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System thinking is a crucial cognitive framework to enable individual pro-environmen-
tal behavioral changes. Indeed, a large body of literature has shown a significant and
positive association between individuals’ system thinking capacities and perceptions
of the threat posed by climate change. However, individual behavioral changes
play a limited role in addressing climate change compared to large organizations
involved in a significantly larger share of economic activities. Do organizations exhibit
system thinking capacities? Here, we conjecture that system thinking is a cognitive
framework observable at an aggregated group level and, therefore, organizations, not
just individuals, can exhibit characteristic levels of system thinking. We conceptualize
a definition of organizational system thinking and develop an empirical method to
estimate it using a large body of textual data from business organizations. Then, we
show that system thinking organizations are more likely to lower emissions and align
them with the pathways required to meet the climate targets set by the Paris Agreement.
Finally, we discussed the theoretical and policy implication of our study. Overall, our
results suggest that system thinking is a relevant organization-level cognitive framework
that can help organizations align their emissions with global climate targets.

system thinking | climate change | organizational behavior

Lowering greenhouse gas (GHG) emissions to a level compatible with the climate
targets set by the Paris Agreement requires significant changes in behavior and attitudes
toward environmental issues by both individuals and organizations (1, 2). A large body
of research has shown that individuals’ capacity to understand the effect of climatic
changes and to change behaviors to address their root causes requires the development of
specific cognitive abilities (e.g., logical reasoning, problem-solving, memory, information
processing) (3–6). Among these cognitive abilities, system thinking has been shown to
play a particularly relevant role in facilitating meaningful change toward sustainable
pro-environmental behavior (7–12).

System thinking refers to a “cognitive paradigm that involves an implicit tendency to
recognize various phenomena as a set of interconnected components that interact with
one another to make a dynamic whole” (13). It is the capacity to explore and develop
actions in complex contexts, enabling systems change. System thinkers recognize that
their behavior is embedded in complex socioeconomic systems (12) and that natural and
social phenomena result from constant dynamic and multiple interactions between the
social, economic, and natural worlds as opposed to a sum of siloed processes (11, 13).
That is, systems thinkers view the world as a set of dynamic and interconnected parts
and processes.

The importance of system thinking in tackling wicked problems is becoming
increasingly apparent (11). The US National Research Council (14) and the Next
Generation Science Standards (15), for example, place systems thinking and integrated
multidisciplinary science at the forefront of their agenda. Similarly, the UK government
has put forward official guidance for civil servants to include system thinking in their
toolkit to drive improved outcomes in complex situations. In the context of climate
change, the growing emphasis placed on system thinking approaches is due to emerging
theories and empirical evidence that illustrate a significant and positive association
between individuals’ capacity of system thinking and pro-environmental behaviors
(7–11). For example, ref. 11 has shown that systems thinking is positively associated
with an ecological worldview as defined by the New Ecological Paradigm of ref. 16,
i.e., the belief that people should take care of the environment rather than exploit
it. Similarly, ref. 10 has found that system thinkers ascribe more monetary and
socioecological value to the natural world than individuals who score lower in
system thinking assessment tests. Overall, several studies have shown that system
thinking is associated with a greater perception of the threat posed by climate
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change and support for environmental policies to mitigate its
effects.

Individual system thinking capacities can drive pro-enviro-
nmental behavioral changes that are crucial to address the
climate crisis. However, individuals’ behavioral changes play
a limited role in addressing climate change compared to the
potential effect of behavioral changes in large organizations, such
as business organizations and, in particular, publicly traded com-
panies (hereafter referred to as companies). Indeed, a recent study
from the International Energy Agency found that individuals,
through their voluntary reduction in demand for consumption
and other behavioral changes, account for approximately 11% of
the emissions reductions required to reach global net zero by 2050
(17). On the other hand, organizational changes in companies
are crucial for tackling climate change due to the share size of
the economic activities companies are involved with (18) and
the central role they play within modern intertwined societies.
Indeed, they are not only responsible for a great portion of human
polluting activities directly, but they also influence the worldview
and further behavior of the collective of their stakeholders. Yet,
despite increasing societal, financial, and regulatory pressure,
there is little evidence of change at the scale or pace required
for us to avoid catastrophe (18, 19). We lack clear mechanisms
or guidance on how to change organizational behavior in general
and companies’ actions in particular.

To that end, we theorize that system thinking can be an
effective cognitive framework to realign the behavior of orga-
nizations to meaningfully tackle climate change. We focus on
for-profit business organizations, specifically on publicly traded
companies; we investigate whether they can exhibit system
thinking capacities and whether the presence of organizational
system thinking capacities is associated with lower environmental
impacts. Specifically, we build on the existing system thinking
literature that studies individuals’ cognitive abilities and their
relation with pro-environmental behavior (7–11) as well as the
literature that studies the emergence of group cognitive abilities
(20–22). Building on these works, we conjecture that system
thinking is a cognitive framework observable at an aggregated
group level. Therefore, organizations, not just individuals, can
exhibit characteristic levels of system thinking. Importantly,
we propose and test the hypothesis that, just as individual
system thinkers are more likely to exhibit pro-environmental
behavior, system thinking organizations (companies) are able to
achieve superior environmental outcomes (which can be seen
as manifestations of pro-environmental behaviors). Importantly,
here, we focus on GHG emissions to measure environmental
outcomes due to data limitations in measuring the impact of
business operations across other environmental dimensions, e.g.,
soil health, biodiversity (Discussion).

We start by developing a general definition of organizational
system thinking as the capacity of organizations to recognize
that their operations and multiple (often conflicting) goals affect
and are affected by numerous societal actors and environmental
factors (Organizational System Thinking). This conceptualization
forms the basis for our empirical estimation of organizational
system thinking, in the context of publicly traded companies,
from observational data using human-in-the-loop natural lan-
guage processes approaches* to analyze a large quantity of text
from companies’ disclosure of sustainable carbon management
practices (Materials and Methods).

*Human-in-the-loop are a series of machine learning approaches that leverage human
knowledge in the training process to increase the accuracy of prediction and classification
algorithms (23).

Using our empirical estimation of organizational system think-
ing, we explore its relationship with companies’ GHG emissions.
In particular, we analyze data from 615 large publicly traded
companies distributed across 32 countries in the Energy, Indus-
trial, Material, and Utilities sectors over the observation period
2012–2020. We hypothesize that system thinking organizations
(companies) tend to have lower GHG emissions, compared to
companies with similar asset characteristics. We expect that
the level of organizational system thinking is associated with
lower emissions due to the well-established relationship between
climate change beliefs and actions and individual level of system
thinking (11), i.e., the distinguishing features of individual-level
capacities need to be preserved at the organization level. More-
over, we also explore the relationship between organizational
system thinking and the capacity of companies to align their long-
term projected emissions pathways with the required pathway to
limit global warming well below 2 ◦C.

