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Abstract

5G connected autonomous vehicles (CAVs) help enhance perception of driving environment and
cooperation among vehicles by sharing sensing and driving information, which is a promising technology
to avoid accidents and improve road-use efficiency. A key issue for cooperation among CAVs is
matching communicating vehicles to those captured in sensors such as cameras, LiDAR, etc.. Incorrect
vehicle matching may cause serious accidents. While centimeter level positioning is now available for
autonomous vehicles, matching connected vehicles to sensed vehicles (MCSV) is still challenging and
has rarely been studied. In this paper, we are motivated to investigate the MCSV problem for 5G CAVs,
propose and assess solutions for the problem to bridge the research gap. We formulate the MCSV
problem and propose two MCSV approaches to support cooperative driving. The first approach is based
on vehicle registration number (VRN), which is unique to identify a vehicle and can be shared among
CAVs for MCSV. VRN is hashed before sharing to protect privacy, and will be compared to the shared
one for vehicle matching. The second MCSV approach is based on visual features of vehicle’s external
views, which are shared with other CAVs and compared to those obtained from visual sensors to match
the vehicles of interest. A new MCSV dataset is developed to assess the effectiveness of the proposed
approaches. Experiment results show that both approaches are feasible and useful, and they achieve a
very low false positive rate, which is critical for cooperative driving safety.

Index Terms

Connected vehicles; Vehicle to everything; 5G; Autonomous vehicles; Cooperative driving.

I. INTRODUCTION

Road accidents is a global concern in road transport systems. More than one million people

died on the roads globally every year [1]. There is an urgent need to develop advanced road and

vehicle technologies to improve driving safety. Connected vehicles (CV) and automated vehicles

(AV) are promising technologies to reduce road accidents and improve road-use efficiency [2] [3]

[4]. AVs have a great potential to avoid road accidents caused by human driving errors, which

contribute to more than 90% road accidents. There are also many use cases identified for CVs,

such as forward collision warning, blind intersection, queue warning, curve speed warning, traffic

signal, emergency vehicles, and adaptive cruise control. However, both AV and CV technologies

have inherent shortcomings [5]. For example, AV sensors are limited to line-of-sight sensing,

and are not aware of the intents of the surrounding vehicles, which is important for cooperative

driving such as lane merging and platooning. On the other hand, CV technology depends on

message exchanges to build up mutual awareness.

Due to the limitations on CV and AV, connected autonomous vehicles (CAV) technologies,

which combine the features of CV and AV, have attracted a lot of research and development
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interests [5]. CAVs can share their status, sensing and driving intents for comprehensive perception

of driving environments and cooperation on safe driving. Third Generation Partnership Project

(3GPP) is developing 5G enhanced cellular vehicle to everything (V2X) standards to support

advanced driving applications [6]. The advanced driving includes cooperative sensing, vehicle

platooning, remote driving and cooperative driving [6]. In some connected vehicles applications

such as forward collision warning or avoidance, sharing accurate 5G CAV status (e.g., position,

speed and acceleration) could be effective. However, in the advanced driving applications such as

cooperative driving and platooning, they require not only reliable and low latency communications,

but also reliable MCSV to identify and match the communicating vehicles from those captured

in the sensors such as visual cameras and LiDAR.

The task of MCSV can be best described by an ego vehicle to identify some relevant communicating

5G CVs on cooperative driving among the vehicles detected by the sensors at the ego vehicles.

As the ego vehicle will rely on object detection results and the shared information from the

communicating CVs for assisted or automated driving, correct MCSV is important for safety-

critical cooperative driving applications, such as unprotected turning, lane merging and platooning.

It is expected that the AV safety level needs to be two orders higher than human drivers, i.e.,

about 10−8 fatalities per mile. CAV cooperation and especially MCSV need to be very reliable in

order not to introduce any safety issue. However, the implementation of reliable MCSV is very

challenging. According to [4], for AVs operating on local streets to achieve the safety target,

the longitudinal location estimation error should be 0.29 m with an orientation requirement of

0.50 deg. Centimeter level location estimation is now available for autonomous vehicles with

advanced sensors and technologies, such as global position system (GPS), inertial measurement

unit (IMU), and LiDAR [7].

