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Abstract
The maximum mean discrepancy (MMD) test is a nonparametric kernelised two-sample test that, when using a characteristic
kernel, can detect any distributional change between two samples. However, when the total number of d-dimensional obser-
vations is n, direct computation of the test statistic is O(dn2). While approximations with lower computational complexity
are known, more efficient methods for computing the exact test statistic are unknown. This paper provides an exact method
for computing the MMD test statistic for the univariate case in O(n log n) using the Laplacian kernel. Furthermore, this
exact method is extended to an approximate method for d-dimensional real-valued data also with complexity log-linear in
the number of observations. Experiments show that this approximate method can have good statistical performance when
compared to the exact test, particularly in cases where d > n.

Keywords Two-sample testing · MMD · Univariate

1 Introduction

Two-sample testing is important inmany areas of science and
commerce and has been extensively studied in the statistics
literature, particularly in the univariate case. The maximum
mean discrepancy (MMD) test (Borgwardt et al. 2006; Gret-
ton et al. 2012a) is a nonparametric kernelised two-sample
test that, when using a characteristic kernel (Sriperumbudur
et al. 2010; Fukumizu et al. 2009) on data in R

d , can detect
any change in a distribution between the two samples (Fuku-
mizu et al. 2004, 2008). An expression for the MMD test
statistic is given in Eq. (1) in Sect. 2, fromwhich it is apparent
that the computational complexity of computing the MMD
statistic for two samples containing a total of n observations
from d-dimensional data is O(dn2). When the total number
of observations n is large, the cost of computing the MMD
can be therefore be prohibitively expensive. There have been
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several proposed approaches for speeding up the computa-
tion of the MMD statistic (Gretton et al. 2012a; Zaremba
et al. 2013; Zhao and Meng 2015); note however that these
are all approximate and have worse statistical performance.

In this paper, we derive an exact method for computing
the MMD statistic in O(n log n) for the case where the n
observations are univariate. To do so, we use the Laplacian
kernel, which is a popular characteristic kernel (Fukumizu
et al. 2009; Sriperumbudur et al. 2010). This novel algorithm
is named euMMD, for efficient univariate Maximum Mean
Discrepancy.

There are two cases where such a computational speed up
would have utility. The first is when an analysis involves a
single test and the number of observations n is large; then the
improvement in speed is clear as shown in Fig. 3 and Table
1. A second, less obvious, case is when an analysis requires
many tests even though the number of observations is of
moderate size; for example, in cyber-security applications
the same two-sample test would be applied a large number
of times across a population of entities (Neil et al. 2013), and
in the medical literature there are situations where sample-
size calculations are done via simulations which compute the
test statistic for many different samples (Landau and Stahl
2013). In such cases, moderate gains in efficiency for each
test would lead to a large overall improvement in runtime.
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Table 1 Computational complexityMMD and euMMD, with n = n1+n2
samples and L permutations.

Algorithm Statistic p-value

MMD O(n2) O(Ln2)

euMMD (proposed) O(n log n) O(n log n + Ln)

One concern may be that reliance on the Laplacian kernel
is overly restrictive, and another kernel may be preferred;
in Fig. 1 it is shown that for univariate, real-valued data the
performance of theMMD two-sample test with the Laplacian
kernel is broadly the same as when the popular Gaussian
kernel is used.

A greater influence on performance is, in fact, the choice
of value for the kernel parameter, as shown in Sect. S1 of
the Supp. Material. A common method for setting the kernel
parameter value is the so-called median heuristic; Sect. 3.1
discusses how for univariate data the kernel parameter can
be set using this heuristic in O(n log n) using existing algo-
rithms from the literature.

Along with the MMD, another popular two-sample test
with an extensive literature is the energy distance (Baring-
haus and Franz 2004; Székely and Rizzo 2004, 2013). Its
formulation is very similar to that of the MMD, and recent
work has shown that the two tests are closely related (Sejdi-
novic et al. 2013; Shen andVogelstein 2018). However, given
the choice, one may prefer to use the MMD since there are
cases where the MMD is more powerful than the energy dis-
tance (Sejdinovic et al. 2013); see Fig. 4 and Sect. 2 for a
discussion.

There is in fact a class of “energy statistics” (Székely
and Rizzo 2013), one of which is the distance correlation
(Székely et al. 2007). Inspired by an efficientmethod for com-
puting Kendall’s τ coefficient (Knight 1966), recent work
(Huo and Székely 2016) has shown that an efficient compu-
tation of the distance correlation can be found for univariate
real-valued data after first sorting the data. That approach
prompted this current work, in order to see if a similar
approach could be used to find an efficientMMD two-sample
test.

While the proposed method is exact for univariate data, it
does not easily generalise to the d-dimensional multivariate
case. However, one could use random projections (Cuesta-
Albertos et al. 2006; Rahimi andRecht 2007;Wei et al. 2016)
to project the data onto one dimension and obtain an aver-
age value for the MMD over multiple projections; this was
done in Huang and Huo (2017) for the Energy Distance.
Another approach is to apply a univariate test to the dis-
tances between the observations and fixed “centre points”
in d-dimensional space (Heller and Heller 2016). These two
different approaches to using a univariate test on multivari-
ate data are explored in Sect. 4 using euMMD as the base
univariate two-sample test, although several experiments are
relegated to the appendix as this comparison is not the pri-
mary motivation for this work.

The rest of the paper is organized as follows: Sect. 2
provides definitions of the MMD statistic and the Lapla-
cian kernel. Section3 describes our proposed algorithm,
euMMD, as well as related work and experiments showing
the improved speed-up on synthetic data. Section4 describes

Fig. 1 A comparison of Type I error and statistical power for the (i)
MMD with the Laplacian kernel and (ii) The MMD with the Gaussian
kernel, for samples x = {x1, x2, . . . , xn1 } and y = {y1, y2, . . . , yn2 }.
(Left) the Type I error is computed when the underlying distributions
of x and y are both i.i.d. �(1, 1). (Right) the statistical error is com-
puted when x is i.i.d. �(1, 1) and y is i.i.d. N(1, 1). We note that in this

experiment the performance of the MMD approach is almost identical,
whether the Laplacian or Gaussian kernel is used. Moreover, the MMD
test has more power the energy distance test, at least for this data. In
both cases, a significance threshold of α = 0.05 is used with L = 1000
permutations to compute a p-value, and the performance shown is the
average performance over 100 trials
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the approximate extension to the d-dimensional case, and
provides experiments showing the good performance of the
approximate method. Several proofs and additional exper-
iments are contained in the Supplementary Material. Note
that any reference to computational complexity refers to
worst-case computational complexity (see, e.g. Cormen et al.
(2009)).