Overall, in this manuscript, we conjecture that organizations,
like individuals, can exhibit system thinking skills, and we
hypothesize that organizational system thinking provides an
essential cognitive framework to address climate challenges. In
the next section, we provide a detailed conceptualization of
organizational system thinking. Then, we present our empirical
estimation approach and analyze the relationship between our
estimations and companies’ emissions. Finally, we discuss our
findings and their business and policy implications.

Organizational System Thinking

System thinking has been traditionally studied as an individual-
level trait that, although correlated with others, is independent
and identifiable (9, 13, 24). It is best described as a cognitive
paradigm that allows those who apply it to recognize and
emphasize the interconnections between phenomena and how
those interconnections affect the overall dynamic of a system
(11, 25). Previous studies have shown that system thinkers can
better engage in complex decision-making problems, encompass
different perspectives, and understand resource accumulation
dynamics (11, 26–29). Thus, as argued in several studies, a
system thinking approach is paramount for effectively addressing
“wicked” challenges, including climate change (30, 31). Due to
their very nature, however, wicked challenges are beyond the
reach of any individual system thinker and require extensive
collective effort from organizations (e.g., businesses, NGOs).
Hence, here, we argue that to address wicked challenges, and
climate change in particular, organizations need to operate
within this cognitive paradigm; i.e., to tackle climate change,
organizations must be system thinkers.

To do so, we extend the notion of system thinking to a
paradigm of the collective cognition of organizations. Cognition in
organizations has been a crucial object of interest across many dis-
ciplines and multiple decades (32, 33). Extant research explored
organizational cognition through the lenses of “shared causal
maps,” i.e., negotiated and symbolic representation of reality as
sets of phenomena and relationships among phenomena (34–36).
This literature generally describes organizational cognition as
deeply intertwined with the functioning of the organization as a
system.

In particular, we draw upon extensive research on cognition
at the interindividual level, which identifies both the existence
of shared understanding and specialized cognitive loads across
individuals in organizations (37–41). From this perspective,
organizational cognition does not overlap entirely with any
individual cognition as it emerges from the collective process
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of information acquisition and processing. In other words, orga-
nizational cognition is an emergent property of the organization
that arises from the interaction of its members (42).

This description of organizational cognition draws strong par-
allels with classic definitions of system thinking, which emphasize
the recognition of relational complexity among phenomena.
Following these considerations, we define organizational system
thinking (O-ST) as a collective cognitive paradigm of organiza-
tions that recognizes that organizational processes and multiple
(often conflicting) goals affect and are affected by multiple societal
actors and environmental factors.

In particular, we expect that O-ST produces tangible effects
in terms of organizational outcomes. Indeed, organizational
modes of cognition have long been linked with the development
of capabilities that organizations can employ to effectively
interact with their surroundings (43–45), and the paradigm that
underpins organizational cognition plays a pivotal role in shaping
organizational capabilities and outcomes.

In the following section, we test this expectation by studying
the relationship between characteristics level of system thinking
in publicly traded companies and their capacity to lower their
environmental impact to a level compatible with societal expec-
tations. First, however, we introduce an operational framework
to estimate these characteristic levels from observational data.

Overviewof the Empirical EstimationProcess. We now focus on
for-profit organizations, particularly publicly traded companies,
due to the large impact of their operations on long-term climate
dynamics (18, 19). Following our conceptualization of O-ST,
organizations (companies) with high levels of system thinking are
those which recognize the system dynamics among 1) behavioral
and decision-making processes, 2) their multiple (environmen-
tal, social, financial), often conflicting goals, and 3) multiple
environmental factors and actors. In our setting, we focus on
companies’ efforts to tackle climate change. We investigate O-ST
by looking into companies’ disclosure of processes and policies
across multiple functional domains and searching for cues that
suggest alignment of organizational cognition to the system
thinking paradigm.

Specifically, we estimate O-ST by analyzing companies’
disclosure of sustainable carbon management processes to the
Carbon Disclosure Project (CDP). CDP is a leading nonprofit in-
ternational organization that systematically collects information
on organizations’ carbon management processes and outcomes
and whose database is widely used by studies in this domain†

(46, 47). Information is collected through surveys organized in
closed-form and open-ended questions. Examples of questions
include emissions targets, total GHG emissions, supply chain
policies, product development, and responsibilities within the
organization for managing and reporting emissions. Due to the
extensive information required, answering the CDP survey im-
plies collective inputs and significant interactions among different
members of the organization, bridging diverse functional units
(e.g., production, supply chain, marketing, top management,
etc.). Therefore, the questionnaire provides a window into the
core processes of the organizations, allowing the observation of
O-ST as emergent from group interactions.

Our estimation approach is described in detail in empirical
estimation of organizational system thinking. We start with
using our definition of O-ST (Organizational System Thinking)
to create a template of characteristics that we expect to see in the

†Importantly, CDP collects information from several forms of organizations, including
companies, investors, and public authorities.

CDP survey responses if those answers subsume a system thinking
approach (SI Appendix, S1). Then, using the template and
focusing on publicly traded companies, we manually classified
approximately 2000 answers to the CDP questionnaires from
2012 to 2020 based on whether or not those answers meet the
expected characteristics. Specifically, we assign a label of “one” to
each answer that meets one or more of our expected characteristics
and a label “zero” otherwise. SI Appendix, S2 in Supplementary
information reports some examples and commentary on how
this process works in practice. Then, we trained a transformer
language model (BERT) on this manually annotated dataset. The
model is then used to predict the class of the rest of the answers
in the CDP dataset. Finally, we computed an average system
thinking score for each company-year observation by averaging
over the predicted classes of the answers of a given company in a
given year. In the next section, we use this score as our measure
of O-ST.

In order to appropriately compare the level of O-ST across
entities in our sample, it is important to focus on companies
with comparable business needs. Therefore, in the following
analysis, we focus on publicly traded companies in the Energy,
Industrial, Material, and Utilities sectors.‡ The business needs of
companies within these sectors are comparable in that production
and revenues strongly depend on tangible assets and supply of
fossil fuels, and carbon management processes are particularly
relevant for continuing profitable business operations. Moreover,
we expect that O-ST is integral for these industries due to their
complex supply chains and their exposure to environmental risks,
which include both physical and transition risks.

Results

First, we provide an overview of our population, the cross-
sectional and temporal evolution of O-ST, and its distinguished
features. Then, we test the hypothesis that O-ST is positively
associated with key measures of environmental outcome, i.e.,
GHG emissions and alignment with climate targets. The sum-
mary statistics of all variables used in the analysis are shown in
SI Appendix, Table S2.

