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SYMMETRIZATION TECHNIQUES IN IMAGE DEBLURRING∗

MARCO DONATELLI†, PAOLA FERRARI†, AND SILVIA GAZZOLA‡

Dedicated to Lothar Reichel on his seventieth birthday
Abstract. This paper presents a couple of preconditioning techniques that can be used to enhance the performance

of iterative regularization methods applied to image deblurring problems with a variety of point spread functions
(PSFs) and boundary conditions. More precisely, we first consider the anti-identity preconditioner, which symmetrizes
the coefficient matrix associated to problems with zero boundary conditions, allowing the use of MINRES as a
regularization method. When considering more sophisticated boundary conditions and strongly nonsymmetric
PSFs, the anti-identity preconditioner improves the performance of GMRES. We then consider both stationary and
iteration-dependent regularizing circulant preconditioners that, applied in connection with the anti-identity matrix and
both standard and flexible Krylov subspaces, speed up the iterations. A theoretical result about the clustering of the
eigenvalues of the preconditioned matrices is proved in a special case. The results of many numerical experiments are
reported to show the effectiveness of the new preconditioning techniques, including when considering the deblurring
of sparse images.
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1. Introduction. We consider the restoration of blurred and noise-corrupted images in
two space dimensions. By assuming that the point spread function (PSF) is spatially-invariant,
the blurring is modeled as a convolution of the form

(1.1) b(s) = [Kf ](s) + ξ(s) =

∫
R2

h(s− t)x(t)dt+ ξ(s), s ∈ Ω ⊂ R2,

where b represents the observed (blurred and noisy) image, x the (unknown) exact image, h
the PSF with compact support, and ξ the random noise. The real-valued nonnegative functions
x and b determine the light intensity of the desired and available images, respectively. We
assume that the PSF h, and thus the blurring phenomenon, is known.

Discretization of the above integral equation at equidistant nodes yields

(1.2) Bi,j =
∑

(k,ℓ)∈Z2

hi−k,j−ℓXk,ℓ + Ξi,j , (i, j) ∈ Z2,

where the entries of the discrete images B = [Bi,j ](i,j)∈Z2 and X = [Xk,ℓ](k,ℓ)∈Z2 represent
the light intensity at each pixel, and Ξ = [Ξi,j ](i,j)∈Z2 models the noise-contamination at these
pixels. Moreover, the observed image is available only in a finite region, the field of view (FOV)
corresponding to (i, j), (k, ℓ) ∈ [1, n]2, which is assumed to be square only for notational
simplicity. Therefore, when there are nonvanishing coefficients hi,j with (i, j) ̸= (0, 0), the
measured intensities near the boundary are affected by data outside the FOV, depending on the
support of the PSF. Thus the linear system of equations defined by (1.2) is underdetermined,
since there are n2 constraints, while the number of unknowns required to specify the equations
is larger. A meaningful solution of this underdetermined system can be determined in several
ways; see [1, 5]. In this paper we adopt a stack-ordered representation of the involved images
and, starting from (1.2), we determine a linear system of equations with a square matrix,

(1.3) Ax = b, A ∈ Rn2×n2

, x, b ∈ Rn2

,
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by imposing boundary conditions, where the xj-values in (1.2) at pixels outside the FOV are
assumed to be certain linear combinations of values inside the FOV; see [11, 26].

Since the singular values of the discrete convolution operator A gradually approach zero
without a significant gap, A is ill-conditioned and may be numerically rank-deficient. The
degree of ill-posedness depends on the decay of the PSF values: slower decay (i.e., wider PSF)
implies more ill-posedness; see equations (2.1), (2.3), and the analysis in Section 2. A linear
system of equations (1.3) with a matrix of this kind is commonly referred to as linear discrete
ill-posed problem and requires regularization [24].

The structure of the matrix A depends on the boundary conditions. For instance, by
using zero boundary conditions we get a Block Toeplitz with Toeplitz Blocks (BTTB) matrix,
by using periodic boundary conditions we get a Block Circulant with Circulant Blocks
(BCCB) matrix, while more sophisticated boundary conditions, as reflective, antireflective,
and synthetic, give rise to more complex matrix structures [11, 16]. Regardless of how
complicated the structure of the matrix A is, its matrix-vector product can always be computed
in O(n2 log(n)) flops by padding the vector according to the boundary conditions and then
applying the circular convolution by fast Fourier transforms (FFTs), as implemented in the
Matlab toolbox IR Tools [18]. Therefore, for the restoration of large images, one generally
resorts to iterative methods requiring a matrix-vector product with A and, possibly, AT , at
each iteration.

The adjoint of the convolution operator in (1.1) is the correlation operator

(1.4) [K∗x](s) =

∫
R2

h(t− s)x(t)dt,

where we have used the fact that h is real-valued. Discretization of (1.4) with the same
boundary conditions used for (1.3) can be simply obtained from the PSF rotated by 180◦.
The resulting matrix is denoted by A′. Therefore, matrix-vector products with A′, i.e., the
discretization of the adjoint operator, can be computed by rotating the PSF and then applying
the same procedure described above for A. This is the common implementation of the matrix-
vector products with the adjoint operator of A when zero or periodic boundary conditions
are imposed. Unfortunately, the matrix A′ could differ from AT when the imposed boundary
conditions are other than zero or periodic; see [11] for details. In such cases, using solvers like
CGLS or LSQR with AT replaced by A′ lacks theoretical justification, which makes it natural
to explore the performance of other iterative methods that do not require the adjoint operator.
Some recent strategies are based on the preconditioned Arnoldi method and nonstationary
iterations [5, 12, 13, 19].

In this paper, we compute a solution of (1.3) through iterative regularization methods,
which should terminate when a desired approximation is obtained and before noise starts
to show up in the solution, causing the restoration error to grow (this is the so-called semi-
convergence phenomenon). For this reason, a reliable stopping criterion is crucial to obtain
a good reconstruction. On the one hand, preconditioning is usually applied to speed up the
convergence of iterative methods replacing the linear system (1.3) by the following

(1.5) PAx = Pb or APz = b, x = Pz,

where P is the preconditioner that could be applied to the left or right side of the matrix A. If
iterations are stopped by the statistically-inspired discrepancy principle, right preconditioning
is preferred because it does not modify the noise statistics; see [24, 25]. For discrete ill-posed
problems, P must be chosen carefully by avoiding clustering of eigenvalues in the so-called
noise subspace and exacerbate semi-convergence, since the signal components in this subspace
are usually dominated by noise [22]. On the other hand, when the linear systems (1.5) are
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solved by a Krylov method, the approximate solution is computed in a different subspace
and thus the choice of P affects the quality of the restored image rather than speeding the
convergence up, or possibly it achieves both [3, 9, 22]. In particular, to provide a good
restoration, P should symmetrize the operator A and thus P = A′ is a favorable choice. This
is the so-called reblurring strategy proposed in [11] and later studied in [13] in connection
to Arnoldi methods. This approach has been further improved by adding a clustering of the
eigenvalues in the signal space to obtain a fast convergence [9, 12].

