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Abstract—In-vehicle network security plays a vital role in
ensuring the secure information transfer between vehicle and
Internet. And existing research is still facing great difficulties
in balancing the conflicting factors for the in-vehicle network
security and hence to improve intrusion detection performance.
To challenge this issue, we construct a many-objective intrusion
detection model by including information entropy, accuracy, false
positive rate and response time of anomaly detection as the four
objectives, which represent the key factors influencing intrusion
detection performance. We then design an improved intrusion
detection algorithm based on many-objective optimization to
optimize the detection model parameters. The designed algorithm
has double evolutionary selections. Specifically, an improved
differential evolutionary operator produces new offspring of the
internal population, and a spherical pruning mechanism selects
the excellent internal solutions to form the selected pool of the
external archive. The second evolutionary selection then produces
new offspring of the archive, and an archive selection mechanism
of the external archive selects and stores the optimal solutions in
the whole detection process. An experiment is performed using a
real-world in-vehicle network data set to verify the performance
of our proposed model and algorithm. Experimental results
obtained demonstrate that our algorithm can respond quickly
to attacks and achieve high entropy and detection accuracy as
well as very low false positive rate with a good trade-off in the
conflicting objective landscape.

Index Terms—Many-objective optimization, intrusion detec-
tion, information entropy, in-vehicle network.

I. INTRODUCTION

W ITH the rapid development of vehicle communication
technology and computer network, in-vehicle informa-

tion system [1] is widely deployed on vehicles with abundant
applications, including intelligent navigation and intelligent
parking [2]. In-vehicle network is an automobile internal data
interaction network composed of electronic control unit (ECU)
and communication bus, which integrates computer network,
communication, electronics and other technologies [3], [4].
These system applications require various vehicle external
interfaces, which also increase the attack path of hackers.
Therefore, it is very necessary to install intrusion detection sys-
tem (IDS) to ensure the safety of in-vehicle network [5]. IDS
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monitors the system and network transmission in real time. It
determines whether there is abnormal behavior by collecting
and analyzing the security log, audit data and other available
key point information in the whole communication network
[6]. If abnormal behavior is found, the system will send an
alarm or take other relevant defense measures. Different from
the traditional network security technology, IDS is an active
security defense technology [7]. As the most widely used in-
vehicle bus in automobile, vehicle controller area network
(CAN) bus is liable to many types of attacks. Without the
relevant information security mechanism and protection means
in the in-vehicle CAN bus network, any in-vehicle ECU in
the network may access other in-vehicle ECUs on CAN bus,
and the attacker may modify the source code of any ECU to
achieve the vehicle full control, which can seriously threaten
the driving safety of vehicles [8]. Therefore, the research on
CAN bus data anomaly detection is critical.

Recently, researchers have proposed a variety of intrusion
detection methods for CAN bus attacks [9]. Javed et al. [10]
provided a novel approach based on convolutional attention
incorporated with gated recurrent neural network to improve
the accuracy of detecting CAN bus attacks. Yu and Wang
[11] presented an intrusion detection method based on net-
work topology verification to improve the security of CAN
bus network. Olufowobi et al. [7] described a method for
extracting real-time model parameters from observations of
CAN bus and presented an IDS based on CAN bus real-time
scheduling capability and response time analysis. Derhab et al.
[12] designed an intrusion detection and filtering framework
based on histogram. It assembles CAN packets into windows
and calculates their corresponding histograms, which are used
to assist multi-class classifier to identify and filter the normal
CAN packets in the malicious traffic window. Choi et al. [6]
implemented an IDS mechanism that can monitor information
transmission in real time to protect the security of the CAN
bus. This IDS mechanism can detect the malicious CAN bus
messages that are transmitted in the in-vehicle network with
high accuracy according to the difficult forgery of electrical
characteristics. Ying et al. [13] developed a vehicle intelligent
decision support system based on clock deviation for CAN
bus data to predict stealth attacks. Groza and Murvay [14]
proposed an intrusion detection mechanism based on CAN
bus data using Bloom filtering to help improve the accuracy
of detecting potential replay or modification attacks.

However, these existing detection methods only target on
one or few individual detection performance indicators, such
as accuracy, false positive rate and response time, and rarely
they address all the major factors that impact on the detection
performance [15]. In fact, the factors affecting the intrusion
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detection performance of the CAN bus data for in-vehicle
network security come from many aspects [16]. Moreover,
these factors are inextricably linked and they influence each
other [17]. Therefore, there exist multiple conflicting detection
performance metrics. Generally, the shorter the response time
of detection, the poorer the detection accuracy and the false
positive rate may increase. On the other hand, lower the real-
time requirements allows the IDS with more detection time
to improve the accuracy [15], [18]. How to comprehensively
address the impact of these factors on CAN bus data intrusion
detection performance and effectively balance the conflicting
metrics is very challenging. Meanwhile, the multi knowledge
fusion decision-making learning usually shows better detected
intrusion behavior performance than individual learning, which
can make the learning mechanisms with different abilities
support each other, improve the reliability of prediction and
reduce the risk of classification errors [17]. Implementing
multi knowledge fusion is of great significance for improv-
ing correct classification and accurately identifying intrusion
behavior performance, which motivates our work.

Against this background, in this paper we formulate the
in-vehicle bus data of CAN anomaly detection problem as a
complex many-objective optimization problem (MaOP) [17].
The main contributions of this paper are listed as follows.

1) Considering that the vehicle is affected by many un-
certain factors, the information entropy theory is ap-
plied [18]. A many-objective CAN bus data anomaly
detection optimization model is built to reflect detection
performance of in-vehicle network, and we adopt the
information entropy measurement, accuracy, false posi-
tive rate and response time of anomaly detection as the
four objectives to be optimized, which comprehensively
describe the underlying detection process.