Note that even if CAVs can have precise location information for themselves that can be

exchanged with others, it is not sufficient for solving the MCSV problem. The CAVs will plan

their trajectories and make vehicle control decisions based largely on the perception of the

driving environment with the sensors such as cameras, LiDAR and radars. The shared locations

of communicating CAVs need to be transformed to the sensing domain (such as images for

cameras and point clouds for LiDAR) for safety cooperative driving. While advanced deep

learning models can boost up the accuracy of object detection and AVs’ location estimation,

it is still an open issue to map them to the real world precisely. Therefore, there is a huge

research gap to fill up in MCSV. The problem is especially prominent with mixed road traffic,
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where there are human driven vehicles (HDV) and vulnerable road users. There is an urgent

need for developing reliable and yet efficient MCSV solutions for cooperative CAVs. To our

best knowledge, the MCSV problem has not been studied in the literatures so far.

In this paper we investigate the MCSV problem and propose two approaches for MCSV to

support cooperative driving, such as unprotected turning and platooning. The first approach is

based on vehicle registration number (VRN), which is unique for a vehicle and can be used to

identify a vehicle. With this approach the candidate CAVs to be matched (VBMs) will share

VRN for the purpose of cooperative driving. The VRNs are hashed before sharing to protect

the privacy. The CAV to perform matching (VPM) will detect and recognize the VRNs of the

candidate VBMs in a region of interest (ROI). The VRNs will be hashed and compared to the

shared hash values by the candidate VBMs. If a pair of hash values match with each other,

then the corresponding CAV is claimed to be matched. The second approach is based on visual

features. The traditional feature descriptors such as SURF and deep learning features can be

used [9] [10]. With this approach the candidate VBMs share visual features of their external

images, and VPM will compare locally measured and shared visual features and determine if

the CAV is matched.

To test the performance of the proposed approaches, a dataset for MCSV was developed from

the public dataset for vehicle re-identification of the AI City Challenge 2019 [11]. Preliminary

experiment results show that the proposed approaches can be useful for MCSV with a good false

negative rate and a very low false positive rate. Note that these two approaches are complementary

and thus can work jointly with other existing approaches to improve MCSV performance. The

main contributions of this work can be summarized as follows.

1) We defined an MCSV problem, which is the first in the literature to trigger more investigations

on such an important issue for connected autonomous driving safety;

2) We proposed two MCSV approaches to support reliable and safe cooperative driving for

5G CAVs;

3) We developed new datasets for the assessment of the proposed approaches, and conducted

the experiments to assess the feasibility of the proposed approaches.

The rest of the paper can be outlined as follows. Section II formulates the MCSV problem and

presents an overview on the related works, where the differences between MCSV and vehicle re-

identification (VERI) are also discussed. Section III introduces the proposed MCSV approaches.

Section IV illustrates experiment settings and evaluation results, followed by the conclusions
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Fig. 1. Example of MCSV problem for lane merging. CAV: connected autonomous vehicle; HDV: human driven vehicle. CAV2
and CAV1 communicate and cooperate on driving. CAV1 gives ways to CAV2 through V2X communication. But for safe
cooperative driving CAV2 needs to know which of CAV1 and HDV in the captured image is the communicating CAV1.

made in Section V with some identified open research issues.

II. RESEARCH TOPICS AND RELATED WORKS

Following the discussions about the research gap on MCVS problem, in this section we will

talk about the related works in the areas relevant to MCSV research.

A. MCSV Research Problem

CV uses vehicle to everything (V2X) communications, including vehicle to vehicle (V2V)

communications, to exchange information with the other road users and network infrastructure.

There are two mainstream V2X communication standards, i.e., IEEE 802.11p and 3GPP cellular

V2X, which are dedicated to short range communications [2] [3] [4] [6]. Compared to the

DSRC V2X technology, cellular V2X can provide a better communication services with low

latency, high data rate and reliability [2], but requires a heavy investment on communication

infrastructure.