2 Background

Given a space X and two samples x, y ⊂ X, with x =
{x1, x2, . . . , xn1} and y = {y1, y2, . . . , yn2}, and a kernel
k : X × X → R, the minimum variance unbiased estimate
of the squared maximum mean discrepancy (MMD) statistic
was defined in Borgwardt et al. (2006); Gretton et al. (2012a)
as

MMD2(x, y) = 1

n1(n1 − 1)

n1∑

i=1

n1∑

j=1
j �=i

k(xi , x j )

+ 1

n2(n2 − 1)

n2∑

p=1

n2∑

q=1
q �=p

k(yp, yq)

− 2

n1n2

n1∑

i=1

n2∑

p=1

k(xi , yp).

(1)

Note that is more convenient to deal with MMD2(x, y), the
squared MMD statistic, rather than the actual (unsquared)
MMD statistic, and in this paper we shall often refer to the
MMD statistic when we really mean MMD2(x, y).

The statistic in Eq. (1) is unbiased and is denoted by
MMD2

u in Gretton et al (2012a, [Eq. (3)]) because there is
a biased version MMD2

b which is very similar. Whichever
version is used does not make a difference in terms of the
computational complexity, and we shall focus on the unbi-
ased version, simply denoting it by MMD2(x, y) or MMD2

when the underlying sets are understood. If one assumes that
the kernel function isO(d), then it is clear that the computa-
tional complexity of computingMMD2 directly from Eq. (1)
isO(d(n21 +n22 +n1n2)), which is the same asO(dn2), after
defining n = n1 + n2.

For the MMD statistic to be most effective, it is important
to choose a kernel that is characteristic on R

d (Sriperum-
budur et al. 2010; Fukumizu et al. 2009). This is a property
that means the kernel can be used to detect any change in a
distribution (Fukumizu et al. 2004, 2008).

Two popular characteristic kernels are theGaussian kernel
and Laplacian kernel (Fukumizu et al. 2009; Sriperumbudur
et al. 2010). For real d-dimensional vectors z, z′ ∈ R

d , with
z = {z1, z2, . . . , zd} and z′ = {z′1, z′2, . . . , z′d}, for param-

eters β, γ > 0 the Laplacian kernel kL,β and the Gaussian
kernel kG,γ are defined as

kL,β(z, z′) = exp
(−β‖z − z′‖1

)

= exp

(
−β

d∑

α=1

∣∣zα − z′α
∣∣
)

, (2)

kG,γ (z, z′) = exp
(
−γ ‖z − z′‖22

)

= exp

(
−γ

d∑

α=1

(zα − z′α)2

)
. (3)

In the univariate case with observations z, z′ ∈ R, the Lapla-
cian kernel in Eq. (2) reduces to

kL,β(z, z′) = exp(−β
∣∣z − z′

∣∣). (4)

In Sect. 3 this kernel is used to define an exact O(n log n)

method for computing MMD2 in Eq. (1) for univariate real-
valued data. We call this algorithm euMMD. Note that in the
remainder of this section and Sect. 3 the focus will be on
univariate sets, while in Sect. 4 we look at approaches for
extending this work to multivariate sets. In each case, we
make explicit whether a value z ∈ R or z ∈ R

d for d > 1.

2.1 The null distribution of MMD2

Under the null hypothesis that the data x and y are obser-
vations of i.i.d. random variables sampled from the same
distribution, the statistic MMD2(x, y) can be shown in the
limit to follow the distribution of an infinite sum of weighted
(non-central) chi-squared random variables, which can be
approximated by moment-matching with Pearson curves
Gretton et al. (2009, 2012a). However, computing the coef-
ficients needed to use these approximations will be O(n3),
where as above n = n1 + n2, and x and y have n1 and n2
elements, respectively.

Computationally, andperhaps theoretically, it is preferable
to use permutations to compute the empirical distribution of
the statistic given the data, since this approach does not rely
on approximations. One then obtains a p-value by ranking
the statistic within the empirical distribution; see Sect. S4
in the Supp. Material for details. In Sect. 3 it is shown that
computing MMD2(x, y) statistic with the euMMD algorithm
is O(n log n), and so if L permutations are used, computing
a p-value using permutations is O(Ln log n).

2.2 Choice of kernel and other tests

TheGaussian kernel in Eq. (3) is often a popular choice when
computing the MMD, and this preference may be due to the
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two-norm being invariant to rotations of multivariate data.
However, we do not require such a property for univariate
data, and then a preferred choice of kernel may be less clear.

In Fig. 1, the right panel shows that the performance of the
MMD test with the Laplacian and Gaussian kernels is almost
identical for detecting a change in distribution between a
N(1, 1) and �(1, 1) distribution; note this is a case where the
two distributions both have mean and variance equal to 1,
but the shape of the distributions is different. The energy dis-
tance (Baringhaus and Franz 2004; Székely and Rizzo 2004,
2013) is also included in this comparison; the energy dis-
tance statistic has the same form as the MMD2 in Eq. (1)
with k(z, z′) = −‖z − z′‖2. The left panel of Fig. 1 shows
the Type I error of the three tests when the underlying dis-
tributions for both x and y are a �(1, 1) distribution. In both
panels a significance threshold of α = 0.05 is used with
L = 100 permutations to compute the p-value, and each
point on the plot represents the average Type I error/power
over 1000 trials. The kernel parameter value is set using the
median heuristic as described in Sect. 3.1.

This experiment provides two insights: (a) The perfor-
mance of theMMDfor univariate data is very similarwhether
the Laplacian or Gaussian kernel is used, and (b) The MMD
has more power than the energy distance, at least in this case
where the data x and y are sampled from the N(1, 1) and
�(1, 1) distributions; Fig. S9 in the Supp. Material shows a
similar result for normally-distributed data, except that the
energy distance has slightly higher power than the MMD
methods.