Symmetrization of Toeplitz and BTTB linear systems arising from well-posed problems
was recently explored by Pestana and Wathen in [33]. In detail, defining the anti-identity
matrix Y ∈ Rn2×n2

as

Y =

 1

. .
.

1

 ,
the matrix Y A is symmetric whenever A is persymmetric, i.e., Y A = ATY , as in the case
of Toeplitz and BTTB matrices. It follows that the linear system (1.3) can be replaced by the
equivalent linear system

(1.6) Y Ax = Y b,

which can be solved by methods that work with symmetric indefinite matrices, such as
MINRES and MR-II (i.e., a variant of MINRES that is very popular for solving inverse
problems). When A is a BTTB matrix, as in the case of zero Dirichlet boundary conditions,
preconditioning the linear system (1.6) by BCCB matrices has been proposed and studied
independently in [31] and [17, 27] proving the eigenvalue clustering at the two points −1
and 1. However, such a symmetrization strategy has never been explored for discrete ill-posed
problems, where the preconditioner has to deal with the noise subspace.

In this paper, motivated by the importance of having an operator close to symmetric to
generate the Krylov subspace in which to search for an approximate solution of a discrete
ill-posed problem (see, for instance, [29]), we investigate the symmetrization technique (1.6)
for image deblurring problems. More specifically, the contributions of this article are twofold.
Firstly, we consider zero Dirichlet boundary conditions so that A is a BTTB matrix and we
investigate the regularizing properties of MINRES, applied to the linear system (1.6). For
the symmetrized linear system, we then define a regularizing preconditioner P for the matrix
Y A combining the analysis in [17] with the regularizing preconditioner used, for instance,
in [9, 12]. We prove that the spectrum of the preconditioned matrix PY A is clustered at the
three points {−1, 0, 1}. Preconditioned MR-II for deblurring astronomical images has been
previously investigated in [23], but using a different symmetrization strategy for PSFs close to
symmetric, whereas our approach is also effective for strongly nonsymmetric PSFs such as the
motion blur considered in the numerical results.

The second contribution of this paper is to heuristically extend such approach to generic
boundary conditions and to consider more sophisticated regularization methods, such as
projection methods that enforce sparsity in the computed solution [7]; such investigations
are supported by extensive numerical tests. In this case, since the matrix A might not be
persymmetric, Y A is not symmetric even though it is close to being symmetric and MINRES
is replaced by GMRES [6]. Since the regularizing preconditioner P depends on a parameter,
nonstationary preconditioning is explored together with flexible GMRES to avoid the a priori
estimation of such parameter, as proposed in [10]. When enforcing some sparsity into the
computed solution is appropriate, we adopt efficient algorithms for 1-norm regularization
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based on iteratively reweighted least squares, which formally handle the inverted weights as
iteration-dependent preconditioners that modify the approximation subspace within methods
based on the flexible Golub-Kahan decomposition (such as FLSQR [20]) or methods based on
the flexible Arnoldi decomposition (such as FGMRES [19]). This approach results in FLSQR
and FGMRES methods, respectively, where two iteration-dependent preconditioners (P and
the inverted weights) are sequentially applied at each iteration; to the best of our knowledge, a
regularizing preconditioner P has never been applied to FLSQR before.

This paper is organised as follows. Section 2 provides some background material on the
links between boundary conditions for image deblurring problems and structured matrices
appearing in the linear system formulation (1.3), including their associated spectral decom-
positions. Section 3 describes the circulant preconditioners considered in this paper and the
spectral analysis of the preconditioned matrices in the zero boundary condition case. Sec-
tion 4 summarizes the iterative regularization methods considered in this paper and specifies
the strategies adopted to precondition them. In particular, we discuss iteration-dependent
circulant preconditioners and consider a diagonal preconditioner for enforcing sparsity in
the computed solution. Section 5 displays the results of four different test problems, which
show the performance of the new preconditioners applied in different settings. In particular,
Subsections 5.1-5.2 illustrate the efficiency of the symmetrization strategy for zero boundary
conditions with BTTB matrices; Subsection 5.3 demonstrates performance of the approxi-
mate symmetrization strategy for reflective boundary conditions; Subsection 5.4 provides a
numerical study of sparse image reconstruction to show the effects of symmetrization and
preconditioning within flexible Krylov subspace methods that enforce sparsity into the solution.
In the latter subsection, a discussion on the combination of the circulant and sparsity-enforcing
preconditioners is also presented. Section 6 presents some conclusions and outlines some
possible extensions to the present work.

2. Boundary conditions and structured matrices. Let hi,j be the entries of the PSF,
with i, j ∈ Z, where h0,0 is the designated central entry (e.g., the entry of maximum intensity).
Because of the compact support of the PSF, hi,j = 0 for |i| or |j| large enough, especially when
hi,j is outside the FOV, i.e., when min{|i|, |j|} ≥ n since it depends on the position of the
central coefficient h0,0, which in the worst case may be at a corner. Given the coefficients hi,j ,
it is possible to associate the PSF with the so-called generating function f : [−π, π]2 → C as
follows

(2.1) f(ϑ1, ϑ2) =

n−1∑
i,j=−n+1

hi,je
ı̂(iϑ1+jϑ2), ı̂2 = −1.

Note that hi,j are the Fourier coefficients of the function f .
The structure of the matrix A ∈ Rn2×n2

in (1.3) depends on the coefficients hi,j and
the imposed boundary conditions. As we already stated in the introduction, we represent the
images as vectors in Rn2

.
When the exact image has a black background, as for instance in astronomical imaging,

zero boundary conditions are to be preferred. In such case

A =


T0 T−1 · · · T−n+1

T1
. . .

. . .
...

...
. . .

. . . T−1

Tn−1 · · · T1 T0


n2×n2

,
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with

Tk =


hk,0 hk,−1 · · · hk,−n+1

hk,1
. . .

. . .
...

...
. . .

. . . hk,−1

hk,n−1 · · · hk,1 hk,0


n×n

, k = −n+ 1, . . . , n− 1,

which is a BTTB matrix. In this case we use the notation

(2.2) A = Tn(f),

where f is the generating function defined in (2.1). Note that {Tn(f)}n denotes the sequence
of BTTB matrices generated by f as n varies. If the PSF is not quadrantally symmetric, i.e.,
symmetric in both horizontal and vertical directions, then A is not symmetric. On the other
hand, it is always persymmetric independently of the PSF.

