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Filling of a Poisson trap by a population of random intermittent searchers
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We extend the continuum theory of random intermittent search processes to the case of N independent
searchers looking to deliver cargo to a single hidden target located somewhere on a semi-infinite track. Each
searcher randomly switches between a stationary state and either a leftward or rightward constant velocity state.
We assume that all of the particles start at one end of the track and realize sample trajectories independently
generated from the same underlying stochastic process. The hidden target is treated as a partially absorbing trap
in which a particle can only detect the target and deliver its cargo if it is stationary and within range of the target;
the particle is removed from the system after delivering its cargo. As a further generalization of previous models,
we assume that up to n successive particles can find the target and deliver its cargo. Assuming that the rate of
target detection scales as 1/N , we show that there exists a well-defined mean-field limit N → ∞, in which the
stochastic model reduces to a deterministic system of linear reaction-hyperbolic equations for the concentrations
of particles in each of the internal states. These equations decouple from the stochastic process associated with
filling the target with cargo. The latter can be modeled as a Poisson process in which the time-dependent rate
of filling λ(t) depends on the concentration of stationary particles within the target domain. Hence, we refer to
the target as a Poisson trap. We analyze the efficiency of filling the Poisson trap with n particles in terms of
the waiting time density fn(t). The latter is determined by the integrated Poisson rate μ(t) = ∫ t

0 λ(s)ds, which
in turn depends on the solution to the reaction-hyperbolic equations. We obtain an approximate solution for the
particle concentrations by reducing the system of reaction-hyperbolic equations to a scalar advection-diffusion
equation using a quasisteady-state analysis. We compare our analytical results for the mean-field model with
Monte Carlo simulations for finite N . We thus determine how the mean first passage time (MFPT) for filling the
target depends on N and n.
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I. INTRODUCTION

There are many examples in nature where random search
strategies provide an efficient means for locating one or
more targets of unknown location. Examples include animals
foraging for food or shelter [1–4], the active transport of
reactive chemicals in cells [5–9], a promoter protein searching
for a specific target site on DNA [10–13], and the motor-driven
transport and delivery of vesicles to synaptic targets along
the axons and dendrites of neurons [14–17]. One particular
class of model that has been applied both to foraging animals
and to active transport in cells treats a random searcher as a
particle that switches between a slow motion (diffusive) or
stationary phase in which target detection can occur and a fast
motion “ballistic” phase; transitions between bulk movement
states and searching states are governed by a Markov process
[18–21]. If the random search is unbiased and the probability of
finding a single hidden target is unity, then it can be shown that
there exists an optimal search strategy given by the durations of
each phase that minimize the mean first passage time (MFPT)
to find the target. Motivated by experimental observations of
the motor-driven transport of mRNA granules in dendrites
[22,23], we have recently extended a one-dimensional (1D)
version of these models to the case of a directed intermittent
search process, in which the motion is directionally biased
and there is a nonzero probability of failing to find the target
(due to competition with other targets or degradation) [16,17].
In this case there no longer exists an optimal search strategy,
unless additional constraints are imposed, such as fixing the
target hitting probability.

In this paper, we extend the continuum theory of random
intermittent search processes to the case of N independent
searchers looking to deliver cargo to a single hidden target
located somewhere on a semi-infinite track. We assume that all
of the particles start at one end of the track and realize sample
trajectories independently generated from the same underlying
stochastic process. For simplicity, we consider a three-state
Markov process in which each particle can be in one of three
internal states: stationary, moving to the right (anterograde)
with speed v, or moving to the left (retrograde) with speed
−v. The hidden target is treated as a partially absorbing trap in
which a particle can only detect the target and deliver its cargo
if it is stationary and within range of the target; the particle
is removed from the system after delivering its cargo. As a
further generalization of previous models, we assume that up
to n successive particles can deliver their cargo to the target.
Assuming that the rate of target detection scales as 1/N , we
show that there exists a well-defined mean-field limit N → ∞,
in which the stochastic model reduces to a deterministic system
of linear reaction-hyperbolic equations for the concentrations
of particles in each of the internal states. In the mean-field
limit, these equations decouple from the stochastic process
associated with filling the target with cargo. The latter can be
modeled as a Poisson process in which the time-dependent
rate of filling the target λ(t) depends on the concentration of
stationary particles within the target domain. We thus refer to
the target as a Poisson trap.

We analyze the efficiency of filling the Poisson trap with
n particles in terms of the waiting time density fn(t). In the

031909-11539-3755/2012/85(3)/031909(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.031909


PAUL C. BRESSLOFF AND JAY M. NEWBY PHYSICAL REVIEW E 85, 031909 (2012)

case of a semi-infinite track, the probability of successfully
filling the target is equal to unity when the search is unbiased,
that is, the so-called hitting probability �n ≡ ∫ ∞

0 fn(t)dt = 1.
On the other hand, �n < 1 for a biased search. The waiting
time density is determined by the integrated Poisson rate
μ(t) = ∫ t

0 λ(s)ds, which in turn depends on the solution to
the reaction-hyperbolic equations for the concentrations. We
obtain an approximate solution to these equations by carrying
out a quasisteady-state (QSS) reduction along analogous lines
to our previous work on molecular-motor-based models of
single-searchers [17,24]. This generates a scalar advection-
diffusion equation for the concentrations. The QSS reduction
is applicable provided the Markov transition rates between
internal states of a particle are fast compared to the velocities
on an appropriately defined spatial scale. We also compare our
analytical results for the mean-field model with Monte Carlo
simulations for finite N . A number of results follow from our
study. First, the mean-field model exhibits the same qualitative
behavior as found in previous single-searcher models; namely,
there exists an optimal search strategy in the case of unbiased
search but not in the case of directed intermittent search.
Second, we quantify how increasing the number of searchers
N reduces the MFPT for filling the target and increases the
hitting probability (in the case of biased search). Third, we
quantify how the hitting probability decreases and the MFPT
increases as we increase the capacity n of the target or trap.