3 Proposed algorithm: euMMD

This section describes the proposed euMMD algorithm for
efficiently computing MMD2 for univariate data. We start
with, for any m ≥ 1,

Lemma 1 Given a set {z1, z2, . . . , zm} ⊂ R and a symmetric
function f : R × R → R, then

m∑

i=1

i∑

j=1

f (zi , z j ) =
m∑

i=1

m∑

j=i

f (zi , z j ). (5)

The proof follows immediately from the summation laws,
and is included in Sect. S5.1 of the Supp. Material. However,
Lemma 1 is a key step in later results. In particular, it leads
directly to

Lemma 2 Given a set {z1, z2, . . . , zm} ⊂ R and a symmetric
function f : R × R → R, then

m∑

i=1

m∑

j=1
j �=i

f (zi , z j ) = 2
m∑

i=1

i−1∑

j=1

f (zi , z j ). (6)

Proof See Sect. S5.2 of the Supp. Material. 	

Now, since every kernel function is symmetric (Shawe-

Taylor and Cristianini 2004), Lemma 2 allows us to rewrite
MMD2 as follows:

MMD2(x, y) = 2 (α1T1 + α2T2 + α3T3) , (7)

where

T1 =
n1∑

i=1

i−1∑

j=1

k(xi , x j ), α1 = 1

n1(n1 − 1)
,

T2 =
n2∑

p=1

p−1∑

q=1

k(yp, yq), α2 = 1

n2(n2 − 1)
,

T3 =
n1∑

i=1

n2∑

p=1

k(xi , yp), α3 = − 1

n1n2
.

Remark 3 Essentially, we have simply shown that only the
lower-triangular elements of the kernel matrix are needed to
compute the MMD test statistic, but this observation will be
key in deriving the new efficient method.

Using Eq. (7) for MMD2(x, y), let us look at the
lower triangular terms of the kernel matrix for the set
{x1, x2, . . . , xn1 , y1, y2, . . . , yn2}, as shown in Fig. 2.

Notice that adding together the terms below themain diag-
onal in the top-left submatrix gives T1. Similarly, adding the
terms below the main diagonal in the bottom-right submatrix
gives T2. T3 is obtained by adding all the terms in the bottom-
left submatrix; however, if we define T4 to be the sum of all
the terms in the entire kernel matrix below themain diagonal,
then

T4 = T1 + T2 + T3 ⇒ T3 = T4 − T1 − T2. (8)

Therefore, ifwe couldfind an efficientmethod for comput-
ing the sum of lower-triangular terms in a kernel matrix, we
would have an efficient method for computing MMD2. One
next realises that, when computing these lower-triangular
sums, the order in which the terms are added does not matter.
This observation is described in

Lemma 4 Given a set {z1, z2, . . . , zm} ⊂ R, a symmet-
ric function f : R × R → R and a permutation σ :
{1, 2, . . . ,m} → {1, 2, . . . ,m}, then:
m∑

i=1

i−1∑

j=1

f (zi , z j ) =
m∑

i=1

i−1∑

j=1

f (zσ(i), zσ( j)). (9)

Proof See Sect. S5.3 of the Supp. Material. 	


123



Statistics and Computing (2023) 33 :110 Page 5 of 14 110

k (x1, x1)

k (x2, x1) k (x2, x2)

k (x3, x1) k (x3, x2) k (x3, x3)

...
...

...
. . .

k (xn1 , x1) k (xn1 , x2) k (xn1 , x3) · · · k (xn1 , xn1)

k (y1, x1) k (y1, x2) k (y1, x3) · · · k (y1, xn1) k (y1, y1)

k (y2, x1) k (y2, x2) k (y2, x3) · · · k (y2, xn1) k (y2, y1) k (y2, y2)

...
...

... · · · ...
...

...
. . .

k (yn2 , x1) k (yn2 , x2) k (yn2 , x3) · · · k (yn2 , xn1) k (yn2 , y1) k (yn2 , y2) · · · k (yn2 , yn2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n1

n2

n1 n2

n2

n1

Fig. 2 The kernel matrix for the set {x1, x2, . . . , xn1 , y1, y2, . . . , yn2 } and kernel k. Notice how T1, T2 and T3 are obtained by adding the visible
terms in the upper-left, lower-right and lower-left submatrices, respectively (but excluding the main diagonal terms for T1 and T2)

Since a permutation σ : {1, 2, . . . ,m} → {1, 2, . . . ,m} is
simply a bijection on {1, 2, . . . ,m}, Lemma 4 holds in partic-
ular for the permutation that orders a specific set of elements
{z1, z2, . . . , zm} in increasing value, i.e. the permutation
σ(i) → (i), where z(1) ≤ z(2) ≤ · · · ≤ z(m−1) ≤ z(m). This
leads to the key result using the Laplacian kernel described
in

Proposition 5 Givena set of observations {z1, z2, . . . , zm} ⊂
R, let z(i) denote the i th smallest element of the set, so that
z(1) ≤ z(2) ≤ · · · ≤ z(m). Then, using the Laplacian kernel
with parameter β > 0, the quantity

S =
def

m∑

i=1

i−1∑

j=1

kL,β(zi , z j ) =
m∑

i=1

i−1∑

j=1

exp
(−β

[
z(i) − z( j)

])
,

can be computed recursively by defining S = Sm and then
using the equations S1 = R1 = 0 and, for k ∈ {2, . . . ,m},

Dk = exp
(−β

[
z(k) − z(k−1)

])
,

Rk = (Rk−1 + 1) · Dk,

Sk = Sk−1 + Rk .

(10)

Proof Using Lemma 4,

S =
m∑

i=1

i−1∑

j=1

kL,β(z(i), z( j))

=
m∑

i=1

i−1∑

j=1

exp(−β
(
z(i) − z( j)

)
),

since z(i) − z( j) ≥ 0 for j < i . For k ∈ {1, 2, . . . ,m}, if we
define Dk as in Eq. (10) and

Sk =
k∑

i=1

i−1∑

j=1

exp(−β
(
z(i) − z( j)

)
),

Rk =
k−1∑

j=1

exp(−β
(
z(k) − z( j)

)
),

one immediately obtains S1 = R1 = 0 and derives the recur-
sive equations in Eq. (10). For the full details, see Sect. S5.4
of the Supp. Material. 	


