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Background: Due to the high prevalence of resistance to NNRTI-based ART since 2018, consolidated recommen
dations from the WHO have indicated dolutegravir as the preferred drug of choice for HIV treatment globally. 
There is a paucity of resistance outcome data from HIV-1 non-B subtypes circulating across West Africa. 

Aims: We characterized the mutational profiles of persons living with HIV from a cross-sectional cohort in North- 
East Nigeria failing a dolutegravir-based ART regimen. 

Methods: WGS of plasma samples collected from 61 HIV-1-infected participants following virological failure of 
dolutegravir-based ART were sequenced using the Illumina platform. Sequencing was successfully completed 
for samples from 55 participants. Following quality control, 33 full genomes were analysed from participants 
with a median age of 40 years and median time on ART of 9 years. HIV-1 subtyping was performed using 
SNAPPy. 

Results: Most participants had mutational profiles reflective of exposure to previous first- and second-line ART 
regimens comprised NRTIs and NNRTIs. More than half of participants had one or more drug resistance-asso
ciated mutations (DRMs) affecting susceptibility to NRTIs (17/33; 52%) and NNRTIs (24/33; 73%). Almost a quar
ter of participants (8/33; 24.4%) had one or more DRMs affecting tenofovir susceptibility. Only one participant, 
infected with HIV-1 subtype G, had evidence of DRMs affecting dolutegravir susceptibility—this was character
ized by the T66A, G118R, E138K and R263K mutations. 

Conclusions: This study found a low prevalence of resistance to dolutegravir; the data are therefore supportive 
of the continual rollout of dolutegravir as the primary first-line regimen for ART-naive participants and the pre
ferred switch to second-line ART across the region. However, population-level, longer-term data collection on 
dolutegravir outcomes are required to further guide implementation and policy action across the region.
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This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/ 
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Introduction
Due to the increasing prevalence of pre-treatment NNRTI drug re
sistance,1–3 the WHO has (since 2018) recommended the use of 
dolutegravir as the preferred ART drug of choice for both newly 
diagnosed and individuals transitioning from previous regimens.4

This decision was supported by numerous safety, potency, toler
ability and cost-effective characteristics of dolutegravir.5 Since 
2019, more than 50 countries across sub-Saharan Africa (SSA) 
have rolled out (or have plans to roll out) dolutegravir as part of 
standard treatment. The continuing rollout is aided by the avail
ability of a low-cost, generic fixed-dose co-formulation of tenofo
vir disoproxil fumarate, lamivudine and dolutegravir, called TLD.6

Dolutegravir-based ART has been commercialized and distribu
ted in Nigeria since late 2019. As of 2020, national Nigerian treat
ment guidelines recommend the transition to dolutegravir-based 
ART in both virally suppressed and unsuppressed participants.7

However, due to economic and other factors, there is no routine 
virological or resistance testing in Nigeria. Therefore, the majority 
of HIV-1-infected participants transitioned to dolutegravir-based 
regimens without prior viral load (VL) or resistance testing. Data 
from the ADVANCE and NAMSAL clinical trials,8,9 which recruited 
ART-naive participants exclusively in SSA, showed no evidence of 
emergence of drug resistance-associated mutations (DRMs) 
amongst participants on dolutegravir-based ART. Data on treat
ment outcomes of ART-experienced participants transitioning to 
TLD are limited, though some literature is beginning to emerge.10

Despite this, there are almost no data available from West Africa.
Given the high prevalence of ART resistance amongst 

treatment-experienced, HIV-1 participants following virological fail
ure whilst on previous first- and second-line ART regimens,11 data 
on resistance outcomes following long-term use of dolutegravir 
are highly valuable. In this study, we present resistance outcomes 
and drug-resistance genotypes using next-generation HIV-1 sequen
cing, from participants in a small, Nigerian, treatment-experienced 
cohort failing dolutegravir-based ART following rollout.