Advanced driving assistance systems (ADAS) can support autonomous driving and reduce

accidents [12]. Equipped with different sensors and advanced data processing algorithms, ADAS

can warn drivers of impending danger so that the drivers can take corrective actions or even

intervene on the drivers’ behalf [5]. It can provide many enhanced safety features, such as blind

spot detection and forward collision warning (FCW). ADAS is evolving towards self-driving

autonomous vehicle, which has the highest automation level of AVs. Self-driving autonomous

vehicles have three essential components, i.e., 360 degree perception, accurate mapping/positioning,
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and trajectory planning [5]. With advanced sensors and wireless technologies such as GPS and

LiDAR, centimeter level location sensing is now possible. On the other hand, according to the

latest KITTI vision benchmark results, the accuracy on detecting pedestrians and cyclists is still

not high enough [12]. Thus, there are sensor-related sensing problems, which can not be solved

by the AVs alone.

CVs is an important complementary to AVs for autonomous driving. Recently, various issues

on CAV were studied [2] [5]. The most research works on CAV were focused on reliable and low

latency V2X communications for advanced cooperative autonomous driving, cooperative data

fusion, and cooperative autonomous driving applications, such as platooning and cooperative

driving [2] [5] [8] [3]. A comprehensive review on the V2X communication research issues and

enabling technologies for CAV applications was presented in [2]. [8] established a comprehensive

benchmark for cooperative data fusion to evaluate different data fusion strategies (i.e., early, late,

and intermediate fusions) and proposed a new fusion pipeline to aggregate data from multiple

CAVs. [3] gave a survey on merging control strategies of CAVs at freeway on-ramps. Note that

in the existing CAV research works, either the MCSV problem was not considered, or a perfect

matching between the communicating and sensed vehicles was assumed.

While there are recent advances on connected autonomous driving, MCSV is a critical and

still missing element to ensure safe and effective cooperation for CAVs. Without accurate MCSV,

road accidents could happen during cooperative driving.

One example to illustrate MCSV is shown in Fig. 1, where there are one HDV and four

CAVs. The CAVs are equipped with V2X devices and vision based sensors. CAV1 and HDV

plan to merge to lane 3 and CAV2 plans to merge to lane 2. In this scenario, CAV1 and

CAV2 communicate and negotiate on merging. Suppose that CAV1 informed CAV2 via V2X

communication network that CAV1 will give way to CAV2 for merging. CAV1 also shared its

location with CAV2 through V2X messages. From CAV2’s perspective, it is aware of CAV1’s

locations from V2X messages obtained from GPS or HD-maps. On the other hand, CAV2

can detect surrounding vehicles and get their rough positions through camera/LiDAR sensors

and deep learning models. However, both the CAVs positions obtained via V2X messages

and via vision sensors have inevitable inaccuracy, e.g., around 5 meters inaccuracy in GPS

positioning. The location inaccuracy makes it very challenging to align the vehicles in both

V2X communication domain and object sensing domain. In Fig. 1, as CAV1 and HDV are very

close, CAV2 may match the detected vehicle HDV wrongly as CAV1. As CAV1 gave way to
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CAV2 and CAV2 thought HDV is CAV1, CAV2 presumed that HDV would give way to itself. If

HDV also decides to turn to lane 3, CAV2 could collide with HDV, leading to unsafe cooperative

driving.

B. Connected Vehicle Matching

With the improved capability of GPS and V2V communications, an intuitive idea for MCSV

is to use the reported position of the VBM through V2V communications and the position or

distance detected by the sensors of the VPM. However, note that the position information of

vehicles obtained from GPS has large errors (especially in urban scenarios), which will affect the

matching accuracy. While high-performance GPS technologies may have a much lower location

error, they can still have a large impact on vehicle matching. The locations of the VBMs needs to

be associated to the detected objects in the sensing domain. However, accurate location sensing

of objects in the captured images is an open issue for mono-camera based object detection.

Even with RGB-D cameras or LiDAR, it is still challenging to obtain accurate positions of the

detected vehicles.

In [13], the problem of matching connected vehicles was initially discussed for the formation

of platooning. Location and distance based approaches were proposed to identify the preceding

vehicles for cooperative adaptive cruise control platoon. In their approaches, radar was used to

measure the distance and angle by the VPM. In the location based approaches, the position of

the preceding vehicle was obtained with GPS by the VBM and passed to the VPM. The VPM

compares the distance and angle measured by radar with those computed from the locations

of the VBM and VPM. Note that the position error due to GPS and the inaccurate association

of objects with real vehicles by radar can introduce significant reliability and safety problems

in cooperative driving. In the distance based approach, ultra wideband technique was used to

send the distance information measured by the VPM to the target vehicles. It was reported that

a relative positioning accuracy below 1.1 m is required to ensure an acceptable identification

time. However, the distance based approach has the same problem as that in the location based

approach. For a vehicle matching problem where two vehicle patches are given, a projection

profiles based approach was proposed in [14]. The image rows and columns were projected

to generate row and column vectors, which were used as image profiles for vehicle matching.