2) We design a many-objective based algorithm with dou-
ble evolutionary selections, called MaOEA-ID, to op-
timize the intrusion detection model decision-making
solution. We also introduce the idea of multi knowledge
fusion in the design of intrusion detection algorithm
[36], and the algorithm performance is greatly improved
through the evolutionary fusion of internal and external
population knowledge. An improved differential evolu-
tionary (DE) operator produces new offspring of the
internal population, and a spherical pruning mechanism
selects the excellent internal solutions to form the se-

lected pool of the external archive. Then the second
evolutionary selection produces new offspring of the
updated archive, and an archive selection mechanism
for the external archive selects and stores the optimal
solution in the whole detection process.

3) An extensive simulation experiment is performed using
a real-world dataset to validate our proposed model and
algorithm. We also discuss and analyze some key pa-
rameters of the model design. The experimental results
demonstrate that our algorithm can respond quickly to
attacks and obtain high entropy and detection accuracy
as well as very low false positive rate with a good trade-
off in the conflicting objective landscape. In particular,
our method achieves better IDS performance for in-
vehicle network than existing state-of-the-art algorithms.

The paper is organized as follows. Section II reviews the
related work, which naturally leads to what motivates our
work, namely, the intrusion detection for in-vehicular network
is a complicated MaOP problem. In Section III, the in-
vehicle network security problem is detailed, and the many-
objective intrusion detection model is constructed. To optimize
this model, a many-objective evolutionary algorithm design is
proposed in Section IV, which is referred to as MaOEA-ID. In
Section V, an experiment is carried out using a real-world in-
vehicle network data set to validate our model and algorithm.
The paper is concluded in Section VI.

II. RELATED WORK

With the development of modern Internet, in-vehicle net-
work system has integrated a variety of emerging technolo-
gies to provide more comfortable services, such as assisted
driving and entertainment facilities [16], [19]. This however
has dramatically increased the potential attacks and securing
the in-vehicle network becomes critically important. Fig. 1
depicts the abnormal detection process of common in-vehicle
network. The CAN bus data active transmission message has
a stable characteristic state when the vehicle is in the normal
working mode. Under stable conditions, the collected normal
vehicle behavior data are processed to obtain vehicle related
knowledge for reference. With the help of an efficient intrusion
detection algorithm, knowledge features are extracted, and the
vehicle normal behavior feature database is established. When
the CAN bus transmits the mixed data of the current vehicle
behavior again, the aforementioned data processing method
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Fig. 1. Common anomaly detection process

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2023.3296002

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



3

is used to obtain the test data that can be recognized by the
detection algorithm. To judge whether the vehicle behavior is
normal at the moment, the currently obtained data features are
extracted and compared with the feature base of the vehicle
normal behavior. If the evaluation result is within the threshold
range, the vehicle behavior is regarded as a normal working
state, otherwise it is regarded as abnormal [20].

A. Review of Existing Anomaly Detection Methods

Various CAN bus data anomaly detection methods can be
divided into three classes: statistics-based, rules-based and
machine learning based methods.

a) Statistics-based anomaly detection: Alotibi et al. [21]
performed the anomaly detection for cooperative adaptive
cruise control in autonomous vehicles using statistical learning
and kinematic model. This class of methods capture CAN
data flow by counting a large number of historical message
records, so as to establish a summary model that can model
the random behaviors of CAN data [21]. The summary model
is typically gone through three stages of development, namely,
univariate probability model based on independent Gaussian
variables, multi-variable model considering the correlation
between multi-variables, and time series model analyzing the
law of data changing with time [22]. The advantage of this
class of methods is that the detection system does not need
to have prior knowledge of the attack, and it can detect the
latest attack behavior in real time [23]. However, the detection
performance of high-dimensional data based on statistics is
poor, and the choice of abnormal threshold will affect the
detection performance [18], [21].

b) Rules-based anomaly detection: Han et al. [24] designed
and performed the one-way analysis of variance test on CAN
traffic data to distinguish the abnormal status of the connected
cars in IoT environment. This types of detection methods
divide the CAN data patterns into normal data and abnormal
data, under the guidance of known prior or expert knowledge
[15], [25]. These methods can achieve good classification
effect with high robustness, but the detection decision-making
process is extremely complex [15]. In particular, the detection
conclusion often depends on the expert’s ability and compe-
tent, and it consumes a lot of manpower [25].

c) Machine learning based anomaly detection: Through
learning, the machine learning based methods can reconstruct
the existing knowledge structure, acquire new knowledge and
hence improve the detection performance [18], [20]. These
methods can be further divided into different categories.
c.1) Method based on Bayesian network. It requires fewer
parameters and is easy to construct an uncertainty model with
good performance [26]. In [27], hardware security modules
and Bayesian algorithms were used to improve the security of
CAN networks. But the network feature variables are selected
based on experience. If the parameters are selected improperly,
it will cause a large false detection rate [15], [26].
c.2) Method based on neural network. Through training, it
can predict whether there is anomaly behavior according to
the known behavior data of vehicles [28]. In [29], a graph
neural network and a two-stage classifier cascade is described

to developed the CAN bus IDS and detect all attacks simulta-
neously. The method is highly adaptive and has strong parallel
processing and fault tolerance capability. However, it imposes
high computational complexity when generating the training
model [30].
c.3) Method based on fuzzy theory. Fuzzy theory has some
advantages in anomaly detection, as it does not require detailed
derivation and its decision-making process is similar to human
thinking mode. Yu et al. [31] proposed the use of time interval
conditional entropy fuzzy method to detect intrusion attacks
suffered in automotive CAN networks, which distinguishes
and detects attacks by collecting and utilizing the conditional
entropy values of conventional communication messages. It is
effective in the field of port scanning and detection but the
resource consumption is high [32].
c.4) Method based on genetic algorithm (GA). The anomaly
detection performance can be improved by applying GA in an
iteration process to evolve towards a better solution [33]. Xi
et al. [33] described a multisource genetic immune detector
adaptive model in neighborhood shape-space and applies it
to anomaly detection. GA include operations such as gene
encoding and decoding, and their involved crossover and
mutation probability parameter settings may require prior
experience to determine, which may affect the quality of the
initial population decision solution to some extent.
c.5) Method based on density. Tang and He [34] presented
an effective density-based outlier detection method where a
relative density-based outlier score is assigned to observations
as a means of distinguishing major clusters in a dataset from
outliers. The algorithm, called the local anomaly factor algo-
rithm, assigns an anomaly degree to the object to be detected
relative to its local neighborhood, and it is advantageous in
detecting local anomaly data [15]. Due to the need to traverse
the entire data to calculate the distance, this algorithm is
not suitable for applications requiring short response times
in detection systems. In addition, it is necessary to manually
adjust parameters during the outlier clustering process.
c.6) Method based on clustering. Indirect clustering based
on similarity measurement between samples can be used to
perform anomaly detection. Zhang et al. [17] designed a
novel weight-based ensemble classifier algorithm to identify
abnormal messages of vehicular CAN bus network. Similarly,
the one-class SVM and isolation forest can also be used
for anomaly detection [21]. These methods rely heavily on
the effectiveness of clustering algorithms, which may be a
bottleneck in improving detection performance.

