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Abstract
1. Characterising changes in functional diversity at large spatial scales provides 

insight into the impact of human activity on ecosystem structure and function. 
However, the approach is often based on trait data sets that are incomplete and 
unrepresentative, with uncertain impacts on functional diversity estimates.

2. To address this knowledge gap, we simulated random and biased removal of data 
from three empirical trait data sets: an avian data set (9579 species), a plant data 
set (2185 species) and a crocodilian data set (25 species). For these data sets, 
we assessed whether functional diversity metrics were robust to data incom-
pleteness with and without using imputation to fill data gaps. We compared two 
metrics each calculated with two methods: functional richness (calculated with 
convex hulls and trait probabilities densities) and functional divergence (calcu-
lated with distance- based Rao and trait probability densities).

3. Without imputation, estimates of functional diversity (richness and divergence) 
for birds and plants were robust when 20%– 70% of species had missing data for 
four out of 11 and two out of six continuous traits, respectively, depending on 
the severity of bias and method used. However, when missing traits were im-
puted, functional diversity metrics consistently remained representative of the 
true value when 70% of bird species were missing data for four out of 11 traits 
and when 50% of plant species were missing data for two out of six traits. Trait 
probability densities and distance- based Rao were particularly robust to missing-
ness and bias when combined with imputation. Convex hull- based estimations of 
functional richness were less reliable. When applied to a smaller data set (croco-
dilians, 25 species), all functional diversity metrics were much more sensitive to 
missing data.

4. Expanding global morphometric data sets to represent more taxa and traits, and 
to quantify intraspecific variation, remains a priority. In the meantime, our results 
show that widely used methods can successfully quantify large- scale functional 
diversity even when data are missing for half of species, provided that missing 
traits are estimated using imputation. We recommend the use of trait probability 
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1  |  INTRODUC TION

Trait- based approaches have emerged as an effective tool for ad-
dressing pressing questions in ecology and conservation (Petchey 
& Gaston, 2006) and have been used to monitor ecosystem ser-
vice delivery (Hevia et al., 2017), understand threats to ecosystem 
processes (Donoso et al., 2020) and forecast changes in ecosystem 
functioning (Şekercioǧlu et al., 2004). In some cases, assessments of 
functional diversity provide greater explanatory power than com-
plementary measures of diversity such as species richness (Cadotte 
et al., 2011; Wilkes et al., 2020), in part due to the mechanistic link 
between traits and ecosystem functions (Petchey & Gaston, 2006). 
Assessing functional diversity can contribute advances neces-
sary for tackling human- induced biodiversity loss (Mason & de 
Bello, 2013) through producing early warning systems of ecosystem 
collapse (Frainer et al., 2021, although see O'Brien et al., 2022) and 
enhancing prioritisation of conservation efforts (Carmona, Bueno, 
et al., 2021; Carmona, Tamme, et al., 2021; Cooke et al., 2019). 
Research into how functional diversity has varied across time and 
space could yield fruitful insights into ecosystem responses to global 
change (Green et al., 2022; Petchey & Gaston, 2006). Given the po-
tential and versatility of trait- based approaches, ensuring functional 
diversity analyses are appropriately applied is of great importance 
(Blonder et al., 2018).

Traditionally, assessments of functional diversity have been 
carried out on local community scales (Díaz & Cabido, 2001); only 
recently has the accumulation of large trait data sets enabled appli-
cation on continental to global scales (Etard et al., 2020; Migliavacca 
et al., 2021). Large- scale trait analyses provide unique opportunities 
that complement those of local analyses. Integration of functional 
diversity across scales (Carmona et al., 2016), inclusion of species 
overlooked by local studies (such as migratory species; Somveille 
et al., 2013) and identification of synergies and differences in the way 
humans impact natural ecosystems (Toussaint et al., 2021) provide 
a global perspective on biodiversity loss, needed for international 
policy development (Santini et al., 2021; Scholes & Biggs, 2005).

Large- scale analyses come with their own set of challenges. 
Studying functional diversity at continental to global scales across 
broad taxonomic groups requires relying on data that are rarely 
complete (Toussaint et al., 2021), introducing uncertainty into in-
ferences obtained (Richter et al., 2021). For example, while 80% of 
plant species were represented in the largest plant trait data set (the 
TRY database) at the time of writing (Kattge et al., 2020), only 17% of 
species had data for 10 or more traits (Tobias et al., 2022), less than 
1% had complete data across the six fundamental traits that were 

used to characterise the global spectrum of plant form and func-
tion (Díaz et al., 2016), and this percentage dropped to 0.1% when 
fine- root traits (characteristics of roots less than 2 mm of diameter, 
such as root nitrogen concentration and tissue density, that affect 
acquisition of soil resources) were also considered (Carmona, Bueno, 
et al., 2021; Carmona, Tamme, et al., 2021). Etard et al. (2020) found 
that mean trait completeness across seven ecological traits was only 
47% for amphibians and 46% for reptiles. Trait data availability is 
further restricted in invertebrates, fungi, algae, protozoa and pro-
karyotes (Gallagher et al., 2019). In some groups, the data availability 
is better. Etard et al. (2020) found that a mean of 89% of mammals 
and 84% of birds were represented (across seven ecological traits). 
A recent release of a new data set, AVONET, sees 95%– 99% of bird 
species represented (with some variation by trait and taxonomy) for 
11 morphological traits (Tobias et al., 2022) with ecological and geo-
graphical data also available for most species. However, even when 
a small proportion of species are missing data, the available infor-
mation may not be representative of the true diversity (González- 
Suárez et al., 2012). For most taxonomic groups, data are not missing 
at random and are biased according to morphological and ecological 
traits as well as geographical factors such as range size (González- 
Suárez et al., 2012; Sandel et al., 2015; Tyler et al., 2012). This 
may affect the accuracy of functional diversity metrics calculated  
(Sandel et al., 2015), potentially leading to spurious or misleading 
results (Pincheira- Donoso & Hodgson, 2018) and impeding the  
application of trait- based methods (Etard et al., 2020).

Methods to estimate functional diversity can now be ap-
plied to large- scale trait databases (Blonder et al., 2018; Carmona 
et al., 2016), but there is uncertainty over how these methods re-
spond to missing data, particularly when data are not missing at 
random (Petchey & Gaston, 2006). This lack of understanding risks 
making unfounded assumptions that data are representative (Tyler 
et al., 2012) and impedes correct application of functional diver-
sity methods (Pakeman, 2014). Where continuous trait data are 
available, functional diversity is most commonly assessed using 
three methods: distance- based methods, convex hulls and probabi-
listic hypervolumes (Mammola et al., 2021). Using these methods, 
distinct aspects of functional diversity can be described including 
richness (the total volume of trait space occupied by an assemblage) 
and divergence (the variance in traits of biological units in an as-
semblage; Mason et al., 2005). A few studies have quantified sensi-
tivity to missing data at local scales using distance- based methods 
(Pakeman, 2014; Richter et al., 2021). However, to our knowledge, 
no one has quantitatively compared methods spanning conceptual 
frameworks (Mammola et al., 2021). This is urgently needed because 

densities or distance- based Rao when working with large incomplete data sets 
and filling data gaps with imputation.