By imposing boundary conditions different from the zero Dirichlet ones, the matrix A is
no longer BTTB, but small norm and/or small rank corrections are added to Tn(f) depending
on the support and the decay rate of the PSF. Among the various kinds of boundary conditions,
the periodic ones are computationally attractive, since the resulting matrix A is BCCB and
can be diagonalized by FFTs [26]. The BCCB matrix A associated to a PSF, and thus its
generating function f defined in (2.1), will be denoted by A = Cn(f). The main property of
such matrix is its spectral decomposition in terms of the Fourier matrix. Let F1 be the discrete
Fourier matrix defined as [F1]i,j =

1√
n
e−ı̂ 2πij

n , for i, j = 0, . . . , n− 1. The two-dimensional
Fourier matrix is defined by tensor product as F2 = F1 ⊗ F1 and matrix-vector products
with F2 can be computed in O(n2 log(n)) by FFT. The eigenvalues λj , with j = 1, . . . , n2,
of Cn(f), can be computed by applying F2 to the first column of Cn(f), which is obtained
stacking a proper permutation of the PSF; see [26] for details. In this way, the matrix A can be
factorized as

A = Cn(f) = FH
2 ΛF2,

where Λ is the diagonal matrix of the eigenvalues λj , with j = 1, . . . , n2. Note that Cn(f) is
the Strang preconditioner of Tn(f) and the n2 eigenvalues of Cn(f) can also be written as

(2.3) λi+jn+1 = f

(
2πi

n
,
2πj

n

)
, i, j = 0, . . . , n− 1,

where f is the generating function (2.1); see [8].
The inverse problem (1.1) is well-known to be ill-posed [14], with associated ill-conditioned

linear system (1.3) [24]. In particular, one can clearly see from equations (2.1), (2.3) that, in
the case of periodic boundary conditions, the ill-conditioning of problem (1.3) is related to
the decay of the PSF values: slower decay (i.e., more hij coefficients different from zero)
implies a more oscillating generating function, which is reflected in the associated circulant
matrix having a few dominant singular modes that capture the most significant variations,
while other modes are suppressed due to the oscillatory behavior. As a result, singular values
associated with these suppressed modes decay rapidly. Therefore, the matrix is severely
ill-conditioned, thus problem (1.3) is very sensitive to noise. Because of the ill-conditioning,
some regularization should be applied when computing an approximation of the original
image. For instance, Tikhonov regularization defines a nearby well-posed problem that can
potentially solved analytically. Similarly, when adopting an iterative regularization method,
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a preconditioner has to be well-posed and hence a strategy to employ BCCB matrices as
regularizing preconditioners is linked to Tikhonov regularization.

The solution of the linear system (1.3) by Tikhonov regularization gives rise to the
minimization problem

min
x∈Rn2

∥Ax− b∥2 + α∥x∥2,

where ∥ · ∥ denotes the Euclidean norm and α > 0 is a regularization parameter that balances
the regularization term ∥x∥2 and the data fitting term ∥Ax− b∥2. This minimization problem
has the unique solution

xα = (ATA+ αI)−1AT b.

In the case of periodic boundary conditions, since A = Cn(f), the Tikhonov solution xα can
be computed by applying three FFTs as

xα = Cn(pα)b,

where

(2.4) pα(ϑ1, ϑ2) =
f(ϑ1, ϑ2)

|f(ϑ1, ϑ2)|2 + α

and thus the eigenvalues of Cn(pα) are

λj
|λj |2 + α

, j = 1, . . . , n2.

In the next section we explain how to exploit these considerations to develop regularizing
preconditioners for symmetrized BTTB matrices.

3. Regularizing preconditioner for symmetrized BTTB matrices. Starting from the
seminal paper [22], regularizing preconditioners have been largely investigated to speed up
the convergence of iterative regularization methods without spoiling their reconstructions
[3, 9, 13]. The idea behind these approaches is to cluster the eigenvalues in the signal subspace
without modifying the noise subspace. Moreover, the linear system with the preconditioned
matrix has to be solved with a computational cost comparable to the matrix-vector product
with the matrix A. Regarding the first requirement, it can be shown that it is fulfilled by the
circulant Tikhonov operator Cn(pα), where pα is defined in (2.4). An idea of this fact will
be given in Remark 3.4. On the other hand, the class of BCCB matrices is the most efficient
one among the possible classes of matrices that arise from space-invariant image deblurring,
as far as the computational cost of matrix-vector product is concerned. Therefore, Cn(pα)
is a common choice for the preconditioning of A, independently of the imposed boundary
conditions.

We introduce the distribution of the eigenvalues that will be useful to study the clustering
of the eigenvalues of the preconditioned matrices. By the Szegö-Tilli theorem [34], a distri-
bution relation holds for the eigenvalues of the matrix sequence {Tn(g)}n for a real-valued
g ∈ L1([−π, π]2):
(3.1)

lim
n→∞

1

n2

n2∑
j=1

F [λj(Tn(g))] =
1

(2π)2

∫
[−π,π]2

F (g(θ1, θ2)) dθ1 dθ2, ∀F ∈ Cc(R,C),
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where Cc(R,C) denotes the space of continous functions F : R → C. The function g is called
the symbol of the Toeplitz family and we write

{Tn(g)}n ∼λ g.

The informal meaning behind the above distribution result is the following. If g is continuous
and n is large enough, then the spectrum of Tn(g) ‘behaves’ like a uniform sampling of g over
[−π, π]2. It follows that Cn(g) is a common preconditioner for Tn(g) due to its eigenvalue
distribution, cfr. equation (2.3).

For completeness, we add here the general definition of eigenvalue distribution given for
spectral symbols that are (possibly) matrix-valued. This is a case that we will encounter in the
next sections.

DEFINITION 3.1 (Eigenvalue distribution of a sequence of matrices). Let {An}n be a
sequence of matrices with An of size dn, and let f : D ⊂ Rk → Cr×r be a measurable
matrix-valued function defined on a set D with 0 < µk(D) <∞.

We say that {An}n has an (asymptotic) eigenvalue (or spectral) distribution described by
f , and we write {An}n ∼λ f , if

lim
n→∞

1

dn

dn∑
j=1

F (λj (An)) =
1

µk(D)

∫
D

∑r
i=1 F (λi(f(x)))

r
dx, ∀F ∈ Cc(C).

In this case, the function f is referred to as the eigenvalue (or spectral) symbol of {An}n.
Imposing accurate boundary conditions, as reflective or antireflective, the coefficient

matrix is a BTTB matrix type up to a ‘small’ correction. It turns out that, independently of the
imposed boundary conditions, the matrices associated to the PSF have the same symbol f as
their Toeplitz part.

Since the PSF performs an average of neighboring pixels, we have

n−1∑
i,j=−n+1

hi,j = 1, hi,j ≥ 0.

Therefore, the function |f | has maximum at the origin and then decays, not necessarily
uniformly, reaching the minimum in [π, π]. Indeed, it is well-known that deconvolution
problems of the form (1.1) are ill-posed problems with an ill-conditioned subspace in the
high frequencies, i.e., around the point [π, π], see [23]. For instance, for the PSF used in
Example 5.1, plotted in Figure 3.1 (a), Figure 3.1 (b) depicts the behavior of |f | as described
above. Therefore, the generating function f satisfies the assumption of the following theorem,
which we will prove in the Appendix.

