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Accelerating GW calculations through machine-learned
dielectric matrices
Mario G. Zauchner 1, Andrew Horsfield 1 and Johannes Lischner 1✉

The GW approach produces highly accurate quasiparticle energies, but its application to large systems is computationally
challenging due to the difficulty in computing the inverse dielectric matrix. To address this challenge, we develop a machine
learning approach to efficiently predict density–density response functions (DDRF) in materials. An atomic decomposition of the
DDRF is introduced, as well as the neighborhood density–matrix descriptor, both of which transform in the same way under
rotations. The resulting DDRFs are then used to evaluate quasiparticle energies via the GW approach. To assess the accuracy of this
method, we apply it to hydrogenated silicon clusters and find that it reliably reproduces HOMO–LUMO gaps and quasiparticle
energy levels. The accuracy of the predictions deteriorates when the approach is applied to larger clusters than those in the training
set. These advances pave the way for GW calculations of complex systems, such as disordered materials, liquids, interfaces, and
nanoparticles.
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INTRODUCTION
Density functional theory (DFT)1,2 has shown tremendous success in
the calculation of electronic ground-state properties. However, it is
well known that band gaps of solids and HOMO–LUMO gaps of
molecules are often significantly underestimated when computed
using Kohn–Sham (KS) eigenvalues3,4. In order to remedy this issue,
the GW method5–7 is often employed in which a self-energy
correction to the DFT KS energies is computed. The resulting
quasiparticle energies are in agreement with experimental mea-
surements for a wide range of materials. However, the large
numerical effort required for GW calculations and the method’s
unfavorable scaling with system size have traditionally restricted
applications to relatively small systems8,9. The most expensive step
is the computation of the interacting density–density response
function (DDRF), which is closely related to the inverse dielectric
matrix. In particular, the non-interacting DDRF is typically computed
by carrying out a slowly converging summation over all unoccupied
states8,10,11. Afterward, the non-interacting DDRF must be inverted
to calculate the interacting DDRF.
To overcome these limitations of the GW approach, significant

efforts have been made in recent years to develop scalable
implementations12–16. Alternatively, model DDRFs (or model
dielectric functions) have been developed to accelerate GW
calculations. For example, Hybertsen and Louie constructed a
model dielectric matrix based on the assumption that the local
screening response of the material is similar to that of a
homogeneous medium with the same local density17. A similar
model was also proposed by Cappellini et al.18,19. However, it has
proven difficult to generalize these model dielectric functions to
highly non-uniform systems, such as isolated molecules or nano-
clusters whose screening properties differ substantially from
uniform systems. To overcome this limitation, Rohlfing9 proposed
to express the dielectric matrix as a sum of atomic contributions
attributing a density response resulting from a Gaussian-shaped
charge density to each atom. This model dielectric matrix contains
a number of parameters that need to be determined, for example,
by comparison to calculated RPA dielectric functions.

In recent years, machine learning (ML) techniques have been
widely adopted to predict scalar properties of materials, such as
the total energy. A key ingredient in ML approaches is the
descriptor which parametrizes the atomic and chemical structure
of the material. Many descriptors used in computational chemistry
are explicitly constructed to be invariant under rotations and
translations: for example, ACE20, SOAP21, the Coulomb matrix22,23,
bag-of-bonds24 or fingerprint-based descriptors have been shown
to be reliable descriptors for the prediction of scalar quantities.
When predicting tensors or functions, however, it is no longer
sufficient to employ a rotationally invariant descriptor. To alleviate
this problem, Grisafi et al.25 developed a symmetry-adapted
version of the SOAP kernel which is equivariant under rotations
and was successfully used in the prediction of polarizability
tensors and first hyperpolarizabilities25,26, dipole moments27 and
electronic densities28. Several other groups also explored ML
approaches for the electronic density, including Brockherde
et al.29, Alred et al.30, and Chandrasekaran and co-workers31.
Moreover, the construction of group-equivariant neural networks
(NNs), such as Clebsch–Gordan networks32–34, tensor-field net-
works35, and spherical convolutional NNs (CNNs)36,37 have seen
significant developments in recent years, and the implementation
of these methods has been significantly simplified by frameworks
such as e3NN38 developed by Geiger et al.39, thus providing
promising alternatives to the symmetry-adapted SOAP for the
learning of functions.
In this work, we address the problem of predicting non-local

response functions, such as the DDRF. Predicting such quantities is
a formidable challenge: for example, the DDRF of a small silicon
cluster can be tens of gigabytes in size when represented on a
plane-wave basis, even when a modest plane-wave cutoff is used.
To address this problem, we introduce a decomposition of the
DDRF into atomic contributions, which can be predicted using ML
techniques. To ensure that the ML model appropriately incorpo-
rates the transformation properties of the DDRF, we also develop a
descriptor called neighborhood density–matrix (NDM), which
transforms in the same way as the DDRF under rotations and is
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used in conjunction with a dense NN to predict the atomic
contributions to the DDRF. We then use the ML DDRFs to carry out
GW calculations of hydrogenated silicon clusters. This approach
which we refer to as the ML–GW method, produces accurate GW
quasiparticle energies at a significantly reduced computational
cost compared to standard implementations. We note that
recently several attempts were made to use ML to directly predict
quasiparticle energies in materials40–42. In contrast, the ML–GW
approach still solves a physical model (the quasiparticle equation)
but uses ML DDRFs to accelerate calculations.

