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Abstract

Background

Air pollution is associated with poor health. Yet, more research is needed to reveal the asso-

ciation of long-term exposure to outdoor air pollution with less studied health outcomes like

hospital admissions and general-practitioner (GP) visits and whether this association is

stronger for ethnic minorities compared to the rest of population. This study investigates the

association between air pollution and all-cause GP visits and hospital admissions by ethnic-

ity in the United-Kingdom (UK).

Methods

We used individual-level longitudinal data from the “UK Household Longitudinal Study”

including 46,442 adult individuals who provided 140,466 responses across five years

(2015–2019). This data was linked to yearly concentrations of NO2, SO2, and particulate-

matter (PM10, PM2.5) outdoor pollution using the Lower Super Output Area (LSOA) of resi-

dence for each individual. Multilevel mixed-effects ordered logistic models were used to

assess the association between air pollution and all-cause GP visits and hospital

admissions.

Results

We found higher odds of hospital admissions per 1 μg/m3 increase in annual concentrations

of NO2 (OR = 1.008; 95%CI = 1.004–1.012), SO2 (OR = 1.048; 95%CI = 1.014–1.083),

PM10 (OR = 1.011; 95%CI = 1.003–1.018), and PM2.5 (OR = 1.018; 95%CI = 1.007–1.029)

pollutants. Higher odds of GP visits were also observed with increased exposure to NO2

(OR = 1.010; 95%CI = 1.006–1.014) and SO2 (OR = 1.114; 95%CI = 1.077–1.152) pollut-

ants. The observed associations did not differ across ethnic groups, but by country of birth,

they were more pronounced in individuals born outside UK than those born in UK.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0275414 October 11, 2023 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Abed Al Ahad M (2023) The association

of long-term exposure to outdoor air pollution with

all-cause GP visits and hospital admissions by

ethnicity and country of birth in the United

Kingdom. PLoS ONE 18(10): e0275414. https://

doi.org/10.1371/journal.pone.0275414

Editor: Mickael Essouma, Universal Scientific

Education and Research Network, CAMEROON

Received: September 17, 2022

Accepted: September 11, 2023

Published: October 11, 2023

Copyright: © 2023 Mary Abed Al Ahad. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We cannot make the

data underlying our analysis publicly available due

to ethical and legal restrictions. We are using the

“Understanding Society: The UK Household

Longitudinal Study (UKHLS)” dataset which is an

initiative funded by the Economic and Social

Research Council and various Government

Departments, with scientific leadership by the

Institute for Social and Economic Research,

University of Essex, and survey delivery by NatCen

Social Research and Kantar Public. These data are

protected by a copyright license and strictly

https://orcid.org/0000-0002-9006-730X
https://doi.org/10.1371/journal.pone.0275414
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275414&domain=pdf&date_stamp=2023-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275414&domain=pdf&date_stamp=2023-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275414&domain=pdf&date_stamp=2023-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275414&domain=pdf&date_stamp=2023-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275414&domain=pdf&date_stamp=2023-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275414&domain=pdf&date_stamp=2023-10-11
https://doi.org/10.1371/journal.pone.0275414
https://doi.org/10.1371/journal.pone.0275414
http://creativecommons.org/licenses/by/4.0/


Conclusion

This study supports an association between higher exposure to outdoor air pollution and

increased all-cause hospital admissions and GP visits. Further longitudinal studies with lon-

ger follow-up time periods may be able to reveal more definite conclusions on the influence

of ethnicity on the association between long-term outdoor air pollution and both hospital

admissions and GP visits.

Introduction

Air pollution is a major threat of human health and planetary wellbeing, which is therefore

being addressed by the Conference of The Parities (COP) global initiative whose 26th assembly

was held in Glasgow (Scotland) between 31/10/2021-12/11/2021. Effects of short-term outdoor

air pollution exposure on human health have been extensively studied over the past two

decades [1–5]. Whilst short-term exposure to air pollution is a good indicator for acute health

conditions, studying the long-term impact is more appropriate for chronic health problems

[6]. This is related to the ability of long-term exposure to capture the cumulative effects of air

pollution on health over time, which results in larger estimates compared to short-term expo-

sure [7]. For example, in New England, a 4.2% versus a 0.7% in hospital admissions for all-

cause respiratory conditions were noted for every 10 μg/m3 increase in long-term versus

short-term exposure to particulate matter with diameter� 2.5 μm (PM2.5) pollutant, respec-

tively [8]. Furthermore, the most studied health effect so far is mortality [2, 9], as access to

mortality databases requires a less strict ethical approval and death only occurs once in indi-

vidual‘s life.

The association between outdoor air pollution and human health is also influenced by

demographic (e.g., age, gender) [2], individual‘s lifestyle and baseline health (e.g., pre-existing

disease, obesity, cigarette smoking, alcohol drinking, physical exercise) [10–13], socioeco-

nomic (e.g., ethnicity, country of birth, social hierarchisation, level of education, occupation,

level of income, neighbourhood, conditions of accommodation, area-level multiple depriva-

tion index, rural-urban classifications, population density) [2, 14–19] and environmental (e.g.,

season, temperature, relative humidity, altitude, rainfall and wind) [20–22] factors. For exam-

ple, prevoius studies have shown that older people are more vulnerable to the health impacts

of both short- and long-term exposure to air pollution due to the physiological degeneration

of the human body with increasing age, lower immunity and antioxidant defence, and the

emergence of chronic health conditions [23–25]. Some studies have also shown that the associ-

ation between short-term exposure to air pollution and health is stronger for females com-

pared to males [10, 26, 27], whereas other studies have shown a stronger association between

both short- and long-term exposure to air pollution and health among males [28–30]. Expo-

sure to long-term air pollution was shown to affect more the health of people with low educa-

tional levels and higher socioeconomic deprivation compared to those with high educational

levels and good socioeconomic position [30–32]. Additionally, exposure to both short- and

long-term air pollution has a higher impact on health in summer compared to winter seasons

because high temperatures and sunlight facilitate the production of ozone pollution [33, 34],

while rainfall reduces air pollution by washing down particulate pollutants [35]. Among all

these demographic, socioeconomic and environmental factors, ethnicity is especially impor-

tant, as it reflects the socioeconomic factors beyond genetic factors [36–40]. However, studies
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deeply assessing the influence of ethnicity on the health impact of outdoor air pollution have

mainly been conducted in USA [41–43], which has a different ethnic composition than UK.

Studies whereby temporal and spatial variations of the association between outdoor air pol-

lution and health outcomes have been assessed are also infrequent in the literature [44, 45].

The Between-Within approach of statistical analysis decomposes the overall effect of air pollu-

tion on health into Between (spatial: area-related) and Within (temporal: time-related) effects.

In the current study, the Between effect is calculated as the average air pollution concentration

across the follow-up time for each geographical area (e.g., census output area), while the

Within effect is calculated the yearly deviation in air pollution concentrations from the average

concentration for each geographical area [45–47]. In other words, the Between effect presents

the area-specific average air pollution exposure across the entire follow-up time whereas the

Within effect compares years with high or low air pollution exposures to the average air pollu-

tion exposure for each area across the follow-up time. This approach would determine whether

living in a more polluted geographical area across the follow-up time is the main reason for

poor health outcomes or whether it is the changes in air pollution exposure for each year rela-

tive to the follow-up average that is leading to poor health.

Taken collectively, this study utilises longitudinal individual-level data linked to air pollu-

tion data at the level of Lower Super Output Areas (LSOAs) to investigate the association

between five years exposure to outdoor air pollution and all-cause GP visits and hospital

admissions by ethnicity and country of birth in the UK. We specifically aimed (1) to examine

the overall and the Between-Within (spatial-temporal) effects of five years exposure to four air

pollutants (nitrogen dioxide—NO2, sulphur dioxide—SO2, and particulate matter with diame-

ters of� 10 μm—PM10, and� 2.5 μm—PM2.5) on all-cause GP visits and hospital admis-

sions; (2) to assess whether the association between air pollution and GP visits and hospital

admissions is stronger for ethnic minorities compared to British-white ethnicity; and (3) to

investigate whether the association between air pollution and GP visits and hospital admis-

sions is greater for non-UK-born compared to UK-born individuals.