It is noted that this projection profiles based approach was used for smart camera network
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applications instead of MCSV, where there are many design variables which may cause reliability

and effectiveness issues [14].

C. Vehicle Re-identification

Accurate traffic information plays an important role in public transport systems. There are

increasing research interests in vehicle re-identification from surveillance videos [15] [16]. The

task of vehicle re-identification is to identify a given vehicle from observations made by different

surveillance cameras. It can be used in many applications such as collecting traffic data for

statistics, law enforcement and traffic control, accident detection, etc.. Traditional sensors, such

as inductive loop detection, magnetic sensors, and cellular phones, have been used for vehicle

re-identification.

Computer vision based approaches become increasingly popular. There are many deep learning

based methods proposed for vehicle re-identification. [16] gave an overview on VERI with

sensors and computer vision based features. There are also vehicle re-identification competitions

organized by NVidia since 2017 [11]. It is noted that MCSV problem was not considered in the

aforementioned VERI research works. While the vehicle re-identification problem looks similar

to MCSV, there are major differences between them as discussed below, and innovative solutions

for MCSV task are needed.

1) In the VERI task, there is a relatively loose delay requirement, while in the MCSV task

fast matching with a high accuracy is required.

2) In the VERI task, the vehicle to be re-identified does not participate in the process; while

in the MCSV task VBM is aware of the process and actively cooperates with the VPM.

3) There is no communication between the vehicles to be re-identified and the executor of

the VERI process. In the MCSV task, the VBM and the VPM have direct communications

through V2V networks.

4) In the VERI process, images of the vehicles taken by different cameras are available for

identification purpose. In the MCSV task, usually only VPMs will have images taken by

their own cameras, in which the VBMs may be included. The images of the VBMs may

not be available to the VPMs for identification and matching, which makes the problem

even more difficult to deal with.
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III. VRN AND VISUAL FEATURE BASED MCSV APPROACHES

Having discussed about the MCSV problem and introduced the related works in the previous

section, we formulate the MCSV problem and present the VRN and visual feature based MCSV

approaches in this section.

Assume that there are Nc CAVs and Nh HDVs in a CAV system. The CAVs are equipped

with positioning devices such as GPS, a number of sensors (including cameras, radar and/or

LiDAR), and V2X communication devices. The CAVs use V2X communications to broadcast

their position and driving information to establish mutual awareness and to report hazard or

emergency events. Some of them may also work in cooperative driving. Suppose that among

the CAVs, there are one VBM and one VPM cooperating on driving (such as joining platoon

and negotiating turning in unprotected intersections). At a given time t, the estimated location

of VPM is Lp(t) and the shared location of VBM is Lb(t). Note that there are certain position

estimation errors for the VPM and VBM, and there is also a latency between the position

estimation for the VBM and the reception of the position information at the VPM.

We assume that VPM detected No objects from the sensors at time t with estimated location

Lo(n, t) and class Co(n, t) for the nth object, where n ∈ [1, No]. Again, there can be estimation

errors on the location and class for the detected objects. The VPM also has auxiliary information

(denoted as Aux) about the VBM, such as detected VRNs and shared VRNs of VBM. The VPM

attempts to match the VBM to one of the No detected objects. Let In be an optimization variable

taking value of 1 if the nth detected object is chosen to be the VBM, and 0 otherwise. Let R

denote the reward of an object being successfully matched to the VBM (taking value of 1),

Y denote the penalty if an object is wrongly matched to the VBM, and U denote the overall

utility for the MCSV process. The value of Y is configurable and is larger than 1 (such as 50),

manifesting the serious consequence of wrong vehicle matching on driving safety. Furthermore,

let Pn denote the estimated probability that the nth detected object is matched to the VBM, which

will be computed according to sensor’s object detection performance and the Aux information.
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With the above notations, we can formulate the MCSV problem as

Max
In,n=1,...,No

U =
No∑
n=1

[PnR− (1− Pn)Y ],

Subject to
No∑
n=1

In ≤ 1,

Given Lp(t), Lb(t), Lo(n, t), Co(n, t), and Aux.