RESULTS
Theoretical results
The GW method yields accurate quasiparticle energies by applying
a self-energy correction to the mean-field KS energy levels. The
GW self-energy Σðr; r0;ωÞ is calculated from the one-electron
Green’s function Gðr; r0;ωÞ and the screened Coulomb interaction
Wðr; r0;ωÞ according to 7,8,43

Σðr; r0;ωÞ ¼ i
2π

Z
e�iδω0

Gðr; r0;ωþ ω0ÞWðr; r0;ω0Þdω0 (1)

with δ denoting a positive infinitesimal. The screened Coulomb
interaction is, in turn, computed from the bare Coulomb
interaction vðr; r0Þ and the inverse dielectric matrix ϵ�1ðr; r0;ωÞ via
Wðr; r0;ωÞ ¼

Z
ϵ�1ðr; r2;ωÞvðr2; r0Þdr2; (2)

which demonstrates that the dielectric matrix constitutes a key
ingredient in GW calculations. It can be obtained from the
interacting DDRF χðr; r0;ωÞ according to

ϵ�1ðr; r0;ωÞ ¼ δðr; r0Þ þ
Z

vðr; r2Þχðr2; r0;ωÞdr2: (3)

In the remainder of this paper, we will assume that the frequency
dependence of the dielectric matrix can be approximated by the
generalized plamon-pole approximation (GPP)7,44,45. As a conse-
quence, only the static DDRF χðr; r0Þ � χðr; r0;ω ¼ 0Þ needs to be
determined.
Within the random-phase approximation (RPA), the interacting

static DDRF is given by

χðr; r0Þ ¼ χ0ðr; r0Þ
þ R

dr1dr2χ0ðr; r1Þvðr1; r2Þχðr2; r0Þ
(4)

with χ0ðr; r0Þ denoting the static non-interacting DDRF, which is
typically computed as a sum over empty and occupied states10,11

according to

χ0ðr; r0Þ ¼ P
ij

f ið1�f jÞ
ϵi�ϵj

´ ϕ�
i ðrÞϕjðrÞϕ�

j ðr0Þϕiðr0Þ þ c.c.
h i

:

(5)

Here, ϵi, fi, and ϕi(r) denote the orbital energy, occupancy, and
wavefunctions of the KS state i.
Equations (4) and (5) highlight the two main challenges in

computing the DDRF: (1) the calculation of the non-interacting
DDRF requires a summation of all empty states, which is slowly
converging, and (2) the calculation of the interacting DDRF
requires a matrix inversion which scales unfavorably with
system size.
In order to bypass the expensive computation of the DDRF and

pave the way toward an ML approach, we propose to express
χðr; r0Þ as a sum of atomic contributions χ iðr; r0Þ according to

χðr; r0Þ ¼
XN
i¼1

χ iðr; r0Þ; (6)

where i labels atoms and N is the total number of atoms.

How this partitioning is achieved is not immediately obvious.
However, the atomic contributions to the DDRF should have the
following properties: (1) the atomic contributions should be
localized in the vicinity of the corresponding atom, (2) they should
retain the global symmetry of χ, i.e., χ iðr; r0Þ ¼ χ iðr0; rÞ, and (3) they
should integrate to zero, i.e.,

R
χ iðr; r0Þdr ¼

R
χ iðr; r0Þdr0 ¼ 0, to

ensure that the change in the charge density induced by a
perturbing potential is overall charge neutral8.
We start by expressing the DDRF in a localized basis set of real

orbitals fϕa
αa
ðrÞg, where a labels the atom on which the basis

function is centered and αa indexes the orbital on site a46. In this
basis the DDRF is given by

χðr; r0Þ ¼
X
a;αa

X
b;αb

χabαaαbϕ
a
αa
ðrÞϕb

αb
ðr0Þ; (7)

where χabαaαb is a symmetric matrix. This expression suggests the
following decomposition of the DDRF into atomic contributions

χ iðr; r0Þ ¼
1
2

X
αi

X
b;αb

χ ibαiαbϕ
i
αi
ðrÞϕb

αb
ðr0Þ þ χbiαbαiϕ

b
αb
ðrÞϕi

αi
ðr0Þ

� �
: (8)