Methods
Study population and design
This was a cross-sectional study performed at the University of Maiduguri 
Teaching Hospital, Borno State, Nigeria, between January and June 2021. 
Assessing virological and resistance outcomes in this region of Nigeria has 
been challenging due to ongoing and long-term armed conflict caused by 
the Boko Haram insurgency, which has turned the area into a conflict 
zone. Inclusion criteria for this study was as follows: participants with 
virological failure (two consecutive HIV-1 RNA VL >1000 copies/mL) 
whilst following a dolutegravir-based ART regimen for >6 months, 
≥18 years of age, attending routine clinic visits and able to provide in
formed consent for participation in the study. All participants included 
in this study provided informed consent prior to sample and data collec
tion. Available demographic data including age, gender, ART regimen, 
duration on ART and current CD4 count were collected from clinical files 
and recorded in Microsoft Excel (Office 365, Microsoft, Redmond, USA).

Laboratory methods
Plasma was separated from whole venous blood in EDTA within 2 h of col
lection and stored immediately at −80°C. Plasma VL testing and CD4+ 
counts were performed at the Defence Reference Laboratory, Asokoro 
Abuja using the COBAS AmpliPrep/COBAS TaqMan HIV type 1 (HIV1) 

v2.0 test (Roche Diagnostics, Basel, Switzerland). WGS was performed 
retrospectively using the ve-SEQ-HIV12 protocol on 61 plasma samples 
with VL > 1000 copies/mL and stored prior to confirmation of VL.

Briefly, total RNA was extracted from plasma samples, washed in 
ethanol, and eluted using the NUCLISENS easyMAG system 
(bioMérieux). Libraries were prepared using the SMARTer Stranded Total 
RNA-Seq Kits v2 (Clontech, Takara Bio) according to the manufacturer’s 
protocol. Total RNA was denatured, and reverse-transcribed to cDNA 
and a total of 500 ng of pooled libraries were hybridized to custom 
HIV-specific biotinylated 120-mer oligonucleotides (xGen Lockdown 
Probes, Integrated DNA Technologies). Captured libraries were then amp
lified by PCR to produce a final pool for sequencing with an Illumina MiSeq 
(San Diego, CA, USA) to produce up to 300-nucletoide paired-end reads.

Bioinformatics analysis
FastQ files were trimmed of all sequencing adapters, and mapped itera
tively to the best available reference sequence, from a curated alignment 
of 3000 HIV-1 genomes downloaded from the Los Alamos HIV sequence 
database, using SHIVER.13,14 BAM files were quality controlled by deter
mining the read depth at each position of the HIV-1 genome. 
Sequences with a depth of <50 reads were excluded from further ana
lysis. Resistance genotyping was performed using an in-house script 
that utilizes the Stanford HIV drug resistance algorithm (v9.1) but is 
adapted to calculate the prevalence of DRMs from all available sequen
cing data rather than just consensus-level mutations. The script calls mu
tations with an absolute minimum read count of 50 reads, and minimum 
frequency of 2%, 10% and 20%. Haplotypes were reconstructed using 
CliqueSNV v2.0.315 using the -fdf extended, -m snv-illumina and -tf 
0.05 flags. Phylogenies were inferred with IQ-TREE2 v2.2.215 using a 
GTR + F + I + R4 model with 1000 rapid bootstraps. Inference of transmis
sion was made with phyloscanner v1.8.113 using overlapping windows 
of 150 bp across the whole genome. Phylogenies were rooted on an 
HIV-1 subtype G reference sequence, downloaded from the curated 
HIV-1 alignment from the Los Alamos National HIV Database. HIV-1 sub
typing was performed using SNAPPy v1.0.0.16 Prediction of co-receptor 
usage was made using TROPHIX (prediction of HIV-1 tropism; http:// 
sourceforge.net/projects/trophix/).

Ethics
The study was approved by the University of Maiduguri Teaching Hospital 
Ethics Committee (UMTH/REC/21/714). All participants provided written 
informed consent.

Results
Virological assessment revealed that of 4263 HIV-1-positive par
ticipants on dolutegravir-based ART for ≥6 months, 452 (11%) 
had a detectable VL (>400 copies/mL), yielding a population- 
level suppression rate of 89%. Amongst those participants with 
a detectable VL, 281 had a VL of >1000 copies/mL; plasma col
lection was successful in 61 participants. Following quality con
trol of the WGS, due to poor coverage and depth across most 
of the genome (Figure 1a and b, available as Supplementary 
data at JAC Online), 28 samples were excluded from further ana
lysis. This resulted in a population of 33 participants with a fully 
intact whole genome, from which the prevalence of DRMs and 
minority variants were calculated.