B. Essence of Anomaly Detection Process

There are many factors that affect the intrusion detection
performance of the CAN bus data for in-vehicle network
security, and the key factors include information entropy
measurement reflecting the uncertainty of vehicle behavior,
detection accuracy, false positive rate, and response time of
anomaly detection. These factors are inherently linked and
they influence each other [17]. In other words, there exist
multiple conflicting key detection performance metrics. For
example, the shorter the response time of detection, the lower
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TABLE I
TYPES AND FUNCTIONS OF CAM FRAMES

Types Purpose

Data frame Transmission data sent by the sender
Remote frame Receiving direction requests data from the sender with the same ID

Error frame When an error occurs, notify other units of the error
Overload frame Receiver sends it to the sender, indicating that it is not ready for reception

SOF
Arbitration 

Field

Control 

Field
Data Field CRC Field ACK Field EOF 

12 bits 4 bits 0-64 bits 16 bits 2 bits 7 bits1 bit

Fig. 2. CAN data frame standard format

the detection accuracy and higher the false positive rate. On the
other hand, the lower the real-time requirements, the intrusion
detection system may impose higher detection time, so as to
improve the detection accuracy. Consequently, the anomaly
detection problem of CAN bus data for in-vehicle network
security should be viewed as a MaOP, in order to effectively
balance the multiple conflicting metrics [35].

To better describe the problem, therefore, the generic CAN
bus data intrusion detection optimization can be formulated as
the following MaOP [17]

min
X∈Φ

f (X) = min
X∈Φ

{
f1(X), f2(X), · · · , fM (X)

}
, (1)

s.t.
{
gi(X) > 0, 1 ≤ i ≤ ni,
hj(X) = 0, 1 ≤ j ≤ ne,

(2)

where X = [x1 x2 · · · xnv ]
T is the nv-dimensional decision

variable vector and Φ denotes the decision variable space,
while fm(X) denotes the mth objective function and M is the
number of objectives. gi(X) > 0 is the ith inequality constraint,
and hj(X)= 0 is the jth equality constraint. For multi-objective
optimization problems (MOPs), M ≥ 2 should be satisfied.
When M ≥ 4, MOPs are referred as MaOPs. Furthermore,
there are ni and ne represent upper bounds on the number
of inequality and equality constraints, respectively.

Different from the previous studies, in this paper, we
comprehensively address the impact of the multiple factors
on the performance of CAN bus data intrusion detection to
balance the conflict metrics, which is of great practical sig-
nificance to the research on in-vehicle network security [15]–
[17]. Our work first builds a many-objective CAN bus data
anomaly detection optimization model by considering infor-
mation entropy, accuracy, false positive rate and response
time of anomaly detection as the four objectives. Then an
effective many-objective optimization approach is adopted to
optimize the detection model. We also introduce the idea of
multi knowledge fusion in the design of intrusion detection
algorithm [36], and the algorithm performance is greatly
improved through the evolutionary fusion of internal and ex-
ternal population knowledge. The specific model construction
process and algorithm optimization principle are described in
the following two sections, respectively.

III. IN-VEHICLE NETWORK SECURITY PROBLEM

A. System Description

CAN is a bus-topology communication network commonly
used in the in-vehicle network environment [6], [16]. It is a
non-preemptive communication network based on priority, and
can meet many specific requirements of in-vehicle network
environment, such as real-time processing, strong robustness
and cost-effective activity [2]. In the data link layer of CAN,
broadcast communication is used to transmit messages, allow-
ing any ECU to broadcast data packets to all the connected
ECUs. The smallest unit for information transmission in CAN
bus is CAN frame, which can be divided into the following
four types: data, remote, error and overload frame [17], each
serving a specific purpose as summarized in Table I.

Each CAN message contains the following information [8],
[17]: start of frame (SOF), arbitration field, control field, data
field, cyclic redundancy check (CRC), acknowledge character
(ACK) field and end of frame (EOF). The generic format
of data frame is shown in Fig 2. SOF indicates the start
of a packet and enables synchronization of all nodes on the
CAN bus. Arbitration filed (12 bits) is composed of arbitration
ID (11 bits) and remote transmission request (1 bit). The
Arbitration ID is used as a priority during a collision between
two or more CAN packets. The node who has the lowest ID
has the highest priority to send packets. Control field (4 bits)
provides information for the receiver to check if the packet is
successfully received. Data filed (64 bits) contains the actual
payload data, and it is up to 8 bytes. CRC field (16 bits) is used
for error detection. ACK field (2 bits) contains 2 bits with 1
bit for the ACK and the other bit for the ACK delimiter. EOF
(7 bits) indicates the end of the CAN packet.