K E Y W O R D S
bias, functional diversity, incomplete, missing, trait data
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local- scale sensitivity and bias may differ substantially from those 
that occur at large scales and sensitivity may differ when using mul-
tidimensional methods.

The best approach for dealing with missing data is debated 
(Taugourdeau et al., 2014). One approach involves removing all spe-
cies with missing data, known as complete case analysis (Nakagawa 
& Freckleton, 2008). Alternatively, missing data can be imputed. 
While, in some instances, complete case analysis can outperform 
imputation (Johnson et al., 2021), research has also documented 
the danger of introducing bias into the results, as data are often 
not missing at random (Nakagawa & Freckleton, 2008). The perfor-
mance of different imputation methods has been evaluated in sev-
eral recent studies (Johnson et al., 2021; Penone et al., 2014) that 
collectively identify most reliable methods, and for trait data sets, 
agree on the value of using phylogenetic information to improve 
accuracy (Debastiani et al., 2021). However, whether imputation is 
needed or valuable when estimating functional diversity remains 
largely unexplored.

Here, we test how data missingness and bias affect estimation of 
functional diversity metrics using both complete case analysis and 
imputation and provide a protocol with recommendations for esti-
mating functional diversity when trait data are missing. Our tests 
addressed three goals: (1) quantify changes due to missing and bi-
ased data in two types of diversity metrics: functional richness and 
functional divergence, each estimated with two methods; (2) deter-
mine whether data imputation methods reduce errors and biases in 
estimated metrics; and (3) identify the degree of missingness and 
bias permissible when quantifying large- scale functional diversity. 
In contrast with many previous studies that use simulated data sets 
(Johnson et al., 2021; Kim et al., 2018), here we take advantage of 
the recently released near- complete bird trait data set, AVONET (To-
bias, 2021), near- complete crocodile data set (Griffith et al., 2022) 
and also analysed a partial plant data set (Díaz et al., 2022). Using 
nonsimulated data sets offers a more realistic representation of  
empirical diversity analyses, where outliers and non- normal distribu-
tions are likely to be present (Junker et al., 2016). Finally, we provide 
direct recommendations on how to proceed when using incomplete 
trait data sets to assist methodological decision- making in functional 
diversity analyses.

2  |  MATERIAL S AND METHODS

2.1  |  The complete data sets

Using the AVONET data set of avian morphological traits (To-
bias, 2021), we investigated the impact of data missingness and 
bias in estimates of functional richness and functional divergence. 
In this analysis, we followed the BirdTree taxonomy and phylogeny 
(Jetz et al., 2012). From the 9993 species recognised in BirdTree, 
empirical data are missing for one or more traits for 410 species, 
which were removed from the analysis. As this is <5% of species, 
this is not expected to have a considerable impact on our findings. 

All morphological traits were included: beak length (culmen), beak 
length (nares), beak width, beak depth, tarsus length, wing length, 
secondary length, tail length, body mass, hand wing index and 
Kipps distance (for additional details on how traits were measured, 
see Tobias et al., 2022). All trait values were log10- transformed and 
standardised. While we aimed to use all available data, after initial 
exploration, we removed the four species of kiwis (Apterygidae) rec-
ognised in the BirdTree phylogeny (Jetz et al., 2012) as they were 
extreme outliers with respect to morphological traits (Figure S1, 
Supplementary Information Section 1, Matthews et al., 2022). Con-
vex hulls were particularly sensitive to outliers so retaining the kiwi 
species may have made convex hulls appear particularly sensitive to 
missing data (Figure S2, Supplementary Information Section 1), and 
it would have been unclear whether this result was generalisable to 
other data sets without outliers. For this reason, kiwi species were 
removed. The final complete data set included data for 9579 bird 
species.

We also analysed a near- complete crocodilian data set (Griffith 
et al., 2022) and partially complete plant data set (Díaz et al., 2022) 
to test the generalisability of our findings. Details of these data sets, 
their analyses and findings are described in Supplementary Informa-
tion Section 2.

2.2  |  Overview

From the complete avian data set, we created 2800 data sets by 
removing data under all permutations of seven degrees of missing-
ness, four degrees of bias and two ways of dealing with missing data 
(complete case analysis and imputation), with 50 replicates for each 
permutation (for each replication, data were removed at random 
under stipulated missingness and bias conditions). Most functional 
diversity metrics rely on the assumption that traits are uncorrelated, 
which is often not the case. Principal component analysis is one way 
to overcome trait co- correlation and provides uncorrelated axes that 
maximise variance present in the original data set. Through doing 
this, principal component analysis provides a means to reduce the 
number of dimensions in the data, which is essential when using 
large trait data sets as computation times become untenable with a 
large number of dimensions. Principal component analysis was car-
ried out after imputation (or removal of species with incomplete data 
for complete case analysis), and before functional diversity calcu-
lation. For every data set, we calculated four metrics: convex hull 
(functional richness), distanced- based Rao (functional divergence) 
and trait probability densities (functional richness and divergence). 
Figure 1 provides a schematic overview of the methodology.

2.3  |  Missingness

Missingness refers to the percentage of species from which data 
were removed. We applied seven degrees of missingness, from 
10% to 70%, at 10% intervals. We also explored two scenarios 
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F I G U R E  1  Summary of the method of this analysis. Ovals indicate data, where white ovals indicate data obtained from a published data set 
(AVONET) and green ovals indicate data that had been processed in some way (for example, data sets with simulated data removal, or principal 
components calculated from data sets with simulated data removal). Blue ovate rectangles and purple rectangles indicate processing steps of the 
analysis. Purple rectangles are distinct from blue ovate rectangles as they refer to a process that has been described in more detail in the text.

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14202 by T
est, W

iley O
nline L

ibrary on [09/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  5Methods in Ecology and EvoluonSTEWART et al.

considering the number of traits missing data for each species. The 
main text shows results based on removing data from four out of 
11 traits for each species with data removal (chosen at random).  
Supplementary Information Section 3 shows results based on  
removing values from seven out of 11 traits.

2.4  |  Bias

We emulated a commonly observed bias in trait data missing-
ness, wherein species with lower body masses are more likely 
to be missing data (Garamszegi & Møller, 2012; González- Suárez 
et al., 2012; Tyler et al., 2012). Bias was applied by increasing the 
probability that data were removed from species with a below me-
dian body mass with four scenarios: no bias— 50% probability, low 
bias— 60% probability, medium bias— 70% and high bias— 80%. This 
means that in a low bias scenario, there was 60% probability that 
data were removed from species with below median body mass, 
and 40% probability that data were removed from species with 
above median body mass. The extent of bias in these scenarios 
was chosen based on analysis of bias in historic accumulation of 
data in large- scale bird trait data sets (Table S11, Supplementary 
Information Section 4).