It should be noted that there have been some previous
studies of multiple searchers looking for a single target, but
in discrete space on a 1D infinite lattice [25,26]. At each time
step, a searcher jumps to a neighboring site with probability α

in either direction, which is a discrete version of the diffusive
phase in continuum models. With probability (1 − α) the
particle leaves the lattice for a fixed duration T , after which
it lands at some distance L from its initial position in either
direction. This phase corresponds to the ballistic nonsearch
phase. The duration of the diffusive phase with target detection
is exponentially distributed with mean duration 1/(1 − α).
Oshanin et al. [25,26] have shown that in the thermodynamic
limit N → ∞ (with the mean density of searchers fixed), the
probability that, at a given time t , the target has been found
by any one of the searchers has a maximum at an optimal
value of α (which depends on t). A related discrete model has
been considered by Rojo et al. [27]. In addition to being lattice
models rather than continuum models, these previous studies
also focus on unbiased searches in which the target is a perfect
absorber.

The basic structure of this paper is as follows. In Sec. II
we develop the mean-field population model and determine
the form of the waiting time density for filling the Poisson
trap. The time-dependent rate μ(t) is calculated in Sec. III by
carrying out a QSS reduction of the mean-field model. We also
determine the asymptotic behavior of the waiting time density.
Our numerical results are presented in Sec. IV, and a Gaussian
approximation of the waiting time density for a large capacity
trap is derived in the Appendix.

II. MEAN-FIELD POPULATION MODEL

Consider a population of particles moving along a semi-
infinite track, 0 � x < ∞. Such a track could represent a

FIG. 1. (Color online) Schematic diagram illustrating a popula-
tion model of motor-driven particles moving along a one-dimensional
track. The particles can transition from a moving state with velocity
±v at a rate β± and from a stationary searching state at a rate α. A
partially absorbing trap is located at x = X that fills up according to
a Poisson process.

system of oriented microtubular filaments within the dendrite
or axon of a neuron, with each particle corresponding to a
motor-driven cargo complex; see Fig. 1 and [14,16]. (Real
axons and dendrites are of finite extent; we will assume that
boundary effects at the far end of these structures can be
neglected by considering a semi-infinite track. For simplicity,
we also neglect the effects of branching, although this can
also be taken into account [17].) All particles are injected
on to the track at the end (x = 0). This would correspond to
motor-driven particles entering a primary dendrite from the
soma of a neuron, for example. Particle injection can either
be treated as an initial condition, representing the sudden
introduction of a large bolus of particles at x = 0, or as a
boundary condition in which there is a fixed particle flux at
x = 0. We will focus on the former case here. Within the
interior of the track each particle is taken to be in one of three
states labeled by n = 0,±: stationary (n = 0), moving to the
right (anterograde) with speed v (n = +), or moving to the left
(retrograde) with speed −v (n = −). Assuming that transitions
from the moving states ±v to the stationary state occur at the
fixed rates β± and the reverse transitions occur at the rate α,
we can write down the following system of equations for the
concentrations un(x,t) of particles in state n at time t and
position x along the track:

∂tu+ = −v∂xu+ − β+u+ + αu0, (2.1a)

∂tu− = v∂xu− − β−u− + αu0, (2.1b)

∂tu0 = β+u+ + β−u− − 2αu0. (2.1c)

Equation (2.1) is supplemented by a zero-flux boundary
condition at x = 0:

v[u+(0,t) − u−(0,t)] = 0. (2.2)

In the case of an initial bolus of size U , the corresponding
initial condition is un(x,0) = Uδn,+δ(x). We also assume that
the bidirectional transport process is biased in the anterograde
direction by taking β+ � β−; the limit β− → ∞ corresponds
to unidirectional transport.

The system (2.1) belongs to a general class of linear
reaction-hyperbolic equations studied previously by a number
of groups [14,28–30]. Under the assumption that the transition
rates are sufficiently fast, Reed et al. [14] used singular
perturbation methods to carry out an asymptotic expansion of a
solution whose leading order term is given by an approximate
traveling wave solution of a corresponding one-dimensional
advection-diffusion equation. They then showed how such a
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solution matches wavelike behavior observed experimentally
in the fast axonal transport of vesicles. The validity of this
reduction was subsequently proved rigorously under a wide
range of conditions [28,29]. Probabilistic versions of these
axonal transport models have also been developed [30,31].