From the above CAN network structure and message for-
mat, some security vulnerabilities of CAN bus data may be
exploited by attackers to launch network attacks, which may
endanger driving safety [37].

a) No encryption: There is no inherent encryption method
to ensure confidentiality, which enables intruders to interview
sensitive data and cause privacy intrusion. At present, only
the communication matrix provided by the manufacturer offers
some confidentiality but it is not difficult to crack it [10], [38].
The current confidentiality mechanism is far from meeting the
confidentiality standard required.

b) No certification: Any device connected to the CAN bus
can read and write to the bus [39]. The CAN bus protocol has
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no provisions on authentication or access control mechanism.
In addition, the CAN message does not contain the source
address and destination address [40]. The node only judges
whether to receive the message according to the frame identi-
fier, and the legitimacy of the sender cannot be verified. CAN
protocol considers all data from the CAN bus to be believable.
Any malicious node can forge legitimate messages to attack
other nodes in the in-vehicle network.

c) Authenticity of the message cannot be distinguished:
CAN protocol cannot distinguish the real error message from
the error message crafted by the attacker [41]. It cannot know
whether the device is indeed faulty or has been attacked, which
may result in the device in the bus off state.

d) Vulnerable to denial of service (DoS) attacks: CAN bus
adopts the broadcast communication mechanism and priority
of ID based message transmission. If the message with the
highest priority is sent, the node with lower priority will not be
able to access the network [42]. Attackers can continue to send
high-frequency messages, which will lead to the occupation
of CAN bus resources and the delay of signal transmission
and response of other nodes, resulting in node communication
failure in the vehicle and endangering driving safety.

B. Anomaly Detection Model Construction

It is important to evaluate network vulnerabilities and high-
light the security issues faced by CAN networks in the process
of constructing an intrusion detection model. To improve the
detection performance of an IDS, it is necessary to discover as
many attacks as possible, in real-time and with high precision.
For this purpose, we adopt the information entropy, accuracy,
false positive rate and response time of anomaly detection are
the four objectives to be optimized. To describe the process of
anomaly detection, the key is to analyze and find the possible
abnormal behavior in the IDS network through the description
of the normal behavior of network traffic, and the core problem
of anomaly detection is to realize the description of normal
traffic behavior, real-time detection, comprehensiveness of
information and sensitivity of response [17]. Generally, the
truth positive (TP), truth negative (TN), false positive (FP)
and false negative (FN) are employed to express the IDS
detection performance, and they can be intuitively displayed
by employing the confusion matrix shown in Table II.

TABLE II
CONFUSION MATRIX

Type Predicted normal Predicted attack

True normal TN FP
True attack FN TP

1) Information Entropy (Obj1): Whether the CAN bus data
has the internal characteristics and rules consistent with the
behavior can be audited to determine if it has been invaded.
In the case of an intrusion, the proportion of high priority
instructions in the CAN bus will increase in a short time, while
the proportion of low priority messages will decrease [18],
[42]. This behavior will lead to abnormal change of the CAN
bus information entropy. Therefore, by using the information
entropy to describe the characteristics of CAN bus data, we

can analyze and audit the CAN bus data log to distinguish
between normal and abnormal vehicle behavior.

Specifically, let the average value and standard deviation of
information entropy in the CAN bus be avg and σ, respec-
tively. The predicting decision condition interval of normal
behavior is (avg − kσ, avg + kσ), where k ∈ [0.001, 2] is a
sensitive factor controlling the decision variables [18], [42].
Under normal circumstances, the decision variable value of
information entropy should be within the decision range. The
stronger the regularity of the CAN bus data, the higher the
information entropy value will be and vice versa. When the
information entropy value is lower than the preset threshold,
i.e., smaller than avg− kσ, the in-vehicle network behavior is
regarded as an abnormal situation under attack. Assume that
the CAN bus data model can be represented as Ψ = (D,W),
where D = {d1,d2, · · · ,dn} is the state set of the in-vehicle IDS
with n different states, appearing within the sliding window
of size W . The information entropy of the CAN bus data in
sliding window W can be expressed as follows

H(D) = −
n∑
i=1

Pdi log Pdi , (3)

where Pdi is the probability of D in state di .
The network state can be determined by detecting and

monitoring the in-vehicle network, and the number of message
or state di appearing in sample window W can be obtained
by counting. Let the number of state di appearing in W
be Countdi . Then the probability of di appearing in sample
window W can be calculated as Pdi =

Countdi
n∑
j=1

Countdj

, which

satisfies
n∑
i=1

Pdi = 1 and Pdi ≥ 0, ∀i. Therefore, the information

entropy measurement of the IDS in sampling window W for
the in-vehicle network is obtained as

Obj1 = H(D) = −
n∑
i=1

©«
Countdi
n∑
j=1

Countd j

ª®®®®¬
log

©«
Countdi
n∑
j=1

Countd j

ª®®®®¬
. (4)

It is worth noting that for the DoS attack scenario, higher
information entropy value means better system stability.

2) Accuracy (Obj2): The accuracy rate reflects the ability
of the IDS to correctly judge the overall detection samples.
That is, it defines the classification ability to correctly judge
the normal samples as normal and the attack samples as attacks
[17], and it can be calculated according to

Obj2 =
TP+T N

TP+T N +FP+FN
. (5)

A high accuracy value indicates good detection performance.
3) False positive rate (Obj3): The false positive rate re-

flects the ability of the IDS to correctly predict the purity of
normal samples and avoid predicting attack samples as normal
samples. That is, it measures the proportion of attack samples
predicted as normal samples in the total attack samples [17],
and it can be calculated as follows

Obj3 =
FP

T N +FP
. (6)
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A small false positive rate value indicates good detection
performance.

4) Response Time (Obj4): Response time describes the
time taken by a system to answer the requested message. It
is usually timed from the time when the request is sent to
the time when the system declares the request or reaches a
answer [8]. In the IDS, the response time of attack detection
is usually in the form of sliding window with a fixed number
of messages to monitor the possible attacks on the bus [43],
and it can be calculated as follows

Obj4 =

n∑
i=1

(
currenttime

di
− attack time

di

)
, (7)

where currenttime
di

and attack time
di

are the current starting time
of responding to the attack and the time of detecting the
message attack, respectively. A short response time indicates
good detection performance.