Empirical Characterization of the Sample and Organizational
System Thinking. Fig. 1 shows three important sets of charac-
teristics of our population: corporate social responsibility (CSR)
policies (Panel A), alignment with the target set by the Paris
Agreement to limit global warming below 2 ◦C (Panel B), and
GHG emissions (Panel C ).

Established routines and structures, such as corporate policies,
are crucial counterparts to shared cognitive frameworks such as
O-ST. Fig. 1A summarizes the relative frequency of various
CSR policies (Data) that might influence the extent and
efficiency of companies’ actions in achieving environmental
outcomes. Generally, a significant proportion of our population
had CSR policies in place during the sample period (2012–
2020). Specifically, a majority of CDP respondents have set
internal targets and been involved with stakeholder engagement
processes, including establishing environmental partnerships.
Most companies also have environmental material sourcing
policies and have developed sustainable products. Of note,
50% to 60% of companies have board-level policies, including
executive compensation and Equity, Diversity, and Inclusion
(EDI) policies. However, broader EDI policies, such as the

‡We use the Global Industry Classification Standard (GICS) to filter companies in these
sectors.
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A B

C

Fig. 1. Sample characteristics. Panel (A) shows the frequency of CSR policies in our sample. Panel (B) shows the proportion of companies with emissions
pathways aligned with climate targets as of 2020. Panel (C) shows the average GHG emissions (log) of companies in our sample (blue vertical line), the emissions
of all companies in the hard-to-abate and energy-intensive sectors (pastel distributions) and of all companies in the Trucost universe (∼15,000 companies
across all sectors, dark gray distribution). The red dot shows the 88th percentile of emissions in the whole universe distribution, corresponding to the average
emissions of companies in our sample. Overall, the figure shows that, while companies in our sample adopt several environmentally related CSR policies, they
fall short of meeting climate targets and are among the highest global emitters.

establishment of EDI targets, are rare. In terms of supplier
relationships, we observe a broad diffusion of supply chain
management practices (e.g., code of conduct, reviews), while
active supplier training policies are significantly less common.

Despite the relatively high frequency of environmental CSR
policies, companies in our sample are not on track to effectively
contain their projected emissions within the boundaries necessary
to address climate change. Global standards in this sense are set
by the Paris Agreement, a binding international treaty signed
by 196 countries in 2015, which puts forward as a key target
the containment of increased average global temperatures to
below 2 ◦C compared to preindustrial levels (48). Panel B of
Fig. 1 shows the proportion of sample companies whose emission
pathways, as of 2020, were aligned with Paris targets of limiting
global warming below (teal) and well below (navy) 2 ◦C (see
Data for details on the calculation of emission pathways). The
panel shows that only 30% to approximately 50% of companies
have emissions pathways aligned with the below 2 ◦C, and an
even smaller fraction of companies (10% to 30%) are aligned
with the well below 2 ◦C. Importantly, alignment with climate
goals varies significantly across geographical regions. Notice that
while our sample only comprises 615 companies, Panel C shows
that their average emissions are on the top 88th percentile
of the distribution of emissions of the largest 15,000 publicly
traded companies (dark gray distribution in Panel C ). Therefore,
companies in our sample are global leading polluters, and they,
together with comparable companies, play a crucial role in the
achievement of the Paris targets. Further insights on the causes of

their relatively low environmental performance and the apparent
disconnect between the adoption of industry best practices and
overall target alignment are therefore essential to bring back the
private sector on track to meet global climate targets.

We now focus on the characterization of our derived measure
of O-ST across the sample and the observation period (see
Overview of the empirical estimation process and Empirical
estimation of organizational system thinking). The black dotted
line in Fig, 2A shows the temporal evolution of the average level of
O-ST. We have found a substantial positive temporal trend, with
a clear acceleration in recent years, starting from 2018. Indeed,
the relative incidence of O-ST answers was approximately 10%
in the early 2010s and reached approximately 20% in 2020. In
Fig. 2B, we zoom in on the cross-sectional distribution of O-ST
by year. Specifically, we split the yearly aggregate into quartiles
and represent the distributions within each quartile in individual
boxplots. The top quartile (blue) shows a greater dispersion,
suggesting a significant presence of a few advanced companies
that significantly outperform the pack. However, we observe
a positive trend across all quartiles, which suggests a broader
O-ST diffusion over time. Indeed, the bottom quartile (red)
progressively detaches from the lower bound at 0. Together, the
two panels show that system thinking is becoming more prevalent
in our sample and that this trend encompasses the entirety of the
companies we analyzed.

Fig. 2C shows the relative prevalence of different themes
in answers that contain system thinking cues (SI Appendix,
section S5). Specifically, we report the ten topics which showed
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A

B

C

Fig. 2. Evolution and characterization of organizational system thinking. Panel (A) shows the temporal evolution of O-ST within our sample. Panel (B) shows the
yearly distribution of O-ST by quartile. Panel (C) shows the relative prevalence of topics in the answers to the CDP questionnaire classified as system thinking
(green) and non-system thinking (red). Here, we show the prevalence comparison only for the ten topics with the highest positive (first five) and negative (last
five) differences between the two groups. In SI Appendix, Table S9, we show the full results from the topic analysis.

the starkest (top five positive and top five negative) difference
between system thinking and non-system thinking answers.
System thinking answers have a broader scope than the traditional
objectives of emission reduction and are related to a wider
interpretation of the company sustainability mandate (e.g., in
areas like governance and supply chain management). They
are also more concerned with information and assessment
procedures, which suggest a greater understanding of the need
to probe a complex, systemic environment. Conversely, non-
system thinking answers were linked to themes more in line with
the core of CDPs questions, with concrete and direct answers in
terms of emissions, energy, and financial costs. Importantly, in
SI Appendix, section S4 and Table S1, we show that, additionally
to discuss topics with a broader scope, system thinking answers are
also associated with greater text complexity.§ Therefore, system
thinking answers are not only different in content but also
in structure. This suggests that the mechanisms and cognitive
processes underlying the formulation of those answers, such
as understanding the complexities involved in tackling climate
change, are fundamentally different.

Organizational System Thinking, GHG Emissions, and Align-
ment with Climate Targets. We now estimate the relationship
between O-ST and the environmental impact of business
operations. Specifically, we focus on two impact measures
(outcomes): GHG emissions and their alignment with climate
targets. Emission data are from Trucost (Data) (49), and here, we
focus exclusively on all the emissions that are under the control of
the company and can therefore be directly related to management
choices and practices. This includes GHG protocol scope 1
emissions, plus any other emissions derived from a wider range of
GHGs relevant to a company’s operations, plus GHG protocol

§Text complexity is an important factor to account for in the analysis presented in the
following section to account for endogeneity issues, as discussed in Empirical Specifications.

scope 2 emissions, plus the company’s first-tier upstream supply
chain. In the analysis, GHG emissions are measured cumulatively
two years ahead. Data on alignment with climate targets are also
from Trucost (50). Alignment with climate targets is defined
as the difference between the projected emission pathway of an
organization and its required pathway to limit global warming
below and well below 2 ◦C (Data). We use these two outcome
measures as a proxy for short-term (GHG emissions) and long-
term (alignment) impact. In section Discussion, we discuss the
applicability of our framework to other environmental impact
measures.