Methods

This article conforms to the Strengthening the Reporting of Observational Studies in Epidemi-

ology (STROBE) guidelines for reporting an original article [48].

Study design and population

This study applies a prospective longitudinal panel design and utilises individual-level longitu-

dinal data from the “Understanding Society: The UK Household Longitudinal Study (UKHLS)”
on 46,442 adult individuals (age 16+) who provided a total of 140,466 responses across four

data collection waves (waves 7–10) over five years (2015–2019). The UKHLS is a rich dataset,

which consists of 10 data collection waves from 2009 to 2020 with around 40,000 households

recruited at wave 1 from the four nations of the UK: England, Wales, Scotland, and Northern

Ireland. Further information on the design and variables collected by the UKHLS are

described elsewhere [46, 49–51]. We only used data from waves 7–10 of the UKHLS adult sur-

vey due to the unavailability of data on hospital admissions and GP visits in the earlier waves.

We have to also note that the initial adult survey of the UKHLS for waves 7–10 involved a total

of 49,028 individuals with 151,834 responses and that 11,368 responses were omitted because

of duplicate responses from the same individual within the same year (n = 3,429), missing air

pollution data for the year 2020 (n = 1,046), missing the year variable (n = 14), missing the

LSOA or local authority of residence (n = 71), missing age (n = 41), and missing hospital

admissions or GP visits responses (n = 6,767).
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Air pollution data and its linkage to the UKHLS individual-level data

We obtained yearly outdoor air pollution data that combine all sources of air pollution includ-

ing road traffic and industrial/combustion processes from the “Department for Environment

Food and Rural Affairs (DEFRA)” database [52]. The DEFRA database includes yearly outdoor

modelled air pollution data from 2001 to 2019 for several pollutants including NO2, SO2,

PM10, PM2.5, NOx (nitrogen oxides), ozone, and benzene. These are raster data of mean

annual concentrations of pollutants measured in μg/m3, estimated using air dispersion model-

ling (Pollution Climate Mapping) at a spatial resolution of 1x1 km2 and projected using the

UK National Grid [53]. The DEFRA data also include population-weighted annual mean con-

centrations of PM2.5 for each Local Authority starting the year of 2010. Detailed information

on this dataset is available at the DEFRA website [52].

For this study, we chose four pollutants (NO2, SO2, PM10, and PM2.5) from the DEFRA

database. This is because these pollutants have been shown by relevant literature to be related

to poor health outcomes. We did not study ozone because this is a seasonal pollutant that

interacts with other pollutants in the atmosphere, mostly during the summer [2, 30, 39]. Thus,

annual pollution data is not suitable to study the health effects of ozone.

The annual 1x1 km2 raster air pollution data for each of NO2, SO2, PM10, PM2.5 pollutants

were linked to the UKHLS individual-level data using the Lower Super Output Areas (LSOAs;

data zones for Scotland and Super Output Areas for Northern Ireland) of residence for each

individual in each year (2015–2019). LSOAs are used to decompose England and Wales based

on the population size into areas with around 1000 to 3000 individuals and are the lowest level

of geography offered by the UKHLS dataset. Some LSOAs, especially those located in urban-

ised areas, have an area of less than 1x1 km2, which offers high spatial resolution to assess the

impact of air pollution on hospital admissions and GP visits. The LSOAs in England and

Wales are equivalent to data zones in Scotland and to Super Output Areas in Northern Ireland.

For simplicity we refer to the joint LSOAs, data zones, and Super Output Areas as LSOAs.

The linkage was done by calculating an area-weighted average air pollution concentration

of each of the four pollutants for each LSOA in each year based on the proportion of area inter-

section between the 1x1 km2 raster squares and the respective LSOA. For example, if a LSOA

intersected with three 1x1 km2 squares in which one intersection covered half of the area of

that LSOA while the other two intersections covered a proportion of 0.3 and 0.2, respectively;

the air pollutant concentration for that LSOA would be 0.5×air pollutant concentration of the

first intersected square + 0.3×air pollutant concentration of the second intersected square

+ 0.2×air pollutant concentration of the third intersected square.

After this process, each LSOA in the UK had an air pollution concentration for each of the four

pollutants (NO2, SO2, PM10, PM2.5) for each year between 2015 and 2019, which we referred to

as the overall pollutant effect. We also calculated the five years (2015–2019) average concentration

of each air pollutant for each LSOA, this was referred to as the Between pollutant effect, which

reveals spatial associations. Then, we calculated the yearly deviation in the air pollutants concen-

trations from the five years mean for each LSOA in each year, which was referred to as theWithin
pollutant effect. ThisWithin effect represents the annual temporal trend of air pollution across the

five years of follow-up within each LSOA in the present study. Finally, the LSOA of residence for

each individual in the UKHLS data was used to link the overall, Between (spatial), and Within

(temporal) concentrations of the four pollutants for each year between 2015 and 2019.

Variables and definitions

Outcome variables. This study included two ordered categorical outcomes from the

UKHLS dataset. These are GP visits and outpatient hospital admissions, which were collected
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by asking individuals on the number of times they visited a GP (i.e., a general-practitioner; any

type of doctor including general, family, or specialty doctor) or went to a hospital/clinic as out-

patients in the past 12 months preceding the data collection date as follows: 0 = none, 1 = one

to two times, 2 = three to five times, 3 = six to ten times, and 4 = more than ten times. The

question did not ask either about the exact number of GP visits and hospital admissions or

about the specific reason behind the GP or hospital admission visit, but rather referred to all-

causes visits. Thus, a visit to a GP could be for a disease complication or for a simple routine

consultation, and a visit to a hospital could be for any reason that does not require an over-

night stay at the hospital (i.e., only outpatient hospital admissions). Inpatient hospital admis-

sions for overnight stays are not included in this study.

Air pollution independent variables. This study included four air pollution independent

variables: NO2, SO2, PM10, and PM2.5 pollutants. These are continuous variables measured as

the mean annual concentrations of outdoor air pollutants in μg/m3 at the LSOA of residence

for each individual in each year. We also included the Between (spatial) andWithin (temporal)

variables for each of the four pollutants.

Socioeconomic and lifestyle covariates. For this study, we selected a number of individual-

level demographic, socioeconomic, and lifestyle covariates based on what is available in the

UKHLS dataset and based on the confounders and effect modifiers considered by relevant litera-

ture [2, 9]. These included gender (1 = male; 2 = female); age (coded as 16–18 and then in 5 years

increments as 19–23; 24–28; 29–33; 34–38; 39–43; 44–48; 49–53; 54–58; 59–63; 59–63; 64–68; 69–

73; 74–78;>78); ethnicity (1 = British-white; 2 = Other-white; 3 = Indian; 4 = Pakistani/Bangla-

deshi; 5 = Black/African/Caribbean; 6 = mixed ethnicities; 7 = Other ethnicities); country of birth

(1 = born in UK; 2 = not born in UK; 3 = No answer); marital status (1 = married; 2 = living as a

couple; 3 = widowed; 4 = divorced/separated; 5 = single never married; 6 = no answer); education

(1 = university degree; 2 = high school degree; 3 = lower educational levels; 4 = other qualifica-

tions; 5 = still a student); perceived financial situation (1 = living comfortably/doing alright; 2 = liv-

ing difficultly; 3 = no answer); socioeconomic classification (1 = management and professionals

occupations; 2 = intermediate occupations; 3 = routine occupations; 4 = not applicable: Student/

retired/Not working; 5 = no answer); smoking status (0 = non-smoker; 1 = smoker; 2 = no

answer); and rural-urban indicator (1 = urban; 2 = rural). It should be noted that for the ethnicity

variable, Indian, Pakistani/Bangladeshi, Black/African/Caribbean, mixed ethnicities and other

ethnic groups are considered to be ethnic minorities in the context of the UK [54].