(1)

Next we will propose two MCSV approaches, in which the VRN and visual features are used

as the identification information for vehicle matching at the VPMs. In this paper we assume

that the VPMs will mainly use the camera sensors with optional radar and LiDAR sensors for

perception. It is noted that the formulated MCSV problem takes a general form. In the VRN

and visual feature-based approaches, we first use the shared location information from the VBM

to modify the constraints, by reducing the set size of candidate objects to include only a very

small number of objects. Those detected objects not in the reduced set of candidate objects will

not be chosen as the VBM. In addition, we use the shared VRN (or visual feature) and the

detected VRN (or visual feature) as the Aux auxiliary information to compute the probability

that a candidate object may be the VBM to determine the VBM. The computed probabilities

and the utility are used to determine if a candidate object is the VBM.

A. VRN based MCSV Approach

The process of the VRN based MCSV approach is shown in Fig. 2(a), which works in six

steps to be explained as follows.

1) Detect vehicles and initiate MCSV (by VPM): The VPM will first detect vehicles using

sensors including cameras, optional radar and LiDAR sensors. Popular deep learning

models such as Faster-RCNN, YOLO-V3 and CenterNet can be used for vehicle detection.

In the cooperative driving applications (such as turning and platooning), the VPM will

identify the needs of cooperation with one CAV (i.e., VBM) according to the shared

information such as position and pose of the CAV. The VPM knows the communication

identifier (ID) and rough position estimation of the VBM, but does not know which vehicle

it corresponds to among the vehicles captured in the camera image. The VPM initiates the

MCSV process and requests for the VRN from the VBM.

2) Hash and share VRN (by VBM): As the VBM’s communication ID is included in the

message sent by the VPM, the VBM knows it is contacted for MCSV. It will respond to
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(a) VRN based MCSV.

(b) Visual features based MCSV.

Fig. 2. Framework of MCSV approaches. a) VRN based MCSV; and b) visual features based MCSV.

the request by hashing its VRN and sending the hash value to the VPM. The widely used

SHA-512 algorithm can be used for hashing, which can protect the privacy and produce

a 512-bits hash value.

3) Detect vehicle number plate (by VPM): After receiving the shared hash value from VBM,

the VPM will detect vehicle number plates from the detected vehicles in the region of

interests (ROI). For example, in the platooning and car-following applications, the vehicles

of interest will be the preceding ones in the same lane. Using image segmentation and

lane detection technologies, the VPM can locate the candidate vehicles to be processed.

Then, deep learning models for object detection such as Faster-RCNN and YOLO can be

used to detect the number plates in the vehicles.

4) Recognize and hash VRNs (by VPM): For those detected number plates, the VPM will

use deep learning models for character recognition such as CRNN to recognize the VRNs.

As shown in the example given in Fig. 2(a), a VRN of ”FH65CWN” is detected and
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recognized. Then, the recognized VRNs are hashed.

5) Compare the hash values and match vehicles (by VPM): The shared VRN hash value

is compared to those obtained from the detected VRNs by the VPM. If the shared hash

value from the VBM matches to any computed one by the VPM, it is said that the VBM

is matched to the CAV in the image with the matched hash value.

6) Receive and acknowledge MCSV outcome: The VBM will be notified of the MCSV

outcome (either matched or not) by the VPM. It will acknowledge the notification of

the outcome to the VPM. In the above process, it is assumed that the VPM knows the

ROI and the communication ID of the candidate VBMs located in the ROI, so that it can

request for the VRNs from the candidate VBMs to check if the vehicles are matched.

Alternatively, if the VPM finds a need of MCSV and identifies a candidate VBM (such as

the preceding vehicle in the same lane), it can recognize the VRN of the candidate VBM.