2.5  |  Imputation

We tested two ways of dealing with the generated incomplete data 
sets: (1) removal of species with missing data (complete case analy-
sis) and (2) filling data gaps through imputation. We used missForest 
imputation, implemented through the missForest (Stekhoven & Bühl-
mann, 2012), due to its demonstrated accuracy (Hong & Lynn, 2020; 
May et al., 2023; Penone et al., 2014), and fast computation times. 
Accounting for phylogenetic relatedness between species can im-
prove imputation accuracy (May et al., 2023; Penone et al., 2014). 
One way of including phylogenetic data is through eigenvectors 
(Debastiani et al., 2021). Phylogenetic eigenvectors are calculated 
by conducting Principal Coordinates Analysis on pairwise phyloge-
netic distances among species. The first 10 phylogenetic eigenvec-
tors were used as predictor variables in the missForest imputation 
procedure, as recommended by Penone et al. (2014), alongside func-
tional traits. Phylogenetic distances were calculated from a maxi-
mum clade credibility tree from the first 1000 trees provided by Jetz 
et al. (2012).

We assessed imputation accuracy in each missingness and 
bias scenario (Figure S12, Supplementary Information Section 5).  
Because body mass was expected to have high phylogenetic signal, 
biased removal was expected to affect imputation accuracy. Clades 
that were closely related to large species may have been more likely 
to have complete trait data than clades closely related to small spe-
cies, which could increase accuracy of phylogenetic imputation for 
large species. We assessed whether this was the case by testing the 
impact of biased data removal on tree imbalance (Figures S13 and 

S14, Supplementary Information Section 6), and tree imbalance on 
imputation accuracy (Figure S15, Supplementary Information Sec-
tion 6). We also examined the impact of using different imputation 
methods on estimations of functional diversity using a reduced data 
set (the Tyrannidae family) and compared imputation methods with 
and without phylogenetic information (Supplementary Informa-
tion Section 7).

2.6  |  Principal component analysis

For each data set, we carried out principal component analysis. Vari-
ation in bird morphology can be meaningfully explained in a small 
number of dimensions (Pigot et al., 2020) so we used only the first 
three principal components that collectively explained 90% of total 
variance for the complete data set. We repeated the analysis using 
two, instead of three principal components (Figures S3 and S4,  
Tables S1 and S2, Supplementary Information Section 2), and found 
that conclusions were consistent regardless of the number of princi-
pal components used.

Previous research has analysed the impact of data set incom-
pleteness on principal component analysis (Dray & Josse, 2015). 
Here, we found that carrying out principal component analysis on 
incomplete data sets did not introduce a substantial component of 
error (Supplementary Information Section 8). We compared results 
with and without use of principal component analysis, presented in 
Supplementary Information Section 2 (Figure S5, Tables S3– S6).

2.7  |  Functional diversity estimation

For each of the 2801 data sets, we calculated four metrics, two es-
timating functional richness and two estimating functional diver-
gence (Figure 1, Table 1). There is a wealth of functional diversity 
metrics available which meant that comparing all their responses 
to incomplete data was untenable. As such, we chose to compare 
metrics which are both widely used and span nondimensional and 
multidimensional frameworks (Mammola et al., 2021). We did not 
compare functional evenness metrics because current metrics are 
unreliable (de Bello et al., 2021; Olusoji et al., 2023). Functional 
richness is a measure of the total variation of traits in a community 
(also described as the volume of trait space occupied, Mammola 
et al., 2021). We calculated functional richness using convex hull (a 
multidimensional, nonprobabilistic method that calculates the mul-
tivariate range of species traits in trait space [Cornwell et al., 2006; 
Villéger et al., 2008]) and trait probability densities (a multidimen-
sional probabilistic method based on probability density distribution 
of species traits within trait space, Carmona, 2019). Figure 2 shows 
how convex hull and trait probability densities estimate functional 
richness for principal component values of the complete avian data 
set (shown in two dimensions to facilitate visualisation). Functional 
divergence is a measure of the dispersion of trait space occupation 
(how far species are from each other, or the centre of trait space 
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[Mouchet et al., 2010]). We calculated functional divergence using 
Rao, which calculates the mean dissimilarity between individu-
als in a community (nondimensional, [Botta- Dukát, 2005; de Bello 
et al., 2016; Rao, 1982]), and trait probability densities, which calcu-
lates the mean distance of the distribution of abundances of species 
from the centre of the portion of trait space occupied by the commu-
nity (Carmona, 2019). Distance- based methods (Rao) and convex hull 
are the methods underlying the widely used FD package (Laliberté 
& Legendre, 2010). We compared distance- based methods and con-
vex hull to a more recent approach using probabilistic hypervolumes, 
implemented through trait probability densities in the package TPD 
(Carmona, 2019). An alpha value of 0.95 (the default value describ-
ing the proportion of the probability density distribution included in 
functional richness and functional divergence calculations) was used 
for TPD calculations. We calculated functional diversity of the bird 
assemblage as a whole, using presence only data (no information on 

abundance). We did not consider intraspecific functional diversity or 
calculate overlap between taxonomic or ecological groups.

2.8  |  Statistical analysis

To determine the impact of missingness, bias and how missing data were 
handled (complete case analysis or imputation), we calculated the devia-
tion in functional diversity metrics from the true value calculated from 
the full data set, for each data set replicate i for each trait method m as,

where Rdm is functional diversity of the complete data set estimated 
using metric m and Rdi

m
 is the functional diversity of replicate data set i 

estimated using the same metric m.

(1)Dev
i

m
=

Rd
i

m
− Rdm

Rdm

× 100

F I G U R E  2  (a) Principal component values for all bird species in the complete avian data set, showing how (b) trait probability densities 
richness and (c) convex hull delineate functional space occupation. Shown in two dimensions (two principal components) to enable 
visualisation. The analyses described in the main text were carried out in three dimensions (three principal components). All silhouettes 
from Phylopic. Left to right: Leptoptilos javanicus (Michael Keesey, CC BY- SA 3.0), Struthio camelus (Darren Naish and Michael Keesey, 
CC BY- SA 3.0), Buceros (Ferran Sayol, CC0 1.0), Pelecanoides urinatrix (Louis Ranjard, CC BY- SA 3.0), Menura (Michael Keesey, CC0 1.0), 
Casuarius casuarius (Ferran Sayol, CC0 1.0), Sterna dougallii (Sharon Wegner- Larsen, CC0 1.0), Emberiza (Ferran Sayol, CC0 1.0), Atlantisia 
rogersi (there was no silhouette of Atlantsia rogersi so a silhouette of Gallirallus australis was used instead, Michael Keesey, CC BY- SA 3.0), 
Mellisuga helenae (Steven Traver, CC0 1.0), Troglodytes hiemalis (Andy Wilson, CC0 1.0).

TA B L E  1  Methods used for quantifying functional diversity. For convex hull and trait probability densities (TPD), functional space is built 
using the function named in ‘R function (functional space)’, then functional diversity is calculated using the function named in ‘R function 
(functional diversity)’.

