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Abstract

Markov Chain Monte Carlo (MCMC) techniques are used ubiquitously for simulation-
based inference. This thesis provides novel contributions to MCMC methods and their
application to graph sampling and epidemic modeling. The first topic considered is that of
sampling graphs conditional on a set of prescribed statistics, which is a difficult problem
arising naturally in many fields: sociology (Holland and Leinhardt, 1981), psychology
(Connor and Simberloff, 1979), categorical data analysis (Agresti, 1992) and finance
(Squartini et al., 2018, Gandy and Veraart, 2019) being examples. Bespoke MCMC
samplers are proposed for this setting. The second major topic addressed is that of
modeling the dynamics of infectious diseases, where MCMC is leveraged as the general
inference engine.

The first part of this thesis addresses important problems such as the uniform sampling
of graphs with given degree sequences, and weighted graphs with given strength sequences.
These distributions are frequently used for exact tests on social networks and two-way
contingency tables. Another application is quantifying the statistical significance of
patterns observed in real networks. This is crucial for understanding whether such
patterns indicate the presence of interesting network phenomena, or whether they simply
result from less interesting processes, such as nodal-heterogeneity. The MCMC samplers
developed in the course of this research are complex, and there is great scope for
conceptual, analytic, and implementation errors. This motivates a chapter that develops
novel tests for detecting errors in MCMC implementations. The tests introduced are
unique in being exact, which allows us to keep the false rejection probability arbitrarily
low.

Rather than develop bespoke samplers, as in the first part of the thesis, the second
part leverages a standard MCMC framework Stan (Stan Development Team, 2018) as the
workhorse for fitting state-of-the-art epidemic models. We present a general framework
for semi-mechanistic Bayesian modeling of infectious diseases using renewal processes.
The term semi-mechanistic relates to statistical estimation within some constrained
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mechanism. This research was motivated by the ongoing SARS-COV-2 pandemic, and
variants of the model have been used in specific analyses of Covid-19. We present
epidemia, an R package allowing researchers to leverage the epidemic models. A key
goal of this work is to demonstrate that MCMC, and in particular, Stan’s No-U-Turn
(Hoffman and Gelman, 2014) sampler, can be routinely employed to fit a large-class of
epidemic models. A second goal is to make the models accessible to the general research
community, through epidemia.
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1
Introduction

1.1 Preamble

This thesis employs Markov Chain Monte Carlo (MCMC) to tackle problems appearing
in both graph sampling and epidemic modeling. Our primary objective is to extend the
class of models to which MCMC can be leveraged as an effective inference engine. The
graph sampling problems addressed are known to be challenging. Our contribution is to
develop bespoke algorithms which can be used for efficient inference in this setting. In
the context of epidemic modeling, we do not develop new MCMC methods, rather, the
goal is to show that a broad class of state-of-the-art epidemic models can be fit routinely
with MCMC. We introduce a framework for Bayesian, regression-oriented models for
infectious disease dynamics, and an R-package allowing routine specification and fitting
of these models.

A secondary objective of our work is to test, statistically, if an MCMC implementation
has a given invariant distribution. This task is motivated by the MCMC algorithms
developed in Part I, which rely on involved derivations and numerical implementations.
We believe that such tests should be a routine part of research that uses MCMC - and
hope that our methods contribute towards this. Chapter 4 addresses this topic.

The structure of the thesis is as follows. Part I develops MCMC algorithms for
sampling graphs conditional on a model’s sufficient statistics. This general problem
appears in a number of distinct fields. Section 1.1.1 motivates the task and highlights
several applications of the samplers that will be presented in Chapters 2 and 3. As
mentioned, Chapter 4 addresses the challenge of testing whether a given MCMC sampler
indeed has a desired invariant distribution. This research was motivated by our experience
developing the graphs sampling algorithms, and also the observation that much current
statistical research leverages samplers that have been either poorly or informally tested.

Part II moves away from the development of new MCMC samplers, and towards
building a general modeling framework that leverages MCMC, and in particular Stan’s
(Stan Development Team, 2018) implementation of the No-U-Turn sampler (Hoffman
and Gelman, 2014), as the underlying inference engine. More concretely, this part of
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the thesis presents a general framework for Bayesian, regression-oriented modeling of
infectious diseases using renewal processes. During the early stages of the SARS-CoV-2
pandemic, there was a critical need for high quality statistical models that were capable
of inferring transmission rates, the effects of mitigation efforts, and of forecasting. Part II
presents the modeling framework designed to address these challenges and culminates in
an R-package that allows quick and ŕexible implementation of these models. We motivate
this line of research in Section 1.1.2.

1.1.1 Part I: MCMC for Conditional Graph Sampling

Sampling graphs conditional on a set of prescribed statistics is a difficult problem arising
in many fields, including sociology (Holland and Leinhardt, 1981), psychology (Connor
and Simberloff, 1979), categorical data analysis (Agresti, 1992) and finance (Squartini
et al., 2018, Gandy and Veraart, 2019). The first part of this thesis is dedicated to
constructing new MCMC samplers for this setting. The samplers are designed to tackle
the unique challenges posed by such problems, and are broadly applicable to the fields
listed above.

Consider the example of testing the goodness-of-fit of statistical network models.
Holland and Leinhardt (1981) introduced a class of log-linear models, known as p1-models,
for modeling social networks. These attempt to explain differing nodal sociability and
popularity, and also the phenomenon of reciprocity in networks, which has been observed
repeatedly in the context of social networks. Letting x denote the adjacency matrix of a
directed graph, the likelihood has an exponential family form

logP (x;α, β, ρ) ∝
∑

i

αixi· +
∑

j

βjx·j + ρ
∑

i<j

xijxji, (1.1)

where αk and βk determine the sociability and popularity of the kth node respectively,
while the parameter ρ measures the intensity of link reciprocation. We can test the
goodness-of-fit of the submodel with no tendency for link reciprocation through testing
the hypothesis that ρ = 0. The uniformly most powerful unbiased (UMPU) test for
this considers the conditional distribution of T (x) :=

∑

i<j xijxji given the sufficient
statistics, which are the node degrees xk· and x·k.

Sampling from this distribution entails simulating adjacency matrices uniformly from
the set of all such matrices with the same row and column marginals as observed in the
data. These samples can then be used to perform a Monte Carlo test. More generally, ρ
and T (x) could be replaced by another parameter δ and sufficient statistic Z(x), and
one could test whether Z(x) is observed more frequently than expected under the null
model which conditions on the node degrees. This is a common approach for detecting
network motifs (Milo et al., 2002).

Similar problems involving sampling of matrices with prescribed row and column
marginals show up in categorical data analysis, where the technique is used to test for
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independence between categorical random variables (Diaconis and Sturmfels, 1998). This
sampling problem is difficult, and MCMC methods are generally not scalable to sparse
tables, and often require tools from algebraic statistics to ensure irreducibility of the
samplers. There is a need for faster mixing and more ŕexible methods to tackle this
problem, and Chapter 2 takes a step in this direction.

The goodness-of-fit problem described above can be extended to weighted graphs. A
natural extension of (1.1) to weighted and directed graphs includes both degrees and
strengths

logP (x; θ) ∝
∑

i

αiai· +
∑

i

βja·j +
∑

i

ϕixi· +
∑

j

ψjx·j + δT (x),

where x is the graph’s weight matrix, and a := (x0ij) is its adjacency matrix, where the
convention 00 := 0, is used. The parameter vector θ simply collects all parameters on
the right-hand side. This model is employed in Mastrandrea et al. (2014a), where it is
used to reconstruct networks from node-level data. The UMPU test of δ = 0 proceeds
similarly to before, but conditions on both node degrees and strengths. Chapter 3
develops approaches for sampling from this conditional distribution, and extends the
work in Chapter 2 to the case of graphs with real-valued edge weights.

Although not pursued in this thesis, the sampler presented in Chapter 3 can also
be used for network tomography (Castro et al., 2004, Tebaldi and West, 1998, Squartini
et al., 2018). In this setting, the network of interest is not fully observed, and instead only
aggregate statistics are available. The task is to reconstruct networks consistent with the
set of observed statistics. In what follows, we discuss the specific case of reconstructing
economic and financial networks.

Economists and policymakers have long been interested in estimating the risk of
contagion in financial networks (see Gai and Kapadia, 2010, Haldane and May, 2011,
Staum et al., 2016, Elliott et al., 2014, Acemoglu et al., 2013, Glasserman and Young,
2016). It is natural to model such networks as a graph, with institutions being nodes,
and edges between nodes representing the type of exposure. These exposures could be
interbank lending, derivative exposures or equity cross-holdings, each of which represents
its own contagion channel. It is well known that the structure of links in these networks
has a large effect on how and if shocks propagate, and ultimately on the level of systemic
risk in the network.

In practice, however, these networks are unobserved, even to central banks. Instead,
only aggregated network data is available. For example, in the interbank setting aggregate
exposures will be available through public balance sheet information while bilateral
exposures between institutions are not observed. This corresponds to only observing
node-level data, rather than the graph edges themselves. The question then arises of how
to reconstruct the missing links. This is known to be a difficult problem, and there is a
need for principled methods to recover such networks from partial information.
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Formally, assume we observe k statistics Ti(G) = ti from the unknown graph G.
Previous approaches to network reconstruction use exponential random graph models

(Park and Newman, 2004, Squartini et al., 2017). These methods assume that G is drawn
from an ensemble Ω according to some unknown law P . This distribution is estimated by
maximizing Shannon entropy whilst satisfying the observed data t1, ..., tk in expectation.
This is a constrained maximization problem of the functional

L(P ) = −E(log(P (G))−
k
∑

i=0

λi(E(Ti(G))− ti), (1.2)

with T0 = 1 and t0 = 1. The solution to (1.2) then has exponential family form

P (G;λ) =
1

Z(λ)
exp

(

−
k
∑

i=1

λiTi(G)

)

. (1.3)

This approach is equivalent to assuming the parametric family (1.3), and estimating
parameters λi using MLE’s λ̂i based on one sample. Networks can then be simulated
from P (·; λ̂). Such approaches fail to condition on the observed data t1, ..., tk. It is
reasonable to expect inference to place zero measure on graphs not satisfying this data.
In addition, most methods assign deterministic weights to edges once the topology has
been constructed. This has obvious and serious consequences for estimating systemic
risk.

The above problem can alternatively be tackled using Bayesian methods. For example,
Gandy and Veraart (2016) propose a block Gibbs sampler for a special case of this problem.
The sampler in Chapter 3 can be seen as a generalization of this Gibbs sampler.

1.1.2 Part II: Semi-Mechanistic Modeling of Infectious Disease Dy-

namics

The emergence of SARS-CoV-2 triggered extensive research into statistical models that
are capable of providing insights on the temporal dynamics of the disease. Examples
include quantifying transmission rates and the effects of control measures, such as
lockdown. Models have also been used extensively to forecast the evolution of key
count time series including latent infections, hospitalizations and deaths (see https:
//covid19forecasthub.org/ and https://covid19forecasthub.eu/). In order to address these
inferential tasks, a number of articles have used a Bayesian approach that explicitly
models disease dynamics; in particular, employing self-exciting processes to propagate
infections over time (Flaxman et al., 2020a, Vollmer et al., 2020, Mellan et al., 2020,
Unwin et al., 2020, NYS Press Office, 2020, Olney et al., 2021, The Scottish Government,
2020, Mishra et al., 2020b). At the time of writing, models of this sort continue to be
popular and used to inform time-critical policy decisions. Part II of this thesis presents a
general version of these models and motivates them through continuous-time counting

https://covid19forecasthub.org/
https://covid19forecasthub.org/
https://covid19forecasthub. eu/
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processes. In particular, we discuss a number of important model extensions. This
discussion paves the way for presenting what is the highlight of Part II: a novel R package
epidemia for specifying and fitting these models.

Models of infectious disease dynamics are commonly classified as either mechanistic
or statistical (Myers et al., 2000). Mechanistic models derive infection dynamics from
theoretical considerations over how diseases spread within and between communities. An
example of this are deterministic compartmental models (DCMs) (Kermack et al., 1927,
Kermack, 1932, 1933), which propose differential equations that govern the change in
infections over time. These equations are motivated by contacts between individuals in
susceptible and infected classes. Purely statistical models, on the other hand, make few
assumptions over the transmission mechanism, and instead infer future dynamics from
the history of the process and related covariates. Examples include Generalized Linear
Models (GLMs), time series approaches including Auto Regressive Integrated Moving
Average (ARIMA) (Box and Jenkins, 1962), and more modern forecasting methods based
on machine learning.

The models in Part II cannot be classified as exclusively mechanistic or statistical.
Instead, they are often termed semi-mechanistic. They are fully Bayesian, i.e. unknown
quantities are assigned priors and inferred through the posterior. They are regression-

oriented and ŕexibly parameterize key unknown epidemiological quantities in terms
of covariates and autocorrelation processes. These three features are the key defining
properties of the class of models studied in Part II. Therefore, we finish this section by
discussing each of them in more depth.

• semi-mechanistic: This term refers to statistical models that explicitly describe
infection dynamics. The models are statistical in the sense that they define a
likelihood function for the observed data. They are mechanistic because self-
exciting processes are used to propagate infections in discrete time. Previous
infections directly precipitate new infections. Moreover, the memory kernel of the
process allows an individual’s infectiousness to depend explicitly on the time since
infection. This approach has been used in multiple previous works (Fraser, 2007,
Cori et al., 2013, Nouvellet et al., 2018, Cauchemez et al., 2008) and has been
shown to correspond to a Susceptible-Exposed-Infected-Recovered (SEIR) model
when a particular form of the generation distribution is used (Champredon et al.,
2018).

• Bayesian: The Bayesian approach has certain advantages in this context. Several
aspects of these models are fundamentally unidentified (Roosa and Chowell, 2019).
For most diseases, infection counts are not fully observable and suffer from under-
reporting (Gibbons et al., 2014). Recorded counts could be explained by a high
infection and low ascertainment regime, or alternatively by low infections and high
ascertainment. If a series of mitigation efforts are applied in sequence to control an
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epidemic, then the effects may be confounded and difficult to disentangle (Bhatt
et al., 2020). Bayesian approaches using MCMC allow full exploration of posterior
correlations between such coupled parameters. Informative, or weakly informative,
priors may be incorporated to regularize, and help to mitigate identifiability
problems, which may otherwise pose difficulties for sampling (Gelman et al., 2008,
2015).

• Regression-oriented : The models use a ŕexible regression-based framework for
parameterizing transmission and ascertainment rates. This allows the models
to be tailored towards the specific inferential task. For example, transmission
rates can be inferred by parameterizing them as a random walk. Alternatively,
including covariates allows estimating the effect of control measures (Cowling
et al., 2020, Flaxman et al., 2020a) or mobility (Badr et al., 2020, Miller et al.,
2020) on transmission rates. Multilevel models (Gelman and Hill, 2006, Hox et al.,
2010, Kreft and de Leeuw, 2011) can be employed to better infer these effects by
leveraging information from multiple regions simultaneously. Ascertainment rates
such as the infection ascertainment rate (IAR) and infection fatality rate (IFR)
are important unknown quantities that link the infection process to observed data.
Most modeling approaches assume either full ascertainment (Cori et al., 2013)
or constant rates (Flaxman et al., 2020a). In practice, however, these rates are
spatio-temporally dependent, and ŕexible parameterization of them allows for more
realistic observational models.

1.2 Chapter Summaries

We outline the structure of the thesis, and the contents of each chapter. Part I consists of
three chapters, the first two of which develop new MCMC samplers for conditional graph
sampling. This challenge was brieŕy motivated in Section 1.1.1. The samplers developed
in these chapters are complex, often requiring detailed mathematical derivations and
proofs to justify their theoretical properties, including for example irreducibility and
ergodicity of the chains. This motivates a general question: how can we empirically test
the validity of a given implementation of a MCMC sampler? Or more generally, the
validity of Monte Carlo methods? These questions are considered in the final chapter of
Part I. We now brieŕy outline the contents of each of these three chapters.

Chapter 2 proposes new and efficient algorithms for two problems: sampling con-
ditional on node degrees in unweighted graphs, and conditional on node strengths in
integer-weighted graphs. The resulting conditional distributions provide the basis for
exact tests on social networks and two-way contingency tables. The algorithms are able
to sample conditional on the presence or absence of an arbitrary set of edges. Existing
samplers based on MCMC or sequential importance sampling are generally not scalable;
their efficiency can degrade in large graphs with complex patterns of known edges. MCMC
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methods usually require explicit computation of a Markov basis to navigate the state
space; this is computationally intensive even for small graphs. The samplers presented in
this chapter do not require a Markov basis, and are efficient both in sparse and dense
settings. The key idea is to carefully select a Markov kernel on the basis of the current
state of the chain. We demonstrate the utility of our methods on a real network and
contingency table.

Chapter 3 extends the work in Chapter 2 to the case where networks have real-valued
edge weights, and may also exhibit sparsity. A method is proposed to sample from the
set of weighted graphs exactly conditional on given node strengths, and approximately
conditional on both degrees and strengths. This conditioning reduces the inŕuence of
nuisance parameters in the resulting distribution. Strengths can be maintained exactly,
and degrees ±1 of their observed values. The ergodicity of the sampler is considered, and
proved for the case of conditioning only on strengths. The chapter applies the algorithm
to evaluate the statistical significance of network patterns such as community structure.
The sampler can also be used for reconstructing financial networks (see Section 1.1.1).

Chapter 4 is the final chapter of the first part of this thesis, and develops approaches
for testing implementations of MCMC methods as well as of general Monte Carlo methods.
Based on statistical hypothesis tests, these approaches can be used in a unit testing
framework to, for example, check if individual steps in a Gibbs sampler or a reversible
jump MCMC have the desired invariant distribution. Two exact tests for assessing
whether a given Markov chain has a specified invariant distribution are discussed. These
and other tests of Monte Carlo methods can be embedded into a sequential method
that allows low expected effort if the simulation shows the desired behavior and high
power if it does not. Moreover, the false rejection probability can be kept arbitrarily
low. For general Monte Carlo methods, this allows testing, for example, if a sampler has
a specified distribution or if a sampler produces samples with the desired mean. The
methods have been implemented in the R-package mcunit.

Part II of this thesis tackles the second topic described in the preamble, which is the
statistical modeling of infectious disease dynamics. This consists of two chapters, the
first of which describes a framework for a class of models that have been used extensively
throughout the SARS-CoV-2 pandemic. The second introduces an R-package that allows
users to ŕexibly specify, fit, and analyze these models using MCMC. Both chapters are
described in more detail below.

Chapter 5 introduces the mathematical framework behind the epidemic models, and
in particular discusses advantages and limitations over competing approaches. The model
discussed grew out of specific analyses conducted during the pandemic, in particular
an analysis concerning the effects of mitigation measures on reducing SARS-CoV-2
transmission in 11 European countries. It parameterizes the time varying reproduction
number Rt through a regression framework in which covariates can be, for example,
governmental interventions or changes in mobility patterns. This allows a joint fit across
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regions and partial pooling to share strength. The framework provides a fully generative
model for latent infections and observations deriving from them, including deaths, cases,
hospitalizations, ICU admissions and seroprevalence surveys.

Chapter 6 introduces epidemia, an R package implementing the modeling framework
of Chapter 5. The implemented models define a likelihood for all observed data while
also explicitly modeling transmission dynamics: an approach often termed as semi-

mechanistic. Infections are propagated over time using renewal equations. This approach
is inspired by self-exciting, continuous-time point processes such as the Hawkes process.
A variety of inferential tasks can be performed using the package. Key epidemiological
quantities, including reproduction numbers and latent infections, may be estimated
within the framework. The models may be used to evaluate the determinants of changes
in transmission rates, including the effects of control measures. Epidemic dynamics may
be simulated either from a fitted model or a łpriorž model; allowing for prior/posterior
predictive checks, experimentation, and forecasting.

The thesis is concluded in Chapter 7, where we in particular discuss possible directions
for future research.
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PART I

The first part of this thesis has two objectives. The first is to develop new
MCMC samplers for particular problems involving conditional graph sampling.
Chapter 2 considers this in the context of unweighted and integer-weighted
graphs, while Chapter 3 extends to the case of graphs with real-valued edge
weights and potential sparsity. Motivated by these two chapters, the final
chapter considers the second objective, which is developing tests for whether
an MCMC implementation has a given invariant distribution.



2
State-Dependent Kernel Selection for Conditional

Sampling of Graphs

2.1 Introduction

Inference on graphs conditional on vertex-level data arises in sociology (Holland and
Leinhardt, 1981), psychology (Rasch, 1960), community ecology (Connor and Simberloff,
1979) and categorical data analysis (Agresti, 1992). Testing in this setting can be based
on asymptotic results. However, these approximations can be poor in sparse graphs. An
alternative approach is to use sampling to approximate the distribution of test statistics.
This leads to two difficult problems: sampling graphs with given degrees and sampling
weighted graphs with given strengths. Researchers often additionally need to condition
on the presence or absence of certain edges in the graphs.

Several existing methods construct Markov chains in this setting. Unfortunately, if
the null distribution conditions on known edges, it is difficult to construct a connected
Markov chain on the relevant state space. Existing methods either specialize to particular
patterns of known edges, or in the general case, use techniques from computational
algebra to compute a Markov basis (Diaconis and Sturmfels, 1998, Aoki and Takemura,
2005, Rapallo, 2006). These methods are computationally intensive and are impractical
for graphs with more than a few vertices.

We propose new MCMC methods that use state-dependent mixing of Markov kernels.
The idea is to intelligently select a ‘good’ kernel for the current state of the chain. This
technique allows us to construct samplers that require little tuning to the problem at
hand, and do not require computation of a Markov basis. The samplers are irreducible in
the face of arbitrary patterns of known edges, and are efficient both in sparse and dense
graphs.

The first focus of this chapter is on sampling unweighted graphs with prescribed vertex
degrees. This problem arises in carrying out exact tests. Consider, for example, social
network analysis. A social network equipped with a dichotomous relation can be expressed
as a digraph. Vertices represent actors, with edges representing the applicability of the
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relation between actors. Frequently, researchers are interested in testing the presence of
reciprocity in the network; defined loosely as a preference for mutual dyads in the digraph.
Holland and Leinhardt (1981) introduce an exponential family model under which the
UMPU test for reciprocity conditions on the observed degree sequences. Conditioning
removes nuisance parameters from the null, and the resulting distribution is then uniform
on the reference set.

The complex interactions that result from conditioning render analytic analysis of
the null distribution difficult or impossible. Efforts have been made to develop recursive
formulas to enumerate all graphs in the reference set (Wasserman and Faust, 1994),
however these are impractical for even moderately sized graphs. If we can sample graphs
uniformly, then we can approximate the null distribution of a test statistic. Thus, the
literature has focused on simulation, whose methods can broadly be divided into two
camps; Markov Chain Monte Carlo (MCMC) (Rao et al., 1996, Roberts, 2000, Milo et al.,
2002, McDonald et al., 2007, Verhelst, 2008) and sequential importance sampling (SIS)
(Snijders, 1991, Zhang and Chen, 2013, Chen et al., 2005, Bayati et al., 2010).

Sampling binary tables with given margins is equivalent to sampling undirected
bipartite graphs with given vertex degrees. This is applied in community ecology to test
for patterns in co-occurrence tables, and in psychometrics to test the Rasch hypothesis
(see Gustafsson, 1980). Thus, there exists a substantial parallel literature along these
lines.

Most MCMC algorithms proposed for sampling graphs are adaptations of methods
proposed for zero-one tables. Typically, they use a combination of ‘switch’ moves
(Ryser, 1963) and additional moves to maintain irreducibility in the face of structural
zeros. Rao et al. (1996) and McDonald et al. (2007) consider ‘compact alternating
hexagon’ and ‘hexad’ updates respectively. Most proposed methods suffer from poor
mixing in unbalanced matrices, rendering them impractical for moderate to large graphs.
Additionally, they are not extensible to arbitrary known edges. SIS methods build
the graph sequentially, at each iteration choosing a candidate edge with probability
proportional to the vertex degrees. Early methods for this application include (Snijders,
1991, Chen et al., 2005). Most of these samplers get stuck, and the probability of restarting
approaches 1 as the degree sequences grow. Bezáková et al. (2012) provide examples
where such algorithms are slow. More recent methods avoid the issue of restarting and
often come with better theoretical guarantees (Bayati et al., 2010, Blitzstein and Diaconis,
2011, Zhang and Chen, 2013). Our approach to this problem is to construct an MCMC
sampler using a symmetric decomposition of Markov kernels; this is a concept defined in
Section 2.2.2.

The second focus of this chapter is on sampling integer-weighted graphs with prescribed
vertex strengths. This can be used to conduct network tomography in the case of
a star network topology. However, the motivating application is approximating the
null distribution for evaluating exact tests on two-way contingency tables. This is a
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classical problem in statistics, which is important because standard asymptotics justifying
approximate tests (notably Pearson’s χ2 test of independence) do not hold for tables
with cells with low expected frequencies (see Agresti, 2013).

In conditional tests of independence, one is interested in sampling tables with given
margins. This corresponds to sampling integer-weighted bipartite graphs conditional on
vertex strengths. Diaconis and Sturmfels (1998) proposed a simple ‘switch’ Markov chain
to sample from such tables. We describe this in more detail in Section 2.2. It suffers slow
mixing in sparse tables.

Diaconis and Sturmfels (1998) also proposed an algebraic algorithm to construct a
connected Markov chain in the context of incomplete tables. Other MCMC methods
proposed to sample incomplete tables also rely on computing a Markov basis (Aoki and
Takemura, 2005, Rapallo, 2006). The computational cost of this is exponential in the size
of the table. Additionally, the computation is example-specific; i.e., a new basis must be
computed for each pattern of structural zeros considered. Chen et al. (2005) introduced
the first SIS method for uniform sampling of contingency tables with given marginals.
Chen (2007) extended this to incomplete tables. Eisinger and Chen (2017) develop a
sampler with improved efficiency, particularly in sparse graphs. We propose an auxiliary
variable MCMC sampler which overcomes many of the aforementioned limitations and
compare the sampler to SIS approaches in Section 2.6.

This chapter begins by setting notation in Section 2.1.1. Section 2.2 introduces
state-dependent kernel selection, and presents practical strategies for ensuring chains
using this technique have the correct invariant distribution. Sections 2.3 and 2.4 propose
samplers in the unweighted and weighted graph settings respectively. We present a
detailed simulation study in Section 2.5, and apply our samplers to real data in Section
2.6. Finally, we conclude in Section 2.7. All proofs can be found in the appendix.

2.1.1 Notation

An undirected graph G := (V,E) is a pair with V being a labelled vertex set and E a
collection of distinct unordered pairs of vertices. If the graph is directed, then E consists
of distinct ordered vertex pairs. An integer-weighted graph is a triple G := (V,E, c).
The function c : V × V → N0 assigns a non-zero weight to each uv ∈ E, and 0 to each
uv /∈ E. If the context requires clarification, we use V (G), E(G) and cG to denote the
objects belonging to G.

The in- and out-degrees of a vertex are the number of edges to and from the vertex
respectively. The in- and out-strengths of a vertex of a weighted graph are the total
weight of edges to and from the vertex respectively. If the graph is undirected, there is
no distinction between in and out, so we simply use the terms degree and strength of a
vertex. Two undirected graphs with the same vertex set have the same degree (strength)
sequence if every vertex has the same degree (strength) in each graph. We use the same
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terminology for directed graphs, where both the in and out values must be equal for
every vertex.

2.2 State-Dependent Kernel Selection

Before discussing state-dependent kernel selection in general terms, we give a concrete
example. Let r := (r1, ..., rI) and c := (c1, ..., cJ ) be non-negative integer vectors, and let
X denote the set of all I ×J non-negative integer matrices such that the row and column
marginals equal r and c respectively. Assume X is non-empty. The task is to construct
a Markov chain ergodic with respect to the uniform distribution on X . Diaconis and
Sturmfels (1998) describe a simple Markov chain for this purpose. Given Xn, pick a pair
of rows and a pair of columns uniformly at random. The chain proceeds by sampling
from the conditional distribution of the delineated subtable given all other entries. An
update takes the form

+∆ −∆
−∆ +∆

for ∆ sampled uniformly from integers which do not induce negative values in the
subtable.

A Markov chain on X is completely characterized by its kernel Q, a regular conditional
distribution, where Q(x,A) := P [Xn+1 ∈ A | Xn = x] for A measurable. In this example
Q can be viewed as randomly selecting from a set of other kernels. Indeed, let Z be the
collection of indices of all 2× 2 sub-arrays of I × J tables. The Gibbs update on each
z ∈ Z defines a kernel Kz on (X ,B), with B being the Borel algebra. A scan order is a
method of choosing a particular kernel from this collection. The aforementioned chain is
an example of random scan, where kernels are chosen irrespective of the current state.
The chain’s kernel is Q :=

∑

zKz/|Z|.
The chain suffers poor mixing in sparse matrices, as ∆ is often degenerate at 0. As we

will see, we can use a state-dependent scan order to improve mixing whilst maintaining
ergodicity.

2.2.1 General Setup

State-dependent kernel selection can be defined in general terms as follows. Let (Z,F) and
(X ,B) be Borel spaces. X is the state space and Z is the index set of K := {Kz : z ∈ Z},
a collection of kernels on (X ,B). We assume throughout that the map (z, x) 7→ Kz(x,B)

is jointly measurable for each B. The kernel selection mechanism is defined via a set
w := {wx : x ∈ X} where each wx is a probability measure on F and the map x 7→ wx(F )

is measurable for each F . A set satisfying these requirements is often referred to as a
probability kernel from (X ,B) to (Z,F). If the current state is x, the chain proceeds to
sample a kernel Kz according to wx, and then samples the next state from Kz(x, ·). The
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kernel of this chain is defined through

Q(x, ·) :=
∫

Kz(x, ·)wx(dz) for all x ∈ X . (2.1)

If (2.1) holds, then we call (K,w) a decomposition of the kernel Q. The decomposition
of a kernel is not necessarily unique. Any kernel Q has an ‘identity’ decomposition, given
by ({K1}, w) with K1 = Q and wx({1}) = 1 for all x ∈ X . In Sections 2.2.2 and 2.2.3
we give techniques for constructing kernels with a desired invariant distribution π using
decompositions. These strategies are then used to develop the samplers in Sections 2.3
and 2.4 respectively.

2.2.2 Using a Symmetric Decomposition

A decomposition (K,w) where each Kz is π-reversible does not imply that Q is π-
reversible. One notable exception to this is when w is the random scan order, where each
wx is the uniform distribution on Z. We now define a class of decompositions, which we
call symmetric decompositions, for which the resulting Q will be π-reversible. Loosely
speaking, it requires that if a state x′ is reachable in one step from a state x via a kernel
Kz then the likelihood that Kz is selected from state x is the same as in state x′.

Definition 2.2.1 (Symmetric Decomposition). A decomposition (K,w) is symmetric if

there exist a σ-finite measure µ and for every x densities fx = dwx/dµ such that for

each z and x, fx(z) = fx′(z) for Kz(x, ·)-almost every x′.

Any state-independent kernel selection is symmetric: for example, random scan and
the ‘identity’ decomposition. As an example of a non-trivial decomposition, consider a
three-state state space, as depicted in Figure 2.1. The left figure defines three kernels on
this space. A naive chain might pick from these uniformly, irrespective of the current
state. However, if the chain is in state i, then Ki cannot change the state. A faster mixing
chain Q randomly selects between the other two kernels so that the state changes. This
(state-dependent) strategy has a symmetric decomposition. Each of the three kernels
shown in Figure 2.1 (a) is reversible with respect to the uniform distribution, and by
Lemma 2.2.2 so is Q.

Lemma 2.2.2. Q is π-reversible if it has a symmetric decomposition (K,w) where every

Kz ∈ K is π-reversible.

The reverse of Lemma 2.2.2 holds trivially through the identity decomposition. This
method is used to support the validity of the sampler developed in Section 2.3.

2.2.3 Kernel Selection as an Auxiliary Variable

Here, we present an alternative way of constructing a π-invariant chain. The technique
described is used in Section 2.4. Suppose we have a set of statistics {Tz : z ∈ Z} on
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Fig. 2.1 Depiction of the kernel decomposition outlined in Section 2.2.2. (a) shows transition
probabilities for K1 (dotted), K2 (solid) and K3 (dashed). (b) shows transitions probabilities for

Q.

X . Defining a selection law w, we can construct a chain whose updates keep part of
the state fixed. At each iteration, this chain proceeds by selecting a feature Tz and
changing the current state using some kernel that is π-invariant and keeps Tz fixed.
If w does not depend on x this can be viewed as a Gibbs sampler with ‘generalized’
conditioning statistics. Intuitively, however, a state-dependent w may lead to better
mixing. Unfortunately, in this case, the chain will not generally be π-invariant.

We can maintain π-invariance by treating kernel selection as an auxiliary variable.
Consider the product space (Z × X ,F ⊗ B). The iterated integrals

π̃(f) :=

∫ ∫

f(z, x)wx(dz)π(dx), (2.2)

for all non-negative measurable f define a distribution on F⊗B. π̃ is the joint distribution
for the coordinates Z(z, x) = z and X(z, x) = x, while w is the conditional distribution
of Z given X and π is the marginal of X.

We now construct a chain on the extended space that is π̃-invariant. This will imply
the marginal chain of interest is π-invariant. From the current state (z, x), the chain
first samples z′ ∼ wx. Then we sample x′ using a kernel Kz′ which keeps both Tz′ and Z
fixed and is π̃-invariant. An obvious choice for each Kz is

Kz(x, ·) := P [X ∈ · | Tz(X) = Tz(x), Z = z], (2.3)

assuming, of course, that we can sample directly from this distribution. Otherwise, if the
density of (2.3) is known up to a normalizing constant, we could use Metropolis-Hastings
with proposals that keep Tz and Z fixed.
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2.3 Sampling Unweighted Graphs

Sampling unweighted graphs conditional on vertex degrees arises in many disciplines. In
exponential random graph models, the degrees are often sufficient statistics for nuisance
parameters in the null distribution (Snijders, 1991). Other applications include analysis of
co-occurrence tables in ecology, and testing the Rasch model in psychometrics (Gustafsson,
1980).

We formalize the sampling problem as follows. Let G0 be a given directed or undirected
graph with a finite vertex set V . Let F be a subset of possible edges of a graph with
vertex set V . Let G be the set of all graphs G with the same vertex set and degree
sequence as G0, and additionally satisfying E(G) ∩ F = E(G0) ∩ F . Our goal is to
sample from the uniform distribution π on G.

Intuitively, F represents edges known by design to be present or absent. Given
vertices u and v, if uv belongs to F then uv is either present in all graphs in G, or in
none. We stress by design because the constraints imposed by the degree sequence and
F may imply that further edges are present or absent in all graphs of G. We call this set
F̃ the set of known edges, and formally define it as

F̃ = {possible edges uv : uv ∈ G0 ⇔ (uv ∈ G for all G ∈ G)}.

We show in Section 2.3.2 a method of computing F̃ .
Algorithm 1 gives one step of the sampler we propose. It needs two ‘neighborhood’

sets associated to each vertex in a graph G. The set NG(u) are the in-neighbors of u,
excluding any vertex v for which the edge vu is known. MG(u) is the set of all vertices v
which are not out-neighbors of u, and for which the absence of uv is not known. These
are defined as

NG(u) := {v ∈ V : vu ∈ E(G), vu /∈ F̃},

MG(u) := {v ∈ V : uv /∈ E(G), uv /∈ F̃}.

Here is a sketch of one run of Algorithm 1. Let n = 0, and sample a0 uniformly from
the set of all vertices v for which NG(v) is non-empty. Sample a1 uniformly from NG(a0),
then sample a2 uniformly from MG(a1). Replace a1a0 in E(G) with a1a2. Letting
n = n+ 2, iterate this procedure, however in each subsequent step an+1 cannot be an−1;
this prevents the sampler adding the edge an+1an+2, and removing it in the next iteration,
and should improve state space exploration. Iterate until an is a0, at which point all
degrees have been maintained. The computational cost of Algorithm 1 is proportional to
the random length of the sampled vertex sequence a. This does not imply that longer
sequences are worse; they tend to reduce the correlation between the current and next
state of the chain. Figure 2.2 shows a simple example step.
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Algorithm 1: One iteration of the unweighted graph sampler (UGS). The astrisk ∗
denotes a dummy node, that is not in the node set V .

1 G, F̃ ;
2 a−1 ← ∗;
3 a0 ∼ U({v ∈ V : NG(v) ̸= ∅});
4 n← 0;
5 repeat

6 an+1 ∼ U(NG(an) \ {an−1});
7 an+2 ∼ U(MG(an+1));
8 E(G)← E(G) \ {an+1an};
9 E(G)← E(G) ∪ {an+1an+2};

10 n← n+ 2;

11 until an = a0;
12 return G

a0
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a1

(a)

a0

a2

a1

a3

(b)

a0

a2

a1

a3

(c)

First Swap Second Swap

Fig. 2.2 One iteration of Algorithm 1 with two iterations in the inner loop. Figures (a) and (b)
give the graph and quantities prior to the first and second edge swaps respectively. Figure (c)

depicts the returned graph. Dashed edges are edges removed through the sampling step.

2.3.1 Properties of Algorithm 1

Let ar denote the reverse of a finite sequence a. Given a graph, let u1v1 ↔ u2v2 denote
the operation of replacing edge u1v1 with edge u2v2. We will refer to this operation as a
swap. We call u1v1 ↔ u2v2 viable if and only if u1v1 is an edge, u2v2 is not an edge and
both u1v1 and u2v2 are not in F̃ .

A single iteration of Algorithm 1 samples a random sequence of vertices a. Proposition
2.3.1 implies that the expected length of this is finite, so that a takes the form a0a1...aka0

for some k odd. Let A be the collection of sequences taking this form.

Proposition 2.3.1. For any input graph G ∈ G and any F , the expected length of the

vertex sequence a formed by Algorithm 1 is finite.

Let two sequences be equivalent if and only if they are either identical or they are
each others’ reverse. We let Z be the quotient set of A by this equivalence relation.

We will associate each class z ∈ Z with a kernel on G. Fix any z and let a be a
representative of z. Consider the following Markov chain on G. From the current state,
attempt to iteratively perform a1a0 ↔ a1a2, a3a2 ↔ a3a4, ... , akak−1 ↔ aka0 to obtain
the next state. We say this move is viable if and only if all the swaps are viable when
applied iteratively. We refer to this sequence of swaps as the swaps corresponding to

a. If the swaps are not viable, attempt the swaps corresponding to ar. If neither swap
sequence is viable, then the next state of the chain is unchanged. We define Kz as the
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Fig. 2.3 Algorithm for computing F̃ , shown for an undirected graph with four vertices. Input
graph G is on the left, where the dashed line represents a prohibited edge (i.e. F = {23}). In
stage (1) BG is constructed. In (2) the components S1 and S2 are computed, and after (3) we

observe F̃ = {23, 14}.

kernel of this chain. Remark 1 implies that Kz is well-defined; specifically, the definition
is independent of the chosen representative of z.

Remark 1. If the sequences a and ar are distinct and the swaps corresponding to a are

viable, then the swaps corresponding to ar are not viable.

Let K be the collection of these kernels. The conditional distribution w on Z is
defined implicitly by the law of a given through Algorithm 1. Formally, the sampler
selects Kz by sampling either a or ar belonging to z. Lemma 2.3.2 implies that Q is
π-reversible on G.

Lemma 2.3.2. (K,w) is a symmetric decomposition of Q, and each Kz ∈ K is π-

reversible.

In practice, we consider a lazy version of the chain, which ensures aperiodicity. Fix
some small α ∈ (0, 1) and define Q̃ := (1 − α)Q + αI where I is the identity kernel.
Proposition 2.3.3 follows by Lemma 2.3.2 and through additionally showing that the
chain is connected.

Proposition 2.3.3. A Markov chain with kernel Q̃ has limiting distribution π.

2.3.2 Identifying all Known Edges/Non-Edges

We show how to determine F̃ from F and the degree sequence using an auxiliary graph.
Given any G ∈ G with n vertices labelled 1, ..., n we construct an auxiliary bipartite
digraph B := (U, V,E). Let U = {ui} and V = {vi} for i = 1, ..., n. We define the
graph’s edge set as

E(B) := {vjui : ij ∈ E(G) \ F} ∪ {uivj : ij /∈ E(G) ∪ F}.

Figure 2.3 shows an example of one such graph.
Let BG denote the collection of all graphs generated this way from the set G. Propo-

sition 2.3.4 shows that we can identify F̃ prior to sampling by identifying all strongly
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connected components of any graph in BG . This can be done using a depth-first search
on BG, followed by another depth-first search on the transposed graph.