We refer to the representation of the DDRF in the basis fϕa
αa
ðrÞg as

2-center DDRF (2C-DDRF) because it contains pairs of basis
functions which are centered on different atoms.
Using the symmetry of χ iwαiαw and the fact that the basis functions

are real, it can be easily verified that χ iðr; r0Þ ¼ χ iðr0; rÞ. We can also
ensure that

R
χ iðr; r0Þdr ¼ 0 by removing all s-orbitals from the

basis: see the computational methods section for details. The
locality of χ iðr; r0Þ is directly inherited from the corresponding
properties of the full DDRF. In particular, we have found that the
expansion coefficients χ iwαiαw decay rapidly as the distance between
atom i and atom w increases47.
We stress that this atomic representation of the DDRF is exact,

i.e.,
P

iχ iðr; r0Þ reproduces the full interacting DDRF when the local
basis sets are complete. However, the atomic contributions to the
DDRF contain contributions from pairs of basis functions that are
centered on different atoms, see Eq. (8). These contributions are
difficult to learn using atom-centered descriptors.
To make progress, we exploit the localization of χ iðr; r0Þ and

expand it in terms of a set of basis functions ψi
nlmðrÞ ¼

Ylmðr̂ÞRnðjrjÞ (with Ylm denoting the spherical harmonics and Rn
a set of radial functions), which are all centered on atom i
according to

χ iðr; r0Þ ¼ P
nlm

P
n0 l0m0

χ
ðiÞ
nlmn0 l0m0Ylmð̂rÞY�

l0m0 ð̂r0ÞRnðjrjÞR�n0 ðjr0jÞ (9)

with χ
ðiÞ
nlmn0 l0m0 denoting the expansion coefficients given by

χ
ðiÞ
nlmn0 l0m0 ¼ R R

drdr0χ iðr; r0ÞR�nðjrjÞRn0 ðjr0jÞ Y�
lmð̂rÞYl0m0 ð̂r0Þ: (10)

These coefficients can be learned using a NN based on atom-
centered descriptors. We refer to the representation of the DDRF
in the basis fψi

nlmðrÞg as 1-center DDRF (1C-DDRF) because it only
contains pairs of basis functions centered on the same atom.
As discussed in the introduction, it is not appropriate to use a

scalar descriptor (such as the standard SOAP descriptor48) that is
invariant under rotations to develop an ML model for the DDRF:
the behavior of the atomic DDRFs under rotations is determined
by their analytical form: see Eq. (9). In particular, we show in the
Supplementary Discussion that the coefficients of the atomic
DDRF transform according to

~χ
ðiÞ
nlm1n0 l0m2

¼
X
m;m0

Dl
m1mðR̂ÞDl0�

m2m0 ðR̂ÞχðiÞnlmn0 l0m0 ; (11)

where ~χðiÞ
nlmn0 l0m0 denote the coefficients of the transformed DDRF, R̂

is a rotation and Dl
mm0 ðR̂Þ is a Wigner D-matrix49.

Next, we construct the NDM descriptor, which transforms under
rotations in the same way as the atomic DDRF. The starting point
for such a descriptor is a non-local extension of the smooth
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neighborhood density of atom i of species η employed in the
SOAP descriptor21, defined as

ρηi ðr; r0Þ ¼
X
k2η

X
l2η

e�αðr�rkÞ2e�αðr0�rlÞ2 ; (12)

where k and l run over atoms in the neighborhood of atom i
within a cut-off radius Rcut and α is a hyperparameter that
describes the size of an atom. The NDM is then expanded in a
basis of spherical harmonics and radial basis functions Rn(∣r∣)
according to

ρηi ðr; r0Þ ¼ P
nlm

P
n0 l0m0

ρ
ði;ηÞ
nlmn0 l0m0 Ylmð̂rÞY�

l0m0 ð̂r0ÞRnðjrjÞR�n0 ðjr0jÞ; (13)

with ρ
ði;ηÞ
nlmn0 l0m0 being expansion coefficients. The above equation

shows that the NDM transforms in the same way as the atomic
DDRF: see Supplementary information for additional details.
Therefore, we use the expansion coefficients as a descriptor for
learning the DDRF.
We note that the NDM can be written as the product of two

neighborhood densities ρηi ðrÞ ¼
P

k2η expf�αðr� rkÞ2g accord-
ing to

ρηi ðr; r0Þ ¼ ρηi ðrÞρηi ðr0Þ: (14)

Similar to the NDM, ρηi ðrÞ can be expanded in a basis of spherical
harmonics and radial basis functions Rn(∣r∣) with coefficients ρði;ηÞnlm .
It follows that

ρ
ði;ηÞ
nlmn0 l0m0 ¼ ρ

ði;ηÞ
nlm ρ

ði;ηÞ
n0 l0m0 ; (15)

which demonstrates that the coefficients of the neighborhood
density contain the same information as the coefficients of the
neighborhood density matrix. Indeed, we have found in our
calculations that both types of coefficients perform equally when
used as descriptors to predict the atomic DDRFs. We further note
that the coefficients of the 3-body version of the SOAP descriptor
dðηÞnn0 l can be obtained from the NDM using

dðηÞnn0 l ¼
X
l0mm0

ffiffiffiffiffiffiffiffiffiffiffiffi
8π2

2l þ 1

r
ρ
ði;ηÞ
nlm ρ

ði;ηÞ
n0 l0m0δll0δmm0 ; (16)

in the case where there is no coupling between different atomic
species η.