Method Metric Description
R function (functional 
space) R function (functional diversity)

Distance- 
based

Functional 
divergence

Nondimensional n.a. Melodic (divergence) de Bello et al. (2016)

Convex 
hull

Functional 
richness

Binary hypervolume (multidimensional) BAT::hull. build Cardoso 
et al. (2015)

BAT:: hull. alpha (richness) Cardoso 
et al. (2015)

TPD Functional 
richness and 
divergence

Probabilistic hypervolume 
(multidimensional)

TPD:: TPDs 
Carmona (2019)

TPD:: REND (richness and divergence) 
Carmona (2019)
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We then fitted a multiple generalised linear regression using 
a gamma distribution to explain absolute Dev values (|Dev|) as a 
function of missingness (continuous variable), bias (ordered factor), 
missing data handling (binary variable with values: complete- case 
and imputation) and the functional diversity method (categorical 
variable). Absolute values of deviation (|Dev|) were used rather 
than raw values of deviation (Dev) to facilitate interpretation of 
pairwise comparisons of estimated marginalised means. If raw de-
viation values (Dev) were used, a positive contrast in estimated 
marginalised means could indicate reduced underestimation of 
functional diversity under a particular condition (for example 
when using one metric over another), or increased overestimation, 
presenting an ambiguity that would hinder interpretation of re-
sults. When using absolute deviation, positive contrasts indicated 
more severe deviation in functional diversity values from true 
values of one condition compared with another. The distribution 
of absolute deviation values was right skewed, and when using a 
linear model, residuals were non- normally distributed and there 
was evidence of heteroscedasticity (Figure S20, Supplementary 
Information Section 9). As such a generalised linear model was 
fitted using a gamma distribution with an inverse link function. 
This gave residuals that were closer to a normal distribution (al-
beit still deviating slightly from normal distribution) and removed 
heteroscedasticity (Figure S21, Supplementary Information Sec-
tion 9). The model was fitted using the glm function (family = Gam-
ma(link=”inverse”)) in base R version 4.1.2 (R Core Team, 2021) 
with all predictor combinations and their interactions. We eval-
uated the model using a Type III Analysis of Variance (ANOVA; 
Anova function in library car [Fox & Weisberg, 2019]), and signif-
icance was assessed with Wald tests. The impact of using differ-
ent metrics and complete case analysis or imputation on absolute 
deviation was analysed using estimated marginal means (library 
emmeans [Lenth, 2022]). Custom contrasts were used to compare 
absolute deviations with and without imputation, and compare ab-
solute deviations using different metrics (for complete case and 
with imputation separately). Contrasts were compared across all 
bias scenarios. p values were adjusted using the Šidák correction.

Permissible levels of missingness were defined as those where 
the absolute deviation in estimated functional diversity (|Dev|) was 
<10% for all data set replicates (based on observed values of abso-
lute deviation rather than model output).

3  |  RESULTS

3.1  |  Overview

Functional diversity estimates from incomplete avian data sets de-
viated from true values (calculated with the complete data set) by 
between −48% and 31%. Deviations were affected by all tested pre-
dictors and their interactions (Table 2, R2 = 0.82). Significant inter-
actions among predictors demonstrate the complexity of response 
to incomplete data, but by and large, functional diversity estimates 

deviated more from the true values at greater levels of missing-
ness and bias (Figure 3). Dimensionality and whether raw traits or 
principal components were used, generally had a small impact on 
functional diversity metric response to incomplete data, and was 
less important than choice of functional diversity metric and how 
missing data were handled (imputation or complete case analysis, 
Tables S1, S3 and S4, Supplementary Information Section 2).

3.2  |  Metric response to incomplete data

When applied to the avian data set, regardless of bias, or the way of 
handling missing data (imputation or complete case analysis), con-
vex hull had greater absolute deviations (|Dev|) than TPD richness, 
and distance- based Rao had greater absolute deviations than TPD 
divergence (Table S15a, Supplementary Information Section 10). 
The only exception was that convex hull and TPD richness did not 
differ in absolute deviation when there was high bias in data removal 
and complete case analysis was used (Table S15a, Supplementary 
Information Section 10). Convex hull had greater absolute deviations 
(|Dev|) than TPD richness, and distance- based Rao had greater abso-
lute deviations than TPD divergence even when the analyses were 

TA B L E  2  Type III Analysis of Variance (ANOVA) table of a 
generalised linear model explaining absolute deviation (|Dev|) in 
avian functional diversity based on missingness, bias, functional 
diversity metric and way of handling missing data (and their 
interactions). Significance of predictors was tested with a Wald 
test. Rows are ordered by the χ2 value, with the strongest predictor 
(Metric) at the top. All predictors apart from ‘Imputation: Bias’ and 
‘Imputation: Missingness: Bias’ explained a significant proportion of 
variance (p value <0.001).

Predictor
Degrees of 
freedom χ2 p value

Intercept 1 1600.6 <0.001

Metric 3 1145.8 <0.001

Imputation: Metric 3 1023.6 <0.001

Missingness 1 973.7 <0.001

Metric: Bias 9 567.7 <0.001

Imputation: Metric: 
Missingness

3 517.8 <0.001

Metric: Missingness 3 316.4 <0.001

Metric: Missingness: Bias 9 286.6 <0.001

Imputation: Metric: Bias 9 187.0 <0.001

Imputation 1 182.9 <0.001

Imputation: Missingness 1 87.3 <0.001

Imputation: Metric: 
Missingness: Bias

9 74.6 <0.001

Bias 3 50.3 <0.001

Missingness: Bias 3 37.0 <0.001

Imputation: Bias 3 2.7 0.44

Imputation: Missingness: Bias 3 2.1 0.55
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8  |   Methods in Ecology and Evoluon STEWART et al.

applied on two principal components instead of three, and on raw 
traits (body mass and hand wing index) instead of principal compo-
nents (Table S2, Table S5, Table S6, Supplementary Information Sec-
tion 2).

When applied to the plant data set with imputation, absolute 
deviation did not differ significantly between TPD richness and 
convex hull, and between TPD divergence and distance- based Rao 
(Figure S6, Table S9, Supplementary Information Section 2). Under 
complete case analysis, TPD richness resulted in lower absolute de-
viation than convex hull, and TPD divergence resulted in lower ab-
solute deviation than distance- based Rao. For the crocodilian data 
set, TPD richness resulted in lower absolute deviation than convex 
hull but there was no significant difference between TPD divergence 
and distance- based Rao, regardless of whether imputation or com-
plete case analysis was used (Figure S6 and Table S10, Supplemen-
tary Information Section 2).