This population (Table 1) was a largely ART-experienced co
hort, with almost two-thirds switching from PI-based second-line 
ART, to dolutegravir-based ART. The median duration of ART was 
9 years, with a median CD4+ count of 200 cells/mm3, and a 
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median VL of 4.1 log10 copies/mL (range 3.0–5.2). Only two par
ticipants were initiating first-line dolutegravir-based regimens; 
the remainder were switched to dolutegravir as their second-line 
regimen. We did not observe from clinical records, any previous 
exposure to an INSTI in our study population.

Using the SNAPPy HIV-1 subtyping tool, ∼40% of viruses were 
assigned to subtype G, and 15% were G_A1 subtypes. The remain
ing viruses were recombinants, as expected from previous work 
(Table 1).17,18 Using a minimum threshold of 20%, NRTI, NNRTI, 
PI and INSTI DRMS occurred in 17 (52%), 24 (73%), 4 (12%) and 
1 (3%) of samples, respectively (Figure 1a). Dual-class resistance 
occurred in 17 (50%) participants and tri-class mutations occurred 
in 5 (14.7%) participants, which is consistent with long-term ex
posure to lamivudine. The most prevalent NRTI mutation was 
M184V,19 though we also observed occurrence of L74I in two 
cases (6%); this mutation compensates for the fitness defect in
duced by M184V.20 The most prevalent NNRTI DRM was K103N, re
flective of prior exposure to nevirapine and efavirenz in this cohort 
of treatment-experienced persons living with HIV (PLWH). The fre
quency of detected DRMs was similar across the different inter
pretive thresholds of 2%, 10% and 20% (Figure 1b).

One participant, aged 18 years, known to be vertically in
fected, was found to have high-level resistance to NRTIs, 
NNRTIs and INSTIs, including almost complete resistance to the 
long-acting injectable cabotegravir. Mutations included 
inE138K, inG118R, inT66A, inR263K, rtH221Y, rtV108I, rtK103N, 
rtM184V, rtM41L, rtA98G and rtT215Y, all at frequencies >40%, 
with a mean read depth of 770×. This participant was established 
on dolutegravir for a median of 1.2 years and on ART for a median 
of 12 years. Data on other clinical parameters including nadir 
CD4+ counts were unavailable.

To identify within-host diversity and potential transmission of 
DRMs between participants, we reconstructed viral haplotypes 
(Figure 2a) for each participant, and individually for the 
cabotegravir-resistant participant (Figure 2b). Viral haplotypes 
were largely homogeneous within host, each containing highly 
similar DRMs within each of the reconstructed haplotypes for 
each participant. Following this, we investigated whether there 
was evidence of transmission or genetic linkage between partici
pants in this cohort (Figure 2). However, no significant transmis
sion or strong degree of genetic linkages were identified.

Two participants were identified as harbouring CXCR-4 
co-receptor using viruses. One of these participants had DRMs as
sociated with reduced susceptibility to NNRTIs, characterized by 
K103N and E138A. The other participant had DRMs reducing sus
ceptibility to both NRTIs and NNRTIs, characterized by M184V and 
G190A. Neither participant had any PI or INSTI DRMs.

Discussion
Following the initial rollout of previous first-line, NNRTI-based ART 
regimens, DRMs were first observed within the first year of viro
logical failure in ∼15%–35% of participants, characterized by re
sistance to lamivudine, tenofovir disoproxil fumarate and 
NNRTIs.22,23 Drug resistance is associated with increased mortal
ity in hospitalized individuals in low-middle income (LMIC) set
tings.24 The second-generation INSTI dolutegravir has been 
systematically adopted and rolled out across SSA since 2018, 
though there are concerns regarding the emergence of DRMs fol
lowing virological failure in these limited-monitoring settings. In 
a recent analysis of pooled evidence on virological and resistance 
outcomes following dolutegravir failure in SSA, there was an 
overall high rate of virological response to dolutegravir: 88.5% 
(95% CI: 73.8–97.8). Participants in these studies experienced 
an exceptionally low rate of virological failure,10 and there was 
minimal evidence of the emergence of DRMs during short obser
vation periods. However, prolonged virological failure is expected 
to eventually lead to the selection of DRMs within viral quasispe
cies, as a result of intrahost evolution.21,25