Finally, year dummies (calendar year: 2015–2019) were considered as a control for the time

trend in our analysis following the approach of relevant studies [55, 56]. Given that our study

utilises yearly air pollution data, controlling for other temporal covariates considered by rele-

vant literature such as seasonal trends [26, 57] was not possible.

Statistical analysis

Percentages were computed to describe the ordered categories of the number of GP visits and

hospital admissions, and the categories of the individuals’ socioeconomic and lifestyle covari-

ates for each wave (waves 7–10) of the UKHLS sample. We also examined the correlation

between the overall concentrations of NO2, SO2, PM10, and PM2.5 pollutants across the five

years of follow-up using Pearson’s correlation coefficient. Given the high observed correlations

between the pollutants (Pearson’s coefficient� 0.7 [58]; Table 2) which could be due to the

emission sources of the pollutants and the atmospheric reactions between them, the associa-

tion of NO2, SO2, PM10, and PM2.5 pollutants with GP visits and hospital admissions was

examined in separate regression models. In other words, each of the four pollutants was

included in a separate model, rather than including all the four pollutants in one model.
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To account for the study design which involves linkages of air pollution to individual-level

data at the LSOAs level and to account for the repeated individuals’ responses across time, the

association of the GP visits and outpatient hospital admission ordered outcomes with each of

NO2, SO2, PM10, and PM2.5 pollutants was assessed using three-levels (repeated individual

responses across time nested within LSOAs) mixed-effects ordered logistic models [59–61].

These models were adjusted for year (2015–2019) dummies and for the demographic, socio-

economic, lifestyle, and contextual covariates in a stepwise manner. Model 1 was adjusted for

age, gender, and year dummies. Model 2 additionally included ethnicity and country of birth.

Model 3 accounted for all mentioned variables plus marital status, education, perceived finan-

cial situation, and socioeconomic classification. Model 4 adjusted in addition for smoking sta-

tus and model 5 for rural-urban indicator (S1 Table in S1 File). Akaike Information Criterion

(AIC) and Bayesian information criterion (BIC) were used to determine goodness of fit of

models with a smaller AIC or BIC indicating better fit modelling. The results of Models 1 to 5

with their respective AIC and BIC are found in S2 Table in S1 File. In the main manuscript, we

show only models 4 and 5. The structuring of model 5 is presented in Eq (1). In a supplemen-

tary analysis, we also demonstrate the association of GP visits and outpatient hospital admis-

sions with each of the socioeconomic and lifestyle confounders in model 5 (S3 and S4 Tables

in S1 File).

log
Ytij

ðsÞ

1 � Ytij
ðsÞ

 !

¼ b0

ðsÞ
þ U0ij þ U0j þ b1 overall pollutant concentrationtij þ b2 Agetij þ b3 Gendertij

þ b4 Ethnicitytij þ b5 Country of birthtij þ b6 Marital statustij þ b7 Educationtij
þ b8 Socioeconomic classif icationtij þ b9 Perceivedfinancial situationtij
þ b10 Smoking statustij þ b11 Year dummiesij þ b12 Rural urban indicatortij þ εtij ð1Þ

In further analysis, the multilevel mixed-effects ordered logistic models were used to exam-

ine the Between (spatial) andWithin (temporal) effects (Eq (2)) of air pollution on GP visits

and outpatient hospital admissions.

log
Ytij

ðsÞ

1 � Ytij
ðsÞ

 !

¼ b0

ðsÞ
þ U0ij þ U0j þ b1 Between pollutant concentrationtij

þ b2 Within pollutant concentrationtij þ b3 Agetij þ b4 Gendertij þ b5 Ethnicitytij
þ b6 Country of birthtij þ b7 Marital statustij þ b8 Educationtij
þ b9 Socioeconomic classif icationtij þ b10 Perceived financial situationtij
þ b11 Smoking statustij þ b12 Year dummiesij þ b13 Rural urban indicatortij þ εtij ð2Þ

where Ytij is the outcome (GP visits or outpatient hospital admissions) for individual i, in

LSOA j at year t; s is the level of an ordered category with s levels for GP visits or hospital

admission outcomes; β1, β2 . . .. β13 are the slopes of fixed effects; β0 is the fixed intercept; εtij
are the model residuals; U0ij is level 2 random intercept of individuals nested in LSOAs; U0j is

level 3 random intercept of LSOAs; the conditional distribution of the response given the ran-

dom effects is assumed to be multinomial, with success probability determined by the logistic
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cumulative distribution function; Between pollutant concentrations represent the average air

pollutant concentration for each LSOA across the five years of follow-up–thus assessing the

spatial LSOA-related effects of air pollution;Within pollutant concentrations represent the

yearly difference of the air pollutant concentration from the LSOA five years average–thus

assessing the temporal-related effects of air pollution within each LSOA; the pollutant concen-

tration is for NO2, SO2, PM10, or PM2.5 where each pollutant is entered in a separate model;

the four pollutants were not included in the same model due to high correlation as noted

before.

Bonferroni [62] and Šidák [63] familywise error rates were used to obtain corrected multi-

ple comparisons critical value for the P-values in models 4 and 5 of the four pollutant models.

This was done because each of the four air pollutants was run in a separate model. In other

words, we had one model for NO2, another model for SO2, another model for PM10, and

another model for PM2.5. This means that in each of models 4 and 5 for each of the GP visits

and outpatient hospital admissions outcomes, we had a set of four P-values where each P-

value is estimated from each of the NO2, SO2, PM10, and PM2.5 separate models.

In a sensitivity analysis, we also accounted for spatial autocorrelation in air pollution con-

centrations for neighbouring LSOAs by adjusting the models for the local spatial autocorrela-

tion Getis-Ord Gi* statistical measure [64, 65]. Accounting for spatial autocorrelation in

spatial-related measurements such as air pollution is important to reduce type I errors in

derived estimates [66]. The Getis-Ord Gi*measure was calculated for each of the four pollut-

ants (NO2, SO2, PM10, and PM2.5) in each year between 2015 and 2019 for each LSOA by con-

structing a Fixed Distance Band spatial weight matrix using a cutoff radius distance of 5 Km,

which ensured that every LSOA has at least one neighbouring LSOA within the 5 Km radius

around its centroid. The Fixed Distance Band method was chosen in determining what forms

a neighbourhood for each LSOA over other methods (e.g., K-nearest neighbour or Neighbour

connectivity) as it ensured that all LSOAs whether small or large in size are treated using a sim-

ilar criterion. Given that LSOAs are constructed based on population size rather than area size,

using the Fixed Distance Band method with a cutoff value of 5 Km ensures that only LSOAs

whose centroids fall within the 5 Km radius of a specific LSOA centroid are treated as neigh-

bours for that specific LSOA no matter of the area size of that LSOA. Further information on

the calculation of Getis-Ord Gi*measure and its formula can be found in the ArcGIS Pro doc-

umentation [67]. In summary, Getis-Ord Gi*measure determines which LSOAs are spatially

correlated with high air pollutant concentrations (hot spots) or low air pollutant concentra-

tions (cold spots) at a 99%, 95%, and 90% confidence levels or not significantly spatially corre-

lated by relying on z-scores and P-values. S2 File includes maps showing the Getis-Ord Gi*
hot-cold spot analysis for each of NO2, SO2, PM10, and PM2.5 pollutants across the LSOAs in

the UK for each year between 2015 and 2019.