THEOREM 3.2. Let ε and τ be positive values such that ε ∈ (0, 1) and τ ∈ (0, π). Let
f ∈ L1([−π, π]2) be a bivariate function with real Fourier coefficients, periodically extended
to the whole real plane, and such that

(3.2)

{
|f(ϑ1, ϑ2)| > ε, if

∣∣ϑ21 + ϑ22
∣∣ < τ,

|f(ϑ1, ϑ2)| ≤ ε, otherwise
.

and define

(3.3) gτ (ϑ1, ϑ2) =

{
|f(ϑ1, ϑ2)|, if

∣∣ϑ21 + ϑ22
∣∣ < τ,

1, otherwise
.
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(a) PSF

(b) Symbol |f |

Fig. 3.1: PSF of speckle blur and associated symbol.

Then

(3.4)
{
Cn(gτ )−1Y Tn(f)

}
n
∼λ ψ

where

(3.5) ψ(ϑ1, ϑ2) =



1
|f |

 0 f(ϑ1, ϑ2)

f(ϑ1, ϑ2) 0

 , if
∣∣ϑ21 + ϑ22

∣∣ < τ,

 0 f(ϑ1, ϑ2)

f(ϑ1, ϑ2) 0

 , otherwise

.

Proof. See Appendix A.
The latter theorem provides information on the spectrum of the preconditioned matrix,

which can be exploited to study the behavior of Cn(gτ ) as a regularizing preconditioner, as we
will see in the next remark. Before going into detail, we point out how Cn(gτ ) is constructed
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in practice. The PSF h is known from the application and it uniquely defines the matrix Tn(f)
and hence its generating function f . The function f is then used to compute gτ for a suitable
choice of τ as in equation 3.3 and finally the preconditioner Cn (gτ ).

REMARK 3.3. On the set where |f | < ε, we have ψ =

[
0 f

f 0

]
, which has eigenvalue

functions ±|f | with image contained in (−ε, ε). If |f | > ε, we have ψ = 1
|f |

[
0 f

f 0

]
with eigenvalue functions ±1. Hence, according to Remarks 2.12–2-13 in [2], spectral
distribution (3.5) suggests that there are at most o(n2) eigenvalues of Cn(gτ )−1Y Tn(f) outside
three clusters at λ = 1, λ = −1, and λ ∈ [−ε, ε], whose cardinality depends on ε and τ ,
provided that n is large enough. Note that ε and τ are not independent: for each ε you find a τ
such that (3.2) holds. If ε tends to 0, τ tends to π, that is, the set where |f | < ε has the empty
set as a limit, making the eigenvalues of the preconditioned matrix clustered at ±1. On the
other hand, if ε is chosen greater than the maximum of |f |, the preconditioner has no effect at
all. So, it is important to choose ε, and consequently τ , accurately, so that the preconditioner
has a significant clustering effect without amplifying the noise.

The next remark explains how the preconditioner Cn (gτ ) is related to the preconditioner
Cn(pα), with pα is defined in (2.4). To be more precise, we consider the absolute value of
Cn(pα) as a preconditioner for symmetrized BTTB matrices and we explain why this is a
regularizing preconditioner.

REMARK 3.4. As we have already stated, a common choice for the preconditioning of A
in the image deblurring context is Cn(pα), where pα is defined in (2.4). In [33, 17, 31] it is
shown that under proper assumptions, if Cn(pα) is such that the singular values of Cn(pα)A
are clustered, then the absolute value of Cn(pα) is such that the eigenvalues of |Cn(pα)|Y A are
clustered. We recall that |Cn(pα)| is the circulant matrix whose eigenvalues are the modulus of
the eigenvalues of Cn(pα). For these reasons, we consider the circulant matrix Cn(|pα|) with

|pα|(ϑ1, ϑ2) =
|f(ϑ1, ϑ2)|

|f(ϑ1, ϑ2)|2 + α
.

In general, the function gτ is discontinuous and this guarantees a sharp subdivision between
eigenvalue clusters. For |pα| this is not true since it is a smooth low-pass filter. This implies
that Cn(|pα|) is less sensitive than Cn(gτ ) to the choice of the threshold parameter α and τ ,
respectively, which is related to ε.

To prove that Cn(|pα|) is a regularizing preconditioner, suppose for simplicity that we
take α = ε and study |pε|. With the considerations that we make in Appendix A, we can state
that

(3.6) {Cn(|pε|)Y Tn(f)}n ∼λ |pε|
[
0 f

f 0

]
,

which has eigenvalue functions

|f |
|f |2 + ε

(±|f |) = ± |f |2

|f |2 + ε
.

Note that |f |2
|f |2+ε < 1, and when |f | is much greater than ε the eigenvalues are close to 1,

which means a speed up of the convergence in the signal subspace.
On the other hand, if |f | ≤ ε, we have

|f |2

|f |2 + ε
≤ ε2

|f |2 + ε
≤ ε2

ε
= ε,
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which means that the small eigenvalues are not amplified by the preconditioner.
In the numerical examples we will use |pα| instead of gτ since it showed an overall greater

robustness and better performance.

4. Iterative regularization methods. The purpose of the present section is to briefly
introduce the iterative methods that we will use as regularization methods in the numerical
experiments section; more details about all the solvers considered in this section can be found
in the recent review paper [7]. As mentioned in Section 1, iterative methods used to reconstruct
blurred and noisy images exploit semiconvergence, i.e., they first reduce the error and then
diverge from the exact solution. When possible, we will use the discrepancy principle as
stopping criterion for the iterations, that is, we stop the iterations as soon as the norm of the
residual vector is less than a tolerance times the noise level, i.e., the norm of the unknown
noise vector affecting the right-hand-side vector b in (1.3).

As we anticipated, in the case where A is a BTTB matrix, we want to study the behaviour
of MINRES applied to the linear system (1.6), which has a symmetric coefficient matrix.
The regularization properties of the MINRES method were proven in [29, 30]. When using
MINRES, a preconditioning strategy needs to be applied symmetrically (i.e., both on the left
and on the right), that is, the preconditioned symmetrized linear system becomes

P 1/2Y AP 1/2z = P 1/2Y b, x = P 1/2z.

Observe that in this case the preconditioner P needs to be positive definite to ensure the exis-
tence of P 1/2. Regarding the computational cost of this approach, note that the preconditioned
MINRES algorithm can be reformulated in such a way that only one matrix-vector product
with the circulant preconditioner is performed per iteration (see [21]), while the product with
the anti-identity preconditioner has a negligible cost, being a permutation. When applying
right preconditioning the residual of the preconditioned system is the same as that of the
non-preconditioned one and the discrepancy principle can be applied without a significant
additional computational cost. This is not rues for left preconditioning. Therefore, in the
symmetric preconditioning case, we will comment on the best reconstruction achieved by the
considered methods and their stability. Other stopping criteria can be chosen, but the study of
their behaviour is beyond the purpose of the present paper.