Proposition 2.3.4. Fix any graph B ∈ BG. The vertex pair ij belongs to F̃ if and only

if there is no edge incident to both ui and vj, or if ui and vj belong to different strongly

connected components.

The complexity of this preprocessing procedure is Θ(2n+ n2) (Cormen et al., 2009,
chap. 22). It is difficult to formally compare this to the cost of sampling. Empirically,
the average cost of each iteration of Algorithm 1 appears to grow roughly linearly in n,
while the number of iterations needed for sampling grows super-linearly in n. Thus, in
practice, the cost of sampling dominates the edge identification procedure.

2.4 Sampling Weighted Graphs

Sampling weighted graphs with given vertex strengths arises in the analysis of two-way
contingency tables. In this context, sampling is used to approximate the null distribution
of test statistics (see Agresti, 1992). The general problem is stated as follows. Let G0 be
a given integer-weighted, directed or undirected graph with a finite vertex set V . Let
F be a subset of possible edges of a graph with vertex set V . Let G be the set of all
weighted graphs with the same vertex set and strength sequence as G0, and additionally
assigning weight cG0(uv) to each uv ∈ F . Our goal is to sample from π, the uniform
distribution on G. We use the auxiliary variable method proposed in Section 2.2.3. The
method first requires defining a set of conditioning statistics {Tz : z ∈ Z} and a selection
law w over them. This is the focus of Sections 2.4.1 and 2.4.2. We derive the kernel set
K in Section 2.4.3.

2.4.1 Conditioning Statistics

We start by specifying the conditioning statistics Tz for a given z ∈ Z. Define A and Z
as in Section 2.3.1, and associate each a = a0a1...aka0 ∈ z with a vector of vertex pairs

e(a) := (a1a0, a1a2, a3a2, a3a4, ..., akak−1, aka0),

of length k + 1. We refer to z as valid if it satisfies two conditions. Firstly vertex pairs
in e(a) must be distinct and secondly they must not be in F . If these properties hold
for e(a) then they hold for e(ar), and so it suffices that they hold for any a ∈ z. If z is
invalid we condition on the whole graph so that no update can occur (i.e. Tz(G) := G).
Otherwise fix any a ∈ z and define Tz(G) := (cG(uv) : uv /∈ e(a)). This quantity does not
depend on which a is chosen because uv ∈ e(a) if and only if uv ∈ e(ar). This statistic
conditions on the weight of all edges outside e(a), so that we only update along e(a).
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2.4.2 Selection Law

Before defining the selection law w, we provide intuition as to which z we wish to sample.
From the current state G we intuitively wish to select z that allow us to change the
state space. This translates to avoiding z for which the level set {Tz = Tz(G)} = {G},
and therefore implies avoiding all invalid z and some valid z. Assuming z is valid, fix
a ∈ z and consider the vector e := e(a). Letting s := (+1,−1, ...,+1,−1), any graph in
{Tz = Tz(G)} must assign weights cG(e)+s∆ to e and for some ∆ for which the resulting
weights are non-negative. We denote the range of ∆ by {∆l, . . . ,∆u}. If ∆u = ∆l = 0

then the only graph satisfying this is G. This will happen if there exists i odd and j

even such that cG(ei) = cG(ej) = 0. If G is sparse then only a small proportion of z
can avoid this. Moreover, which z avoid this depends on the current state and so any
state-independent w will be inefficient. Our state-dependent w, which we now define, is
designed to limit this.

Occasionally the sampling strategy will fail to sample a kernel index z. Let id refer
to an arbitrarily chosen invalid z∗, to be chosen by default if this happens. We start by
redefining the vertex sets NG(u) and MG(u) from Section 2.3 as

NG(u) := {v ∈ V : vu ∈ E, vu /∈ F},

MG(u) := {v ∈ V : uv /∈ F}.

Given the current state G we sample z as follows. Let n = 0, a−1 = ∗ and sample a0
uniformly from the set of vertices v for which NG(v) is non-empty. Repeat the following
until termination.

1. If NG(an) \ {an−1} is empty return id, else sample an+1 uniformly from this set.

2. IfMG(an+1)\{an} is empty return id, else if a0 is in this set then return [a0...an+1a0].
Otherwise sample an+2 uniformly from this set and let n = n+ 2.

The chain cannot move if the above procedure returns id or an invalid [a]. The former is
rare and occurs in cases of extreme sparsity. The latter will be more likely with a large
set of fixed edges.

2.4.3 The Kernel Set

We now derive the kernel set. First define π̃ as in (2.2), as an iterated integral of
non-negative measurable functions on Z × G. Each Kz will take the form of (2.3). That
is, we sample directly from the conditional probability of the joint π̃ given Tz and the
coordinate Z(z,G) = z. Therefore if z is invalid then Kz must be the identity kernel.
However if z is valid we saw in Section 2.4.2 that the update can be parameterised by ∆

taking values in [∆l,∆u]. Therefore, it suffices to derive the distribution of ∆. This is
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the focus of this section. Throughout we let G∆′ refer to the graph obtained from the
current state at ∆ = ∆′.

Suppose that we sample a vertex sequence a and z := [a] is valid. Since π is the
uniform distribution, P [∆ = ∆′] is proportional to wG∆′

(z) for each ∆′ ∈ [∆l,∆u]. It
is often not possible to sample a from G∆l

, or to sample ar from G∆u
. This is why we

collapse a and ar into z; doing so ensures we can always sample z from each G∆′ for
∆′ ∈ [∆l,∆u]. Suppose ∆u −∆l > 1. Fix any ∆l < ∆′ < ∆u and define α := wG∆′

(z).
This is interpreted as the probability of sampling z from G∆′ . Inspecting the kernel
selection law defined in Section 2.4.2 we see that wG1 = wG2 for any G1 and G2 with the
same topology. Since E(G∆′) is the same for any ∆l < ∆′ < ∆u, it follows that α does
not depend on the specific ∆′ chosen. If on the other hand ∆u −∆l ≤ 1 we give α an
arbitrary finite value. Then

Law(∆) =
1

A



wG∆l
(z)δ∆l

+ wG∆u
(z)δ∆u

+
∑

∆l<∆′<∆u

αδ∆



 , (2.4)

where A := wG∆l
(z) + wG∆u

(z) + αmax(∆u −∆l − 1, 0). wG∆l
(z), wG∆u

(z) and α are
easily computed by following the details of Section 2.4.1.

2.4.4 Summary

Algorithm 2 gives pseudo-code for one iteration of the sampler. By construction, the chain
is π- invariant. Proposition 2.4.1 holds by additionally showing the chain is connected.

Proposition 2.4.1. The chain defined by (K,w) has limiting distribution π.

Q can be readily adapted to sample distributions whose density is known up to a
normalizing constant by using Metropolis-Hastings to sample ∆. The computation cost
of Algorithm 2 is proportional to the number of edges updated.

2.5 Simulation Study

Methods used in this section, and in Section 2.6, were programmed in C++ and wrapped
to R. The algorithms were run on an Intel Core i5-6360U 2GHz CPU. In Section 2.5.1
we investigate the effect of graph density and size on the performance of the proposed
samplers, while Section 2.5.2 looks at the effect of fixed edges/non-edges. An R-package
implementing the new algorithms is available in the supplemental materials.

2.5.1 Effect of Size and Sparsity

Consider the Erdős-Rényi model G(n, θ) for directed graphs with self-loops. The pa-
rameter n denotes the number of vertices, and each ordered vertex pair is an edge
with probability θ, independent of all other edges. If G ∼ G(n, θ) then the conditional
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Algorithm 2: One Iteration of the weighted graph sampler (WGS).

1 G, F ;
2 sign(uv)← 0;
3 edges← {};
4 (∆l,∆u)← (−∞,∞);
5 a−1 ← ∗;
6 n← 0;
7 a0 ∼ U({v ∈ V : NG(v) ̸= ∅}) ;
8 repeat

9 if NG(an) \ {an−1} = ∅ then

10 return G;
11 else

12 an+1 ∼ U(NG(an) \ {an−1});
13 if a0 ∈MG(an+1) \ {an} then

14 an+2 ← a0;
15 else if MG(an+1) \ {an} = ∅ then

16 return G;
17 else

18 an+2 ∼ U(MG(an+1) \ {an});
19 if edges ∩ {an+1an, an+1an+2} ≠ ∅ then

20 return G;

21 edges← edges ∪ {an+1an, an+1an+2};
22 sign(an+1an)← +1; sign(an+1an+2)← −1;
23 n← n+ 2;

24 until an = a0;
25 forall edge ∈ edges do

26 if sign(edge) = +1 then

27 ∆l ← max (∆l,−cG(edge));
28 else

29 ∆u ← min (∆u, cG(edge));

30 Sample ∆ according to (2.4);
31 forall edge ∈ edges do

32 cG(edge)← cG(edge) + sign(edge)∆;

33 return G;

distribution of G given its degree sequences is uniform over all graphs with the same
degrees. This observation provides us with a useful strategy for assessing convergence of
samplers in the unweighted graph setting, which we now detail.

Fixing a particular value of n and θ, we first simulate N independent graphs Gi ∼
G(n, θ). For each Gi, we construct a new graph G0

i with the same degrees as Gi using
a maximum ŕow algorithm. This is done to find an initial graph which is far from the
mode of the posterior distribution. The algorithm we use is adapted from that described
in Gandy and Veraart (2016), Appendix A. To test the performance of a given sampler
we use it to simulate N Markov chains. The ith chain is given initial state G0

i and run to
obtain samples G1

i , ..., G
M
i . If the chain has converged to its target distribution after t

iterations, then the distribution of Gti and Gi should be statistically indistinguishable.
Moreover, if we have access to a statistic T then we can compare, for each t, the empirical
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distribution of T (Gt1), ..., T (G
t
N ) to the distribution of T (G). If the sampler mixes rapidly,

we expect these to be similar for small t.
The same approach can be used in the weighted graph setting. An analog to the

Erdős-Rényi model for weighted and directed graphs with self-loops assigns edge weights
to G according to a geometric distribution, i.e. the event cG(uv) = k occurs with
probability θk(1− θ) independent of all other edge weights. Conditioning on G’s vertex
strengths then yields the uniform distribution over all graphs with the same strengths.

It remains to specify T in the unweighted and weighted settings. In the former we
estimate reciprocity. Letting X denote the adjacency matrix of G, then we use T = Tu

with Tu(G) :=
∑

i<j XijXji. This statistic is interpreted as the total number of mutual
dyads in the graph. In the latter case T = Tw with

Tw(G) =

∑

u ̸=vmin (cG(uv), cG(vu))
∑

u ̸=v cG(uv)
.

This is a measure of reciprocity for weighted graphs, first proposed in Squartini et al.
(2013).

Recall that for each t we wish to compare the empirical distribution of T (Gt1), ..., T (G
t
N )

to that of T (G). Tu(G) is distributed Bin
(

n(n− 1)/2, θ2
)

, and so in the unweighted
setting we undertake M Chi-squared tests and record the sequence of p-values p1, ..., pM .
This allows us to formally assess convergence of the samplers. The distribution of Tw(G)

is not known analytically, and so for the weighted setting we draw 105 samples from this
distribution and undertake two-sample Kolmogorov-Smirnov tests instead.

We repeat the above procedure for various combinations of n and θ to uncover the
effect of graph size and density on the statistical efficiency of the samplers. Algorithm 2
(WGS) is compared to the Diaconis & Sturmfels chain (DS) detailed in Section 3. The DS
chain operates on the adjacency matrix of the graphs. Algorithm 1 (UGS) is compared to
a simple and widely used randomization procedure that works as follows. At each stage
select two edges uv and wx at random from the current graph G. If ux /∈ E(G) ∪ F and
wv /∈ E(G)∪F then replace uv and wx with ux and wv, else do not change G. We refer
to this randomization procedure as the Switch chain. In each setting, we use M = 104

and N = 500. Thinning used for each chain was chosen to make the computation time
per sample comparable.

The results are displayed in Table 2.1. The efficiency of the Switch chain deteriorates
relative to UGS as θ increases. DS becomes inefficient compared to WGS in sparse
graphs, as depicted in Figure 2.4. The proposed methods perform comparatively well
across all graph sizes and densities considered.

2.5.2 Incomplete Tables

UGS and WGS are irreducible in the face of arbitrary fixed edges/non-edges. Here we
investigate the ability of the samplers to traverse the state space under such constraints.
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Table 2.1 Results of the simulations outlined in Section 2.5.1. We record t∗ := min{t : pt > 0.1},
i.e. the smallest t for which the null that T (Gt

1), ..., T (G
t
N ) is drawn from the distribution of

T (G) was not rejected at the 10% level. Mixing rate is the estimated proportion of sampling
steps that changed the state of the chain. Mean ESS/s reports the mean time-normalized

effective sample size across all M chains.

Unweighted Weighted

t∗ Mixing Rate mean ESS/s t∗ Mixing Rate mean ESS/s

Setup UGS Switch UGS Switch UGS Switch WGS DS WGS DS WGS DS

n = 20 & θ =
0.1 5 4 1.00 0.53 7.01× 104 5.60× 104 4 189 0.49 0.00 2.60× 104 3.48× 102

0.5 6 11 1.00 0.13 2.15× 104 1.21× 104 79 427 0.58 0.14 3.50× 103 7.57× 102

0.9 3 30 1.00 0.00 3.51× 104 1.43× 103 244 460 0.86 0.58 1.11× 103 3.98× 102

n = 50 & θ =
0.1 10 8 1.00 0.72 1.83× 104 1.62× 104 21 2232 0.51 0.01 4.19× 103 3.70× 101

0.5 29 46 1.00 0.21 6.81× 103 5.33× 103 473 2385 0.57 0.16 2.45× 102 2.00× 101

0.9 6 193 1.00 0.006 1.50× 104 5.99× 102 1531 2603 0.84 0.59 2.64× 101 9.51
n = 100 & θ =

0.1 20 15 1.00 0.77 1.45× 103 1.32× 103 64 7433 0.51 0.01 7.87× 102 2.30
0.5 65 111 1.00 0.23 5.97× 102 5.95× 102 1600 10,359 0.59 0.05 1.47× 101 2.64
0.9 13 534 1.00 0.002 1.36× 103 6.00× 101 4992 11218 0.84 0.57 8.62 3.12
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Fig. 2.4 In Figures (a) and (b) the black line is the density of Tw(G) estimated using 105

samples when n = 102 and p = 0.1. In (a) the dotted lines show the evolution of the empirical
density of {T (Gl

j)} for l ≤ 40 using WGS. In (b) this quantity using DS for l ≤ 103. (c) shows

the Kolmogorov-Smirnov distance between samples {T (Gl
j)} and Monte Carlo samples for each l

using both WGS and DS.

We do this in the context of incomplete binary and contingency tables, which are tables
with some entries fixed at zero. They arise in several contexts. In the contingency table
setting, particular combinations of the two variables may be impossible, forcing zero
entries in the corresponding cells. Alternatively there may be missing observations or in
some contexts, researchers may wish to fit composite models by partitioning the cells into
subsets, and fitting a separate log-linear model for each group (Goodman, 1963, 1968,
Fienberg, 1969). See Bishop and Fienberg (1969) for extensive examples of incomplete
tables.

We construct 103 6× 6 incomplete contingency tables using the following procedure.
To construct the ith table, we randomly place half of the table coordinates into the fixed
set Fi. We then use a maximum ŕow algorithm to construct a table x0i in the set Xi,
which consists of all 6× 6 tables x with all margins equal to 3, and additionally satisfying
xFi

= 0. If Xi is empty then Fi is re-sampled until it is not. We use the LattE software
(Kahle et al., 2017) to count the number of tables in Xi. 105 samples are obtained using
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WGS and DS with thinning of 10 and with initial state x0i , and we record the proportion
of tables in Xi visited by each sampler. This is repeated for incomplete binary tables
to compare UGS and Switch, however using table margins equal to 1. The results are
shown in Figure 2.5.
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Fig. 2.5 Empirical CDF of the proportion of tables visited by each sampler over the 103 runs.
Left: results for incomplete contingency tables. Right: results for binary tables.

Figure 2.5 provides empirical evidence that WGS and UGS can traverse the state
space. DS and Switch appear to be reducible for particular patterns of fixed entries.
Diaconis and Sturmfels (1998) propose an alternative chain which uses techniques from
computational algebra to compute a Markov basis for the state space. Other approaches
using computational algebra include Aoki and Takemura (2005) and Rapallo (2006).
Unfortunately the cost of computing the basis is exponential in the size of the table,
and these methods are feasible only for tables with only a few rows and columns. Chen
(2007) propose SIS algorithms for uniform sampling of incomplete binary and contingency
tables. The authors provide an implementation of their method for binary tables, and we
use this to test their sampler (labelled SIS_CP1). In each of the 103 cases, we collected
105 samples and found their method visited all graphs in the state space. However, we
show in Section 2.6.1 that the algorithm is not always reliable.

2.6 Applications

We consider the comparative performance of the new samplers on real datasets. In
Section 2.6.1 we use Algorithm 1 to detect compartmentalization in an ecological network,
and in Section 2.6.2 we use Algorithm 2 to investigate nestedness in a large affiliation
network.

Reported standard errors were computed using spectral methods from R’s coda
package. These estimates were compared to those obtained using batch means, and
where feasible, bootstrapping. These latter estimates are not reported as there was little
discernible difference from those obtained by spectral methods. Thinning used in each
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Fig. 2.6 Food web of the Chesapeake bay ecosystem.

method was set to approximately equate the resulting standard errors. We used burn-in
equivalent to 20% of samples obtained.

2.6.1 Ecological Networks

A food web is a digraph encoding predator-prey relationships within a group of species.
Each species is a node and a link exists from species A to species B if and only if B
consumes A.

Ecologists wish to identify and explain structural patterns in observed food webs
including motifs, diet contiguity, intervality, connectance and compartmentalization.
We will focus on assessing the tendency towards compartmentalization in food webs.
Compartmentalization describes the extent to which species can be partitioned into
distinct groups such that linkage density within groups is greater than that between

groups (Girvan and Newman, 2002, Krause et al., 2003).
Figure 2.6 depicts the food web of 33 species in the Chesapeake bay in the summer.

The data was collected by Baird and Ulanowicz (1989). Pimm and Lawton (1980)
proposed a statistic C̄ to measure the level of compartmentalization in a food web. Here
we describe a directed analogue of this statistic. Let G represent a food web of n species,
and i and j be two species. Let cij be the number of shared predators of species i and j
as a proportion of the total number of predators of i and j. C̄ is then the mean of the
off-diagonal elements of (cij), defined by

C̄ :=
1

n(n− 1)

n
∑

i=1

n
∑

j=1,j ̸=i
cij .

C̄ takes values in [0, 1] and higher values are associated with greater levels of compart-
mentalization.

We begin by testing whether the observed level of C̄0 = 0.0260 can be considered
high when compared to the set of all graphs with the same degree sequence as G. With
thinning of 5, Algorithm 1 (UGS) took around 2 second to obtain 105 samples. The
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estimated p-value was 0.0163± 4.3× 10−4, complementing previous results suggesting
food webs have high compartmentalization when compared to random graphs where
species have an equal probability of linking to each other species (Krause et al., 2003,
Rezende et al., 2009). The sequential importance sampling algorithm SIS-CP1 (Chen,
2007) took 33 seconds to obtain 105 samples, estimating a p-value of 0.0158± 4.3× 10−4.

Guimerà et al. (2010) find that compartmentalization observed in real food webs is
not unusual when compared to networks generated under niche models, and conclude that
‘compartmentalization can be explained solely by the niche-valued ranking of species’.

We attempt to test this hypothesis for the Chesapeake bay food web. We compute
the chain averaged trophic level (Williams and Martinez, 2004) for each species, and
assume any given species is forbidden from consuming other species with a higher trophic
level. The resulting forbidden links should help to control for the food web’s trophic
structure. The assumption induces 565 forbidden edges in the null distribution.

Again using thinning of 5, UGS took 2 seconds to obtain 105 samples. Empirically,
the time taken for UGS to randomize a graph depends on the density of the graph rather
than the number of nodes. Sparse graphs are quick to randomize, and if the graph density
falls as nodes increase, the randomization time scales sub-linearly in the number of nodes.
The estimated effective sample size was over 9.5× 103, giving an estimated p-value of
0.0568 ± 7.5× 10−4. At a significance of α = 0.05, we can no longer conclude that
compartmentalization in the Chesapeake food web is unusual under the null distribution.
Our method of determining trophic structure is crude, and a closer analysis of the food
web is warranted before drawing any conclusions.

SIS-CP1 took 24 seconds to run and over 97% of the samples produced were discarded
as invalid, leaving only 3,069 to be used for estimation. The estimated p-value was
0.0558± 6.3× 10−3. Using alternative methods to calculate the species’ trophic levels
gives rise to other sets of forbidden edges. For some such patterns, SIS-CP1 was unable
to construct a single valid sample.

2.6.2 Affiliation Networks

In social network analysis, an affiliation network represents membership or participation
data between a set of actors and a set of groups. For example, a link may indicate
participation of an actor in an event. Dyadic data of this type include board membership
(eg. Mizruchi, 1983), participation in online forums (eg. Allatta, 2003) and authorship of
research chapters (eg. Newman et al., 2001). Affiliation networks are bipartite graphs,
and can therefore be represented as a contingency table, with rows corresponding to
actors and with columns denoting the groups.

Social scientists are interested in detecting network structure through particular
metrics. Example patterns of interest include ‘small-world effects’, clustering and degree
distributions. Here we focus on detecting nestedness in data collected by Opsahl (2013)
on messages sent by users of an online social platform to online forums. This data is a 899
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by 522 contingency table whose (i, j)th entry is the number of messages posted by user i
in forum j. Informally speaking, nestedness is the degree to which neighbors of nodes with
low degree are a subset of the neighbours of nodes with higher degree. Nestedness has
been detected in a number of network systems including ecological interaction networks,
social media information networks and socio-economic networks, and has been shown to
have important implications for the robustness and stability of a system.

Several measures for nestedness have been developed for integer contingency tables.
Galeano et al. (2009) propose to use the weighted-interaction nestedness (WIN) estimator,
which is a matric based on a weighted Manhattan distance and takes values between
0 and 1. Higher values indicate higher levels of nestedness. We will test whether the
observed WIN statistic is unusually high when compared to a suitable null distribution.

We assume under the null hypothesis that the table is a uniform draw from the set of
all tables with the same margins. This procedure of fixing the margins is widely used in
both binary and integer matrices (Connor and Simberloff, 1979, Gotelli and Entsminger,
2001, Ulrich and Gotelli, 2007). Alternative null models are available; for example fixing
one margin or only satisfying the observed margins in expectation.

We obtain 103 samples using WGS and DS with thinning set to 106. WGS estimated
the average WIN distance of the sampled tables at 0.0539± 7.3× 10−6. This estimated
standard error is equivalent to that from 103 independent samples, indicating good
mixing. DS estimated 0.056± 1.7× 10−3 and has a high correlation between successive
samples, giving an effective sample size of 12. The estimate exhibits high bias because the
chain shows non-stationary behaviour for the first 300 iterations. The observed statistic
was 0.157, and so both methods give a p-value of 0. Taken at face value this indicates
strong evidence for nestedness. However, this is more likely down to misspecification
of the null model. WIN is sensitive to overall matrix density and the sampled tables
are systematically denser than the observed table. It would be instructive therefore to
consider alternate null distributions which better preserves this property.

Eisinger and Chen (2017) develop efficient SIS methods for sampling tables uniformly
over all tables with given margins. The authors provide code for a cell-by-cell method
labelled SIS-G* (coded in C). Using SIS-G* on this example we were unable to produce
a valid sample. It appears the method is not scalable to large tables.

2.7 Discussion

This chapter has developed new MCMC samplers for two important problems. First, for
sampling from the set of unweighted graphs respecting prescribed vertex degrees. Second,
for sampling from the set of weighted graphs respecting prescribed vertex strengths.
The samplers work when conditioning on the presence or absence of a set of edges. We
have shown examples where alternative MCMC methods are infeasible as they rely on
computing a Markov basis, and where existing SIS methods perform poorly. In contrast,
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our methods do not require computing a Markov basis, and are orders of magnitude
more efficient in these examples.

State-dependent mixing of Markov kernels is a general concept, and the specific
implementation of our samplers is not unique. The technique could be used to develop
alternative samplers specialized to particular setting. The samplers can be readily
extended to sample from arbitrary distributions known up to a normalization constant.
For example, they can be adapted to carry out Bayesian network tomography in the case
of a star network topology. In contrast, SIS methods are not readily adaptable to more
general distributions. A theoretical analysis of the mixing times of the new samplers is
beyond the scope of this chapter, and is left for future work.



3
Approximate Conditional Sampling for Pattern Detection

in Weighted Networks

3.1 Introduction

This chapter develops an approach to measuring the significance of patterns observed
in weighted networks. The proposed method compares the network of interest to
graphs drawn from a null model. The null model is designed to account for node
heterogeneity, including both heavy-tailed degree and strength distributions. Unknown
nuisance parameters are dealt with by approximate conditioning, and samples are drawn
using a novel MCMC method. This algorithm uses similar techniques to those used in
Chapter 2, extended to the case of graphs with real-valued edge weights and potential
sparsity. The development just outlined mirrors approaches that have long been used
to successfully to detect patterns in unweighted graphs (Connor and Simberloff, 1979,
Newman et al., 2001, Milo et al., 2002, Maslov et al., 2004, Stouffer et al., 2007), which
was described in detail in Chapter 2.

Take, for example, the task of detecting community structure in weighted networks.
In general, the community membership of nodes is unknown and must be recovered.
Typically, this is done by optimizing some criterion, which could be a quality function like
modularity (Newman, 2004). An alternative approach is to fit a statistical model which
permits community structure using maximum likelihood. Possible models include the
stochastic block model (Nowicki and Snijders, 2001) and the degree-corrected stochastic
block model (Karrer and Newman, 2011).

Although popular, modularity is not based on any notion of the significance of a
partition; rather it is defined as the absolute difference between observed inter-community
links, and those expected under a given null model. As a result, it suffers from the
resolution limit (Fortunato and Barthélemy, 2007, Kumpula et al., 2007), whereby smaller
modules cannot be detected in large networks. A number of methods attempt to overcome
this by explicitly defining notions of significance (Aldecoa and Marín, 2011, Miyauchi
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and Kawase, 2016, Traag et al., 2013, Reichardt and Bornholdt, 2006, Palowitch et al.,
2018, He et al., 2020), which can be optimized over network partitions.

Nonetheless, these methods consider the p-value of a fixed partition and are invalid
when assessing the significance of a partition which results from optimizing an objective
function. It is possible to find partitions with low p-values in random graphs with
no embedded community structure (Guimerà et al., 2004, Reichardt and Bornholdt,
2006, Fortunato, 2010). The p-values are incorrect unless they account for the selection
process. This phenomenon parallels that of inference post model selection, which is a
widely studied problem that has recently garnered much attention within the statistics
community (Taylor and Tibshirani, 2015, Hastie et al., 2019).

In this chapter, we introduce a null model which can be used to quantify the
significance of general patterns found in weighted graphs. For example, the approach
can be used to determine the significance of community structure after having identified

a partition with an optimization method. The approach is based on a generalization
of ‘rewiring’ Markov chains (Ryser, 1963, Hakimi, 1962, Rao et al., 1996) to weighted
graphs, and is inspired by a recently developed Markov chain (Gandy and Veraart, 2016)
for weighted graphs.

After introducing terminology, Section 3.3 motivates the problem by first reviewing a
common approaches in the unweighted case. Section 3.4 formulates the general sampling
problem, and Section 3.5 introduces the novel MCMC method for sampling the null
model. Section 3.6 considers the stochastic stability of the proposed sampler, and Section
3.7 performs an extensive simulation study to test the performance of the method against
competing alternatives. Finally, we conclude in Section 3.8.

3.2 Terminology

This chapter is only concerned with directed graphs. Occasionally, we consider unweighted
graphs, which are denoted G := (N,A) where N := {1, . . . , n} is a set of nodes and
A := (auv) is the adjacency matrix. For weighted graphs, the binary adjacency matrix
is replaced with a weight matrix. Formally, G := (N,W ), where W := (wuv) and
wuv ∈ [0,∞). The topology is implicit: auv = 0 if and only if wuv = 0, or alternatively,
auv = w0

uv with the convention that 00 = 0.
Define a node’s out-degree and in-degree by d−u :=

∑

v auv and d+u :=
∑

v avu re-
spectively, and collect them into vectors d− := (d−1 , . . . , d

−
n )

t and d+ := (d+1 , . . . , d
+
n )

t.
For weighted graphs, we define the node’s out- and in-strength by s−u :=

∑

v wuv

and s+u :=
∑

v wvu, which are also collected into vectors s− := (s−1 , . . . , s
−
n )

t and
s+ := (s+1 , . . . , s

+
n )

t. If the graph to which an object belongs is unclear, we explic-
itly denote its dependence on the graph. For example, we might write W (G) instead of
W .
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3.3 Motivating a Null Model for Weighted Graphs

Null models have long been used to detect statistically significant patterns in unweighted
networks. Such models have found application in a number of diverse fields, including
sociology, ecology, categorical data analysis, systems biology, and community detection.
While there exists extensive literature for the unweighted case, very little has been
developed for both defining and sampling similar models for weighted graphs. We
therefore start by reviewing the unweighted case, which motivates our development for
weighted graphs.

3.3.1 Null Models for Unweighted Graphs

We define a family of distributions on the space G of unweighted graphs with n nodes.
Formally, let

Pθ(G) := κ(θ)−1 exp
(

αtd− + βtd+
)

, (3.1)

where κ(θ) is a normalizing constant and θ = (αt, βt)t. The degree vectors are the
sufficient statistics, or energies, of the distribution. The parameters α := (α1, . . . , αn)

t

and β := (β1, . . . , βn)
t control the distribution of out-degrees and in-degrees, with αu and

βu representing the sociability and popularity of node u. This is an exponential model,
and may be viewed as a directed analogue of the β-model (Chatterjee et al., 2011), or as
a special case of the p1-family (Holland and Leinhardt, 1981), whereby the reciprocity
parameters are uniformly taken to be ρuv = 0. These p1 models were introduced in the
context of social network analysis, and were extended to the class of Markov Graphs by
Frank and Strauss (1986), and eventually to the class of p∗, or exponential random graph
models (ERGMs) (Wasserman and Pattison, 1996).

The model, and its undirected equivalent, are routinely used to measure the signifi-
cance of properties observed in real-world networks. Measuring significance is useful for
a number of tasks; including for use in hypothesis testing, which is used to find evidence
of local graph patterns (Milo et al., 2002). An example of such a pattern is reciprocity
(Holland and Leinhardt, 1981), which is often evident in social networks. Significance
can also be optimized directly by including it in an objective function. This approach
helps to discover network patterns, and is widely used for community detection (Newman,
2004).

In general, a practitioner will measure a property of interest in a network, which may
be community structure, clustering, or a network motif, for example. This is usually
summarized by a statistic T : G → R, with large T implying greater prevalence of the
property. The observed value t0 can only be interpreted in the context of the distribution

of T under a suitable null model. To put this in a formal framework, we embed (3.1) in a
larger exponential family

P(θ,δ)(G) := κ(θ, δ)−1 exp
(

αtd− + βtd+ + δT (G)
)

,
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which includes the statistic of interest. The null hypothesis that (3.1) provides a good fit
of the network, i.e. that t0 is not significant, is equivalent to testing δ = 0 against the
alternative δ ̸= 0. This is the approach suggested in Holland and Leinhardt (1981) to
test the goodness of fit of the p1-model, but can equally be interpreted as quantifying
the extent to which t0 is surprising under (3.1).

Notice that the hypothesis δ = 0 is composite because the null depends on the
unknown nuisance parameters θ. The typical way to deal with this is to condition on

the sufficient statistics, which in this case are d := (d−t, d+t)t. It is shown in Lehmann
and Romano (2006) that tests based on this conditional distribution are optimal, i.e.
the uniformly most powerful unbiased (UMPU) test of δ = 0 against δ ̸= 0. If in fact
the observed graph G0 ∼ Pθ0 for some θ0, then the conditional distribution of G0 given
degrees is uniform on

G(d0) := {G ∈ G : d(G) = d0},

where d0 := d(G0). This is the set of all graphs with the same degree sequence as G0.
This fact is obvious because (3.1) only depends on G through the degrees.

In general, the conditional distribution of the test function is not available analytically,
and so we typically resort to drawing samples G1, . . . , GN ∼ Uniform(G(d0)). Significance
p ∈ [0, 1] is then computed by comparing t0 to the associated empirical distribution, i.e.

p :=
1

N

N
∑

i=1

✶[t0,∞)(T (Gi)). (3.2)

The algorithms used to sample G1, . . . GN depend on our initial assumptions on the
graph space. If G permits non-simple graphs, i.e. allows both self-loops and multiple
edges, then it is straightforward to draw independent samples using the pairing model

(also known as the configuration model), which was first discussed by Bollobás (1980),
Bender and Canfield (1978). However, in practice most networks are simple and if
we restrict G accordingly, the situation becomes more complex. In particular, there is
no straightforward method for drawing independent and exactly uniform samples. A
common approach is to construct a Markov chain based on randomly rewiring edges, such
that node degrees are exactly maintained (Ryser, 1963, Hakimi, 1962, Rao et al., 1996).
This yields correlated samples which are asymptotically uniform, and can be treated as
approximately independent if the chain is thinned appropriately. An alternative approach
is to construct samples using sequential importance sampling (Bayati et al., 2010, Chen,
2007, Snijders, 1991, Blitzstein and Diaconis, 2011, Zhang and Chen, 2013).

Why Conserve Degrees?

The most obvious starting point for a null model would be the directed Erdős-Rényi
model. However, this implies that node degrees are i.i.d. Binomial, and in particular that
all nodes have the same expected degrees. In practice, degree distributions are rarely
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binomial, and are instead often heavy-tailed. This is a problem because the prevalence
of many graph structures is tied to heterogeneity between nodes, and in particular the
degree distribution. Practitioners are typically not interested in structure that arises
purely as an artifact of this, and are instead looking for evidence of higher-order processes
governing the formation of the network. Since the Erdős-Rényi model cannot faithfully
model degree distributions, it does not provide an adequate baseline with which to
compare real networks to. By including d− and d+ as sufficient statistics in (3.1), the
parameters α and β can explicitly account for nodal heterogeneity, making Pθ more
suitable as a null model.

3.3.2 Extending to Weighted Graphs

In the weighted case, a natural question is whether the strength sequences could substitute
for the degrees in (3.1). This approach has been proposed in the statistical mechanics
literature, and is often referred to as the weighted configuration model (Squartini et al.,
2011, Serrano and Boguñá, 2005, Serrano et al., 2006). It fails to faithfully model the
topology of real networks. When wuv is continuous, all mass is on complete networks.
When integer-valued, the probability of each edge existing approaches one for most real
networks. The upshot is that degrees are important for conveying a graph’s topology,
and should be used in addition to the strengths. Therefore, we consider

Pθ(G) := κ(θ)−1 exp
(

αtd− + βtd+ + ϕts− + ψts+
)

, (3.3)

which is an exponential family and an extension of (3.1). κ(θ) denotes the normalizing
constant and θ := (αt, βt, ϕt, ψt)t. We assume that ϕu < 0 and ψu < 0 for all u ∈ N for
reasons that will soon be clear. This model has appeared in Mastrandrea et al. (2014b),
where it was employed to reconstruct networks from node-level data. Following these
authors, we refer to it as the directed enchanced configuration model (DECM).

Clearly, this model is neither elegant nor parsimonious. For any given node, there is
likely to be high correlation between its fixed effects, and one naturally wonders whether
the many parameters could be reduced by, for example, positing a simple functional
relationship between degrees and strengths. The point, however, is that the model is
general; by including fixed effects for both strengths and degrees it contains as sub-models
many reasonable processes governing nodal-heterogeneity. This generality is essential for
controlling for nodal effects when testing for higher-order processes that might explain
network formation.

Unlike most exponential random graph models, the model is tractable and has a
simple edge-level interpretation. An edge exists with probability

P{wuv > 0} = eαu+βv

eαu+βv + λuv
, (3.4)
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where λuv := −ϕu − ψv. A link is more likely to form if u and v are (topologically)
sociable and popular, respectively. The probability increases with ϕu and ψv, showing
that edge formation also depends on the strength parameters.

Conditional on the edge uv existing, its weight wuv follows an exponential distribution
with rate λuv. The constraints on ϕ and ψ ensure that this is positive. The exponential
distribution is memoryless, and so the probability of reinforcing an existing link by one
unit is

P{wuv ≥ x+ 1 | wuv ≥ x} = eφu+ψv ,

for all x > 0. Since this is invalid when a link does not exist (i.e. when x = 0) there is a
different cost for reinforcing an edge as opposed to forming a new edge. This permits
network sparsity, and makes the model more suitable for modeling real networks than
the weighted configuration model.

As in the unweighted case, the task is to use (3.3) as a null model for quantifying
the significance of a property of interest, which is measured by a statistic T : G → R.
Heuristic approaches have been proposed for this, using maximum likelihood estimation
(Mastrandrea et al., 2014b, Gabrielli et al., 2019). Since (3.3) is an exponential family,
the MLE θ̂ can be found numerically as the solution to the 4n coupled equations given
by setting observed sufficient statistics to their expectation. It is then straightforward to
generate independent samples from the model with parameter θ̂. The observed statistic
t0 can then be compared to the sampled networks.

The aforementioned approach does not consider uncertainty around the MLE. In
analogy to Section 3.3.1, a more formal approach considers the extended model

Pθ,δ(G) := κ(θ, δ)−1 exp
(

αtd− + βtd+ + ϕts− + ψts+ + δT (G)
)

, (3.5)

and formulates the problem as assessing the probability of observing t0 given that δ = 0.
Within the likelihood framework, one approach is to appeal to Wilks’ theorem, which
states that the likelihood ratio statistic is, under regularity conditions, asymptotically
Chi-squared with one degree of freedom. Unfortunately, the conditions required to apply
Wilks’ theorem, and indeed even for appealing to the asymptotic consistency of the
MLEs, do not hold in this model. The data {wuv} are not identically distributed under
(3.3), and the number of independent parameters grow linearly with n. This observation
has been made repeatedly for the unweighted case (3.1) (Holland and Leinhardt, 1981,
Snijders, 1991, McDonald et al., 2007), but to our knowledge has received little attention
in articles using (3.3).

Recall that the optimal test of δ = 0 conditions on the sufficient statistics. The
resulting null model would then be uniform on

G(d0, s0) := {G ∈ G : d(G) = d0, s(G) = s0},
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where d0 := d(G0) and s0 := s(G0). This is the set of graphs conserving both degree and
strength sequences exactly. Sampling uniformly from this set is, in general, a difficult
problem, and we are not aware of any methods that have been proposed to achieve this.
For this reason, our approach is to approximately condition on the degrees, and consider
instead the set

Gm(d0, s0) := {G ∈ G : ∥d(G)− d0∥∞ ≤ m, s(G) = s0}, (3.6)

for m > 0. This maintains strengths exactly, and keeps all node degrees within m of the
observed values.

3.4 The General Setup

We have motivated the task of sampling from the conditional distribution of (3.3) given
degrees and strengths. Indeed, this is the focus of the chapter. Nonetheless, other
reasonable weighted null models exist. For example, Palowitch et al. (2018) recently
introduced the continuous configuration model, which is a weighted extension of the
Chung-Lu model (Chung and Lu, 2002a,b). Since alternatives could be used, we extend
the discussion of the previous section to allow for other null models.

The general setup is as follows. We observe a graph G0 ∈ G and wish to measure the
significance of structures in the graph. This is done by comparing G0 to graphs from a
null model P on G. This may prohibit edges in a set F ⊆ N2. That is, G ∈ G only if
wuv = 0 for all uv ∈ F . This is typically employed to disallow self-loops, but can also be
used to match any pattern of non-edges, including none at all.

We do not use P directly, and instead wish to condition on d0 := d(G0) and s0 := s(G0)

to control for nodal heterogeneity. As mentioned, doing this exactly is a difficult problem.
Instead, we opt to approximately condition on the degrees. As we will see, this provides
enough ‘slack’ to construct an MCMC sampler to draw graphs from the distribution.
Define, for each integer m > 0, the function

dm(G) := ✶Nm
(d(G)), (3.7)

where Nm := {d′ : ∥d′ − d0∥∞ ≤ m} is a neighborhood of d. Conditioning on this leads
to graphs where each node has degrees that are within m of the same node in G0. For a
given m > 0, the target distribution of our sampler conditions P on the functions dm
and s. Its support is Gm(d0, s0).