The estimation approach is divided into three steps (further
details, including strategies to address endogeneity issues, are
provided in Empirical Specifications). First, we identify factors
associated with characteristic levels of O-ST. Specifically, we run
a linear model with O-ST as the dependent variable and a series
of asset characteristics as independent variables. Importantly,
we focus on asset characteristics, such as Size and proportion
of tangible assets, that are often studied in relation to GHG
emissions (51). In conjunction with the asset characteristics,
we also control for fixed effects, self-selectivity, and a series of
complexity measures of the CDP answers for every observation
in the panel (see Empirical Specifications for further details on
the model). The estimated regression coefficients of the asset
characteristics are shown in Fig. 3A. The error bars denote
bootstrapped 95% CIs. We have found that companies with
high levels of system thinking tend to be small, have a large
presence in the market (measured as total invested capital), have
a high value of growth opportunities (market to book), and have
a low proportion of tangible assets in their books.

Second, we estimate the relationship between O-ST and several
CSR policies. Specifically, we run several Probit models, each
explaining the presence or absence of a CSR policy. In the
models, we control for O-ST, asset characteristics, fixed effects,
self-selectivity, and text complexity measures. The CSR policies
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A B

Fig. 3. Organizational system thinking, asset characteristics, and CSR policies. Panel (A) shows the association of O-ST with a series of asset characteristics.
Specifically, the y-axis shows the regression coefficients of the covariates included in a linear model that explains O-ST. Panel (B) shows the regression
coefficients of O-ST in a series of Probit models, each explaining the presence or absence of CSR policies (y-axis). See Empirical Specifications for further details
on the models. The error bars in both panels show the bootstrapped 95% CIs.

can be seen as the means by which O-ST acts on emissions.
Fig. 3B shows the estimated regression coefficients of O-ST in
each of the Probit models and their bootstrapped 95% CIs. We
have found that companies with high levels of system thinking
tend to employ several CSR policies, and these policies span
both the environmental and social domains. Indeed, in addition
to being more likely to adopt sustainable management practices
(e.g., developing environmental products and sustainable supply
chain policies), companies with a high level of system thinking
are also more likely to adopt EDI policies and engage with
a broad spectrum of stakeholders. Notably, the probability of
setting internal emissions target is positively associated with the
characteristic levels of O-ST.

Finally, we estimate the association between O-ST, future
GHG emissions, and alignment with climate targets. Fig. 4A
shows the results of our main estimations. The top bars in the
figure show the regression coefficient of O-ST in a linear model
that explains future cumulative GHG emissions. Similarly to the
previous specifications, in this and each of the subsequent models,
we control for asset characteristics, fixed effects, self-selectivity,
and text complexity measures. The coefficient is negative and
statistically significant, i.e., the higher the level of O-ST, the
lower the cumulative future emissions. The coefficient remains
negative and statistically significant regardless of whether or not
we control for the presence of CSR policies (dotted bars). That
is, individual CSR policies do not mediate the effect of O-ST on
short-term emissions, suggesting that the mediating factor must
be a more complex combination of strategic choices.

The middle bars in the figure show the regression coefficients of
O-ST in a Probit model that explains the probability of observing
emission pathways aligned with the target of the Paris Agreement
of limiting global warming below 2 ◦C. The coefficient is positive
and statistically significant. Similarly to the previous estimation,
the coefficient does not change after accounting for the presence
of CSR policies (dotted bars). The bottom two bars show the
regression coefficient of O-ST in a Probit model that explains
the probability of observing alignment with the more stringent
target of limiting global warming well below 2 ◦C. The coefficient
is again positive and statistically significant with and without
CSR policies in the model. Overall, O-ST is associated with

lower future emissions and with a greater likelihood of observing
alignment with climate targets. The results shown in the panel
are robust to different estimation strategies of our O-ST measure
(see Robustness Tests and SI Appendix, Fig. S4), to different cutoffs
in the data requirements to estimate O-ST (SI Appendix, Table
S10), and to the inclusion of alternative and simpler measures of
O-ST in the control set (SI Appendix, Table S11).

Fig. 4B shows the regression coefficients of Panel A estimated
on a rolling window. The x-axis in the panel shows the latest
year of estimation. The panel shows that the association between
O-ST and GHG emissions is consistent across our sample period
(SI Appendix, Table S5 for the numerical values associated with
the figure). The decline in the uncertainty around the point
estimates is due to sample size effects since the estimation is
performed on a rolling window. The temporal evolution of
the association between O-ST and the probability of observing
a company with emission pathways aligned with the Paris
Agreement target of lowering global warming below and well
below 2 ◦C is noisier. Alignment with the below 2 ◦C target is
consistently significant while alignment with the well below 2 ◦C
target only became significant in 2020, when sample sizes and
characteristic levels of O-ST are larger.¶

Finally, we would like to note that the results presented in this
section are derived from bootstrapped estimations from several
random subsamples of our dataset. Their uncertainty is estimated
using percentile bootstrap CIs. This estimation strategy allows us
to ensure that our findings are not due to some idiosyncrasy
of the sample we end up with after merging data from several
datasets. Therefore, it guarantees a level of generalizability to
our findings. However, while providing an implicit robustness
test to our results, this estimation strategy also generates greater
uncertainty around the estimations. Therefore, for completeness,
in SI Appendix, Tables S6 and S7, we provide the full sample
results for the analyses in Figs. 3 and 4. The uncertainty is greater
for the analysis of the association with the climate targets on the
rolling window (Fig. 4B) because sample sizes are significantly
smaller. Indeed, SI Appendix, Table S8 shows that the results for

¶The large error bars around the estimates for the target in 2018 are due to the very small
sample of companies with available estimated emission pathways. Indeed, in 2018 we
have approximately 25% of the observations that were instead available in 2020.
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A B

Fig. 4. Organizational system thinking, GHG emissions and alignment with climate targets. Panel (A) shows the regression coefficients of O-ST in the models
that explain future emissions (red bars) and the probability of alignment with the climate targets (blue and green bars). The coefficients are estimated with (full
bars) and without (dotted bars) CSR policies in the control set. Panel (B) shows the same regression coefficients estimated on a rolling basis (with CSR policies
in the control set). The x-axis shows the last year of observations of the independent variables. The error bars in both panels show the bootstrapped 95% CIs.
Overall, the results shown in the figure support the hypothesis that organizational system thinking is associated with lower future emissions (red) and with a
higher likelihood of alignment with climate targets (blue and green).

the temporal evolution of the association between O-ST and the
probability of alignment with climate targets are stronger in the
full sample.