In this paper we consider the following problem: given the
temporal profile of particle concentrations, how quickly can a
target at some location X on the track fill up with cargo? The
target could correspond to a synapse or an intracellular pool
within an axon or dendrite. We will assume that a particle can
only deliver its cargo if it is within a distance l of the target
and is in the stationary state. Delivery of cargo to the target
is then modeled as an inhomogeneous Poisson process with a
time-dependent rate:

λ(t) = κ

∫ X+l

X−l

u0(x,t)dx, (2.3)

where the parameter κ is the single-cargo delivery rate. That
is, the rate depends on the average concentration of stationary
particles within the target domain, and we refer to the target as
a Poisson trap. Let the discrete stochastic variable M(t) denote
the number of particles that have delivered their cargo at time
t given that M(0) = 0. It follows that

P (n,t) ≡ Pr[M(t) = n] = μ(t)ne−μ(t)

n!
, (2.4)

where

μ(t) =
∫ t

0
λ(s)ds. (2.5)

We are interested in how long it takes to deliver n cargoes to the
target. This is given by the waiting time Wn, which is the time of
the nth event (delivery of the nth cargo). In particular, we want
to determine the waiting time density fn(t) with fn(t)dt =
Pr[t � Wn < t + dt], from which we can calculate the filling
probability �n and conditional mean first passage time Tn for
n to be reached, where

�n =
∫ ∞

0
fn(t)dt, Tn =

∫ ∞
0 tfn(t)dt∫ ∞
0 fn(t)dt

. (2.6)

Note that in reality a trap will have a finite capacity M so that
n � M . This modifies expression (2.4) in the case n = M; that
is,

P (M,t) = 1 −
M−1∑
n=0

μ(t)ne−μ(t)

n!
. (2.7)

However, we do not have to worry about this boundary effect
in our subsequent analysis since we will focus on first passage
time processes. Also note that in the large M limit, we can
carry out a Gaussian approximation of the Poisson process for
filling the trap; see the Appendix.

A. Waiting time density

The density fn(t) can be expressed in terms of the integrated
rate μ(t) as follows [32]. Let Fn(t) = Pr[Wn � t] be the cumu-
lative waiting time distribution such that fn(t) = dFn(t)/dt .

Since, by definition, Pr[Wn � t] = Pr[N (t) � n], it follows
that

Fn(t) =
∞∑

k=n

μ(t)ke−μ(t)

k!

= 1 −
n−1∑
k=0

μ(t)ke−μ(t)

k!
. (2.8)

Differentiating both sides with respect to t , we find that all
terms cancel except for one, leading to the result

fn(t) = μ′(t)μ(t)n−1e−μ(t)

(n − 1)!
. (2.9)

In the case of a constant rate λ(t) = λ, fn(t) is given by a
gamma distribution:

fn(t) = λ
(λt)n−1e−λt

(n − 1)!
, (2.10)

so that
∫ ∞

0 fn(t)dt = 1. It follows that the filling probability
�M = 1; that is, the trap will be filled to capacity with unit
probability. On the other hand, in the case of a time-dependent
rate, the filling probability may be less than 1.

In order to illustrate this, let us first consider the case n = 1
for which Eqs. (2.6) and (2.9) yield

�1 =
∫ ∞

0
μ′(t)e−μ(t)dt = −

∫ ∞

0

d

dt
e−μ(t)dt = 1 − e−μ(∞).

Thus, �1 < 1 if μ(∞) < ∞. In order to extend this result for
n > 1, we rewrite Eqs. (2.6) and (2.9) as

�n = 1

n!

∫ ∞

0
e−μ(t) d

dt
μ(t)ndt. (2.11)

Integrating by parts yields

�n = μ(∞)n

n!
e−μ(∞) + 1

n!

∫ ∞

0
μ′(t)μ(t)ne−μ(t)dt, (2.12)

which implies that

�n+1 = �n − μ(∞)n

n!
e−μ(∞). (2.13)

After substituting �1 into the recursion relation (2.13) and
solving, we have that

�n = 1 −
n−1∑
k=0

μ(∞)k

k!
e−μ(∞). (2.14)

If μ(∞) < ∞ is finite, then 1 > �1 > �2 > · · · > �n and
�n → 0 in the limit n → ∞. On the other hand, if μ(t) → ∞
as t → ∞, we have �n = 1 for all n � 1. Note that one can
also derive (2.14) with �n = limt→∞ Fn(t) using (2.8).

B. Mean-field limit

One major assumption of our population model is that
there is a sufficient number of particles N within the search
domain so that we can neglect the flux of particles from
the track to the target in Eq. (2.1). This decoupling of the
transport process given by Eq. (2.1) from the Poisson filling
process is essentially a mean-field limit N → ∞ and leads
to a considerable simplification of the analysis. In order to
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understand this mean-field limit, let us compare the above
model with previous stochastic models of a single random
intermittent searcher looking for a hidden target at a fixed
but unknown location x = X, for which N = 1 and n = 1
[16–21,24]. In these latter models uj (x,t) is replaced by the
probability density pj (x,t) of finding the single searcher in
state j = 0,± at time t and location x, and Eq. (2.1) becomes

∂tp+ = −v∂xp+ − β+p+ + αp0, (2.15a)

∂tp− = v∂xp− − β−p− + αp0, (2.15b)

∂tp0 = β+p+ + β−p− − 2αp0 − kχ ([x − X]/l)p0,

(2.15c)

with

χ (x) =
{

1, if |x| < 1,

0, otherwise.
(2.16)