We now brieŕy discuss the assumptions made on the null model before turning to
the main task; that of constructing the MCMC sampler.
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3.4.1 Assumptions on the Null Model

Typically, we will prefer to view P as defined on the space of weight matrices [0,∞)n×n

rather than on G directly. We allow P to exhibit sparsity. That is, it is assumed that P
has a density f with respect to

Λ :=
∑

A∈{0,1}n×n

λA, (3.8)

where λA is ∥A∥0-dimensional Lebesgue measure on {w ∈ [0,∞)n×n : w0
uv = auv}. These

sets are disjoint and so {λA} are mutually singular. The requirement ensures that if an
edge exists, i.e. if wuv > 0, then it is continuous. It also permits network sparsity by
allowing different topologies to have positive probability.

3.5 Randomizing Weighted Graphs

Sampling from Gm(d0, s0) is difficult because the space is highly constrained. Here, we
develop a Markov chain approach to the problem. The algorithm is inspired by the
rewiring chains that are already widely applied in the literature for unweighted graphs.
It relies on repeatedly applying local moves, referred to as k-cycles (Gandy and Veraart,
2016).

3.5.1 Introducing k-cycles

Consider the following ‘rewiring’ update used to randomize simple unweighted directed
graphs while preserving degrees exactly. Select two edges u1v1 and u2v2 uniformly at
random. If u1, u2, v1 and v2 are not all distinct, or if either of u1v2 or u2v1 are already
edges, then reject and start again. Otherwise, remove u1v1 and u2v2 from the edge set
and replace them with u1v2 and u2v1. This local procedure is applied continually to
randomize the network.

Here, we introduce analogous updates for weighted graphs, referred to as k-cycles.
These originally appeared in Gandy and Veraart (2016). First, fix two vectors of distinct
nodes (u1, . . . , uk) and (v1, . . . , vk), where k is between 2 and n. A k-cycle attempts to
update the weight matrix along the 2k coordinates

(u1v1, u1v2, u2v2, . . . , ukvk, ukv1), (3.9)

conditional on all other values. Figure 3.1 depicts examples of these coordinates for
different k. If k = 2 then four edges are potentially updated, which is similar to the
rewiring move in unweighted graphs. It turns out, however, that we need to allow longer
updates k > 2 to ensure irreducibility of the Markov chain.

Let w := (w1, w2, . . . , w2k)
t refer to the delineated edge weights corresponding to the

coordinates (3.9). Throughout this chapter, we refer to these weights as the cycle-weights.
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−∆

+∆

+∆

−∆

(a) Updates along
{22, 26, 66, 62}.

−∆
+∆

+∆

−∆

−∆

+∆

(b) Updates along
{45, 42, 32, 36, 16, 15}

−∆

+∆

+∆

−∆

+∆

−∆

−∆

+∆

(c) Updates along
{36, 35, 65, 61, 21, 22, 52, 56}.

Fig. 3.1 Example k-cycles of different lengths on a graph with 6 nodes. Self-loops are disallowed,
as indicated by the gray squares. Therefore, the proposed cycles in Figures (a) and (c) would be

rejected.

These values must be updated to remain within Gm(d0, s0). In particular, conserving
the strengths is equivalent to maintaining the marginals of the weight matrix. Because
all edges outside a k-cycle are considered fixed, conserving strengths is equivalent to
conserving the consecutive sums

(w1 + w2, w2 + w3, . . . , w2k−1 + w2k), (3.10)

exactly. Figure 3.1 should help to convince the reader of this statement. We ar-
gue in Section 3.5.2 that any update to w must take the form w + a∆, where a =

(+1,−1,+1, . . . ,−1)t and where the scalar ∆ lies within a bounded interval that we are
yet to define. This fact is also visualized in Figure 3.1.

Relationship to Rewiring Moves

For intuition, we clarify the relationship between rewiring moves in unweighted graphs and
2-cycles. First, assume that the weight matrix of an unweighted graph is synonymous with
its adjacency matrix. A 2-cycle would update the coordinates {u1v1, u1v2, u2v2, u2v1}. If
in fact w = (1, 0, 1, 0)t, then setting ∆ = −1 leads to a new value (0, 1, 0, 1)t, performing
the same edge replacement as a rewiring move. ∆ = 0 corresponds to rejecting a move,
and would occur if say w = (1, 1, 1, 0)t. In unweighted graphs ∆ could only ever lie in
{−1, 0, 1}, rather than within a real interval as in the weighted case.

3.5.2 Conditional Distribution along a k-cycle

So far, we have characterized k-cycles as updating certain subsets of the weight matrix
while keeping all other entries fixed. Their definition is incomplete, as we are yet to
describe how to make them reversible with respect to the target distribution. Since
k-cycles are block updates of the weight matrix, it suffices for them to be reversible with
respect to the full conditionals of the updated entries (cycle-weights). Here we derive
these full conditionals.
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Our approach to finding the full conditional of a given k-cycle consists of two steps.
We first condition the model P on non-cycle weights (entries of the weight matrix not
delineated by the k-cycle). In the second step, we proceed to condition on the strengths
and degrees. Formally

• Denote by Q the conditional distribution of P given all non-cycle weights.

• Condition Q on the node strengths, followed by the node degrees to obtain the full
conditional.

It is important to recognize that Q is not the full conditional of interest, because it
does not yet account for node strengths and degrees. Q lives on (Ω2k,B(Ω2k)), where
Ωd := [0,∞)d is the d-dimensional non-negative orthant.

For intuition, we give an example of Q in the case that the model P is the DECM
(defined by (3.3)). In this case

Q =
∏

uv

(

eαu+βv

eαu+βv + λuv
Quv +

λuv
eαu+βv + λuv

δ{0}

)

,

where the product is over the coordinates (3.9). Notation here is as in Section 3.3.2. Quv
is the exponential distribution with rate λuv, and δ{0} is the Dirac measure at zero.

We now proceed with the second step, which is to condition Q on the nodes strengths
and then, approximately, on the degrees.

Conditioning on node strengths

As argued in Section 3.5.1, conditioning Q on the strengths is the same as conditioning
on the consecutive sum (3.10). This sum is formalized as a statistic T : Ω2k → Ω2k−1.
Rigorously proving the conditional distribution of Q given T is a difficult task, because
Q is neither fully discrete nor continuous. This motivates a general definition of the
conditional distribution, which is as follows.

Definition 3.5.1 (Conditional Distribution). A family Q := {Qt : t ∈ Ω2k−1} of

probability measures on B(Ω2k) is the conditional probability distribution of Q given T if

1. Qt{T ̸= t} = 0 for TQ-almost all t in Ω2k−1, and

2. if g : Ω2k → R is nonnegative and measurable then t 7→
∫

g(x)Qt(dx) is measurable

and
∫

g(x)Q(dx) =

∫ ∫

g(x)Qt(dx)TQ(dt). (3.11)

First consider the level sets {T = t} on which each Qt lives. It is easy to see that
{T = t} is a closed line segment Lt that can be parameterized by

Lt(∆) := x+∆a, (3.12)
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where x is an arbitrary element of Lt and a := (+1,−1,+1, . . . ,−1)t is the alternating
vector described in Section 3.5.1. The scalar parameter ∆ must lie in [∆l,∆u] where
−∆l and ∆u are the smallest odd and even elements of x respectively. The boundary
points are xl := Lt(∆l) and xu := Lt(∆u).

Proposition 3.5.2 states the conditional distribution. The proof is provided in Ap-
pendix B.1. The proposition defines each Qt in terms of another distribution µt on
(Ω2k,B(Ω2k)), whose support is Lt. This is defined through

µt(B) :=

∫

Lt∩B f(x)ds
∫

Lt
f(x)ds

,

for each B ∈ B(Ω2k). Recall that P has density f with respect to (3.8), In the above
equation, f(x) denotes f evaluated at the weight matrix implied by letting the cycle-
weights take the value x, and keeping all other entries the same. Both integrals in this
expression are line integrals, and the denominator serves as a normalizing constant.

Proposition 3.5.2. Fix any t ∈ Ω2k−1. If the boundary points satisfy ∥xl∥0 = ∥xu∥0 =
2k − 1 then let

Qt :=
1

κt

(

f(xl)δ{xl} + f(xu)δ{xu} + αtµt
)

, (3.13)

where αt =
1√
2k

∫

Lt
f(x)ds and κt := f(xl) + f(xu) + αt. Otherwise, let

Qt :=



















δ{xl} if ∥xl∥0 < ∥xu∥0
δ{xu} if ∥xl∥0 > ∥xu∥0
κ−1
t

(

f(xl)δ{xl} + f(xu)δ{xu}
)

if ∥xl∥0 = ∥xu∥0 < 2k − 1,

(3.14)

where κt := f(xl) + f(xu). The collection Q := {Qt : t ∈ Ω2k−1} is the conditional

distribution of Q given T .

Approximate conditioning on degrees

Suppose now that we consider degrees in addition to the strengths, i.e. we wish to
approximately condition Qt on the degrees. To formalize this, first fix an arbitrary x ∈ Lt
and let Gx refer to the graph obtained by letting the cycle-weights take the value x,
whilst keeping all other weights fixed. We then condition on x 7→ dm(Gx), which is a
map from Lt → {0, 1}. This statistic depends implicitly on the topology of the graph
outside the k-cycle, which is, of course, fixed. We assume that this topology is such that

{x ∈ Lt : dm(Gx) = 1}, (3.15)

is non-empty. The set of graphs for which this is empty is π-negligible because the graphs
cannot lie within Gm(d0, s0). Therefore, this case can be safely ignored.
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Conditioning Qt on x 7→ dm(Gx) is equivalent to restricting it to (3.15), i.e. the
points at which the associated graph has degrees close enough to the target vector. These
graphs can have one of at most three topologies. If xl ≠ xu then the topologies of Gxl
and Gxu are different, because the zero elements of xl and xu are distinct. If x1 and x2
are both in the interior of Lt, then the topology of Gx1 and Gx2 are the same, because
all entries in x1 and x2 are positive. This shows that conditioning may assign zero
probability to either of the boundary points, or to the entire interior of Lt.

Special attention should be given to the case where (3.15) is Qt-negligible. This
would happen, for example, if xl has more zeros than xu, but also dm(Gxl) = 0. Another
possibility is that xl and xu have the same number of zeros, but more than one, and
dm(Gxl) = dm(Gxu) = 0. In both cases, it is easy to see that all points in (3.15) must have
ties among positive elements, which is a π-negligible event. Therefore, the conditional
distribution can be defined arbitrarily in this case.

Example: Conditional Distribution for the DECM

Here we specialize to the DECM. The resulting conditional distribution will be easy to
sample directly, providing a convenient way to perform k-cycles.

First, suppose that xl and xu each have one zero entry. To compute the line integral
appearing in the conditional Qt, first observe that Lt(∆ + d∆) = Lt(∆) + a d∆ for any
∆ ∈ (∆l,∆u), and so

ds = ∥Lt(∆ + d∆)− Lt(∆)∥2 =
√
2k d∆,

where ds is the differential on Lt. Therefore,

∫

Lt

f(x) ds =
√
2k

∫ ∆u

∆l

f(x+ a∆)d∆

=
√
2kf(x+ a∆∗)(∆u −∆l),

where ∆∗ ∈ (∆l,∆u). Here we have used that f(x+a∆) = f(x+a∆∗) for all ∆ ∈ (∆l,∆u).
This is true because f depends only on degrees and strengths, which are invariant over
such ∆. It is also easy to verify that

f(xl) = e−(αu1+βv1 )f(x+ a∆∗) (3.16)

f(xu) = e−(αu2+βv2 )f(x+ a∆∗), (3.17)

where u1v1 and u2v2 are the edges corresponding to the zero weights in xl and xu

respectively. Putting this together, (3.13) reduces to

Qt :=
1

κt

(

e−(αu1+βv1 )δ{xl} + e−(αu2+βv2 )δ{xu} + (∆u −∆l)µt

)

,



3.5 Randomizing Weighted Graphs 42

Algorithm 3: A k-cycle for the DECM.

Input: G, z, α̂ and β̂;
1 if z ∩ F ̸= ∅ then return G;
2 x←Wz(G);
3 ∆l ← −mini (x2i+1) and ∆u ← mini(x2i);
4 if ∆u = ∆l = 0 then return G;
5 Let zl and zu be edges corresponding to elements of x+ a∆l and x+ a∆u that are zero

respectively;
6 nl ← |zl| and nu ← |zu|;
7 pl ← pu ← pint ← 0;

8 if dm(Gx+a∆l
) = 1 and nl ≥ nu then pl ←

∏

uv∈zl
e−α̂u−β̂v ;

9 if dm(Gx+a∆u
) = 1 and nu ≥ nl then pu ←

∏

uv∈zu
e−α̂u−β̂v ;

10 Let ∆∗ ∈ (∆l,∆u);
11 if dm(Gx+a∆∗) = 1 and nu = nl = 1 then pint ← ∆u −∆l ;
12 p∗ ← pl + pu + pint;
13 if p∗ = 0 then return G;
14 u ∼ Unif[0, p∗];
15 if u < pl then ∆← ∆l;
16 else if u < pl + pu then ∆← ∆u;
17 else ∆ ∼ Unif(∆l,∆u);
18 return Gx+a∆;

NOTES: G is the current state of the chain, while z is a set of coordinates of the form (3.9). α̂ and β̂

are n-vectors. Here, Gx refers to the graph obtained by assigning weights x to edges along the k-cycle,
i.e. edges in z.

where µt is the uniform distribution on Lt, and κt = e−(αu1+βv1 )+ e−(αu2+βv2 )+∆u−∆l.
Qt in the remaining cases (shown in 3.14) are found similarly. Of course, Qt is not the
distribution of interest, as we also need to approximately condition on the degrees. This
is straightforward and consists of restricting Qt to the appropriate parts of Lt, as was
outlined in Section 3.5.2. Direct sampling from both Qt and Qt given approximate degrees
is straightforward. For general densities, however, the line integral would typically need
to be computed by numerical integration. Furthermore, direct sampling from µt may not
be possible, and could require more sophisticated methods like rejection sampling.

3.5.3 Performing the k-cycle

We are now ready to describe the full k-cycle for the DECM. π-invariance is automatically
satisfied since we sample directly from the full conditional. One remaining issue, however,
is that the parameter vectors α and β in (3.3) are unobserved. The full conditional still
depends on these because the degrees have not been conditioned on exactly. Nonetheless,
their inŕuence is small when conditioning on dm for small m. One option is to assume
α = β = 0 so that they do not appear in the distribution. Another option is to estimate
them via maximum likelihood. Algorithm 3 gives pseudocode for the algorithm, which
uses some assumed values α̂ and β̂.



3.5 Randomizing Weighted Graphs 43

3.5.4 Combining k-cycles

This section introduces an auxiliary variable method of selecting k-cycles. The k-cycle
chosen at each iteration depends on the current state of the chain. This allows for better
mixing in both sparse and dense graphs.

Motivating kernel selection

To motivate our method, first recall the rewiring moves (discussed in Section 3.5.1)
used for randomizing unweighted directed graphs. The move selects two edges u1v1 and
u2v2 randomly and attempts to replace them with u1v2 and u2v1. This is only possible
if both u1v2 and u2v1 are not already in the edge set. If the network is sparse, then
the edge replacement has a high probability of succeeding. If it were dense, however,
similar performance could be achieved by instead selecting u1v1 and u2v2 from the set of
non-edges, rather than edges.

Closely related to the rewiring chains is a random walk that operates directly on the
graph’s adjacency matrix. This is often referred to as a checkerboard swap or tetrad
move (Artzy-Randrup and Stone, 2005, Stone and Roberts, 1990, Verhelst, 2008, Rao
et al., 1996, Diaconis and Gangolli, 1995). It selects a 2× 2 submatrix at random and
attempts to modify it with either

(

+1 −1
−1 +1

)

or

(

−1 +1

+1 −1

)

,

and rejects if the resulting adjacency matrix is invalid. When successful, the move
performs the same update as a rewiring move. However, the nodes are in effect chosen
randomly, and so the performance will be poor in both sparse and dense graphs as the
rejection rate is prohibitively high.

These local moves can be seen as Markov kernels, and the method of selecting them
is referred to as kernel selection. The above discussion highlights the impact that kernel
selection has on the practical efficiency of the resulting chain. Such considerations are
exacerbated in the context of k-cycles; Proposition 3.5.2 shows that for P -almost all
graphs, a k-cycle is unable to propose a new graph if there is more than one zero weight
along the cycle.

The naive approach would be to first sample k ∈ {2, . . . , n} and then each of
(u1, . . . , uk) and (v1, . . . , vk) uniformly from the node set N without replacement. The
k-cycle is then formed as in (3.9). This is analogous to the checkerboard/tetrad moves
previously discussed, and is the approach used in Gandy and Veraart (2016). In sparse
graphs, however, the chance of only one zero cycle-weight is small, and the sampler can
be prohibitively slow. Our aim in this section is to define a better strategy.
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Cycle selection as an auxiliary variable

The method of selecting a k-cycle can be interpreted as an auxiliary variable. Formally,
let Z be the index set of all possible k-cycles, which corresponds to the collection of
all sets of the form (3.9). Note that permutations of (3.9) are considered equivalent
here. We want the selected cycle Z ∈ Z to depend on the current state of the chain
G ∈ Gm(d0, s0). Therefore, we let Z ∼ qG where qG is the state-dependent distribution of
Z.

Selecting k-cycles this way does not generally maintain π-invariance. For this, we
must extend the state space to include the selection variable, and consider the properties
of the Markov chain on the joint space. Formally, define the product space Z×Gm(d0, s0).
The iterated integrals

π̃(g) :=

∫ ∫

g(z,G)qG(dz)π(dG),

for all non-negative Borel-measurable g define a distribution π̃ on the joint space. Starting
from (z,G), the extended chain first samples z′ ∼ qG, and proceeds to update the edge
weights along the k-cycle defined by z′. If the extended chain is π̃-invariant then the
marginal chain on Gm(d0, s0) is π-invariant. To maintain π̃-invariance, we simply need to
adjust the full conditional of the weights along a k-cycle to additionally condition on Z.

An efficient selection strategy

We prioritize selecting cycles that have some chance of moving the chain to a new state.
The main limitation of naively selecting k-cycles is sparsity. We therefore select new
nodes by constructing an ‘alternating’ cycle of out-edges and in-edges. We require two
neighborhood sets associated with each node. These are

N−
G (u) := {v ∈ N : auv = 1}

N+
G (u) := {v ∈ N : avu = 1},

which are the out-neighbours and in-neighbours of u respectively. We start by sampling
k according to some distribution Γ on {2, . . . , n}. This should be positive everywhere to
improve the stochastic stability of the sampler. We then sample u1v1 uniformly from
the set of all edges in the graph. Starting from u1, the remaining nodes are sampled by
alternately walking through the out-neighbours and in-neighbours of the previous node.
The full strategy is shown in Algorithm 4.

If the algorithm terminates at line 10, the resulting k-cycle has at most one zero
weight and no fixed edges. If instead it returns ∅, then the strategy has failed to select a
k-cycle and the Markov chain remains at the current state. If k is small in comparison
to the size of the network, nodes generally have more than two edges, and the pattern
of prohibited edges F is not particularly complex, then the chance of failing to find a
k-cycle is small.
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Algorithm 4: k-cycle selection strategy.

Input: G;
1 k ∼ Γ({2, . . . , n});
2 u1v1 ∼ Unif({uv : auv = 1});
3 for l = 2 to k do

4 if d−ul−1
(G) ≤ 1 then return ∅;

5 vl ∼ Unif(N−

ul−1
(G) \ {vl−1});

6 if d+vl
(G) ≤ 1 then return ∅;

7 ul ∼ Unif(N+
vl
(G) \ {ul−1});

8 if ∃i, j distinct such that either ui = uj or vi = vj then return ∅;
9 if ukv1 ∈ F then return ∅;

10 return {u1v1, u1v2, . . . ukvk, ukv1}
NOTES: G is the current state of the chain. Line 9 only checks if ukv1 is a prohibited edge because all
other edges have positive weights, which by assumption implies they are not prohibited (see Section 3.4).

Algorithm 5: One iteration of the complete sampler.

Input: G, α̂, β̂
1 z ← output of Algorithm 4 applied to G;
2 if z = ∅ then return G;

3 G′ ← output of Algorithm 3 to G, z α̂ and β̂, but adding pl ← γlpl and pu ← γupu after
line 9 ;

4 return G’

NOTES: Input are the same as in Algorithm 3. The adjustment to Algorithm 3 in line 3 accounts for
the state-dependent selection of the k-cycle.

3.5.5 The Overall Sampler

One iteration of the full sampler tries to select a k-cycle with Algorithm 4. If successful,
it then samples cycle-weights from its full conditional. Recall, however, that this must
be adjusted to also condition on Z, which is the cycle selection variable.

To achieve this, let z ∈ Z be a cycle chosen by Algorithm 4, and recall the notation
where Gx refers to the graph obtained by allowing cycle-weights to take the value x. For
such cycles ∆u −∆l > 0. Let γl and γu be the ratio of the probability of selecting z
from Gxl and Gxu to the chance of selecting it from some graph G∗ := Gx+a∆ satisfying
∆ ∈ (∆l,∆u). Assume also that there are no positive ties along the cycle-weights (positive
ties are P -null). Then by following Algorithm 4, one can deduce that

γl =
M

M − 1

(d−u1(G
∗)− 1)(d+v1(G

∗)− 1)
∑

uv∈z(d
−
u (G∗)− 1)(d+v (G∗)− 1)

(3.18)

γu =
M

M − 1

(d−u2(G
∗)− 1)(d+v2(G

∗)− 1)
∑

uv∈z(d
−
u (G∗)− 1)(d+v (G∗)− 1)

, (3.19)

whereM is the total number of edges inG∗, and u1v1 and u2v2 are the edges corresponding
to the zero weights in xl and xu respectively. Conditioning on the cycle selection strategy
simply requires adjusting the boundary probabilities by the factors γl and γu. This is
shown in Algorithm 5, which presents the full sampler.
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3.6 Stochastic Stability

Here we attempt to provide conditions under which the chain we have introduced is
ergodic; i.e. that it admits a unique invariant distribution. All proofs are provided in
Appendix B. Ergodicity justifies the use of Monte Carlo averages through Birkhoff’s
ergodic theorem, which states that if {Gl}∞l=0 is a Markov chain with unique invariant
distribution π, and h is integrable, then

1

L

L−1
∑

l=0

h(Gl)→ E(h(G))

as L→∞, and where the expectation is taken under π.
Throughout this section, we fix degrees and strengths (d, s) and some m > 0, and

consider the chain designed to sample from Gm(d, s). Proving irreducibility (Definition
3.6.3) in the general case is difficult, and we can only provide results for m ≥ n, i.e.
when there is in effect no conditioning on degrees. Further work is required to establish
conditions for m < n. Nonetheless, our simulations appear to show that the sampler
can traverse many topologies even when m = 1, and is capable of rapidly reaching the
mode of π when the initial state is far in the tail of π. An example of this is provided in
Section 3.7.1.

Now assume that m ≥ n. It turns out that the chain is not ergodic for all strength
sequences. Nonetheless, ergodicity holds for strength sequences produced by P -almost

all graphs. To formalize this idea, let {Ui × Vi ⊆ N2}i∈I be a collection of non-empty
and distinct sets for which

∑

u∈Ui

s−u =
∑

v∈Vi
s+v , (3.20)

and such that there does not exist non-empty U × V ⊂ Ui × Vi on which (3.20) holds.
Let G̃m(d, s) ⊆ Gm(d, s) be the set of graphs for which uv is an edge only if uv ∈ Ui × Vi
for some i ∈ I. Ergodicity will hold for admissible strengths, as defined in Definition
3.6.1.

Definition 3.6.1 (Admissible Strengths). The strength vector s is admissible if {Ui}i∈I
and {Vi}i∈I each partition N and G̃m(d, s) is non-empty.

Notice that (3.20) is always satisfied for Ui = Vi = N . If these are the unique sets
satisfying (3.20), then admissibility simply requires that the reference set is non-empty.

Proposition 3.6.2 verifies that if the network is generated from some law absolutely
continuous with respect to P , then the observed strengths will not be inadmissible. It
also has implications for the topology of graphs that produced the strengths.

Proposition 3.6.2. The set of graphs producing inadmissible sequences is P -negligible,

where P is as defined in Section 3.4. Moreover, for any admissible s the set of graphs

not in G̃m(d, s) is P -negligible.
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Loosely speaking, ergodicity of a chain requires that it is irreducible, aperiodic and
recurrent. By construction, the chain is aperiodic and has a unique invariant distribution,
which will imply that it is recurrent. Therefore, the work is in demonstrating the property
of irreducibility, defined as follows.

Definition 3.6.3 (φ-irreducibility). A Markov chain on (X ,B) with kernel Φ is φ-

irreducible if there exists a measure φ on B such that for all x ∈ X and A for which

φ(A) > 0, there exists some n > 0 satisfying Φn(x,A) > 0.

Definition 3.6.3 shows that one can choose an arbitrary measure φ when establishing
irreducibility. If the property is satisfied, then there exists a unique (up to null sets)
‘maximal’ irreducibility measure ψ, in the sense that any other irreducible measure must
be absolutely continuous with respect to ψ. For more details on this, see Meyn et al.
(2009, Chapter 4). The next proposition ties irreducibility to admissibility of the strength
sequence.

Proposition 3.6.4. If the strength vector s is admissible, then the resulting Markov

chain is φ-irreducible.

Suppose s is admissible. By construction, π is an invariant distribution of the chain.
Since the chain is also ψ-irreducible, it is recurrent (Meyn et al., 2009, Proposition 10.1.1)
and the invariant distribution is unique (Meyn et al., 2009, Proposition 10.4.4). This
distribution is then the maximal irreducibility measure. This discussion is formalized in
the following corollary.

Corollary 3.6.4.1. If s is admissible, then the resulting chain has π as a unique invariant

distribution.

3.7 Experiments

Here we assess the performance of the sampler introduced in Section 3.5. The sampler
was coded in C++, and all experiments were performed on an Intel Core i5 2GHz CPU.
We first empirically analyze its efficiency in Section 3.7.1. This will demonstrate its
ability to randomize large networks. In Section 3.7.2, we use the sampler as a null model
for detecting patterns in weighted networks and compare its performance to competing
methods.

3.7.1 Efficiency of the Sampler

We use the sampler to randomize a large, sparse, and highly structured network. The
randomization maintains strengths exactly and keeps all node degrees within ± 1 of
the initial network. The graph to be randomized has n = 103 nodes, 250 of which are
assigned as ‘core’ nodes, and 750 as ‘periphery’ nodes. The core is partitioned into 5
cliques of 50 nodes, while the periphery is partitioned into 75 cliques of 10 nodes. The
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subgraph of each clique is complete; that is every node has a directed link to all other
nodes in the community. All 80 clique are connected by a single bridge to the rest of
the network. Specifically, we add 79 ‘bridge’ links by creating a single link from the first
clique to the second, a link from the second to the third, etc. Weights of all edges are
sampled independently from the exponential distribution with mean 103.

The adjacency matrix of this network is shown in the top left panel of Figure 3.2. This
initial state is far from the mode of the conditional distribution, which is concentrated on
matrices similar to that in the bottom right panel. The network is particularly difficult
to randomize because creating links between cliques requires first choosing a k-cycle that
includes a bridge link. Nonetheless, the sampler reached the network in the bottom right
panel in under 35 seconds. We also attempted the randomization without the auxiliary
kernel selection method of Section 3.5.4, instead selecting cycles as in Gandy and Veraart
(2016). However, this approach was unable to reach the mode within a reasonable time.
This demonstrates the importance of the state-dependent kernel selection for the efficiency
of the sampler.

Recall that in Section 3.6 we considered the irreducibility of the chain. We were,
however, only able to obtain results for m ≥ n, i.e. when there is no conditioning
on the degrees. This experiment has almost exactly conditioned on the degrees, and
shows that the sampler remains capable of rapidly randomizing the network, and also of
traversing different graph topologies. Although this certainly does not constitute a proof
of irreducibility, it warrants further research in this direction.

3.7.2 Significance of Community Structure in Benchmark Networks

This section uses the sampler to assess community structure in simulated networks,
and compares the method’s performance to alternative null models in a power study.
The ground-truth community structure in the networks is known. Such ‘ground-truth’
networks are usually simulated and are often termed benchmark models. Below, we
introduce the benchmark model used and detail the parameters used for the simulation.
We then describe the power study, competing methods and present the results.

Degree and Strength Corrected Stochastic Block Model

An early benchmark for unweighted and undirected graphs was suggested by Girvan and
Newman (2002). Although simple, it does not account for heterogeneous community sizes
and degrees. Modeling realistic degree distributions, which are heavy-tailed, is critical
to the suitability of a benchmark. Heavy-tailed degrees can lead algorithms to group
nodes with large degrees, irrespective of their true memberships (Karrer and Newman,
2011). Lancichinetti et al. (2008) introduced the LFR benchmark, which overcomes these
shortcomings. This was extended to weighted and directed graphs in Lancichinetti and
Fortunato (2009). Here we use a benchmark model that accounts for heterogeneous
group sizes, degrees and strengths. The benchmark is simple and similar in spirit to the
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(a) Initial Graph (b) 106 Iterations

(c) 2× 106 Iterations (d) 3× 106 Iterations

(e) 4× 106 Iterations (f) 15× 106 Iterations

Fig. 3.2 Adjacency matrices of networks at different stages of the randomisation.
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weighted stochastic block models (WSBMs) proposed in Aicher et al. (2015) and Palowitch
et al. (2018).

The model is a straightforward generalization of the null model introduced in Section
3.3.2, with an additional parameter to control tendency towards clustering. It is defined
for n > 1 nodes and K > 1 possible community assignments. Recall from Section 3.3.2
the n-vectors α, β, ϕ and ψ, where we constrained ϕu < 0 and ψu < 0. Let c be a
n-vector representing a community partition of the nodes, so that cu ∈ {1, · · · ,K}. The
strength of community structure is controlled by a scalar parameter θ ≥ 1 that, roughly
speaking, represents the relative edge formation probability (or average edge weights)
for intra-community compared to inter-community links. Each potential edge uv is
associated with a factor θcucv , which is equal to θ if cu = cv, and is otherwise 1.

We describe the model at the edge-level, which will suggest a generative approach to
drawing samples from it. As in Section 3.3.2, edges are assumed conditionally independent
given the parameters, and thus this description will fully define the likelihood for the
network. The probability that an edge forms between two distinct nodes is

P{wuv > 0} = min

(

eαu+βv

eαu+βv + λuv
θcucv , 1

)

, (3.21)

where λuv = −ϕu − ψv. Conditional on edge existence, the weights are exponentially
distributed with mean

E[wuv | wuv > 0] =
θcucv
λuv

.

This model can be seen as a stochastic block model generalized to account for a
wide range of degree and strength distributions. When θ = 1 it collapses to the null
model of Section 3.3.2. The model can be extended in multiple ways. We have assumed
no background nodes and no overlapping communities. For possible ways to extend in
this direction, please see Palowitch et al. (2018). In addition, θ could be replaced with
group-specific parameters.

Simulation Parameters

The distribution of group sizes, degrees and strengths are chosen to reŕect the heavy-
tailed nature of these quantities in real networks. For this, we follow an approach that
is close to Lancichinetti and Fortunato (2009). Formally, we iteratively draw group
sizes from a discrete power law with exponent α1 truncated to between smin and smax.
Continue drawing new communities until the sum of all sizes is at least n, and then scale
sizes proportionately until the total size is n. We then randomly assign nodes to the
communities, such that the group sizes are respected.

We now describe all parameter values used in the simulations. The simulation requires
applying our sampler thousands of times to different simulated networks. For this reason,
we consider only relatively small networks by letting n = 102. For drawing group sizes, we
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let α1 = 2, smin = n/5 and smax = 3smin/2. The parameter θ, which induces community
structure, will be varied on a grid to assess the power of different methods at detecting
deviations from the null.

Competing Null Models

The proposed method is compared to two alternative null models. The first is a weighted
version of the Erdős-Rényi model (WER). Let G be a draw from the benchmark model,
and aT :=

∑

u,v auv(G) and wT :=
∑

u,v wuv(G) be the number of edges and total edge
weights in G respectively. WER draws independent and identically distributed edges
according to

P{wuv > 0} = aT
n(n− 1)

,

with u and v distinct. Weights are then exponential with mean

E(wuv | wuv > 0) =
wT
aT

.

The second model considered is the continuous configuration model (CCM) introduced in
Palowitch et al. (2018). This is a weighted extension of the Chung-Lu model (Chung and
Lu, 2002a,b) and, unlike WER, has the advantage of matching the degrees and strengths
of G in expectation. Edges are formed independently with probability

puv := P{wuv > 0} = min

(

d−u (G)d
+
v (G)

aT
, 1

)

,

and weights are exponential with mean

E(wuv | wuv > 0) =
s−u (G)s

+
v (G)

wT

1

puv
.

CCM must permit self-loops, else the degrees and strengths of G are not correctly
matched.

The Power Study and Results

The study is split into two phases. In both parts, we are interested in assessing the power
of the competing methods at correctly detecting community structure, where the level
of such structure is controlled by θ. This parameter will be varied from no clustering
to levels where the clustering is quite apparent. Formally, we consider θ ∈ {θ1, . . . , θL}
where 1 = θ1 < . . . < θL. For each method and θl, we repeatedly complete the following
three steps.

• Draw G according to the benchmark model for θl, and with all other parameters
as described in Section 3.7.2. Compute t0 = T (G), where T is some statistic
measuring the strength of clustering.
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• Draw samples G(1), . . . , G(N) using the method and let t1, . . . , tN be the associated
test statistics.

• Compute the empirical significance (p-value) as in (3.2).

This process is repeated 5 × 103 times to obtain a distribution over the significance
statistics. If a method performs well, then the p-values should be roughly uniformly
when θ = 1 and have high power for θ > 1.

The first phase of the study pretends that the true communities in the benchmark
graphs are unknown, and applies a standard community detection algorithm to recover
the structure. For this, we employ WalkTrap (Pons and Latapy, 2005), however note that
numerous alternatives could be used instead. The algorithm returns a graph partition,
and we let T be modularity computed on this partition. Figure 3.3 shows the comparative
performance of different methods as θ is varied from 1 to 2 in increments of 0.2. The
figure shows that the proposed method outperforms the competing null models. In
particular, when θ = 1 the null model which conditions tightly on degrees (±1) is close
to uniform, as desired. This is not the case for either WER or CCM. Our method has
a power advantage over both WER and CCM when the clustering effect is quite slight.
This is expected: conditioning can act to improve relevance to the data at hand, and
improve power against subtle alternatives. All methods perform well when θ is large.

The second phase looks to better understand the effect that approximate conditioning
on the degrees has on the performance of the method.To illustrate this, we use a statistic
that is deliberately sensitive to graph density. This is

T (G) :=
∑

u,v

auv(G)δ(cu, cv),

where δ is the Kronecker delta function. This measures total within-community edges.
In practice, this statistic would not be used because we have modularity, which explicitly
measures clustering relative to the configuration model and thus accounts for degree
distributions. Nonetheless, it is not possible to make general graph statistics invariant to
degree distributions, and so this example still has strong practical implications.

Figure 3.3 presents the results for the second phase. When θ = 1, none of the null
models are exactly uniform and there appears to be a bias towards high p-values. This is
expected, as T is highly sensitive to degrees. Nonetheless, when degrees are conditioned
±1 we get quite close to uniform because the effect of the unknown parameters (which
were estimated by MLE) is minimized. Again, we see that approximate conditioning
improves power against subtle alternatives.
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(a) First phase.
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Fig. 3.3 Comparative performance of different null models in the power study. Slack m refers to
the null model where node degrees are maintained ±m. When m = 1 degrees are almost exactly

conditioned on. Slack 100 in effect performs no degree conditioning.
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3.8 Discussion

This chapter has suggested a null model for weighted graphs. The model fixes node
strengths and approximately fixes node degrees to within ±1 of the values of an observed
network. It can be employed to assess the statistical significance of patterns observed in
networks. We have proposed an MCMC sampler for drawing samples from the model,
and have shown empirically that it is capable of sampling large and sparse networks.
This sampler uses similar techniques to those employed in Chapter 2 to achieve this. We
performed an extensive power study to compare the performance of the null model to
alternatives. The model compares favorably and appears capable of detecting subtle
patterns, while also effectively controlling for nodal heterogeneity. The work in this
chapter can be extended in a number of ways: a discussion of these is deferred to Chapter
7.



4
Exact Tests for the Correctness of MCMC and Other

Monte Carlo Methods

The previous two chapters developed novel MCMC methods for conditional graph sam-
pling. These rely on involved derivations of conditional distributions, and of theoretical
properties. Such algorithms have a large scope for error, either in these derivations, or
in the actual implementation of the sampler. This raises a general question of how we
can test that the method indeed has the correct invariant distribution. This chapter
develops new approaches for this, which, we believe, should be used as a routine part of
a Bayesian workŕow. The proposed methods are generally applicable to both MCMC
algorithms and other Monte Carlo methods.

When constructing unit tests for MCMC samplers, there is a sensitivity/specificity
trade off. The tests we introduce are unique in being exact; we can bound the type 1
error from above. This allows us to embed the test in a sequential framework to make the
type 1 error arbitrarily small while maintaining high power in detecting genuine errors.

4.1 Introduction

Markov chain Monte Carlo methods are the main workhorse of Bayesian statistics. These
methods are used to approximate posterior expectations which are otherwise analytically
intractable. While there exist numerous diagnostics to assess convergence of the Monte
Carlo estimates to some value, few articles address whether they converge to the correct

values (Geweke, 2004, Cook et al., 2006, Talts et al., 2020).
MCMC often requires difficult derivations of marginal and conditional distributions

(Geman and Geman, 1984), and derivatives of log densities (Roberts and Stramer, 2002,
Duane et al., 1987, Girolami and Calderhead, 2011). Increasingly sophisticated algorithms
raise the scope for analytic errors in these derivations, as well as of implementation
errors. Testing for such errors should be an integral and routine part of the workŕow
of any Bayesian analysis using MCMC. This chapter proposes new hypothesis tests
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to accomplish this. These tests are unique in being exact; they have guaranteed false
rejection probability, which can theoretically be made as small as desired.

MCMC algorithms yield dependent samples, limiting the usefulness of existing
procedures for detecting sampler errors (Geweke, 2004, Cook et al., 2006, Talts et al.,
2020). This is because the exact distribution of the test statistics under the null measure
is not known, and as a consequence, there is no guarantee over the false rejection
probability. This has important practical implications. The obvious consequence is that a
researcher applying the methods cannot always determine whether the test failed because
of dependency between samples, or alternatively because of actual sampler errors that
require further investigation. This could lead to a waste of valuable researcher time if
they try to find errors that do not exist. Alternatively, errors could go undetected as
they are explained away by correlation between samples.

One solution to sample dependency is to thin the chain, i.e. to subsample at given
intervals to obtain approximately independent samples. This is the technique suggested
in Talts et al. (2020). The integrated autocorrelation time is the number of steps required
for a chain to forget its initial state. If this can be estimated well, then subsampling can
be used to yield effectively independent samples. Unfortunately, reliable estimation of
the quantity is widely considered challenging (Sokal, 1997). The target distribution is
often multi-modal and incomplete sampling can lead to underestimating the quantity.
Even supposing access to a good estimate, it will often be too large to be of practical use.

Many sampler errors can be detected in fewer iterations than required for independent
samples. Because independence is not required, we can detect these faster than alternate
methods, making the tests more efficient in many practical scenarios. The two suggested
tests use ideas already present in the literature. One test relies on ideas suggested in
Besag and Clifford (1989). The theoretical results of this paper are extended by allowing
ties in the observations and a more general definition of ranks. The other test generalizes
a method proposed in Gandy and Veraart (2016) to test a specific sampler.

We envisage that the new methods would be particularly useful in unit testing of
MCMC and Monte Carlo methods. Unit testing is a standard part of the software
development process (Runeson, 2006). Individual units of a piece of software are being
tested, To demonstrate their functionality. Frameworks for implementing unit tests are
available in many programming languages (Wikipedia contributors, 2019), for example
Wickham (2011) in the R language. Tests are generally re-run after changes to the
software, to ensure continued functionality. There can be a substantial number of tests
in any piece of software - so it is important to keep the computational effort reasonable
for a test that passes. Once a test fails, debugging of the code will usually be needed to
pinpoint (and fix) the source of the error.