Proposition 5 leads directly to

Corollary 6 Given a set of observations {z1, z2, . . . , zm} ⊂
R, and a parameter β > 0, then

S =
m∑

i=1

i−1∑

j=1

kL,β(zi , z j )

can be computed in O(m logm) time.

Proof The observations are first sorted to z(1), . . . , z(m),
using a worst-case O(m logm) sorting algorithm such as
merge sort. The sequential update equations for S, given in
Eq. (10), are allO(1), so together them−1 recursive updates
are O(m), and so overall the algorithm is O(m logm). 	

Remark 7 In plain terms, Corollary 6 shows that one can
compute the sumof lower-triangular terms in a kernelmatrix,
for univariate data and while using the Laplacian kernel, in
O(m logm).
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Algorithm 1 TriSSL: Triangular Sorted Sum of Laplacians
Input: β > 0; data z = [z1, z2, . . . , zn] with zi ≤ zi+1

1: Initialise D = R = S = 0
2: for i = 2 to n do
3: D = exp

(−β
[
zi − zi−1

])

4: R = (R + 1) · D
5: S = S + R
6: end for

Output: S

Algorithm 2 euMMD: Efficient computation of
univariate MMD2. Note that pseudocode for
MergeTwoAlreadySorted can be found in Sect. S7 of
the Supp. Material

Input: β > 0; data x = [x1, x2, . . . , xn1 ] and data y =
[y1, y2, . . . , yn2 ].

1: x = MergeSort(x)
2: y = MergeSort(y)
3: T1 = TriSSL(x, β)

4: T2 = TriSSL(y, β)

5: z = MergeTwoAlreadySorted(x, y)
6: T4 = TriSSL(z, β)

7: T3 = T4 − T1 − T2
8: M = T1/(n1(n1 − 1)) + T2/(n2(n2 − 1)) − T3/(n1n2)

Output: 2 · M

Pseudocode implementing the recursive update equations
given in Eq. (10) is given in the TriSSL subroutine in Algo-
rithm 1. We can now state the main result:

Proposition 8 Given two samples x, y ⊂ R containing a
total of n observations, the euMMD algorithm computes
the exact MMD2(x, y) statistic defined in Eq. (1) using the
Laplacian kernel in O(n log n) time and O(n) space.

Proof Let x = {x1, x2, . . . , xn1} and y = {y1, y2, . . . , yn2}
denote the two samples and define n = n1+n2. First, the val-
ues inx are sorted toobtain the sorted set {x(1), x(2), . . . , x(n1)}
and then the recursive formulae in Eq. (10) of Prop. 5 are
applied to these sorted values to compute T1. The same steps
are followed for the values in y to compute T2. This is sum-
marised by lines 1-4 in the pseudocode inAlgorithm 2,which
describes the procedure in detail; the TriSSL subroutine, as
described in Algorithm 1, implements the update equations
inEq. (10). (Note that the notation x is used in the pseudocode
to denote an array containing the values x1, . . . , xn1 , while
here x denotes the set.) The sorted values are thenmerged into
a sorted set z by the MergeTwoAlreadySorted algo-
rithm in O(n) time (see Sect. S7 of the Supp. Material), and
then TriSSL computes T4 from z. Equation (8) then gives
T3 = T4 − T1 − T2. With T1, T2 and T3 computed, Eq. (7)
gives MMD2(x, y). To analyse the complexity of euMMD,
we look at the pseudocode in Algorithm 2. The merge sorts
in lines 1-2 are O(n log n) (Cormen et al. 2009).

Lines 3-6 are all O(n), and lines 7-8 are all O(1). There-
fore, euMMD is O(n log n) in time overall. Since merge sort

and TriSSL both have space complexityO(n), euMMD also
has space complexity O(n). 	

Remark 9 Note that it is not necessary to use theMergeSort
algorithm and the MergeTwoAlreadySorted subrou-
tine; any other O(n log n) sorting procedure could be used
for x and y, which could be concatenated to form z, and
then z could be sorted with the same algorithm. The compu-
tational complexity would stil be O(n log n). However, the
O(n) MergeTwoAlreadySorted step takes advantage
of x and y being already sorted.

Remark 10 Whenanalysing theeuMMD algorithmonenotices
that, after the data is sorted, the remaining part of the algo-
rithm is O(n). In other words, the only O(n log n) step is
the initial sorting of the data, where a sorting algorithm
with worst-case time complexity O(n log n) (also denoted
�(n log n)), such as merge sort (Knuth 1997b; Cormen et al.
2009), is used; it is well-known that �(n log n) is the lower
bound on the time complexity for sorting general real-valued
data (Cormen et al. 2009). However, one then realises that
in special cases where the two samples are already sorted,
for example in cases where the data are ordered times, the
euMMD algorithm is then linear in n. Another special case
is when the data belong to some restricted set, e.g. the data
are integers in a known finite range, such as for a multi-
nomial distribution with a known number of categories (for
which the MMD two-sample test would be valid), then a
linear time sorting method such as counting sort (Cormen
et al. 2009) could be used, which would give the algorithm
linear-time computational complexity. We emphasise, how-
ever, that these are special cases and do not focus on them
here.

Remark 11 Note that there is an efficient method for com-
puting the Energy Distance (Huang and Huo 2017), related
to the approach in Huo and Székely (2016), which is very
similar to the algorithm for the proposed efficient MMD
presented here. However, there are at least a few key differ-
ences: our approach to the computation of the mixed T3 term
is much simpler, our sequential update approach utilizing
the TriSSL algorithm is much clearer, and this sequential
approach allows the use of the Laplacian kernel, whichwould
be nontrivial to employ in the algorithm in Huang and Huo
(2017); furthermore, a careful proof showing the correctness
of euMMD is provided.