Finally, we incorporated into the multilevel ordered logistic models an interaction term

between ethnicity and each of NO2, SO2, PM10, and PM2.5 pollutants and between country of

birth and each of the four pollutants to assess whether the association between air pollution

and GP visits and hospital admissions varies between ethnic groups and by country of birth.

Interaction terms were incorporated into the overall pollutant models and into the Between-
Withinmodels, each at a time. Ethnicity was assessed separately from country of birth.

Statistical analysis was performed in STATA software (StataCorp. 2015. Stata Statistical

Software: Release 14. College Station, TX: StataCorp LP) and spatial pre-processing was con-

ducted using ArcGIS Pro software. Regression results were reported in terms of odds ratios

(ORs) and 95% confidence intervals (CIs) for the increase in the ordered categories of the

number of GP visits and hospital admissions per 1 μg/m3 increase in the air pollutants. Statisti-

cal significance was considered at a P-value of less than 0.05.

PLOS ONE Air pollution, GP visits, and hospital admissions

PLOS ONE | https://doi.org/10.1371/journal.pone.0275414 October 11, 2023 7 / 24

https://doi.org/10.1371/journal.pone.0275414


Ethical considerations

This paper was granted ethical approval on the 14th of May 2020 by the author’s affiliated insti-

tution (School of Geography and Sustainable Development Ethics Committee, acting on behalf

of the University Teaching and Research Ethics Committee (UTREC) at the University of St

Andrews). The paper uses secondary adult (age 16+) pseudo-anonymised data from the

“Understanding Society: The UK Household Longitudinal Study (UKHLS)” and authors did

not have access to potentially identifying information; thus, obtaining participants’ informed

consent is not applicable and was waved by the authors’ institution ethics committee. The Uni-

versity of Essex responsible for the UKHLS data collection and management has already

obtained written informed consent from all the study participants and ensured adherence to

the Helsinki Declaration [49].

Results

Description of GP visits, hospital admissions and individuals’

socioeconomic and lifestyle covariates

In all the four waves, most of the individuals visited a GP one to two times, did not go to a hos-

pital as outpatients, were females, aged between 34 and 58 years old, had British-white ethnic-

ity, were born in the UK, were married, had a university degree or other educational

qualifications, reported a comfortable/alright financial situation, had a managerial or profes-

sional socioeconomic classification (if working), were non-smokers, resided in an urban area,

and lived in England (Table 1).

Description of air pollution

A high correlation (Pearson’s coefficient� 0.7) was observed between NO2, PM10, and PM2.5

pollutants, which could be explained by the chemical reactions between particulate matter and

NO2 pollutants in the atmosphere. Across the five years of follow-up (2015–2019), the mean of

NO2 was 14.05 μg/m3 (SD = 6.67), the mean of SO2 was 1.45 μg/m3 (SD = 0.61), the mean of

PM10 was 13.41 μg/m3 (SD = 3.05), and the mean of PM2.5 was 8.74 μg/m3 (SD = 2.14)

(Table 2). The average yearly concentrations of NO2, SO2, PM10, and PM2.5 pollutants across

the five years of follow-up (2015–2019) for each LSOA in the UK are also demonstrated in Fig

1. As expected, major urban areas such as London, south and middle of England, and the cen-

tral belt of Scotland are the most polluted. The average yearly variations in air pollutants from

the five years mean for each year between 2015 and 2019 are shown in S5 Table in S1 File, in

which NO2 showed a relatively high difference in 2016 from the five years average NO2 (mean

difference = 1.58 from the five years average of 14.08).

The association of air pollution with all-cause GP visits and

hospital admissions

Results showed that higher visits to a GP are associated with higher concentrations of NO2

(OR = 1.010, 95%CI = 1.006–1.014) and SO2 (OR = 1.114, 95%CI = 1.077–1.152) pollutants

(Table 3). Higher odds of all-cause outpatient hospital admissions were also observed with

increased concentrations of NO2 (OR = 1.008, 95%CI = 1.004–1.012), SO2 (OR = 1.048, 95%

CI = 1.014–1.083), PM10 (OR = 1.011, 95%CI = 1.003–1.018) and PM2.5 (OR = 1.018, 95%

CI = 1.007–1.029) pollutants (Table 4). Adjusting for spatial autocorrelation using Getis-Ord

Gi*measurement showed similar results, however, increasing concentrations of PM10 and

PM2.5 pollutants are now showing an association with higher odds of GP visits and increased
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Table 1. Description of GP visits, outpatient hospital admissions and individual’s socioeconomic and lifestyle covariates for each wave of the UKHLS sample

(N = 140,466 surveys from 46,442 individuals).

Wave7 (2015–2017) Wave8 (2016–2018) Wave9 (2017–2019) Wave10 (2018–2019)

N = 38,663 N = 36,319 N = 33,727 N = 31,757

Percent Percent Percent Percent

GP visits None 26.7 21.1 21.2 28.3

One to two times 37.0 39.5 40.8 40.6

Three to five times 20.8 23.1 23.2 19.7

Six to ten times 8.5 9.3 9.1 6.8

More than ten times 7.0 6.9 5.7 4.7

Outpatient hospital

admissions

None 57.0 54.3 53.0 55.5

One to two times 25.1 27.3 28.0 27.4

Three to five times 10.1 10.7 11.5 10.3

Six to ten times 4.3 4.4 4.4 3.9

More than ten times 3.6 3.3 3.2 2.9

Gender Male 44.5 44.7 44.3 44.3

Female 55.5 55.3 55.7 55.7

Age Young (<34) 24.6 23.8 23.1 22.5

Middle age (34–58) 43.9 43.3 42.8 42.3

Old (>58) 31.5 32.9 34.1 35.3

Ethnicity British-white 74.5 75.0 76.3 77.3

Other-white 5.7 5.6 5.4 5.2

Indian 4.2 4.2 3.9 3.8

Pakistani/Bangladeshi 5.6 5.7 5.7 5.5

Black/African/Caribbean 4.8 4.5 4.0 3.6

Mixed ethnicities 1.8 1.9 1.8 1.8

Other ethnicities 3.3 3.3 2.9 2.8

Country of birth Born in the UK 65.6 66.4 67.3 68.1

Not born in the UK 15.9 15.1 14.0 13.0

No answer 18.5 18.5 18.7 18.9

Marital status Married 52.4 52.9 53.4 53.8

Living as a couple 10.5 10.2 9.8 9.6

Widowed 6.0 6.0 6.1 6.0

Divorced/separated 7.9 7.7 7.9 7.9

Single never married 23.1 23.1 22.6 22.3

No answer 0.2 0.2 0.3 0.4

Education University degree 30.1 31.0 31.9 33.1

High school degree 25.9 26.4 26.7 26.4

Lower educational levels 1.0 1.0 1.0 1.0

Other qualifications 36.3 35.4 34.3 33.7

Still a student 6.7 6.2 6.0 5.8

Perceived financial situation living comfortably/doing alright 71.7 72.4 70.7 71.1

living difficultly 28.1 27.3 28.9 28.5

No answer 0.2 0.3 0.4 0.4

Socio-economic classification Management and professional

occupations

24.0 23.8 23.5 23.2

Intermediate occupations 13.3 13.3 12.9 12.6

Routine occupations 19.7 18.9 18.3 17.4

NA: student/retired/not working 42.4 43.0 43.1 43.9

No answer 0.6 1.0 2.2 2.9

(Continued)
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exposure to SO2 is not significantly associated anymore with higher odds of outpatient hospital

admissions (S6 Table in S1 File).

Decomposing the overall effect of air pollution on GP visits and hospital admissions into

Between (spatial: across LSOAs) andWithin (temporal: across years within each LSOA) effects,

showed significant positive associations for the Between effect on GP visits for NO2

(OR = 1.010, 95%CI = 1.005–1.014) and SO2 (OR = 1.115, 95%CI = 1.067, 1.166) pollutants

(Table 3), and a significant Between effect on outpatient hospital admissions for all the pollut-

ants, except SO2 (Table 4). The Between effect analysis confirms to the analysis with adjust-

ment for spatial autocorrelation in S6 Table in S1 File, since in both types of analysis SO2 is not

showing a significant positive association with outpatient hospital admissions. No significant

Within effects were noted for all the four pollutants neither on GP visits nor on hospital admis-

sions (Tables 3 and 4).