Machine learning
We apply our ML approach for predicting DDRFs to hydrogenated
silicon clusters and then use the DDRFs to calculate GW
quasiparticle energies for these systems. We refer to this
technique as the ML–GW approach. The atomic positions of the
clusters were constructed as described in the methods section
and then relaxed using DFT.
To establish the accuracy of this approach, we first investigate the

error in the GW quasiparticle energies resulting from the expansion
of the DDRF in terms of the intermediate local basis fϕa

αa
ðrÞg: see Eq.

(7). Figure 1 compares the HOMO–LUMO gaps obtained frommean-
field DFT–PBE calculations, a standard plane-wave G0W0 calculation
using a generalized plasmon-pole approximation (GPP)7,45 and a
G0W0 calculation using the 2C-DDRF, where the DDRF is expanded
in terms of a modified version of the admm-2 basis set50: see
“Methods” section. The DFT–PBE results show that the
HOMO–LUMO gap decreases with increasing cluster size from
Eg ≈ 4.8 eV for the smallest cluster containing 10 Si atoms to
Eg ≈ 3 eV for the biggest cluster with almost 60 Si atoms. This
decrease is a consequence of quantum confinement effects, which
are less pronounced for bigger clusters. The plane-wave GWHOMO-
LUMO gaps show a similar trend as a function of cluster size, but the
gaps are larger than the DFT–PBE gaps by several electron volts.
Interestingly, the GW corrections are larger for smaller clusters than
for larger clusters. As a consequence, the reduction in the GW

HOMO–LUMO gaps as a function of cluster size is larger compared
to the DFT–PBE result: in particular, the gap is as large as 8.6 eV for
the smallest clusters and shrinks to 5.5 eV for the largest clusters
corresponding to a decrease of 3.1 eV (compared to a decrease of
1.8 eV in the DFT–PBE HOMO–LUMO gap energies). Similar results
were obtained by Chelikowsky et al.51, who also carried out GW
calculations on hydrogenated Si clusters. In particular, they found
that the HOMO–LUMO gap shrinks from ~9 eV for a 10 Si atom
cluster to ~6.5 eV for a 47 Si atom cluster. The GW results obtained
with the 2C-DDRF are qualitatively similar to the plane-wave GW
results. However, the HOMO–LUMO gaps that are obtained with this
approach are consistently ~0.3–0.4 eV smaller than the plane-wave
results. This is a consequence of the incompleteness of the local
basis set. Interestingly, the calculated HOMO–LUMO gaps exhibit
step-like features at clusters with 16, 24, and 46 silicon atoms.
Inspection of the atomic structure of these clusters reveals that they
exhibit one ormore SiH3 units on their surface, see Fig. 2, suggesting
an interesting interplay between the chemical bonding and the
HOMO–LUMO gaps in these systems.
Next, we determine the 1C-DDRF. For the basis set, we use solid

harmonic Gaussians with optimized decay coefficients: see the
“Methods” section. Figure 3a compares the HOMO–LUMO gaps
from G0W0 calculations with the 1C-DDRF to those obtained with
the 2C-DDRF and also to plane-wave G0W0 results. For small
clusters, the HOMO–LUMO gaps obtained with the 1C-DDRF are
smaller than those obtained with the 2C-DDRF, while the opposite
behavior is observed for larger clusters. The largest difference
between the two methods is obtained for clusters containing ~40
Si atoms. The root-mean-square error (RMSE) of the 1C-basis results
relative to the 2C-basis results is 0.22 eV, and the RMSE relative to
the plane-wave results is 0.45 eV for all clusters. Figure 3b shows
the HOMO and LUMO quasiparticle energies. It can be seen that
better agreement with the plane-wave result is obtained for the
LUMO than for the HOMO.
Figure 4a shows the quasiparticle energy corrections of the ten

lowest conduction orbitals and the ten highest valence orbitals
from plane-wave G0W0 and G0W0 with the 1C-DDRF. The
corrections obtained with the 1C-DDRF follow a similar trend as
those obtained from the plane-wave calculation. For the
unoccupied states, the quantitative agreement is better than for
the occupied states, but the 1C-DDRF results for the unoccupied
states are scattered over a larger energy range than the plane-
wave results. To analyze the errors that arise from the use of the
1C-DDRF in more detail, Fig. 4b shows a two-dimensional
histogram of the difference in QP corrections between plane-