3.1 Setting the kernel parameter

Most kernels require a user-defined parameter to be selected
in advance of the computation. For the Laplacian kernel, this
is a parameter β > 0.While it remains an open question how
to select the optimal value of β (or indeed the value of other
kernels’ parameters), a commonly-used approach is to use the
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median heuristic, where for a set of values {z1, z2, . . . , zn},
one computes

h = median{∣∣zi − z j
∣∣ : i, j ∈ {1, 2, . . . , n, i < j}}

and then one sets β = 1
h . A naive computation of h would

require the computation of all n2 (n−1) differences, resulting
in a computational complexity ofO(n2). However, a similar
quantity has been previously considered as a measure of dis-
persion (Shamos 1976, Theorem 3.6), (Bickel and Lehmann
1979, Example 9) (Rousseeuw and Croux 1993), and there
exists an efficient method for computing h in O(n log n)

(Croux and Rousseeuw 1992, Sect. 3), based on Johnson
and Mizoguchi (1978). Note that although this method is
worst-case O(n log n), it is based on the repeated use of the
selection algorithm for finding the kth smallest value among
n values inworst-caseO(n) (Cormen et al. 2009, Sect. II.9.3).
Needing to compute the median heuristic value first makes
the algorithm slightly more computationally expensive over-
all compared to only computing the MMD2 statistic, despite
both algorithms being O(n log n), because of larger leading
coefficients hidden by the big-O notation. However, when
used in combination with the computation of the p-value via
permutations, this difference ends up being very slight; see
Fig. S12 in the Supp. Material.

While it has been shown that the median heuristic may
not necessarily provide the “best” choice for the parameter
(Ramdas et al. 2015), i.e. the parameter value that leads to
the greatest power for theMMD test, it generally works well;
see Sect. S1 in the Supp.Material for additional experiments.
There are other schemes for selectingβ (Sriperumbudur et al.
2009; Gretton et al. 2012b), but these amount to testing var-
ious values and selecting the one which “works best” for the
given data. We do not pursue the question of how to set the
kernel parameter further here.

3.2 Computing p-values

The previous sections have shown that the MMD statistic
for univariate data can be computed in O(n log n), along
with the median heuristic for setting the kernel parameter in
O(n log n). In Sect. 2.1 it is discussed how it may be prefer-
able to use L permutations to compute a p-value for the
MMD test statistic, which would result in an algorithm that
is O(Ln log n). This approach involves first computing the
median heuristic to determine the kernel parameter β and
then computing the test statisticMMD2(x, y). Then, one con-
catenates x and y to form the vector z, randomly permutes
the values in z to create vector z̃, before subsetting this vector
to x̃ (first n1 values) and ỹ (last n2 values). One calls euMMD
to compute MMD2(̃x, ỹ). Repeating this process for a total
of L permutations, one counts the number of MMD2(̃x, ỹ)
values smaller than MMD2(x, y) as c, and then computes

Table 2 Runtime comparison of MMD and euMMD univariate data with
n1 = n2 = 2000 in Python

Algorithm Time Relative speedup
(seconds) to MMD

MMD 32.341 1×
euMMD (proposed) 0.034 ∼ 1000×

p = max{1− |1 − 2c/(L + 1)| , pmin}, where pmin is set as
1/(2(L + 1)) to avoid p-values of 0 (this would give issues
when using Fisher’s method to combine p-values in the mul-
tivariate approximate method). It is apparent that this method
isO(Ln log n). Although the median heuristic only needs to
be computed once, as the kernel parameter is the same for
all permutations, this method requires sorting each pair of
permuted samples x̃ and ỹ.

However, we can improve on this approach. Motivated by
the observation that the euMMD algorithm isO(n) if the data
is already sorted, we devise a simple approach to form per-
muted samples such that x̃ and ỹ are already sorted. First, the
kernel parameter (via the median heuristic) andMMD2(x, y)
are computed with euMMD in anO(n log n) step. A result of
this computation is the vector z, which is a sorted vector con-
taining the n values from x and y. Instead of permuting the
values in z, an indicator vector ι = (1, . . . , 1, 0, . . . , 0) is
formed, where the first n1 values are 1 and the remaining
n2 values are 0. For each permutation, the indicator vector
ι is permuted to ι̃ rather than permuting the data in the vec-
tor z; i.e. z remains sorted. Defining the function s such that
s( j, ι̃) = k means the j th 1 in ι̃ is at index k, the vector x̃
is defined as x̃ = (

zs(1,̃ι), . . . , zs(n1 ,̃ι)
)
. The vector ỹ is sim-

ilarly defined using s′ where s′( j, ι̃) = k means the j th 0
in ι̃ is at index k. Since z is sorted and s and s′ are increas-
ing functions in their first argument, the vectors x̃ and ỹ are
both sorted. Therefore, computing each MMD2(̃x, ỹ)will be
O(n) and the overall complexity of computing the p-value
after L permutations isO(n log n+Ln). The pseudocode for
this procedure is shown in Algorithm S2 in Sect. S6 in the
Supp. Material (Table 2).

3.3 Runtime comparison

As discussed in Sect. 2, for n = n1 + n2, computing MMD2

directly from Eq. (1) is O(n2) for univariate data. On the
other hand, Sect. 3 shows that MMD2 can be computed in
O(n log n). Note that since euMMD is exact for univariate
real-valued data, there is no need to compare its statistical
performance to that of the naive computation of MMD2,
denoted MMD; see for example Gretton et al. (2012a) for a
study of the statistical performance of MMD.

Figure 3 shows the improved performance of euMMD over
MMD as n increases; the right-hand panel displays the same
data as in the left-hand panel, but on a log-log scale. This
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Fig. 3 A runtime comparison of
Python implementations of the
standard O(n2) MMD and the
proposed O(n log n) euMMD on
univariate data, as the size of the
samples, n1 = n2, increases and
n = n1 + n2. Left: linear scale.
Right log-log scale. Table 1
shows the relative speedup for
n1 = n2 = 2000

makes it easier to see the orders of magnitude difference
between the two methods. Note that these are the average
speeds over 10 trials, and error bars of one standard deviation
are plotted, but are too small to see (i.e. little variation in time
between trials).

Furthermore, Table 1 compares data in Fig. 3 when n =
2000, and shows that in this case euMMD is ∼ 1000× faster
thanMMD. Note also that, in order to provide a fair comparison
of the algorithms, we implemented the merge sort algorithm
from Panny and Prodinger (1995) in Python.

Section S6 in the Supp. Material provides additional run-
time experiments. One experiment shows that using the
built-in Numpy sorting function would yield an extra ∼ 4×
speedup over using the “hand-coded” merge sort; however,
this is probably an unfair comparison, since the Numpy sort
function is implemented in C++. There are also runtime
experiments for implementations in C++, which show more
modest improvements in speed, up to about 124×.