When used for unit testing, the tests for MCMC chains could be used for individual
types of updates of e.g. a Gibbs sampler or of a reversible jump MCMC sampler. The
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tests are constructed to test if the chain (or the step of the chain) has the correct invariant
distribution. It is not testing if the chain is recurrent.

When using the above-mentioned methods or other (goodness-of-fit) tests based on
simulated data in unit testing, one faces a trade-off between the false rejection rate, the
power, and the sample size. Typically, one would like to have a (very) low false rejection
probability, as investigating potential errors is time-consuming. Also, as mentioned above,
the computational effort if no errors are present should be low. This immediately places
bounds on the alternatives that one can detect. We present a sequential method that
improves the position in this regard. It sequentially executes the test, and repeats the
test only if the test yields moderate evidence for departure. This sequential approach is
useful for general Monte Carlo tests and not just the two MCMC approaches.

Previous methods introduced to tackle this problem are discussed in Section 4.1.1.
Section 4.2 proposes the new exact tests for MCMC samplers. Section 4.3 discusses how
to embed exact tests into a sequential testing procedure to increase power and reduce the
false rejection rate. As mentioned, this is useful for unit testing and applies to more general
Monte Carlo methods. Section 4.4 presents a simulation study comparing our approach
to previous methods. Section 4.5 applies our methods to an RJ-MCMC algorithm
proposed by Andrieu and Doucet (1999). Conclusions are summarized in Section 4.6.
The tests have been implemented in an easy to use R-package that immediately slots
into the existing unit testing framework for R (Wickham, 2011). This is available at
https://bitbucket.org/agandy/mcunit. Proofs can be found in Appendix C.1.

4.1.1 Related Literature for Testing Samplers

Geweke (2004) was the first article to formally consider the problem of detecting errors
in MCMC samplers. Their method compares samples obtained using two techniques for
drawing from the joint distribution of parameters and data. The first simulates directly
from the generative model. The second is a Gibbs sampler, alternating between drawing
parameters given data (using the MCMC sampler) and data given parameters. Z-tests
are used to compare estimates of moments of the joint distribution. The downside of
this approach is that the Gibbs sampler will generate dependent samples. In practical
applications, the parameters and data can be highly correlated, and a high computational
effort is required to control the false rejection rate.

Cook et al. (2006) propose tests based on sampled posterior quantiles in the Bayesian
framework. The authors crucially observe that drawing θ from the prior and y from
the likelihood implies that θ is an exact sample from the posterior given y. A sample
θ1:L from this posterior distribution is simulated using the sampler to be tested, and the
empirical quantile of θ is computed among this sample. Unfortunately, the suggested
limiting distribution of this quantile is incorrect (Gelman, 2017), and the proposed tests
are not applicable when there is sample dependency, as is the case with MCMC.

https://bitbucket.org/agandy/mcunit
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Talts et al. (2020) proceed identically to Cook et al. (2006), but instead of using
the empirical quantile of θ among θ1:L, they compute its rank. Due to discretization
effects, the empirical quantile cannot be expected to be uniform on [0, 1], however if
the samples are independent and continuous, then the rank statistic is exactly uniform
on {1, ..., L}. Repeating this procedure multiple times gives a sample of ranks which
can be compared to this uniform distribution. Rather than constructing a formal test,
the authors advocate visually assessing goodness of fit using histograms. The authors
propose using thinning to deal with dependent samples when using an iterative simulator
like MCMC. Unfortunately, this leaves the method prone to the aforementioned problems
associated with subsampling Markov chains.

4.2 Exact Tests for Errors in MCMC Samplers

In this section, we describe two tests for detecting sampler errors for MCMC samplers.
Analogous tests for simple Monte Carlo methods would be standard statistical tests such
as goodness-of-fit tests.

Assume parameters θ ∈ Θ and data y ∈ Y are modeled as a product of prior and
likelihood π(θ)p(y | θ), and that one can independently draw parameters from the prior
and data from the likelihood.

Further, assume that the MCMC implementation is designed to work for all possible
data y ∈ Y . In a Bayesian analysis, we would observe yobs and construct a Markov chain
with kernel Kyobs to estimate expectations of functions with respect to the posterior
π(· | yobs). If the data is implemented as an argument, then the sampler is a collection
of kernels {Ky : y ∈ Y} such that each Ky is expected to have invariant distribution
π(· | y).

This motivates the null hypothesis that Ky is π(· | y)-invariant for all y ∈ Y. The
tests do not specifically check Kyobs , but rather the viability of the sampler over all
possible data values. For example, if only the kernels corresponding to a null set of data
has errors, then the tests would not be able to detect this.

The null hypothesis will be false if there are errors in the sampler, broadly charac-
terized as either design or implementation errors. Design errors correspond to having a
wrong model for the sampler, and may include mistakes in derived quantities required
for sampling, or a mistake in understanding of how a particular sampler works. Imple-
mentation errors refer to an incorrect execution of a given design, regardless of whether
that design is correct. These are likely to be errors in the written code.

Both proposed methods are essentially goodness of fit tests which compare a computed
sample of statistics to another distribution. By exact, we mean to say that the distribution
of the sample is exactly known under the null hypothesis. We do not mean to imply that
the p-value is computed exactly. In practice, cheaper inexact methods may be used to
compute the p-values; for example, using a χ2 test in the discrete case. This is of little
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consequence because the sample size can be explicitly controlled in the test. For a large
enough sample, the p-value will be as if exact.

Our tests are not designed to investigate the mixing behavior or the ergodicity of
the Markov chain. A Markov chain can be correctly implemented yet slow mixing.
Researchers wishing to diagnose slow mixing can instead refer to the vast literature on
the subject (Cowles and Carlin, 1996). Properties required for full ergodicity, including
irreducibility and aperiodicity, are typically easy to establish for continuous distributions,
and may require proof otherwise.

Section 4.2.1 details a basic test which uses the Markov chain to yield samples which
should be indistinguishable from independent samples drawn from the generative model
under the null. This idea generalizes a method described in the supplementary material
of Gandy and Veraart (2016) to test a specific MCMC sampler. Section 4.2.2 considers a
more elaborate test based on uniformity of rank statistics. This uses ideas from Besag
and Clifford (1989).

4.2.1 Exact Two-Sample Tests

This method samples from the model in two different ways. The first simply samples
directly using the generative model, while the second starts by sampling directly, but then
propagates the sample parameters L steps forward using the MCMC sampler. Formally,
samples are generated with the sequence of steps

θ′ ∼ π(·),
y′ ∼ p(· | θ′),
θ ∼ KL

y′(θ
′, ·).

θ′ is a perfect sample from π(· | y′), and so initiating the chain at θ′ implies that θ is also
exactly from the posterior under the null hypothesis. Since y′ is marginally correct, this
implies that θ is unconditionally a sample from the prior. Moreover, if the procedure is
repeated, each sample will be independent. Samples generated this way are described
as fitted samples, while those generated directly from the model are direct samples.
Algorithm 6 details the generation of these samples.

Any appropriate goodness of fit test can be employed to compare the fitted and direct
samples. Under the null, these are independent and identically from the joint distribution
of data and parameters. The most appropriate test to use will depend on the alternative
hypotheses considered, and so we avoid prescribing a specific test here. If the samples
are continuous, one may use the two-sample Kolmogorov-Smirnov test, the Cramer-von
Mises test or the Wilcoxon signed rank test. If discrete, a likelihood ratio test or the
Pearson’s χ2-test could be used. If the form of the prior is particularly simple, there may
be no need to sample from it, and one could instead use a parametric one-sample test.
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Algorithm 6: General algorithm to perform a two-sample test as described in Section

4.2.1.

1 for n = 1 to N1 do
2 Draw θ̃ ∼ π(·);
3 Draw ỹn ∼ p(· | θ̃);
4 Run Markov chain L steps from θ̃ to obtain θ̃n ∼ KL

ỹn
(θ̃, ·);

5 for n = 1 to N2 do
6 Draw θn ∼ π(·);
7 Draw yn ∼ p(· | θn)
8 Compare independent samples {(θ̃n, ỹn)} and {(θn, yn)};

NOTES: N1 and N2 are the number of fitted and direct samples respectively.

Algorithm 6 is similar to that proposed by Geweke (2004), the key difference being
that the data is resampled before each MCMC step. This guarantees independence of
samples, which will be useful for controlling the false rejection rate whenever there is
high correlation between data and parameters.

The method can be extended by iteratively updating both data and parameters. Line
4 could be replaced by repeating, L times, the step θ̃ ∼ Kỹn(θ̃, ·) followed by ỹn ∼ p(· | θ̃).
This is just a Gibbs sampler and, letting θ̃n be the final parameter, (θ̃n, ỹn) clearly has
the same distribution as (θn, yn) under the null. This extension may improve power in
certain circumstances, as is shown in Section 4.4.2.

4.2.2 An Exact Rank Test

Algorithm 6 may suffer low power for detecting certain errors. Sometimes, there may
be mistakes in each conditional, which when aggregated are undetectable in the joint
distribution of data and parameters. An example of this is shown in Section 4.4.1. Here
a test is proposed that, similar to Talts et al. (2020), compares a sample of rank statistics
to the uniform distribution. Each statistic is computed using multiple samples from
a single posterior distribution, and so it may better detect divergences that might be
averaged out in the joint.

This comes at the expense of requiring each Markov kernel Ky to be reversible with
respect to π(· | y). This is not particularly restrictive: most MCMC algorithms are
reversible by design, because showing reversibility is the easiest way to prove invariance
with respect to a target distribution. Many of the most commonly used algorithms are
reversible, including Metropolis Hastings, Hamiltonian Monte Carlo and slice sampling.
Although samplers using composition of kernels are not reversible (for example, system-
atic scan Gibbs sampling), the constituent kernels can still be tested if they are each
individually reversible.

Rank statistics which break ties in a vector must be considered, so that the null
distribution of the rank is exactly uniform. The generalization is as follows. In the
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following Sn is the set of permutations of {1, . . . , n}, i.e. the set of vectors s ∈ {1, . . . , n}n
such that si ̸= sj for all i ̸= j.

Definition 4.2.1. A function R : Θn → Sn is an ordinal ranking for vectors θ1:n ∈ Θn.

Any function which can assign the same rank to two elements of a vector θ1:n does
not satisfy Definition 4.2.1.

The general idea behind the test is as follows. First draw θ from the prior and y

from the likelihood. The kernel Ky is used to draw samples from the posterior, and the
rank of θ among these samples is computed. Replicating this procedure multiple times,
the resulting rank statistics will be exactly uniform under the null. Any of a number
of goodness-of-fit tests can then be used. Algorithm 7 details the generation of a single
rank statistic.

How the posterior samples are drawn has important implications for the uniformity of
the rank statistics. Imagine, for example, using the MCMC sampler to realize a Markov
chain θ1:L initiated at θ1 = θ. Given some ordinal ranking R, the null distribution of
R1(θ1:L) is generally not uniform on {1, . . . , L}. Although each element of the chain is
of course marginally π(· | y), the chain has Markovian dependence and its components
are not exchangeable.

Assuming only reversibility, this can be rectified using a technique suggested in Besag
and Clifford (1989), which is extended here to allow for possible ties in the Markov chain.
Instead of initiating the chain from θ, sample M uniformly in {1, ..., L} and let θM = θ.
Then run the chain twice, once forward L−M steps from θM , and then backwards M −1

steps from θM . Letting RM denote the M th component of R(θ1:L), then by Proposition
4.2.3, RM will be exactly uniform under the null. Before giving this proposition, a
generalization of the Lemma of Besag and Clifford (1989) is stated.

Lemma 4.2.2. Suppose R(θ1:L) is a random vector with values in SL. If M ∼
Uniform{1, ..., L} independently of R(θ1:L) then RM (θ1:L) is uniformly distributed on

{1, ..., L}.

Proposition 4.2.3. Let RM (θ1:L) be the rank statistic returned from Algorithm 7. If

for every y the kernel Ky is π(· | y)-reversible then RM (θ1:L) ∼ Uniform{1, ..., L}.

The canonical example of an ordinal ranking that we have in mind first maps each
component of θ1:n to the real line with a function h : Θ → R, computes the ranks of
h(θ1), . . . , h(θn), breaking ties in some order.

Importantly, the ordinal ranking in Algorithm 7 can be chosen based on any quantity
which is independent of M . This allows, for example, randomly breaking ties as follows.
If you had a collection of ‘canonical’ rankings, with the only difference between them
being that the order of breaking ties is different, you could uniformly select a ranking
from this set, thus breaking ties randomly. The ranking could also be selected based on
y because it is independent of M . Specifically, the function h could be the likelihood
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Algorithm 7: Computing a rank statistic using the method described in Section

4.2.2.

1 Draw M ∼ Uniform{1, ..., L};
2 Draw θM ∼ π(·);
3 Draw y ∼ p(· | θM );
4 Choose an ordinal ranking R such that R and M are independent;
5 for l = 1 to M − 1 do
6 θM−l ∼ Ky(θM−l+1, ·);
7 for l =M + 1 to L do
8 θl ∼ Ky(θl−1, ·);
9 return RM (θ1:L)

NOTES: L is the number of MCMC samples to use.

function mapping θ 7→ p(y | θ). This particular statistic is used in the simulation study
of Section 4.4.1.

The proposed test may be generalized. In lines 5 and 7 of Algorithm 7 one could, with
some fixed probability, update y given the current value of θ rather than updating θ using
the Markov kernel. This would give samples on the joint space which can be compared
using an ordinal ranking R : (Θ×Y)L 7→ SL. Proposition 4.2.3 still holds because this is
simply testing a random scan Gibbs sampler on the joint space of parameters and data,
which is of course reversible under the assumptions of the proposition. This can improve
power in detecting certain subtle errors, as is shown in Section 4.4.2.

Another extension is to replace Ky by Kk
y for some k > 1. This has the effect of

thinning the chain and reducing autocorrelation, and will be useful to increase power
against more subtle alternatives. The important point, however, is that such thinning is
not required for the null distribution of the ranks to be correct. Extending Algorithm 7
to multiple testing is simple.

4.3 Sequential Implementation for Unit Tests

Unit tests should have a low false rejection probability and a reasonable computational
effort if the sampler works. Moreover, the tests ought to have high power and if errors
exists, we should be willing to spend a larger effort detecting them. Here, a sequential
testing procedure is proposed which achieves these goals.

Algorithm 8 immediately rejects the null under very low p-values, does not reject
the null for higher p-values and continues simulations for p-values that are low, but not
extremely low. The method runs for a maximum of k steps, and multiplies the sample
size by ∆ after the first iteration, which serves to detect errors more easily in subsequent
iterations.

There are many possible variations on Algorithm 8. For example, one could define
the probability of early rejection via łspending sequencesž as in Gandy (2009). If using
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Algorithm 8: Sequential wrapper around the methods.

1 β1=α/k;
2 γ = β1/k;
3 for i = 1 to k do
4 p(i)=vector of p-values from one of the algorithms (sample size n);
5 qi = min p(i)/d;
6 if qi ≤ βi then return fail ;
7 if qi > γ + βi then break;
8 βi+1 = βi/γ;
9 if i = 1 then n = ∆n;

10 return OK ;

NOTES: d, is the dimension of the p-value vectors p(i); α, is the overall desired false rejection rate; k,
the maximum number of sequential steps; ∆, the factor by which to multiple the sample size after the
first iteration.

Algorithms 6 or 7 to generate the p-values, instead of adjusting the number of chains
(through ∆), one could instead increase the amount of thinning within chains. This
would also raise the power in subsequent iterations.

As mentioned, the proposed method has an overall false rejection rate of at most α,
as the following theorem shows.

Theorem 4.3.1. Suppose p(1), . . . , p(k) are independent d-variate random vectors with

values in [0, 1]d. If P{p(i)j ≤ p} ≤ p for all p ∈ [0, 1] and i = 1, . . . , k, j = 1, . . . , d then

P{fail} ≤ α.

The added effort of Algorithm 8 compared to the non-sequential case is modest if
the p-values are generated under the null. Assuming that they are exactly uniform, the
expected increase in iterations under the null for general k compared to k = 1 is

∆

k
∑

i=1

γi−1 = ∆γ

(

1− γk−1

1− γ

)

. (4.1)

More generally, if only the inequality for p-values under the null is assumed (i.e. the
probability of a p-value being below any bound q is at most q), then the expected increase
in effort is bounded from above by

∆

k
∑

i=2

i−1
∏

j=1

(γ + βj). (4.2)

Motivated by the simulation study in Appendix C.2, the default values for Algorithm
8 in the R-package mcunit are α = 10−5, k = 7, and ∆ = 4. This leads to γ ≈ 0.15,
and β1 ≈ 1.4 · 10−6, β2 ≈ 9.8 · 10−6, β3 ≈ 6.6 · 10−5, β4 ≈ 4.6 · 10−4, β5 ≈ 3.1 · 10−3

β6 ≈ 2.1 · 10−2, β7 = γ ≈ 0.15.
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For these default parameter values, both (4.1) and (4.2) give the expected additional
effort at around 68.5%. For ∆ = 1 and the other parameters unchanged, both formulas
give around 17.1%. The difference between the two formulas is negligible when α is
chosen to be small.

4.4 Simulations

To demonstrate the performance of the proposed and existing tests, this section presents
the results of a power analysis using a stylized model, and a sampler in which errors
have been intentionally introduced. The tests considered are exact two-sample and
rank tests, and the methods of Geweke (2004) and Talts et al. (2020). Although Talts
et al. (2020) propose graphically checking the distribution of their rank statistics to the
uniform distribution, here a formal Kolmogorov-Smirnov test is used to allow consistent
comparisons with other methods.

Consider the model
y ∼ θ1 + θ2 + ε, (4.3)

where θ := (θ1, θ2) is apriori independent, zero-mean normal with standard deviation
σ = 10. The white noise term ε is independent of θ and also zero-mean normal but with
variance σ2ε = 0.1 . While inference is easy in this model, we consider drawing posterior
samples of θ using a Gibbs sampler. The posterior conditional distributions for θ1 and θ2
are normal with expectations

E[θi | y, θj ] =
σ2

σ2ε + σ2
(y − θj) , (4.4)

and variances
Var(θi | y, θj) =

1
1
σ2
ε
+ 1

σ2

. (4.5)

The small σε induces high correlation between θ1 and θ2 in the posterior distributions,
and so the Gibbs sampler will mix slowly.

4.4.1 Mistakes in Full Conditionals

Two correctly implemented samplers are considered; one uses random scan of the two
coordinates, with the other using systematic scan. Three erroneous samplers, all of which
use random scan, are also considered. The first two have mistakes in the conditional
expectations and variances respectively; y−θj is replaced with y+θj in (4.4), and in (4.5)
the variance terms are replaced with the corresponding standard deviations. The final
mistake considered truncates each conditional distribution either to the left or right of
its posterior mean. The decision to truncate left or right is random for each distribution.

Table 4.1 presents the results of the power analysis. Each entry records an empirical
rejection rate for a given test function(s) and scenario, computed by repeating the test
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Table 4.1 Empirical rejection rates from the power analysis described in Section
4.4.1.

Test Function Correct Errors

Rand. Scan Sys. Scan E Var Truncated

Sequential exact two-sample test with ∆ = 2 and k = 3.

θ1 0.009 0.010 1.000 0.007 0.008
θ21 0.008 0.009 1.000 0.009 0.011
θ1θ2 0.008 0.008 1.000 0.010 0.011
π(θ) 0.010 0.011 1.000 0.008 0.009
p(y | θ) 0.010 0.009 1.000 1.000 0.007
All a 0.007 0.009 1.000 1.000 0.006

Sequential exact rank test with ∆ = 2 and k = 3.

θ1 0.009 0.885 1.000 0.149 0.869
θ21 0.009 0.869 1.000 0.163 0.868
θ1θ2 0.008 0.155 1.000 0.731 1.000
π(θ) 0.009 0.158 1.000 0.738 1.000
p(y | θ) 0.012 0.012 1.000 1.000 0.010
All a 0.008 0.769 1.000 1.000 1.000

Geweke (2004).

θ1 0.310 0.235 1.000 0.278 0.303
θ21 0.322 0.276 1.000 0.119 0.329
θ1θ2 0.105 0.071 1.000 0.101 0.106
π(θ) 0.226 0.206 1.000 0.284 0.220
p(y | θ) 0.010 0.013 1.000 1.000 0.010
All a 0.523 0.441 1.000 1.000 0.516

NOTES: The exact two-sample tests ran with L = 5 and N1 = N2 = 5 × 10
2, and KS

tests were used to compare the two samples of the test statistic(s). The exact rank tests
ran with L = 5 and had 5 × 10

2 simulated rank statistics, using a X 2-test to test the
ranks for uniformity. Geweke (2004) used thinning of 5 and 6× 10

2 MCMC samples.
a Refers to using all aforementioned test functions and a Bonferroni correction for multiple
testing.

104 times. The nominal false rejection rate of each test was set to α = 0.01. Sequential
versions of Algorithms 6 and 7 were used because they were found to have higher power
than the non-sequential versions. All methods were calibrated to have comparable
computational budgets. Please refer to the table for details of all simulation parameters.

As expected, the exact two-sample test (Algorithm 6) achieves the nominal rate of
0.01 for both random scan and systematic scan. The test always detected the wrong
expectations and variances. However, only the data likelihood proved able to detect
the wrong variance. The variance error only changes the marginal of θ slightly, and so
any test using a statistic involving only the parameters will require many samples to
detect the error. This illustrates the importance of considering statistics on both data
and parameters, rather than just parameters, when using this two-sample test. Notice
that the truncation was undetected. Even though all conditional distributions are wrong,
the joint distribution of parameter and data is indistinguishable from the correct joint.
Therefore, the test could never have higher power than the nominal rejection rate for the
truncation error.
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Table 4.2 Empirical rejection rates for the power analysis described in
Section 4.4.2.

Test Correct µ = 10 σ = 5 ρ = 0.5

Seq. Exact Two-Sample 0.007 0.018 0.826 0.049
Seq. Exact Rank 0.011 0.012 1.000 0.551
Exact Two-Sample 0.008 0.012 0.601 0.025
Exact Rank 0.011 0.009 1.000 0.316
Geweke (2004) 0.101 0.909 1.000 0.229
Talts et al. (2020) 1.000 1.000 1.000 1.000

NOTES: Reported results are for multiple testing using all test functions
shown in Table 4.1. The seq. two-sample test used L = 50 and N1 =

N2 = 10
3, while the seq. rank test used L = 10, 5 thinning steps between

samples and 10
3 rank statistics. Both versions used ∆ = 2 and k = 3. The

non-sequential versions were adjusted to achieve a similar computational
time under the null. Geweke (2004) used 10

3 samples with thinning of 50,
and Talts et al. (2020) used 10

2 initial steps to estimate ESS.

The exact rank test, as described in Section 4.2.2, achieved the nominal rate for the
random scan Gibbs sampler, however was unable to do so for systematic scan. This
is expected as the systematic scan sampler is not reversible. The multiple test always
detected the wrong expectation, variance and truncation.

The correlation between the data and parameters poses a problem for the method
of Geweke (2004), and the false rejection rate is too high. The test rejects the correct
samplers roughly half of the time. Again, the truncation cannot be detected by this
method, for the same reason as for the exact two-sample test.

Finally, Algorithm 2 from Talts et al. (2020) was run using 103 initial steps in each
chain to estimate the effective sample size. Because the posterior correlation is high in
this model, the effective sample size was overestimated, and the false rejection rate was
entirely uncontrolled. Given that the errors can be detected easily, this method is highly
inefficient in the cases considered.

4.4.2 Mistakes in Assumed Prior

The second simulation investigates the power of the tests when mistakes are made in the
assumed prior for θ. In all cases considered, the prior is a bivariate normal with common
mean µ, standard deviation σ and correlation ρ. As described at the beginning of Section
4.4 the correct version corresponds to µ = 0, σ = 10 and ρ = 0. Three erroneous priors
are considered; a mean shift to µ = 10, a variance scale to σ = 5, and dependency with
ρ = 0.5. As before, all tests were parameterized to have comparable computational effort
and the nominal false rejection rate set to α = 0.01. The results are displayed in Table
4.2, which also details the simulation parameters.

Both the exact two-sample and rank tests did well to maintain the nominal rate, and
had high power in detecting the scaled variance. They were unable to detect the mean
shift because the prior is uninformative and has little effect on the posterior distributions.
It seems that the joint distribution tests of Geweke (2004) has a power advantage here
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because the marginal distribution of the parameters in the samples will tend to the
specified wrong prior as the number of MCMC steps goes to infinity. Nonetheless, the
false rejection rate is far above the nominal level in our simulation. The method was also
worse than Algorithm 7 at detecting the dependency. It appears that the joint distribution
tests of Geweke (2004) can perform comparatively well when errors in individual posterior
distributions are subtle, but aggregate in such a way that they are detectable in the
simulated joint distribution. The errors in this section are designed such that the Geweke
(2004) method will, if run long enough, recover a specified (wrong) joint distribution.
In more general cases, it is not clear that the errors will be so easily detectable in the
joint. Talts et al. (2020) performed poorly, again due to the autocorrelation in the Gibbs
sampler. It rejected every scenario in every test. Obtaining reasonable results using this
method would require much more computation than required in the other tests.

Finally, we demonstrate how to improve the power of the exact tests for the above
analysis. Recall the extension to the two-sample test where the data is resampled each
time θ is updated. The rank test described in Section 4.2.2 was also extended, so that
with probability 0.5, the data y rather than θ is updated in line 5 and 7 of Algorithm 7.
The power of these generalized methods are estimated under the wrong prior expectation
µ = 10 introduced above. The two-sample test was parameterized to used L = 2× 103

and N1 = N2 = 103, while the rank test used L = 10, thinning of 200 and 103 rank
statistics. The empirical ejection rates were 99.2% and 97.2% respectively, computed by
replicating each test 103 times. The empirical rejection rates for the original tests were
30.8% and 29.7% respectively, when both were parameterized to have similar computation
time. The power improves because the generalizations define Gibbs samplers on the joint
space, and so they have higher power in detecting the ‘aggregated’ error in the joint.
Nonetheless, for this amount of computation the method of Geweke (2004) achieved the
nominal false rejection rate, and had power of 100%.

4.5 Application: Reversible-Jump MCMC for Signal De-

composition

Andrieu and Doucet (1999) propose a Bayesian method to jointly detect and estimate
sinusoids in a noisy signal. The number of sinusoids making up the signal is unknown,
and the authors propose a reversible-jump MCMC (RJ-MCMC) algorithm to explore
the space of models consisting of different numbers of sinusoids. This seminal work
precipitated a number of studies applying RJ-MCMC to signal processing problems.
Many of these relied on the same Metropolis-Hastings-Green acceptance ratio for ‘birth’
and ‘death’ moves that was derived in Andrieu and Doucet (1999), including Andrieu
et al. (2001b,a), Larocque and Reilly (2002), Larocque et al. (2002), Ng et al. (2005),
Davy et al. (2006), Hong et al. (2010), Schmidt and Mùrup (2010), Rubtsov and Griffin
(2007).
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Roodaki et al. (2013) demonstrate that this ratio is, in fact, erroneous. Through
simulation, the authors show that the error leads the sampler to prefer ‘sparse’ models
with fewer sinusoids. In this section, we first brieŕy outline both the model and the
sampler proposed in Andrieu and Doucet (1999). After discussing the error noted by
Roodaki et al. (2013), we employ the exact tests introduced in Section 4.2 to show that
this error could easily have been detected with our methods. This example demonstrates
the utility of routine use of such tests in advance of publishing results that rely on
estimation by MCMC.

4.5.1 Model Description

Consider a data vector y := (y0, . . . , yN−1)
t, which may aggregate multiple sinusoidal

signals in addition to random noise. Andrieu and Doucet (1999) propose a series of
competing models to explain such data, which are indexed by the number k ≥ 0 of latent
sinusoids hidden within the noisy signal. The kth (k > 0) model is

yt =

k
∑

l=1

(ck,l cos(wk,lt) + sk,l sin(wk,lt)) + εk,t,

where εk,t is white Gaussian noise with variance σ2k. The zeroth model corresponds to no
latent signal, i.e. yt = ε0,t. It is convenient, particularly when we discuss the priors, to
express these models in matrix-vector form

y = D(wk)ak + εk,

with radial frequencies wk := (wk,1, . . . , wk,k)
t, amplitudes ak := (ck,1, sk,1, . . . , ck,k, sk,k)

t,
and noise εk := (εk,0, . . . , εk,N−1)

t. The N × 2k design matrix D(wk) has odd-column
entries D(wk)t+1,2l−1 = cos(wk,lt) and even-column entries D(wk)t+1,2l = sin(wk,lt).

The number of latent signals k is given a Poisson prior with rate Λ, truncated to
{0, . . . , kmax}, where kmax = ⌊(N − 1)/2⌋. This upper limit prevents dependence in
the columns of D, which would render wk difficult to identify. Conditional on k, the
remaining priors are

σ2k | k ∼ InvGamma(v0/2, γ0/2)

wk | k ∼ Uniform((0, π)k)

ak | k, wk, σ2k ∼ N (0, δ2Σk),

where v0 and γ0 are shape and scale parameters, and Σk = σ2k
(

Dt(wk)D(wk)
)−1. The

prior on ak is known as the g-prior.
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4.5.2 The Sampler and its Error

Andrieu and Doucet (1999) integrate ak and δ := σ2k out of the posterior and target
p(k, wk|y), which is known up to a normalizing constant, and defined on Θ := ∪kmax

k=0 {k}×
(0, π)k. Their sampler employs four Markov kernels. Two are within-model kernels,
designed to update the frequencies wk while keeping k fixed. The remaining two, namely
the ‘birth’ and ‘death’ moves, are between-model kernels, and propose moves that traverse
subspaces of different dimensions; adding and deleting sinusoids respectively.

The within-model kernels are standard Metropolis Hastings updates and alter only
one component of wk at a time. The first perturbs the current state with a symmetric
Gaussian proposal with scale σrw, and is referred to hereon-in as the local frequency
kernel (LFK). The other uses a global proposal based on the Fourier coefficients of y.
These are computed with the discrete Fourier transform, however y can be padded to
length Np > N to improve interpolation. We refer to this as the global frequency kernel
(GFK).

Birth and death kernels allow the chain to transition from dimension k to k + 1

or k − 1 respectively. Suppose the current state of the chain is (k, wk). A birth move
proposes a new frequency uniformly on (0, π) and appends it to wk, while a death move
attempts to delete a component of wk randomly. To ensure reversibility with respect
to p(k, wk|y), the authors propose to accept a birth proposal with probability min(1, r),
where

r =

(

γ0 + ytPky
γ0 + ytPk+1y

)(N+v0)/2 1

(k + 1)(1 + δ2)
, (4.6)

and

Pk = IN −
δ2

1 + δ2
D(wk)

(

D(wk)
tD(wk)

)−1 D(wk)
t,

for k ≥ 1 and P0 = IN . Similarly, a death move is accepted with probability min(1, r−1).
Roodaki et al. (2013) prove that (4.6) is erroneous and that the ratio r should be

replaced by (1 + k)r. The authors demonstrate that the error leads the sampler to target
the posterior where the prior on k is

p(l) ∝ e−ΛΛl

(l!)2
, (4.7)

for l ∈ {0, . . . , kmax}. This is an accelerated Poisson distribution, and places greater
mass on small values. The implication is that all articles using the erroneous sampler
place more emphasis on sparse models than intended.

4.5.3 Testing the Sampler

Our approach is to test the constituent kernels of the sampler individually, insofar as
this is possible. We first test LFK and GFK separately on a problem with a known
number of sinusoids, i.e. where k is fixed. In the second stage, k is treated as unknown,
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and the overall RJ-MCMC sampler is tested. It is difficult to test the birth and death
kernels individually because they have a state-dependent selection probability, and are
not irreducible by themselves.

Testing the Within-Model Kernels

LFK and GFK are tested separately using the sequential two-sample and rank tests.
Throughout, we assume that there is one sinusoid, i.e. k = 1, and so the frequency w1

reduces to a scalar in (0, π). This could be extended to k > 1 by embedding the kernels
in random scan samplers to update all frequency components. To fully define the joint
distribution of data and parameters, we set N = 64, v0 = 10, γ0 = 10, and δ = 8. Ideally,
the kernel parameters σrw and Np should be set so that the kernels mix fast and the
tests have high power. Through experimentation, we determined that σrw = 1/50 led
to LFK mixing well. For GFK, we use zero padding by letting Np = 4N . This helps to
better interpolate the Fourier frequencies, and empirically leads to lower rejection rates.

We use w1 as the sole test function in all tests. For the two-sample test, we let
N1 = N2 = 104, and propagate the direct samples L = 102 steps with the kernels. The
two-sample KS test is used to compare the direct and indirect samples. Given, however,
that w1 is uniform on (0, π) under the prior, one could replace the direct samples with
the uniform distribution function, and instead employ a one-sided KS test. For the
rank tests, we use 104 replications, L = 10 and thinning of 10. All tests use the default
sequential parameters described in Section 4.3; ensuring a false rejection rate of less than
10−5.

The sequential two-sample test applied to LFK gave a p-value of 0.076 in the first
iteration, which triggered a second sequential iteration using 4 × 104 iterations. This
resulted in a p-value of 0.56 and so no inconsistency was detected. Applying the same
test to GFK led to a p-value of 0.36 in the first iteration. The sequential rank test gave
p-values of 0.55 and 0.69 for the LFK and GFK kernels respectively in the first iteration.
Therefore, in all cases, no error was detected.

Testing the Full Sampler

Having tested the within-model kernels individually, we now test the full sampler that
includes LFK, GFK, birth and death moves. For details on the overall algorithm, please
refer to Andrieu and Doucet (1999). All tests use the number of sinusoids k as the test
function. For the two-sample tests we let N1 = N2 = 103, and for the rank tests we use
103 replications. All other parameter values remain the same as in the previous section.

We first test the original, erroneous sampler using the truncated Poisson prior on
k with rate Λ = 3. Both the two-sample and rank tests failed on the first iteration
with p-values of 1.4× 10−6 and 2× 10−173 respectively, all but proving that the sampler
contains an error. The top panel of Figure 4.1 shows the results of these tests. The
empirical distribution of k from the indirect samples is skewed to the left, as we expect
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given Roodaki et al. (2013)’s finding that the sampler is in effect assuming an accelerated
Poisson prior on k. There is also a strong skew in the rank statistics. We performed the
same tests using the accelerated Poisson prior on k. As expected, no discrepancy was
detected in this case.

Next, we replaced the ratio r with (1 + k)r in the acceptance rate of birth and death
moves, as suggested by Roodaki et al. (2013). Neither test detected an error when
the correct truncated Poisson prior was used; however, errors were detected when the
accelerated Poisson prior was used. All results are shown in Figure 4.1.

4.6 Discussion

This chapter has proposed two tests of MCMC implementations, which are unique in
being exact; that is, the false rejection rate can be controlled. This property is leveraged
to propose a sequential testing procedure which allows for high power and arbitrarily low
false rejection rates, for example 10−5. Such a procedure is useful for unit testing both
MCMC and more general Monte Carlo implementations, where one wants to minimize
the risk of rejecting a correct sampler.

The performance of the two tests has been tested in a simulation study, and compared
to other methods in the literature. The study validates the ability of the tests to achieve
the correct nominal level, and generally shows favorable performance of the methods.
The exact rank test is shown to have high power over other methods when there are
large errors within each conditional distribution, which may not aggregate to an easily
detectable error in the joint distribution of data and parameters. On the ŕip side, we
have tested small errors in the conditionals which are detectable in the joint. In this
latter case, the Geweke method appears to have a power advantage. However, we have
demonstrated extensions to the tests which improve their power.
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Fig. 4.1 Results of the two-sample and rank tests applied to the full RJ-MCMC sampler.



PART II

The first part of this thesis developed bespoke MCMC algorithms designed
to tackle difficult inferential challenges relating to graph sampling. We now
move away from the development of novel MCMC samplers, and towards
introducing a broad class of epidemic models that leverage MCMC as the
workhorse for estimation and fitting. Chapter 5 introduces the modeling
framework that was motivated in Section 1.1.2, while Chapter 6 presents
an R-package allowing ŕexible specification and fitting of the models with
MCMC.



5
Semi-Mechanistic Bayesian modeling of COVID-19 with

Renewal Processes

5.1 Introduction

This chapter presents a general framework for semi-mechanistic Bayesian modeling
of infectious diseases using renewal processes. The term semi-mechanistic relates to
statistical estimation within some constrained mechanism. Variants of this general model
have been used in specific analyses of Covid-19 (Flaxman et al., 2020a, Vollmer et al.,
2020, Mellan et al., 2020, Unwin et al., 2020, NYS Press Office, 2020, Olney et al.,
2021, The Scottish Government, 2020, Mishra et al., 2020b), and continue to be used in
ongoing work to make policy decisions. The present chapter motivates and discusses the
key statistical and epidemiological features of this framework, starting from a counting
process setup. Various extensions of the basic model are considered, including a latent
infection process. We discuss limitations and applications of the modeling framework to
stimulate further research.

The model uses a ŕexible regression-based framework for parameterizing transmission
and ascertainment rates. This allows the fitting of multilevel models (Gelman and Hill,
2006, Hox et al., 2010, Kreft and de Leeuw, 2011) for several regions simultaneously.
Such partial pooling of parameters has specific advantages in the context of infectious
diseases. Suppose we wish to estimate the effect of non-pharmaceutical interventions
(NPIs) (Cowling et al., 2020, Flaxman et al., 2020a) or mobility (Badr et al., 2020,
Miller et al., 2020) on transmission rates. Estimating these effects separately in different
regions could lead to noisy estimates for at least two reasons. There is typically little
high-quality data at the early stages of an epidemic. Such data is generally correlated,
reducing the information content that can be used to infer such an effect. In addition,
NPIs often occur in quick succession and their effects are confounded (SARS Expert
Committee, 2003, WHO, 2003). This is exacerbated by the random times between
infections (the generation distribution) and between infections and observations, which
smooths the observed data, making it more difficult to attribute changes in transmission
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rates to a particular NPI. Alternatively, one could pool the effect across all groups. This
ignores group-level variations and can lead to poor predictive performance, in particular
underestimating variance for previously unmodeled regions. One could augment such a
model with group-level indicators, but this results in numerous parameters, which are
difficult to estimate and leads to overfitting with classical estimation techniques. Partial
pooling provides a natural solution to this.

Sometimes the inferential goal is not to assess the effect of a covariate on outcomes,
but rather to infer transmission rates over time. Previous studies have focused on
estimating reproduction numbers from case data (Ferguson et al., 2001, Riley et al., 2003,
Bettencourt and Ribeiro, 2008, Fraser et al., 2009, Kelly et al., 2010, Cori et al., 2013),
sometimes directly substituting observed case counts for the unknown number of infected
individuals (Wallinga and Teunis, 2004). However, the emergence of SARS-CoV-2 has
highlighted shortcomings of methods that rely on just case data. Limited testing capacity
at the early stages of the pandemic led to only a small proportion of infections being
detected and reported (Li et al., 2020). Those tested were typically more likely to have
been hospitalized or were at higher risk of infection or death. In particular this proportion,
referred to as the infection ascertainment rate (IAR) is country-specific and likely to
have changed over time due to changes in testing policies and capacity. If unaccounted
for, it will lead to biases in the inferred transmission rates.

This highlights the need for more ŕexible observational models, whereby more varied
types of data can be incorporated, and their idiosyncrasies accounted for. Daily death
data has been used in Flaxman et al. (2020a) to recover reproduction numbers in the
early stages of the SARS-CoV-2 pandemic, and has been seen as more reliable than
case data. However, there have been clear variations in definitions and reporting across
time and countries. It is therefore important to appropriately model noise within the
observational models. Our framework allows for multiple types of data including deaths,
cases, hospitalizations, ICU admissions and the results of seroprevalence surveys. This
improves robustness of inferred parameters to biases in any one type of data.