Fig. 1 HOMO–LUMO gaps of silicon clusters. HOMO–LUMO gaps of
hydrogenated silicon clusters from DFT–PBE Kohn–Sham eigenva-
lues, plane-wave G0W0 and G0W0 calculations using the 2C-DDRF.
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wave G0W0 and G0W0 with the 1C-DDRF. For the occupied states,
the differences are mostly smaller than 0.4 eV, while they are
somewhat smaller for the unoccupied states. The RMSE over all
energy levels is 0.32 eV.
Now that we have established the accuracy of the method used

to generate the training set, we use a dense NN in conjunction
with the NDM descriptor to generate the coefficients of the 1C-
DDRF according to

χ
ðiÞ
nlmn0 l0m0 ¼ f ρ

ði;SiÞ
nlm ; ρ

ði;HÞ
nlm

� �
; (17)

where f is the NN function. The hydrogen and silicon environment
descriptors are concatenated into a single vector before being fed
into the NN. A separate network is trained for Si and H
contributions to the DDRF. The exact architecture of the network
as well as the practical computation of the atomic decomposition
and the descriptors, are described in the “Methods” section. To
generate the training data for the NN, we start from the set of
relaxed hydrogenated Si clusters that were studied above. From
each relaxed cluster, we generate six configurations by randomly
displacing the atoms with the magnitude of the displacements
being drawn from a uniform distribution with a maximum of 0.1Å.
For these clusters, we then calculate the 1C-DDRF.
Once the NN is trained on the 1C-DDRFs of the randomly

displaced clusters, we use it to calculate the 1C-DDRFs of the
relaxed clusters and then determine quasiparticle energies via the

ML–GW approach. Figure 5 compares the HOMO–LUMO gaps
from ML–GW and GW with explicitly calculated 1C-DDRFs. Except
for the smallest cluster, the ML–GW method accurately reproduces
the HOMO-LUMO gaps of the explicit GW calculations. The worse
performance for the smallest cluster is a consequence of the
training set, which contains a large number of bigger clusters
containing atomic environments that differ from those found in
the smallest clusters. The overall RMSE of the ML–GW method
relative to the explicit GW with the 1C-basis is only 0.15 eV but
reduces to 0.06 eV when the smallest cluster is excluded.
Figure 6 shows the difference in QP corrections between

ML–GW and GW with the 1C-DDRF for the 10 highest valence
states and 10 lowest conduction states, with the energies of the
smallest cluster excluded. ML–GW produces QP shifts for both
valence and conduction states within 0.1 eV from the explicit G0W0

with the 1C-DDRF. The majority of valence states exhibit a positive
error, while for conduction states, the error is largely negative.
Figure 7 compares the ML–G0W0 QP corrections to plane-wave

G0W0 results, again with the energies of the smallest cluster
excluded. As expected, the differences are very similar to those
between plane-wave G0W0 and the explicit G0W0 with the 1C-
basis. In particular, the RMSE is 0.34 eV for all clusters and reduces

Fig. 2 Atomic structure of silicon clusters. Clusters with a 15 Si
atoms and b 16 Si atoms. Notice the presence of two SiH3 units on
the surface of the cluster in (a). Hydrogen atoms are white; silicon
atoms are brown.

Fig. 3 HOMO–LUMO gaps, HOMO and LUMO energies of silicon
clusters. a HOMO–LUMO gaps of hydrogenated silicon clusters from
plane-wave G0W0 and G0W0 calculations using the 2C-DDRF and
G0W0 calculations using the 1C-DDRF. b HOMO and LUMO energies
of hydrogenated Si clusters.
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to 0.30 eV when the smallest cluster is excluded. This result
demonstrates that the key obstacle to improving the ML–GW
approach is the development of a better basis set.
Finally, we test the ability of the ML–GW approach to predict

the quasiparticle energies of clusters that are larger than those
included in the training data. For this, we only include clusters
with up to Nmax Si atoms in the training set, with Nmax being 60,
50, and 40. Again, the training set only includes clusters with
randomly displaced atoms, and the test set consists of relaxed
clusters. The predicted ML–GW for the whole set of relaxed
clusters is shown in Fig. 8. From this graph, it is clear that the
accuracy of the prediction for the largest clusters deteriorates as
Nmax is reduced: while for Nmax= 60, the gaps and QP corrections
for clusters with more than 60 Si atoms are still highly accurate,
larger differences are observed for Nmax= 50. For Nmax= 40, errors
as large as 1 eV are obtained for the gaps of clusters with around
50 Si atoms. Figure 8f shows that the large error in the gaps is a
consequence of having a negative error in the QP shifts for
occupied states and a positive error in the shift for unoccupied
states. In other words: instead of a cancellation, we get an
accumulation of errors when computing HOMO–LUMO gaps.