In the case of a single searcher, it is no longer possible to
neglect the flux into the target. The target is now treated as a
partially absorbing trap, in which the searcher can detect the
target (be absorbed by the trap) at a rate k provided that it
is in the stationary state and within a distance l of the target.
As in the mean-field model, there are two important quantities
characterizing the efficacy of the random intermittent search
process [16]. The first is the hitting probability �(1) that a
particle starting at x = 0 at time t = 0 finds the target; that
is, the particle is absorbed somewhere within the domain
X − l � x � X + l. [The superscript (1) indicates that we are
considering a single searcher.] The second is the conditional
MFPT T (1) for the particle to find the target given that it
is eventually absorbed by the target. If J (1)(t) denotes the
probability flux due to absorption by the target at X,

J (1)(t) = k

∫ X+l

X−l

p0(x,t)dx, (2.17)

then

�(1) =
∫ ∞

0
J (1)(t)dt, T (1) =

∫ ∞
0 tJ (1)(t)dt∫ ∞
0 J (1)(t)dt

. (2.18)

In order to relate the single-searcher model to the mean-
field model when the capacity of the trap is n = 1, let us
consider N independent, identical searchers that all start
at the origin at time t = 0. Denote the MFPT to find the
target of the j th searcher by Tj , j = 1, . . . ,N , with each
Tj and independent, identically distributed random variable
drawn from the single-searcher first passage time distribution
F (1)(t) = ∫ t

0 J (1)(s)ds. The random time T to fill the trap is
then given by T = min(T1,T2, . . . ,TN ), and the distribution
for T is

F (N)(t) = Prob(T < t) = 1 − Prob(T > t)

= 1 − Prob(M1 > t,M2 > t, . . . ,MN > t)

= 1 − [1 − F (1)(t)]N.

Now suppose that the rate of detection for a single searcher
scales as k = κ/N . This immediately implies that in the large
N limit the flux term in Eq. (2.15c) vanishes, as assumed in
the mean-field model. Substituting for J (1)(s) using Eq. (2.17)

then gives

F (N)(t) = 1 −
(

1 − κ

N

∫ t

0

∫ X+l

X−l

p0(x,s)ds

)N

. (2.19)

In the limit N → ∞, the detection rate k → 0 and the density
function p0(x,t) is independent of the target. That is, in
the mean-field limit, the concentration of searchers is not
influenced by the presence of the trap. Finally, taking the large
N limit shows that

lim
N→∞

F (N)(t) = 1 − e−μ(t) = F1(t), (2.20)

where F1(t) is the cumulative waiting time distribution (2.8)
of the mean-field model for n = 1, once p0(x,t) is identified
with u0(x,t). In Sec. IV we will use Monte Carlo simulations
for finite N to show that the mean-field approximation of the
first passage time density is quite accurate when N = O(100),
at least in the case of biased searches.

Note that the relationship between the first passage time
density of a single searcher and a set of N independent
searchers has recently been studied in some detail by Mejia-
Monasterio et al. [33]. Assuming a general parametric form
for the single-searcher first passage time density, they analyze
the distribution P (ω) of the random variable ω = T1/

∑N
j=1 Tj

and show that in certain situations the MFPT is not a robust
measure of search efficiency.

III. CALCULATION OF μ(t)

So far we have shown how the waiting time density fn(t)
for filling a Poisson trap depends on the integrated probability
flux

μ(t) = κ

∫ t

0

∫ X+l

X−l

u0(x,s)dxds, (3.1)

with u0(x,s) obtained by solving the linear reaction-hyperbolic
equations (2.1) under the specified initial and boundary
conditions. In the case of the three-state model of random
intermittent search, it is possible to solve the full model using
Laplace transform methods (for example, [16,18]). However,
such an approach becomes considerably more difficult when
the complexity of the molecular-motor model increases [34,35]
or the search domain becomes more complex, e.g. branching
dendrites and axons [17] and higher-dimensional search
processes [19,20,36]. However, as we have shown elsewhere
for single-searcher models [17,24]), it is possible to carry out
a QSS reduction of the linear reaction-hyperbolic equations,
which yields a one-dimensional advection-diffusion equation
[or a corresponding Fokker-Planck equation in the case of the
probabilistic version (2.15)]. This reduction is based on the ob-
servation that the state transition rates of the molecular-motor
complex are fast compared to the characteristic velocities. A
number of authors have analyzed linear reaction-hyperbolic
equations in this regime but have focused on the wavelike prop-
erties of the transport process rather than the delivery of cargo
to hidden targets [14,28–30]. In this section we carry out the
QSS reduction of the population model and then use this to de-
termine μ(t). Since the reduction is very similar to the single-
searcher case, we only sketch the basic steps of the QSS reduc-
tion. Further details can be found in previous papers [17,24].
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A. Quasisteady-state approximation

First, it is necessary to nondimensionalize Eq. (2.1) by
rescaling space and time according to

x → x/�, t → tv/�,

where � is a fundamental length scale of the system. In the
case of a finite track of length L, we could set � = L as in
Ref. [14]. On the other hand, for a semi-infinite track with a
single target, we can identify � either with the size of the target
l or the distance X of the target from the origin. Since l may be
taken to be arbitrarily small (by an appropriate rescaling of the
rate κ), we set � = X. Assuming that the transition rates α,β±
are large compared to v/�, we introduce the dimensionless
parameters a = εα�/v and b± = εβ±�/v, where ε � 1. The
transport equations (2.1) then become

∂tu+ = 1

ε
(−b+u+ + au0) − ∂xu+, (3.2a)

∂tu− = 1

ε
(−b−u− + au0) + ∂xu−, (3.2b)