The model uses discrete renewal processes to propagate infections within modeled
populations. These have been used in a number of previous studies (Fraser, 2007, Cori
et al., 2013, Nouvellet et al., 2018, Cauchemez et al., 2008), and are linked to other
popular approaches to infectious disease modeling. Champredon et al. (2018) show
that the renewal equation leads to identical dynamics as Erlang-Distributed Susceptible-
Exposed-Infected-Recovered (SEIR) compartmental models, when a particular form is
used for the generation distribution. A special case of this is the standard Susceptible-
Infected-Recovered (SIR) model (Kermack et al., 1927). The approach is also connected
to counting processes, including the Hawkes process and the Bellman-Harris process
(Bellman and Harris, 1948, 1952). Bellman and Harris (1948), Mishra et al. (2020a)
derive the renewal equation as the expectation of an age-dependent branching process.
Age-dependence allows for more realistic dynamics than age-insensitive processes, like
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the Galton-Watson process (Bartoszynski, 1967, Getz and Lloyd-Smith, 2006). More
complex branching processes such as the Crump-Mode-Jagers branching process could
also be considered. Hawkes processes are also related to renewal processes, with the
expectation of the Hawkes intensity function resulting in the renewal equation (Rizoiu
et al., 2017).

We describe the general model in detail, and start by considering the bare-bones
version in Section 5.2. The motivation for the model lies in continuous-time counting
processes, and this connection is discussed in Section 5.3. Sections 5.4 and 5.5 present the
infection and observation processes in more detail, and consider important extensions of
the basic model. Section 5.6 considers how to use the framework for multilevel modeling.
Section 5.7 compares our approach to standard time series models, and outlines the
key challenges involved in modeling with our framework. Section 5.8 considers the
specific aspect of confounding and causality when estimating the effects of variables on
transmission rates. Section 5.9 has a brief discussion.

5.2 Model Overview

We now formulate a basic version of the model for one homogeneous population. The
same model can be used for multiple regions or groups jointly. Let Rt > 0 be the
reproduction number at time t > 0. This determines the rate at which infections grow.
Infection counts iv, . . . , i0 for some v ≤ 0 are given a prior distribution. For t > 0, we let
new infections it be defined by

it = Rt
∑

s<t

isgt−s, (5.1)

where the generation time, the lag between infections, is given through a probability
mass function g, i.e. gt ≥ 0 and

∑∞
t=1 gt = 1.

Observations occur at certain times t > 0 . In general, there may be multiple types;
case and death counts, for example. Each such type is driven by its own time-varying
ascertainment rate αt > 0. The mean of the observations at time t is linked to past
infections by

yt = αt
∑

s≤t
isπt−s, (5.2)

where π is a distribution for the lag between an infection and when it gives rise to an
observation. The sampling distribution of the observations with these means is typically
nonegative and discrete, and may depend on auxiliary parameters. When multiple
types are observed, we can superscript the quantities as y(l)t , α

(l)
t and π(l) and assign

independent data distributions for each type.
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Transmission rates Rt and ascertainment rates αt can be modeled ŕexibly using
Bayesian regression models, and through sharing of parameters, are the means through
which we tie together multiple regions or groups using multilevel modeling. One can,
for example, model transmission rates as depending on a binary covariate for an NPI,
say full lockdown. The coefficient for this can be partially pooled between these groups.
The effect is to share information between groups, while still permitting between group
variation.

5.3 Motivation from continuous time

Our model can be motivated from a continuous time perspective as follows. Infections
give rise to additional infections in the future, referred to as offspring. Letting N I(t)

denote the number of infections occurring up to time t, defined by its intensity

λ(t) = R(t)

∫

s<t
g(t− s)N I(ds), t > 0, (5.3)

where g is the density of a probability distribution on R
+ defining the time between

infections, and where {R(t) : t > 0} is a non-negative stochastic process. The process
can be initialized by assuming values for N I(t) for t in the seeding period [v, 0].

Equation (5.3) is similar to the Hawkes intensity; however, the memory kernel g is
scaled by a time-specific factor R(t). The integrand g allows the intensity to increase
due to previous infection events, while R(t) tempers the intensity for other time-specific
considerations. If R(t′) = R(t) for all t′ then Equation (5.3) reduces to a Hawkes process.
Under this assumption, since g integrates to unity, the expected number of offspring
is simply R(t), and so this is the instantaneous reproduction number or alternatively
the branching factor of the Hawkes process. The generation time, defined as the time
from an infection to a secondary infection, is distributed according to g and so g is the
generation distribution.

Observations are precipitated by past infections; a given infection may lead to
observation events in the future. Letting NY (t) be the count of some observation type
over time defined by the intensity

λy(t) = α(t)

∫

s<t
π(t− s)N I(ds), (5.4)

for t > 0, where π : R+ → R
+ is a function and {α(t) : t ≥ 0} is a non-negative stochastic

process. This is similar to Equation (5.3); however, the intensity increases due to past
infections, rather than past observations.

Consider the special case where π is a probability density and where α(t′) = α(t) for
all t′. The average number of observation events attributable to a single infection is then
α(t), and so this is an instantaneous ascertainment rate. π is then interpreted as the
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distribution for the time from an infection to an observation, and therefore we call it the
infection to observation distribution.

5.4 Infection Process

Starting from the continuous model, we now describe a discrete model, which results in
the formulation of Section 5.2. This discrete model is more amenable to inference. Let It
be the number of new infections at time t; this is the equivalent of N I(t)−N I(t− 1) in
the continuous model. As basic modeling block we use the following discrete version of
(5.3):

E[It|R1:t, Iv:t−1] = RtLt, (5.5)

where Lt :=
∑

s<t Isgt−s is the case load or total infectiousness by time t > 0. Moreover,
letting it := E[It|R1:t, Iv:0] and taking the conditional expectation given reproduction
numbers R1:t and seeded infections Iv:0 on both sides of (5.5) gives

it = RtE[Lt|R1:t, Iv:0] = Rt
∑

s<t

E[Is|R1:s, Iv:0]gt−s = Rt
∑

s<t

isgt−s,

which is Equation (5.1). This is a discrete renewal equation, which can alternatively be
interpreted as an AR(t)-process with known coefficients gk. From this point of view, the
basic model in Section 5.2 uses it as synonymous with actual infections. Since infections
are simply a deterministic function of other parameters, there is no need to treat them as
unknown latent parameters to sample. This can lead to lower sampling times and faster
convergence.

5.4.1 Modeling Latent Infections

The model of Section 5.2 can be extended by replacing each it with the actual infections
from the process It, and then assigning a prior to It. Although sampling can be slower,
this has certain advantages. When past infection counts are low, significant variance in
the offspring distribution can imply that new infections It has high variance. This is not
explicitly accounted for in the basic model. In addition, this approach cleanly separates
infections and observations; the latter being modeled conditional on actual infections.
The sampling distribution can then focus on idiosyncrasies relating to the observation
process.

We assign a prior to It conditional on previous infections and current transmission
Rt. The expected value for this is given by Equation (5.5). Appendix D.1 shows that
assuming the variance of the prior to be a constant proportion d of this mean is equivalent
to letting d be the coefficient of dispersion for the offspring distribution. d > 1 implies
overdispersion, and can be used to account for super-spreading events, which has been
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shown to be an important aspect for modeling Covid-19. The parameter d can be assigned
a prior.

Any two parameter family can be used to match these first two moments. Letting this
be continuous rather than discrete allows inference to proceed using Hamiltonian Monte
Carlo, whereby new values for It are proposed simultaneously with all other parameters.
Possible candidates include log-normal, gamma and the Weibull distributions. If an
explicit distribution for the offspring distribution is desired, one can show that assuming
a Gamma distribution with rate λ for this results in a Gamma distribution for It with
rate λ. The coefficient of dispersion is then simply D = λ−1.

5.4.2 Population Adjustments

If Rt remains above unity over time, infections grow exponentially without limit. In
practice, infections should be bounded from above by S0, the initial susceptible population.
All else being equal, transmission rates are expected to fall as the susceptible population
is diminished.

Consider first the model using It, which was described in Section 5.4.1. Equation 5.5
can be replaced with

E[It|R1:t, Iv:t−1] = (S0 − It−1)

(

1− exp

(

−Ru,tLt
S0

))

, (5.6)

where Ru,t is an unadjusted reproduction number, which does not account for the suscep-
tible population. This satisfies intuitive properties. As the unadjusted expected infections
Ru,tLt approaches infinity, the adjusted expected value approaches the remaining sus-
ceptible population. The motivation for and derivation of Equation (5.6) is provided in
Appendix D.2. In short, this is the solution to a continuous time model whose intensity is
a simplification of Equation (5.3). We must also ensure that the distribution of It cannot
put positive mass above S0 − It−1. A simple solution is to use truncated distributions.
Of course, this adjusts the mean value from Equation (5.6), however this is unlikely to
be significant unless the susceptible population is close to depletion.

In the basic model, one can apply the adjustment to it by replacing Lt in Equation
(5.6) with

E(Lt|R1:t, Iv:0) =
∑

s<t

isgt−s. (5.7)

5.5 Observations

Observations are modeled in discrete time, analogous to how we treated infections in
Section 5.4. Letting π : N→ R

+ and Yt := NY
t −NY

t−1, the discrete analogue to Equation
(5.4) is

E[Yt|αt, Iv:t] = αt
∑

s≤t
Isπt−s. (5.8)
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Taking the expected value of the above given seeded infections, transmission rates and
the current ascertainment rate gives

E[Yt|αt, R1:t, Iv:0] = αt
∑

s≤t
isπt−s, (5.9)

which is recognizable as Equation (5.2). Thus, we have two possible expressions for the
mean of Yt, one given actual infections, and the other given expected infections it. The
basic model of Section 5.2 uses the latter, while the extension in Section 5.4.1 uses the
former.

We assume that Yt ∼ F (yt, ϕ), where F is a non-negative discrete family parameter-
ized by its mean yt and potentially an auxiliary parameter ϕ. This could be a Poisson
distribution, where there is no auxiliary parameter. Using a quasi-Poisson or negative
binomial instead allows for overdispersion. This can be useful to capture, for example,
day-to-day variation in ascertainment rates when infection counts are low. The mean
yt can be taken to be either (5.8) or (5.9), the latter being used in the basic version of
the model. Hidden in this formulation is the assumption that each Yt is conditionally
independent given yt. Using multiple observation series Y (l)

t can help to improve the
model inferences and identifiability of certain parameters. We simply assume that each
such series is conditionally independent given the underlying infection process.

5.6 Multilevel Models

Transmission rates can be modeled quite generally within the framework. If the aim is
simply to estimate transmission in a single region over time, one approach could be to
let Rt = g−1(γt), where g is a link function and γt is some autocorrelation process, for
example a random walk. Suppose, however, that transmission is modeled in M regions
and the goal is to estimate the effect of a series of NPIs on transmission. Letting R(m)

t

denote transmission in region m at time t, we could let

R
(m)
t = g−1

(

β
(m)
0 +

p
∑

l=1

x
(m)
t β

(m)
k

)

, (5.10)

where x(m)
t are binary encodings of NPIs, and β(m)

0 and β(m)
k are region-specific intercepts

and effects respectively. The intercepts are used to allow regions to have their own
baseline transmission rates. Collecting these group-specific parameters into β(m), we can
partially pool them by letting β(m) ∼ N (0,Σ), for each group m, and then assigning a
prior to the covariance matrix Σ. This could be an inverse-Wishart prior, or alternatively,
Σ can be decomposed into variances and a correlation matrix, which are each given
separate priors (Tokuda et al., 2011).

One possible option for g is the log-link. This provides easily interpretable effect sizes;
a one unit change in a covariate multiplies transmission by a constant factor. However,
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this can lead to prior mass on unreasonably high transmission rates. With this in mind,
an alternative is to use a generalization of the logit link for which

g−1(x) =
K

1 + e−x
, (5.11)

and where K is the maximum possible value for transmission rates. This serves a similar
purpose to the carrying capacity in a logistic growth model.

The ascertainment rate αt can also be modeled with similar considerations to the
above. This ŕexibility is useful, particularly because these quantities are likely to change
as an epidemic progresses. This has been clearly seen during the Covid-19 epidemic,
where the infection ascertainment rate may have increased over time due to increased
testing capacity and improved track and trace systems. Multilevel models can in theory
also be specified through αt.

5.7 Forecasting, epidemiological constants, and seeding

A key benefit of using a semi-mechanistic approach is that forecasts are constrained by
plausible epidemiological mechanisms. For example, in the absence of any further inter-
ventions or behavioral changes, and looking at a medium term forecast of just incidence
(daily new cases/infections), a traditional time series forecasting approach may predict a
constant function based on observing broadly constant incidence, but semi-mechanistic
approach would expect a monotonic decrease based on a constant rate of transmission and
the effect of herd immunity. The performance of epidemiologically constrained models
is generally good (Carias et al., 2019); this is perhaps not surprising, as examining the
discrete renewal equation shows that these models correspond to autoregressive(n) filters
with a convex combination of coefficients specified by the generation interval. However,
similar to financial forecasting, the predictive capability of epidemic models are likely
to be better interpreted as scenarios rather than actual predictions due to the rapidly
adaptive landscape of policy.

A second benefit of epidemic models is to provide a plausible mechanism to explain
(non causally) the changes observed in noisy data. For example, in estimating the effect of
an intervention on observed death data, we need to consider what that intervention effects,
i.e. the rate of transmission or Rt. As we have described above, we can connect the rate
of transmission to latent infections to deaths such that we have an epidemiologically
motivated mechanism. While we can statistically estimate parameters for how the
intervention affects Rt, certain important parameters will be entirely unidentifiable and
need to be fixed as constants or with very tight priors. For example, to reliably estimate
the number of infections, an infection fatality rate needs to be chosen. A failure to choose
an appropriate infection fatality rate can result in a bimodal posterior where changes can
either be attributed to herd immunity or to interventions. From a statistical perspective,
is it difficult to disentangle which mode of the posterior best represents reality, and
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hence it is sensible to first estimate a plausible infection fatality rate and then use this
within the semi-mechanistic model. A second example is the onset of symptoms-to-death
distribution. Given the lag between transmission, infection and deaths, the effect of an
intervention is dependent on the onset of symptoms-to-death distribution.

Infection seeding is a fundamentally challenging aspect of epidemic modeling. Estimat-
ing the initial effect of seeding is crucial to understanding a baseline rate of growth (R0)
from which behaviors and interventions can modify. This seeding is heavily confounded
by importation and under ascertainment. Both these factors can inŕuence estimates of
the initial growth rates, and this in turn can affect the impact of changes in transmission
as time progresses. We have proposed heuristic approaches to mitigate issues with
early seeding, but principled statistical approaches need to be developed. In particular,
Bayesian pair plots show strong correlation between seeding parameters and R0, which
can potentially lead again to a bimodal posterior where initial growth dynamics can be
explained through R0 or via initial seed infections.

Our approach also assumes a known generation interval, that is fixed through time.
Similar assumptions are made for the time from infection to an observation (a recorded
case or death, for example). These should be set using information from previous
studies, however more careful handling of uncertainty over these distributions should be
considered. In particular, if the model uses multiple observational types, the assumes
infection to observation distributions can lead to conŕicting inferences on transmission
rates and infections. Modeling these distributions as unknown parameters and assigning
them priors is one potential solution to this.

5.8 Confounding and Causality: Estimating the Effect of

Interventions

Section 5.6 showed that changes in transmission rates over time can be explained by
parameterizing these rates in terms of predictor variables, such as NPIs and mobility.
Clarifying the effects of interventions on transmission are important, if only because of
their clear economic and human consequences. This is however a significant challenge
because the effects are potentially confounded with unobserved behavioral changes, and
they are hard to identify. Identification is difficult because interventions are highly
correlated when they occur in quick succession. Moreover, the random time between an
infection and its recording as a case or death leads to observations being less informative
about the effect of any particular intervention.

Flaxman et al. (2020a) estimated the effectiveness of NPIs across 11 European
countries, and used partial pooling of effect sizes to address the identification problem.
At that time, little data existed other than information on deaths and the timing of
interventions. NPIs, which were coded as a binary set of mandatory government measures
(e.g. school closures, ban on public events, lockdown), could not fully explain the patterns
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seen in some countries (e.g. Sweden), and especially at the subnational level. Mobility
data became available in April and was used to model the epidemic in Italy, Brazil and
the USA (Vollmer et al., 2020, Mellan et al., 2020, Unwin et al., 2020). Such data is
useful as it may help account for behavioral changes that confound the effects of NPIs.
However, since mobility affects transmission, is linked to the introduction of NPIs and
potentially also to voluntary behavioral measures, we expect it to be a confounder.

Section 5.8.2 extends the model in Flaxman et al. (2020a) to investigate further this
issue of confounding, and models both NPIs and mobility jointly. This is in keeping
with standard practice in regression/ANOVA: expanding a model to take into account
more explanatory variables. Nonetheless, NPIs may partially affect transmission via a

path through mobility. A joint model of mobility and NPIs does not account for this.
Therefore, in Section 5.8.3 we take a first step in assessing causal considerations through
a simple mediation analysis. We begin however by exploring the relationship between
interventions and mobility.

5.8.1 Interventions and Mobility

Regressing average mobility on NPIs in a Bayesian linear model (no intercept or partial
pooling) we find a correlation of over 85% with a mean absolute error of 0.1%. Given
the mobility data used generally ranges between -1 to 1, this is a good overall fit. Figure
5.1a shows that these fits visually correspond well with changes in average mobility.
One could conjecture that mobility and NPIs are lagged, but lagging NPI dates either
forwards or backwards in time does not result in a better fitting model (see Figure 5.1b).
Indeed, Figure 5.1b) does support a hypothesis that the timing of NPIs and changes
in mobility are strongly linked. The coefficient sizes from this regression are entirely
consistent with Flaxman et al. (2020a) finding that the NPI with the largest effect size is
lockdown (see Figure 5.1c). This simple analysis does not model transmission, but does
provide strong evidence that mobility and NPIs do not provide conŕicting narratives.
We note, to perform this regression as fairly as possible, we used a hierarchical shrinkage
prior (Piironen and Vehtari, 2017) that performs both shrinkage and variable selection.

(a) (b) (c)

Fig. 5.1 Simple regression of mobility against NPIs. Figure (a) shows the fit for the United
Kingdom with mobility in black and the fit for NPIs in red. (b) shows the effect on mean

absolute error from lagging the NPIs. (c) shows the coefficient effect sizes from the regression. Y
axis are NPIs and X axis the regression effect sizes.
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5.8.2 Controlling for Mobility

Section 5.8.1 found a large correlation between interventions and mobility, demonstrating
that mobility is a potential confounder. Here, we control for this by jointly modeling
NPIs and mobility. This is done using the same 11 European countries, sets of NPIs and
death data as used in Flaxman et al. (2020a).

A two-stage approach (Haug et al., 2020) is used, whereby Rt is first estimated using
a daily random walk. In the second stage, this is regressed on NPIs and mobility. The
random walk can in theory select any arbitrary function of Rt that best describes the
data, without any prior information about which interventions happened when or how
well they worked. Given these estimates of Rt for all 11 European countries, we run
a simple partial pooling model to see if interventions and/or mobility can reproduce
the trends in Rt. The model used is a linear regression with country level intercepts
(to account for variation in R0), and both joint and country specific effect sizes for
interventions/mobility. As with the earlier analysis, we use a hierarchical shrinkage prior
on the coefficients (Piironen and Vehtari, 2017).

Three variations of the model are considered: NPIs only (NPI_only), mobility only
(Mobility_only), and both NPIs and mobility (NPI+Mobility). MCMC convergence
diagnostics in all cases did not indicate problems. We found the best fitting model
to be NPI+Mobility. Relative to this model, the expected log posterior difference (±
standard error) in WAIC of the model with only NPIs is −5.2± 4, ad −565.6± 49.2 with
only mobility. Therefore, in fits to the estimated Rt, the model with mobility alone is
substantially worse than the models with NPIs. Controlling for mobility does not appear
to significantly change the estimated effects of NPIs. As in Flaxman et al. (2020a), the
largest effect size is attributed to lockdown, as seen in Figure 5.2. This is true with and
without the inclusion of the mobility variable. This analysis could be improved using
Bayesian leave-one-out cross-validation (Vehtari et al., 2017) to account for the time
series nature of the data.

(a) (b) (c)

Fig. 5.2 Regression of NPIs and/or mobility against nonparametric Rt. Figure (a) shows the fit
for NPIs only. (b) for mobility only, (c) for NPIs and mobility. Mobility only was not

significantly preferred by WAIC. Y axis are covariates and X axis the regression effect sizes.

An advantage of the two-stage approach is that it is scalable to many regions. Rt can
be estimated in each region in parallel using separate models. Partial pooling can still
be leveraged to estimate effects in the second stage. Once Rt has been estimated, any
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number of interesting statistical analyses can be conducted. Nonetheless, the estimated
Rt is not entirely non-parametric; it is clearly inŕuenced by its random walk form in the
first stage. This analysis could be extended by considering a range of alternative priors
for Rt. More importantly, however, this approach has not considered causal relationships
between NPIs and mobility. This is the focus of the next example.

5.8.3 Causal Mediation

The effect of interventions in the previous analysis holds mobility constant. However, we
intuitively expect that part of these effects occur indirectly through changing mobility.
We can hypothesize that changes in mobility are both an effect of NPIs and a cause of
reductions in transmission. Causal mediation analysis provides a means to disentangle
the total effect of a variable into a direct and indirect effect. The indirect effect occurs
via some mediator, which in this case is hypothesized to be mobility. Further information
about causal mediation can be found here (Pearl, 2009, 2012).

Only lockdown is considered here because performing causal mediation with all NPIs
is challenging and lockdown is consistently the NPI with the largest effect size in Section
5.8.1, Section 5.8.2 and in Flaxman et al. (2020a). Brieŕy, to perform causal mediation,
we consider two transmission models

R
(m)
t = R̃1

m exp
((

β11 + β11,m
)

Lt,m + ε1t,m
)

, (5.12)

R
(m)
t = R̃2

m exp
((

β21 + β21,m
)

Lt,m +
(

β22 + β22,m
)

Mt,m + ε2t,m
)

, (5.13)

where Lt,m is a binary indicator for lockdown and Mt,m is mobility in country m

respectively. R̃im and εit,m are country specific parameters modeling baseline transmission
and a weekly random walk respectively. All other aspects of both models are the same
as in (Flaxman et al., 2020a). Model (5.12) includes effects for lockdown, while (5.13)
additionally considers mobility. β11 is the total effect for lockdown, while β21 is the partial
effect when controlling for mobility. The mediated effect is therefore β11 − β21 . This
quantifies the effect of lockdown via the path through mobility. We find this mediated
effect reduces Rt by 18.3% with a 95% credible interval of [12.2%, 44.4%]. The posterior
probability of the effect being greater than 0 is 89.6% . Individual coefficients are shown
in Figure 5.3.
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Fig. 5.3 Mediation analysis with lockdown (a), and both lockdown and mobility (b).

These mediation results suggest a causal link between lockdown and mobility that
eventually leads to reduced transmission rates. They also suggest that the mediated
effect is far less than the total effect of lockdown, suggesting lockdown will have other
causal pathways. Of course, mobility is also mediated through other pathways, and a
principled causal analysis is out of the scope of this chapter. The exclusion of other NPIs
may introduce omitted variable bias. Nonetheless, this simple analysis with lockdown
adds support to causal considerations.

5.9 Discussion

This chapter has discussed a class of statistical models for epidemics such as Covid-19
which can capture key epidemiological mechanisms. The model has appeared in various
forms for specific analyses during the Covid-19 crisis and, at the time of writing, continues
to be used to inform public policy. By presenting it in a general form and discussing
key modeling difficulties, we hope to stimulate discussion around it. One key difficulty
within the framework is dealing with confounded variables, particularly those used to
explain changes in transmission during the early stages of an epidemic. The analyses in
Section 5.8 make a first step in dealing with these, and support the central finding of
Flaxman et al. (2020a): that lockdown and other NPIs together served to control the
first wave of the epidemic in 11 European countries.

A number of model enhancements have not been discussed here. These include
explicitly accounting for importations, and allowing for uncertainty in the generation
and infection to observation distributions. The model can be fit using Stan (Stan
Development Team, 2018), but the adaptive Hamiltonian Monte Carlo used often has
difficulty converging when latent infections are modeled directly, or when multiple regions
are jointly modeled. We conjecture that convergence may be improved by carefully
choosing initial parameters for the sampler. Future research could explore whether
alternative samplers can be developed to fit these models more pragmatically.



6
epidemia: An R Package for Semi-Mechanistic modeling

of Infectious Diseases.

6.1 Introduction

This chapter introduces the open-source R (R Core Team, 2021) package epidemia,
which provides a framework for Bayesian, regression-oriented modeling of the temporal
dynamics of infectious diseases. The motivation for these models, and the mathematical
framework behind them, was introduced in Chapter 5. The implemented models are
typically, but not exclusively, fit to areal time-series; i.e. aggregated event counts for
a given population and period. Disease dynamics are described explicitly; observed
data are linked to latent infections, which are in turn modeled as a self-exciting process
tempered by time-varying reproduction numbers.

Regression models are specified for key objects in the models, which provides users
with a high degree of ŕexibility in defining models. For example, as was the case in
Chapter 5, reproduction numbers are expressed as a transformed predictor, which may
include both covariates and autoregressive terms. A range of prior distributions can be
assigned to unknown parameters by leveraging the functionality of rstanarm (Goodrich
et al., 2020). Multilevel models are supported by partially pooling covariate effects
appearing in the predictor for reproduction numbers between multiple populations.

epidemia’s functionality can be used for a number of purposes. A researcher can
simulate infection dynamics under assumed parameters by setting tight priors around the
assumed values. It is then possible to sample directly from the prior distribution without
conditioning on data. This allows in-silico experimentation; for example, to assess the
effect of varying a single parameter (reproduction numbers, seeded infections, incubation
period). Another goal of modeling is to assess whether a simple and parsimonious model
of reality can replicate observed phenomena. This helps to isolate processes helpful for
explaining the data. Models of varying complexity can be specified within epidemia,
largely as a result of its regression-oriented framework. Posterior predictive checks can
be used to assess model fit. If the model is deemed misspecified, additional features may
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be considered. This could be modeling population adjustments, explicit modeling of
super-spreader events (Wong and Collins, 2020), alternative and over-dispersed models
for the data, or more ŕexible functional forms for reproduction numbers or ascertainment
rates. This can be done rapidly within epidemia’s framework.

Forecasting models are critical during an ongoing epidemic as they are used to
inform policy decisions under uncertainty. As a sign of their importance, the United
States Centers for Disease Control and Prevention (CDC) has run a series of forecasting
challenges, including the FluSight seasonal forecasting challenges since 2015 (https:
//www.cdc.gov/ŕu/weekly/ŕusight/) and more recently the Covid-19 Forecast hub (https:
//covid19forecasthub.org/). Similar challenges have been run by the European Center
for Disease Prevention and Control (ECDC) (https://covid19forecasthub.eu/). Long-
term forecasts quantify the cost of an unmitigated epidemic, and provide a baseline
from which to infer the effects of control measures. Short-term forecasts are crucial
in informing decisions on how to distribute resources such as PPE or respirators, or
whether hospitals should increase capacity and cancel less urgent procedures. Traditional
statistical approaches often give unrealistic long-term forecasts, as they do not explicitly
account for population effects. The semi-mechanistic approach of epidemia combines the
strengths of statistical approaches with plausible infection dynamics, and can thus be
used for forecasting at different tenures.

The rest of this chapter is organized as follows. Section 6.1.1 discusses alternative
R packages for epidemiology, and highlights the unique features of epidemia. Section
6.2 introduces the basic model and various extensions. Sections 6.3 and 6.4 provide
installation instructions and introduce some main functions required to specify and fit the
models. We proceed in Section 6.5 to demonstrate usage of the package on two examples.
The first example considers the task of inferring time-varying reproduction numbers,
while the second attempts to infer the effects of control measures using a multilevel
model. Finally, we conclude in Section 6.6.

6.1.1 Related packages

The Comprehensive R Archive Network (CRAN) (https://cran.r-project.org/) provides
a rich ecosystem of R packages dedicated to epidemiological analysis. The R Epidemics
Consortium website (https://www.repidemicsconsortium.org/) lists a number of these.
Packages that model infectious disease dynamics vary significantly by the methods used to
model transmission. RLadyBug (Höhle and Feldmann, 2007) is a R package for parameter
estimation and simulation for stochastic compartmental models, including SEIR-type
models. Both likelihood-based and Bayesian inference are supported. amei (Merl et al.,
2010) provides online inference for a stochastic SIR model with a negative-binomial
transmission function, however, primary focus is on identifying optimal intervention
strategies. See Andersson and Britton (2000) for an introduction to stochastic epidemic
modeling.

https://www.cdc.gov/flu/weekly/flusight/
https://www.cdc.gov/flu/weekly/flusight/
https://covid19forecasthub.org/
https://covid19forecasthub.org/
https://covid19forecasthub.eu/
https://cran.r-project.org/
https://www.repidemicsconsortium.org/
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epinet (Groendyke and Welch, 2018) and epimodel (Jenness et al., 2018) provide
functionality to simulate compartmental models over contact networks. epinet uses the
class of dyadic-independent exponential random graph models (ERGMs) to model the
network, and perform full Bayesian inference over model parameters. epimodel considers
instead dynamic networks, inferring only network parameters and assuming epidemic
parameters to be known.

Epidemic data often presents in the form of areal data, recording event counts over
disjoint groups during discrete time intervals. This is the prototypical data type supported
within epidemia. Areal data can be modeled using purely statistical methods. The glm()

function in stats can be used to fit simple time-series models to count data. The package
acp (Vasileios, 2015) allows for fitting autoregressive Poisson regression (ACP) models
to count data, with potentially additional covariates. tscount (Liboschik et al., 2017)
expands on acp, and in particular provides more ŕexible link functions and over-dispersed
distributions.

Like epidemia, the package Surveillance (Meyer et al., 2017) implements regression-
oriented modeling of epidemic dynamics. The package offers models for three different
spatial and temporal resolutions of epidemic data. For areal data, which is the focus
of epidemia, the authors implement a multivariate time-series approach (Held et al.,
2005, Paul et al., 2008, Paul and Held, 2011, Held and Paul, 2012). This model differs
from the semi-mechanistic approach used here in several ways. First, the model has no
mechanistic component: neither infections and transmission are explicitly described. The
model is similar in form to a vector autoregressive model of order 1 (VAR(1)). The lag 1
assumption implies that each count series is Markovian. In epidemia, the infection process
has an interpretation as an AR process with both order and coefficients determined by
the generation distribution. This can therefore model more ŕexible temporal dependence
in observed data.

EpiEstim (Cori et al., 2013, Cori, 2021) infers time-varying reproduction numbers Rt
using case counts over time and an approximation of the disease’s generation distribution.
Infection incidence is assumed to follow a Poisson process with expectation given by
a renewal equation. R0 (Obadia et al., 2012) implements techniques for estimating
both initial and time-varying transmission rates. In particular, the package implements
the method of Wallinga and Teunis (2004), which bases estimates off a probabilistic
reconstruction of transmission trees. epidemia differs from these packages in several ways.
First, if infection counts are low then the Poisson assumption may be too restrictive, as
super-spreader events can lead to over-dispersion in the infection process. Our framework
permits over-dispersed distributions for modeling latent infections. Second, epidemia

allows ŕexible prior models for Rt, including the ability to use time-series methods. For
example, Rt can be parameterized as a random walk. Finally, infections over time are
often unobserved, and subject to under-reporting that is both space and time dependent.
We account for this by providing ŕexible observation models motivated by survival
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processes. Several count data series may be used simultaneously within the model to
leverage additional information on Rt.

The probabilistic programming language Stan (Stan Development Team, 2018) has
been used extensively to specify and fit Bayesian models for disease transmission during
the Covid-19 pandemic. Example analyses include Flaxman et al. (2020a), Hauser et al.
(2020) and van Doremalen et al. (2020). For tutorials on implementing such models,
see for example Grinsztajn et al. (2020) or Chatzilena et al. (2019). epidemia uses the
framework offered by Stan to both specify and fit models. User-specified models are
internally translated into data that is passed to a precompiled Stan program. The models
are fit using sampling methods from rstan (Stan Development Team, 2020).

6.2 Model Description

Here, we present the modeling framework implemented by the package. Section 6.2.1
outlines the bare-bones version of the model, which is elaborated on in Sections 6.2.2,
6.2.3 and 6.2.4. Section 6.2.5 extends the model and introduces multilevel modeling,
treating infections as parameters, and accounting for population effects.

6.2.1 Basic Model

We now formulate the basic version of the model for one homogeneous population. The
same model can be used for multiple regions or groups jointly. Suppose we observe a
non-negative time series of count data Y = (Y1, . . . Yn) for a single population. This
could for example be daily death or case incidence. Yt is modeled as deriving from past
new infections is, s < t, and some parameter αt > 0, a multiplier, which in most contexts
represents an instantaneous ascertainment rate. The general model can be expressed as

Yt ∼ p(yt, ϕ), (6.1)

yt = αt
∑

s<t

isπt−s, (6.2)

where yt is the expected value of the data distribution and ϕ is an auxiliary parameter.
πk is typically the time distribution from an infection to an observation, which we refer
to as the infection to observation distribution. More generally, however, πk can be used
to obtain any linear combination of past infections. New infections it at times t > 0 are
modeled through a renewal equation, and are tempered by a non-negative parameter Rt
which represents the reproduction number at time t. Formally

it = Rt
∑

s<t

isgt−s, (6.3)

where gk is a probability mass function for the time between infections. The recursion is
initialized with seeded infections iv:0, v < 0, which are treated as unknown parameters.
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All parameters are assigned priors, i.e.

iv:0, R, ϕ, α ∼ p(·), (6.4)

where R = (R1, . . . , Rn) and α = (α1, . . . , αn). The posterior distribution is then
proportional to prior and likelihood, i.e.

p(iv:0, R, ϕ, α | Y ) ∝ p(iv:0)p(R)p(ϕ)p(α)
∏

t

p(Yt | yt, ϕ). (6.5)

This posterior distribution is represented in a Stan program, and an adaptive Hamiltonian
Monte Carlo sampler (Hoffman and Gelman, 2014) is used to approximately draw samples
from it. These samples allow for inference on the parameters, in addition to simulating
data from the posterior predictive distribution.

Reproduction numbers R and multipliers α can be modeled ŕexibly with Bayesian
regression models, and by sharing parameters, are the means by which multiple regions
or groups are tied together through multilevel models. One can, for example, model
R as depending on a binary covariate for a control measure, say full lockdown. The
coefficient for this can be partially pooled between multiple populations. The effect is to
share information between groups, while still permitting between group variation.

6.2.2 Observations

As mentioned, Yt is usually a count of some event type occurring at time t. These
events are precipitated by past infections. Prototypical examples include daily cases or
deaths. αt is a multiplier, and when modeling count data, it typically is interpreted as
an ascertainment rate, i.e. the proportion of events at time t that are recorded in the
data. For case or death data, this would be the infection ascertainment rate (IAR) or
the infection fatality rate (IFR) respectively.

The multiplier α plays a similar role for observations as R does for infections;
tempering expected observations for time-specific considerations. As such, epidemia

treats α in a similar manner to reproductions number, and allows the user to specify a
regression model for it. Section 6.2.4 discusses this in detail in the context of reproduction
numbers, and this discussion is not repeated here. Figure E.1 in Appendix E.3 details
the model for α, as well as for observational models in general.

The sampling distribution p(yt, ϕ) (Equation (6.1)) should generally be informed by
parts of the data generating mechanism not captured by the mean yt: i.e. any mechanisms
which may induce additional variation around yt. Options for p(yt, ϕ) include the Poisson,
quasi-Poisson and negative-binomial families. The Poisson family has no auxiliary
parameter ϕ, while for the latter two families this represents a non-negative dispersion

parameter which is assigned a prior.
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epidemia allows simultaneous modeling of multiple observation vectors. In this case,
we simply superscript Y (l)

t , α(l)
t and π(l), and assign independent sampling distributions

for each type. Separate regression models are then specified for each multiplier α(l)
t .

Leveraging multiple observation types can often enhance a model. For example, high-
quality death data existed during the first wave of the Covid-19 pandemic in Europe.
Case data gradually increased in reliability over time, and has the advantage of picking
up changes in transmission dynamics much quicker than death data.

6.2.3 Infections

Infections it propagate over time through the discrete renewal equation (6.3). This is
self-exciting : past infections give rise to new infections. The theoretical motivation
for this lies in counting processes and is explained in more detail in Chapter 5. The
equation is connected to Hawkes processes and the Bellman Harris branching process
(Bellman and Harris, 1948, 1952, Mishra et al., 2020a). Such processes have been used
in numerous previous studies (Fraser, 2007, Cori et al., 2013, Nouvellet et al., 2018,
Cauchemez et al., 2008), and are also connected to compartmental models such as the
SEIR model (Champredon et al., 2018).

Equation (6.3) implies that infections it, t > 0 are deterministic given R and seeded
infections iv:0. epidemia sets a prior on iv:0 by first assuming that daily seeds are constant
over the seeding period. Formally, ik = i for each k ∈ {v, . . . 0}. The parameter i can
be assigned a range of prior distributions. One option is to model it hierarchically; for
example, as

i ∼ Exp(τ−1), (6.6)

τ ∼ Exp(λ0), (6.7)

where λ0 > 0 is a rate hyperparameter. This prior is uninformative, and allows seeds
to be largely determined by initial transmission rates and the chosen start date of the
epidemic.

Several extensions to the infection model are possible in epidemia, including extending
(6.3) to better capture dynamics such as super-spreading events, and also adjusting the
process for the size of the remaining susceptible population. These extensions are
discussed in Section 6.2.5 and 6.2.5 respectively. The basic infection model is shown in
Figure E.2 in Appendix E.3.

6.2.4 Transmission

Reproduction numbers are modeled ŕexibly. One can form a linear predictor consisting
of fixed effects, random effects and autocorrelation terms, which is then transformed via
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a suitable link function. Formally

R = g−1(η), (6.8)

where g is a link function and η is a linear predictor. In full generality, η can be expressed
as

η = β0 +Xβ + Zb+Qγ, (6.9)

where X is an n× p model matrix, Z is an n× q model matrix for the q-vector of group-
specific parameters b. Q is an n × r model matrix for the r-vector of autocorrelation
terms. The columns of X are predictors explaining changes in transmission. These could,
for example, be binary vectors encoding non-pharmaceutical interventions, as in Flaxman
et al. (2020a). A number of families can be used for the prior on β, including normal,
Cauchy, and hierarchical shrinkage families. The parameters b are modeled hierarchically
as

b ∼ N(0,Σ), (6.10)

where Σ is a covariance matrix that is itself assigned a prior. The particular form for
Σ, as well as its prior, is discussed in more detail in Appendix E.1.4. These partially
pooled parameters are particularly useful when multiple regions are being modeled
simultaneously. In this case, they allow information on transmission rates to be shared
between groups.

Q is a binary matrix specifying which of the autocorrelation terms in γ to include
for each period t. Currently, epidemia supports only random walk processes. However,
multiple such processes can be included, and can have increments that occur at a different
timescale to R; for example weekly increments can be used.

Link Functions

Choosing an appropriate link function g is difficult. Rt is non-negative, but clearly cannot
grow exponentially: regardless of the value of the linear predictor ηt, one expects Rt to
be bounded by some maximum value K. In other words, Rt has some carrying capacity.
One of the simplest options for g is the log-link. This satisfies non-negativity, and also
allows for easily interpretable effect sizes; a one unit change in a predictor scales Rt by a
constant factor. Nonetheless, it does not respect the carry capacity K, often placing too
much prior mass on large values of Rt. With this in mind, epidemia offers an alternative
link function satisfying

g−1(x) =
K

1 + e−x
. (6.11)

This is a generalization of the logit-link, and we refer to it as the scaled-logit.
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6.2.5 Extensions

Various extensions to the basic model just presented are possible, including multilevel mod-
eling, adding variation to the infection process, and explicitly accounting for population
effects. These are discussed in turn.

Joint Modeling of Multiple Populations

Consider modeling the evolution of an epidemic across multiple regions or populations.
Of course, separate models can be specified for each group. This approach is fast as each
model can be fit in parallel. Nonetheless, often there is little high-quality data for some
groups, particularly in the early stages of an epidemic. A joint model can benefit from
improved parameter estimation by sharing signal across groups. This can be done by
partially or fully pooling effects underlying reproduction numbers R.