The association of air pollution with all-cause GP visits and

outpatient hospital admissions by ethnicity and country of birth

Analysis showed no differences between ethnic minorities and British-white for the association

of air pollution with all-cause GP visits and outpatient hospital admissions (Tables 5 and 6).

Thus, ethnic minorities in the UK do not seem to experience greater health-related effects

from exposure to air pollution compared to the rest of population. The only exception was

black/African/Caribbean individuals who showed higher odds of outpatient hospital admis-

sions with increasing concentrations of PM10 and PM2.5 pollutants compared to British-

white (Table 6). On the contrary, other-white ethnicities showed lower odds of GP visits with

Table 1. (Continued)

Wave7 (2015–2017) Wave8 (2016–2018) Wave9 (2017–2019) Wave10 (2018–2019)

N = 38,663 N = 36,319 N = 33,727 N = 31,757

Percent Percent Percent Percent

Smoking status Non-smoker 84.4 85.2 86.5 86.9

Smoker 15.5 14.7 13.4 12.9

No answer 0.1 0.2 0.1 0.2

Rural-urban indicator Urban 76.7 76.3 75.6 75.3

Rural 23.3 23.7 24.4 24.7

Nation England 79.0 78.9 78.5 78.4

Wales 6.4 6.4 6.5 6.5

Scotland 8.3 8.3 8.4 8.5

Northern Ireland 6.3 6.4 6.6 6.7

https://doi.org/10.1371/journal.pone.0275414.t001

Table 2. Exposure description and correlation matrix of air pollutants (N = 42,619 LSOAs; time = 2015–2019).

Pearson’s correlation coefficient

NO2 (μg/m3) SO2 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3) Mean SD Median Interquartile range

NO2 (μg/m3) 1.00 14.08 6.67 13.28 8.40

SO2 (μg/m3) 0.54 1.00 1.45 0.61 1.35 0.76

PM10 (μg/m3) 0.72 0.42 1.00 13.41 3.05 13.59 4.55

PM2.5 (μg/m3) 0.74 0.46 0.98 1.00 8.74 2.14 8.91 3.26

Strong correlations with correlation coefficient�0.70 are highlighted in bold.

https://doi.org/10.1371/journal.pone.0275414.t002
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Fig 1. Four maps showing the average yearly concentrations of NO2, SO2, PM10, and PM2.5 pollutants across the

five years of follow-up (2015–2019) for each LSOA in the UK. The maps were constructed by the author in ArcGIS

Pro software using air pollutants shapefiles between 2015 and 2019 from the DEFRA data repository [52] and LSOAs

and data zones 2011 UK boundaries from the Office for National Statistics, National Records of Scotland, and

Northern Ireland Statistics [68]. Both DEFRA and Office for National Statistics shapefiles are governed under the

Open Government Licence v.3.0.

https://doi.org/10.1371/journal.pone.0275414.g001
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increasing concentrations of NO2, PM10, and PM2.5 pollutants compared to British-white

(Table 5).

Non-UK-born individuals were more likely to visit a GP than UK-born individuals with

increasing concentrations of all the four pollutants (Table 5) and were more likely to go to a

hospital with higher exposure to PM10 and PM2.5 (Table 6). It should be noted that in this

study, ethnicity was examined separately from country of birth. Thus, we did not distinguish

between non-UK-born versus UK-born within the same ethnicity, but rather we considered

ethnicity and country of birth as two separate variables.

Analysing the Between-Within (spatial-temporal) effects of air pollution on all-cause GP

visits and hospital admissions by ethnicity and country of birth showed some significant asso-

ciations for the Between andWithin effects. For example, a significant positive Between effect

on GP visits was observed for SO2 pollutant among Pakistani/Bangladeshi individuals. A sig-

nificant positiveWithin effect on GP visits was observed for SO2 pollutant among other-white

individuals. Black/African/Caribbean ethnicities showed higher odds of outpatient hospital

admissions with increasing concentrations of PM10 and PM2.5 for the Between effect com-

pared to British-white (Tables 5 and 6).

Non-UK-born individuals also showed higher odds of GP visits with increasing concentra-

tions of all the four pollutants for the Between (spatial) effects in comparison to UK-born indi-

viduals. Similarly, non-UK-born individuals showed higher odds of outpatient hospital

admissions for the Between effects of PM10 and PM2.5 compared to UK-born individuals

(Tables 5 and 6).

Table 3. The association of air pollution with all-cause GP visits (N = 140,466 surveys from 46,442 individuals).

Model 4 Model 5

OR [95%CI] OR [95%CI]

Overall pollutant effect

NO2 (μg/m3) 1.011 [1.008, 1.015]**ǂ ¥ 1.010 [1.006, 1.014]**ǂ ¥

SO2 (μg/m3) 1.127 [1.091, 1.163]**ǂ ¥ 1.114 [1.077, 1.152]**ǂ ¥

PM10 (μg/m3) 1.003 [0.996, 1.011] 0.999 [0.992, 1.007]

PM2.5 (μg/m3) 1.006 [0.995, 1.017] 0.999 [0.987, 1.010]

Between pollutant effect

NO2 (μg/m3) 1.011 [1.008, 1.015]**ǂ ¥ 1.010 [1.005, 1.014]**ǂ ¥

SO2 (μg/m3) 1.134 [1.088, 1.18]**ǂ ¥ 1.115 [1.067, 1.166]**ǂ ¥

PM10 (μg/m3) 1.006 [0.998, 1.015] 1.001 [0.993, 1.010]

PM2.5 (μg/m3) 1.012 [0.999, 1.024] 1.003 [0.990, 1.016]

Within pollutant effect

NO2 (μg/m3) 1.001 [0.978, 1.023] 1.000 [0.977, 1.022]

SO2 (μg/m3) 1.052 [0.959, 1.154] 1.057 [0.963, 1.158]

PM10 (μg/m3) 1.005 [0.979, 1.032] 1.004 [0.977, 1.031]

PM2.5 (μg/m3) 0.997 [0.961, 1.035] 0.994 [0.958, 1.032]

**P-value <0.01

*P-value<0.05
ǂP-value < Bonferroni [62] familywise error rate corrected critical value of 0.0127 for four multiple pollutant

comparisons for each of models 4 and 5 and each of the overall, Between, and Within pollutant effects
¥P-value < Šidák [63] familywise error rate corrected critical value of 0.0125 for four multiple pollutant comparisons

for each of models 4 and 5 and each of the overall, Between, and Within pollutant effects.

ORs and 95%CIs are expressed in terms of 1 μg/m3 increase in the air pollutants; Model 4 is adjusted for age, gender,

ethnicity, country of birth, marital status, education, perceived financial situation, socioeconomic classification,

smoking status, and year dummies (2015–2019); Model 5 is additionally adjusted for rural-urban indicator.

https://doi.org/10.1371/journal.pone.0275414.t003
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Discussion

In this study, we showed that long-term exposure to four ambient air pollutants (NO2, SO2,

PM10, and PM2.5) is associated with a higher frequency of all-cause GP visits and outpatient

hospital admissions in the UK, which is supported by relevant literature [2, 8, 9, 69]. For

instance, long-term exposure to NO2 and PM2.5 pollutants was associated with higher rates of

hospital admissions for circulatory, cancer, and respiratory tract diseases in Italy [70]. In Aus-

tralia, a 1% increase in PM10 was associated with a 0.6% increase in the number of hospital

admissions and a 0.5% increase in the number of GP visits [71].