Then, it broadcasts the hashed value of the VRN of the candidate VBM to surrounding

CAVs and requests for a MCSV process. The CAVs receiving the message will compare

the received hash value and the hash value of their own VRNs. If two hash values match,

then the CAV will respond to the VPM and confirm the match of vehicles. The VPM will

know the communication ID of the VBM.

B. Visual Feature based MCSV Approach

The process of the VRN based MCSV approach is shown in Fig. 2(b). Its main steps are

explained as follows.

1) Detect vehicles and initiate MCSV (by VPM): This process is identical to the one in the

VRN based MCSV approach. The VPM will identify the need of MCSV in the cooperative

driving applications, and request MCSV for candidate CAVs located in a ROI determined

by the driving applications. Visual features of the vehicle external image extracted from

traditional feature descriptors such as SURF and ORB and deep learning models will be

used. A specific example of the features is the raw external image. Optional information

such as the vehicle pose can be included in the request message sent by the VPM to

narrow down the scope of vehicles to respond.

2) Share image feature (by VBM): CAVs receiving the VPM request message will check

if they are located in the ROI specified in the message. Those located in the ROI will

respond it with the corresponding raw image patch of the CAVs or their image features.
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Sending image features such as SURF can be a way of protecting privacy (just like using

hashing) and can reduce bandwidth requirement. A possible negative side-effect is that

some information about the image patches may be lost. There should be a trade-off to

strike according to the available bandwidth and MCSV accuracy requirement.

3) Extract vehicle features (by VPM): Using some supporting technologies such as image

segmentation and lane detection, the VPM can locate the candidate vehicles in the ROI

for MCSV. Then, deep learning models for object detection such as the Faster-RCNN and

YOLO can be used to detect the candidate vehicles. Either traditional handcrafted feature

such as SURF and deep learning features will be extracted from the detected vehicles,

depending on which image features are requested by the candidate VBMs.

4) Compare the vehicle features and match vehicles (by VPM): The shared vehicle features

will be compared to those obtained from the detected candidate VBMs by the VPM. If

the shared features from a VBM is close to those obtained by the VPM, it is claimed that

the VBM sharing the features is matched to the candidate VBM determined by the VPM.

5) Receive and acknowledge the MCSV outcome: The VBM will be notified of the MCSV

outcome (either being matched or not) by the VPM. It will acknowledge the notification

of the outcome to the VPM. In the above MCSV process, it is assumed that the VPM

knows the ROI of the candidate VBMs and request image features from the candidate

VBMs located in the ROI. Alternatively, the VPM can identify the candidate VBM (such

as the preceding vehicle in the same lane), and extract image features for the image patch

of the identified candidate VBM. Then, it can share the image patch with the vehicles in

the ROI and request the candidate vehicles to check if their image features match to the

shared image features. If the image features of a candidate CAV match to the shared ones,

then the candidate CAV will respond to the VPM and confirm the match of the vehicle.

The VPM will know the communication ID of the matched vehicle.

IV. EXPERIMENTS SETTINGS AND RESULTS

MCSV is an important issue in safety critical cooperative driving applications. In this section

the feasibility of the proposed MCSV approaches is assessed by a desktop computer with

Intel i7 CPU. The key performance metrics include false negative rate, false positive rate, and

computation time. Note that the computation times for the MCSV approaches are measured by
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the computer CPU and out of box software tools. The false negative rate (denoted by Pfnr) is

defined for the detected VBMs present in the detected CAVs at the VPM, as the ratio of the

number of these detected VBMs being not matched to any detected vehicles to the total number

of detected VBMs. False positive rate (denoted by Pfpr) is defined for these detected VBMs as

well, as the rate of the detected VBMs being matched to wrong CAVs detected by VPM to the

total number of these detected. Let Nall denote the number of detected VBMs by the VPM from

the cameras. Let Nneg denote the number of detected VBMs that are not matched to any detected

CAVs and Npos denote the number of detected VBMs that are matched to wrong CAVs. Then,

false negative and false positive rates can be computed by Pfnr = Nneg
Nall

and Pfpr = Npos

Nall
. It

should be noted that, in the cooperative driving applications, false positive has a much stronger

impact than false negative. The false positive rate should be kept very low.