Whether missing data resulted in over-  or underestimation of 
functional diversity was variable, and dependant on the method 
used and how missing data were handled. When species with missing 
data were removed, avian functional richness was underestimated 

with convex hull but overestimated with TPD. When using impu-
tation, functional richness was underestimated with both convex 
hull and TPD. Distance- based methods consistently overestimated 
avian functional divergence when species with missing data were  
removed, whereas TPD divergence was slightly underestimated 
functional divergence. With imputation, the effect of missing data on 
estimates of functional divergence was negligible for both distance- 
based methods and TPD (Figure 3). The direction of the response 
to missing data when using TPD richness and TPD divergence was 
also dependant on the data set, as TPD richness underestimated 
functional richness and TPD divergence overestimated functional 
divergence when applied to crocodilians (Figure S6, Supplementary 
Information Section 2, opposite to the effect when applied to the 
avian data set, Figure 3). Whether missing data resulted in over-  or 
underestimation of TPD richness was dependant on the bias sce-
nario when using the plant data set.

Consistency within replicates (for the same level of missingness 
and bias) was variable among methods. Deviation was less predict-
able (more variation among replicates) when using complete case 
analyses, and when using convex hull to estimate functional richness.

F I G U R E  3  Deviation in (a) avian 
functional richness and (b) avian 
functional divergence for incomplete data 
sets compared with the complete data 
set given varying levels of missingness 
(percentage of species with missing 
data for four out of 11 traits) and bias 
(greater probability of data missing from 
small- sized species). Lines represent 
the mean with shaded areas showing 
1 SD from the 50 replicates analysed 
for each combination. Top panels (in a 
and b) show results for complete case 
analyses (only species with all trait data 
analysed), and bottom panels show results 
for when missing values were imputed 
using random forest implemented with 
the missForest R function. Functional 
diversity was calculated using four 
metrics: convex hull (richness), trait 
probability densities (TPD) richness, 
distance- based Rao (divergence) and TPD 
divergence.
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3.3  |  The relative performance of complete case 
analysis and imputation

Absolute deviations were usually greater and more clearly affected 
by bias when only species with no missing data were analysed (com-
plete case analysis) highlighting the benefit of imputation (Figure 3, 
Table S15b, Supplementary Information Section 10). In the case of 
avian distance- based Rao, the absolute deviation with imputation 
was on average 5.2 times smaller than in the complete case scenario, 
and for convex hull, the absolute deviation with imputation was on 
average 1.9 times smaller than then complete case scenario. As an 
exception, the lowest absolute deviations when using TPD richness 
occurred when data were missing at random and complete case anal-
ysis was used (Table S15b, Supplementary Information Section 10).

If imputation was used, avian functional divergence from 
distance- based Rao was never overestimated by more than 6% and 
functional divergence from TPD was never overestimated by more 
than 3% (versus 31% overestimation and 5% underestimation in the 
complete case scenario, respectively). TPD divergence never devi-
ated from the true values by more than 5% regardless of bias, miss-
ingness or the way of handling missing data (imputation or complete 
case analysis). With imputation, functional richness from TPD was 
never underestimated by more than 10% (versus 19% overestima-
tion in the complete case scenario). Functional richness from convex 
hull was underestimated by up to 48% without imputation and 24% 
with imputation. Metrics estimated using distance- based and TPD 
methods were insensitive to bias when imputation was used.

Imputation reduced absolute deviation relative to complete 
case analysis when applied to the crocodilian data set (Table S10, 

Supplementary Information Section 2). For plants, however, the  
results were more variable, as for TPD richness and TPD divergence, 
complete case analysis resulted in lower absolute deviation than im-
putation (Table S9, Supplementary Information Section 2). When ap-
plied to the Tyrannidae family, choice of imputation method was not 
a significant explanatory variable of imputation accuracy, which was 
dependent on missingness, bias and their interaction (Figure S17 and 
Table S12, Supplementary Information Section 7). Despite this, the 
choice imputation method did affect estimates of functional diver-
sity. When applied to the Tyrannidae family, complete- case analysis 
resulted in greater absolute deviation than imputation for all metrics 
and imputation methods, aside from TPD richness where missForest 
(with and without phylogenetic information) resulted in greater ab-
solute deviation than complete case analysis (Figures S18 and S19, 
Table S14, Supplementary Information Section 7).

3.4  |  Missingness and bias permissible in trait 
data sets

When using complete case analysis with the avian data set, the ex-
tent of missing data permissible was dependant on the bias scenario 
and method, with biased data removal resulting in lower missingness 
permissible for all metrics other than TPD divergence. Functional di-
vergence from TPD was extremely robust to missing and biased data 
and did not deviate by more than 10% from true values even at 70% 
missingness, regardless of whether complete case analysis or impu-
tation was used. Convex hull was much less reliable with very lim-
ited levels of missing data permissible (Figure 4). Lower missingness 

F I G U R E  4  Maximum missingness 
permissible (maximum missingness where 
all functional diversity values fell within 
+/− 10% of functional diversity of the 
complete data set) for (a) avian functional 
richness and (b) avian functional 
divergence, with four degrees of bias. 
Functional diversity was calculated using 
convex hull (richness), trait probability 
densities (TPD) richness, distance- based 
Rao (divergence) and TPD divergence. 
Results are shown for complete case 
analysis (darker colour bars) and for 
imputed data sets (lighter colour bars).
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10  |   Methods in Ecology and Evoluon STEWART et al.

was permissible when seven out of 11 (rather than four out of 11) 
traits were removed except for functional divergence from TPD (Fig-
ure S9, Supplementary Information Section 3).

For plants, if imputation was used functional divergence could 
be reliably estimated with up to 70% missingness regardless of bias 
scenario or whether distance- based Rao or TPD divergence was 
used. When calculating plant functional richness with imputation, 
the maximum missingness permissible was dependant on bias sce-
nario; 70% missingness was permissible at random and low bias, but 
at medium bias 60% missingness was permissible and at high bias 
50% missingness was permissible. For crocodilians, the missingness 
permissible rarely exceeded 10%, regardless of metric, imputation 
or bias scenario.

Overall, these results indicate that when using imputation and 
a large trait data set, TPD richness, TPD divergence and distance- 
based Rao (divergence) can be robustly estimated even with high 
data missingness (up to 50% to 70% given high trait coverage).

4  |  DISCUSSION

Our results indicate that metrics of functional richness and diver-
gence can be estimated with relative accuracy even with incomplete 
data sets. From the methods we tested, we recommend estimat-
ing functional richness with TPD, and while TPD outperformed 
distance- based Rao, both were reliable for calculating functional 
divergence. We also recommend using imputation as we found that 
imputing missing trait data reduced deviations in functional diver-
sity metrics to <10%. This finding is promising for the application 
of large- scale trait analyses. In global analyses, complete trait infor-
mation is rare, especially as the number of traits used increases to 
provide a more comprehensive assessment of functional diversity. 
As such many studies rely on imputation, but the impact of this de-
cision is often questioned. Our findings show that imputation can 
be an effective way for accounting for incomplete data, and in the 
avian and plant data sets greatly reduced errors in functional di-
versity estimation compared to removing species with incomplete 
data (see Table 15b, [Supplementary Information Section 11], and 
Table S9 [Supplementary Information Section 2]). Our results sug-
gest that given observed levels of missing data for many taxa (Etard 
et al., 2020; Kattge et al., 2020; Tobias et al., 2022), current meth-
ods could be used to calculate functional diversity with reasonable 
accuracy, even when applied with a smaller number of dimensions 
and with raw traits instead of principal components (Figures S3– S5,  
Supplementary Information Section 2).