While theoretical results guarantee a regularizing behaviour of MINRES, the success of
GMRES as regularization method is problem dependent. Although some theory has been
developed [6], it often happens that the GMRES is not effective when the coefficient matrix A
is not close to normal [29]. In the case where we consider reflective boundary conditions, if
the PSF is not quadrantally symmetric, the matrix A is neither symmetric nor persymmetric.
However, Y A is close to being symmetric even if A is highly non-symmetric. In this case, we
expect that GMRES applied to the system (1.6) over-performs GMRES applied to the original
system (1.3).

The LSQR method requires AT , and replacing it with A′ is easy to implement but is not
theoretically sound, as explained in the introduction. We stress that one iteration of LSQR costs
a matrix-vector product with matrix AT more than one iteration of MINRES and GMRES, so
this needs to be taken into account when analysing the convergence speed in terms of iteration
number.

In order to speed up the convergence of the iterative methods listed above, we apply the
preconditioning strategy analysed in Section 3. More precisely, we use Cn(pα) as a (right)
preconditioner for LSQR type methods, which we apply to systems with A, and Cn(|pα|) for
GMRES type methods, which we apply to systems with Y A, on the right. Moreover, adopting
FLSQR and FGMRES instead of LSQR and GMRES, respectively, we can consider the
iteration-dependent circulant matrices Cn(pαk

) and Cn(|pαk
|) as preconditioners, where we
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choose the parameter as the geometric sequence αk = α0q
k, where k is the iteration counter,

while α0 = 0.1 and q = 0.8 are chosen following the recommendations in [12]. In the rest of
the paper, when we denote a preconditioner by P , we mean a circulant preconditioner, whose
exact formulation will be clear from the context.

For enforcing sparsity in the computed solution, we apply the iteration-dependent precon-
ditioner studied in [19, 20], which here we simply denote by W . More specifically, at the kth
iteration of the considered methods we have

W = diag(|xk−1|1/2) ,

where xk−1 is the solution computed at the previous (i.e., the (k − 1)th) iteration, and where
absolute value and exponentiation are applied component-wise. Such preconditioner stems
from the iteratively reweighted least squares (IRLS) method applied to the problem

(4.1) min
x

∥Ax− b∥22 + λ∥x∥1 ,

whereby, assuming that the matrix W is periodically updated with the most recent approxima-
tion of the solution of (4.1) and invertible*, the regularization term λ∥x∥1 is first approximated
by the squared 2-norm term λ∥W−1x∥22 and then undergoes a transformation to standard form
(change of variable), leading to the problem

(4.2) min
y

∥AWy − b∥22 + λ∥y∥22 , y =W−1x .

Following common practice, we apply either FGMRES or FLSQR to the above problem, after
dropping the regularization term. That is, in the FGMRES case, starting from v1 = b/∥b∥2,
at the mth iteration we update the partial matrix factorization

(4.3) AZm = Vm+1Hm, where
Zm = [W1v1, ...,Wmvm] ∈ Rn2×m

Vm+1 = [v1, ...,vm+1] ∈ Rn2×(m+1)
.

Here we have used the notation Wi = diag(|xi−1|1/2), with i = 1, . . . ,m; the columns of
Zm span the subspace for the mth FGMRES approximate solution, Vm+1 has orthonormal
columns, and Hm ∈ R(m+1)×m is upper Hessenberg. The problem solved at the mth
FGMRES iteration therefore reads

xm = arg min
x∈range(Zm)

∥Ax− b∥2

= Zm arg min
s∈Rm

∥AZms− b∥2 = Zm arg min
s∈Rm

∥Hms− ∥b∥2e1∥2,

where we have exploited the properties of the matrices appearing in (4.3) and e1 is the first
canonical basis vector of Rm+1. A similar procedure can be adopted for FLSQR. Such
methods allow updates of W as the iterations proceed and, therefore, are more efficient than
classical IRLS schemes that update W only after each instance of problem (4.2) is fully solved
(which typically requires a number of iterations of a solver such as CGLS). The iteration-
dependent matrix W modifies the approximation subspace for the FGMRES and FLSQR
solution in such a way that sparsity is naturally enforced within its basis vectors. We refer

*The matrix W−1 is required to state the original reweighted problem but, in practice, after the change of
variables has been applied, the application of the preconditioner requires only a matrix-vector product with the matrix
W . Therefore, we do not implement any shifting strategy to guarantee the invertibility of W when xk−1 has null
entries.
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to [20] for more details about these approaches; a numerical illustration is also provided
in Section 5.4. An iteration-depended regularizing circulant preconditioner P can be used
to speed-up the convergence of the sparsity-enforcing FGMRES and FLSQR methods just
described; such an approach will be detailed and numerically investigated in Section 5.4, as
well.

5. Numerical Examples. In this section we present four examples. The Satellite test
problem in Subsection 5.1 and the Phantom test problem in 5.2 are aimed at discussing the
efficiency of the symmetrization strategy in the case of zero boundary conditions, namely,
when the matrix A is BTTB. The Cameraman test problem in Subsection 5.3 is an example
with reflective boundary conditions, which shows the performance of the ‘symmetrization’
strategy on matrices that are close to being symmetric. Subsection 5.4 is devoted to the
numerical study of the reconstruction of a sparse image with reflective boundary conditions,
showing the effect of the ‘symmetrization’ strategy and preconditioning within flexible Krylov
subspace methods.

In all examples, the blurred and noisy image is given by

b = Ax+
ξ

∥ξ∥
σ∥Ax∥,

where x is the exact image, ξ is a random Gaussian white noise vector and σ is the noise
level. When available, we use the blurring functions and the implementation of the iterative
methods included in IR Tools [18]. We highlight that in IR Tools the LSQR-based methods are
implemented using a Kronecker product approximation of AT instead of replacing it with A′,
see [32] for details.

In order to evaluate the quality of the deblurring processes, we use two different metrics:
Relative Restoration Error (RRE) and Peak Signal-to-Noise Ratio (PSNR). The RRE measures
the norm of the difference between the reconstructed image x̃ and the original image x relative
to the norm of the original image:

RRE(x̃) =
∥x̃− x∥2
∥x∥2

, x, x̃ ∈ Rn2

.

Lower RRE values indicate better deblurring performance. Instead, PSNR quantifies image
quality by comparing the peak signal, that is, the maximum pixel value of the image max(x),
to the noise, calculated from the mean squared error between the original image and the
deblurred image:

PSNR(x̃) = 20 · log10
(
n2 max(x)

∥x̃− x∥2

)
, x, x̃ ∈ Rn2

.

Higher PSNR values indicate better deblurring performance.