Discussion

The ability of individuals to understand the threat posed by
climate change and support environmental policies to mitigate
its effects is strongly linked to their cognitive capacities and
in particular with their system thinking skills (7–11). In this
manuscript, we argued that organizations, like individuals, can
exhibit system thinking capacities and that organizational system
thinking (O-ST) has the potential to provide an essential
cognitive framework to address climate challenges. We have pro-
vided a theoretical conceptualization of O-ST and an empirical
framework to estimate it from observational data in the context
of business organizations and, in particular, publicly traded
companies.

Main Findings and Limitations. Our main hypothesis was that
O-ST is associated with a greater capacity of companies to
lower the environmental impact of their business operations.
To test this hypothesis, we have analyzed data over the past 10 y
from a sample of companies which includes the largest publicly
traded polluters in the hard-to-abate and energy-intensive sectors.
During the observation period, these companies have taken steps
to implement changes in their sustainable management practices
as demonstrated by the widespread adoption of environmental
and social policies (Fig. 1A). Yet they still fall short in meeting
global climate targets (Fig. 1B). In other words, our analysis
suggests that company-level policies are not sufficient to explain
both short-term and long-term projections of GHG emissions.
This result is in line with previous findings in the oil & gas
sector that have found a misalignment between companies’ stated
goals and actions and their outcomes (19). On the other hand,
our O-ST measure is positively and statistically significantly
associated with these two key environmental outcomes both
cross-sectionally (Fig. 4C ) and across time (Fig. 4D).

The results are robust after controlling for several factors
that could provide alternative explanations for these associations
(Materials and Methods). These factors include 1) self-selectivity,
companies deliberately decide to disclose carbon management
practices and GHG emissions; 2) complexity measures of the

analyzed text, our system thinking measure could have just
been a proxy for other cognitive skills that emerge in complex
answers to the CDP questionnaire; and 3) company-level CSR
policies, system thinking is a property greater than the sum of
siloed policies. Moreover, the results are also robust to different
empirical estimation strategies (Robustness Tests and SI Appendix,
Fig. S4 and Table S10). Overall, our results suggest that to
lower companies’ emissions to a level compatible with those
expected from science-based targets (such as the targets set by
the Paris Agreement), companies need to recognize how their
operations affect and are affected by multiple societal actors
and environmental factors and that their business needs coevolve
dynamically with the environment within which they operate.

There are, however, a number of limitations to our approach.
First, we have inferred system thinking capacities from one
single source of disclosure, i.e., CDP survey responses. CDP
questionnaires are directly related to the environmental outcomes
we have analyzed (GHG emissions). Therefore, there could be a
potential bias induced by the choice of the underlying data. In
other words, what we might be inferring is the level of system
thinking observed within a company in its sustainable carbon
management practices, not the overall level of system thinking
of the company across all business operations. To address this
limitation, we have estimated the relationship between O-ST and
another environmental impact measure unrelated to emissions
(water consumption). We have found that O-ST is associated
with lower rates of water consumption. The effect is statistically
significant but smaller in magnitude (SI Appendix, Table S12).
This result suggests that our system thinking measure can
capture broader organizational capacities. However, future work
could combine several disclosure sources, for example, CSR
reports, earning calls, and financial reports to estimate a more
comprehensive measure of O-ST.

Second, annotating textual data for inference tasks is noto-
riously challenging (52). Here, we have employed a classical
approach in NLP studies, which is to let multiple individuals
annotate the data independently and measure their agreement to
provide a robustness measure (Materials and Methods). We have
also tested the robustness of our results against models trained
on data from every single annotator independently and their
combinations (SI Appendix, Fig. S4). However, future studies
could develop better approaches to increase the quality of the
annotation task.
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Finally, as with any observational study, there could be endo-
geneity issues with our specifications. To address this concern,
we have run multiple tests and used several strategies, such as
controlling for self-selectivity, alternative covariates, different
subsamples, different time windows, and different measures of
our key variable (see Empirical Specifications and Robustness Tests).
However, because our study is purely observational, we still
cannot claim that the O-ST capacities cause behavioral choices
that are able to lower companies’ emissions and align them
with climate targets. We can only claim that the two factors are
positively correlated. Future research could design experimental
studies to further investigate the causal nature of our estimated
association.

Implications of Our Work and Future Avenue of Research. Our
work has relevant implications for policymakers and business
practices. Meeting global climate targets, such as those set by
the Paris Agreement, is one of the greatest challenges of our
times. Climate targets are set at the country level through the
formulation of nationally determined contributions. Delivering
on these contributions depends on the actions and behaviors
of large organizations, such as publicly listed companies (18).
Therefore, understanding which factors drive the necessary in-
ternal changes in management practices that can help companies
reduce their emissions is crucial to design better incentive
schemes, such as targeted environmental policies and market-
based solutions that can help countries meet their nationally
determined contributions. Our results suggest that policies aimed
at fostering system thinking within companies can nudge effective
changes in their sustainability behavior.

Importantly, policymakers already appreciate the importance
of individual-level system thinking, and several countries, such as
the United States and the United Kingdom, are setting standards
(15) and guidelines# to foster system thinking in educational
curricula and government body. Our study suggests that these
policies and guidelines should also take into account the way in
which system thinking changes as a result of interactions between
individuals in an organization, between a group of organizations,
and between organizations and decision-making bodies.

The main implication of our results is that system thinking can
provide an essential organizational-level cognitive framework to
address companies’ environmental challenges. There are, how-
ever, two additional important contributions of our framework
and results beyond their business implications, which we believe
can open interesting avenues of research. First, while the existence
of emergent capacities from the interactions of individuals within
groups is a well-known phenomenon that has been measured in
several studies (21, 22, 53); to the best of our knowledge, there
is limited understanding about the emergence of organization-
level system thinking capacities. Our work provides empirical
evidence supporting the hypothesis that system thinking can be
an organizational capability. In our analysis, we build on the
notion that group interactions in the production of a cognitive
output (i.e., CDP survey responses) allow the observation of
emergent system thinking capacities. However, our study does
not shed light on the processes underlying the emergence of such
a collective cognitive framework. Investigating those processes is
crucial to investigate further the characteristics of our theoretical
construct and its relationship with organizations’ outcomes.