Despite the robustness of functional diversity metrics (aside 
from functional richness estimated using convex hull), careful con-
sideration is needed when interpreting functional diversity values, 
as some unexpected responses to incomplete data were observed. 
Functional richness is the volume of trait space occupied, so it is 
expected to shrink with data removal. While this was observed for 
convex hull, TPD richness increased with biased removal of spe-
cies when using complete case analysis on the avian data set. This 

counter- intuitive response is due to data- defined bandwidth selec-
tion during kernel density estimation of trait probability densities 
(see Supplementary Information Section 11 for detailed explanation) 
but was not observed when applied to plants or crocodilians. These 
results emphasise the need for null models and clear consideration of 
expectations when conducting functional diversity analyses (partic-
ularly when estimating functional richness). Outlining expectations 
and using null models ensures results are interpreted correctly and 
observed responses are due to the hypothesis being tested rather 
than an artefact of data availability or metric behaviour.

Our comparison of functional diversity methods revealed sensi-
tivities to missing data that were previously unreported. Convex hulls 
performed consistently worse than TPD richness, with low tolerance 
to missing data even when imputation was used. This suggests that 
when relying on incomplete data sets to quantify functional rich-
ness, using TPD (or similar approaches based on probabilistic hyper-
volumes [Blonder, 2018]) is advisable. This does not preclude value 
in convex hull approaches. Convex hulls are sensitive to changes 
that affect extreme trait values, so if a complete data set is avail-
able, they can provide an estimation of functional diversity, which 
is highly responsive to changes occurring in an ecosystem. Convex 
hull showed increased sensitivity relative to TPD when applied to a 
crocodilian data set or plant data set when species with incomplete 
data were removed, but similar sensitivity to incomplete trait data 
when applied to a plant data set with imputation (Figures S6 and S7, 
Supplementary Information Section 2). Our findings agree with oth-
ers that sensitivity to missingness and bias varies among methods  
(Pakeman, 2014) and attest to the robustness of distance- based 
metrics such as Rao (Pakeman, 2014; Richter et al., 2021). We also 
found that both functional divergence metrics, distance- based Rao 
and TPD, were particularly robust to incomplete data. TPD (di-
vergence and richness) and distance- based methods, if used with  
accurate imputation, can be applied to large- scale trait data sets with 
confidence, even at moderate- to- high levels of missingness and bias.

Our findings support the use of functional diversity metrics for 
analyses on large taxonomic and geographical scales in functional 
ecology. A good example of how functional diversity metrics can 
be applied is given by Sayol et al. (2021). Sayol et al. (2021) com-
piled trait data on extinct, extant and established alien bird species 
for nine oceanic archipelagos, using imputation to fill data gaps. 
They used hypervolumes to quantify functional diversity (Blonder 
et al., 2018) and revealed how alien species did not replace the func-
tional diversity lost to extinctions in these archipelagos. Using data 
from Sayol et al. (2021), we show how convex hull and TPD richness 
delineate functional space in this context, for the historic New Zea-
land assemblage with extinct birds, and the novel assemblage, with 
extant alien species, (Figure 5).

Imputation was generally effective for overcoming gaps and 
biases in incomplete data sets, even at extreme levels of missing-
ness and bias. This is in agreement with previous studies (Johnson 
et al., 2021; Penone et al., 2014; Swenson, 2014) and highlights the 
value of imputation when appropriately applied. When applied to 
birds, imputation was particularly effective at eradicating the signal 
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of bias. This is important given that bias in missing data are prev-
alent in large- scale data sets (González- Suárez et al., 2012; Sandel 
et al., 2015; Tyler et al., 2012) and the extent of bias is often un-
known (Tyler et al., 2012). Despite this, in some cases (when calcu-
lating avian functional richness with TPD with random or low bias in 
data removal or when calculating plant functional diversity with TPD 
richness or TPD divergence), imputation could lead to greater errors 
than complete case analysis (see also Johnson et al., 2021). There-
fore, while our results agree with others that random forest models 
(as implemented by the missForest R function) are an accurate im-
putation method for trait data (Johnson et al., 2021), care should 
be taken to ensure use of imputation is appropriate. Our findings 
regarding the utility of imputation are only applicable to continuous 
trait imputation, as the efficacy of categorical traits imputation was 
not explored (although see May et al., 2023), and to large trait data 
sets on the scale of hundreds or thousands of species rather than 
tens. The utility of imputation in tackling missing and biased data has 
been shown to depend on the correlation between traits, and extent 
of phylogenetic autocorrelation (Clavel et al., 2015). As there is a 
strong link between form and function in birds (Pigot et al., 2020), 
phylogenetically informed imputation methods are expected to be 
particularly reliable for this group. This is supported by the fact that 
performance of imputation relative to complete case analysis was 

more variable when applied to plants where phylogenetic correla-
tion of traits was expected to be lower (Table S9, Supplementary 
Information Section 2). Studies should assess imputation accuracy, 
through methods such as bootstrapping (Khan et al., 2019) and test-
ing the ability to locate species within trait space (Khan et al., 2019), 
to ensure imputation is adequately accurate for the desired appli-
cation. In addition, when data are only available for a small subset 
of taxa or traits, we recommend reducing the scope of the study to 
focus on a smaller group with better data availability.

Making an informed decision on how much missing data can 
be tolerated is one of the challenges of functional diversity analy-
ses. When using imputation and TPD or distance- based methods, 
we found up to 50% to 70% missingness was permissible under our 
criterion of functional diversity estimates falling within 10% of true 
values. However, the maximum missingness permissible was lower 
when using complete case analysis and was very low with convex 
hull functional richness. For smaller data sets (such as crocodilians, 
see Figure S7, Supplementary Information Section 2), when using 
less- well- defined phylogenies or when many dimensions are needed 
to quantify trait space, the maximum missingness permissible will 
likely be reduced. When using TPD richness and imputation, and 
removing seven out of 11 traits values rather than four, the maxi-
mum missingness permissible (where deviation of richness from true 

F I G U R E  5  (a) Principal component values of extant, extinct and established alien bird species of New Zealand archipelago, showing 
how (b) trait probability densities richness and (c) convex hull delineate functional space occupation for the historic assemblage with native 
extant and extinct species, and the novel assemblage, with native extant and alien extant species. Shown in two dimensions (two principal 
components) to enable visualisation. Sayol et al. (2021) used three dimensions (three principal components) and hypervolumes (probabilistic 
hypervolume method, Blonder et al., 2018) to quantify functional richness. Trait data were obtained from the first imputation data set of 
Sayol et al., 2021 (Data S7).
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values was less than 10%) was reduced to 40% (Figure S9, Supple-
mentary Information Section 3). While this indicates how sensitivity 
to missing data may change when more data across traits is missing, 
further research on how functional diversity estimation responds 
to incomplete data when missingness is uneven between traits is 
needed. Therefore, 50% missingness can serve as a conservative 
guideline where application is similar to that reported here, but the 
spatial scale of the analysis, the size of the taxonomic or ecologi-
cal group, the correlation between traits, the missingness between 
traits and the extent of phylogenetic conservatism could affect max-
imum missingness permissible in other contexts. In addition, more 
restricted criteria for acceptable deviation from true values (here de-
fined as 10%) may be desirable in some cases leading to lower miss-
ingness permissible. Future work is needed to explore how these 
different factors influence functional diversity estimation when 
using incomplete data sets. In the meantime, wherever possible 
the extent of missingness should be quantified and used alongside 
other factors to inform choice of imputation and functional diversity 
metric.