∂tu0 = 1

ε
(b+u+ + b−u− − 2au0), (3.2c)

which can be rewritten in the matrix form

∂tu = 1

ε
Au + L(u), (3.3)

where u = (u+,u−,u0)tr, A is the matrix

A =
⎡⎣−b+ 0 a

0 −b− a

b+ b− −2a

⎤⎦ , (3.4)

and L is the linear operator

L(u) =

⎡⎢⎣−∂xu+
∂xu−

0

⎤⎥⎦ . (3.5)

The left null-space of the matrix A is spanned by the vector
eL = (1,1,1)tr, and the right null-space is spanned by uss =
γ −1(1/b+,1/b−,1/a)tr. The normalization factor γ is chosen
so that eL · uss = 1; that is, γ = b−1

+ + b−1
− + a−1. Let φ =

eL · u and w = u − φuss such that eL · w = 0. We can interpret
φ as the component of u in the left null-space of A, whereas
w is in the orthogonal complement.

Multiplying both sides of (3.3) by etr
L, we obtain

∂tφ = etr
LL(φuss + w). (3.6)

Substituting u = w + φuss into (3.3) yields

∂tw + (∂tφ)uss = 1

ε
A(w + φuss) + L(w + φuss). (3.7)

Using Eq. (3.6) and the fact that uss is in the right null-space
of A, we obtain

∂tw = 1

ε
Aw + (

I3 − ussetr
L

)
L(w + φuss), (3.8)

where I3 is the 3 × 3 identity matrix. Now introduce an
asymptotic expansion for w of the form

w ∼ w0 + εw1 + ε2w2 + · · · . (3.9)

After substituting this expansion into (3.8) and collecting
O(ε−1) terms, we see that Aw0 = 0. Since w is in the
orthogonal complement of the left null-space of A, it follows
that w0 = 0. Now collecting terms of O(1) yields the equation

Aw1 = −(
I3 − ussetr

L

)
L(φuss). (3.10)

Although the matrix A is singular, the orthogonal projection
operator (I3 − ussetr

L) ensures that the right-hand side of
the above equation is in the range of A. By the Fredholm
alternative theorem a solution w1 exists and is unique after
imposing the normalization condition eL · w = 0. Finally,
substituting the resulting solution for w1 back into (3.6) yields
the advection-diffusion equation [24]

∂φ

∂t
= −V

∂φ

∂x
+ D

∂2φ

∂x2
, (3.11)

where

V = 1

γ

(
1

b+
− 1

b−

)
, (3.12)

D = ε

(
(1 − V0)2

γ b2+
+ (1 + V0)2

γ b2−

)
. (3.13)

The function φ is the total concentration of all particles at
position x and time t .

Equation (3.11) is supplemented by a Neumann boundary
condition at x = 0 of the form

−V φ(0,t) + D
∂φ

∂x

∣∣∣∣
x=0

= 0. (3.14)

This boundary condition follows from substituting u = φuss +
εw1 into the boundary condition (2.2) of the corresponding
three-state model (2.1). The associated initial condition is
φ(x,0) = Uδ(x). The solution of Eq. (3.11) is then a classical
result based on the method of images [37]:

φ(x,t) = 1√
πDt

e−[x−V t]2/(4Dt)

− V

2D
exV/Derfc

(
x + V t

2
√

Dt

)
. (3.15)

Note that although we have carried out the QSS reduction
for the specific three-state model, the same procedure can be
applied to more complex molecular-motor models. One still
obtains the advection-diffusion equation (3.11) and associated
solution (3.15) [24]. The only difference is the explicit
dependence of the drift and diffusion parameters V,D on
model parameters.

B. Asymptotics

Given the solution (3.15) for φ(x,t), the rate λ(t) of the
Poisson filling process is determined according to

λ(t) = κ̂

∫ X+l

X−l

φ(x,t)dx, (3.16)

where κ̂ = κ/(aγ ). For simplicity, we assume that l � X and
take λ(t) = 2lκ̂φ(X,t). Under this approximation

μ(t) = c

∫ t

0
φ(X,t)dt. (3.17)
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For convenience, we have set 2lκ̂ = c. Unfortunately, it is
not possible to derive an explicit analytical solution for μ(t),
although the integral expressions can be evaluated numerically.
Nevertheless, we can obtain the exact hitting probability �M ,
and we can asymptotically determine the large-time behavior
of the waiting time density.

First, recall from Eq. (2.14) that the hitting probability �n

is determined by μ(∞). The latter can be calculated using
Fourier-Laplace transforms. We begin by rewriting the right-
hand side of Eq. (3.15) in terms of Fourier transforms. That is,
set φ(x,t) = 2φ0(x,t) − (V/2D)exV/Dφ1(x,t) with

φ0(x,t) ≡ 1√
4πDt

e−[x−V t]2/(4Dt)

=
∫ ∞

−∞
eik[x−V t]e−Dtk2 dk

2π
(3.18)

and

φ1(x,t) ≡ erfc

(
x + V t

2
√

Dt

)
= 2√

π

∫ ∞

(x+V t)/
√

4Dt

e−u2
du

= 2
∫ ∞

0

∫ ∞

−∞
eik[y+x+V t]e−Dtk2 dk

2π
dy. (3.19)

Now consider the Laplace transform

φ̃(x,s) =
∫ ∞

0
e−stφ(x,t)dt. (3.20)

Substituting for φ0 and φ1 and integrating with respect to t

then gives

φ̃(x,s) = 2
∫ ∞

−∞

eikx

ikV + Dk2 + s

dk

2π

− V

D
exV/D

∫ ∞

0

∫ ∞

−∞

eik(x+y)

(Dk2 − ikV + s)

dk

2π
dy.