The application of a Between-Within analysis in this study revealed significant Between
(spatial) effects for air pollution on all-cause GP visits and hospital admissions; yet, no signifi-

cantWithin (temporal) effects were noticed. Therefore, individuals residing in LSOAs with

higher exposure to outdoor air pollution across the five years of follow-up exhibited higher fre-

quency of GP visits and outpatient hospital admissions than individuals residing in LSOAs

with lower pollution exposure. However, the yearly variation of air pollution across the five

years of follow-up within each LSOA did not have an effect on all-cause GP visits and hospital

admissions. Thus, our study shows strong evidence for the spatial rather than temporal effects

of air pollution on GP visits and outpatient hospital admissions in the UK. Additionally, we

observed a significant positive association between higher exposure to PM10 and PM2.5 pol-

lutants and increased odds of GP visits when we accounted for Getis–Ord (Gi*) spatial

Table 4. The association of air pollution with all-cause outpatient hospital admissions (N = 140,466 surveys from

46,442 individuals).

Model 4 Model 5

OR [95%CI] OR [95%CI]

Overall pollutant effect

NO2 (μg/m3) 1.010 [1.006, 1.013]**ǂ ¥ 1.008 [1.004, 1.012]**ǂ ¥

SO2 (μg/m3) 1.067 [1.035, 1.101]**ǂ ¥ 1.048 [1.014, 1.083]**ǂ ¥

PM10 (μg/m3) 1.014 [1.007, 1.022]**ǂ ¥ 1.011 [1.003, 1.018]**ǂ ¥

PM2.5 (μg/m3) 1.023 [1.013, 1.034]**ǂ ¥ 1.018 [1.007, 1.029]**ǂ ¥

Between pollutant effect

NO2 (μg/m3) 1.011 [1.007, 1.014]**ǂ ¥ 1.009 [1.005, 1.013]**ǂ ¥

SO2 (μg/m3) 1.056 [1.016, 1.098]**ǂ ¥ 1.026 [0.984, 1.070]

PM10 (μg/m3) 1.016 [1.008, 1.024]**ǂ ¥ 1.012 [1.004, 1.020]**ǂ ¥

PM2.5 (μg/m3) 1.026 [1.015, 1.038]**ǂ ¥ 1.020 [1.007, 1.032]**ǂ ¥

Within pollutant effect

NO2 (μg/m3) 0.995 [0.971, 1.019] 0.993 [0.970, 1.017]

SO2 (μg/m3) 1.013 [0.918, 1.118] 1.021 [0.925, 1.127]

PM10 (μg/m3) 1.004 [0.976, 1.033] 1.003 [0.975, 1.031]

PM2.5 (μg/m3) 0.989 [0.951, 1.029] 0.986 [0.948, 1.026]

**P-value <0.01

*P-value<0.05
ǂP-value < Bonferroni [62] familywise error rate corrected critical value of 0.0127 for four multiple pollutant

comparisons for each of models 4 and 5 and each of the overall, Between, and Within pollutant effects
¥P-value < Šidák [63] familywise error rate corrected critical value of 0.0125 for four multiple pollutant comparisons

for each of models 4 and 5 and each of the overall, Between, and Within pollutant effects.

ORs and 95%CIs are expressed in terms of 1 μg/m3 increase in the air pollutants; Model 4 is adjusted for age, gender,

ethnicity, country of birth, marital status, education, perceived financial situation, socioeconomic classification,

smoking status, and year dummies (2015–2019); Model 5 is additionally adjusted for rural-urban indicator.

https://doi.org/10.1371/journal.pone.0275414.t004
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Table 5. The overall and Between-Within effects of air pollution on all-cause GP visits by ethnicity and country of birth (N = 140,466 surveys from 46,442

individuals).

Overall pollutant effect

Ethnicity-air pollution interaction models NO2 (μg/m3) SO2 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

OR [95%CI] OR [95%CI] OR [95%CI] OR [95%CI]

British-white (Reference)

Other-white 0.987 [0.976, 0.998]* 1.034 [0.931, 1.149] 0.972 [0.949, 0.996]* 0.955 [0.922, 0.988]**
Indian 0.979 [0.961, 0.998]* 1.048 [0.888, 1.238] 0.984 [0.944, 1.025] 0.984 [0.924, 1.048]

Pakistani/Bangladeshi 1.003 [0.989, 1.017] 0.992 [0.853, 1.155] 0.982 [0.953, 1.011] 0.986 [0.939, 1.034]

Black/African/Caribbean 1 [0.984, 1.017] 1.085 [0.915, 1.286] 1.021 [0.982, 1.063] 1.031 [0.969, 1.096]

Mixed ethnicities 0.988 [0.968, 1.008] 0.919 [0.727, 1.161] 0.974 [0.927, 1.023] 0.969 [0.899, 1.043]

Other ethnicities 1.003 [0.989, 1.017] 1.044 [0.888, 1.227] 1.042 [1.007, 1.078]* 1.069 [1.017, 1.123]**
Country of birth-air pollution interaction models

Born in UK (Reference)

Not born in UK 1.019 [1.011, 1.027]** 1.145 [1.046, 1.252]** 1.038 [1.018, 1.058]** 1.062 [1.032, 1.093]**
No answer 1.007 [0.999, 1.017] 1.021 [0.952, 1.095] 1.002 [0.984, 1.020] 0.996 [0.971, 1.021]

Between pollutant effect

Ethnicity-air pollution interaction models NO2 (μg/m3) SO2 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

OR [95%CI] OR [95%CI] OR [95%CI] OR [95%CI]

British-white (Reference)

Other-white 0.986 [0.975, 0.997]* 1.018 [0.893, 1.16] 0.975 [0.95, 1.001] 0.962 [0.927, 0.999]*
Indian 0.99 [0.97, 1.01] 1.063 [0.856, 1.321] 0.997 [0.949, 1.047] 0.998 [0.925, 1.076]

Pakistani/Bangladeshi 1.002 [0.987, 1.016] 1.257 [1.005, 1.573]* 1.015 [0.981, 1.05] 1.017 [0.962, 1.075]

Black/African/Caribbean 1.01 [0.993, 1.028] 1.108 [0.874, 1.405] 1.023 [0.979, 1.07] 1.036 [0.965, 1.113]

Mixed ethnicities 0.992 [0.971, 1.013] 0.92 [0.68, 1.245] 0.985 [0.933, 1.04] 0.975 [0.897, 1.059]

Other ethnicities 1.006 [0.991, 1.021] 1.049 [0.859, 1.28] 1.051 [1.013, 1.091]** 1.075 [1.019, 1.135]**
Country of birth-air pollution interaction models

Born in UK (Reference)

Not born in UK 1.023 [1.015, 1.032]** 1.241 [1.105, 1.393]** 1.050 [1.028, 1.073]** 1.077 [1.042, 1.112]**
No answer 1.00 [0.990, 1.010] 0.990 [0.907, 1.080] 0.988 [0.969, 1.008] 0.985 [0.957, 1.013]

Within pollutant effect

Ethnicity-air pollution interaction models NO2 (μg/m3) SO2 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

OR [95%CI] OR [95%CI] OR [95%CI] OR [95%CI]

British-white (Reference)

Other-white 0.985 [0.912, 1.065] 1.536 [1.147, 2.055]** 1.00 [0.888, 1.126] 0.974 [0.833, 1.137]

Indian 1.004 [0.922, 1.094] 0.863 [0.58, 1.285] 0.946 [0.812, 1.103] 0.857 [0.69, 1.063]

Pakistani/Bangladeshi 1.044 [0.969, 1.124] 1.105 [0.799, 1.53] 1.079 [0.947, 1.229] 0.956 [0.789, 1.159]

Black/African/Caribbean 0.953 [0.877, 1.037] 1.220 [0.826, 1.802] 0.975 [0.83, 1.146] 0.971 [0.777, 1.213]