A. Experiment Settings and MCSV Dataset

In the experiments, we considered cooperative driving in two challenging scenarios, i.e., an

uncontrolled intersection where there is no traffic light, and a complex urban road with T-

junctions. A mixed traffic is assumed where some of the vehicles in the scenarios are CAVs

with high-performance positioning and ranging devices, and some vehicles are HDVs. The CAVs

use LTE V2X radios for communications and camera sensors for detecting road objects. The

LTE V2X communication settings follow those used in [17], where the carrier frequency is 5.9

GHz with a bandwidth of 10 MHz. Five schedule assignment resources and two data resources

are configured in each subframe. Transmit power is 23 dBm. We fix the number of CAVs in the

considered scenarios to eight. A VPM is fixed at a location of the road in the scenarios. It is

assumed that a ROI can be effectively determined by the VPM with the positioning and ranging

devices. Information such as VRN or visual features from the CAVs in the ROI is requested and

then compared with the corresponding information measured by the VPM.

As there is no publicly available MCSV dataset, we developed a new MCSV dataset for

performance evaluation of MCSV. The new dataset was developed on top of the dataset for VERI

track from the AI City Challenge 2019 [11]. The AI City Challenge series are very popular for

research and development of advanced AI based solutions for city challenges including vehicle

re-identification and multiple object motion tracking. Video clips were provided for the VERI

competition track, which were collected by surveillance cameras. The frames in the video clips

are labelled with vehicle bounding boxes and ID. A given vehicle may appear in a number of
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frames in a specific video. A number of vehicles are chosen as CAVs to be matched from the

videos. An image patch of a given CAV is extracted as the profile image for a VBM, which is

denoted as VBM patch. From each frame of the tested video clips, a ROI is chosen for a given

CAV. If the CAV is present in a frame, a ROI centered on the CAV with doubled size of the CAV

is selected. The image patch corresponding to the ROI will be extracted for MCSV operation

by the VPM. If the CAV is not present in a frame, a ROI centered on another randomly selected

vehicle with doubled size of that vehicle will be selected. The image patch corresponding to the

ROI will be extracted from the frame for MCSV operation by the VPM, which is denoted as

VPM patch. Two videos from the AI City Challenge scenarios for VERI Track of train S04 c029

and train S04 c028 were selected to develop MCSV dataset, which correspond to urban junction

and uncontrolled intersection scenarios, respectively.

B. Experiment Results for Visual Features based MCSV

In the two selected video clips corresponding to urban junction and uncontrolled intersection

scenarios, three and four CAVs are chosen as VBMs, respectively. The visual features of VBMs

patches shared by VBMs via V2X are compared to the patches captured by VPM sensors.

According to the visual feature comparison results, a VBM will be claimed as being matched or

not by the VPM. The VPM’s claimed matching results are then compared to the ground truth.

Then, the MCSV performance of false negative and false positive rates can be computed. In this

paper, we use the traditional SURF algorithm to extract visual features of the image patches

[9], and then match the feature points of the VBM and VPM patches. A threshold of matched

feature points (Nthreh) is set, which means that only when there are no less than Nthreh matched

feature points between the VBM and VPM patches, a VBM is claimed to be matched by the

VPM in the corresponding frame.

There are several considerations on using SURF features instead of more advanced deep

learning features. First, SURF features can be extracted with much less computing and memory

resources than deep learning features, which is important for the embedded computing devices

in CAVs. Second, open software resources for computing SURF features are widely available

and no training is needed. The SURF features can be shared and are compatible across CAVs. It

is difficult to share and run deep learning features or models across CAVs. Third, deep learning

models usually take a longer time to compute the results, which is not desirable in the real

time safety critical cooperative driving applications. Based on the above considerations, SURF
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(a) FPR results

(b) FNR results

Fig. 3. Experiment results for visual feature based MCSV approach. (a) False positive rate; (b) False negative rate.

features are used in this paper. In our future works, deep learning will be investigated for the

visual feature based MCSV approach.

The false positive and false negative rate performances of the visual feature based MCSV

approach are presented in Fig. 3. The false matching performance is plotted versus the threshold
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of the required number of feature matching points for both urban junction and unprotected

intersection scenarios. It is noted that under a light traffic load condition, V2X communication

is highly reliable with an average packet successful ratio larger than 0.97. The impact of V2X

communication packet losses on MCSV is very small.