(3.21)

The integrals with respect to k can be evaluated by closing the
counter in the upper-half complex plane:

φ̃(x,s) = 2
e−[�(s)−V/2D]x

√
V 2 + 4sD

−V

D
exV/D

∫ ∞

0

e−[�(s)+V/2D](x+y)

√
V 2 + 4sD

dy,

= e−[�(s)−V/2D]x

√
V 2 + 4sD

[
2 − V

D

1

�(s) + V/2D

]
, (3.22)

with

�(s) = 1
2

√
(V/D)2 + 4s/D. (3.23)

It follows from Eq. (3.17) that

μ(∞) = c lim
s→0

φ̃(X,s) = c

V
. (3.24)

Thus the corresponding hitting probability �n < 1 for V > 0
and �n = 1 for V = 0 (pure diffusion).

We now estimate the large-t behavior of φ(X,t) in order to
approximate μ(t). We use the following asymptotic expansion

of the complementary error function:

erfc(z) = e−z2

√
πz

[
1 − 1

2z2
· · ·

]
. (3.25)

Applying this to Eq. (3.15) with z = (x + V t)/(2
√

Dt) ≈
V

√
t/(2

√
D) for large t and V > 0, we obtain the

approximation

φ(X,t) ∼ 2c
√

D

V 2
√

πt3
e−V 2t/(4D), (3.26)

which is independent of target location X. Substituting this
expression into Eq. (3.17) gives

μ(t) ∼ μ(∞) − 2c
√

D

V 2
√

π

∫ ∞

t

1√
t ′3

e−V 2t ′/(4D)dt ′

= μ(∞) − 2c

V
√

π

∫ ∞
√

tV 2/4D

u−2e−u2
du

∼ μ(∞) − 2c

V
√

π

[
4D

tV 2

]3/2

e−V 2t/(4D), (3.27)

using an asymptotic expansion of the integral. On the other
hand, for V = 0, we have

μ(t) = c

∫ t

0

1√
πDt

e−X2/(4Dt)

∼ 2c
√

t/πD, (3.28)

where we have used the approximation e−X2/(4Dt) ∼ 1 for large
t .

The large-time asymptotic approximation for μ(t) deter-
mines how the waiting time density fn(t) scales with time.
Equations (2.9) and (3.28) imply that, for V = 0,

fn(t) ∝ tn/2−1e−ĉ
√

t , (3.29)

with ĉ = 2c/
√

πD. Extensions to the case V > 0 are a little
more involved. However, for n = 1 we have

f1(t) ∝ t−1/2e−V 2t/(4D). (3.30)

IV. RESULTS

In the case of a single random intermittent searcher on a
finite track of length L with reflecting boundary conditions at
both ends x = 0,L (so that �(1) = 1) and unbiased transport
(β+ = β− = β), it can be shown that there exists an optimal
search strategy in the sense that there exists a unique set of
transition rates α,β for which the MFPT is minimized [18–21].
On the other hand, for directed intermittent search (β+ > β−)
on a semi-infinite domain or a finite domain with an absorbing
boundary at x = L (so that �(1) < 1), a unique optimal
strategy no longer exists [16,24]. In this section, we show that a
similar situation holds if there is a population of N independent
searchers, and we consider the time necessary for n < N of
those searchers to locate the target. Note that the previous
results for the single-searcher process are recovered by setting
n = N = 1. For the case where n � N , we use the mean-field
approximation, and for smaller values of N , we use Monte
Carlo simulations with the target detection rate k, scaled by
the number of searchers (i.e., k → k/N). Although we explore
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(a) (b)

FIG. 2. Unbiased (β+ = β− = β) random intermittent search in the mean-field population model. The MFPT vs the (a) average search
time and (b) the average duration of the moving (forward and backward) state for different values of the Poisson trap size n. Each curve has a
minimum MFPT for a given value of α and β. Parameter values used are ε = 0.1, k = 5/N , X = 50, and l = 0.25. For (a) we use β = 1/ε,
and for (b) we use α = 2/ε.

only the case of a semi-infinite domain, the conclusions we
reach are not expected to change qualitatively if a finite domain
is considered, with either an absorbing or reflecting boundary
at x = L. For the biased case, the influence an absorbing
boundary at x = L has on the solution is an exponentially
decreasing function of the distance from the boundary, with a
length scale determined by the magnitude of the velocity bias.
On the other hand, for unbiased motion, a reflecting boundary
adds an exponential cutoff to the first passage time density.
However, the existence of an optimal set of transition rates
that minimizes the MFPT is independent of the presence of
the reflecting boundary.

