f194e4e03441 to the T2T CHM13 v1.1 

assembly. 

 

Appendix Figure 4. Functional annotation of CD4+ Treg subsets. 

Expression levels of selected mRNA and protein markers in each identified cluster in the 

CD4+ Treg population. Cluster annotations are shown in Figure 62. Larger dots represent 

higher fraction of cells express the marker, while brighter colours represent higher mean 

expression levels. Clusters classified as naïve tTregs, memory tTregs, and CD25+ Teffs 

are annotated in green, blue and orange, respectively. Other miscellaneous clusters are 

annotated in black. 
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Appendix Figure 5. Abundance changes of CD4+ Treg subsets. 

(A-B) Abundance changes of identified clusters in unstimulated (A) or stimulated (B) cells 

in the CD4+ Treg population comparing Day 27 (top) or Day 55 (bottom) with Day 0. 

Clusters classified as naïve tTregs, memory tTregs, and CD25+ Teffs are annotated in 

green, blue and orange, respectively. Other miscellaneous clusters are annotated in black. 
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Appendix Figure 6. Functional annotation and abundance changes of unstimulated 

CD4+ Tconv subsets. 

(A) UMAP embedding unstimulated cells in the CD4+ Tconv population, coloured by 

identified clusters.  

(B) Abundance changes of each cluster in (A) comparing Day 27 (top) or Day 55 (bottom) 

with Day 0. 

(C) Expression levels of selected mRNA and protein markers in each cluster in (A). Larger 

dots represent higher fraction of cells express the marker, while brighter colours 

represent higher mean expression levels.  
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Appendix Figure 7. Functional annotation and abundance changes of stimulated CD4+ 

Tconv subsets. 

(A) UMAP embedding stimulated cells in the CD4+ Tconv population, coloured by 

identified clusters.  

(B) Abundance changes of each cluster in (A) comparing Day 27 (top) or Day 55 (bottom) 

with Day 0. 

(C) Expression levels of selected mRNA and protein markers in each cluster in (A). Larger 

dots represent higher fraction of cells express the marker, while brighter colours 

represent higher mean expression levels.  
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Appendix Figure 8. Functional annotation and abundance changes of CD8+ T subsets. 

(A) Expression levels of selected mRNA and protein markers in each cluster of 

unstimulated cells in the CD8+ population. Cluster annotations are shown in Figure 68A. 

Larger dots represent higher fraction of cells express the marker, while brighter colours 

represent higher mean expression levels.  



 211 

 

(B) Abundance changes of each cluster of unstimulated cells in the CD8+ population 

comparing Day 27 (top) or Day 55 (bottom) with Day 0. 

(C) UMAP embedding of stimulated cells in the CD8+ T population, coloured by identified 

clusters. 

(D) Abundance changes of each cluster in (C) comparing Day 27 with Day 0.  

 

Appendix Figure 9. Functional annotation and abundance changes of CD56br and 

CD56dim NK subsets. 
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(A) Expression levels of selected mRNA and protein markers in each cluster of 

unstimulated cells in the CD56br and CD56dim NK populations. Cluster annotations are 

shown in Figure 68D. Larger dots represent higher fraction of cells express the marker, 

while brighter colours represent higher mean expression levels. 

(B-C) Abundance changes of each cluster of unstimulated cells in the CD56br and CD56dim 

NK populations comparing Day 27 (B) or Day 55 (C) with Day 0. 

(D) UMAP embedding of stimulated cells from the CD56br and CD56dim NK populations, 

coloured by identified clusters.  

(E-F) Abundance changes of each cluster in (D) comparing Day 27 (E) or Day 55 (F) with 

Day 0. 
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Appendix Figure 10. Consistent decrease of IL2-AIS score after COVID-19 infection in 

multiple cell populations. 

(A-B) Decrease of IL2-AIS scores after the onset of symptoms in COVID-19 patients from 

the COMBAT cohort (A) or INCOV (B) cohorts. Data shown represents the variation of the 

IL2-AIS scores from the identified NK, mononuclear phagocytes (MNP) and B cell 

populations in COMBAT and from the CD4+ T, NK, Monocyte and B cell populations in 

INCOV. Each dot represents a clinical sample, and colours depict the different COVID-19 

disease severity groups. In the INCOV cohort, patients are grouped by their worst 

recorded COVID-19 severity. In (A), dashed black lines represent LOWESS curves.  
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Appendix Figure 11. IL2-AIS dynamics in specific cell subsets in the COMBAT cohort. 

Decrease of IL2-AIS scores after the onset of symptoms in COVID-19 patients from the 

COMBAT cohort, shown in 29 cell subsets for which at least 100 pseudo-bulk samples 

are available. Each dot represents a pseudo-bulk sample. Colours depict the different 

COVID-19 disease severity groups. Dashed black lines represent LOWESS curves. 
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Appendix Figure 12. The IL2-AIS score was not associated with age or sex. 
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(A-C) Correlation between IL2-AIS scores, age, and sex in the DILfrequency (A), COMBAT 

cohort (B), and INCOV (C) cohorts. Each dot represents a participant, with colours 

representing the sex. In the INCOV cohort, IL2-AIS scores were calculated separately 

from samples collected in the acute (defined as the earliest sample taken 0-14 days post 

COVID-19 symptoms) or post-acute (defined as the earliest sample taken 29-84 days 

post COVID-19 symptoms) phases of the disease.  
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Appendix tables 



 218 

Region Number Evidence Speculation 

IGH 1 CLR reads Misalignment. 

IGH 2 CCS reads Heterozygous deletion. 

IGH 3 CLR reads Heterozygous duplication; see S8 Fig. 

IGK 4 HV31-V1 assembly Assembly gap. 

IGK 5 
Bionano contigs and 

CCS reads 
Misalignment. 

IGK 6 - Inconclusive. 

IGK 7 - Inconclusive. 

IGK 8 - Inconclusive. 

IGK 9 ONT reads 
Heterochromatin microsatellite array; 

see S12 Fig 

IGK 10 - Inconclusive. 

IGL 11 Bionano contigs 
Misalignment; possible assembly error 

outside the IGL region.  

IGL 12 Bionano contigs Heterozygous deletion. 

HLA 13 CCS reads Heterozygous deletion. 

HLA 14 CCS reads Assembly error (collapsed duplications). 

TRB 15 
Bionano contigs and 

CCS reads 
Heterozygous duplication 

TRB 16 CLR reads Misalignment. 

TRB 17 HV31-V1 assembly Assembly gap. 
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TRB 18 
Bionano contigs and 

HV31-V1 assembly 

Misalignment due to assembly gap (see 

number 17). 

TRG 19 HV31-V1 assembly Assembly gap. 

KIR 20 HV31-V1 assembly  Assembly gap. 

Appendix Table 1. Potentially problematic regions in the HV31-V1 assembly identified 

from k-mer depths. 

Details of locations where validation k-mers show discrepancy from expectation and 

speculated reasons. Locations are numbered as shown in Appendix Figure 1. Locations 

13 and 14 are also shown in Figure 15. 
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