Mixed ethnicities 0.961 [0.852, 1.083] 0.477 [0.264, 0.86]* 0.699 [0.561, 0.871]** 0.640 [0.467, 0.877]**
Other ethnicities 0.923 [0.838, 1.017] 1.088 [0.718, 1.647] 0.913 [0.774, 1.076] 1.003 [0.803, 1.254]

Country of birth-air pollution interaction models

Born in UK (Reference)

Not born in UK 1.013 [0.965, 1.063] 1.230 [0.978, 1.548] 0.984 [0.906, 1.069] 0.912 [0.810, 1.026]

No answer 1.049 [1.003, 1.097]* 1.295 [1.069, 1.569]** 1.085 [1.019, 1.155]* 1.074 [0.983, 1.173]

**P-value<0.01

*P-value<0.05

ORs and 95%CIs are expressed in terms of 1 μg/m3 increase in the air pollutants; Air pollution-ethnicity interaction models are adjusted for country of birth, age,

gender, marital status, education, perceived financial situation, socioeconomic classification, smoking status, year dummies (2015–2019), and rural-urban indicator; Air

pollution-country of birth interaction models are adjusted for ethnicity, age, gender, marital status, education, perceived financial situation, socioeconomic

classification, smoking status, year dummies (2015–2019), and rural-urban indicator.

https://doi.org/10.1371/journal.pone.0275414.t005
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Table 6. The overall and Between-Within effects of air pollution on all-cause outpatient hospital admissions by ethnicity and country of birth (N = 140,466 surveys

from 46,442 individuals).

Overall pollutant effect

Ethnicity-air pollution interaction models NO2 (μg/m3) SO2 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

OR [95%CI] OR [95%CI] OR [95%CI] OR [95%CI]

British-white (Reference)

Other-white 0.992 [0.981, 1.002] 1.037 [0.933, 1.152] 0.991 [0.968, 1.015] 0.98 [0.947, 1.014]

Indian 0.996 [0.978, 1.015] 1.021 [0.862, 1.209] 1.013 [0.972, 1.056] 1.014 [0.952, 1.081]

Pakistani/Bangladeshi 1.003 [0.99, 1.016] 1.123 [0.96, 1.313] 1.013 [0.984, 1.043] 1.02 [0.973, 1.07]

Black/African/Caribbean 1.001 [0.985, 1.017] 0.999 [0.84, 1.187] 1.046 [1.005, 1.088]* 1.065 [1.001, 1.133]*
Mixed ethnicities 0.998 [0.979, 1.018] 0.997 [0.787, 1.262] 1.00 [0.953, 1.05] 1.001 [0.93, 1.077]

Other ethnicities 0.995 [0.981, 1.009] 0.955 [0.808, 1.13] 1.013 [0.978, 1.048] 1.015 [0.966, 1.067]

Country of birth-air pollution interaction models

Born in UK (Reference)

Not born in UK 0.999 [0.991, 1.007] 0.982 [0.897, 1.076] 1.027 [1.008, 1.047]** 1.033 [1.004, 1.063]*
No answer 0.989 [0.98, 0.998]* 0.967 [0.902, 1.037] 0.986 [0.969, 1.003] 0.975 [0.951, 0.999]*

Between pollutant effect

Ethnicity-air pollution interaction models NO2 (μg/m3) SO2 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

OR [95%CI] OR [95%CI] OR [95%CI] OR [95%CI]

British-white (Reference)

Other-white 0.993 [0.982, 1.004] 1.083 [0.955, 1.228] 0.993 [0.968, 1.019] 0.988 [0.952, 1.024]

Indian 1.001 [0.981, 1.021] 0.944 [0.765, 1.165] 1.036 [0.988, 1.086] 1.050 [0.976, 1.129]

Pakistani/Bangladeshi 1.005 [0.991, 1.019] 1.099 [0.886, 1.363] 1.022 [0.989, 1.055] 1.024 [0.972, 1.079]

Black/African/Caribbean 1.015 [0.998, 1.033] 0.977 [0.776, 1.23] 1.058 [1.013, 1.105]* 1.098 [1.024, 1.177]**
Mixed ethnicities 0.997 [0.976, 1.017] 0.945 [0.702, 1.273] 0.997 [0.946, 1.051] 0.994 [0.917, 1.078]

Other ethnicities 0.997 [0.983, 1.012] 0.950 [0.778, 1.161] 1.022 [0.986, 1.061] 1.026 [0.973, 1.083]

Country of birth-air pollution interaction models

Born in UK (Reference)

Not born in UK 1.003 [0.995, 1.011] 0.925 [0.826, 1.035] 1.033 [1.011, 1.055]** 1.044 [1.011, 1.077]**
No answer 0.988 [0.979, 0.997]* 0.934 [0.859, 1.016] 0.982 [0.963, 1.001] 0.973 [0.947, 1.00]

Within pollutant effect

Ethnicity-air pollution interaction models NO2 (μg/m3) SO2 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

OR [95%CI] OR [95%CI] OR [95%CI] OR [95%CI]

British-white (Reference)

Other-white 1.010 [0.93, 1.098] 1.090 [0.798, 1.489] 1.036 [0.914, 1.176] 1.012 [0.859, 1.193]

Indian 0.996 [0.904, 1.096] 1.143 [0.735, 1.778] 0.955 [0.805, 1.133] 0.786 [0.617, 1.001]

Pakistani/Bangladeshi 1.056 [0.973, 1.146] 0.772 [0.538, 1.107] 0.864 [0.746, 1.001] 0.683 [0.549, 0.85]**
Black/African/Caribbean 0.96 [0.877, 1.051] 1.017 [0.668, 1.547] 0.927 [0.777, 1.106] 0.884 [0.693, 1.127]

Mixed ethnicities 1.069 [0.941, 1.215] 0.761 [0.407, 1.425] 0.847 [0.67, 1.07] 0.729 [0.522, 1.018]

Other ethnicities 0.931 [0.837, 1.036] 1.062 [0.674, 1.672] 0.922 [0.769, 1.106] 0.866 [0.678, 1.106]

Country of birth-air pollution interaction models

Born in UK (Reference)

Not born in UK 0.996 [0.945, 1.049] 0.915 [0.712, 1.174] 0.932 [0.851, 1.02] 0.838 [0.737, 0.953]**
No answer 1.02 [0.972, 1.07] 0.962 [0.786, 1.179] 1.004 [0.939, 1.074] 0.958 [0.871, 1.053]

**P-value<0.01

*P-value<0.05

ORs and 95%CIs are expressed in terms of 1 μg/m3 increase in the air pollutants; Air pollution-ethnicity interaction models are adjusted for country of birth, age,

gender, marital status, education, perceived financial situation, socioeconomic classification, smoking status, year dummies (2015–2019), and rural-urban indicator; Air

pollution-country of birth interaction models are adjusted for ethnicity, age, gender, marital status, education, perceived financial situation, socioeconomic

classification, smoking status, year dummies (2015–2019), and rural-urban indicator.

https://doi.org/10.1371/journal.pone.0275414.t006
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autocorrelation measure, which was not the case when spatial autocorrelation was not

accounted for. This provides further support for the spatial effects of air pollution on GP visits.

The fact of why we observed significant Between (spatial) but notWithin (temporal) effects

could be explained by the emission source of air pollutants and their chemical and physical

properties. The major source of NO2 emissions is traffic exhaust [72] which varies across both

LSOAs (Between: spatial) and time (Within: temporal) depending on the number of vehicles

and the movement of people. Yet, nitrogen oxides are highly reactive and seasonal pollutants

[73], which makes it difficult to capture their temporal variation through yearly measurements.