DISCUSSION
We have developed an ML approach to predict the interacting
DDRF of materials. To achieve this, we introduce a decomposition
of the DDRF into atomic contributions, which form the output of a
NN. We also introduce the NDM descriptor, which is a general-
ization of the widely used SOAP descriptor21: instead of
symmetrizing the descriptor using a Haar integral over a
symmetry group52, we construct the tensor product of the
expansion coefficients of the neighborhood density, which
transforms under rotation in the same way as the atomic
contributions to the DDRF. Thus, while not fully covariant, our
approach is able to distinguish between different orientations of a
chemical environment, which is a key requirement for predicting
functions such as the DDRF.
The ML technique for DDRFs is then combined with the GW

approach. The resulting method is called the ML–GW approach. We
apply this method to hydrogenated silicon clusters. The ML–GW
approach reproduces HOMO–LUMO gaps and quasiparticle

Fig. 4 QP corrections obtained from plane-wave GW and 1C-GW.
a Quasiparticle corrections from plane-wave G0W0 and G0W0 with
the 1C-DDRF for the 10 highest valence orbitals and the 10 lowest
conduction orbitals of hydrogenated silicon clusters. b Histogram of
difference in quasiparticle corrections from plane-wave G0W0 and
G0W0 calculations with the 1C-DDRF for the 10 highest valence
orbitals and the 10 lowest conduction orbitals of hydrogenated
silicon clusters. The mean-field energies are referenced to the
middle of the mean-field HOMO–LUMO gap.

Fig. 5 1C and ML–GW HOMO–LUMO gaps. HOMO–LUMO gaps of
hydrogenated silicon clusters obtained from G0W0 calculations using
the 1C-DDRF and ML–G0W0.

Fig. 6 ML–GW QP correction error compared to 1C-GW. Histogram
of difference in quasiparticle corrections from G0W0 using the 1C-
DDRF and ML–G0W0 for the 10 highest valence orbitals and the 10
lowest conduction orbitals of hydrogenated silicon clusters. The
mean-field energies are referenced to the middle of the mean-field
HOMO–LUMO gap. The energies of the smallest cluster were
excluded.
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energies of GW calculations using the explicitly calculated 1C-DDRF,
i.e., the DDRF in a pair basis where the basis functions of each pair
are centered on the same atom, with an accuracy of about 0.1 eV.
The accuracy of the results deteriorates when it is applied to clusters
that are larger than those included in the training set.
However, the error of ML–GW is significantly larger when

compared to standard plane-wave GW results: HOMO–LUMO gaps
are reproduced to within 0.5 eV, but the error reduces to 0.4 eV
when the smallest cluster is excluded from the test set. These
errors are comparable to those obtained by Rohlfing in his GW
calculations for silane using a model dielectric function9.
These findings demonstrate that the main challenge to

improving the ML–GW method is the construction of better local
basis sets for the DDRF. The basis used for the 2C-DDRF can be
improved straightforwardly by using larger basis sets, such as aug-
admm-2, admm-3, or aug-admm-350. However, it is more difficult
to increase the basis used for the 1C-DDRF as this leads to linear
dependencies, which deteriorate the predictive accuracy of the NN.
This was also observed by Grisafi et al.28 when predicting the
expansion coefficients of the electronic density using the
symmetry-adapted SOAP kernel25. In the future, we plan to
explore the use of orthogonal radial basis sets, such as Laguerre
polynomials, instead of solid harmonic Gaussians.
We expect that the ML–GW method can be applied to calculate

quasiparticle energies in systems that have so far been out of
reach for standard implementations. Examples include disordered
materials, liquids, interfaces, or nanoparticles. It could also be
combined with on-the-fly ML methods53 to perform GW calcula-
tions on molecular-dynamics snapshots to determine finite-
temperature quasiparticle energies.

METHODS
Data generation
The atomic structures of the hydrogenated silicon clusters were
obtained in the same way as described by Zauchner et al.54:
starting from the Si123H100 cluster of the silicon Quantum Dot data
set55, we remove the silicon atom furthest from the center of the
cluster, terminate the dangling bonds with hydrogen atoms and
relax the resulting structure using DFT. The process is repeated

until only 10 silicon atoms remain. From this set of silicon clusters,
only clusters with fewer than 60 silicon atoms were used in the
training set for DDRF prediction. From each cluster with fewer
than 60 silicon atoms, we created six additional clusters in which
random displacements were added to the atomic positions. The
magnitudes of the displacements were drawn from a uniform
distribution with a width of 0.1Å. Finally, calculations were also
carried out for clusters with between 60 and 70 silicon atoms.
These clusters are not part of the training set but are used to test
the extrapolation capacity of the ML approach. Note that all
calculations were carried out for clusters in a vacuum, i.e., we did
not consider the effect of a substrate or a solid matrix.