While the results in Fig. 3 are illustrative of the improve-
ment in computational complexity of euMMD over the
standard MMD, another experiment showing a more practical
implementation (a) Using C++, (b) Using the median heuris-
tic with the kernel parameter for the Laplacian kernel, and
(c) Using either 100 or 1000 permutations to compute the
p-value, which showmore modest improvements in speed of
between 25× to 328×; see Sect. S6.2 in the Supp. Material.

3.4 Statistical performance of MMD on univariate
data

We conduct a number of experiments to evaluate the sta-
tistical performance of MMD on univariate data, and com-
pare to other univariate two-sample testing methods: the
Kolmogorov-Smirnov (Kolmogorov 1933; Smirnov 1948),
Cramér-vonMises (Cramér 1928; vonMises 1928),Wilcoxon-
Mann–Whitney (Wilcoxon 1945; Mann and Whitney 1947)
energy distance (Baringhaus and Franz 2004; Székely and

Rizzo 2004, 2013) and Student’s t-test (Student, 1908). Fig-
ure4 shows the results when there is a distribution change,
the data in the first sample x are independent observations of
a �(1, 1) distribution, while the second sample y are inde-
pendent observations of a N(1, 1) distribution (both samples
have mean and variance equal to 1), the same as for Fig. 1.
Figure4 shows that the MMD has, in this case, higher power
than the other methods.

Section S11 contains additional experiments, for another
type of distribution shift, as well as a variance shift and mean
shifts. TheMMDperforms the best for distribution shifts and
joint-best for variance shifts, but does not perform as well as
the other methods for mean shifts. Section S11 also contains
figures showing the Type 1 error with y-axis on the scale
[0, 0.1].

4 Extension tomultivariate data: MEA-MMD

While euMMD is an exact method for computing the MMD2

statistic for univariate data, this approach does not easily
extend to an exact method in the multivariate setting. How-
ever, in this sectionweextendour approach to anapproximate
methods for computing the MMD2 statistic for multivariate
data named MEA-MMD: Multivariate Efficient Approximate
MMD.

We explore two approaches from the literature for adapt-
ing a univariate test to multivariate data: (a) using random
projections as in Huang and Huo (2017), and (b) computing
distances to a reference point as in Heller and Heller (2016).
Both approaches involve projecting the observations from
R
d → R and then performing the univariate test. For the

remainder of this section, let d ∈ {2, 3, . . .} be the dimension
and suppose we have samples x = {x1, x2, . . . , xn1} ⊂ R

d

and y = {y1, y2, . . . , yn2} ⊂ R
d .
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Fig. 4 A comparison of Type I error and statistical power for the (i)
MMD with the Laplacian kernel and (ii) The MMD with the Gaus-
sian kernel, (iii) The energy distance, (iv) The Kolmogorov-Smirnov
test (KS), (v) The Cramér-von Mises test (CvM), (vi) The Wilcoxon-
Mann–Whitney test (WMW), and (vii) Student’s t-test, for samples
x = {x1, x2, . . . , xn1 } and y = {y1, y2, . . . , yn2 }. (Left) the Type I
error is computed when the underlying distributions of x and y are

both i.i.d. �(1, 1). (Right) the statistical error is computed when x is
i.i.d. �(1, 1) and y is i.i.d. N(1, 1). We note that in this experiment
the performance of the MMD approach is almost identical, whether
the Laplacian or Gaussian kernel is used.In both cases, a significance
threshold of α = 0.05 is used with L = 1000 permutations to compute
a p-value, and the performance shown is the average performance over
100 trials

4.1 Using random projections

Let Sd−1 denote the unit sphere in R
d , i.e.

Sd−1 =
{
u ∈ R

d : ‖u‖2 = 1
}

Following the approach in Huang and Huo (2017), instead of
computingMMD2(x, y),we can computeMMD2(uTk x, u

T
k y),

for anyuk ∈ Sd−1,whereuTk x = {uTk x1, uTk x2, . . . , uTk xn1} ⊂
R and uTk y = {uTk y1, uTk y2, . . . , uTk yn2} ⊂ R are now uni-
variate sets, using the euMMD algorithm. We can do this for
K projections uk ∈ Sd−1, and then construct our statistic by
averaging across the K projections, as in

MMD2
K (x, y) = 1

K

K∑

k=1

MMD2(uTk x, u
T
k y). (11)

We call this algorithm MEA-MMD-Proj. The theoretical
results in Huang and Huo (2017) for the energy distance

can be adapted to demonstrate that MMD2
K (x, y) converges

to MMD2(x, y) by increasing K and the sample size.

4.2 Computing distances to a reference point

In Heller and Heller (2016), the multivariate vectors are
projected onto univariate vectors by computing distances
between the different individual observations. For i ∈

{1, 2, . . . , n1}, one computes the distances to xi as follows:

x(i) = [‖z1 − xi‖2, . . . , ‖xi−1 − xi‖2, ‖xi+1 − xi‖2,
. . . , ‖xn1 − xi‖2]

y(i) = [‖y1 − xi‖2, ‖y1 − xi‖2 . . . , ‖yn2 − xi‖2].

Note that x(i), y(i) ⊂ R, with n1 − 1 and n2 observations,
respectively; the i th component of x is removed rather than
included as zero. Similarly, for n1 < i ≤ n, one can compute
the distances between the observations and yi−n1 to obtain
x(i), y(i) ⊂ R (where now x(i) has n1 observations and y(i)

has n2 − 1 observations). Overall, there are n1 + n2 = n
projections. InHeller andHeller (2016) thiswas used to apply
the univariate Kolmogorov-Smirnov and Anderson-Darling
tests tomultivariate data; here this approachwill be usedwith
the univariate MMD tests.

For notational convenience, we now assume there is a
function g : R → [0, 1] that computes a p-value given the
value of a statisticMMD2(x(i), y(i)), although in practice this
will be done via permutations of the x(i) and y(i). We also
use h : [0, 1]n → [0, 1] to denote the p-value combination
method due to Hommel (1983), which is briefly described
in Sect. S9.4 of the Supp. Material. Then, after computing
pi = g(MMD2(x(i), y(i)) for i = 1, 2, . . . , n, the final p-
value is p = h(p1, p2, . . . , pn). Thismethodwill be denoted
MEA-MMD-Dist.
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Of course, MEA-MMD-Dist and MEA-MMD-Proj are
only approximations to MMD2(x, y), so in addition to its
runtime we need to evaluate the statistical performance of
using the statistic in a statistical test, which we do in the next
sections.