First, we consider an unbiased random intermittent search
process in the mean-field population model, for which N →
∞ and β+ = β− = β (V = 0). In Fig. 2 the MFPT is plotted
as a function of the average duration of the search phase, 1/α

[Fig. 2(a)], and the average duration of the ballistic phase, 1/β

[Fig. 2(b)]. For each value of trap capacity n = 1,2,3, we see
that there exists a minimum MFPT for a particular choice
of α, β, consistent with the single-searcher regime. Next, we
examine how the search process changes as more searchers
are added for fixed n = 1. In particular, the first passage
time density is approximated by Monte Carlo simulations
for different values of N , and the results are compared to
the analytical mean-field results. This gives a nice illustration

FIG. 3. First passage time density for an unbiased search and a
single-capacity trap (n = 1). The solid curve shows the analytical
density function in the mean-field limit, and the remaining curves are
histograms obtained from 104 Monte Carlo simulations for different
numbers of searchers N . Parameter values are the same as in Fig. 2.

of how the single-searcher process (N = 1) is related to the
mean-field population search process (N → ∞). In Fig. 3,
the unbiased case is shown. The most significant difference is
found in the large time behavior, with power-law scaling t−3/2

for the single search and the so-called stretched exponential
scaling e−ĉ

√
t [see Eq. (3.29)] for the mean-field N → ∞ limit.

A similar plot showing the first passage time density for a
biased search (β+ < β− so that V > 0) is shown in Fig. 4.
In this case, adding more searchers has little qualitative effect
on the first passage time density, each case having the same
exponential large-time scaling [see Eq. (3.29)]. In both cases,
the results show that adding more searchers decreases the mean
search time and the variance.

Our analysis of the mean-field model showed that the hitting
probability is less than unity when the velocity bias is positive
(i.e., when β+ < β− so that V > 0). Therefore, we would
like to quantify how the hitting probability and the MFPT
change as we vary the amount of bias. In Fig. 5, we plot
the MFPT vs the hitting probability for different values of
N . Each curve is parameterized by β+, the rate of leaving
the forward-moving state, with 0 < β+ < β−. By changing
the value of β+, any hitting probability can be achieved. As
β+ → β−, the searcher’s motion becomes unbiased, and the

FIG. 4. First passage time density for a biased search and a
single-capacity trap (n = 1). The black curve shows the analytical
density function in the mean-field limit, and the remaining curves
are histograms obtained from 5 × 104 Monte Carlo simulations.
Parameter values used are α = 1/ε, β+ = 1/ε, β− = 2/ε, ε = 0.1,
k = 5/N , X = 50, and l = 0.25.
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FIG. 5. The MFPT vs hitting probability for the single-capacity
trap (n = 1). Each curve is parameterized by 0 � β+ � β−. Ana-
lytical results are shown as lines, with the single searcher in gray
and the mean-field limit (N = ∞) in black. Averaged Monte Carlo
simulations (104 simulation each) are shown as circles, with sets
ranging from light gray to black, with a different value of N used in
each set. From light gray to black there are six sets of simulations
with N = 1,2,3,4,5,25, respectively. Parameter values are the same
as in Fig. 4.

hitting probability increases to unity. However, as the searchers
become more unbiased, the MFPT also increases. Analytical
results for the single-searcher case (N = 1) and the mean-
field limit (N = ∞) are shown as solid curves (black and
gray, respectively), and to connect the two, averaged Monte
Carlo simulations are shown (as dots) for different values of
N = 1,2,3,4,25 (each dot is colored in gray scale from N = 1
in black to N = 25 in light gray). Ten different sets of Monte

(a)

(b)

FIG. 6. (Color online) The first passage time density for different
values of n = 1,2,3,4,5 with n increasing from left to right. Solid
curves show the mean-field limit, and histograms are generated
from 104 Monte Carlo simulations with N = 50 searchers. (a) The
unbiased case V = 0. (b) The biased case V > 0. Parameter values
used are the same as in Figs. 2 and 4 for (a) and (b), respectively.

FIG. 7. The MFPT vs hitting probability for different trap
capacities n. Each curve is parameterized by 0 � β+ � β−. The
mean-field limit is shown as solid curves, and 103 averaged Monte
Carlo simulations with N = 50 are shown as circles. Parameter values
are the same as in Fig. 4.

Carlo simulations are run corresponding to ten different values
of β+, and in each set the hitting probability decreases and the
MFPT increases as more searchers are added.

We now turn our attention to how increasing the trap
capacity affects the search process in the mean-field limit;
that is, we examine how the first passage time density, MFPT,
and hitting probability change as we increase n. First, we
plot the first passage time density for V = 0 and V > 0 in
Figs. 6(a) and 6(b), respectively. In both cases, increasing the
trap capacity increases the MFPT. It is worth noting that when
the searchers are unbiased, there is less quantitative agreement
between the mean-field limit and the histograms generated by
Monte Carlo simulations with N = 50 searchers. Finally, as
we did in Fig. 5, the MFPT and hitting probability are shown
for the biased search in Fig. 7, this time for different trap
capacities. As expected, the hitting probability decreases, and
the MFPT increases as we increase the capacity of the trap.

V. DISCUSSION

In this paper, we have extended the theory of random
intermittent search to a population model of N independent
searchers looking to deliver cargo to a single hidden target.
We have analyzed the model in the mean-field limit N → ∞,
where the concentrations of particles evolve according to a
system of linear reaction-hyperbolic equations that decouples
from the Poisson process associated with filling the target
with cargo. We compared our analytical results with Monte
Carlo simulations for finite N and thus determined how
the efficiency of the search process depends on N and the
capacity n of the target.