IV. PROPOSED OPTIMIZATION ALGORITHM

Our CAN bus data intrusion detection model is a many-
objective optimization design with the four objectives, infor-
mation entropy, accuracy rate, false positive rate and response
time of anomaly detection, to be optimized. Recently, many
excellent many-objective optimization algorithms have been
designed to attain balanced solutions in convergence and
distribution (CaD) based on the distance or angle selection
mechanism [44]. By using distance or angle selection mech-
anism to choose elite solution, it ensures the final population
solutions distribute near the optimal Pareto-front as much
as possible, and at the same time, it takes the CaD of the
solutions into account to meet the needs of the actual problems
[45], [46]. Different from these selection mechanisms, in our
MaOEA-ID, there are two areas that are optimized separately
during each iteration. Specifically, for the internal population,
an improved DE operator is applied to produce new offspring,
and a spherical pruning mechanism is employed to select
the excellent solutions. These excellent internal solutions then
form the selection pool for the external archive, and an archive
selection mechanism of the external archive is adopted to
select and store the optimal solutions in the whole detection
process. We now detail these operations of our MaOEA-ID.

A. Improved DE Operator

Typical DE algorithm starts the operation by randomly
generating the initial population and it takes the fitness value of
each individual in the population as the selection standard. The
main evolution process of DE includes three stages: mutation,
crossover and selection [45], [47], [48]. By controlling the
hybridization of parents according to the fitness value, the
mutation vector of DE is generated by the parent difference
vector, and is crossover with the parent vector to generate
offspring vector. At each evolution iteration, the population
is evolved into a better place in the objective landscape, and
eventually moves towards the Pareto-front.

However, the standard DE algorithm may arrive in a non-
dominated relationship between solutions in solving MaOPs
[45]. With its typical method of comparing fitness values,
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it may be impossible to obtain the optimal individual in
screening and guiding the population to evolve towards a better
place. To effectively overcome this problem, an improved DE
operator can be adopted to ensure that the population evolves
towards a better place [49]. The tth iteration of this improved
DE operator is described as follows

Xi(t) =


Xi(t)+F ·
(
Xj(t)− Xi(t)

)
+F ·

(
Xk(t)− Xi(t)

)
, if rand ≤ CR,

Xj(t) or Xk(t), otherwise,
(8)

where Xi is an individual randomly selected from the current
population, Xj and Xk are two individuals randomly selected
from the top 10 percents of the individuals in the external
archive, while F is the contraction factor, rand is a random
number in the range of [0, 1] and CR is the crossover prob-
ability. By introducing two solutions of the external archive,
the diversity of solutions is improved [49].

B. Spherical Pruning Mechanism

To ensure that excellent solutions are selected from the set of
offspring solutions generated by the DE operator, the spherical
pruning mechanism is used. This mechanism analyzes the
current approximate Pareto-front (PF) solution set, denoted as
PF∗, by normalizing all the population reference solutions to
the spherical coordinates. In addition, it ensures that the size of
the set of offspring solutions obtained meets the requirements
[50]. Fig. 3 depicts the relationship of different solutions on
the sphere. For each spherical sector, only one solution with
the lowest selection norm is selected, so that the solutions are
well distributed in the PF [51].

We now describe the normalization mapping relationship
for solution Xi . The fitness value f (Xi) in the spherical co-
ordinate can be expressed as E(Xi) =

[
Z( f (Xi)) VT( f (Xi))

]T,
where V ( f (Xi)) = [V1( f (Xi)) · · ·VM−1( f (Xi))]

T is the arc vec-
tor, and Z( f (Xi)) is the Euclidean distance from the solution
f (Xi) to the normalized ideal solution given by f

(
X ideal

)
=

min
f (X)∈PF∗

{ f1(X), · · · , fM (X)} [52]. Given two solutions Xi and

Xj , Xi has an spherical preference over Xj if and only if:{
SP (Xi) = SP

(
Xj

)}⋂{
Z ( f (Xi)) < Z

(
f (Xj)

)}
. (9)
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Algorithm 1 Spherical pruning mechanism
Input: G (Population solution set);
Output: S (Excellent solution set);
Begin

For each solution in population set G do
Map its normalized spherical coordinates;

End For
Establish spherical coordinate grid;
For each solution in population set G do

Calculate its spherical sector;
Compare with the remainder solutions;
IF there does not exist the same spherical sector

Add the solution to S;
Else

Add the solution to S when it has the lowest norm;
End IF

End For
Return excellent solution set S;

End

Here SP (Xi) denotes the normalized spherical sector of solu-
tion Xi and is defined by

SP (Xi) =

[
V1( f (Xi))

SP1(PF∗)
· · ·

VM−1( f (Xi))

SPM−1(PF∗)

]T
(10)

in which SP(PF∗) = [SP1(PF∗) · · ·SPM−1(PF∗)]T is the hy-
percone grid on the objective space in the arc increment
V∆ =

[
V∆1 · · ·V

∆
M−1

]T. Define VU =
{
VU

1 , · · · ,V
U
M−1

}
and VL ={

VL
1 , · · · ,V

L
M−1

}
as the sight range upper and lower bounds

from the ideal solution to the approximation solution in PF∗,
respectively, which are computed according to

VU = max
f (Xi )∈PF∗

{V1( f (Xi)), · · · ,VM−1( f (Xi))} , (11)

VL = min
f (Xi )∈PF∗

{V1( f (Xi)), · · · ,VM−1( f (Xi))} . (12)

Then SP(PF∗) is computed as

SP
(
PF∗

)
=

[
VU

1 −VL
1

V∆1
· · ·

VU
M−1−VL

M−1

V∆
M−1

]T

. (13)

Algorithm 1 summarizes this spherical pruning mechanism,
where G = {X1,X2, · · · ,XN } is the population solution set with
N individuals and S is the excellent solution set added in each
generation.

C. Archive Selection Mechanism

Generally, the fitness function can be used to guide the
population toward the optimal PF in solving a MaOP [53].
Moreover, the CaD must be considered in the design of the
algorithm. Therefore, when designing the solution selection
mechanism of the external archive, it should ensure that the
algorithm has good CaD. For the archive selection mechanism,
the comprehensive fitness assessment (CFA) method [45]
is employed, which is used to store the optimal solutions
obtained in the whole detection process. By ensuring good
CaD, the CFA also help to overcoming the limitations of
Pareto sorting and decomposition.