5.1. Test Problem: Satellite with zero boundary conditions. The satellite image
is blurred with a medium level speckle blur, which simulates spatially invariant blurring
caused by atmospheric turbulence; a noise of level σ = 0.05 is added. Figure 5.1 shows
the exact image, the PSF, and the blurred image, all of size 256× 256 pixels. In Figure 5.2,
we report the error behaviour of (preconditioned) MINRES applied to the symmetrized
system (1.6) and of (preconditioned) LSQR and GMRES applied to the non-symmetrized
linear system. The regularizing parameter α needed in the construction of the circulant
preconditioners Cn(pα) and Cn(|pα|) with pα defined in (2.4) was manually tuned, i.e., we
chose the α ∈ {10−1, 10−2, 10−3, 10−4, 10−5} which numerically proved to be the best
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Fig. 5.1: Satellite test problem. From left to right: exact image, PSF cropped to [hi,j ]
32
i,j=−32,

and blurred image. Note that hi,j < 10−3 when min{|i|, |j|} > 32.
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Fig. 5.2: Satellite test problem. Comparison between the error behaviours of (preconditioned)
MINRES applied to the symmetrized system (1.6) and of (preconditioned) LSQR and GMRES
applied to the non-symmetrized linear system. The asterisks mark the iterations giving the
best reconstruction in terms of RRE.

in terms of balancing the convergence speed and the quality of the reconstruction, which
is α = 10−2. MINRES is slower to reach the minimizer than LSQR in terms of iteration
number, however one iteration of MINRES is computationally less costly, not requiring the
multiplication by AT . Moreover, we highlight that preconditioned MINRES is more robust
than preconditioned LSQR: for the latter, the iteration should be stopped between 5 and 13
to obtain an RRE that differs from the minimum RRE achieved less than 0.03, while for
preconditioned MINRES the range of possible stopping iteration numbers for achieving an
analogous result is between 10 and 27, which is a wider range. GMRES applied to the non-
symmetrized linear system does not provide a reconstruction of high quality when compared
to the other methods. In Figure 5.3 we compare the best reconstruction by preconditioned
MINRES and LSQR for this difficult deblurring problem. We can clearly see that, although
both the restored images are corrupted by some ringing artifacts, they visually look very
similar; indeed, according to Figure 5.2, the two methods achieve a comparable relative errors,
although preconditioned MINRES does so more efficiently.
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Fig. 5.3: Satellite test problem. Exact image (left), best preconditioned MINRES reconstruc-
tion (center), best preconditioned LSQR reconstruction (right).

Fig. 5.4: Phantom test problem. From left to right: exact image, PSF cropped to [hi,j ]
16
i,j=−16,

and blurred image. Note that the PSF is exactly zero in the pixels where light is not visible.

5.2. Test Problem: Phantom with zero boundary conditions. The Phantom test
problem analyses the modified Shepp-Logan phantom blurred with a unidirectional motion,
which uniformly causes pixels’ displacement towards the right bottom direction. The PSF can
be seen in Figure 5.4, together with the exact image and the blurred image. A noise of level
σ = 0.01 is applied. In Figure 5.5, we report the error behaviour of (preconditioned) MINRES
applied to the symmetrized system (1.6) and of (preconditioned) LSQR and GMRES applied
to the non-symmetrized linear system. Also in this case, the regularizing parameter α needed
in the construction of the preconditioner Cn(pα) was manually chosen equal to 10−2. This
example confirms that preconditioned MINRES is more stable than preconditioned LSQR,
since its semi-convergence is slower. We remark again that this does not translate into a higher
computational cost of the overall method, because the cost of a single iteration needs to be
taken into account. In the Phantom case, GMRES applied to the non-symmetrized linear
system performs better than in the Satellite case, but it is still over-performed by the other
methods. In Figure 5.6 we compare the best reconstruction by preconditioned MINRES and
LSQR.

5.3. Test Problem: Cameraman with reflective boundary conditions. In this case,
we analyse the reconstruction of the cameraman image contaminated by motion blur in two
directions and by a noise of level σ = 0.01. The PSF can be seen in Figure 5.7, together with
the exact image and the blurred image, all of size 256× 256 pixels. In Figure 5.8, we report
the error behaviour of GMRES and FGMRES applied to the symmetrized system (1.6) and of
LSQR, FLSQR, and GMRES applied to the non-symmetrized linear system. The iteration-
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Fig. 5.5: Phantom test problem. Comparison between the error behaviours of (preconditioned)
MINRES applied to the symmetrized system (1.6) and of (preconditioned) LSQR and GMRES
applied to the non-symmetrized linear system. The asterisks mark the iterations giving the
best reconstruction in terms of RRE.

Fig. 5.6: Phantom test problem. Exact image (left), best preconditioned MINRES reconstruc-
tion (center), best preconditioned LSQR reconstruction (right).

Fig. 5.7: Cameraman test problem. From left to right: exact image, PSF cropped to
[hi,j ]

16
i,j=−16, and blurred image. Note that the PSF is exactly zero in the pixels where

light is not visible.
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Fig. 5.8: Cameraman test problem. Comparison between the error behaviours of the GMRES
and FGMRES applied to the symmetrized system (1.6) and of the LSQR, FLSQR, and GMRES
applied to the non-symmetrized linear system. The dots mark the iterations satisfying the
discrepancy principle stopping criterion.

Best Reconstruction Discrepancy Principle
Method RRE PSNR iter RRE PSNR iter time (s)
A LSQR 0.0723 28.3279 14 0.0799 27.4657 8 1.3023

AP FLSQR 0.0768 27.8058 11 0.0863 26.7965 6 1.3191
A GMRES 0.1509 21.9410 6 - - - -

YA GMRES 0.0703 28.5773 26 0.0762 27.8791 16 1.4398
YAP FGMRES 0.0716 28.4157 15 0.0770 27.7841 10 1.2180

Table 5.1: Cameraman test problem. RRE and PSNR values with the corresponding iteration
numbers and computational times for the restoration with minimum RRE and for the restoration
determined when terminating the iterations with the discrepancy principle.

dependent preconditioners for FGMRES and FLSQR are, respectively, Cn(|pαk
|) and Cn(pαk

),
with αk = 0.1 · (0.8)k. The dots in Figure 5.8 show the iteration for which the discrepancy
principle is fulfilled. Table 5.1 shows the RRE and PSNR values with the corresponding
iteration numbers and computational times for the restoration with minimum RRE and for the
restoration determined when terminating the iterations with the discrepancy principle. The
error behaviour is in accordance with the computational times, since one iteration of LSQR
costs approximatively as two iterations of GMRES. We see that for FGMRES the circulant
preconditioning strategy accelerates the semi-convergence, while for FLSQR it fails to do so.
Of course, the behaviour of the preconditioner strictly depends on the choice of αk, for which
more sophisticated strategies can be adopted, but this is beyond the scope of this presentation.
In Figure 5.9 we compare the best reconstruction by FGMRES and FLSQR and we notice
that FLSQR produces some artifacts on the boundary, which are not present in the FGMRES
reconstruction.