4.3 Statistical performance

We present simulations to investigate the Type I error
and statistical power. In particular, we consider the case
where the two samples x = {x1, x2, . . . , xn1} and y =
{y1, y2, . . . , yn2}, where xi = (xi,1, xi,2, . . . , xi,d) and yi =
(yi,1, yi,2, . . . , yi,d), each xi, j is an observation of Xi, j , and
Xi, j are each i.i.d. normal; i.e. Xi, j ∼ N(μ1, σ

2
1 ). Similarly,

each yi, j is an observation of Yi, j , and the Yi, j ∼ N(μ2, σ
2
2 )

are i.i.d. For the case of computing the Type I error, we
set μ1 = μ2 = 0 and σ1 = σ2 = 1. For the case of
computing the power, μ1 = 0, and σ1 = σ2 = 1, and
μ2 = μ1 + 0.5σ1 = 0.5. Note that the number of permu-
tations used is L = 100, the threshold used is α = 0.05,
and the values are obtained over 100 independent trials.
The results of this experiment are displayed in Fig. 5. Note
that we have set the number of projections to be K = 20,
in which case MEA-MMD-Proj should be computationally
more efficient than MMD, as shown in Fig. 7. Sect. S8.1 in the
Supp. Material contains a similar figure to Fig. 5, but with
K = 100. Section S8.5 in the Supp. Material looks at varia-
tions of MEA-MMD-Dist approach. We notice from Fig. 5
that MEA-MMD-Proj has slightly greater power than MMD
for this setting, at least for n ≤ 50, while both have simi-
lar Type I errors, close to the threshold α. We have included
MMD with both the Laplacian and Gaussian kernels, which
have very similar performance.

4.3.1 Statistical performance: d > n

The experiment shown in Fig. 5 indicates one result of par-
ticular interest: the power of MEA-MMD-Proj is higher than
the power of MMD for small n1 = n2.

We investigate this further by restricting n1, n2 ∈ {5, 10,
20, 30, 40} with n1 = n2 and increase the dimension to d =
100 to consider the case d > n, where n = n1 + n2.

Again, x = {x1, x2, . . . , xn1} and y = {y1, y2, . . . , yn2}
are observations sampled as before, but for the power experi-
ment, we setμ2 = 1√

40
in order to keep theKullback–Leibler

divergence between the two distributions the same for this
case where d = 100 as in the case where d = 10 in Fig. 5;
see Sect. S8.2 in the Supp. Material for details.

Figure 6 shows that MEA-MMD-Proj has power 1−β >

0.8 for d = 100 and n1 = n2 = 10 and power close to 1
for d = 100 and n1 = n2 = 20, while the power for MMD is
much lower in those cases, being around 0.2 and 0.4, respec-

tively. This provides some evidence that MEA-MMD-Proj
may have utility in the case d > n.

The poor performance of MEA-MMD-Dist may be due,
as noted before, to the fact that the Hommel p-value combi-
nation procedure is conservative; see Sect. S8.5 in the Supp.
Material for further details.

4.3.2 Comparison to other multivariate two-sample tests

Wecompare theperformanceof theproposedMEA-MMD-Proj
to the following multivariate two-sample tests: the Cross-
match test (Rosenbaum 2005), the Multivariate Runs test
(Friedman and Rafsky 1979; Henze and Penrose 1999), and
Hotelling’s multivariate T -test (Hotelling 1931). We do not
considerMEA-MMD-Dist any longer, since it hasworse per-
formance compared to MEA-MMD-Proj. We use the MMD
with the Laplacian and Gaussian kernels and the energy dis-
tance as benchmarks. We discuss the implementations of the
multivariate methods in Sect. S12 of the appendix.

Figure 6 compares these multivariate methods for a mean
shift, with the number of dimensions d = 100. In this case,
MEA-MMD-Proj has higher power than the other methods.
The Multivariate Runs test has power equal to 0, possibly
because n1 + n2 < d. The Hotelling test also power equal to
0, because n1 + n2 < d and the sample covariance matrix is
singular. In Sect. S12 of the Supp. Material, the same exper-
iment is run for d = 10, and MEA-MMD-Proj again has
superior power over these methods for small sample sizes.

Further experiments for a change in the mean shows that
MEA-MMD-Proj performs well in comparison to the mut-
livariate methods. For a change in variance or distribution,
though, MEA-MMD-Proj does not perform well, and it is
shown that only MMD performs well. Following a sugges-
tion from one of the referees, we have applied the same
random projections approach to other univariate tests used
in Sect. 3.4. These random projection methods perform sim-
ilarly to MEA-MMD-Proj, performing well for a change in
the mean, but not for a change in variance or distribution.
These experiments are also in Sect. S12 of the Supp. Mate-
rial.

In summary, MEA-MMD-Proj may have utility for
detecting a change in the mean, particularly when the num-
ber of dimensions is greater than the number of samples, but
the multivariate MMD should be preferred for other cases.

4.4 Runtime comparison

Analysing the runtime of MEA-MMD-Proj by looking at
the computation of Eq. (11), since computing uTj x and

uTj y is O(dn), the overall computational complexity is
O(Kn log n + Kdn).
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Fig. 5 A comparison of Type I error and statistical power for the (i)
MMD with the Laplacian kernel, (ii) The MMD with the Gaussian
kernel, (iii) The proposed MEA-MMD-Proj and (iv) The proposed
MEA-MMD-Dist, for multivariate samples x = {x1, x2, . . . , xn1 } ⊂
R
d and y = {y1, y2, . . . , yn2 } ⊂ R

d for d = 10. (Left) the Type I error
is computed when the underlying distributions of each component of

the xi and y j vectors are i.i.d. N(0, 1). (Right) the statistical error is
computed when each component of the xi are i.i.d. N(0, 1) and each
component of the y j are i.i.d. N(0.5, 1). In both cases, a significance
threshold of α = 0.05 is used with L = 100 permutations to compute
a p-value, the number of projections for MEA-MMD-Proj is K = 20,
and the performance shown is the average performance over 100 trials