We give an example for concreteness. Suppose the task is to infer the effect of a series
of p control measures on transmission rates. Letting R(m) be the vector of reproduction
numbers for the mth group, one could write

R(m) = g−1
(

β0 + b
(m)
0 +X(m)(β + b(m))

)

, (6.12)

where X(m) is a n× p matrix whose rows are binary vectors indicating which of the p
measures have been implemented in the mth group at that point in time. The parameters
b
(m)
0 allow each region to have its own initial reproduction number R0, while b(m) allow

for region-specific policy effects. These parameters can be partially pooled by letting

(b
(m)
0 , b(m)) ∼ N(0, Σ̃), (6.13)

for each m, and assigning a hyper-prior to the covariance matrix Σ̃.
In addition to hierarchical modeling of parameters making up R, seeded infections

are also modeled hierarchically. Equations (6.6) and (6.7) are replaced with

i(m) ∼ Exp(τ−1), (6.14)

τ ∼ Exp(λ0), (6.15)

where i(m) is the daily seeded infections for the mth group.

Infections as Parameters

Recall the renewal equation (Equation (6.3)) which describes how infections propagate
in the basic model. Infections it for t > 0 are a deterministic function of seeds iv:0 and
reproduction numbers R. If infections counts are large, then this process may be realistic
enough. However, when infection counts are low, there could variation in day-to-day
infections caused by a heavy tailed offspring distribution and super-spreader events.
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This may cause actual infections to deviate from those implied by the renewal equation.
Although the expected number of offspring of any given infection is driven by R, in
practice the actual number of offspring can exhibit considerable variation around this.
To capture this randomness, replace Equation (6.3) with

it ∼ p(i′t, d), (6.16)

i′t = Rt
∑

s<t

isgt−s. (6.17)

This treats it as latent parameters which must be sampled. Instead, the mean value

is described by the renewal equation. p(i′t, d) is parameterized by the mean and the
coefficient of dispersion d, which is assigned a prior. This extension can be motivated
formally through counting processes. Please see Chapter 5 for more details.

Depletion of the Susceptible Population

Nothing in Equation (6.3) prevents cumulative infections from exceeding the total
population size P . In particular, if Rt > 1 then infections can grow exponentially over time.
This does not always present a problem for modeling. Indeed, the posterior distribution
usually constrains past infections to reasonable values. Nonetheless, forecasting in the
basic model will be unrealistic if projected infections grow too large. As the susceptible
population diminishes, the transmission rate is expected to fall.

epidemia can apply a simple transformation to ensure that cumulative infections
remain bounded by P , and that transmission rates are adjusted for changes in the
susceptible population. Let St ∈ [0, P ] be the number of susceptible individuals in the
population at time t. Just like infections, this is treated as a continuous quantity. St
consists of those who have not been infected by time t, and have not been removed from
the susceptible class by other means; i.e. vaccination.

Let i′t denote unadjusted infections from the model. This is given by (6.3) in the basic
model, or by (6.16) if the extension of Section 6.2.5 is applied. These are interpreted as
the number of infections if the entire population were susceptible. These are adjusted
with

it = St−1

(

1− exp

(

− i
′
t

P

))

. (6.18)

The motivation for this is provided in Chapter 5. Equation (6.18) satisfies intuitive
properties: if i′t = 0 then it = 0, and as i′t →∞ we have that it → St−1. All infections at
time t are then removed from the susceptible population so that

St = St−1 − it (6.19)
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We are left to define Sv−1, the susceptible population the day before modeling begins. If
this is the start of an epidemic, it is natural to take Sv−1 = P . Nonetheless, it is often
of interest to begin modeling later, when a degree of immunity already exists within
the population. In this case, epidemia allows the user to assign a prior distribution to
Sv−1/P . This must lie between 0 and 1.

Accounting for Vaccinations Previous infection is one avenue through which indi-
viduals are removed from the susceptible population. Immunity can also be incurred
through vaccination. epidemia provides a basic way to incorporate such effects.

Let vt be the proportion of the susceptible population at time t who are removed
through some means other than infection. These are individuals who have never been
infected but may have been previously vaccinated, and their immunity is assumed to
have developed at time t.

epidemia requires vt to be supplied by the user. Then (6.19) is replaced with

St = (St−1 − it) (1− vt) . (6.20)

Of course, vt is a difficult quantity to estimate. It requires the user to estimate the
time-lag for a jab to become effective, and to also adjust for potentially different efficacies
of jabs and doses. Recognizing this, we allow the update

St = (St−1 − it) (1− vtξ) , (6.21)

where ξ is a noise term that is assigned a prior distribution. ξ helps to account for
potentially systematic biases in calculating vaccine efficacy.

6.3 Installation

epidemia requires R v3.5.0 or above. The package can be installed directly from GitHub.
However, this requires you to have a working C++ tool chain. To ensure that this is
working, please first install rstan by following these installation instructions.

After installing rstan, running

R> #install.packages("devtools")

R> devtools::install_github("ImperialCollegeLondon/epidemia")

will install the latest development version of epidemia. If using windows, you can
alternatively install the binary. Vignettes are not currently included in the package
because they are computationally demanding, and are best viewed online.

https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://github.com/ImperialCollegeLondon/epidemia/releases/latest
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6.4 Model Implementation

Here, we give a high-level overview of the workŕow required for defining and fitting a
model with epidemia. The primary model fitting function is epim(). This takes a model
description and additional arguments relating to the fitting algorithm, and proceeds to
fit the model using a precompiled Stan program. This is similar to the workŕow for
fitting Bayesian regression models with rstanarm. A key difference, however, is that
the models fit by epidemia are generally complex, and are therefore inherently more
difficult to specify. We simplify this process by taking a modular approach; models are
defined through three distinct parts: transmission, infections and observations. These
components of the model are defined with the functions epirt(), epiinf() and epiobs()

respectively.
The package contains an example dataset EuropeCovid which contains data on daily

death counts from Covid-19 in 11 European Countries from February through May 2020,
and a set of binary indicators of non-pharmaceutical interventions. This is used as an
example throughout.

R> library(dplyr)

R> library(epidemia)

R> library(rstanarm)

R> data("EuropeCovid")

We begin by describing epim() in more detail, and then proceed to discuss the three
modeling functions.

6.4.1 Model Fitting

epim() is the only model fitting function in epidemia. It has arguments rt, inf, and
obs which expect a description of the transmission model, infection model and all
observational models respectively. Together, these fully define the joint distribution
of data and parameters. Each of these model components are described in terms of
variables that are expected to live in a single data frame, data. This data frame must be
compatible with the model components, in the sense that it holds all variables defined in

these models. For our example, these variables are the following.

R> data <- EuropeCovid$data

R> colnames(data)

[1] "country"

[2] "date"

[3] "schools_universities"

[4] "self_isolating_if_ill"

[5] "public_events"
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[6] "lockdown"

[7] "social_distancing_encouraged"

[8] "deaths"

[9] "pop"

The data argument is described in more detail in Section 6.4.5.
In addition to taking a model description and a data frame, epim() has various addi-

tional arguments which specify how the model should be fit. If algorithm = "sampling"

then the model will be fit using Stan’s adaptive Hamiltonian Monte Carlo sampler (Hoff-
man and Gelman, 2014). This is done internally by calling sampling() from rstan. If
instead this is "meanfield" or "fullrank", then Stan’s Variational Bayes algorithms
(Kucukelbir et al., 2015, 2017) are employed by calling vb() from rstan. Any unnamed
arguments in the call to epim() are passed directly onto the rstan sampling function.
epim() returns a fitted model object of class epimodel, which contains posterior samples
from the model along with other useful objects.

In general, Hamiltonian Monte Carlo should be used for final inference. Nonetheless,
this is often computationally demanding, and Variational Bayes can often be used fruitful
for quickly iterating models. All arguments for epim() are described in Table 6.1.

6.4.2 Transmission

epirt() defines the model for time-varying reproduction numbers, which was described
in Section 6.2.4. Recall that these are modeled as a transformed linear predictor. epirt()
has a formula argument which defines the linear predictor η, an argument link defining
the link function g, and additional arguments to specify priors on parameters making up
η.

A general R formula gives a symbolic description of a model. It takes the form y

~ model, where y is the response and model is a collection of terms separated by the
+ operator. model fully defines a linear predictor used to predict y. In this case, the
łresponsež being modeled are reproduction numbers which are unobserved. epirt()

therefore requires that the left hand side of the formula takes the form R(group, date),
where group and date refer to variables representing the modeled populations and
dates respectively. The right hand side can consist of fixed effects, random effects, and
autocorrelation terms. For our example, a viable call to epirt() is the following.

R> rt <- epirt(formula = R(country, date) ~ 1 + lockdown + public_events,

+ link = scaled_logit(7))

Here, two fixed effects are included which represent the effects of implementing
lockdown and banning public events. These effects are assumed constant across coun-
tries. They could alternatively be partially pooled by using the term (lockdown +

public_events | country). For information on how to interpret such terms, please
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Table 6.1 Formal arguments for the model fitting function epim(). The first three arguments
listed below define the model to be fitted.

Argument Description

rt An object of class epirt, resulting from a call to epirt() (Section
6.4.2). This defines the model for time-varying reproduction numbers
R. See Section 6.4.2 for more details.

inf An object of class epiinf, resulting from a call to epiinf() (Section
6.4.3). This entirely defines the model for infections it.

obs Either an object of class epiobs, or a list of such objects. Each of
these define a model for an observation vector in data, and result
from a call to epiobs() (Section 6.4.4).Each element of the list
defines a model for an observed variable.

data A dataframe with all data required for fitting the model. This
includes all observations and covariates specified in the model. See
Section 6.4.5 for more details.

algorithm One of "sampling", "meanfield" or "fullrank". This determines
the rstan sampling function to use for fitting the model. "sampling"
corresponds to HMC, while "meanfield" and "fullrank" are
Variational Bayes algorithms.

group_subset If specified, a character vector naming a subset of groups/populations
to include in the model.

prior_PD If TRUE, parameters are sampled from their prior distributions. This
is useful for prior predictive checks. Defaults to FALSE.

... Additional arguments to pass to the rstan function used to fit the
model. If algorithm = "sampling", then this function is
sampling(). Otherwise vb() is used.

read Appendix E.2. Using link = scaled_logit(7) lets the link function be the scaled
logit link described by Equation (6.11), where K = 7 is the maximum possible value for
reproduction numbers. For simplicity, we have omitted any prior arguments, however
these should generally be specified explicitly. Please see Appendix E.1 for detailed
information on how to use priors. All arguments for epirt() are listed in Table 6.1.

6.4.3 Infections

The infection model is represented by epiinf(). In the most basic version, this defines
the distribution of the generation time of the disease, the number of days for which to seed
infections, and the prior distribution on seeded infections. These three parameters are
controlled by the arguments gen, seed_days and prior_seeds respectively. A possible
model is the following.

R> inf <- epiinf(gen = EuropeCovid$si, seed_days = 6L,

+ prior_seeds = hexp(exponential(0.02)))
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Table 6.2 Formal arguments for epirt(), which defines the model for Rt.

Argument Description

formula An object of class formula which determines the linear predictor η
for R. The left hand side must take the form R(group, date), where
group must be a factor vector indicating group membership (i.e.
country, state, age cohort), and date must be a vector of class Date.
This is syntactic sugar for the reproduction number in the given
group at the give date.

link The link function g. Can be "log", "identity" or a call to
scaled_logit(). Defaults to "log".

center If TRUE, covariates specified in formula are centered to have mean
zero. All priors should then be interpreted as priors on the centered
covariates.

prior Same as in stan_glm() from rstanarm. Defines the prior on fixed
effects β. Priors provided by rstanarm can be used, and additionally
shifted_gamma. Note: if autoscale = TRUE in the call to the prior
function, then automatic rescaling takes place.

prior_intercept Same as in stan_glm() from rstanarm. Prior for the regression
intercept β0 (if it exists).

prior_covariance Same as in stan_glmer() from rstanarm. Defines the prior on the
covariance matrix Σ. Only use if the formula has one or more terms
of the form (x | y), in which case there are parameters to partially
pool, i.e. b has positive length.

... Additional arguments to pass to model.frame() from stats.

EuropeCovid$si is a numeric vector representing the distribution for the serial
interval of Covid-19. There is an implicit assumption that the generation time can
be approximated well by the serial interval. Seeds are modeled hierarchically, and are
described by (6.6) and (6.7). τ has been assigned an exponential prior with a mean of
50. Seeded infections are assumed to occur over a period of 6 days.

epiinf() has additional arguments that allow the user to extend the basic model.
Using latent = TRUE replaces the renewal equation (6.3) with Equation (6.16). Daily
infections are then treated as latent parameters that are sampled along with other
parameters. The family argument specifies the distribution p(i′t, d), while prior_aux

defines the prior on the coefficient of dispersion d.
Recall from Section 6.2.5 that the infection process may be modified to explicitly

account for changes in infection rates as the remaining susceptible population is depleted.
In particular, the adjustment ensures that cumulative infections never breaches the
population size. It can be employed by setting pop_adjust = TRUE and using the pop

argument to point towards a static variable in the data frame giving the population size.
All argument to epiinf() are described in Table 6.3.
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Table 6.3 Formal arguments for epiinf(), which defines the infection model.

Argument Description

gen A numeric vector giving the probability mass function gk for the
generation time of the disease (must be a probability vector).

seed_days An integer giving the number of days v + 1 for which to seed
infections. Defaults to 6L.

prior_seeds Prior distribution on the seed parameter i. Defaults to
hexp(prior_aux = rstanarm::exponential(0.03)).

latent If TRUE, treat infections as latent parameters using the extensions
described in Section 6.2.5.

family Specifies the family for the infection distribution p(i′t, d). Only used if
latent = TRUE, and defaults to "normal".

prior_aux Prior on the auxiliary variable d of p(i′t, d). This is either the
variance-to-mean ratio or the coefficient of variation, depending on
the value of fixed_vtm. Only used if latent = TRUE.

fixed_vtm If TRUE, then p(i′t, d) has a fixed variance-to-mean ratio, i.e. variance
is σ2 = di′t; In this case, d refers to the variance-to-mean ratio. Id
FALSE then instead standard deviation is assumed proportional to the
mean, in which case d is the coefficient of variation. Only used if
latent = TRUE.

pop_adjust If TRUE, applies the population adjustment (6.18) to the infection
process.

pops A character vector giving the population variable. Only used if
pop_adjust = TRUE.

prior_susc Prior on Sv−1/P , the initial susceptible population as a proportion of
the population size. If NULL, this is assumed to be equal to 1 (i.e.
everyone is initially susceptible). Otherwise, can be a call to
normal() from rstanarm, which assigns a normal prior truncated to
[0, 1]. Only used if pop_adjust = TRUE.

rm A character vector giving the variable corresponding to vt, i.e. the
proportion of St to remove at time t. Only used if pop_adjust =

TRUE.
prior_rm_noise Prior on the parameter ξ, which controls noise around vt. If NULL, no

noise is added. Only used if pop_adjust = TRUE.

6.4.4 Observations

An observational model is defined by a call to epiobs(). In particular, this must also
make explicit the model for the multipliers αt, and must also specify the coefficients πk.
epiobs() has a formula argument. The left hand side must indicate the observation
vector to be modeled, while the right hand side defines a linear predictor for αt. The
argument i2o plays a similar role to the gen argument in epiinf(), however it instead
corresponds the vector π in Equation (6.2).
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Take for example the task of modeling daily deaths, which as we saw is a variable in
data. A possible model is the following.

R> deaths <- epiobs(formula = deaths ~ 1, i2o = EuropeCovid$inf2death,

+ link = scaled_logit(0.02))

Here, αt corresponds to the infection fatality rate (IFR), and is modeled as an
intercept transformed by the scaled-logit link. This implies that the IFR is constant over
time and its value lies somewhere between 0% and 2%. If the prior on the intercept
(specified by the prior_intercept argument) is chosen to be symmetric around zero,
then the prior mean for the IFR is 1%. EuropeCovid$inf2death is a numeric simplex
vector that gives the same delay distribution as used in Flaxman et al. (2020a). This is a
density function for a discretized mixture of Gamma random variables.

Additional arguments include family, which specifies the sampling distribution
p(yt, ϕ). There are also arguments allowing the user to control prior distributions for
effects in the linear predictor for αt, and the prior on the auxiliary variable ϕ. All
arguments to epiobs() are shown in Table 6.4.

Table 6.4 Formal arguments for epiobs(). This defines a single observation model. Multiple
such models can be used and passed to epim() in a list.

Argument Description

formula An object of class "formula" which determines the linear predictor
for the ascertainment rate. The left hand side must define the
response that is being modeled (i.e. the actual observations, not the
latent ascertainments)

i2o A numeric (probability) vector defining the probability mass function
πk of the time from an infection to an observation.

family A string representing the family of the sampling distribution p(yt, ϕ).
Can be one of "poisson", "neg_binom", "quasi_poisson",
"normal" or "log_normal".

link A string representing the link function used to transform the linear
predictor. Can be one of "logit", "probit", "cauchit", "cloglog",
"identity". Defaults to "logit".

center, prior,
prior_intercept

same as in epirt(), described above.

prior_aux The prior distribution for the auxiliary parameter ϕ, if it exists. Only
used if family is "neg_binom" (reciprocal dispersion),
"quasi_poisson" (dispersion), "normal" (standard deviation) or
"log_normal" (sigma parameter).

... Additional arguments for model.frame() from stats.
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6.4.5 Data

Before fitting our first model in Section 6.4.6, we elaborate on the data argument to
epim(). Recall that this must contain all variables used in the transmission and infection
models, and in all observational models. For our example, data looks like

R> head(data)

# A tibble: 6 x 9

# Groups: country [1]

country date schools_universiti~ self_isolating_if_~

<fct> <date> <int> <int>

1 Austria 2020-02-22 0 0

2 Austria 2020-02-23 0 0

3 Austria 2020-02-24 0 0

4 Austria 2020-02-25 0 0

5 Austria 2020-02-26 0 0

6 Austria 2020-02-27 0 0

# ... with 5 more variables: public_events <int>,

# lockdown <int>, social_distancing_encouraged <int>,

# deaths <int>, pop <int>

The columns country and date define the region and time period corresponding to
each of the remaining variables. epim() assumes that the first seeding day (i.e. the start
of the epidemic) in each region is the first date found in the data frame. The last data
found for each region is the final data at which the epidemic is simulated. It is up to the
user to appropriately choose these dates. For our example, the first and last dates for
each group can be seen as follows.

R> dates <- summarise(data, start = min(date), end = max(date))

R> head(dates)

# A tibble: 6 x 3

country start end

<fct> <date> <date>

1 Austria 2020-02-22 2020-05-05

2 Belgium 2020-02-18 2020-05-05

3 Denmark 2020-02-21 2020-05-05

4 France 2020-02-07 2020-05-05

5 Germany 2020-02-15 2020-05-05

6 Italy 2020-01-27 2020-05-05

Here, the start dates have been heuristically chosen to be 30 days prior to observing
10 cumulative deaths in each country.
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6.4.6 A First Fit

We are now ready to fit our first model. For this we return to the model fitting function
epim(). The following command is used to instruct epidemia to run Markov chains in
parallel, rather than sequentially, if multiple cores are detected.

R> options(mc.cores = parallel::detectCores())

Our call to epim() is as follows. We use refresh = 0 to suppress printing output in
this chapter, however, this should not generally be used as such output is useful.

R> fm <- epim(rt = rt, inf = inf, obs = deaths, data = data,

+ group_subset = "France", algorithm = "sampling", iter = 1e3,

+ seed = 12345, refresh = 0)

The print method for epimodel objects prints summary statistics for model pa-
rameters. These are obtained from the sampled posterior distribution. Parameter are
displayed according to which part of the model they belong to (transmission, observations,
infections). An estimate of the standard deviation, labeled MAD_SD is displayed. This is
the median absolute deviation from the median, and is more robust than naive estimates
of the standard deviation for long-tailed distributions.

R> print(fm)

Rt regression parameters:

==========

coefficients:

Median MAD_SD

R|(Intercept) 0.7 0.2

R|lockdown -2.4 0.3

R|public_events -0.4 0.3

deaths regression parameters:

==========

coefficients:

Median MAD_SD

deaths|(Intercept) 0.0 0.2

deaths|reciprocal dispersion 10.4 0.4

Infection model parameters:

==========

Median MAD_SD

seeds[France] 15.2 5.2

seeds_aux 27.3 22.0
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Alternatively, the summary method can be used. This gives quantiles of the posterior
draws, and also displays some MCMC diagnostics.

R> summary(fm)

Estimates:

mean sd 10% 50% 90%

R|(Intercept) 0.7 0.2 0.5 0.7 0.9

R|lockdown -2.4 0.3 -2.8 -2.4 -2.1

R|public_events -0.4 0.3 -0.8 -0.4 0.0

deaths|(Intercept) 0.0 0.2 -0.3 0.0 0.2

seeds[France] 16.2 5.9 9.6 15.2 24.0

seeds_aux 39.7 38.0 8.7 27.3 84.8

deaths|reciprocal dispersion 10.5 0.5 10.1 10.4 11.1

MCMC diagnostics

mcse Rhat n_eff

R|(Intercept) 0.0 1.0 1110

R|lockdown 0.0 1.0 1119

R|public_events 0.0 1.0 921

deaths|(Intercept) 0.0 1.0 1422

seeds[France] 0.2 1.0 1297

seeds_aux 1.2 1.0 1061

deaths|reciprocal dispersion 0.0 1.0 2238

log-posterior 0.1 1.0 738

6.5 Examples

6.5.1 Spanish Flu in Baltimore

Our first example infers Rt during the H1N1 pandemic in Baltimore in 1918, using only
case counts and a serial interval. This is, relatively speaking, a simple setting for several
reasons. Only a single population (that of Baltimore) and observational model (case
data) are considered. Rt will follow a daily random walk with no additional covariates.
Of course, epidemia is capable of more complex modeling, and Section 6.5.2 takes a step
in this direction.

In addition to inferring Rt, this example demonstrates how to undertake posterior
predictive checks to graphically assess model fit. The basic model outlined above is then
extended to add variation to the infection process, as was outlined in Section 6.2.5. This
is particularly useful for this example because infection counts are low. We will also see
that the extended model appears to have a computational advantage in this setting.

The case data is provided by the R package EpiEstim.
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R> library(EpiEstim)

R> data("Flu1918")

R> print(Flu1918)

$incidence

[1] 5 1 6 15 2 3 8 7 2 15 4 17 4 10

[15] 31 11 13 36 13 33 17 15 32 27 70 58 32 69

[29] 54 80 405 192 243 204 280 229 304 265 196 372 158 222

[43] 141 172 553 148 95 144 85 143 87 73 70 62 116 44

[57] 38 60 45 60 27 51 34 22 16 11 18 11 10 8

[71] 13 3 3 6 6 13 5 6 6 5 5 1 2 2

[85] 3 8 4 1 2 3 1 0

$si_distr

[1] 0.000 0.233 0.359 0.198 0.103 0.053 0.027 0.014 0.007

[10] 0.003 0.002 0.001

Data

First form the data argument, which will eventually be passed to the model fitting
function epim(). Recall that this must be a data frame containing all observations and
covariates used to fit the model. Therefore, we require a column giving cases over time.
In this example, no covariates are required. Rt follows a daily random walk, with no
additional covariates. In addition, the case ascertainment rate will be assumed at 100%,
and so no covariates are used for this model either.

R> date <- as.Date("1918-01-01") + seq(0, along.with = c(NA, Flu1918$incidence))

R> data <- data.frame(city = "Baltimore", cases = c(NA, Flu1918$incidence),

+ date = date)

The variable date has been constructed so that the first cases are seen on the second
day of the epidemic rather than the first. This ensures that the first observation can be
explained by past infections.

Transmission

Recall that we wish to model Rt by a daily random walk. This is specified by a call to
epirt(). The formula argument defines the linear predictor which is then transformed
by the link function. A random walk can be added to the predictor using the rw()

function. This has an optional time argument which allows the random walk increments
to occur at a different frequency to the date column. This can be employed, for example,
to define a weekly random walk. If unspecified, the increments are daily. The increments
are modeled as half-normal with a scale hyperparameter. The value of this is set using
the prior_scale argument. This is used in the snippet below.
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R> rt <- epirt(formula = R(city, date) ~ 1 + rw(prior_scale = 0.01),

+ prior_intercept = normal(log(2), 0.2), link = ’log’)

The prior on the intercept gives the initial reproduction number R0 a prior mean of
roughly 2.

Observations

Multiple observational models can be collected into a list and passed to epim() as the
obs argument. In this case, only case data is used and so there is only one such model.

R> obs <- epiobs(formula = cases ~ 0 + offset(rep(1,93)), link = "identity",

+ i2o = rep(.25,4))

For the purpose of this exercise, we have assumed that all infections will eventually
manifest as a case. The above snippet implies full ascertainment, i.e. αt = 1 for all t.
This is achieved using offset(), which allows vectors to be added to the linear predictor
without multiplication by an unknown parameter.

The i2o argument implies that cases are recorded with equal probability in any of
the four days after infection.

Infections

Two infection models are considered. The first uses the renewal equation (Equation 6.3)
to propagate infections. The extended model adds variance to this process, and can be
applied by using latent = TRUE in the call to epiinf().

R> inf <- epiinf(gen = Flu1918$si_distr)

R> inf_ext <- epiinf(gen = Flu1918$si_distr, latent = TRUE,

+ prior_aux = normal(10,2))

The argument gen takes a discrete generation distribution. Here we have used
the serial interval provided by EpiEstim. As in Section 6.4.3, this makes the implicit
assumption that the serial interval approximates the generation time. prior_aux sets
the prior on the coefficient of dispersion d. This prior assumes that infections have
conditional variance around 10 times the conditional mean.

Fitting the Model

We are left to collect all remaining arguments required for epim(). This is done as
follows.

R> args <- list(rt = rt, obs = obs, inf = inf, data = data, iter = 2e3,

+ seed = 12345)

R> args_ext <- args; args_ext$inf <- inf_ext
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The arguments iter and seed set the number of MCMC iterations and seeds respec-
tively, and are passed directly on to the sampling() function from rstan.

We wrap the calls to epim() in system.time in order to assess the computational
cost of fitting the models. The snippet below fits both versions of the model. fm1 and
fm2 are the fitted basic model and extended model respectively.

R> system.time(fm1 <- do.call(epim, args))

user system elapsed

341.488 1.550 93.214

R> system.time(fm2 <- do.call(epim, args_ext))

user system elapsed

55.377 0.895 17.583

Note the stark difference in running time. The extended model appears to fit faster
even though there are 87 additional parameters being sampled (daily infections after
the seeding period, and the coefficient of dispersion). We conjecture that the additional
variance around infections adds slack to the model, and leads to a posterior distribution
that is easier to sample.

The results of both models are shown in Figure 6.1. This figure has been produced
using epidemia’s plotting functions. The key difference stems from the infection process.
In the basic model, infections are deterministic given Rt and seeds. However, when
infection counts are low, we generally expect high variance in the infection process. Since
this variance is unaccounted for, the model appears to place too much confidence in
Rt in this setting. The extended model, on the other hand, has much wider credible
intervals for Rt when infections are low. This is intuitive: when counts are low, changes
in infections could be explained by either the variance in the offspring distribution of
those who are infected, or by changes in the Rt value. This model captures this intuition.

Posterior predictive checks are shown in the bottom panel of Figure 6.1, and show
that both models can fit the data well.
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Fig. 6.1 Spaghetti plots showing the median (black) and sample paths (blue) from the posterior
distribution. These result from the model fits in Section 6.5.1. Left corresponds to the basic

model, and the right panel is for the extended version. Top: Inferred time-varying reproduction
numbers, which have been smoothed over 7 days for illustration. Middle: Inferred latent

infections. Bottom: Observed cases, and cases simulated from the posterior. These align closely,
and so do not flag problems with the model fit.

6.5.2 Assessing the Effects of Interventions on COVID-19

The Spanish ŕu example (Section 6.5.1) considered inferring the instantaneous reproduc-
tion number over time in a single population. Here, we demonstrate some of the more
advanced modeling capabilities of the package.

Consider modeling the evolution of an epidemic in multiple distinct regions. As
discussed in Section 6.2.5, one can always approach this by modeling each group separately.
It was argued that this approach is fast, because models may be fit independently.
Nonetheless, often there is little high quality data for some groups, and the data does
little to inform parameter estimates. This is particularly true in the early stages of an
epidemic. Joining regions together through hierarchical models allows information to
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be shared between regions in a natural way, improving parameter estimates while still
permitting between group variation.

In this section, we use a hierarchical model to estimate the effect of non-pharmaceutical
interventions (NPIs) on the transmissibility of Covid-19. We consider the same setup as
Flaxman et al. (2020a): attempting to estimate the effect of a set of measures that were
implemented in March 2020 in 11 European countries during the first wave of Covid-19.
This will be done by fitting the model to daily death data. The same set of measures and
countries that were used in Flaxman et al. (2020a) are also used here. Flaxman et al.
(2020b) considered a version of this model that used partial pooling for all NPI effects.
Here, we consider a model that uses the same approach.

This example is not intended to be a fully rigorous statistical analysis. Rather, the
intention is to demonstrate partial pooling of parameters in epidemia and how to infer
their effect sizes. We also show how to forecast observations into the future, and how to
undertake counterfactual analyses.

Data

We use a data set EuropeCovid2, which is provided by epidemia. This contains daily
death and case data in the 11 countries concerned up until the 1st July 2020. The data
derives from the WHO COVID-19 explorer as of the 5th of January 2021. This differs
from the data used in Flaxman et al. (2020a), because case and death counts have been
adjusted retrospectively as new information came to light. epidemia also has a data set
EuropeCovid which contains the same data as that in Flaxman et al. (2020a), and this
could alternatively be used for this exercise.

EuropeCovid2 also contains binary series representing the set of five mitigation
measures considered in Flaxman et al. (2020a). These correspond to the closing of schools
and universities, the banning of public events, encouraging social distancing, requiring
self-isolation if ill, and finally the implementation of full lockdown. The dates at which
these policies were enacted are the same as those used in Flaxman et al. (2020a).

Load the data set as follows.

R> data("EuropeCovid2")

R> data <- EuropeCovid2$data

R> head(data)

# A tibble: 6 x 11

# Groups: country [1]

id country date cases deaths schools_universities

<chr> <chr> <date> <int> <int> <int>

1 AT Austria 2020-01-03 0 0 0

2 AT Austria 2020-01-04 0 0 0

3 AT Austria 2020-01-05 0 0 0

4 AT Austria 2020-01-06 0 0 0
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5 AT Austria 2020-01-07 0 0 0

6 AT Austria 2020-01-08 0 0 0

# ... with 5 more variables: self_isolating_if_ill <int>,

# public_events <int>, lockdown <int>,

# social_distancing_encouraged <int>, pop <int>

Recall that for each country, epidemia will use the earliest date in data as the first
date to begin seeding infections. Therefore, we must choose an appropriate start date for
each group. One option is to use the same rule as in Flaxman et al. (2020a), and assume
that seeding begins in each country 30 days prior to observing 10 cumulative deaths. To
do this, we filter the data frame as follows.

R> data <- filter(data, date > date[which(cumsum(deaths) > 10)[1] - 30])

This leaves the following assumed start dates.

R> dates <- summarise(data, start = min(date), end = max(date))

R> head(dates)

# A tibble: 6 x 3

country start end

<chr> <date> <date>

1 Austria 2020-02-23 2020-06-30

2 Belgium 2020-02-15 2020-06-30

3 Denmark 2020-02-22 2020-06-30

4 France 2020-02-09 2020-06-30

5 Germany 2020-02-16 2020-06-30

6 Italy 2020-01-28 2020-06-30

Although data contains observations up until the end of June, we fit the model using
a subset of the data. We hold out the rest to demonstrate forecasting out-of-sample.
Following Flaxman et al. (2020a), the final date considered is the 5th May.

R> data <- filter(data, date < as.Date("2020-05-05"))

Model Components

We have seen several times now that epidemia require the user to specify three model
components: transmission, infections, and observations. These are now considered in
turn.

Transmission Country-specific reproduction numbers R(m)
t are expressed in terms

of the control measures. Since the measures are encoded as binary policy indicators,
reproduction rates must follow a step function. They are constant between policies, and
either increase or decrease as policies come into play. The implicit assumption, of course,
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is that only control measures may affect transmission, and that these effects are fully
realized instantaneously.

Let t(m)
k ≥ 0, k ∈ {1, . . . , 5} be the set of integer times at which the kth control

measure was enacted in the mth country. Accordingly, we let I(m)
k , k ∈ {1, . . . , 5} be a

set of corresponding binary vectors such that

I
(m)
k,t =







0, if t < t
(m)
k

1. if t ≥ t(m)
k

(6.22)

Reproduction numbers are mathematically expressed as

R
(m)
t = R′g−1

(

b
(m)
0 +

5
∑

k=1

(

βk + b
(m)
k

)

I
(m)
k,t

)

, (6.23)

where R′ = 3.25 and g is the logit-link. Parameters b(m)
0 are country-specific intercepts,

and each b(m)
k is a country effect for the kth measure. The intercepts allow each country

to have its own initial reproduction number, and hence accounts for possible variation
in the inherent transmissibility of Covid-19 in each population. βk is a fixed effect for
the kth policy. This quantity corresponds to the average effect of a measure across all
countries considered.

Control measures were implemented in quick succession in most countries. For some
countries, a subset of the measures were in fact enacted simultaneously. For example,
Germany banned public events at the same time as implementing lockdown. The upshot
of this is that policy effects are highly colinear and may prove difficult to infer with
uninformative priors.

One potential remedy is to use domain knowledge to incorporate information into
the priors. In particular, it seems a priori unlikely that the measures served to increase
transmission rates significantly. It is plausible, however, that each had a significant effect
on reducing transmission. A symmetric prior like the Gaussian does not capture this
intuition and increases the difficulty in inferring effects, because they are more able to
offset each other. This motivated the prior used in Flaxman et al. (2020a), which was a
Gamma distribution shifted to have support other than zero.

We use the same prior in our example. Denoting the distribution of a Gamma random
variable with shape a and scale b by Gamma(a, b), this prior is

− βk −
log(1.05)

6
∼ Gamma(1/6, 1). (6.24)

The shift allows the measures to increase transmission slightly.
All country-specific parameters are partially pooled by letting

b
(m)
k ∼ N(0, σk), (6.25)
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where σk are standard deviations, σ0 ∼ Gamma(2, 0.25) and σk ∼ Gamma(0.5, 0.25) for
all k > 0. This gives the intercept terms more variability under the prior.

The transmission model described above is expressed programmatically as follows.

R> rt <- epirt(formula = R(country, date) ~ 0 + (1 + public_events +

+ schools_universities + self_isolating_if_ill +

+ social_distancing_encouraged + lockdown || country) +

+ public_events + schools_universities + self_isolating_if_ill +

+ social_distancing_encouraged + lockdown,

+ prior = shifted_gamma(shape = 1/6, scale = 1, shift = log(1.05)/6),

+ prior_covariance = decov(shape = c(2, rep(0.5, 5)), scale = 0.25),

+ link = scaled_logit(6.5))

The operator || is used rather than | for random effects. This ensures that all
effects for a given country are independent, as was assumed in the model described above.
Using | would alternatively give a prior on the full covariance matrix, rather than on the
individual σi terms. The argument prior reŕects Equation (6.24). Since country effects
are assumed independent, the decov prior reduces to assigning Gamma priors to each σi.
By using a vector rather than a scalar for the shape argument, we are able to give the
prior on the intercepts a larger shape parameter.

Infections Infections are kept simple here by using the basic version of the model. That
is to say that infections are taken to be a deterministic function of seeds and reproduction
numbers, propagated by the renewal process. Extensions to modeling infections as
parameters and adjustments for the susceptible population are not considered. The
model is defined as follows.

R> inf <- epiinf(gen = EuropeCovid$si, seed_days = 6)

EuropeCovid$si is a numeric vector giving the serial interval used in Flaxman et al.
(2020a). As in that work, we make no distinction between the generation distribution
and serial interval here.

Observations In order to infer the effects of control measures on transmission, we
must fit the model to data. Here, daily deaths are used. In theory, additional types of
data can be included in the model, but such extension are not considered here. A simple
intercept model is used for the infection fatality rate (IFR). This makes the assumption
that the IFR is constant over time. The model can be written as follows.

R> deaths <- epiobs(formula = deaths ~ 1, i2o = EuropeCovid2$inf2death,

+ prior_intercept = normal(0,0.2), link = scaled_logit(0.02))
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By using link = scaled_logit(0.02), we let the IFR range between 0% and 2%.
With the symmetric prior on the intercept, this gives the IFR a prior mean of 1%.
EuropeCovid2$inf2death is a numeric vector giving the same distribution for the time
from infection to death as that used in Flaxman et al. (2020a).

Model Fitting

In general, epidemia’s models should be fit using Hamiltonian Monte Carlo. For this
example, however, we use Variational Bayes (VB) as opposed to full MCMC sampling.
This is because full MCMC sampling of a joint model of this size is computationally
demanding, due in part to renewal equation having to be evaluated for each region and
for each evaluation of the likelihood and its derivatives. Nonetheless, VB allows rapid
iteration of models and may lead to reasonable estimates of effect sizes. For this example,
we have also run full MCMC, and the inferences reported here are not substantially
different.

Prior Check Section 6.5.1 gave an example of using posterior predictive checks. It is
also useful to do prior predictive checks as these allow the user to catch obvious mistakes
that can occur when specifying the model, and can also help to affirm that the prior is
in fact reasonable.

In epidemia we can do this by using the priorPD = TRUE ŕag in epim(). This discards
the likelihood component of the posterior, leaving just the prior. We use Hamiltonian
Monte Carlo over VB for the prior check, partly because sampling from the prior is quick
(it is the likelihood that is expensive to evaluate). In addition, we have defined Gamma
priors on some coefficients, which are generally poorly approximated by VB.

R> args <- list(rt = rt, inf = inf, obs = deaths, data = data, seed = 12345,

+ refresh = 0)

R> pr_args <- c(args, list(algorithm = "sampling", iter = 1e3, prior_PD = TRUE))

R> fm_prior <- do.call(epim, pr_args)

Figure 6.2 shows approximate samples of Rt,m from the prior distribution. This
confirms that reproduction numbers follow a step function, and that rates can both
increase and decrease as measures come into play.
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Fig. 6.2 A prior predictive check for reproduction numbers Rt in the multilevel model of Section
6.5.2. Only results for the United Kingdom are presented. The prior median is shown in black,
with credible intervals shown in various shades of green. The check appears to confirm that Rt

follows a step-function, as we expect given the definition in Section 6.5.2.

Approximating the Posterior The model will be fit using Variational Bayes by
using algorithm = "fullrank" in the call to epim(). This is generally preferable to
"meanfield" for these models, largely because "meanfield" ignores posterior correlations.
We decrease the parameter tol_rel_obj from its default value, and increase the number
of iterations to aid convergence.

R> args$algorithm <- "fullrank"; args$iter <- 5e4; args$tol_rel_obj <- 1e-3

R> fm <- do.call(epim, args)

A first step in evaluating the model fit is to perform posterior predictive checks.
This is to confirm that the model adequately explains the observed daily deaths in each
region. This can be done using the command plot_obs(fm, type = "deaths", levels

= c(50, 95)). The plot is shown in Figure 6.3.
Figure 6.3 suggest that the epidemic was bought under control in each group consid-

ered. Indeed, one would expect that the posterior distribution for reproduction numbers
lies largely below one in each region. Figure 6.4 is the result of plot_rt(fm, step = T,

levels = c(50,95)), and confirms this.

Effect Sizes

In epidemia, estimated effect sizes can be visualized using the plot.epimodel method.
This serves a similar purpose to plot.stanreg in rstanarm, providing an interface to the
bayesplot package. The models in epidemia often have many parameters, some of which
pertain to a particular part of the model (i.e. transmission), and some which pertain to
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Fig. 6.3 Posterior predictive checks for the multilevel model. Observed daily deaths (red) is
plotted as a bar plot. Credible intervals from the posterior are plotted in shades of blue, in

addition to the posterior median in black.

particular groups (i.e., country-specific terms). Therefore plot.epimodel has arguments
par_models, par_types and par_groups, which restrict the parameters considered to
particular parts of the model.

As an example, credible intervals for the global coefficients βi can be plotted using the
command plot(fm, par_models = "R", par_types = "fixed"). This leads to Figure
6.5.

Figure 6.5 shows a large negative coefficient for lockdown, suggesting that this is on
average the most effective intervention. The effect of banning public events is the next
largest, while the other policy effects appear closer to zero. Note that the left plot in 6.5
shows only global coefficients, and does not show inferred effects in any given country.
To assess the latter, one must instead consider the quantities βi + b

(m)
i . We do this by

extracting the underlying draws using as.matrix.epimodel, as is done below for Italy.