It is worth noting that the presence of pre-existing DRMs, prior 
to switching to dolutegravir-based ART regimens may have a sig
nificant impact on both virological and resistance outcomes. 
Previous studies suggest that NNRTI mutations acquired before 
treatment can reduce the effectiveness of dolutegravir-based 
ART regimens.26 However, other studies conducted in various 
countries in SSA have reported similar virological and resistance 
outcomes in both ART-naive27,28 and ART-experienced partici
pants29,30 (without evidence of DRMs), as well as in ART- 
experienced individuals with a history of NRTI mutations, 
particularly M184V/I.31–33 Nonetheless, it is important to 

Table 1. Characteristics of study participants with successful WGS and 
genotypinga

Characteristic

Participants
Total number of participants 33
Female, n (%) 20 (61)
Age, years, median (IQR) 40 (35–48)
CD4+ count, cells/mm3, median (IQR) 200 (300–467)

Current ART regimen
TDF + 3TC + DTG, n (%) 33 (100)
Time on DTG, years, median (IQR) 1.8 (1.4–1.9)
Time on ART, years, median (IQR) 9.3 (5.8–15.0)
Switching to DTG, n (%) 31 (94)
Starting DTG, n (%) 2 (6)

ART regimen prior to DTG, n(%)
TDF + 3TC + LPV/r 17 (52)
TDF + 3TC + ATV/r 4 (12)
ZDV + 3TC + EFV 8 (24)
ABC + 3TC + EFV 2 (6)
No prior ART 2 (6)

HIV-1 subtype, n (%)b

G 13 (39)
G/A1 5 (15)
CRF02_AG 3 (9)
A (A1) 2 (6)
CRF02_AG/G 2 (6)
02AG/A1 2 (6)
Others 6 (18)

TDF, tenofovir disoproxil fumarate; 3TC, lamivudine; DTG, dolutegravir; 
LPV, lopinavir; r ritonavir; ATV, atazanavir; ZDV, zidovudine; EFV, efavirenz; 
ABC, abacavir. 
aData available from 33 participants following quality control. 
bOther subtypes comprising: CRF06_CPX (n = 1); CRF13_CPX-like (n = 1); 
CRF13_CPX/G (n = 1); CRF 11_CPX (n = 1); G/C (n = 1); G/J/A (n = 1).
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acknowledge that resuppression can occur after a viral rebound, 
but DRMs accumulated during that rebound can lead to high- 
level resistance against second-line ART components.34

In this study, we conducted a cross-sectional analysis to de
termine the prevalence of DRMs, using WGS, in a small cohort 
of HIV-1-positive participants who were experiencing virological 
failure on dolutegravir-based ART regimens (defined as a VL >  
1000 copies/mL). This study is particularly relevant as the major
ity of HIV-1 in Nigeria is subtype G or AG recombinants, rather 
than the commonly investigated subtype C from many other 
parts of SSA. Many of the viraemic participants were 

ART-experienced, having previously been on PI-based regimens 
before being switched to TLD. We attribute the high rate of viro
logical failure amongst these participants to poor adherence. 
Despite this, we observed a low incidence of individuals with 
TDF or dolutegravir resistance despite experiencing viraemia on 
TLD. This is reassuring as it suggests that adherence counselling 
would likely result in resuppression of viraemic participants, simi
lar to those rates observed with PI-based ART.35

Amongst the 33 participants with sequencing data of suffi
cient quality, the observed mutational landscape was reflective 
of exposure to previous first-line NNRTI-based regimens, with 
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Figure 1. (a) Proportion of participants with DRMs using the Stanford algorithm. (b) Proportion of participants with DRMs using the Stanford algorithm, 
subdivided into interpretational cut-offs of 2%, 5% and 20%. Evidence suggests that minority variants may play a role in drug resistance.21
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(a)

(b)