Fig. 6 A comparison of Type I error and statistical power for the (i)
The proposed MEA-MMD-Proj and (ii) MMD with the Laplacian
kernel, (iii) The MMD with the Gaussian kernel, (iv) The Cross-
match test, (v) The Multivariate Runs test, (vi) The energy distance,
(vii) Hotelling’s multivariate T -test, for multivariate samples x =
{x1, x2, . . . , xn1 } ⊂ R

d and y = {y1, y2, . . . , yn2 } ⊂ R
d for d = 100

and n1, n2 ∈ {10, 20, 30, 40}, and n1 = n2, so d > n = n1 + n2.
(Left) the Type I error is computed when the underlying distributions

of each component of the xi and y j vectors are i.i.d. N(0, 1). (Right)
the statistical error is computed when each component of the xi are
i.i.d. N(0, 1) and each component of the y j are i.i.d. N(μ2, 1), where
μ2 = 1/

√
40. In both cases, a significance threshold of α = 0.05 is

used with L = 100 permutations to compute a p-value, the number
of projections for MEA-MMD-Proj is K = 20, and the performance
shown is the average performance over 100 trials
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Fig. 7 Runtime comparison of
C++ implementations of the
multivariate (i) MMD with the
Laplacian kernel, (ii) MMD
with the Gaussian kernel, (iii)
The proposed MEA-MMD-Proj
and (iv) The proposed
MEA-MMD-Dist, as n1 = n2
varies, with d = 10 and number
of projections for
MEA-MMD-Proj is K = 20.
(Left) linear scale. (Right)
log-log scale. Note that the
p-values are computed using
L = 100 permutations, but
without using the median
heuristic method to set the value
of β

For MEA-MMD-Dist, since there are n computations of
MMD2(x(i), y(i)) (which are O(n log n + dn) steps), and a
singleO(n log n) for the Hommel p-value combination pro-
cedure, the whole algorithm isO(n2 log n+dn2). This might
seem counterproductive; after all, the standardMMDmethod
is O(dn2). However, as shown in Figs. 5 and 6 in Sect. 4.3,
there are caseswhere these approximate approaches can have
greater statistical power than the standard MMD.

Note that we are neglecting the number of permutations
from the computational complexities, since we are assuming
all methods will use the permutation approach. However, to
be precise, MEA-MMD-Dist is O(Ldn2 log n), where L is
the number of permutations.

Figure 7 investigates the runtime of MEA-MMD-Proj
compared to the other methods by varying n and the number
of projections K , and shows that when K is not too large,
MEA-MMD-Proj can be significantly faster than MMD. In
Fig. 7 we have used K = 20, as that seems to be sufficient
for good performance; see Sect. S8.4 in the Supp. Material
for details. Note also that Fig. 7 shows the runtime for when
the p-values are computed, but without using the median
heuristic; Fig. S14 in the Supp. Material shows that when the
median heuristic is used, MEA-MMD-Proj is slightly slower
than MMD for n ≤ 2000. This is because the median heuristic
algorithm needs to be computed for every projection. How-
ever, as shown in Sects. 4.3 and 4.3.1, we see that the utility of
MEA-MMD-Proj is not its increased efficiency, but rather an
increase of power in cases where n is small, and even when
n < d.

4.4.1 Increasing the dimension d or the number of
projections K

All the algorithms have computational complexity that is lin-
ear in the dimension of the data, d.

The computational complexity is clearly linear in K , but
additional experiments in Sect. S8.4 in the Supp. Mate-
rial show that for K ≥ 20, the statistical performance of
MEA-MMD is relatively constant, i.e. does not significantly
improve for larger K .

4.5 Other approximatemethods

Since MMD (Gretton et al. 2012a) has computational com-
plexity O(dn2), several approximate methods have been
proposed which are more efficient.

InGretton et al. (2012a) a linear-time approximatemethod
MMD-Linearwasproposedwith computational complexity
isO(dn), but thismethod has a higher variance thanMMD, and
so worse statistical performance. The MMD-Blockmethod,
known as B-test in Zaremba et al. (2013), approximates the
MMDstatistic bypartitioning the kernelmatrices into blocks;
the size of the blocks, B, is a parameter for the method and
we use their suggested heuristic B = √

n1, when n1 = n2
(as is the case in our simulation setup), and in this case its
computational complexity isO(dn1.5). The MMD-Fourier
method, known as FastMMD in Zhao andMeng (2015), uses
the randomFourier features approach fromRahimi andRecht
(2007); it has a parameter L , with a suggested heuristic for
its value based on the sample size n, and it has computational
complexity O(dnL).

However, while these methods are computationally more
efficient, their statistical performance is worse than that of
the original MMD, and so they are not considered in our com-
parison of statistical performance.

5 Discussion

While a direct computation of the MMD statistic for n
univariate, real-valued samples isO(n2), we present the algo-
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rithm euMMD, which can compute the exact MMD statistic
with computational complexityO(n log n) and storage com-
plexityO(n), where these are worst-case complexities. This
approach can lead to runtime improvements of several orders
of magnitude.

Additionally, twoapproximatemethodsMEA-MMD-Proj
and MEA-MMD-Dist, based on euMMD, are explored for
computing theMMDstatistic in themultivariate setting ford-
dimensional data. The MEA-MMD-Proj approach depends
on a user-defined number of random projections K , and for
K = 20 this algorithm will have improved computational
complexity and runtime performance for large n. However,
of greater interest are the cases with small n, and even cases
where n < d, where MEA-MMD-Proj has better statistical
perfomance than the exact MMD method.

So, while the univariate case is exact and has improved
computational complexity, the multivariate approximate
method MEA-MMD-Proj has greater statistical power in
cases where n is small, and even works well in cases where
n < d.

One interesting question is whether the O(n log n) com-
putational complexity of euMMD can be improved for uni-
variate real-valued data, i.e. is the computational complexity
�(n log n)? In Remark 10 it is mentioned that if the data is
known to be integer-valued, then an existingO(n) sort allows
the algorithm to be O(n) overall; however, this is a special
case.

5.1 Code and figures

The euMMD and MEA-MMD-Proj algorithms are available
in the R package named eummd on CRAN and in the Python
package named eummd on PyPI. Both packages share the
same underlying core code written in C++.

Section S12 in the Supp. Material discusses the imple-
mentation of the multivariate methods.

All experiments were run on an Apple Macbook Air with
an M1 processor and 16 GB of RAM.

Plots were produced in Python using the matplotlib
(Hunter 2007) library.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-023-10271-
x.
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