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to the point of serving as a feasible substitute or comple-
ment for RCTs in decision-making [1]. Most statistical 
and ML methods are designed to establish an associa-
tion map between input (factors) and output (target) 
variables. However, such association maps are unable to 
identify potential latent factors that influence both inputs 
and outputs, making their use limited to determin-
ing causal links. For instance, several studies reported a 
higher prevalence of lung cancer among coffee drinkers 
compared to non-drinkers. However, since many coffee 
drinkers also smoke, the observed association between 
coffee drinking and lung cancer is confounded by smok-
ing, the true cause of the disease [2].

Causal inference from observational data finds applica-
tion across various fields, with notable impact observed 
in domains such as healthcare, medicine, political and 
economic sciences, and social sciences. In healthcare 
and medical research, causal inference enables the iden-
tification of heterogeneous treatment effects and the 
formulation of personalized treatment strategies. By 
incorporating individual-level data, genetic information, 
and ML techniques, the field of personalized medicine 
benefits from enhanced causal inference methodologies 
[3]. The critical role of causal inference extends to policy 
evaluation and intervention assessment, where advance-
ments in causal inference methods facilitate evidence-
based decision-making by rigorously evaluating policy 
effectiveness, estimating causal impacts, and compre-
hending unintended consequences. Additionally, the 
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Billions of data records are generated every day, facili-
tating the discovery of knowledge. Particularly, medical, 
epidemiological, and social science research has signifi-
cantly benefited from the vast amount of data available 
through sources such as medical records, easily attain-
able surveys, and social media platforms. This availabil-
ity has led to a significant increase in the popularity of 
observational studies and meta-analyses as complemen-
tary approaches of randomized controlled trials (RCTs). 
RCTs are considered as the gold-standard study design 
for decision-making. However, conducting RCTs may 
not always be feasible due to ethical concerns, significant 
costs, or time limitations. Traditionally, outcomes from 
observational studies are considered of less value than 
RCTs, mainly because the former are vulnerable to con-
founding and bias issues. Recently, novel developments 
in statistics and machine learning (ML) are driven the 
development of causal inference in observational studies 
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Abstract
Observational studies using causal inference frameworks can provide a feasible alternative to randomized 
controlled trials. Advances in statistics, machine learning, and access to big data facilitate unraveling complex 
causal relationships from observational data across healthcare, social sciences, and other fields. However, challenges 
like evaluating models and bias amplification remain.
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utilization of instrumental variables, regression dis-
continuity designs, and quasi-experimental approaches 
as methodological advancements further augment the 
understanding of complex social phenomena, policy 
impacts, and economic relationships [4, 5].

Broadly speaking, causal inference attempts to build 
data-driven models that can predict the effect of inter-
ventions on outcomes. Using observational data for 
causal inference is gaining momentum due to the conflu-
ence of factors such as the large amount of more com-
plex and richer data and advanced techniques from 
statistics and ML. In general, two frameworks exist for 
causal inference in observational studies, which are not 
necessarily mutually exclusive: the structural causal 
model (SCM) framework and the potential outcome 
framework (POF). The SCM framework relies on deter-
ministic, functional equations to construct directed acy-
clic graphs (DAGs) with variables as nodes and links as 
causal relationships and is particularly useful in identi-
fying unknown causal and confounding variables while 
estimating the actual effect of a given treatment. On the 
other hand, the POF framework (also known as the coun-
terfactual framework) examines outcomes that would 
have likely been observed had the treatment differed, 
representing the counterfactual or the missing outcome. 
Other frameworks such as instrumental variables, media-
tion analysis, and Bayesian networks are also noteworthy 
in causal inference research [6].

In recent years, there has been growing interest in 
combining multiple frameworks and approaches to 
improve causal inference. Integrating ideas from different 
frameworks can lead to more comprehensive and robust 
causal analyses. Additionally, the use of machine learn-
ing techniques and the exploration of new identifica-
tion strategies are areas that hold promise for advancing 
causal inference research [7]. Analysis of observational 
studies could benefit from the best of two worlds. ML 
methods can help identify confounding variables, handle 
high-dimensional data, and improve prediction accu-
racy, while causal inference provides interpretability and 
causal understanding. Integrating these fields can lead to 
more powerful and robust causal inference models [8].

Causal inference research is a dynamic field that con-
tinues to evolve. Numerous real-world scenarios entail 
complex systems comprising multiple interacting vari-
ables. Advances in causal inference are instrumental 
in unraveling causal relationships in such systems. The 
availability of large-scale datasets presents both oppor-
tunities and challenges for causal inference. The develop-
ment of scalable methods capable of efficiently handling 
large data sets while addressing biases, confounding, and 
selection effects constitute an active area of research. Fur-
thermore, efforts are being made to devise methodolo-
gies for extracting causal relationships from unstructured 

data and integrating them with structured data, thereby 
enhancing the depth of insights and broadening the 
applicability of causal inference from observational data.

However, causal inference with observational data 
is not free of challenges. For instance, causal inference 
models are hard to evaluate. If a causal link is found, 
still there is no clear mechanism to assess whether the 
link is real or not. The performance of associative data-
driven models can be assessed and compared easily since 
large data repositories are publicly available and widely 
used. However, this is not the case for causal inference, 
for which the lack of public benchmark data is one of 
the biggest problems it is encountered in their develop-
ment. There is also a lack of comparisons to non-causal 
methods in the literature [9]. It is also inevitable to make 
untestable assumptions, which could also contribute to 
bias amplification and harm the external validity when 
compared to non-causal counterparts [10].

As the field continues to advance, interdisciplinary col-
laborations, methodological innovations, and the integra-
tion of emerging technologies will continue to expand the 
frontiers of causal inference and its applications in vari-
ous domains. Nevertheless, challenges must be addressed 
for swift adoption in social and medical research.
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