For instance, more NO2 will be liberated into the atmosphere during warm seasons due to the

chemical reactions between nitrogen oxides and ozone [73]. Additionally, NO2 is converted

into nitric acid by several different reactions in the atmosphere [74]. That may be why only

spatial (Between) but not temporal (Within) effects for NO2 pollutant were observed when tak-

ing the year as our time measuring unit. On the other hand, industrial processes and power

plants are the major sources of SO2 pollution [75], which is dominated by spatial (Between)

variation rather than temporal (Within) variation as building a new factory requires much lon-

ger time than purchasing a motor vehicle. Particulate matter results from both traffic exhaust

and industrial processes [76], and is considered a more stable pollutant that may stay sus-

pended in the air for long periods of time [74]. Given the localized industrial source of particu-

late matter pollution and its stability in the atmosphere which limits its variation across time, a

spatial (Between) effect on health-related outcomes is expected rather than a temporal (Within)

effect.

Furthermore, some of the observed Between effects may be related to contextual (e.g., area

deprivation and the percentage of ethnic groups by area) rather than individual-level con-

founders. Our models accounted for various individual-level confounders and for urbanicity,

but not for contextual LSOAs-level confounders, which may introduce ecological bias. Adjust-

ing the models for contextual LSOAs-level confounders such as the multiple deprivation dec-

iles would be a crude approach given that the UKHLS dataset covers the four nations of the

UK (i.e., England, Wales, Scotland, and Northern Ireland), and each of the four nations have

their own criteria and indicators for calculating the multiple deprivation indexes, which

reduces comparability [77–79]. In addition, these deprivation indexes are published on differ-

ent timescales and cover different time periods, which makes it difficult to link them to longi-

tudinal datasets. Adjusting the models for the percentages of ethnic groups by LSOAs would

also lead to biased results because these data are only collected once every ten years during the

census [80].

As for the insignificantWithin effects for all the pollutants, these could be attributed to the

relatively short period of follow-up (2015–2019) and the fact that yearly air pollution data were

used rather than monthly or daily data. This limits the temporal variation in the air pollutant

concentrations and reduces the statistical power needed to observe significantWithin effects.

For example, the assessment of temporal effects in a study conducted in South London by cal-

culating the difference between daily rather than yearly air pollutant concentrations and the

five years mean for each pollutant per LSOA revealed a higher temporal than spatial variability

for PM10, PM2.5 and ozone pollutants [81].

To sum up, several factors could have played a role in the current study to explain why a

spatial effect was more apparent than a temporal one. Those include (1) the emission source of

air pollutants and their chemical and physical properties, (2) the short period of time studied

in comparing the different years, (3) the modelling approach in which more (otherwise

unmeasured, non-time-varying) confounders are held constant in the within approach, and

(4) the limited variation in the air pollutants concentrations between years in most locations,

thus giving inadequate power to detect aWithin effect.
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This study also contributed to the topic of ethnic inequalities in health by investigating the

differences in the effect of air pollution on all-cause GP visits and outpatient hospital admis-

sions by ethnicity and country of birth in the UK. Our results showed no support for ethnic

differences. However, non-UK-born individuals were more likely to visit a GP and go to a hos-

pital than UK-born individuals with increasing concentrations of air pollutants. This was

attributed to spatial area-specific rather than time-specific factors as shown in the Between-
Within analysis.

Research has shown that immigrants (i.e. non-UK-born) often live in large cities, near

major roads and key transportation networks. This facilitates their movement and increases

their chances of personal development, employment, and business start-ups [82]. Further-

more, immigrants often live in low-priced housing, which is often situated in more deprived

immigrants’ concentrated neighbourhoods or close to major roads [38]. These area-specific

factors can result in more pronounced mild health consequences and higher frequency of GP

visits and outpatient hospital admissions among immigrants due to the greater exposure to

traffic exhaustion and industrial pollution in comparison to UK-born individuals who have

additional financial resources to move away from metropolitan areas and highly polluted

industrial regions. Additionally, immigrants (especially those coming from outside Europe)

might have been exposed to higher air pollution concentrations in their countries of origin

prior to arriving in the UK, which might result in higher frequency of GP visits and outpatient

hospital admissions due to the cumulative effect of air pollution on health among non-UK-

born individuals compared to UK-born.

In addition to highlighting the contributions of the present study, it is equally important to

discuss its limitations. First, this study might been subject to exposure bias by considering the

individual’s exposure to outdoor air pollution only at the place of residence. Therefore, future

studies are encouraged to integrate air pollution exposures at the places of residence and work,

and across daily commuting patterns by using for example real-time GPS data of the exact

location of individuals. Second, this study assessed the association between long-term exposure

to outdoor air pollution and all-cause self-reported GP visits and outpatient hospital admis-

sions. Self-reported survey data are prone to recall and information bias [83]. Nevertheless,

there is literature which validate the accuracy of the UKHLS GP visits and outpatient hospital

admissions by comparing those two variables to the administrative data for GP and outpatient

consultations in England and Scotland, whereby the mean counts between the two datasets

were reasonably close with some evidence of moderate under-reporting in the UKHLS data

[84]. Thus, future research would further contribute to this topic by investigating all-cause and

cause-specific GP-visits and hospital admissions using data from administrative-based studies

such as the ONS Longitudinal Study for England and Wales and the Scottish Longitudinal

Study for Scotland. Third, the association between air pollution and GP visits and hospital

admissions by country of birth was assessed using a binary variable that combines non-UK-

born individuals in one group and compares them to UK-born individuals. Whilst this

approach can reveal the differences between the two sub-population groups, it cannot provide

detailed insights into the differences between the non-UK-born group itself based on the coun-

try of origin. Thus, disaggregation by immigrant sub-group is recommended for future studies

for an indepth understanding of ethnic inequalities related to deprivation, health disadvantage,

health needs, and access to healthcare [85]. For example, literature from the UK has shown

that immigrants from certain countries (e.g., South Asia and Sub-Saharan Africa) have a sig-

nificant burden of infectious diseases [86, 87], which could lead to higher rates of GP visits and

hospital admissions. On the other hand, immigrants from certain countries, especially undoc-

umented immigrants and asylum seekers might face challenges to access primary healthcare

[88, 89], which reduces their frequency of hospital admissions and GP visits. However, it
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should be noted that in the present study, we adjusted the models which assess the association

of air pollution with GP visits and hospital admissions by country of birth for ethnicity. This

absorbs some of the uncertainty related to the binary immigration variable. Finally, our study

included individuals followed over five years (2015–2019) and we assessed the association

between air pollution and GP visits and hospital admissions at a yearly rather than monthly or

daily basis, which did not allow for environmental seasonal factors (e.g., temperature and rela-

tive humidity) adjustment. This could also explain the inability of observing significant tempo-

ral (Within) effects of air pollution on GP visits and outpatient hospital admissions due to the

low variation in air pollution across the five years of follow-up and the limited statistical power

of yearly observations.

Conclusion

This study supports an association between increased exposure to long-term outdoor air pollu-

tion and higher frequency of all-cause GP visits and outpatient hospital admissions in the UK.

Residing in more polluted areas was the driving cause for more GP visits and hospital admis-

sions rather than the fluctuation between low and high exposures to air pollution across time.

The observed associations did not differ across ethnic groups, but by country of birth, they

were more pronounced in individuals born outside UK than those born in UK. These results

are of importance for policymakers to reduce air pollution emissions, which would lower the

burden on GPs and hospital care in the UK. Further longitudinal studies with longer follow-

up time periods may be able to reveal more definite conclusions on the influence of ethnicity

on the association between long-term outdoor air pollution and both hospital admissions and

GP visits.

Supporting information

S1 File.

(PDF)

S2 File.

(PDF)

Acknowledgments

I would like to acknowledge Professor Hill Kulu from the School of Geography and Sustain-

able Development, University of St Andrews, Scotland, United Kingdom and Professor Roland

Rau from the Laboratory of Statistical Demography, Max Planck Institute for Demographic

Research, Rostock, Germany for their supervision. I would also like to acknowledge Professor
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