R> beta <- as.matrix(fm, par_models = "R", par_types = "fixed")

R> b <- as.matrix(fm, regex_pars = "^R\\|b", par_groups = "Italy")

R> mat <- cbind(b[,1], beta + b[,2:6])

R> labels <- c("Events", "Schools", "Isolating", "Distancing", "Lockdown")

R> colnames(mat) <- c("Intercept", labels)
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Fig. 6.4 Inferred reproduction numbers in each country. Credible intervals from the posterior
are plotted in shades of green, in addition to the posterior median in black.

Calling bayesplot::mcmc_intervals(mat) leads to the results shown in the right
panel of Figure 6.5.

Figure 6.5 has relatively narrow intervals for many of the effect sizes. This appears to
be an artifact of using Variational Bayes. In particular, when repeating this analysis with
full MCMC, we observe that the intervals for all policies other than lockdown overlap
with zero.

Consider now the role of partial pooling in this analysis. Figure 6.4 shows that
Sweden did enough to reduce R below one. However, it did so without a full lockdown.
Given the small effect sizes for other measures, the model must explain Sweden using the
country-specific terms. Figure 6.6 shows estimated seeds, intercepts and the effects of
banning public events for each country. Sweden has a lower intercept than other terms
which in turn suggests a lower R0 - giving the effects less to do to explain Sweden. There
is greater variability in seeding, because the magnitude of future infections becomes
less sensitive to initial conditions when the rate of growth is lower. Figure 6.6 shows
that the model estimates a large negative coefficient for public events in Sweden. This
is significantly larger than the effects for other policies - which are not reported here.
However, the idiosyncrasies relating to Sweden must be explained in this model by at least
one of the covariates, and the large effect for public policy in Sweden is most probably an
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Fig. 6.5 Left: Global Effect sizes for the five policy measures considered. Right: Effect sizes
specific to Italy. The global and country-specific effects may differ because the effects are

partially pooled.

artifact of this. Nonetheless, the use of partial pooling is essential for explaining difference
between countries. If full pooling were used, effect sizes would be overly inŕuenced by
outliers like Sweden. This argument is made in more detail in Flaxman et al. (2020b).

epidemia: An R Package for Semi-Mechanistic Bayesian
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Fig. 6.6 Left: Inferred daily seeded infections in each country. These have been assumed to
occur over a period of 6 days. Middle: Estimated Intercepts in the linear predictor for

reproduction numbers. Right: Country-specific effect sizes corresponding to the banning of
public events.

Forecasting

Forecasting within epidemia is straightforward, and consists of constructing a new data
frame which is used in place of the original data frame. This could, for example, change
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the values of covariates, or alternatively include new observations in order to check the
out-of-sample performance of the fitted model.

Recall that EuropeCovid2 holds daily death data up until the end of June 2020,
however we only fitted the model up until the 5th May. The following constructs a data
frame newdata which contains the additional observations. Note that we are careful to
select the same start dates as in the original data frame.

R> newdata <- EuropeCovid2$data

R> newdata <- filter(newdata, date > date[which(cumsum(deaths) > 10)[1] - 30])

This data frame can be passed to plotting functions plot_rt(), plot_obs(), plot_infections()
and plot_infectious(). If the raw samples are desired, we can also pass as an argument
to posterior_rt(), posterior_predict() etc. The top panel of Figure 6.7 is the result
of using the command plot_obs(fm, type = "deaths", newdata = newdata, groups

= "Italy"). This plots the out of sample observations with credible intervals from the
forecast.

Counterfactuals

Counterfactual scenarios are also easy. Again, one simply has to modify the data frame
used. In this case we shift all policy measures back three days.

R> shift <- function(x, k) c(x[-(1:k)], rep(1,k))

R> days <- 3

R>

R> newdata <- mutate(newdata,

+ lockdown = shift(lockdown, days),

+ public_events = shift(public_events, days),

+ social_distancing_encouraged = shift(social_distancing_encouraged, days),

+ self_isolating_if_ill = shift(self_isolating_if_ill, days),

+ schools_universities = shift(schools_universities, days)

+ )

The bottom panel of Figure 6.7 visualizes the counterfactual scenario of all policies
being implemented in the UK three days earlier. Deaths are projected over both the in-
sample period, and the out-of-sample period. The left plot is obtained using plot_obs(fm,

type = "deaths", newdata = newdata, groups = "United_Kingdom"), while the right
plot adds the cumulative = TRUE argument. We reiterate that these results are not
intended to be fully rigorous: they are simply there to illustrate usage of epidemia.

6.5.3 Tracking SARS-CoV-2 In England

Previous examples conditioned on a single observation series (case and death counts
respectively). Simple models were used for describing ascertainment rates. Section 6.5.1
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Fig. 6.7 Forecasts and counterfactual scenarios. All results pertain to the United Kingdom.
Top: An out-of-sample forecast for daily deaths. Below: Results corresponding to a

counterfactual whereby all policies were implemented 3 days earlier. Left: Credible intervals for
daily deaths under this scenario. Right: Cumulative deaths. The black dotted line shows

observed cumulative deaths.

assumed full ascertainment of infections, while Section 6.5.2 took the IFR to be constant

but unknown. Population adjustments were not considered, and both examples modeled
the entire history of the epidemic from the first observed cases.

Here we model the trajectory of SARS-CoV-2 in England using data over a two
month period from late March 2021 through to the end of May. In doing so, we relax
the aforementioned modeling assumptions and demonstrate further capabilities of the
package. Population adjustments are applied in order to explicitly account for pre-existing
immunity in the population. The model is conditioned on two observation series: daily
case counts, and positivity from seroprevalence surveys.

Fitting the model to case counts requires a model for the case ascertainment rates
(IAR). Unlike in previous examples, we do not assume that this is constant. While
the IFR of Sars-CoV-2 may be broadly stable over several weeks or months, the IAR
could vary frequently, not least due to changes in testing capacity, surge testing, and the
general prevalence of the disease. Therefore we opt instead to infer the time-varying IAR

from positivity data, which should provide an łanchorž for the absolute size of the latent
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infection process. We allow IAR dynamics to be inferred by modeling it as a random
walk.

Our goal is to infer recent infection dynamics, and also to project future infection and
case counts. These goals do not necessitate a detailed understanding of the fully history
of disease dynamics, and is primarily why we limit ourselves to a two month period.
Other reasons include that modeling the entire history is computationally demanding
and requires more intricate modeling to explain the full trajectory.

Data

epidemia has a data set EnglandNewCases that contains daily counts of confirmed SARS-
CoV-2 infections in England from the 1st January 2020 up to and including the 30th May
2021. The data was downloaded from Public Health England (2020) on the 4nd of June
2021.

R> data("EnglandNewCases")

R> data <- EnglandNewCases

The model will be fit to the most recent two months (60 days) of case count data,
starting on the 1st April. We take the first modeled date to be 20 days prior to this initial
observation, which is the 12th March. This initial 20 days will be the seeding period.

R> data <- filter(data, date > max(date) - 80)

R> data$cases[1:20] <- NA

Transmission Model

As in Section 6.5.1, we model Rt as a transformed random walk with daily updates. In
later sections, however, we will make projections that assume Rt remains at its current
value. For this reason, we provide a new column in data to control the random walk
increments. This will allow us to łstopž the walk updating at dates after the 30th May.

R> data <- data %>% mutate(dt = replace(date, date < as.Date("2020-04-01"), NA))

The model for Rt is

Rt = Kg−1 (β0 + wt) ,

where K = 7 and g is the logit link. The term wt is a random walk satisfying the
recursion wt = wt−1 + εt and initial condition w−1 = 0. The daily updates εt are given a
prior εt ∼ N (0, σ), and the scale hyperparameter follows σ ∼ N+(0, 0.05). The intercept
β0 is assigned a normal prior, so that β0 ∼ N (−1, 1). This prior has been chosen to reŕect
our belief that the epidemic was under control at start of March. We have, however,
provided a large scale to reŕect uncertainty over the initial value. The full transmission
model is represented as follows.
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R> rt <- epirt(formula = R(region, date) ~ 1 + rw(time = dt, prior_scale=0.05),

+ link = scaled_logit(7), prior_intercept = normal(-1,1))

Infection Model

Daily recorded cases are consistently above 1000 over the period considered. Given the
large infection counts, we do not consider extending the infection model to add variation
around the renewal equation. Such extensions would be useful for modeling the epidemic
at a finer scale, say at the local authority level. Please refer to Section 6.5.1 for an
example of how this is done.

We account for pre-existing immunity through population adjustments, which were
described in Section 6.2.5. The first modeled date is the 12th of March 2021, over a year
before SARS-CoV-2 was first detected in England. It is likely that prior infection and
vaccination will have induced a degree of immunity within the population. Accounting
for this helps to constrain long-term forecasts for the size of the susceptible population.

Mathematically, our model describes infections it for t > 0 by

i′t = Rt
∑

s<t

isπt−s,

it = St

(

1− exp

(

− i
′
t

P

))

,

where P is the population size and St is the time-varying susceptible population.
We use the same generation distribution πk as in Section 6.5.2. The initial susceptible
population Sv is given a prior Sv ∼ N (0.48, 0.10). This is motivated by an ONS antibody
survey (ONS, 2021a), which estimates that 51% of the population in England would
have tested positive for SARS-CoV-2 antibodies between the 8nd March and the 14th

March. It is important however to distinguish the presence of antibodies from immunity.
An individual’s level of antibodies may be below the required threshold to test positive;
however, have protection through T-cells. Similarly, the presence of antibodies does
not imply immunity. For these reasons, and due to wide credible intervals for the ONS
estimate, we have used a large standard deviation on the prior immune population.

The population of England was estimated to be 56,286,961 as of mid-2019 (ONS,
2021c). This is added to data as a static variable.

R> data$pop <- pop <- 56286961

The infection model is expressed as follows.

R> inf <- epiinf(gen = EuropeCovid$si, seed_days=20L, pop_adjust = TRUE, pops = pop,

+ prior_susc = normal(0.49, 0.1), prior_seeds = normal(15e3, 2e3))
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Observation Models

Models are defined for our two data series: case counts and positivity rates derived from
a seroprevalence study. These are discussed in turn.

Case Counts Letting Y (1)
t denote daily case counts, we model Y (1)

t ∼ QP(y(1)t , d) and

yt = α
(1)
t

(

1

7

7
∑

s=1

it−s−3

)

,

where QP denotes the Quasi-Poisson distribution with mean y
(1)
t and variance-to-

mean ratio d, which is given the prior d ∼ N+(10, 5). The assumption is that infections
over the last three days are undetected, and those occurring over the week before are
equally likely to be detected.

The IAR α
(1)
t is modeled as a random walk with additional dummy day-of-week

variables to account for a clear weekly pattern in the data (see Figure 6.10). We take

α
(1)
t = g−1

(

β
(1)
0 + w

(1)
t +

6
∑

k=1

γkDk,t

)

,

where g is the logit-link, β(1)0 ∼ N (0, 1.5) is an intercept, and w(1)
t is a random walk

following the same model as the walk for Rt, however starting on the first observation
date (1st April) rather than immediately after the seeding period. The prior on β

(1)
0

has a large scale to reŕect our prior uncertainty over the IAR, allowing the posterior to
be largely driven by the positivity data. The terms Dk,t are dummy indicators for the
day of the week, and γk ∼ N (0, 0.5) are associated weekday effects. These terms allow
modeling weekly seasonality. First add the day-of-week factors to data.

R> data$day <- lubridate::wday(data$date, label=T)

The aforementioned model is defined as follows.

R> cases <- epiobs(formula = cases ~ 1 + factor(day, ordered = FALSE) +

+ rw(time = dt, prior_scale = 0.05),

+ i2o = c(rep(0,3), rep(1/7,7)), link = "logit",

+ prior_intercept = normal(0,1.5), prior = normal(0,0.5),

+ family = "quasi_poisson", prior_aux = normal(10,5))

Seroprevalence Data The ONS Infection survey (ONS, 2021b) provides weekly es-
timates of positivity rates among the English population. These numbers are based
on repeated RT-PCR tests on a representative sample of the population. We leverage
this data for the week beginning the 28th March, and for the subsequent 6 weeks. We
arbitrarily use Thursday of each week as the representative date for the positivity rates.
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R> ons <- data.frame(date = as.Date("2021-04-01") + 7 * (0:6),

+ positivity = c(0.21, 0.17, 0.1, 0.08, 0.07, 0.09, 0.09))

R> data <- left_join(data, ons)

Let Y (2)
t be the observed positivity rate at time t. This is an estimate of the proportion

of the population who, at that point in time, would test positive on an RT-PCR test.
We model this as Y (2)

t ∼ N (y
(2)
t , σ2), where

y
(2)
t =

∑14
s=1 it−s−3

P
. (6.26)

Equation (6.26) assumes that those infected in the previous three days will definitively
test negative, and that everyone infected within the two weeks before this will definitively
test positive. All infections occurring before this will not be detected. This is, of
course, a simplification. A careful model requires an understanding of the likelihood of
testing positive in an RT-PCR test k days after infection, and also accounting for the
sensitivity/specificity of the tests. We have made the above assumption in the absence of
such information.

Equation (6.26) does not fit within our usual framework for observations. In particular,
there is no explicit ascertainment rate, and the infection weights πk do not form a
probability distribution. Nonetheless, infections are still weighted linearly, and this model
can be represented as follows.

R> data$off <- 1

R> ons <- epiobs(formula = positivity ~ 0 + offset(off),

+ i2o = c(rep(0,3), rep(1,14)) * 100 / pop, link = "identity",

+ family = "normal", prior_aux = normal(0.01, 2.5e-3))

Here we have assigned a prior σ ∼ N+(0.01, 0.0025). This is motivated by the credible
intervals in the ONS study.

Fitting and Analysis

The model is fit with the NUTS sampler. In order to ensure a large enough effective
sample size, we increase the maximum tree depth for the algorithm and use 4,000
iterations.

R> fm <- epim(rt = rt, inf = inf, obs = list(cases, ons), data = data,

+ iter = 4e3, control = list(max_treedepth = 12), seed=12345)

Figure 6.8 plots credible intervals for Rt over the two month period for which we
have data. The model appears confident that Rt has risen above 1 over this time, and
indeed daily cases appear to be rising as of the end of May. The credible intervals widen
towards 30th May because there is a lag between reproduction numbers and recording
cases.
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Fig. 6.8 Rt in England over the period starting on the 1April 2021 and ending the 30th May
2021.

The role of the population adjustment in this model is best understood by looking at
long term forecasts. As was first shown in Section 6.5.2, to make forecasts we have to
construct a new data frame. This can be passed as the newdata argument to epidemia’s
plotting functions.

R> fut <- tibble(date = max(data$date) + seq_len(150), region = "England",

+ cases = -1, dt = max(data$date), positivity = -1, off = 1,

+ pop = data$pop[1])

R> fut$day <- lubridate::wday(fut$date, label=T)

R> newdata <- rbind(data, fut)

For all dates after the modeled period, the dt column is equal to the final modeled
day (30th May). In effect, this fixes the random walks for Rt and α

(2)
t at their most

recent value. All forecasts made here are conditional on this assumption.
Figure 6.9 forecasts both Rt and cumulative infections. The leftmost panel shows

the unadjusted reproduction number, which we denote by Rut . This is the value of Rt
if there were an infinitely large susceptible population, and is the quantity modeled by
epirt(). The adjusted Rt is then taken to be

Rt =
St−1

P
Ru
t .

Figure 6.9 shows that Rut remains pathwise constant over the projected period. Rt on
the other hand, falls smoothly as the susceptible population is diminished. Cumulative
infections also taper out as the reduction in St causes Rt to fall below 1. The population
adjustment serves to constrain long-term forecasts for the total size of the population.
Without this adjustment, infections could continue to rise exponentially over time.
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Fig. 6.9 Long-term forecasts for Rt and infections, continuing until the 27th October 2021. The
median is plotted in black, while sample paths are in blue. Left and center show unadjusted and
adjusted Rt respectively. Right: projected infections over time. These plots are produced with

epidemia’s spaghetti plot functions.

The top panel of Figure 6.10 shows the IAR over time. The IAR exhibits strong
weekday effects, and appears to increase during the first half of April. The pattern
repeats after the 30th May because we have stopped the random walk. The bottom two
plots demonstrate that the model can fit the observed data well. These plots have been
generated with plot_linpred and plot_obs.

The primary purpose of this example is to demonstrate advanced modeling in epidemia.
The model itself has many limitations, These include the quite naive specification of
the prior on St, and not accounting for vaccinations during the modeled period. In
addition, the i2o argument used in the observational models is not motivated by data
from previous studies.

6.6 Conclusions

This chapter has presented epidemia, an R package for modeling the temporal dynamics
of infectious diseases. This is done in a Bayesian framework, and is regression-oriented,
allowing the user ŕexibility over model specification. epidemia can be used for a number
of inferential tasks. In particular, the examples of Section 6.5 have demonstrated how
to estimate time-varying reproduction numbers, and to infer the effect of interventions
on disease transmission. We have not been able to demonstrate all features of epidemia.
Most notably, we have not given examples of applying population adjustments, using
multiple observation vectors, and of starting modeling at some point after the beginning
of an epidemic.
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7
Conclusions and Future Research

7.1 Contributions

The main contributions of this thesis are summarized as follows.
Chapter 2 developed new methods for sampling unweighted graphs conditional on

node degrees, and integer-weighted graphs conditional on node strengths. These Markov
chains are unique in their ability to traverse the state space while fixing an arbitrary set of
edges/non-edges; a property that was illustrated using a real ecological network. Alternate
methods that rely on computing a Markov basis, or those employing sequential importance
sampling, were computationally infeasible for this example. Another innovation in this
chapter was to develop a framework for carefully selecting local moves, termed state-
dependent kernel selection, which was employed for efficient sampling in both sparse and
dense graphs.

Chapter 3 continued the theme of conditional graph sampling. A null model was
suggested for testing the significance of patterns in graphs with real-valued edge weights.
The model fixes node strengths and approximately fixes node degrees to within ±1 of
the values of an observed network. A new MCMC sampler (motivated by those in
Chapter 2) was developed to sample from the null model. It was shown empirically
that the sampler is capable of rapidly randomizing large and sparse networks. A power
study was performed to compare the performance of the null model to alternatives. The
model compared favorably and appears capable of detecting subtle patterns, while also
effectively controlling for nodal heterogeneity.

Chapter 4 considered the problem of empirically testing whether a given MCMC
sampler has a desired invariant distribution. This topic was motivated by the previous two
chapters, where the graph samplers rely on derivations and proofs to justify invariance.
The main innovation was to propose new tests that bound the probability of falsely
rejecting a valid sampler. By embedding the tests into a sequential framework, we were
able to improve power, while keeping this false rejection probability arbitrarily small.
An extensive simulation study was performed, which validated the ability of the tests
to achieve the correct nominal level, and generally showed favorable performance of the
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methods. The tests were applied to an erroneous RJ-MCMC sampler proposed for signal
decomposition problems.

Part II of the thesis moved away from the development of new MCMC samplers,
and towards building a general modeling framework that leverages MCMC, and in
particular Stan’s (Stan Development Team, 2018) implementation of the No-U-Turn
sampler (Hoffman and Gelman, 2014), as the underlying inference engine. More concretely,
this part of the thesis introduced a Bayesian framework for modeling the dynamics of
infectious diseases.

Chapter 5 described the general model and its key statistical and epidemiological
features. The chapter motivated the model from continuous-time counting processes.
Various extensions to the basic model were discussed. This included explicitly modeling
latent infections as unknown parameters, rather than treating them as a determin-
istic function of previous infections and the current reproduction number. Another
enhancement considered was accounting for depletion of the susceptible population. Key
limitations of the proposed methodology were discussed, in particular that of dealing
with confounded variables within the framework An analysis was conducted to explore
this issue, using data on interventions put in place during the first wave of SARS-COV-2
in Europe.

Chapter 6 introduced epidemia, an R package implementing the modeling framework
of Chapter 5. We showed how the package can be used to ŕexibly specify and fit
Bayesian, regression-oriented models for infectious diseases. The implemented models
define a likelihood for all observed data while also explicitly modeling transmission
dynamics: an approach often termed as semi-mechanistic. Multiple regions can be
modeled simultaneously with multilevel models. Key epidemiological quantities, including
reproduction numbers and latent infections, may be estimated within the framework. Our
examples showed how the models can be used to evaluate the determinants of changes in
transmission rates, including the effects of control measures. Epidemic dynamics may
be simulated either from a fitted model or a łpriorž model; allowing for prior/posterior
predictive checks, experimentation, and forecasting.

7.2 Directions for Future Research

The work on graph sampling can be extended in a number of ways. Chapter 3 only
considered directed graphs, however the methods could in principle be extended to
undirected graphs. From initial work in this direction, it appears that the undirected
equivalent of k-cycles is not sufficient for maintaining irreducibility of the sampler. This
challenge would need to be overcome. Another open question is whether the sampler is
capable of reaching all possible graph topologies in the general case of conditioning on
degrees ±l for small l > 0. We were only able to prove irreducibility when conditioning
on strengths. Nonetheless, the simulation study presented showed that the sampler
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is capable of traversing different graph topologies, even when conditioning tightly on
degrees. The graph sampler introduced in Chapter 3 could also be used for Bayesian
reconstruction of financial networks (see, for example, Gandy and Veraart (2016)). Since
in sparse networks, our sampler is considerably more efficient than the method used in
Gandy and Veraart (2016), we expect our method to be useful in this field.

The modeling framework presented in Part II of the thesis can be extended in
numerous directions. Currently, reproduction numbers can be modeled as a random walk,
however additional autocorrelated processes such as ARMA processes could be considered.
Importations between populations are not currently modeled. One approach would be to
add additional additive terms to the renewal equation (Equation 6.3). More ŕexible prior
distributions for seeded infections that go beyond the hierarchical model presented here
could be included. Certain epidemiological quantities, such as the generation distribution,
are assumed to be known. Uncertainty could be incorporated by, for example, assigning
the generation distribution a Dirichlet prior. Finally, the question of efficient and robust
fitting of these models is not yet fully resolved. We conjecture that cleverly selecting
starting values for sampling may help prevent the chains becoming trapped in local
modes. This would be an interesting avenue for future research.
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A
Appendix to Chapter 2

A.1 Proofs

Proof of Lemma 2.2.2. Without loss of generality (and for notational simplicity)
assume π and w are dominated by one-dimensional Lebesgue measure. We show

∫

A
π(x)Q(x,B) dx =

∫

B
π(x)Q(x,A) dx for all A,B ∈ B.

Fix any A and B in B, and define the densities {fx} as in Definition 2.2.1. Then

∫

A
π(x)Q(x,B) dx =

∫

A

∫

Z

∫

B
π(x)Kz(x, y)fx(z) dy dz dx

=

∫

A

∫

Z

∫

B
π(y)Kz(y, x)fy(z) dy dz dx =

∫

B
π(x)Q(x,A) dx

as required. In the first step we have expressed the integral using densities. In the
second, we use π-reversibility of each Kz, and the fact that for each z ∈ Z and x ∈ X ,
fx(z) = fy(z) for Kz(x, ·)- a.e. y ∈ B. A simple change of variables then yields the
result.

Proof of Proposition 2.3.1. Fix G in G. Define the second-order Markov chain
(Yn)n≥0, where Yn := (an−1, an, Gn) and Gn is defined as follows. Let G0 = G, otherwise
if n is odd, let Gn be the graph obtained after anan−1 is removed from E(Gn−1). If n is
even, Gn is the graph obtained after an−1an is added to E(Gn−1). Define Y as the set
of points reachable from (∗, a0, G) for some a0 in {v : NG(v) ̸= ∅}. Let D := (Y, E) be
the digraph underlying this chain and define A as the subset of points (v, u,G′) in Y for
which G′ ∈ G. Let T := inf{n ≥ 1: Yn ∈ A} be the first passage time of A. Proposition
2.3.1 is equivalent to showing E(T ) <∞. The following holds true, and will be shown at
the end of this proof.

From any (v, u,G′) ∈ Y, there exists a simple path to A. (A.1)
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We can bound the probability of traversing each edge in D from below by some
constant p > 0. Let N denote the size of Y. Suppose the chain is at some state y /∈ A.
By (A.1), this implies the probability of hitting A within the next N steps is bounded
from below by pN . Hence,

E(T ) =

∞
∑

n=1

nP [T = n] ≤ N
∞
∑

k=1

kP [k − 1 < T/N ≤ k] ≤ N
∞
∑

k=1

kpN (1− pN )k−1 = Np−N .

It remains to show (A.1). Note that for any (v1, u1, G1)(v2, u2, G2) ∈ E(D):

(v∗, u2, G2)(u2, u1, G1) ∈ E(D) if and only if (v∗, u2, G2) ∈ Y and v∗ ̸= v2. (A.2)

By definition, there exists a point y0 := (∗, u0, G) and a walk y0...yk in D such that
yk = (v, u,G′). Given that V (D) is finite, continuing an arbitrary walk along D from yk

implies we must eventually either return to A, or visit a graph already seen along the
walk. Denote the vertex visited at the lth step of this walk by yl = (ul−1, ul, Gl). If we
revisit A we are done, otherwise define

n := inf{l > k : Gl = Gm for some m < l}.

The condition Gn = Gm implies that un = um. Additionally un−1 ̸= um−1, other-
wise this would imply Gn−1 = Gm−1, which contradicts the definition of n. By (A.2),
(um−2, um−1, Gm−1)(um−1, um, Gm) ∈ E(D) implies that (un−1, un, Gn)(um, am−1, Gm−1) ∈
E(D). Thus we can traverse to (um, um−1, Gm−1). Iteratively applying (A.2) (which we
can do as ul+1 ̸= ul−1 for all l ≥ 0) implies we can reach a state with graph G = G0,
which must be in A, completing the proof of (A.1).

Proof of Lemma 2.3.2. We first show that (K,w) is a symmetric decomposition. Fix
any G ∈ G and any z ∈ Z, and let a be a representative of z. Let p refer to the statement
‘wG(z) = wG∗(z) for all G∗ for which Kz(G,G

∗) > 0’. It suffices to show that p is true.
Consider a Markov chain with kernel Kz and current state G. Suppose the chain

remains unchanged after one iteration of Algorithm 1. Then p is true trivially. Without
loss of generality, suppose the swaps corresponding to a are viable, and the chain moves
to some G∗ ∈ G. Remark 1 implies swaps corresponding to ar are not viable. Since
the swaps corresponding to a sampled vertex sequence must be viable, wG(z) is the
probability of sampling a given the chain is at G.

At G∗, the swaps corresponding to ar are viable. By an analogous argument, it
follows that wG∗(z) is the probability of sampling ar given the chain is at G∗. One can
deduce from Algorithm 1 that the probability of sampling w given the chain is at G is
equal to the probability of sampling ar given the chain is at G∗. This holds because the
degree sequence is the same for either state.
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We now show that each Kz ∈ K is reversible with respect to the uniform distribution.
This is implied by detailed balance. Specifically, for each Kz ∈ K we show

Kz(G,G
∗) = Kz(G

∗, G) for all G,G∗ ∈ G.

Fix any G and G∗. Kz(G,G
∗) = 1 if and only if Kz(G

∗, G) = 1, because applying two
iterations of a Markov chain with kernel Kz from some current state G′, returns G′. The
result follows by additionally observing that Kz(G,G

∗) can only be zero or one.

Proof of Proposition 2.3.3. Lemma 2.3.2 and connectedness of the chain suffice. Fix
any G,G′ ∈ G, and suppose the current state of the chain is G. Form a digraph H as
follows. For each vertex pair uv, if uv ∈ E(G) and uv /∈ E(G′), add a red edge uv to
E(H). If uv /∈ E(G) and uv ∈ E(G′), add a blue edge uv to E(H). Define an alternating

cycle as a cycle whose edges are alternately red and blue. G and G′ are equivalent if and
only if H has no edges.

Then H is the union of a finite sequence of edge-disjoint alternating cycles. Fix any
such cycle v0v1...vkv0, ordered so that the v0v1 is red. The chain can sample v0v1...vkv0
with positive probability, yielding a new graph G′′, whilst removing all edges in H

corresponding to this cycle. Iterate until H has no more edges. Hence the chain is
connected.

Proof of Proposition 2.3.4. For a given F , the map from G to BG is injective, so
the sampler can be thought of as a Markov chain ergodic with respect to the uniform
distribution on BG .

We brieŕy describe how to view the Markov chain as operating on BG . An initial
vertex vj is sampled from V . The chain now samples ui from the out-neighborhood of vj
and replaces the edge vjui with uivj . If G is undirected, additionally switch viuj with
ujvi. Continue walking along the vertices of the graph in this manner until the sampler
returns to the initial vertex for the first time.

Without loss of generality, suppose G is directed. Partition B’s vertex set into strongly
connected components S1, ..., SK . Fix ui ∈ Sk and vj ∈ Sl. If no edge is incident to ui
and vj then ij ∈ F ⊆ F̃ . Otherwise if k ≠ l, edges between Sk and Sl are uniformly in
one direction; say from Sk to Sl. Suppose the chain on B traverses uivj , replacing it
with vjui. Returning to the initial vertex requires traversal of vjui. Hence, uivj can be
ŕipped only an even number of times, and the direction is unchanged. By Lemma 2.3.3,
ij ∈ F̃ . If k = l, uivj can be switched odd number of times, so ij /∈ F̃ . The undirected
case holds analogously.

Proof of Proposition 2.4.1. It suffices to show connectedness. Define

d(G,G′) :=
∑

u∈V

∑

v∈V
|cG(uv)− cG′(uv)| for all G,G′ ∈ G.
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Then (G, d) is a metric space. Fix any two distinct graphs G,G′ ∈ G, and suppose the
current state of the chain is G. It suffices to show that one can construct a sampling
step yielding a new graph strictly closer to G′ in this metric space.

Let nuv := cG(uv)− cG′(uv) for each vertex pair uv. We form a multi-graph H as
follows. If nuv > 0, add nuv red copies of the direction reversed edge vu to E(H), while
if nuv < 0, add −nuv blue copies of uv to E(H). The graphs G and G′ are equivalent if
and only if H has no edges. Define an alternating cycle in H as a cycle whose edges are
alternately red and blue.

H can be expressed as the union of a finite number of edge-disjoint alternating cycles.
Fix any such alternating cycle v0v1...vlv0 in H. Order the cycle so that v0v1 is red.
Letting On denote the set of odd natural numbers less than or equal to n, we define

k := inf{n ∈ Ol−2 : vnvn+1 /∈ F}

where we let inf ∅ := l.
Under Algorithm 2, there is a positive probability of sampling the vertex sequence

v0v1...vkv0 given the chain is at G. Sampling ∆ = −1 along this vertex sequence returns
a new graph G′′, removing at least three edges from H whilst adding at most one. Hence
d(G′′, G′) ≤ d(G,G′)− 2.
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Appendix to Chapter 3

B.1 Proof of Proposition 3.5.2

We start by defining several objects that are used in the proof. In section 3.4.1, we
introduced the f as the density of P with respect to (3.8). This implies that Q has
unnormalised density f with respect to the measure

∑

b∈{0,1}2k
λb, (B.1)

where λb is ∥b∥0-dimensional Lebesgue measure on Vb := {x ∈ Ω2k : x
0
i = bi} and where

as usual 00 = 0. We parameterise Vb with γb : (0,∞)d → Vb, where d := ∥b∥0. Letting
(σ1, . . . , σd) be the ordered vector formed from {i : bi = 1}, we let

γb(c) := c1eσ1 + c2eσ2 + . . .+ cdeσd , (B.2)

where ei is the ith standard basis vector for R2k. Finally, we we will also use the inclusion
map ιb : Vb −֒→ Ω2k.

Our strategy is to partition Ω2k into sets over which (3.11) can be verified. To do
this, first let O and E be the set of all binary vectors of length 2k with at least one zero
on the odd/even index, and no zeros on the even/odd index respectively. For example,
a ∈ O if and only if a2i = 1 for all i, and a2i+1 = 0 for some i. Fix any a ∈ O and a′ ∈ E
and define

Ωa,a′ := {x ∈ Ω2k : xi ≤ min
j
{x2j+1} iff ai = 0 and xi ≤ min

j
{x2j} iff a′i = 0}. (B.3)

This set consists of vectors whose smallest odd elements coincide with the indices at
which a is zero, and whose smallest even elements coincide with the indices at which a′ is
zero. A little thought shows that the sets (B.3) form a partition of Ω2k. We also define
the pushforward of these sets by Ta,a′ := T (Ωa,a′).
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Lemma B.1.1 shows that (3.11) holds when applied to these subsets. Most of our
work will be in proving this lemma.

Lemma B.1.1. Fix any set Ωa,a′ as in (B.3). Then if g : Ω2k → R is non-negative and

measurable then for each t ∈ Ta,a′ , we have that t 7→
∫

g(w)Qt(dw) is measurable and

∫

Ωa,a′

g(x)Q(dx) =

∫

Ta,a′

∫

g(x)Qt(dx)TQ(dt).

Lemma B.1.1 makes the proof of Proposition 3.5.2 straightforward. We first prove
the proposition assuming the lemma, and then proceed to prove the lemma.

Proof of Proposition 3.5.2. First recall that the sets (B.3) form a measurable partition
of Ω2k. Moreover the sets Ta,a′ are disjoint. To see this, first fix some t ∈ Ta,a′ . Then
there exists x ∈ Ωa,a′ such that T (x) = t. Any other point in {T = t} takes the form
Lt(∆) for some ∆ as defined in (3.12). Such points must also lie in Ωa,a′ . The overall
result then simply follows from additivity of measure over disjoint measurable sets, and
applying Lemma B.1.1.

∫

g(x)Q(dx) =
∑

a∈O

∑

a′∈E

∫

Ωa,a′

g(x)Q(dx)

=
∑

a∈O

∑

a′∈E

∫

Ta,a′

∫

g(x)Qt(dx)TQ(dt)

=

∫ ∫

g(x)Qt(dx)TQ(dt).

Proof of Lemma B.1.1. Recall that Ωa,a′ consists of all x ∈ Ω2k whose smallest odd
elements coincide with the indices at which a is zero, and whose smallest even elements
coincide with the indices at which a′ is zero. If both the smallest odd and even element
of x are zero, then x ∈ Va′′ , where a′′ := a ⊙ a′ and where the operator ⊙ denotes
component-wise multiplication. If the smallest odd (even) element is zero, but smallest
even (odd) is positive then x ∈ Va (x ∈ Va′). If all elements are positive then x ∈ V1,
where 1 is the unit vector of length 2k. This shows that Ωa,a′ is partitioned by its
intersection with Va, Va′ , Va′′ and V1. For notational convenience, we let Ω := Ωa,a′ and
T := Ta,a′ for what follows.

In particular, it is easy to see that Va′′ ⊂ Ωa,a′ . Letting T1 = T (Va′′), we first
demonstrate that

∫

Va′′

g(x)Q(dx) =

∫

T1

∫

g(x)Qt(dx)TQ(dt), (B.4)
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and then
∫

Ω\Va′′
g(x)Q(dx) =

∫

T \T1

∫

g(x)Qt(dx)TQ(dt). (B.5)

The lemma then follows trivially from summing both sides of (B.4) and (B.5).
To verify (B.4), observe that a′′ must have at least one zero on both its odd and even

side. Fix any x ∈ Va′′ . The parameterization (3.12) shows that the level set {T = T (x)}
consists only of x itself, implying that x = uT (x) = vT (x) for any x ∈ Va′′ . Therefore

∫

Va′′

g(x)Q(dx) =

∫

Va′′

g(uT (x))Q(dx)

=

∫

T1
g(xl)TQ(dt)

=

∫

T1

∫

g(x)Qt(dx)TQ(dt),

where the second step uses a change of variables t = T (x) and the third uses the definition
of Qt in (3.14).

Proving (B.5) is slightly more involved. First recall that points in Ω \ Va′′ must lie
in exactly one of Va, V ′

a or V1. Also recall that Q has density f with respect to (B.1).
Therefore

∫

Ω\Va′′
g(x)Q(dx) =

∫

Ω∩Va
g(x)f(x)λa(dx) +

∫

Ω∩Va′
g(x)f(x)λa′(dx)

+

∫

Ω∩V1
g(x)f(x)λ1(dx),

(B.6)

where we have removed null integrals that result from distributing (B.1). Define fb := f◦γb
and gb := g ◦ γb for an arbitrary vector b ∈ {0, 1}2k. This allows us to write

∫

Ω\Va′′
g(x)Q(dx) =

∫

Ua

ga(p)fa(p) dp+

∫

Ua′

ga′(q)fa′(q) dq+

∫

Ω∩V1
g(x)f(x) dx, (B.7)

where Ua := {p : γa(p) ∈ Ω} and Ua′ := {q : γa′(q) ∈ Ω}. We must be careful in
interpreting each integral on the right hand side of (B.7). The vector p for example is of
length ∥a∥0, while q is of length ∥a′∥0.

We split the proof into three cases.
Case 1, ∥a∥0 = ∥a′∥0 = 2k− 1 : This implies that ai = 0 for exactly one odd i. Consider
the function Ta : R2k−1 → R

2k−1 given by

Ta(p) := (p1 + p2, . . . , pi−2 + pi−1, pi−1, pi, pi + pi+1, . . . , p2k−2 + p2k−1)
t.

This function satisfies Ta(p) = T ◦ιa◦γa(p) for all p ∈ (0,∞)2k−1. It is linear, non-singular
and its Jacobian J has determinant one. To see this, observe that J is block diagonal
with matrices J1 and J2 where J1 has dimension i− 1. J1 is upper triangular and J2 is
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lower triangular, and both matrices have ones along the diagonal. Therefore

det(J) = det(J1)× det(J2) = 1× 1 = 1.

Applying the change of variables formula to the integral gives
∫

Ua

ga(p)fa(p) dp =

∫

T (Ω∩Va)
g(γa(T

−1
a (t)))f(γa(T

−1
a (t))) dt

=

∫

T (Ω∩Va)
g(xl)f(xl) dt.

Precisely the same argument gives an analogous form for the second integral on the
right of (B.7), but with xu in the integrand rather than xl, and with T (Ω ∩ Va′) as the
integration range.

We deal with the final integral in (B.7) using a transformation T1 : R2k → R
2k defined

by
T1(x) := (x1, x1 + x2, x2 + x3, . . . , x2k−1 + x2k)

t.

This is again linear and non-singular. The Jacobian is lower triangular with ones along
the diagonal, and so the determinant is one. Using change of variables

∫

Ω∩V1
g(x)f(x) dx =

∫

T (Ω∩V1)

(∫

g(T−1
1 (x1, t))f(T

−1
1 (x1, t)) dx1

)

dt

=

∫

T (Ω∩V1)

(

1√
2k

∫

Lt

g(x)f(x) ds

)

dt

=

∫

T (Ω∩V1)

(

1√
2k

∫

Lt

f(x) ds

∫

Lt
g(x)f(x) ds
∫

Lt
f(x) ds

)

dt

=

∫

T (Ω∩V1)

(

αt

∫

g(x)µt(dx)

)

dt.

In the second step the inner integral is rewritten as a line integral over Lt. Then, it is
written in a form that allows application of the definition of µt in (3.5.2).
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Putting this all together and grouping the integrals gives
∫

Ωa,a′\Va′′
g(x)P (dx) (B.8)

=

∫

T 1
a,a′

(

g(xl)f(xl) + g(xu)f(xu) + αt

∫

g(x)µt(dx)

)

dt (B.9)

=

∫

T 1
a,a′

∫

g(x)Pt(dx) (f(xl) + f(xu) + αt) dt (B.10)

=

∫

T 1
a,a′

∫

g(x)Pt(dx)

(

f(xl) + f(xu) +

∫

f(x1, t) dx1

)

dt (B.11)

=

∫

T 1
a,a′

∫

g(x)Pt(dx) (TPa + TPa′ + TP1) (dt) (B.12)

=

∫

T 1
a,a′

∫

g(x)Pt(dx)TP (dt). (B.13)

(B.10) is obtained from (B.9) by evaluating the integral of g(x) with respect to Pt, where
Pt is defined in Proposition 3.5.2.

Case 2, ∥a∥0 = ∥a′∥0 < 2k− 1 : Fix some x ∈ Ω \ Va′′ . Either the smallest even
element, the smallest odd element, or both, are positive. Since the smallest element
appears at more than one index, there must be ties between positive elements. Therefore,
Ω \ Va′′ must be a null set under Q, and so Qt may be defined arbitrarily on T \ T1.