Another interesting theoretical result that emerges from our
analysis is the connection between system thinking capacities and
adverse selection (information asymmetry). Here, we have found

#See for example https://www.gov.uk/government/publications/systems-thinking-for-
civil-servants

that companies with greater system thinking capacities tend to
be smaller, with high value of invested capital, intangible assets,
and market-to-book ratios (Fig. 3A). These characteristics are
often associated with greater levels of information asymmetry
between insiders and outsiders due to greater uncertainty around
the value of intangibles, growth opportunities (market-to-book),
and idiosyncratic risk.|| One speculative hypothesis that emerges
from this result is that lowering the impact of adverse selection
forces motivates companies to take on a greater stakeholder-
oriented approach, which results in a greater estimated measure
of system thinking. Indeed, our operational definition of O-ST is
closely related and inspired by stakeholder theories (55). Further
research is needed to investigate this relationship in greater depth
within the context of novel frameworks in behavioral corporate
finance (56).

Finally, we believe that our framework can be further expanded
methodologically in two major directions. First, we focused our
analysis on uncovering the relationship between O-ST and GHG
emission reduction and, in particular, on how company-level
reductions are, or are not, in line with climate targets, which
are a well-defined but potentially narrow domain. Therefore, a
crucial step in further research is to broaden the scope of systemic
challenges to consider in evaluating the effects of O-ST. Indeed,
business operations have direct consequences on several global
environmental challenges like biodiversity loss or soil pollution
and social challenges like North–South global inequality or
health justice. Second, here, we developed a general definition
for organizational system thinking, which can be applied to a
broad set of forms of organizations (e.g., businesses, NGOs).
However, our empirical approach only focused on publicly
traded companies due to their crucial role in tackling climate
change. Further research could develop alternative empirical
strategies that rely on different forms of disclosure of organi-
zational processes to extend our framework to other forms of
organizations.

Overall, in this study, we proposed a theoretical construct
and derived an empirical estimation strategy for a cognitive
framework that can help organizations address environmental
challenges. More broadly, we believe that our work can be the
foundation for several future studies investigating the behavioral
drivers and implications of organizational system thinking.

Materials and Methods
Data. In this study, we focus on publicly traded companies in the Energy,
Utilities, Material, and Industrial sectors as defined by the GICS. Companies in
these sectors share similar environmental challenges because production relies
significantly on tangible assets, it is energy intensive, and costs strongly depend
on commodity prices. Moreover, because carbon management is a material
issue for all companies in our sample, the answers to CDP questionnaires are
particularly relevant for communicating core business processes and progress
to stakeholders in a standardized fashion. Below we provide specific details of
the variables we used in our study for reproducibility purposes. In SI Appendix,
Table S4, we provide the exact name of the datasets and a link to the data
providers.

We used annual COMPUSTAT (57) and Refinitiv (58) data for companies’
fundamentals. Specifically, we define Size as the log of sales (SALE, in USD)
adjusted for inflation (https://fred.stlouisfed.org/series/CPIAUCSL); Invested
Capital is long plus short-term debt (DLTT + DLC), plus book equity (CEQ)
plus cash and short-term investments (CHE); Tangibility is property plant and
equipment (PPENT, in USD) divided by book assets (AT, in USD), Profitability

||Idiosyncratic risk is inversely proportional to companies’ size. Indeed, Size is proportional
to the number of projects a company can take; hence, it directly drives the volatility of
the assets; i.e., larger companies can be seen as well-diversified portfolios of investment
projects (54).
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is Earnings Before Interests, Tax, Depreciation, and Amortization (EBITDA in
USD) over lagged book asset. Market leverage is long-term plus short-term debt
(F.DebtTot) divided by market value of assets: total assets (F.TotAssets)− book
equity (F.ShHoldEqCom) + market equity (F.MktCap); market to book is the
market value of assets divided by Total Book Asset.

Environmental Social and Governance (ESG) data are from Refini-
tiv Asset4 (59), which is the leading and most comprehensive data
provider of ESG and nonfinancial data (see ref. 60 for an extensive
review of this dataset). Specifically, we use data on supply chain policy
(TR.SupplierEsgTraining, TR.PolicyEnvSupplyChain), environmental partner-
ships (TR.EnvPartnerships), internal target setting (TR.TargetsEmissions),
executive compensation (TR.PolicyExecCompESGPerformance), environmen-
tal material sourcing (TR.EnvMaterialsSourcing), environmental products
(TR.EnvProducts), EDI targets (TR.TargetsDiversityOpportunity), board di-
versity policies (TR.PolicyBoardDiversit), and stakeholder engagement
(TR.StakeholderEngagement). These variables take on the value of one if a
company has a policy in place and zero otherwise. For example, if a company
has set an internal emission target, then TR.TargetsEmissions= 1.

Company-level emissions data are from Trucost (49), which is one of the
most widely used data providers of emission data in the climate finance
literature (51, 61). Trucost reports emission data for companies that disclose
this information in sustainability reports, annual reports or to CDP, and it
estimates the emissions from all the other companies based on proprietary
input–output models and an extensive database on production process data (61).
Importantly, Trucost covers emissions data for approximately 15,000 publicly
traded corporations across sectors and geographical regions, and it has the
greater coverage among comparable emissions data providers (61). In this
work, we measure total GHG emissions as Direct plus first-tier indirect emissions
which are defined as GHG protocol scope 1 emissions, plus any other emissions
derived from a wider range of GHGs relevant to a company’s operations,
plus GHG protocol scope 2 emissions, plus the company’s first-tier upstream
supply chain. This is Trucost’s default measure of emissions. We focus on direct
emissions for two reasons: 1) They can be directly related to management
practices (and therefore O-ST) and 2) previous works have found that the
quality of these emissions is substantially better than the quality of indirect
emissions (61).

Data on alignment with climate targets are also from Trucost (50). Specifically,
we use the difference between the projected emission pathway of companies
as of 2018, 2019, and 2020 and the required pathway to limit global warming
below and well below 2 ◦C. The base year for the alignment calculation is
included as a firm fixed effect in the regression. Trucost estimates the transition
pathway using the methodologies highlighted by the Science Based Targets
Initiative (SBTI). Specifically, they use the Sectoral Decarbonization Approach
(SDA) for high-emitting companies with a homogeneous business activity and
The Greenhouse Gas Emissions per Unit of Value Added (GEVA) approach for
low-emitting companies with heterogeneous business activities.

Finally, information on sustainable carbon management processes and
environmental outcome is from the Carbon Disclosure Project (CDP), which
is an international nonprofit organization that help organizations disclose their
sustainable management practices and environmental impact (62). To merge
the four datasets, we create a mapping from ISIN numbers and COMPUSTAT
gvkey, since the latter is a unique entity identifier while the former is a security
identifier and there can be multiple ISINs for the same entity. Companies that
could not be matched with the ISIN number were matched by company name
after removing common suffixes such as “corp,” “llc,” …. After merging, the
joint dataset has a total of 615 companies with average emissions in the top
88th percentile of the total emissions data available from Trucost. SI Appendix,
Table S2 shows a summary statistics of our sample.