Algorithm 2 Archive selection mechanism
Input: N (size of population), R (current external archive),
S (new excellent solution set);
Output: R (updated external archive);
Begin

For i = 1 to |R |
For j = 1 to |S|

Check dominant relationship between two solutions
Sj ∈ S and Ri ∈ R;
IF Relationship is non-dominant

Add Sj to R;
Else

Remove dominated solution Ri from R;
End IF

End For
IF |R | > N

Calculate and rank CFA values;
Delete minimum CFA value until |R | = N;

End IF
End For
Return R;

End

The CFA method Fun(Xi,G) considers the factors of equi-
librium CaD in the solution space, and it is expressed as:

Fun(Xi,G) = w1 ·Dcon(Xi,G)+w2 ·Ddiv(Xi,G), (14)

where Dcon(Xi,G) and Ddiv(Xi,G) denote the ‘convergence’
and ‘diversity’ distances of Xi , respectively, w1 and w2 are
two weight factors to balance the influence of these two CaD
distances. How to adjust the weight factors can be found in
[54]. The calculation of Dcon(Xi,G) is given below

SDE(Xi) = min
Xj ∈G, j,i

√√√
M∑
m=1

(
sde

(
fm(Xi), fm(Xj)

) )2
, (15)

Dcon(Xi,G) = Norm(SDE(Xi)), (16)

where SDE(Xi) is the distance using the shifted Euclidean
distance to the nearest neighbor [45], and the definition of
sde(•) can be found in [54], while Norm(•) is a normalization
operation [45]. Ddiv(Xi,G) is calculated as follows

Ddiv(Xi,G) = 1−

√√√√√ M∑
m=1

(
fm(Xi)

)2

M
. (17)

The maximum and minimum values of the objectives should
be normalized to help reducing the oscillation of the objectives
in high-dimensional space. To prevent the size of the external
archive from exceeding the population size, the truncation
selection mechanism is used in the solution selection [55].
Algorithm 2 summarizes this archive selection mechanism,
where R is the external archive used to store the optimal
solutions generated and S is the new solution set added in
each generation.
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Algorithm 3 MaOEA-ID
Input: N (population size);
Output: R (external archive);
Begin

Initialize population G with N individuals and external
archive R;
While stopping criterion is not met do

Generate offspring set Q from G and R by improved
DE operator;
G = G

⋃
Q;

Use spherical pruning mechanism to obtain excellent
solution set S;
R = Archive selection mechanism(R,S);
Obtain offspring R∗ of external archive R using SBX
and PM operators;
R = Archive selection mechanism(R,R∗);

End while
Return R;

End

D. Algorithm Framework

As usual, our MaOEA-ID algorithm starts by initializing the
population set G with N individuals. The fast non-dominated
sorting method [45] is applied to the initial population set G,
and the non-dominated solutions of the initial population G
are taken as the initial external archive R. At each evolution
generation or iteration, the improved DE strategy is executed
to generate the offspring Q of the parent set G with the aid of
the external archive R. The new population is formed by com-
bining the parents G and offspring Q. For the newly formed
internal population G, the spherical pruning mechanism is used
to select the excellent solutions S (Algorithm 1). Then the
archive selection mechanism (Algorithm 2) is applied to the
excellent solution set S and the current external archive R,
to generate the updated external archive R. To improve the
population diversity, the simulate binary crossover (SBX) and
polynomial mutation (PM) [45] are adopted for the archive R
in turn to select offspring R∗ of R. Finally, the new offspring
R∗ is fused with the external archive R by using the archive
selection mechanism (Algorithm 2) to obtain the new external
archive R. The process continues until the stop condition is
satisfied. In this paper, the evolution process is stopped when
the preset maximum number of iterations are reached.

The pseudo code of our proposed MaOEA-ID is summa-
rized in Algorithm 3, where G and Q are the parent and off-
spring sets of the internal population, respectively, while R and
R∗ are the parent and offspring sets of the external population,
respectively. Observe that there exist double evolutions of the
internal population and the external population (archive).

E. Detection Steps

The whole process for the intrusion detection of CAN
bus consists of the following steps. And the corresponding
detection step flow is described in Fig. 4.

Step 1: CAN message is extracted from the normal data
set, and the sliding window of size W is used as the sampling
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Fig. 4. Detection step process

window to obtain the data information [56]. Then, the mean
and standard deviation of the entropy are calculated.

Step 2: With the sliding window continuously moves for-
wards, the CAN message test data set containing attack is
extracted to obtain attack message.

Step 3: MaOEA-ID is used to optimize the parameters
of the anomaly detection model. By continuously adjusting
the algorithmic parameters including sliding window size and
sensitivity values, appropriate algorithmic parameter values
are found to balance various conflicting objectives and obtain
relatively good objective values.

Step 4: Compare the information entropy measurement
decision value calculated in Step 3 with the decision range
under the non-attack condition to determine whether there is
an attack block. If the value is inside the range, it is considered
as normal. Otherwise, it is considered to be an attack.

Step 5: Compare the obtained attack results with the marked
attack blocks to verify whether the detection is correct. By
calculating the accuracy, false positive rate and response time
of the test dataset message, the detection performance are
visually displayed.

V. SIMULATION EXPERIMENT

A. In-vehicle Network Security Dataset

Due to the diversity and uncertainty of attacks, there exist
various in-vehicle network security data sets [10], [18]. In
this paper, a real-life automotive CAN bus network dataset
[57] is employed, and the CAN message block with ID =
0x000 is added into the non-attack data set to obtain the DoS
attack data set [58]. Specifically, to create a more realistic
DoS scenario reflecting the uncertainty of attack, we copy the
message blocks from the CAN messages sent by the legitimate
ECU to the non-attack vehicle data set, and then add the DoS
attack data to the test data set and further make it Gaussian
distributed throughout the test data set [59].