There are a number of possible extensions of our work.
First, within the context of dendritic and axonal transport, we
could consider more detailed biophysical models of single
motor-cargo complexes, which take into account possible
local signaling mechanisms between the target and searcher.
Indeed, elsewhere we have applied the QSS reduction to
a multiple-motor model of bidirectional transport, in which
opposing motors compete in a “tug-of-war” [38], and showed
how the concentration of adenosine triphosphate (ATP) or
signaling molecules such as microtubule associated proteins
(MAPs) could regulate the delivery of cargo to synaptic
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targets [17,34,35]. These details could be incorporated into our
mean-field population model under the QSS reduction since
it would simply involve determining the dependence of the
effective diffusivity D and drift V on the relevant biophysical
parameters. Combined with Monte Carlo simulations, we
could then investigate the efficiency of the cargo delivery
process as a function of N and n, along similar lines to this
paper. Incorporating local signaling mechanisms from synaptic
targets would allow us to explore the role of motor transport
in synaptic plasticity [15], for example.

Another possible generalization would be to consider
multiple searchers looking for multiple hidden targets. In this
case, targets could compete with one another for resources.
Moreover, there would be effective statistical correlations due
to the fact that one would need to keep track of which targets
have been filled and at what times since filled targets would
no longer act as traps for searching particles. Yet another
extension would be to introduce interactions between the
searching particles. In the case of molecular-motor transport,
this could arise due to molecular crowding, resulting in
exclusion effects. In other types of search such as foraging,
there could be communication between searchers.
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APPENDIX

In this appendix we show how the Poisson process for
filling the trap can be approximated by a Gaussian process in
the large-M limit, where M is the capacity of the trap. Such
an approximation also serves as an illustrative model of a trap
that is filled continuously rather than in discrete jumps. First,
note that the probability distribution P (n,t) satisfies the master
equation

∂P (n,t)

∂t
= λ(t)P (n − 1,t) − λ(t)P (n,t). (A1)

Performing the change of variables q = n/M such that
P (n,t) → P (q,t) and P (n − 1,t) → P (q − ε,t) with ε =
1/N , we can Taylor expand the master equation to second
order in ε to obtain the Gaussian approximation [39]

∂P (q,t)

∂t
= −ελ(t)

∂P

∂q
+ ε2λ(t)

2

∂2P

∂q2
. (A2)

The resulting Fokker-Planck equation determines the probabil-
ity density of a corresponding stochastic process Q(t) evolving
according to the Langevin equation

dQ = ελ(t) + ε
√

λ(t)dW (t), (A3)

where W (t) is a Wiener process. Under the Gaussian ap-
proximation, calculation of the waiting time density fM (t)
translates into calculation of the first passage time density
fQ(t) for reaching Q(t) = 1 given that Q(0) = 0. As a further
simplification, we allow Q(t) to take on negative values by
taking −∞ < Q � 1 with an absorbing boundary at Q = 1;

that is, P (1,t) = 0. (Physically speaking, 0 � Q � 1, but
the probability of the Langevin process crossing into the
negative half line is relatively small.) Given the solution
of the Fokker-Planck equation (A2), we define the survival
function FQ(t) = ∫ 1

−∞ P (q,t)dq, which then determines the
first passage time density according to

fQ(t) = −dFQ

dt
= −ε2λ(t)

2

∂P (q,t)

∂q

∣∣∣∣
q=1

. (A4)

Since the ratio of the variance over the mean is time inde-
pendent, we can adapt the recent analysis of time-dependent
Fokker-Planck equations based on the method of images [37].
The first step is to find the solution P0(q,t |q0) of Eq. (A2) on
R given the initial condition P0(q,0|q0) = δ(q − q0). Under
the change of variables

τ = ε2

2

∫ t

0
λ(s)ds = S(t), (A5)

z = q − ε

∫ t

0
λ(s)ds = q − �(t), (A6)

Eq. (A2) becomes [37]

∂P0

∂τ
= ∂2P0

∂z2
, (A7)

with −∞ < z < ∞. Solving this standard diffusion equation
with the given initial condition, we have in original coordinates

P0(q,t |q0) = 1

2
√

πS(t)
e−[q−q0−�(t)]2/[4S(t)]. (A8)

Now suppose that there is an absorbing boundary at q = 1.
Under the method of images we solve Eq. (A2) on R but
introduce an image source at some location q0 with q0 > 1 in
order to maintain the boundary condition p(1,t) = 0. That is,
we take the initial condition to be [37]

P (q,0) = δ(q) − e−ηδ(q − q0), (A9)

so that

P (q,t) = P0(q,t |0) − e−ηP0(q,t |q0). (A10)

Imposing the boundary condition P (1,t) = 0 and using the
solution (A8), we obtain the condition

[1 − �(t)]2

4S(t)
= [1 − q0 − �(t)]2

4S(t)
+ η. (A11)

As t → 0, �(t),S(t) → 0, so that 1 = (1 − q0)2, which im-
plies that q0 = 2. Setting q0 = 2 in Eq. (A11) then implies
that �(t)/S(t) = −η. Thus, the above solution is only valid if
the ratio of the variance and the mean of the Langevin process
is time independent. This condition holds for the Gaussian
approximation of the Poisson process, with �(t) = εμ(t) and
S(t) = ε2μ(t)/2. Thus, η = −2/ε. We conclude that

P (q,t) = 1√
2πε2μ(t)

[e−[q−εμ(t)]2/[2ε2μ(t)]

− e2/εe−[q−2−εμ(t)]2/[2ε2μ(t)]]. (A12)

Finally, Eq. (A4) shows that

fQ(t) = λ(t)√
2πε2μ(t)3/2

e−[1−εμ(t)]2/[2ε2μ(t)]. (A13)
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