Empirical Estimation of Organizational System Thinking. Our task is to
use companies’ answers to open-ended questions in the CDP questionnaire to
infer if an organization (hereafter company) uses system thinking at the core of
its carbon management processes. Since CDP includes both open-ended and
multiple-choice questions, we first filter out the latter based on the length of the
text. Preliminary exploratory data analysis showed that answers to open-ended
questions tend to be larger than 200 characters, which is the cutoff value we

used in our study. After isolating open-ended questions, we manually annotate
approximately 2,000 examples using a human-in-the-loop natural language
processes approach divided into two steps described below.

The first step is motivated by the fact that, within the ∼100,000 answers
identified, the relative incidence of system thinking cues is fairly low. This
implies that a manual annotation on a random subsample would require
increasingly large numbers in order to achieve a critical mass of positive
examples. Therefore, we build a “high-likelihood” subset of answers that overrep-
resents system thinking occurrences compared to the original population. The
subsequent manual annotation of random draws from the high-likelihood subset
can thus capture both system thinking and non-system thinking characteristics
much more efficiently.

We begin to parse together the subset by using a dictionary of bigrams
that might be related to system thinking in the CDP context. Bigrams are
text expressions made of two words that covey a joint meaning, e.g., “system
thinking.” We avoid including monograms (i.e., individual words) in our
dictionary because finding system thinking cues requires nuanced concepts
that do not easily emerge in any individual word. We decline our definition of
organizational system thinking in different connotations and build the dictionary
with potentially related words. It is important to notice that our objective is merely
to identify keywords whose occurrence in an answer is (even mildly) correlated
with system thinking. We do not believe that isolating the concept completely
with any keyword set is possible. SI Appendix, Table S3 illustrates the system
thinking areas considered and the associated keywords for the total of 20 that
forms the initial dictionary.

Our initial search led us to 4,565 answers that contained any of the initial
keywords as part of the high-likelihood subset. Furthermore, following ref. 63,
we add syntactically similar answers to the ones already included. Concretely,
we train various machine learning methods (nearest neighbor, logit regression,
decision tree, random forest, singular vector machine) on a training set built by
assigning a value of 1 to all answers already in the high-likelihood subset, and
0 to a random subsample of the remaining answers. We then use inference
analysis to assign labels within a test set, which, in this case, comprises all
answers available outside of the training set. A correct model would assign 0 to
all answers in the test set since they are virtually equivalent to the 0s used in the
training set. However, if any of the algorithms misclassifies answers giving them
a label of 1, then those answers must be particularly “close” to those already
present in the high-likelihood subset. They are therefore added to it. In its final
iteration, 8,606 answers were part of the high-likelihood subset.

From the full body of texts, and their preliminary classification, we sample
a random number of questions, and we manually check whether the answers
to those questions classified as system thinking in the previous step meet
our theoretical definition of system thinking (SI Appendix, section S1). If they
do, we assigned them a value of one; otherwise, we classified them as zero.
We provide examples of system thinking and non-system thinking answers
in SI Appendix, section S2, where we also showcase our annotation process
practicallybywalkingthroughourreasoning.Thetwo-stepprocedureisnecessary
to simplify the annotation task and increase the quality of the training data. Two
of the authors annotated the text independently, and to measure interrater
reliability, we used Cohen’s kappa (∼0.74). To generate the final dataset, we
train a pretrained BERT model, using the HuggingFace Transformers library. To
increase the reliability of the predictions, we run three independent models
and then average their forecasts (i.e., their predicted labels). The three models
are derived from the classifier trained on three different datasets, i.e., the two
training sets of the individual annotators and an intersection training set where
an answer is classified as system thinking if both annotators agreed on this
classification. In the training process, we split the annotated data in a training
and test set of size 80% and 20%, respectively. Subsequently, we divided the
training set into training (80%) and validation (20%). Answers are randomly
distributed in the training, validation, and test set in such a way as to keep an
approximatively equal incidence of system thinking behavior (∼15%) across the
three samples. The accuracy of the models in the hold-out test set are ∼85%,
∼80%, and∼90%.

Finally, we use the trained models on the full body of texts of the CDP
questionnaire. Organizational system thinking for company i in year y is then
defined as the yearly average labels across all the company’s answers in the given
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fiscal year. To ensure stability in the averages, we remove yearly observations
with less than 10 responses. The total number of companies in the dataset goes
down to 622, which is the final sample we use for our analyses. In Robustness
tests, we show that our results are robust to different training strategies and to
different cutoffs in the number of responses necessary to include an observation
in our sample.

Notice that in our theoretical construct, organizational system thinking is an
organization-level capacity. For our empirical estimation to be consistent with the
theoretical construct, we need to ensure or assume that enough bodies within
the company are involved with the answers to the CDP questionnaire. Otherwise,
our estimation would capture the individual-level capacities of the questionnaire
respondents, not group-level properties. In SI Appendix, section S3, we provide
evidence in support of our assumption.

Empirical Specifications. To estimate the relationship between organizational
system thinking and environmental outcome, we take a three-stage approach.
First, we estimate the association between system thinking and several asset
characteristics, namely: Market Leverage, Tangibility, Profitability, Size, Market
to Book, and Invested Capital. To address endogeneity issues arising from
properties of the text that could confound our estimation of organizational system
thinking, we also control for several characteristics of the answers. Precisely, we
control for the length of the text in the CDP answers. This is necessary because
there is a strong positive association between the likelihood of observing system
thinking and the length of the text from which the likelihood is estimated.
This association is expected because system thinking emerges from detailed
descriptions of processes and operations. Therefore, the annotated dataset had
a higher incidence of system thinking among the longest answers. However, long
texts do not necessarily reflect system thinking, and therefore, this association
could bias the BERT model which, in theory, could simply predict one or zero
based on this factor solely. To exclude this possibility, we control for the average
length of the text per year in each of our specifications. Similarly, we control for
standard text complexity measures (seeSIAppendix, section S4 for further details
on these measures). This control is necessary because text complexity is positively
correlated with system thinking, but system thinking should not be just a proxy
for complexity. To further address endogeneity issues, we control for geography,
years, and sector-fixed effects in every specification. We collectively denote the
control set of this regression as X . We do not control for firm fixed effects
because a) some companies go in and out of the sample; therefore, for some
observations, we have a limited number of years [and so subtracting average
values would not be a well-defined operation (64)] and b) organizational system
thinking is measured with error, and companies’ fixed effects can significantly
increase the noise to signal ratio in the presence of measurement error (65).