Trait- based analyses are increasingly being applied to 
greater taxonomic and spatial scales (Etard et al., 2020; Johnson 
et al., 2021), so it is likely that trait- based ecologists will have to 
deal with missing data for the foreseeable future. As such, we have 
provided a guide for reducing error when estimating functional 
diversity from incomplete trait data sets (Figure 6), summarising 
recommendations made in this study. Our findings show that im-
putation can permit reasonably accurate measurements of func-
tional diversity even when 50% of species have incomplete data. 
In particular, TPD methods (for richness and divergence metrics) 
and distance- based methods (Rao for divergence) resulted in ro-
bust quantification of functional diversity. Generally, functional 
richness estimated using convex hull was sensitive to incomplete 

data and should be used with caution. Given observed deviations 
we can conclude that for some taxa and traits, we have enough 
data to perform accurate large- scale analyses of functional diver-
sity. Overall, the findings presented here are promising for the ap-
plication of functional diversity methods to large- scale questions in 
ecology and conservation, and highlight the potential of imputation 
for overcoming gaps in trait databases.
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Supporting Information section at the end of this article.
Data S1: Figure S1. Convex hulls of bird species with 10% missingness 
and random removal (no bias) (shown by grey lines). Ten simulations 
of data removal are shown. Bird species are shown by black dots.
Figure S2. Convex hulls of bird species with 50% missingness, for an 
a) random and b) high bias scenario. 10 replicates for each scenario 
are shown.
Figure S3. Deviation in avian functional richness (a and c) and 
functional divergence (b and d) for incomplete datasets calculated 
with two dimensions (2D, two principal components, a and b) 
and three dimensions (3D, three principal components, c and d) 
compared to the complete dataset given varying levels of missingness 
(percentage of species with missing data for four out of 11 traits) and 
bias (greater probability of data missing from small- sized species).
Figure S4. Maximum missingness permissible (maximum missingness 
where all avian functional diversity values fell within +/− 10% of 
functional diversity of the complete dataset) when calculated with 
(a) two dimensions (2D, two principal components) and (b) three 
dimensions (3D, three principal components), with four degrees of 
bias. Functional diversity was calculated using convex hull (richness), 
trait probability densities (TPD) richness, distance- based Rao 
(divergence) and trait probability densities (TPD) divergence.
Figure S5. Deviation in avian functional richness (a and c) and 
functional divergence (b and d) for incomplete datasets calculated 
from the first two principal components and raw traits (body mass 
and hand wing index), compared to functional diversity of the 
complete dataset given varying levels of missingness (percentage of 
species with missing data for four out of 11 traits) and bias (greater 
probability of data missing from small- sized species).
Figure S6. Deviation in functional richness (a, c and e) and functional 
divergence (b, d and f) for incomplete datasets compared to the 
complete dataset for birds (a and b), plants (c and d) and crocodilians 
(e and f) given varying levels of missingness (percentage of species 
with missing data) and bias (greater probability of data missing from 
small- sized species).
Figure S7. Maximum missingness permissible (maximum missingness 
where all of functional diversity values fell within +/− 10% of 
functional diversity of the complete dataset), for birds (a), plants (b) 
and crocodilians (c) with four degrees of bias.
Figure S8. Deviation in (a) avian functional richness and (b) avian 
functional divergence for incomplete datasets compared to the 
complete dataset given varying levels of missingness (percentage 
of species with missing data) and bias (greater probability of data 
missing from small- sized species).
Figure S9. Maximum missingness permissible (maximum missingness 
where all avian functional diversity values fell within +/− 10% 
of functional diversity of the complete dataset) for (a) functional 
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richness and (b) functional divergence, with four degrees of bias.
Figure S10. Probability density plot of body mass (log10 transformed) 
in three bird trait datasets for the full dataset (blue) and incomplete 
datasets, for species included (orange) and species missing (green).
Figure S11. (a) Empirical distribution function and (b) cumulative 
distribution function of log10 transformed range size of species 
present in the full avian dataset (AVONET Version 3) and missing 
from the incomplete datasets (Chira, 2018, 2020; Cooney, 2017).
Figure S12. Imputation normalised root mean square error 
(expressed as a percentage of trait range, mean shown by line with 
shaded areas showing 1 SD from 50 replicates) with varying levels 
of missingness (percentage of bird species with missing data for four 
out of 11 traits) and bias (greater probability of data missing from 
small- sized species).
Figure S13. Tree imbalance (calculated with the Colless corrected 
index) with varying bird species missingness (% of species removed 
from tree) and bias (probability that species removed had a below 
median body mass).
Figure S14. Tree imbalance (calculated with the Colless corrected 
index) with varying bird species missingness (% of species removed 
from tree) and bias (probability that species removed had a below 
median body mass).
Figure S15. Tree imbalance calculated with (a) Colless corrected 
index and (b) average leaf depth against imputation accuracy (nrmse, 
% of range) (avian trait dataset).
Figure S16. Tree imbalance calculated with (a) Colless corrected 
index and (b) average leaf depth against imputation error (nrmse, % 
of range), coloured by species missingness (% of species removed) 
for different scenarios of bias (random, low, medium and high).
Figure S17. Imputation normalised root mean square error (expressed 
as a percentage of trait range, mean shown by line with shaded areas 
showing 1 SD from 20 replicates) when using difference imputation 
methods (MICE, missForest without phylogenetic information 
[no phy], missForest with phylogenetic information [with phy] and 
Phylopars), with varying levels of missingness (percentage of species 
with missing data for four out of 11 traits) and bias (random, low, 
medium and high, where higher bias indicated a greater probability 
of data missing from small- sized species).
Figure S18. Deviation of functional richness from the complete 
dataset (first three principal components of morphological variation 
in the Tyrannidae family) (mean shown by line with shaded areas 
showing 1 SD from 20 replicates) when using difference imputation 
methods (MICE, missForest without phylogenetic information 
[no phy], missForest with phylogenetic information [with phy] and 
Phylopars), with varying levels of missingness (percentage of species 
with missing data for four out of 11 traits) and bias (random, low, 
medium and high, where higher bias indicated a greater probability 
of data missing from small- sized species).
Figure S19. Deviation of functional divergence from the complete 
dataset (first three principal components of morphological variation 
in the Tyrannidae family) (mean shown by line with shaded areas 
showing 1 SD from 20 replicates) when using difference imputation 
methods (MICE, missForest without phylogenetic information 