DFT and GW calculations
The DDRF and QP corrections were calculated using the
BerkeleyGW software package7,56. This code uses a plane-wave
basis to represent the DDRF which makes it possible to
systematically converge results by increasing the plane-wave
cutoff. In contrast, it is often more difficult to achieve
convergence when GW implementations based on local
orbitals are used. Mean-field DFT calculations were performed
using the Quantum Espresso code57,58. Norm-conserving
pseudopotentials from the Quantum Espresso Pseudopotential
Library were used. The parameters of the DFT calculations were
the same as those used by Zauchner et al.54: a plane-wave cut-
off of 65 Ry and a supercell with sufficient vacuum to avoid
interactions between periodic images. For the calculation of
the DDRF, a total of 1000 Kohn–Sham states were used in the
summation. Also, a plane-wave cut-off of 6 Ry and a truncated
Coulomb interaction was used. The QP corrections were
calculated using the GPP7, an explicit sum over 1000
Kohn–Sham states, and also a static remainder correction59.
To calculate the HOMO and LUMO energies, the vacuum level
was determined by averaging the electrostatic potential over
the faces of the supercell.

Projection onto the intermediate basis
We first use BerkeleyGW to calculate the inverse dielectric matrix
ϵ�1
GG0 in a plane-wave basis56. From this, we determine the
interacting DDRF via

χGG0 ¼ ðϵ�1
GG0 � δGG0 Þ=vG (18)

with vG being the Fourier transform of the truncated Coulomb
interaction.
Next, the DDRF in real space is obtained as

χðr; r0Þ ¼ 1
V

X
G;G0

eiG�rχGG0e�iG0 �r 0; (19)

where V is the volume of the supercell.
Starting from a set of real atom-centered basis functions ϕi

αi
ðrÞ,

where αi labels the basis function on atom i, we construct an
orthogonal basis set ~ϕ

i
αi
ðrÞ

~ϕ
i
αi
ðrÞ ¼

X
k

X
αk

Aαiαkik ϕk
αk
ðrÞ; (20)

where Aαiαk
ik is the matrix of eigenvectors of the overlap matrix. The

coefficients of the DDRF, when expanded on the orthogonalized
basis, are

~χ ijαiαj ¼ 1
V

P
G;G0

χG;G0

´
R1
�1 ~ϕ

i
αi
ðrÞeiG�rdr R1

�1 e�iG0 �r0~ϕ
j
αj
ðr0Þdr0;

(21)

where, due to the localized nature of the basis functions, we
extended the integral from an integral over the supercell to an
integral over all space. These integrals are proportional to the
Fourier transforms of the basis functions (or their complex

Fig. 7 QP correction error of ML–GW compared to plane-wave
GW. Histogram of difference in quasiparticle corrections from plane-
wave G0W0 and ML–G0W0 DDRF for the 10 highest valence orbitals
and the 10 lowest conduction orbitals of hydrogenated silicon
clusters. The mean-field energies are referenced to the middle of the
mean-field HOMO–LUMO gap. The energies of the smallest cluster
were excluded.
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conjugates). We note that it is possible to skip this step if a GW
implementation based on local orbitals is used16.
We then transform back to the non-orthogonal localized basis

set using Eq. (20) to find

χðr; r0Þ ¼ P
αiαj

P
ij
~χ ijαiαj

~ϕ
i
αi
ðrÞ~ϕj

αj
ðr0Þ

¼ P
αkαl

P
kl

P
αiαj

P
ij
Aαiαk
ik Aαiαk

jl ~χ ijαiαjϕ
k
αk
ðrÞϕl

αl
ðr0Þ

¼ P
αkαl

P
kl
χklαkαlϕ

k
αk
ðrÞϕl

αl
ðr0Þ;

(22)

where we defined

χklαkαl ¼
X
αiαj

X
ij

~χ ijαiαj A
αiαk
ik Aαiαk

jl : (23)

The basis functions we employed are the real solid harmonic
Gaussians as defined in LibInt60

ϕlmðr; θ;ϕÞ ¼ NlðβÞrle�βr2Rlmðθ;ϕÞ; (24)

where β is a decay parameter, Nl(β) is a normalization factor, and
Rlm are the real spherical harmonics given by61

Rlmðθ;ϕÞ

¼
iffiffi
2

p Yl�jmjðθ;ϕÞ � ð�1ÞmYljmjðθ;ϕÞ
� �

ifm< 0

Ylmðθ;ϕÞ ifm ¼ 0
1ffiffi
2

p Yl�jmjðθ;ϕÞ þ ð�1ÞmYljmjðθ;ϕÞ
� �

ifm> 0;

8>><
>>:

(25)

where Ylm(θ, ϕ) are the complex spherical harmonics with the
Condon–Shortley phase convention. Kuang and Lin showed that
the Fourier transform of the complex solid harmonic Gaussians is
again a solid harmonic Gaussian62

1
ð2πÞ3=2

R
dre�iG�rNlðβÞrle�βr2Ylmð̂rÞ

¼ ð�iÞl ~NlðβÞGle�G2=ð4βÞYlmðĜÞ;
(26)

with ~NlðβÞ ¼ NlðβÞ=ð2βÞ3=2. The Fourier transform of the real
solid harmonic Gaussians can then be easily computed using
Eq. (25).