Because disclosure to CDP is voluntary, there is a self-selectivity bias in our
sample. To correct for this bias, we run a Heckman’s two-stage model (66).
Specifically, we first run a Probit model where the dependent variable is an
indicator variable that takes the value of one if company i discloses information
to CDP in year y and zero otherwise. The independent variables include Size,
Tangibility, and Invested Capital as well as the proportion of companies in the
same sector and country that also disclose information to CDP. In the Probit
model, we also control for average emissions in the 2 y before the disclosure,
since companies with lower emissions might be more likely to report their carbon
management processes to their stakeholders. We collectively denote the control
set of this regression as X̃ . From the fitted Probit, we estimate the inverse Mills

ratio, I−1, which is defined as I−1 =
f(x)

1−F(x) , where f(x), F(x) are the (normal)

probability density function and the cumulative distribution, respectively. The
inverse Mills ratio, I−1, is then used as an additional covariate in the estimation
of the coefficients in the linear model. Specifically,

P[Disclose to CDP|X̃ ] = Φ(X̃ T Ẽ�) + �

O-ST = X E� + �I−1 + �, [1]

where X̃ ,O-ST, and X are the control set of the Probit model in the first step
of the Heckman correction, organizational system thinking, and the control set
of the linear model, respectively. Because the particular value and statistical
significance of a coefficient could depend on the specific sample we end up

with after merging the different datasets, we estimated bootstrapped regression
coefficients and 95% CIs (� = 0.05). Specifically, we generate k = 2,000
random subset of our dataset (with replacement), each of which is 85% of the
total sample, and we sort the vector of coefficients obtained from estimating
Eq. 1 in each of the subsamples. Then, we calculate the upper and lower bound
of the 100(1-�)% CI as the (0.5�)kth and the (1−0.5�)kth value of the sorted
vector (67).

In the second stage of our three-stage estimation approach, we retain the
statistically significant factors (asset characteristics) estimated from Eq. 1, and
we used them in the control set of a series of Probit specifications, each
explaining the presence or absence of a CSR policy. In the control set, we also
include our organizational system thinking variable, text complexity measures,
and fixed effects. We again repeat the estimation of the Probit models for
different subsamples, calculate the CIs of the coefficients with bootstrapping,
and extract the policies that are consistently statistically significantly associated
with organizational system thinking. To compare the Probit results with those
of the linear model, we standardized the coefficients following the empirical
approach described in ref. 68. Specifically, we compute the empirical estimator
of the standard deviation of the latent variable y∗ (i.e., the class assignment
probability), and then, we standardize the coefficients as in a traditional linear
model using this estimator.

Finally, in the third stage of our estimation approach, we use the statistically
significant factors estimated from the two previous steps to estimate the
association between organizational system thinking and a) cumulative GHG
emissions intensity 2 y ahead and b) alignment with the climate targets, as
explained in the main text, Results. We calculate emission intensity as GHG
emissions over total invested capital in USD. Emission intensity measures the
level of emissions generated by the unit of USD invested. Also in this last step,
we estimate the coefficients and their statistical significance with bootstrapping.
Similarly to the previous specifications, we also control for self-selectivity, text
characteristics, geography, sector, and year-fixed effects. The results of the
regressions are shown in Figs. 3 and 4 in the main text. For completeness,
SI Appendix, Tables S6 and S7 shows the estimations of the regressions from
the full sample without bootstrapping.

Robustness Tests. We already run explicit robustness tests to sample size and
choice of covariates in the main estimation through bootstrapping. However, to
further validate our results, we run three additional robustness tests. Here, we
describe the tests, and in SI Appendix, we show the results.

In the first test, we include two additional variables in our estimation: 1) the
total number of projects implemented to lower GHG emissions and disclosed by a
company in the CDP questionnaire; 2) the number of objectives covered by these
projects. The objectives include, for example, “process emissions reduction,”
“fugitive emissions reduction,” “Behavioral change,” “Commuting-Employee
incentive,” “Raw material reduction,” and “Green Financing,” to cite a few.
Information on the objectives is disclosed in the description of the projects in
the CDP questionnaire. We include these factors to investigate whether the
effect of O-ST on the environmental outcomes changes when we account for
alternative, and simpler, measures of system thinking capacities. Indeed, the
total effort invested in carbon management processes (quantified by the total
number of projects a company is involved with) and the diversification of this
effort (quantified by the number of objectives) can be seen as the capacity of
a company to spread its attention toward multiple goals, which is a crucial
characteristic of our operationalization of the O-ST measure. We have found
that none of these factors (and their joint presence) substantially influence
the association of O-ST with the environmental outcomes (SI Appendix, Table
S11). Interestingly, however, even after accounting for the number of projects
across the objectives, the number of objectives itself is statistically significantly
associated with lower emissions and a higher likelihood of alignment. The
regression coefficient, however, is substantially smaller than the coefficient
on O-ST.

The label predictions used to measure the level of organizational system
thinking in the main text were based on an ensemble of models. Each model in
the ensemble was trained on a specific dataset, i.e., the two manually annotated
dataset and their intersection. The final prediction was the average label
predicted by the models. Here, we generate four additional label predictions
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to test the robustness of our results to different empirical strategies to estimate
O-ST. In the first two tests, we repeat the estimation using label predictions
obtained from a model trained on the training set generated by the two
annotators independently. In the third test, we use label predictions obtained
from training the model on an intersection dataset in which a text is classified
as system thinking if and only if both annotators agree on the classification (ex-
ante agreement). Finally, in the last model, we use label predictions obtained
from the agreement of the predictions of the model trained on the single
annotators training sets (ex-post agreement). Results are shown in SI Appendix,
Fig. S4. Overall, we have found that the results are robust to different training
strategies.

Finally, we run a robustness test to show that the results of our study are left
unchanged when we change the cutoff level in the number of yearly answers to
the CDP questionnaire that are necessary to include an observation in the sample.
Specifically, we estimate the association between O-ST and GHG emissions and

alignment with climate targets for different cutoff levels. Results are shown in
SI Appendix, Table S10.

Data, Materials, and Software Availability. In our study, we use several
datasets that we have purchased from third parties and that we therefore cannot
share. These include COMPUSTAT, Trucost, Refinitiv and CDP. However, these
datasets can be accessed directly from the data providers for a fee, see refs.
49, 50, 57–59, and 62, Materials and Methods, and SI Appendix, Table S4 for
further information. The O-ST dataset derived in this work is publicly available
together with the code to reproduce the main analyses. Data and Code have been
deposited in Harvard Dataverse at https://doi.org/10.7910/DVN/5TZ16W (69).
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