[no phy], missForest with phylogenetic information [with phy] and 
Phylopars), with varying levels of missingness (percentage of species 
with missing data for four out of 11 traits) and bias (random, low, 
medium and high, where higher bias indicated a greater probability 
of data missing from small- sized species).
Figure S20. Diagnostic plots of a linear model of absolute deviation 
in avian functional diversity, with missingness, bias, missing data 
handling and functional diversity metric (and their two- , three-  
and four- way interactions) as explanatory variables. a) Histogram 
of response variables shows right- skewed distribution of absolute 
deviation (response variable), b) normal Q– Q plot shows non- normal 
deviation of residuals, c) residuals vs fitted, and d) scale- location, 
shows heteroscedastic distribution of residuals.
Figure S21. Diagnostic plots of a generalized linear model of absolute 
deviation in avian functional diversity (gamma distribution with an 
inverse link function), with missingness, bias, missing data handling 
and functional diversity metric (and their two- , three-  and four- way 
interactions) as explanatory variables. (a) Histogram of response 
variables shows right- skewed distribution of absolute deviation 
(response variable), (b) normal Q- Q plot shows residuals that were 
closer to a normal distribution than when using a gaussian linear 
model, but still deviated slightly from a normal distribution, and (c) 
residuals versus fitted, and (d) scale- location, shows homoscedastic 
distribution of residuals.
Figure S22. Conceptual diagram demonstrating how data removal 
(b) and increase in sample variance can result in an increase in trait 
range included in the 95th percentile of probability density functions 
(red line) (relative to the complete dataset, a). Dots hypothetical 
trait data along one trait axis, blue areas show the trait probability 
densities estimated for single data points, and the black line shows 
the convolution of these probability densities, to give the trait 
probability of the sample. Hypothetical trait data in (a) have the same 
range as those in (b).
Figure S23. Probability distributions of principal component 2 (PC2) 
in incomplete avian datasets (blue area and grey lines. The black 
line shows the probability distribution of principal component 2 in 
the full dataset. Red lines show the 5th and 95th percentile of the 
full dataset, grey vertical lines show 5th and 95th percentiles of the 
probability density functions of incomplete datasets.
Figure S24. Deviation in avian functional richness of datasets with 
missing trait data compared to the complete dataset (mean shown 
by line with shaded areas showing 1 SD from 100 replicates) given 
varying levels of missingness (proportion of species with missing 
data) and bias (greater probability of data missing from small- sized 
species).
Table S1. Type III Analysis of Variance (ANOVA) table of a 
generalized linear model explaining absolute deviation (|Dev|) in 
avian functional diversity based on missingness, bias and functional 
diversity metric (and their interactions), way of handling missing data 
and dimensionality.
Table S2. Contrasts of estimated marginalised means of a gamma 
generalised linear model of absolute deviation of avian functional 
diversity with missingness, functional diversity metric, way of 
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handling missing data, bias scenario and dimensionality. Custom 
contrasts were used to compare absolute deviations with and 
without imputation, and between metrics (for complete case  
and with imputation separately). Contrasts were compared with two 
and three dimensions (principal components).
Table S3. Type III Analysis of Variance (ANOVA) table of a 
generalized linear model explaining absolute deviation (|Dev|) in 
avian functional diversity based on data handling method (with or 
without PCA), missingness, bias and functional diversity metric (and 
their interactions) where species with missing data were removed 
(complete case analysis).
Table S4. Type III Analysis of Variance (ANOVA) table of a generalized 
linear model explaining absolute deviation (|Dev|) in avian functional 
diversity based on missingness, bias and functional diversity metric 
(and their interactions) where missing data values were imputed.
Table S5. Custom contrasts of estimated marginalised means of 
a gamma generalised linear model of absolute deviation in avian 
functional diversity with missingness, data- handling method, 
functional diversity metric, imputation method and bias scenario. 
Contrasts were calculated between data handling methods for each 
functional diversity metric and bias scenario.
Table S6. Custom contrasts of estimated marginalised means of 
a gamma generalised linear model of absolute deviation in avian 
functional diversity with missingness, data- handling method, 
functional diversity metric, imputation method and bias scenario.
Table S7. Type III Analysis of Variance (ANOVA) table of a generalized 
linear model explaining absolute deviation in plant functional 
diversity (|Dev|) based on missingness, bias, functional diversity 
metric and way of handling missing data (and their interactions). 
Significance of predictors was tested with a Wald test.
Table S8. Type III Analysis of Variance (ANOVA) table of a generalized 
linear model explaining absolute deviation in crocodilian functional 
diversity (|Dev|) based on missingness, bias, functional diversity 
metric and way of handling missing data (and their interactions). 
Significance of predictors was tested with a Wald test.
Table S9. Contrasts of estimated marginalised means of a gamma 
generalised linear model of absolute deviation in plant functional 
diversity with missingness, functional diversity metric, way of 
handling missing data and bias scenario as predictor variables.
Table S10. Contrasts of estimated marginalised means of a gamma 
generalised linear model of absolute deviation in crocodilian 
functional diversity with missingness, functional diversity metric, 
way of handling missing data and bias scenario as predictor variables.
Table S11. The probability that missing species have a body mass 

lower than the median body mass or range size of the full avian 
dataset (AVONET).
Table S12. Type III Analysis of Variance (ANOVA) table of a linear 
model explaining normalised root mean square error based on 
missingness, bias and imputation method (and their interactions).
Table S13. Type III Analysis of Variance (ANOVA) table of a 
generalized linear model explaining absolute deviation (|Dev|) based 
on missingness, bias, functional diversity metric and imputation 
method (and their interactions). Significance of predictors was 
tested with a Wald test.
Table S14. Contrasts of estimated marginalised means of a gamma 
generalised linear model of absolute deviation with missingness, 
functional diversity metric, imputation method and bias scenario.
Table S15a. Contrasts of estimated marginalised means relevant 
for comparing functional diversity metrics when calculating avian 
functional diversity. Estimated marginal means were calculated 
from a gamma generalised linear model of absolute deviation with 
missingness, functional diversity metric, way of handling missing 
data and bias scenario. Custom contrasts were used to compare 
absolute deviations with and without imputation, and between 
metrics (for complete case and with imputation separately). 
Contrasts were compared across all bias scenarios. Contrasts 
were back- transformed to absolute deviation values (response 
variable).
Table S15b. Contrasts of estimated marginalised means relevant 
for comparing imputation and complete case analysis when 
calculating avian functional diversity. Estimated marginal means 
were calculated from a gamma generalised linear model of absolute 
deviation with missingness, functional diversity metric, way of 
handling missing data and bias scenario. Custom contrasts were 
used to compare absolute deviations with and without imputation, 
and between metrics (for complete case and with imputation 
separately). Contrasts were compared across all bias scenarios. 
Contrasts were back- transformed to absolute deviation values 
(response variable).
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