5.4. Test Problem: Edges with reflective boundary conditions. In this case, we analyse
the reconstruction of a sparse image containing the edges of geometrical figures contaminated
by a severe shake blur and a noise of level σ = 0.1. Figure 5.10 shows the exact image, the
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Fig. 5.9: Cameraman test problem. Exact image (left), preconditioned GMRES reconstruction
(center), preconditioned LSQR reconstruction (right) given by the discrepancy principle.

Fig. 5.10: Edges test problem. From left to right: exact image, PSF cropped to [hi,j ]
32
i,j=−32,

and blurred image.

PSF, and the blurred image, all of size 128× 128 pixels, in a colormap that better emphasises
the light intensity of the grayscale images.

In Figure 5.11, we report the error behaviour of FGMRES applied to the symmetrized
system (1.6) and of FLSQR and FGMRES applied to the original linear system (1.3). We
consider two different iteration-dependent preconditioners for FGMRES and FLSQR. The
W preconditioner implements the re-weighting strategy from [20] used to enforce sparsity
in the solution, as explained in Section 4. Then, we combine the latter strategy with the
circulant preconditioning technique of Cn(|pαk

|) and Cn(pαk
), with αk = 0.1 · (0.8)k. To

our knowledge, this is the first time that the combination of these two preconditioners has
been explored within flexible regularizing Krylov methods. Between the two options of
preconditioners WP and PW , we choose WP since it is the choice that enforces sparsity
within the basis vectors of the approximation subspace for the solution. In support of this
statement, in Figure 5.12 we show the first four, the eighth and the twelfth basis vectors
of the flexible Krylov subspaces generated when applying FGMRES with the two different
preconditioning strategies. We can clearly see that, when preconditioning with WP , since the
sparsity-enforcing preconditioner W is applied on the top of the regularizing preconditioner P ,
the sparsity pattern of the original image is consistently maintained across the different basis
vectors, resulting in a restored image where the nonzero parts are well defined. The same is
not true when preconditioning with PW : we can clearly see that the first basis vectors are not
sparse and, as a consequence, many spurious nonzero pixels appear in the final reconstruction.

Table 5.2 shows the RRE and PSNR values with the corresponding iteration numbers and
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Fig. 5.11: Edges test problem. Comparison between the error behaviours of FGMRES applied
to the symmetrized system (1.6) and of FLSQR and FGMRES applied to the non-symmetrized
linear system. The dots mark the iterations satisfying the discrepancy principle stopping
criterion.

Best Reconstruction Discrepancy Principle
Method RRE PSNR iter RRE PSNR iter time (s)

AW FLSQR 0.2414 32.7000 21 0.3093 30.5465 14 0.8622
APW FLSQR 0.2443 32.5954 14 0.3103 30.5201 10 0.8258
AW FGMRES 0.9166 21.1105 60 - - - -

YAW FGMRES 0.2655 31.8737 42 0.2994 30.8293 32 0.9335
YAPW FGMRES 0.2821 31.3466 24 0.3010 30.7835 19 0.8536

Table 5.2: Edges test problem. RRE and PSNR values with the corresponding iteration
numbers and computational times for the restoration with minimum RRE and for the restoration
determined when terminating the iterations with the discrepancy principle.

computational times for the restoration with minimum RRE and for the restoration determined
when terminating the iterations with the discrepancy principle.

Firstly, this test highlights that the sparse preconditioning technique from [20], which
fails in combination with FGMRES when the matrix A is highly non-symmetric as in this
case, is instead a valid choice when applied to the matrix Y A: the Y AW FGMRES is
slightly better than the AW LSQR method in terms of RRE and PSNR of the discrepancy
principle reconstruction and it reaches the stopping criterion in comparable computational
times. Moreover, regarding the combination with the circulant preconditioner, we see that
with this choice of αk the semi-convergence of both FGMRES and FLSQR is accelerated, but
what is most remarkable is that for FGMRES the convergence also becomes more stable.

Finally, we see in Figure 5.13 that the reconstructions ofAW LSQR and Y AW FGMRES
are comparable from a viewer’s perspective.

6. Conclusions and future work. This paper described a couple of preconditioning
strategies to be used when solving image deblurring problems through iterative regularization
methods. Some theoretical insight and substantial numerical experimentation showed that
using such preconditioners within the MINRES, GMRES, FGMRES and FLSQR methods
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YAPW FGMRES

YAWP FGMRES

Fig. 5.12: Edges test problem. Row 1: the true image x, the basis images number 1, 2, 3, 4, 8,
and 12 of the flexible Krylov subspace, and the reconstruction returned by the discrepancy
principle when applying FGMRES to with a PW iteration-dependent right preconditioning
strategy. In the first iteration, the preconditioning matrix W is set to be the identity matrix.
Row 2: the true image x, the basis images number 1, 2, 3, 4, 8, and 12 of the flexible
Krylov subspace, and the reconstruction returned by the discrepancy principle when applying
FGMRES with a WP iteration-dependent right preconditioning strategy. In the first iteration,
the preconditioning matrix W is set to be the identity matrix.

Fig. 5.13: Edges test problem. Exact image (left), Y AW FGMRES discrepancy principle
reconstruction (center), and AW FLSQR discrepancy principle reconstruction (right).

and with a variety of PSFs and boundary conditions leads to better reconstructions, which are
computed more efficiently and often in a more stable way with respect to their unpreconditioned
counterparts.

There are a number of extensions to the present work. First of all, as hinted in Section 4,
one may consider different adaptive ways of setting the regularization parameter α within the
regularizing circulant preconditioner Cn(|pα|), including strategies based on the discrepancy
principle and generalized cross-validation. Secondly, although this paper focused on purely
iterative regularization methods, all the Krylov subspace methods considered here can be
used in a hybrid fashion, i.e., combining projection onto Krylov subspaces and Tikhonov
regularization; see [7]. An interesting new research avenue may explore the performance
of the preconditioners considered here in a hybrid setting. Finally, when employing Krylov
methods for the computation of sparse solutions, there exists popular alternatives to the flexible
methods considered here, which are based on generalized Krylov subspaces; see [4, 28]. Future
work can focus on the numerical study and analysis of preconditioning techniques based on
regularizing circulant preconditioners applied to such methods.
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Appendix A. Preconditioner Analysis Proof. The proof of Theorem 3.2 is based on a
distribution result in [31], which in turn exploits the concept of Generalized Locally Toeplitz
(GLT) sequences. The formal definition of the GLT class and the derivation of their properties
require rather technical tools. We refer the reader to [2] for a discussion on the GLT theory in
its general multilevel block form.