Fig. 8 Performance of ML–GW when extrapolating to larger clusters. HOMO-LUMO gaps (left panels - a, c, e) and errors in quasiparticle
shifts (right panels - b, d, f) from explicit G0W0 calculations with the 1C-DDRF and from ML–G0W0 trained on clusters containing up to
Nmax= 60 Si atoms (upper panels - a, b), Nmax= 50 Si atoms (middle panels - c, d) and Nmax= 40 Si atoms (lower panels - e, f). The red vertical
line indicates Nmax. The panels on the right-hand side (b, d, f) only contain results for clusters with more Si atoms than Nmax. The mean-field
energies are referenced to the middle of the mean-field HOMO–LUMO gap.
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The basis set used in this work is a modified version of the
admm-2 basis set50 (see Supplementary Methods for details), in
which the s-orbitals were removed and contracted Gaussians were
uncontracted into individual basis functions. Removing the
s-orbitals ensures that

R
drχðr; r0Þ ¼ 0 since only the Fourier

transform of s-orbitals has a G= 0 contribution.

Projection onto the atomic basis
The fully atom-centered basis set also consists of solid harmonic
Gaussians. The basis set was constructed following the same
procedure as in the DScribe library63, where individual basis
functions are given by

ψnlmðr; θ;ϕÞ ¼ NlðβnlÞrle�βnl r
2
Rlmðθ;ϕÞ; (27)

where the basis set is truncated at a maximum angular
momentum lmax and a maximum principal quantum number
nmax. For silicon atoms we use lmax= nmax= 4. For hydrogen
atoms we use lmax= nmax= 3.
The exponents βnl are constructed such that the corresponding

basis functions decay to zero at a cutoff radius Rn, i.e., βnl ¼
� lnð T

Rln
Þ=R2n with T= 10−3 Ål being a threshold parameter. The

cutoff radius Rn= Ri+ (Ro− Ri)/n lies between an inner radius Ri
and an outer radius Ro. For hydrogen atoms, we used Ri= 0.1 Å
and Ro= 3.0 Å and for silicon atoms, we used Ri= 1.0Å and
Ro= 8.0Å. Additionally, for silicon atoms, we also included the
basis functions of the modified admm-2 basis. Both Ri and Ro were
optimized to minimize linear dependencies in the basis set, as
such dependencies significantly deteriorate the accuracy of the
NN predictions. A similar observation was made by Grisafi et al.28

when learning electron densities, although a different approach
was taken to remedy this issue in their work.
In order to compute the coefficients of the atomic contributions

to the DDRF in the fully atom-centered basis, the same procedure as
in the intermediate basis was used: the basis was first orthogona-
lized by computing the eigenvectors of the overlap matrix. Then the
atomic DDRFs in the intermediate basis were projected onto the
orthogonalized fully-atom centered basis with overlaps between
the different basis functions being computed using LibInt60. Then
the atomic DDRFs were transformed back to the non-orthogonal
basis producing the desired coefficients χðiÞ

nlmn0 l0m0 .

Descriptors
The basis set for neighborhood densities was generated using the
same procedure as for the fully atom-centered basis for the DDRF.
However, s-orbitals were not removed and the basis functions of
the admm-2 basis set were not included. We used Ri= 1.0Å for
both hydrogen and silicon atoms Ro= 4.0Å for hydrogen atoms
and Ro= 9.0Å for silicon atoms. The exponents of the Gaussians
in Eq. (12) were set such that the standard deviation of the
Gaussians is 0.5Å. LibInt60 was again used to compute the
required integrals for the projection.

Neural network
A dense NN with four hidden layers with 2000, 1500, 1000, and
2000 nodes, respectively, was constructed for both silicon and
hydrogen atoms. Each layer uses a Leaky–ReLu activation function
with a leak parameter of 0.1. The output layer was further
symmetrized by adding its transpose. The loss used was the mean-
squared error between the predicted and true expansion
coefficients χ

ðiÞ
nlmn0 l0m0 . The NN was trained on the perturbed

clusters for 20,000 epochs. We found that adding dropout to
the layers does not significantly improve the quasiparticle
energies resulting from the predictions, which is likely due to
the similarity between the atomic environments in the training
and test set.

DATA AVAILABILITY
The input files for Quantum Espresso and BerkeleyGW, the computed quasiparticle
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