Case 3, ∥a∥0 ̸= ∥a′∥0 : Now suppose that ∥a∥0 < ∥a′∥0 and assume, for the moment,
that the second and third integrals on the right hand side of (B.7) are null over Ω. Now

∫

Ωa,a′

g(x)P (dx) =

∫

Ωa,a′

g(uT (x))P (dx) (using that x = uT (x) on Va)

=

∫

Ta,a′
g(xl)TP (dt) (change of variables)

=

∫

Ta,a′

∫

g(x)Pt(dx)TP (dt) (definition of Pt),

as required. The analogous result is established for ∥a′∥l0 < ∥a∥l0 using identical
reasoning.

B.2 Proof of Proposition 3.6.2

Proof of Proposition 3.6.2. Begin by verifying the first statement; that the set of
graphs producing inadmissible data is Λ-negligible. Fix some data (d, s) and substitute
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the definition of s+u and s+v in (3.20) to get

∑

u∈Ui

∑

v∈N
wuv =

∑

u∈N

∑

v∈Vi
wuv (B.14)

∑

u∈Ui

∑

v∈N\Vi

wuv =
∑

u∈N\Ui

∑

v∈Vi
wuv, (B.15)

for each i ∈ I and any G ∈ Gm(d, s). In the second step, we have simply removed
summands common to both sides. If (B.15) is positive on either side then it implies a
disjoint sum of edge weights exactly equate. This event is Λ-negligible, and so it suffices
to show that any graph producing inadmissible data must have (B.15) positive for some
i ∈ I.

First suppose that condition 1 of Definition 3.6.1 is violated. Then (Ui)i∈I and (Vi)i∈I
can be labeled so that U1 ∩ U2 ≠ ∅ and/or V1 ∩ V2 ≠ ∅. We show by contradiction that
(B.15) must be positive for some i ∈ {1, 2}. Suppose first that (B.15) is zero for i ∈ {1, 2}.
Then (B.15) holds for U ′ = U1 \ U2 and V ′ = V1 \ V2. We show this by expanding the
left hand side of (B.15)

∑

u∈U1

∑

v∈N\V1
wuv =

∑

u∈U1\U2

∑

v∈N\V1
wuv (B.16)

=
∑

u∈U ′





∑

v∈N\V ′

wuv −
∑

v∈V2∩V1
wuv



 (B.17)

=
∑

u∈U ′

∑

v∈N\V ′

wuv −
∑

u∈U ′

∑

v∈V2∩V1
wuv (B.18)

=
∑

u∈U ′

∑

v∈N\V ′

wuv = 0. (B.19)

In (B.17) we have used that N \ V ′ = (V1 ∩ V2) ∪ (N \ V1). To see how we remove the
final summation in (B.18), observe that if u ∈ U ′ then u ∈ N \ U2. Also if v ∈ V1 ∩ V2
then v ∈ V2. Therefore because (B.15) holds for i = 2 and by assumption is equal to
zero, this summation must also be zero. The same reasoning as above can be applied to
the right hand side of (B.15) to show that

∑

u∈U ′

∑

v∈N\V ′

wuv =
∑

u∈N\U ′

∑

v∈V ′

wuv = 0,

which implies that U ′ and V ′ satisfy (3.20). Since U ′ × V ′ ⊂ U1 × V1 this contradicts
the definition of U1 and V1, and establishes that graphs for such data have positive ties,
and thus lie in a Λ-negligible set.

Now suppose that the second condition of Definition 3.6.1 is violated, i.e. G̃m(d, s) is
empty. This could be because the reference set (3.6) is empty, in which case no graph in
G aligns with the data (d, s). Suppose instead that (3.6) is non-empty. Any graph in
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(3.6) has some edge uv such that

uv /∈
⋃

i∈I
(Ui × Vi) .

This implies that (B.15) is positive for some i∗ ∈ I and that the graph must have positive
ties in its weight matrix. Therefore the set of such graphs is P -null. Moreover, this
argument verifies the last statement in the proposition, which is that the set of graphs
not in G̃m(d, s) for some data (d, s) is P -null.

B.3 Proof of Proposition 3.6.4

Our strategy is to first establish open set irreducibility with respect to some topology on
Gm(d, s). This result is stated in Lemma B.3.3. This is linked to ψ-irreducibility, which
then establishes Proposition 3.6.4.

First we define objects used in the proofs. Fix some admissible data (d, s), as in the
proposition. Associate each graph G ∈ Gm(d, s) with a weighted, bipartite and undirected
graph B(G) := (R,C,W ), with vertex sets R := {ru : u ∈ N} and C := {cu : u ∈ N},
and with weight matrix defined through wrucv(B) := wuv(G). Recall the vertex sets
{Ui}i∈I and {Vi}i∈I introduced in Section 3.6, which are associated with the data (d, s).
We define sets

Ei := {pu : u ∈ Ui} ∪ {qv : v ∈ Vi}, (B.20)

for each i ∈ I. By the definition of admissibility (Definition 3.6.1) it is clear that these
sets form a partition of P ∪Q.

We begin by stating and proving two lemmas which will help establish Lemma B.3.3.

Lemma B.3.1. Fix some i ∈ I. The vertex set Ei is connected in B(G) for all

G ∈ Gm(d, s).

Proof. Fix any G ∈ Gm(d, s) and let C be a connected component of B(G). It is easy to
see that

∑

u∈{u:pu∈C}
s−u =

∑

v∈{v:qv∈C}
s+v ,

and so, by the definition of admissibility, C must be the union of sets of the form (B.20).
This implies that Ei must wholly lie within a connected component for all graphs in the
reference set.

The next lemma establishes that the Markov chain can move between different graph
topologies. In particular, it shows that an edge can be added without altering the rest of
the graph’s topology. It will be used in the proof of Lemma B.3.3.
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Lemma B.3.2. Let uv ∈ Ui × Vi for some i ∈ I, and uv /∈ F . Suppose the current state

of the chain is G and uv /∈ E(G). Fixing ε > 0, these is positive probability of reaching

some G∗ satisfying Wuv(G
∗) ∈ (0, ε] and E(G∗) = E(G) ∪ {uv} in one iteration.

Proof of Lemma B.3.2. Since uv ∈ Ui × Vi, pu and qv must belong to Ei. By Lemma
B.3.1, pu and qv must be connected by a simple path in B(G). Because B(G) is bipartite,
the path must have odd length, and when including puqv, defines a k-cycle with one zero
entry and no forced edges. The k-cycle selection strategy defined in Algorithm 4 gives
positive probability to all such k-cycles. Sampling this k-cycle and ∆ ∈ (0, ε] yields a
graph with the required properties. Sampling ∆ in this range has positive probability
because the density f is assumed to be positive everywhere.

Lemma B.3.3 shows that the Markov chain is open set irreducible, where the open
sets are those induced by the metric

d(G1, G2) := max
uv∈N2

| wuv(G1)− wuv(G2) | +ρ(G1, G2), (B.21)

where ρ(G1, G2) = 1 if G1 and G2 hae differing topologies, and is otherwise zero. It
is easy to check that this really is a metric. Before stating the lemma, we recall the
definition of G̃m(d, s) from Section 3.6.

Lemma B.3.3. Let the current state of the chain be G ∈ Gm(d, s), and fix any G′ ∈
G̃m(d, s), and ε > 0. There exists some integer n for which there is positive probability of

reaching an ε-neighbourhood (under (B.21)) of G′ within n steps.

Proof of Lemma B.3.3. Form a signed graph H := (N,D), where D = (duv) is a matrix
of possibly negative weights that satisfy duv := wuv(G)−wuv(G′). Label uv red if duv > 0

and blue if duv < 0. G and G′ are equal if and only if E(H) is empty. Red edges must
be in E(G), however blue edges may not be in E(G). Therefore, begin by using Lemma
B.3.2 repeatedly to adjust G so that all blue edges in H are in E(G). This Lemma can
be applied because we have assumed that G′ ∈ G̃m(d, s). This implies that if uv is blue
then it must belong to Ui × Vi for some i ∈ I, because otherwise wuv(G′) = 0, which
contradicts the requirement that wuv(G) < wuv(G

′) for blue edges.
Call a k-cycle alternating if its vertex pairs (3.9) alternate between red and blue

edges , when interpreted as part of H. As long as E(H) is non-empty, one can always
form an alternating k-cycle. To see this, note that the in- and out-strengths of vertices
in H are uniformly zero. Therefore, if uv is red (duv > 0), then there must exist blue wv
for which dwv < 0. Hence walk along alternating edges until returning to a vertex for the
first time, forming an alternating k-cycle.

Fix one such k-cycle z1 ordered so that the first edge is red. All edges in the cycle
are positive and do not belong to F . Let

∆′
1 := − min

uv∈z1
{∥Duv∥}
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along the cycle. If we sampled ∆ = ∆1 exactly along z, this would remove an edge from
E(H). Repeating the process at most d times, where d is the size of E(h), yields k-cycles
z1, . . . , zd and ∆′

1, . . . ,∆
′
d, after which we reach G′. Therefore there must exist some

ε0 > 0 such that sampling ∆i ∈ ∆′
i + [−ε0, ε0] sequentially along these cycles gives a

graph in an ε-neighbourhood of G′.

To link open set irreducibility (Lemma B.3.3) with ψ-irreducibility, it is helpful to
view the reference set G as a subset of a vector space. This will provide a geometric
interpretation to the k-cycles that form the basis of our Markov chain. This will motivate
a measure φ on G for which it is easy to demonstrate φ-irreducibility of the chain.

Let R
N×N be the vector space of real-valued N ×N matrices. Equip this with the

metric defined by (B.21). We will assume that if uv /∈ Ui × Vi for some i ∈ I then
uv ∈ F . Let V be the affine subspace of RN×N with row and column margins s− and s+

respectively and additionally respecting the forced zeros implied by F . This has some
dimension

d ≥ N2 + 1− 2N− | F | .

Then the reference set satisfies
G = V ∩ ΩN×N ,

where ΩN×N is the N ×N -dimensional non-negative orthant.
Fixing W ∈ G, we see that a k-cycle is equivalent to sampling from a line in V . The

‘direction’ of this line is given by an N ×N matrix M , where Muv = 1 if uv is on the
odd side of the cycle, Muv = −1 if on the even side, and with all other entries being zero.
Fix any W ∗ in V . The arguments used in the proof of B.3.3 can easily be extended to
show that there exists (M∗

1 , . . . ,M
∗
L) and a real-valued vector (∆∗

1, . . . ,∆
∗
L) for which

W ∗ =W +

L
∑

l=1

M∗
l ∆

∗
l ,

and each M∗
l corresponds to a k-cycle. This in turn implies that there exists a set of

such matrices labelled (M1, . . . ,Md) which form an affine basis for V . Therefore

fW (∆) :=W +

d
∑

i=1

Mi∆i, (B.22)

where ∆ := (∆1, . . . ,∆d) parameterizes V . Equation (B.22) is a homeomorphism between
R
d and V . We are now ready to prove Proposition 3.6.4.

Proof of Proposition 3.6.4. Fix any W ∈ V for which Wuv > 0 if uv /∈ F . The existence
of such a W is implied by Lemma B.3.2. Consider the parameterization of V defined
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by (B.22). We use this to define a measure φ on G, and show that the Markov chain is
irreducible with respect to φ.

Let ε0 := minuv/∈F | wuv | /d, and define Nε0 := (−ε0, ε0)d ⊂ R
d. Let µ be Lebesgue

measure restricted to Nε0 . Define φ on (G,B) as the pushforward of µ under fw, so that

φ(A) = λd
(

f−1(A) ∩Nε0

)

,

for measurable A.
We now show φ-irreducibility. Fix any measurable A for which φ(A) > 0. Letting

E := f−1
w (A) ∩ Nε0 , it is clear that E must be Lebesgue positive in R

d. Consider a
Markov chain Xn with kernel Λ. Define Φn := f−1

w (Xn) and suppose Φn ∈ Nε0 . Each
of the basis matrices m1, . . . ,md corresponds to a k-cycle. There is positive probability
that the chain selects the cycle corresponding to mk at the n+ kth step. Conditional on
this, φn+d has positive density everywhere on Nε0 . This implies that if Xn ∈ fw(Nε0)

then Qd(Xn, A) > 0.
It remains to show that for each x, Qn(x, fw(Nε0)) > 0 for some n. Since fw maps

open sets, fw(Nε0) is open in G. Therefore this result follows from Lemma B.3.3.



C
Appendix to Chapter 4

C.1 Proofs

Proof of Lemma 4.2.2. For k ∈ 1, . . . , N ,

P{RM = k} =
N
∑

m=1

P{RM = k |M = m}P{M = m}

=
1

N

N
∑

m=1

P{Rm = k} = 1

N
,

where the last equality holds because exactly one element of (R1, ..., RN ) must equal k.
In other words, the events {Rm = k} partition the sample space.

Proof of Proposition 4.2.3. Consider the variables involved in one evaluation of Algorithm
7. The proposition assumes that the kernel Ky is π(θ | y)-reversible. Letting f denote
the joint distribution of θ1:N then for m > 1,

f(θ1:N |M = m, y) = π(θm | y)
(

m−1
∏

i=1

Ky(θm−i+1, θm−i)

)





N
∏

j=m+1

Ky(θj−1, θj)





= π(θm | y)K(θm, θm−1)

(

m−2
∏

i=1

Ky(θm−1−i+1, θm−1+i)

)





N
∏

j=m+1

Ky(θj−1, θj)





= π(θm−1 | y)K(θm−1, θm)

(

m−2
∏

i=1

Ky(θm−1−i+1, θm−1+i)

)





N
∏

j=m+1

Ky(θj−1, θj)





= π(θm−1 | y)
(

m−2
∏

i=1

Ky(θm−1−i+1, θm−1+i)

)





N
∏

j=m

Ky(θj−1, θj)





= f(θ1:N |M = m− 1, y).
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This implies that the distribution of θ1:N is independent of M . Since additionally R is
also assumed independent of M , both R(θ1:L) and M satisfy the conditions of Lemma
4.2.2 and so RM (θ1:L) is uniformly distributed.

Proof of Theorem 4.3.1. We use induction from j = k to j = 1 to show that

P{fail | step j reached} ≤ (k + 1− j)βj , (C.1)

where βj = β/γj−1 is as defined in Algorithm 8.
First, by the usual arguments for the Bonferroni correction, P{qi ≤ p} ≤ p for all

p ∈ [0, 1] and for i = 1, . . . , k. This, immediately shows that (C.1) holds for j = k.
To show that (C.1) holds for j = i ∈ {1, . . . , k−1} given that it holds for j = i+1, we

argue as follows. Let Ai = {βi < qi ≤ γ + βi} and Bi = {qi ≤ βi}. Using the arguments
for the Bonferroni correction again gives P{Bi} ≤ βi and P{Ai} ≤ γ+βi−P{Bi}. Then

P{fail | step i reached} = P{Bi}+ P{Ai, fail | step i reached}
= P{Bi}+ P{Ai}P{fail | step i+1 reached}
≤ P{Bi}+ (γ + βi − P{Bi)}P{fail | step i+1 reached}
= γ P{fail | step i+1 reached}+ βi P{fail | step i+1 reached}+ P{Bi}(1− P{fail | step i+1 reached})
≤ γ P{fail | step i+ 1 reached}+ βi

≤ γ(k + 1− (i+ 1))βi+1 + βi = (k + 1− i)βi

Thus using (C.1) for i = 1 gives P{fail} ≤ kβ1 = kβ = α.

C.2 Tuning Sequential Parameters

We use a simulation study to propose default parameters for the sequential tests. The
classical goodness-of-fit setting is considered: independent and identically distributed
samples from can be generated and the task is to test if the samples derive from a
standard normal distribution. The two-sided Kolmogorov-Smirnov test is used to test
this.

The sample size for k = 1 and ∆ = 1 (i.e. the non-sequential setting) was chosen to
be 104. Sample sizes for other settings were adjusted using (4.2) so that under the null
the computational effort were identical. α is set at 10−5 to replicate the situation where
we only want very few rejections.

Results are in Table C.1, based on 104 repeated tests. The first two columns are
under the null i.e. we would only expect the nominal number of rejections. This seems
to be roughly the case.

Table C.2 is similar to Table C.1, with the exception that the sample size for k = 1

and ∆ = 1 (i.e. the non-sequential setting) was chosen to be 103 and that some different
alternative have been considered.
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Table C.1 Power of the sequential procedure using a KS test on iid data. Null is N (0, 1).

N(0,1),α=0.01 N(0,1) N(0.05,1) N(0.03,1) N(0.02,1) N(0,0.952) N(0,0.972)

k=1,∆=1 0.011 0.000 0.415 0.028 0.003 0.007 0.000
k=3,∆=1 0.010 0.000 0.939 0.202 0.016 0.380 0.004
k=3,∆=2 0.009 0.000 0.967 0.448 0.061 0.681 0.025
k=3,∆=4 0.009 0.000 0.960 0.529 0.156 0.658 0.109
k=5,∆=1 0.009 0.000 0.974 0.285 0.026 0.615 0.008
k=5,∆=2 0.010 0.000 0.986 0.583 0.100 0.861 0.080
k=5,∆=4 0.009 0.000 0.979 0.632 0.233 0.808 0.227
k=7,∆=1 0.009 0.000 0.988 0.392 0.035 0.876 0.035
k=7,∆=2 0.010 0.000 0.990 0.692 0.141 0.959 0.231
k=7,∆=4 0.011 0.000 0.975 0.702 0.286 0.887 0.408
k=9,∆=1 0.008 0.000 0.987 0.384 0.035 0.916 0.054
k=9,∆=2 0.009 0.000 0.990 0.673 0.124 0.963 0.266
k=9,∆=4 0.010 0.000 0.965 0.693 0.252 0.892 0.430

k=11,∆=1 0.010 0.000 0.985 0.364 0.027 0.919 0.063
k=11,∆=2 0.010 0.000 0.988 0.636 0.105 0.966 0.267
k=11,∆=4 0.008 0.000 0.949 0.674 0.198 0.891 0.420

n = 10
4 for the non-sequential test (k = 1,∆ = 1); other n adjusted to give same expected effort under

null, α = 10
−5, unless otherwise indicated.

Table C.2 Power of the sequential procedure using a KS test on iid data. Null is N (0, 1).

N(0,1),α=0.01 N(0,1) N(0.15,1) N(0.1,1) N(0.05,1) N(0,0.852) N(0,0.92)

k=1,∆=1 0.009 0.000 0.324 0.039 0.001 0.006 0.000
k=3,∆=1 0.009 0.000 0.902 0.249 0.004 0.349 0.006
k=3,∆=2 0.009 0.000 0.937 0.522 0.014 0.668 0.058
k=3,∆=4 0.009 0.000 0.939 0.576 0.050 0.658 0.162
k=5,∆=1 0.008 0.000 0.948 0.348 0.006 0.604 0.019
k=5,∆=2 0.010 0.000 0.971 0.655 0.022 0.848 0.145
k=5,∆=4 0.009 0.000 0.959 0.677 0.085 0.817 0.295
k=7,∆=1 0.011 0.000 0.973 0.481 0.006 0.887 0.077
k=7,∆=2 0.011 0.000 0.983 0.759 0.031 0.952 0.372
k=7,∆=4 0.009 0.000 0.958 0.744 0.095 0.890 0.487
k=9,∆=1 0.009 0.000 0.972 0.468 0.005 0.917 0.112
k=9,∆=2 0.009 0.000 0.985 0.738 0.025 0.962 0.412
k=9,∆=4 0.009 0.000 0.949 0.725 0.072 0.883 0.531

k=11,∆=1 0.008 0.000 0.968 0.441 0.004 0.921 0.127
k=11,∆=2 0.009 0.000 0.977 0.712 0.019 0.967 0.418
k=11,∆=4 0.009 0.000 0.936 0.722 0.047 0.883 0.525

n = 10
3 for the non-sequential test (k = 1,∆ = 1), α = 10

−5, unless otherwise indicated.
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For the alternatives there is a very substantial increase in terms of power compared
to the non-sequential approach (k = 1,∆ = 1). Increasing the sample size at the second
step seems beneficial - ∆ = 2 and ∆ = 4 seem to be doing better than ∆ = 1 in the
simulation results. Furthermore, the number of sequential steps should be large (at least
k ≥ 5).

An over all good performance seems to be achieved by using k = 7 and ∆ = 4.
Therefore, these are the default settings used in our R-package.



D
Appendix to Chapter 5

D.1 Offspring Dispersion

Define the offspring distribution of any given infection to be the distribution of the
random number of offspring attributable to that infection. We show that assuming the
variance of these distributions are a constant proportion of the mean implies, under
suitable independence assumptions, the same result for new infections It for all time
points.

Assume some ordering over infections at each period, and let O(i)
t denote the number

of offspring of the ith infection at time t. This can be decomposed as

O
(i)
t =

∞
∑

s=t+1

O
(i)
ts , (D.1)

where O(i)
ts are the number of offspring of i birthed at time s. The branching process

behind Equation (5.5) implies that O(i)
ts has mean Rsgs−t. Assume that {O(i)

ts : s ≥ t}
are mutually independent and have variance which is a fixed proportion d of the mean.
By Equation (D.1), this implies the same variance relationship for O(i)

t . In particular, if
Rs = Rt for s > t then O(i)

t has mean Rt and variance dRt. New infections at time t can
be expressed as

It =

t−1
∑

s=1

Is
∑

i=1

O
(i)
st . (D.2)

Assume that all O(i)
st appearing in Equation (D.2) are mutually independent conditional

on everything occurring up to time t− 1, the result clearly follows by taking the variance
of both sides of Equation D.2 given Rt and Iv:t−1.
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D.2 Population Adjustment

Here we motivate Equation (5.6), which is used to adjust transmission rates for the size
of the infectable population. The most obvious starting point for such an adjustment
would be to let

E[It|Rt, Iv:t−1] =

(

S0 − It−1

S0

)

Ru,tLt, (D.3)

where Rut is defined as in Section 5.4.2. This is similar in form to a discrete logistic

growth model. Such models are well known as examples of simple models that exhibit
chaotic dynamics ((May, 1976)). In particular, it is possible that the expected value
on the left hand side exceeds the remaining susceptible population. Intuitively, this
issue occurs because multiple infections can occur simultaneously in the discrete model.
We therefore propose solving this by using a population adjustment motivated by the
solution to a continuous time model whose intensity is a simplification of Equation (5.3).

Suppose we observe Iv:t−1 and current transmission Rt. We evolve infections from
time t − 1 to t continuously, and hence avoid overshooting. Define a continuous time
counting Ĩ(s) process starting at time t− 1 by the intensity

λ̃(s) =

(

S0 − Ĩ(s)
S0

)

Ru,tLt, (D.4)

for s ≥ t− 1, and with initial condition Ĩ(t− 1) = It−1. Supplementary D.3 shows that

E[Ĩ(t)] = It−1 + (S0 − It−1)

(

1− exp

(

−Ru,tLt
S0

))

, (D.5)

which is the motivation for Equation (5.6).
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D.3 Proof of Equation (D.5)

Without loss of generality, we prove the result for time t = 1. The argument remains the
same for all t > 1.

From ((Pinsky and Karlin, 2010, Lemma 5.5)), we have

E[Ĩ(s)] = Ĩ(0) +

∫ s

0
E[λ̃(l)]dl for s ≥ 0.

The following lemma derives an expression for the the expected intensity on the right
hand side.

Lemma D.3.1. The expected intensity takes the form

E[λ̃(s)] = λ̃(0) exp

(

−Ru,1L1

S0
s

)

,

for all s ≥ 0.

Proof of Lemma D.3.1. Fix s ≥ 0, some small ∆ > 0 and let h(s) := E[λ̃(s)]. We have
from Equation (D.4) that

h(s+∆) =

(

S0 − E[Ĩ(s+∆)]

S0

)

Ru,1L1. (D.6)

We can write
E[Ĩ(s+∆)|λ̃(s)] = E[Ĩ(s)|λ̃(s)] + λ̃(s)∆ +O(∆),

and taking expectations on both sides,

E[Ĩ(s+∆)] = E[Ĩ(s)] + h(s)∆ +O(∆).

Substituting this into (D.6) and rearranging gives

h(s+∆) =

(

S0 − E[Ĩ(s+∆)]

S0

)

Ru,1L1 −
Ru,1L1

S0
(h(s)∆ +O(∆)) ,

= h(s)− Ru,1L1

S0
(h(s)∆ +O(∆)) .

Rearranging gives

h(s+∆)− h(s)
∆

= −Ru,1L1

S0

(

h(s) +
O(∆)

∆

)

.

Taking the limit as ∆→ 0 and rearranging gives the differential equation

h′(s)
h(s)

= −Ru,1L1

S0
.
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Integrating both sides gives

log(h(s)) = −Ru,1L1

S0
s+ C.

Using that h(0) = λ̃(0) gives the constant C = log(λ̃(0)). Plugging in yields the required
result.

Hence,

E[Ĩ(s)] = I0 + λ̃(0)

∫ s

0
exp

(

−Ru,1L1

S0
l

)

dl

= I0 + λ̃(0)
S0

Ru,1L1

(

1− exp

(

−Ru,1L1

S0
s

))

= I0 + (S0 − Ĩ(s))
(

1− exp

(

−Ru,1L1

S0
s

))

.

Letting s = 1 gives the required result.
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E.1 Priors on Model Parameters

epidemia aims to give the user a high degree of control over setting prior distributions. It
does this by leveraging the functionality provided by rstanarm, which provides functions
representing a number of different prior families. These include for example student-
t, Laplace, and hierarchical shrinkage families. In this appendix, we provide a brief
introduction to the available families, and discuss some important quirks to be aware of
when defining priors. We use the same mathematical notation as in Section 6.2.

Please do not rely on the default priors in epidemia. Although these have been

designed to be weakly informative, they are not guaranteed to be appropriate for your

particular model. Please adjust prior distributions as required.

Priors must be defined for all parameters in each of the three model components:
transmission, infection, and observations. In the transmission model, priors must be set
for all effects appearing in the linear predictor η. In the infection model, a prior must be
set on τ , but also on the dispersion parameter d in the extended version of the model. In
each observational model, priors must be set for effects defining the multipliers αt, but
also for the auxiliary parameter for the sampling distribution, ϕ.

In general, primitive model parameters can be classified as are either intercepts, fixed
effects, a covariance matrix, an auxiliary parameter, or the error term in a random walk.
We discuss each in turn, in particular highlighting where they appear in the model, and
what distributions are available for them.

E.1.1 Priors on Intercepts

Intercepts can appear in the linear predictor η for the reproduction numbers R and in the
linear predictors for multipliers α. The prior distribution is specified using an argument
prior_intercept. This appears in both epirt() and epiobs(). prior_intercept

must be a call to an rstanarm function that represents a student-t family: i.e. one
of normal(), student_t() or cauchy() from rstanarm. prior_intercept is of course
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only used if the formula specifies an intercept. Please note that the interpretation of
prior_intercept depends on the center argument to epirt() and epiobs(). Please
see Section E.1.6 for more details.

E.1.2 Priors on Regression Coefficients

In addition to intercepts, the predictors for R and α may also contain fixed effects. In
the regression for R this corresponds to the parameter vector β. The prior distribution
is set using the prior argument, which, similarly to prior_intercept, appears in both
epirt() and epiobs(). Note that this does not set the prior for the group-specific effects
b, which are instead controlled by prior_covariance.

prior can be a call to one of rstanarm’s prior functions. These can be broadly
grouped into four families: student-t, hierarchical shrinkage, Laplace and the product
normal family. Note that all effects must follow the same family ; for example, it is not
possible for β1 to have a normal prior while β2 has a Cauchy prior. Nonetheless, different
hyperparameters can be set for each effect.

As an example, suppose the following formula is used to model R, where cov1 and
cov2 are some covariates.

R> R(group, date) ~ 1 + cov1 + cov2

Consider the following two prior specifications in the call to epirt().

• prior = rstanarm::normal(location=0,scale=1) gives a standard normal prior
to both covariate effects.

• prior = rstanarm::normal(location=c(0,1),scale=c(1,2)) sets priors β1 ∼
N(0, 1) and β2 ∼ N(1, 2), where β1 and β2 are the effects for cov1 and cov2

respectively. To give different prior locations and or scales for each covariate, we
simply pass numeric vectors instead of scalars.

The interpretation of prior depends on whether covariates are being centered, and
whether automatic scale adjustments are occurring. Please see Section E.1.6 for more
details.

Additional Priors

In addition to rstanarm’s prior functions, epidemia offers additional prior families for
regression coefficients. Currently the only additional prior available is shifted_gamma.
This represents a gamma distribution that can be shifted to have support other than on
[0,∞). Specifically,

βi ∼ Gamma(αi, θi)− ai, (E.1)

where αi and θi are shape and scale parameters, and ai is a shift. This prior is used
in Flaxman et al. ((2020a)) to model the prior effect of control measures on Covid-19
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transmission. Intuitively, it is unlikely that a measure designed to reduce transmission
rates ends up increasing transmission significantly. This implies that a symmetric prior
may not be appropriate for these effects: it makes sense to put low mass on large positive
effect sizes. In addition, this prior can help to improve identifiability when multiple
measures occur in quick succession - as is often the case during the early stages of an
epidemic.

E.1.3 Priors on Auxiliary Parameters

Auxiliary parameters can appear in the sampling distributions for observations. This
corresponds to the parameter ϕ introduced in Section 6.2.1. The interpretation of this
parameter depends on the chosen distribution. The Poisson distribution has no auxiliary
parameter as it is fully defined by its mean. For the negative binomial distribution
(specified by using family = "neg_binom" in the call to epiobs()), ϕ represents the
reciprocal dispersion. An auxiliary parameter d also exists in the extended version of the
infection model (when using latent = TRUE in the call to epiinf()). See Section 6.2.5
for more information on this parameter. This represents the coefficient of dispersion of
the offspring distribution. Auxiliary parameters are always non-negative in epidemia.

Priors for auxiliary parameters are set using the prior_aux argument in the epiobs()
and epiinf() modeling functions. It is not used when family = "poisson" in the call
to epiobs() or when latent = FALSE in the call to epiinf(). prior_aux can be a call
to one of normal(), student_t(), cauchy() or exponential() from rstanarm.

E.1.4 Priors on Covariance Matrices

Recall that partial pooling can be used in the regression for Rt. The partially pooled
parameters b are characterized as zero mean multivariate normal with an unknown
covariance matrix, which must itself be assigned a prior. The precise model for these
parameters is described in detail in Appendix E.2. The prior on the covariance matrix
can be set using the prior_covariance argument in epirt().

Although the Inverse-Wishart prior is a popular prior for covariance matrices, it does
not cleanly separate shape and scale ((Tokuda et al., 2011)). A general approach is to
decompose the prior on the covariance matrix into a prior on the correlation matrix
and a vector of variances. This is the approach taken by rstanarm, which has functions
decov() and lkj() which represent priors for covariance matrices. These are also used
by epidemia for the same purpose.

We brieŕy describe rstanarm’s decov prior, as it applies to partially pooled parameters
in the regression for Rt. Suppose the formula for Rt contains a term of the form (expr

| factor), and that expr evaluates to a model matrix with p columns, and factor has
L levels. Let θl denote the p-vector of parameters for the lth group. From Appendix E.2
this is modeled as

θl ∼ N(0,Σ), (E.2)
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where Σ is a p × p covariance matrix. The decov prior decomposes Σ into a vector of
variances (σ21, . . . σ

2
p) and a correlation matrix Ω, which is given an LKJ prior. The

variance vector is decomposed into the product of a simplex vector s and the trace of Ω,
which is just the sum of the individual variances. Specifically,

σ2i = sitr (Σ) . (E.3)

The simplex vector is given a symmetric Dirichlet prior, while the trace is decomposed
into tr(Σ) = pκ2, where p is the order of the matrix (i.e. the number of correlated effects),
and κ is a parameter which is assigned a scale invariant prior; specifically a Gamma with
given shape and scale hyperparameters. When p = 1, for example with (1 | factor),
the prior simplifies considerably. Σ simply reduces to κ2, which has a Gamma prior.

E.1.5 Priors on Random Walks

Section 6.2.4 described how the linear predictor for Rt can include autocorrelation terms.
Currently, epidemia supports random walk terms. The random walk errors are given a
zero-mean normal prior, with an unknown scale. This scale is itself assigned a half-normal
hyperprior with a known scale.

Consider a very simple random walk parameterization of Rt, whereby formula =

R(country, date) ~ rw(prior_scale=0.05) is used in the call to epirt(). Assuming
only one population is being considered, this implies a functional form of

Rt = g−1 (β0 +Wt)

for reproduction numbers. Here Wt is a random walk satisfying Wt = Wt−1 + γt for
t > 0 and with initial condition W0 = 0. Under the prior, the error terms γt follow
γt ∼ N (0, σ) with σ ∼ N+(0, 0.05).

E.1.6 Caveats

There are several important caveats to be aware of when using prior distributions in
epidemia.

Covariate Centering

By default, covariates in the regressions for Rt and αt are not centered automatically by
epidemia. This can, however, be done by using center = TRUE in the call to epirt()

and epiobs() respectively. It is important to note that if center = TRUE, the arguments
prior_intercept and prior set the priors on the intercept and coefficients after centering

the covariates.
Covariates are not centered automatically because often the intercept has an intuitive

interpretation in the model. For example, if all covariates are zero at the beginning of the
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epidemic, then the intercept can be seen as specifying the initial reproduction number
R0 of the disease. If center = TRUE, then the intercept no longer has an easily intuited
interpretation.

Autoscaling

rstanarm’s prior functions have an argument called autoscale. If autoscale = TRUE,
then epidemia automatically adjusts the prior scale to account for the scale of the
covariates. This only applies to priors on fixed effects, and not to the intercepts. epidemia

rescales according to the following rules.

• If a predictor has only one unique value, no rescaling occurs.

• If it has two unique values, the original scale is divided by the range of the values.

• For more than two unique values, the original scale is divided by the standard
deviation of the predictor.

If you are unsure whether rescaling has occurred, call prior_summary on a fitted
model object. This gives details on the original priors specified, and the priors that were
actually used after rescaling.

E.2 Partial Pooling in epidemia

We describe how to partially pool parameters underlying the reproduction numbers. This
is done using a special operator in the formula passed to epirt(). If you have previously
used any of the lme4, nlmer, gamm4, glmer or rstanarm packages then this syntax will
be familiar.

A general R formula is written as y ~ model, where y is the response that is modeled
as some function of the linear predictor which is symbolically represented by model. model
is made up of a series of terms separated by +. In epidemia, as in many other packages,
parameters can be partially pooled by using terms of the form (expr | factor), where
both expr and factor are R expressions. expr is a standard linear model (i.e. treated the
same as model), and is parsed to produce a model matrix. The syntax (expr | factor)

makes explicit that columns in this model matrix have separate effects for different levels
of the factor variable.

Of course, separate effects can also be specified using the standard interaction operator
:. This however corresponds to no pooling, in that parameters at different levels are
given separate priors. The | operator, on the other hand, ensures that effects for different
levels are given a common prior. This common prior itself has parameters which are
given hyperpriors. This allows information to be shared between different levels of the
factor. To be concrete, suppose that the model matrix parsed from expr has p columns,
and that factor has L levels. The p-dimensional parameter vector for the lth group can
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be denoted by θl. In epidemia, this vector is modeled as multivariate normal with an
unknown covariance matrix. Specifically,

θl ∼ N(0,Σ), (E.4)

where the covariance Σ is given a prior. epidemia offers the same priors for covariance
matrices as rstanarm; in particular the decov() and lkj() priors from rstanarm can be
used. Note that Σ is not assumed diagonal, i.e. the effects within each level may be
correlated.

If independence is desired for parameters in θl, we can simply replace (expr |

factor) with (expr || factor). This latter term effectively expands into p terms of
the form (expr_1 | factor), . . ., (expr_p | factor), where expr_1 produces the first
column of the model matrix given by expr, and so on. From the above discussion, the
effects are independent across terms, and essentially Σ is replaced by p one-dimensional
covariance matrices (i.e. variances).

E.2.1 Example Formulas.

The easiest way to become familiar with how the | operator works is to see a multitude
of examples. Here, we give many examples, their interpretations, and where possible we
compare the models to the no pooling and full pooling equivalents. For a comprehensive
reference on mixed model formulas, please see Bates et al. ((2015)).

There are many possible ways to specify intercepts. Table E.1 demonstrates some of
these, including fully pooled, partially pooled and unpooled. Effects may also be partially
pooled. This is shown in Table E.2.

Table E.1 Different intercept specifications. The intercept often has an interpretation as setting
R0 in each region. The left hand side of each formula is assumed to take the form R(region,

date).

Formula R.H.S. Interpretation

1 + ... Full pooling, common intercept for all regions.
region + ... Separate intercepts for each region, not

pooled.
(1 | region) + ... Separate intercepts for each region which are

partially pooled.
(1 | continent) + ... Separate intercepts based on a factor other

than region, partially pooled.

The final example in Table E.2 shows that it is important to remember that to parse
the term (expr | factor), epim() first parses expr into a model matrix in the same
way as functions like lm() and glm() parse models. In this case, the intercept term is
implicit. Therefore, if this is to be avoided, we must explicitly use either (0 + npi |

region) or (-1 + npi | region).
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Table E.2 Different covariate specifications. Here NPI refers to some non-pharamceutical
intervention. The left hand side of each formula is assumed to take the form R(region, date).

Formula R.H.S. Interpretation

1 + npi + ... Full pooling. Effect of NPI the same across all
regions.

1 + npi:region + ... No pooling. Separate effect in each region.
1 + (0 + npi|region) + ... Partial pooling. Separate effects in each

region.
1 + (npi|region) + ... Right hand side expands to 1 + (1 +

npi|region), and so both the intercept and
effect are partially pooled.

Independent Effects

By default, the vector of partially pooled intercepts and slopes for each region are
correlated. The || operator can be used to specify independence. For example, consider
a formula of the form

R> R(region, date) ~ npi + (npi || region) + ...

The right hand side expands to 1 + npi + (1 | region) + (npi | region) +

.... Separate intercepts and effects for each region which are partially pooled. The
intercept and NPI effect are assumed independent within regions.

Nested Groupings

Often groupings that are nested. For example, suppose we wish to model an epidemic at
quite a fine scale, say at the level of local districts. Often there will be little data for
any given district, and so no pooling will give highly variable estimates of reproduction
numbers. Nonetheless, pooling at a broad scale, say at the country level may hide region
specific variations.

If we have another variable, say county, which denotes the county to which each
district belongs, we can in theory use a formula of the form

R> R(district, date) ~ (1 | county / district) + ...

The right hand side expands to (1 | county) + (1 | county:district). There
is a county level intercept, which is partially pooled across different counties. There are
also district intercepts which are partially pooled within each county.
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E.3 Model Schematic

We provide schematics for different parts of the model introduced in Section 6.2. These
are useful because they clarify how different model objects, including data and parameters,
are related to one another.

Figures E.1 illustrates a complete observational model, and in particular details
the model for multipliers αt. Figure E.2 presents the basic infection model, and also
shows the GLM-style model for reproduction numbers Rt. Finally Figure E.3 shows
extensions of the basic infection model, including treating latent infections as parameters
and including population adjustments.

All mathematical notation shown in the figures corresponds to that used in Section
6.2. Each node is outlined in a color corresponding to the type of object considered.
These are interpreted as follows.

• Grey: A user provided object or quantity that is assumed to be known.

• Green: A model parameter that is, generally speaking, directly sampled. Oc-
casionally epidemia will sample a transformation of this parameter for efficiency
purposes.

• Red: A transformed parameter. This is a quantity that is a deterministic function
of other model parameters.

• Orange: A quantity that is either a parameter or transformed parameter, depend-
ing on the context.

• Blue: An observation.



E.3 Model Schematic 175

First Observation Model

Multiplier Model
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Fig. E.1 A schematic for observational models. Only one observational model is shown here,
however the figure makes clear that additional models may be included. The model for the

multiplier αt is shown in the shaded green region. This is very similar in form to the
transmission model shown in Figure E.2. Infections shown at the bottom may be directly from

either the basic infection model, or from an extended model (as described in Section 6.2.
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Transmission Model
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Fig. E.2 A schematic showing both the basic infection model and the transmission model (the
green region). Here infections are a transformed parameter, and are recursively linked to

previous infections. The model for Rt is similar to a GLM, however autocorrelation terms can
be included. ηt is the predictor for the reproduction number at time t, and is one element of the

predictor η introduced in Section 6.2
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Fig. E.3 Possible extensions to the infection process. Left corresponds to the extension of
Section 6.2.5, while right shows the extension of Section 5.4.2. The population adjustment,

shown in the right figure, may be applied to either the infections shown at the bottom of the left
figure (basic model), or those at the top of the left figure.
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