The crucial feature of a GLT sequence {An}n is that we can associate it to a function f̃ :
[0, 1]k × [−π, π]k → Cs×s, called GLT symbol. We denote this relation with {An}n ∼GLT f̃ .
If all the matrices of the sequence are Hermitian, then f̃ is the eigenvalue symbol of {An}n in
a sense analogous to formula (3.1). Every k-level Toeplitz sequence generated by a function
f ∈ L1([−π, π]k) is a GLT sequence and its symbol is f̃(·,ϑ) = f(ϑ). For image deblurring
problems k = 2 and a 2-level Toeplitz matrix is a BTTB matrix.

GLT sequences constitute a ∗-algebra of matrix-sequences to which multilevel Toeplitz
matrix-sequences with Lebesgue integrable generating functions belong. The sequence ob-
tained via algebraic operations on a finite set of given GLT sequences is still a GLT sequence
and its symbol is obtained by performing the same algebraic manipulations on the correspond-
ing symbols of the input GLT sequences.

In [31], the authors make use of the GLT theory to discover the spectral distribution of
{Y Tn(g)}n and of the preconditioned sequence {P−1

n Y Tn(g)}n, under specific assumptions
on Pn. For the proof of Theorem 3.2, we use part of the theory in [31], from which we report
here a definition and two theorems.

DEFINITION A.1 ([31]). We introduce the following matrices:
• Πn = Πn1

⊗ Πn2
⊗ · · · ⊗ Πnd

with Πnk
, nk even, such that its j th column πj ,

j = 1, . . . , nk, is

πj =

{
e2j−1, j = 1, . . . , nk/2,

e2(j−nk/2), j = nk/2 + 1, . . . , nk,

where ej , j = 1, . . . , nk, is the j th column of the identity matrix of dimension nk.
• Un = Un1

⊗ Un2
⊗ · · · ⊗ Und

with Unk
such that

Unk
=

[
Y⌈nk/2⌉

I⌊nk/2⌋

]
.

THEOREM A.2 ([31, Remark 4]). Assume that n = (n1, . . . , nd) with nk = 2mk,mk ∈
N. Then, {

ΠnUnTn(f)UnΠ
T
n

}
n
∼GLT

[
f∗ 0
0 f

]
.

THEOREM A.3 ([31, Theorem 3.3]). Let {Tn(f)}n , Tn(f) ∈ Rdn×dn with nk =
2mk,mk ∈ N, be the multilevel Toeplitz sequence associated with f ∈ L1

(
[−π, π]d

)
, let

{YnTn(f)}n be the corresponding sequence of flipped multilevel Toeplitz matrices, and let
{Pn}n be a sequence of Hermitian positive definite matrices such that {Pn}n ∼GLT h, and{
ΠnUnPnUnΠ

T
n

}
n
∼GLT h · I2 with h : [−π, π]d → C and h ̸= 0 a.e. Then{

P−1
n YnTn(f)

}
n
∼λ

(
h−1g, [−π, π]d

)
.

We are now ready to prove Theorem 3.2, which we rewrite here to improve readability.
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THEOREM A.4. Let ε and τ be positive values such that ε ∈ (0, 1) and τ ∈ (0, π). Let
f ∈ L1([−π, π]2) be a bivariate function with real Fourier coefficients, periodically extended
to the whole real plane, and such that

(A.1)

{
|f(ϑ1, ϑ2)| > ε, if

∣∣ϑ21 + ϑ22
∣∣ < τ,

|f(ϑ1, ϑ2)| ≤ ε, otherwise,

and define

(A.2) gτ (ϑ1, ϑ2) =

{
|f(ϑ1, ϑ2)|, if

∣∣ϑ21 + ϑ22
∣∣ < τ,

1, otherwise.

Then

(A.3)
{
Cn(gτ )−1Y Tn(f)

}
n
∼λ ψ,

where

(A.4) ψ(ϑ1, ϑ2) =



1
|f |

 0 f(ϑ1, ϑ2)

f(ϑ1, ϑ2) 0

 , if
∣∣ϑ21 + ϑ22

∣∣ < τ,

 0 f(ϑ1, ϑ2)

f(ϑ1, ϑ2) 0

 , otherwise.

Proof. Since gτ is a strictly positive function, the matrices Cn(gτ ) are Hermitian positive
definite for all n. According to Theorem A.3, the spectral distribution (A.3) holds under the
assumptions

1. {Cn(gτ )}n ∼GLT gτ ;
2. {ΠnUnCn(gτ )UnΠ

T
n}n ∼GLT gτI2.

where Πn and Un are the permutation matrices reported in Definition A.1. In order to prove 1.
and 2., we state the following results:

• {Tn(gτ )}n ∼GLT gτ , which is a GLT property;
• {ΠnUnTn(gτ )UnΠ

T
n}n ∼GLT gτI2, which holds thanks to Theorem A.2;

• {Cn(gτ )− Tn(gτ )}n ∼GLT 0; see Remark A.5.
Combining the latter statements with the ∗-algebra property of GLT sequences, we deduce
that 1. and 2. hold. Hence,

{
Cn(gτ )−1Y Tn(f)

}
n
∼λ ψ and the proof is complete.

REMARK A.5. For brevity’s sake, in Section 2 we stated that Cn(f) is the Strang
preconditioner of Tn(f). This is true if f is a trigonometric polynomial for n large enough,
which is the case of the functions f related to the blurring operators that we are considering.
The Strang preconditioner might not be a feasible choice for general functions f ∈ L1; see
[15] for details. However, the Strang preconditioner that we consider for gτ is related to
the Strang preconditioner constructed from trigonometric polynomial. Indeed, this is the
procedure to construct the preconditioner:

1. from the trigonometric polynomial f find the eigenvalues of the Strang preconditioner
Cn(f);

2. set to 1 the eigenvalues that are equal to or less than ε;
3. construct the circulant matrix with the eigenvalues computed in Step 2.
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So, the eigenvalues of the circulant preconditioner are actually a uniform sampling of the
function gτ and hence the distribution {Cn(gτ )− Tn(gτ )}n ∼GLT 0 holds, where the notation
Cn(gτ ) is an abuse of notation since, in general, Cn(gτ ) is neither the Strang preconditioner
nor the circulant matrix generated by gτ , but it well-approximates both in the case where the
Fourier coefficients of gτ decay rapidly.

REMARK A.6. Thanks to the GLT theory, it is also possible to analyze the spectral
behavior of the preconditioned matrices Cn (|pα|)Y Tn(f). In the case where |pα| does not
vanish at any points, it is possible to mimic the proof of Theorem 3.2 replacing gτ with the
reciprocal of |pα|. Otherwise, in order to deduce the spectral distribution in formula (3.6), one
needs to study the matrix-sequence

{Cn (|pα|)Y Tn(f)− Cn(gτ )−1Y Tn(f)}n,

which is zero distributed in the GLT sense for a proper choice of α in relation to τ . The full
exposition of the proof for the vanishing case is omitted in this paper, since such a detailed
elaboration would necessitate extensive additional background material, diverging from the
core focus of this study.
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