It can be observed from the above results that with the visual feature based MCSV, the false

positive rate decreases fast with the threshold for the number of required matching points. It can

be kept very low (e.g., smaller than 0.1% with a threshold of 4), which is desirable in the safety

critical cooperative driving applications. On the other hand, the false negative rate increases with

the threshold. With a threshold of 4, the false negative rate in urban junction and unprotected

intersection scenarios is 0.3 and 0.34, respectively. While the false negative rate is high, it is

found that this is due partly to the small size of the CAVs and possible occlusions in the captured

VPM patches. As false negative matching will not lead to cooperation failure on driving between

the involved VBM and VPM, it will not introduce extra safety issues. Further more approaches

such as using the VRN based MCSV and location based approach can be combined with the

visual feature based approach to improve false negative rate performance.

For the VRN based approach, we used YOLOv3 to detect vehicles and VRNs in the images,

and used the open source optical character recognition (OCR) software Tesseract to recognize

the numbers and letters in the detected VRNs. As most VRNs in the video clips from the AI

City Challenge were masked, we collected a dataset of driving images with cameras from a test

vehicle and extracted VRNs from the collected images to develop another dataset of VRNs. For

the OCR task, the original trained Tesseract model was used without fine tuning, which may not

produce the optimal results.

Next, the results of false positive rate, false negative rate and latency are presented for the

VRN based approach.

• As matching VRNs is relatively easy and reliable, the VRN based approach has an average

false positive rate of zero, which is highly desirable in safety critical cooperative driving

applications.

• On the other hand, the false negative rate performance is largely affected by the relative

distance, lighting and background views. Within a relative distance of 10 meters between

VPM and VBM, the average false negative rate is 38.4% with full VRN match over the

collected VRN dataset. With a relative distance of about 20 meters between VPM and VBM,

the average false negative rate results is 26% with full VRN match.
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The latency analysis for the two proposed approaches is presented as follows, which includes

communication and computation latencies.

• Communication latency: In the experiments, the MCSV data packets were broadcast at a

rate of 50 packets per second. There is a communication latency of 20 ms for both visual

feature and VRN based approaches, which can be reduced with a higher data transmission

rate.

• Computation latency: In the object detection task, which is also needed by other autonomous

driving applications, the computing time with YOLOv3 deep learning model and the given

CPU is 65 ms, which can be largely reduced with GPU devices. There is some additional

computing time of 45 ms for the detection and recognition of VRN with Tesseract in the

VRN based MCSV. The time of computing SURF features of a vehicle patch with Matlab

is 40 ms.

• Overall latency: The overall latencies (calculated as the sum of communication and computation

latencies) for the VRN and visual feature based MCSV approaches are 130 ms and 125

ms, which can meet the real time requirement in the cooperative driving applications.

It is noted that the experiments were for demonstration purpose only. In practical applications,

more advanced and customized software tools and GPU devices can be used to speed up the

MCSV computing process and reduce the overall latency.

V. CONCLUSION

In this paper we presented and investigated an important issue on matching 5G connected

vehicle to sensed vehicles for safe cooperative driving in mixed traffic conditions, which has

been rarely studied. The MCSV problem was formulated and two novel MCSV approaches were

proposed based on vehicle registration numbers and visual features, respectively. The proposed

approaches were assessed in terms of false positive and false negative rates. A new MCSV

dataset was developed from the AI City Challenge VERI dataset. In the studied urban junction

and unprotected intersection scenarios, both approaches can achieve a very low false positive rate,

which is desirable for safe cooperative driving. While the false negative rate is relatively high

for the proposed approaches, it is not a major safety concern and can be improved by combining

the proposed and additional approaches. In the future, advanced deep learning models will be

used for visual feature based approach, and new MCSV datasets and performance metrics will be
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introduced for performance evaluation in cooperative driving applications. In addition, identifying

the relevant vehicles for MCSV and improving the robustness of the MCSV approaches will be

our future works.
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Figure 1.

Fig. 4. Example of MCSV problem for lane merging.
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Figure 2.a

Fig. 5. VRN based MCSV.
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Figure 2.b.

Fig. 6. Visual features based MCSV.
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Figure 3.a

Fig. 7. FPR results.
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Figure 3.b

Fig. 8. FNR results.
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