It is widely believed that the network status changes when
the CAN network is under attack, which can be reflected in the
change of information entropy. To visually distinguish between
no attack and DoS attack scenarios in the dataset, we take
the first 320000 records of the normal dataset and the first
560000 records of the DoS attack dataset for experiments. Due
to the fact that the CAN bus is an event triggered network,
we use the fixed sliding window as the observation window.
Fig. 5 (a) and (b) show the changes of information entropy
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TABLE III
INFLUENCE OF SLIDING WINDOW SIZE W WITH FIXED SENSITIVITY PARAMETER k = 2 ON THE PERFORMANCE OF THE DETECTION MODEL

Sliding windows Size Average Entropy Accuracy (%) False Positive Rate (%) Max Response Time (ms)

20 4.02 87.96 1.49 4.73e-2
30 4.23 84.27 2.76 4.90e-2
40 4.37 83.04 2.81 5.07e-2
50 4.43 84.46 4.08 5.79e-2
60 4.48 85.62 3.64 8.00e-2
70 4.52 82.51 0 8.96e-2
80 4.54 88.22 0 8.67e-2
90 4.57 88.32 0 9.92e-2

100 4.58 91.33 0 9.94e-2
110 4.60 97.44 0 9.97e-2
120 4.61 99.28 0 9.98e-2

with time in the normal data set and the data set with DoS
attack blocks, respectively, with the sampling window size of
80 and sensitive value k = 2. As observed, the fluctuation range
of the entropy is [4.2, 4.9] for the normal data set, while in
the data set with DoS attack block, the information entropy
changes in the range of (0, 5.0].

B. Parameters Settings
1) Detection model parameters: For the intrusion detection

model, the sliding window size W and the sensitivity parameter
k are among the most important parameters for the perfor-
mance of IDS. The sliding window size W directly affects
the detection accuracy, false positive rate and response time
[18], where the maximum (Max) response time is measured
from the beginning of the attack to its discovery in the
sliding window [58], while the sensitivity parameter k directly
affects the decision range of anomaly detection. After repeated
experiments, it is found that an appropriate combination choice
of the sliding window size W and the sensitivity parameter k
should be selected from W ∈ [20, 120] and k ∈ [0.001, 2], to
balance the conflicting objectives.

2) Optimization algorithmic parameters: To demonstrate
the effectiveness of our proposed MaOEA-ID, we also em-
ploy three existing state-of-the-art many-objective optimiza-
tion algorithms to optimize the anomaly detection model,
and they are the NSGA-III [60], the promising region evo-
lutionary algorithm (PREA) [61], and the hyperplane assisted
evolutionary algorithm (hpaEA) [62]. These algorithms have

been proved to be successful and effective in solving many
practical problems [53]. The algorithmic parameters of these
benchmark optimization algorithms are set according to the
original literature. In particular, for the NSGA-III and PREA,
the two-layer distribution method is adopted. For the MaOEA-
ID, the contraction factor F and the crossover probability
factor CR are chosen in the ranges of [0.4, 0.95] and [0.3, 0.9],
respectively [45]. The population size is set to N = 100 for
all the algorithms. SBX probability and PM probability are 1
and 1/N, respectively. And the crossover index and mutation
index are uniformly set to 20. The stopping criterion for all
the algorithms is the maximum number of evolution iterations,
which is set to 10000. Each experiment is run independently
20 times with the test problem [63], [64].

C. Experiment Resuls
1) Influence of sliding window size: To investigate the

impact of the sliding window size W on the performance of
the detection model, we fix the other important parameter,
namely, the sensitivity parameter, to k = 2, and conduct the
experiment with different sliding window sizes on the first
560000 records of the DoS attack dataset. Table III lists
the detection performance achieved by varying the sliding
window size in the range of [20, 120] with the fixed k = 2.
It can be seen that as W increases from 20 to 120, the both
average entropy and the max response time increase gradually.
This means that a larger sliding window size improves the
probability of detecting the attack but increases the response
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Fig. 5. Illustration of variations of entropy values for normal data and data with attack
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time of the detection. Impact of W on the false positive rate
exhibits a more complex trend. As W increases from 20 to
50, the false positive rate increases but further increasing
W leads to the reduction of the false positive rate. When
W ≥ 70, the false positive rate becomes zero. For the relatively
small W ∈ [20, 70], the relationship between the accuracy and
W appears slightly irregular. However, for the large sliding
window size of W ≥ 80, the accuracy increases with W , and
when W = 120, the accuracy is 99.28%.

2) Influence of sensitivity value k: Because the CAN bus is
an event triggered network, some subtle changes in the scene
may cause huge changes in the information entropy. In partic-
ular, the decision variables controlled by the sensitivity value
k have a great influence on the measurement of information
entropy, and the changes in the information entropy may be
irregular [10], [18]. Therefore, we concentrate on investigating
the impact of the sensitivity parameter k on the three detection
objectives of accuracy, false-positive rate and response time
using the first 560000 records of the DoS attack dataset. Fig. 6
depicts the accuracy, false-positive rate and response time as
the functions of k given four different values of the sliding
window size W . It can be seen that the accuracy decreases
as k increases given a fixed W , and the rate of reduction in
accuracy is larger for smaller sliding window size. By contrast,

the response time increases with the sensitivity parameter k
given a fixed sliding window size W , and the rate of increase
in response time is higher for larger W . Given W = 40, 60
and 80, respectively, Fig. 6 (a), (b) and (c) show that the false
positive rate decreases quickly as k increases in the range of
k ∈ [0.001, 2]. When the sensitivity value k exceeds this range,
the false positive rate tends to zero. For very high sliding
window size of W = 110, the false positive rate remains zero
regardless the value of k, as can be seen from Fig. 6 (d).

It can be seen that choosing appropriate values for the
sliding window size W and the sensitivity parameter k is
of great significance to improve the whole IDS performance.
Therefore, in addition to the parameters involved in obtaining
the information entropy and the detection classification pro-
cess, W and k are also included in our decision variables to
be optimized by the proposed MaOEA-ID and the benchmark
algorithms in the following comparison.