Figure 2. (a) Maximum-likelihood phylogeny of reconstructed haplotypes for all participants and (b) only the patient with cabotegravir resistance, with 
1000 ultrafast bootstraps (indicated at each node). Mutations defining each haplotype are listed at the node. Haplotypes were homogeneous, with 
little diversity or changes in frequency of DRMs. This figure appears in colour in the online version of JAC and in black and white in the print version of 
JAC.
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only a single participant having DRMs reducing the efficacy of do
lutegravir or other PIs. This participant was vertically infected, 
likely at a young age, due to the length of ART treatment. The par
ticipant had a number of DRMs conferring high-level resistance to 
dolutegravir and other INSTIs, i.e. T66A, G118R, E138K (acces
sory) and R263K. The T66A mutation is non-polymorphic and pri
marily selected by elvitegravir and raltegravir, resulting in an 
∼9-fold reduction in susceptibility to elvitegravir but minimal im
pact on other INSTIs. The E138K mutation has negligible effect 
on susceptibility to INSTIs; however, when found in combination 
with other DRMs, this results in further decreased susceptibility to 
dolutegravir.36 Further, the G118R and R263K mutations ob
served in this patient, conferring between 2- and 15-fold reduc
tions to dolutegravir susceptibility,37,38 have also been observed 
in participants experiencing virological failure on INSTI-based re
gimens in non-B HIV subtypes39–42 and is known to reduce long 
terminal repeat DNA binding, replication capacity, infectivity and 
viral fitness.43 It is likely that the G118R mutation emerged first 
and led to the accumulation of other mutations including the 
E138K compensatory mutation, as G118R has been described 
as a dolutegravir-resistance pathway in non-B subtypes.37,44

Research on non-B subtype drug resistance is therefore import
ant, especially as polymorphisms in the integrase gene may 
have a negative effect on impact on resistance outcomes to 
other INSTIs.45

We note that there was a complete absence of the NRTI mu
tation K65R, along with low-level resistance to tenofovir diso
proxil fumarate. This phenomenon has also been described in 
other Nigerian cohorts.46,47 To ensure that this was a true finding, 
investigation of read coverage shows that there was sufficient 
depth to determine DRMs at this site, though there was a com
plete absence of it (Figure 2). We note the frequent presence of 
several thymidine analogue mutations (TAMs) alongside other 
NNRTI mutations likely reflects prior use of zidovudine, stavudine +  
NNRTI-based ART, prior to virological failure, with subsequent 
switch to tenofovir disoproxil fumarate-containing PI-based re
gimens. It should be noted that K65R is antagonistic to TAMs on 
the same genome,21,48 and that the occurrence of NRTI and PI 
mutations is relatively uncommon during viraemia on PI-based 
ART.49,50

Given the increasing use of dolutegravir in clinical practice, the 
most effective strategy for managing participants with persistent 
viraemia whilst on dolutegravir-based ART regimens remains un
certain. This is especially true in resource-limited settings such as 
Nigeria, where the capacity for drug resistance testing is lim
ited.51 Despite this, this study has provided additional evidence 
to support favourable outcomes when providing long-term ART 
services in areas of conflict and civil unrest. However, several fac
tors may increase the risk of dolutegravir resistance emerging in 
the region, including prolonged virological failure due to the lack 
of routine virological monitoring52,53 as well as suboptimal treat
ment adherence,54 which is an independent determinant of viro
logical outcomes in these settings.

Disengagement from care is also a significant problem, al
though it is possible to re-engage with a substantial proportion 
of cases,55 highlighting the benefits that can be gained through 
outreach and tracing efforts. Given that INSTI-based long-acting 
injectables are being considered as pre-exposure prophylaxis,56 it 
is crucial to conduct further analyses of resistance across SSA 

over extended periods and to monitor newly diagnosed indivi
duals for INSTI resistance.

This study was subject to limitations. Study sample size was 
small, with only 33 samples generating high-quality sequences 
for analysis despite sample collection from 61 participants. We 
speculate this could be due to human-related factors, which 
may include shipping and storage conditions. We did not collect 
data on adherence although the mutational landscape and pro
file of patients are consistent with prior treatment with 
NNRTI-based first-line regimens and with evidence of virological 
failure on dolutegravir. Nonetheless, given the paucity of data 
across this region, this study provides critical outcome and resist
ance data including highlighting the need for larger and more 
comprehensive population-level cohort studies to further under
stand the emerging trends and prevalence of DRMs in individuals 
failing dolutegravir-based ART in resource-limited settings.

Finally, given the potential for dolutegravir resistance to 
emerge due to suboptimal treatment adherence and prolonged 
virological failure, efforts to improve adherence and increase ac
cess to routine virological monitoring should be prioritized to min
imize the emergence and spread of drug resistance. Further 
research is needed to evaluate the effectiveness of different 
strategies for managing individuals experiencing persistent vir
aemia on dolutegravir-based ART in resource-limited settings, 
particularly in the context of ongoing conflict and civil unrest.
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