3) Comparison of different optimization algorithms: Ta-
ble IV shows the Friedman test results of the involved al-
gorithms based on NHV metric value with the significance
difference level 0.05 [65]. And the performance ranking of
the involved comparison algorithms can be followed and listed
as follows: MaOEA-ID > hpaEA > PREA > NSGA-III, which
means that MaOEA-ID has been proven to achieve good
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Fig. 6. Detection objectives (accuracy, false positive rate and response time) as the functions of sensitivity parameter k, given different sliding window sizes
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TABLE IV
FRIEDMAN TEST FOR COMPARISON ALGORITHMS BASED ON NHV

METRIC VALUE

Algorithms Ranking

NSGA-III 3.20
PREA 2.57
hpaEA 2.06

MaOEA-ID 1.42

performance. To vividly compare the detection performance
of the four algorithms, their Pareto solution sets with the
largest normalized hypervolume (NHV) metric [66] value are
plotted in the parallel coordinates of the objective space, as
illustrated in Fig. 7, where each solution has 4 objectives and
the solution’s objective values are linked by line. The intuitive
correlation and conflicting relationships between the different
objectives are clearly demonstrated in Fig. 7, where it can be
observed that all the four algorithms converge to the PF, while
they have different objective landscapes, in terms of diversity.
Specifically, the solution sets of NSGA-III and MaOEA-ID
have similar distribution range of [0, 1] in Obj3 and Obj4. But
MaOEA-ID has wider distribution ranges than NSGA-III in
Obj1 and Obj2. More specifically, the solution ranges in Obj1
are [0, 1] and [0 0.95], respectively, while the distribution
ranges in in Obj2 are [0, 0.6] and [0, 0.5], respectively, for
MaOEA-ID and NSGA-III. This indicates that the solutions

obtained by MaOEA-ID in solving Obj1 and Obj2 have higher
diversity than NSGA-III. The distribution range of PREA in
Obj2 is [0, 0.7], which is wider than the other three algorithms.
However, the values of its Pareto solution set in Obj1 and Obj3
distribute in the ranges of [0, 0.85] and [0, 0.95], respectively,
which are poorer than those of NSGA-III and MaOEA-ID on
the same objectives. Clearly, the quality of the solution set
obtained by hpaEA, in terms of diversity, is poorer than the
other three algorithms. The results of Fig. 7 hence suggest
that the quality of the solution set obtained by our MaOEA-
ID, in terms of diversity, is better than the three state-of-the-art
benchmark algorithms.

To compare the detection performance of different algo-
rithms on each objective in more detail, the objective perfor-
mance comparison box figure is drawn in Fig. 8. To apply the
same common rule of comparison for all the four objectives,
namely, the smaller the better, the inverse of the information
entropy measurement, i.e., 1

obj1
, and the inverse of the accu-

racy rate, i.e., 1
obj2

, are showed in Fig. 8 (a) and Fig. 8 (b),
respectively. As can be seen from Fig. 8 (a), all the algorithms
have highly similar boxes for the first objective. Based on
the comparison of upper and lower quartiles and median
values, a clear performance ranking for the first objective
can be drawn as: MaOEA-ID > hpaEA > NSGA-III ≈ PREA,
where ‘>’ means ‘better’ and ‘≈’ indicates ‘similar’. Based
on the median values of Fig. 8 (b), an identical ranking of
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Fig. 7. Pareto solution sets found by the four algorithms, where objective 1: information entropy (Obj1), objective 2: accuracy (Obj2), objective 3: false
positive rate (Obj3) and objective 4: response time (Obj4)
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MaOEA-ID > hpaEA > NSGA-III ≈ PREA is obtained for
the second objective. For the objective of false positive rate
depicted in Fig. 8 (c), the lower quartile and median value
of all the algorithms are close to 0. The box of MaOEA-
ID however is more compact and concentrated. Also the
upper limit value of MaOEA-ID is significantly smaller than
NSGA-III, PREA and hpaEA. This means that MaOEA-ID
achieves better results on false positive rate. The performance
ranking for the third objective can be drawn as MaOEA-ID >
NSGA-III > PREA > hpaEA. For the objective of response
time given in Fig. 8 (d), MaOEA-ID has smaller median value
than the other algorithms. NSGA-III and hpaEA have similar
upper quartile values that are higher than the upper quartile
value of PREA. In terms of response time, it may be concluded
that MaOEA-ID is better than the other three algorithms.

Note that typically more evaluation time and hence higher
response time is needed to attain better accuracy rate. That is,
these two objectives are conflicting to each other. And it can be
seen that our MaOEA-ID can not only improve the accuracy
of information entropy, but also make the upper limit of false
positive rate smaller and the box more compact and concen-
trated. This means that our MaOEA-ID can better balance
these conflicting objectives and achieves superior detection
performance over the existing state-of-the-art algorithms.

VI. CONCLUSIONS

We have constructed a many-objective based intrusion de-
tection model that considers information entropy, accuracy,
false alarm rate and response time of anomaly detection
as the four objectives for the in-vehicle network security
problem. An efficient MaOEA-ID with double evolutionary
selections has been designed to optimize this many-objective
intrusion detection model and hence to achieve good detec-
tion performance that balances the conflicting objectives. The
novelty of our MaOEA-ID has been its double evolutionary
selections that closely link and promote each other. For
the internal population, improved DE operator and spherical
pruning mechanism are adopted to produce new offspring
and select the excellent solutions, respectively. The excellent
internal solutions are used as the selection pool of the external
archive. New offspring of the external archive are generated
and an archive selection mechanism is adopted to select and
store the optimal solutions in the whole detection process.

To verify our intrusion detection model and optimization
algorithm, an experiment has been conducted involving a
a real-life automotive CAN bus network dataset. Extensive
experiments have been performed to investigate the important
impact of the sliding window size and the sensitivity parameter
to the detection performance. Concrete experimental results
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have validated that our method responds quickly to attacks and
is capable of obtaining high entropy and detection accuracy
as well as very low false positive rate with a good balance
in the conflicting objective landscape. The extensive results
obtained have also demonstrated that our MaOEA-ID has
superior intrusion detection performance over the three state-
of-the-art benchmarks, NSGA-III, PREA and hpaEA, in terms
of higher diversity and better objectives.

To further improve detection performance and service life,
our future work will construct enhanced detection model by
considering more influencing factors. It is also obvious that
the effectiveness of MaOEA-ID is not limited to addressing
the in-vehicle network problem, but can readily be applied to
anomaly detection in other fields, such as medical images.
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