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A B S T R A C T

Electronic health records (EHRs) contain diverse patient information, including medical notes, clinical events,
and laboratory test results. Integrating this multimodal data can improve disease diagnoses using deep learning
models. However, effectively combining different modalities for diagnosis remains challenging. Previous
approaches, such as attention mechanisms and contrastive learning, have attempted to address this but do not
fully integrate the modalities into a unified feature space. This paper presents EHR-KnowGen, a multimodal
learning model enhanced with external domain knowledge, for improved disease diagnosis generation from
diverse patient information in EHRs. Unlike previous approaches, our model integrates different modalities into
a unified feature space with soft prompts learning and leverages large language models (LLMs) to generate
disease diagnoses. By incorporating external domain knowledge from different levels of granularity, we
enhance the extraction and fusion of multimodal information, resulting in more accurate diagnosis generation.
Experimental results on real-world EHR datasets demonstrate the superiority of our generative model over
comparative methods, providing explainable evidence to enhance the understanding of diagnosis results.

1. Introduction

Given the increasing prevalence of intelligent medical health, ex-
tensive collections of electronic health records (EHRs) have been ac-
cumulated to serve as valuable datasets for the advancement of deep
learning in the healthcare domain. Common EHR modalities encompass
diverse data types, which mainly can be concluded to be structured
data (e.g., patients’ demographics, laboratory testing results, clinical
events, medications, etc.) and unstructured data (e.g., medical notes,
radiology reports, magnetic resonance imaging (MRI), etc.). Structured
and unstructured EHRs can often be used for different healthcare tasks
with different deep learning models, such as disease diagnosis [1–
3], disease risk prediction [4–6], patients’ mortality prediction [7,8],
and intensive care unit (ICU) stay time estimation [7]. Nonetheless,
the prevailing research on the aforementioned task primarily centers
around handling single modalities, with limited regard for accom-
modating multiple modalities, and a lack of emphasis on addressing
unstructured medical notes. Consequently, these studies may overlook
the potential for enhanced prediction outcomes by failing to extract the
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wealth of patient information embedded within medical notes and by
neglecting a holistic comprehension of the patient’s condition through
integrated analysis of diverse modalities. In this study, our primary
focus lies in the accurate determination of patients’ disease diagnoses.
To achieve this, we adopt a comprehensive approach that incorporates
multiple EHR modalities, encompassing unstructured medical notes,
clinical events, and laboratory testing results.

There has been a growing interest in research on multimodal EHR
learning [3,7,9–11]. Current approaches to multimodal learning pri-
marily focus on utilizing different deep learning models for each modal-
ity. For instance, convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) are commonly employed to process textual
medical notes and numerical or discrete structured EHR data for disease
risk prediction [3,7]. Furthermore, with the advent of large language
models (LLMs) and their application in the healthcare research field,
more and more LLMs such as ClinicalBERT [12], BioBERT [13], and
MedBERT [14] have been applied to process textual EHR data for

https://doi.org/10.1016/j.inffus.2023.102069
Received 28 June 2023; Received in revised form 31 August 2023; Accepted 6 October 2023

https://www.elsevier.com/locate/inffus
http://www.elsevier.com/locate/inffus
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
https://github.com/Healthcare-Data-Mining-Laboratory/EHR-KnowGen
mailto:20483007@life.hkbu.edu.hk
mailto:majing@comp.hkbu.edu.hk
mailto:bailiang@sxu.edu.cn
mailto:zhihua.wang@zju.edu.cn
mailto:L.Guo@mmu.ac.uk
mailto:xian.yang@manchester.ac.uk
https://doi.org/10.1016/j.inffus.2023.102069
https://doi.org/10.1016/j.inffus.2023.102069
http://creativecommons.org/licenses/by/4.0/


Information Fusion 102 (2024) 102069

2

S. Niu et al.

various downstream healthcare tasks. Consequently, the combination
of LLMs with other deep learning models has gained popularity and
demonstrated better prediction performance in recent healthcare re-
search, leveraging the strengths of LLMs in processing natural language
data [9,10,15]. However, this approach of using separate encoders to
process different modalities and then attempting to fuse these modali-
ties using techniques such as attention mechanisms [7,9] or contrastive
learning [10] does not fully integrate the data from these modalities
into a unified feature space.

Our research primarily centers around effectively integrating differ-
ent modalities of EHR data, with a particular emphasis on unstruc-
tured textual data. We achieve this by leveraging generative LLMs.
Recently, large language models such as LLaMA [16] and GPT4 [16]
have emerged as a novel paradigm in various tasks involving diverse
input data. These models stand out due to the abundant prompts
that support instruction tuning within generative approaches, distin-
guishing them from most discriminant deep learning models. In the
realm of healthcare research, PromptEHR [17] proposed a synthetic
multimodal EHR generation model inspired by the generative approach
of MedGAN [18]. PromptEHR utilized LLMs with the patient’s demo-
graphic information as a conditional prompt, along with other modal-
ities such as longitudinal diagnosis events and medication events.
However, PromptEHR primarily focuses on aspects other than disease
diagnosis. To the best of our knowledge, limited existing research
specifically explores the application of generative methods for disease
diagnosis. The beauty of introducing generative models for disease
diagnosis lies in their ability to generate realistic and diverse samples
that represent possible disease outcomes. Unlike classification models
that assign a single label to each input, generative models can capture
the complex relationships and variations within the data.

One of the challenges in multimodal EHR learning is that the
extracted information may not necessarily contain clinically relevant
insights, which hinders the potential for further improvement in predic-
tion performance. To overcome this limitation, incorporating external
domain knowledge becomes crucial. By incorporating domain knowl-
edge, generative models can benefit from additional guidance during
disease name generation from a semantic perspective, leading to im-
proved accuracy in disease generation. Several research works [19–21]
have utilized domain knowledge to construct knowledge graphs to
generate more accurate disease diagnoses and provide interpretation
evidence. Additionally, external knowledge from disease names has
been incorporated through attention mechanisms to provide explain-
able disease risk predictions [1,2,4,9]. However, to the best of our
knowledge, limited research has introduced domain knowledge at a
semantic level through generative approaches using multimodal EHRs
in the healthcare domain.

To address the research gap, we propose a model called Knowledge-
enhanced Multimodal Learning for Disease Diagnosis Generation (EHR-
KnowGen). Our approach aims to bridge the gap between multimodal
EHR data and clinically relevant information by leveraging domain
knowledge. We convert diverse types of multimodal data, such as med-
ical notes, discrete clinical event sequences, and numerical laboratory
testing results, into a unified textual format. The textual data from
different modalities are then encoded using a unified LLM, with soft
prompts introduced to mitigate the modality gap. Additionally, we
integrate hierarchical fine-grained and coarse-grained domain knowl-
edge to guide the fusion of multimodal EHR data and extract clinically
relevant information. By incorporating this knowledge-enhanced data
fusion mechanism, our model enhances the accuracy of disease di-
agnosis generation, empowering generative models to excel in the
healthcare domain.

Our main contributions can be summarized as follows:

• To fill the gap of limited research in generative disease diagnosis,
we propose a disease diagnosis generative model that encodes
different EHR modalities into a shared encoding space based on

T5 [22]. Moreover, we employ soft prompts for each modality
to enhance the latent representation of the multimodal EHR
embedding.

• To enable the extraction of disease-related information from mul-
timodal EHR data and offer interpretive evidence for disease
diagnosis results, we integrate external fine-grained and coarse-
grained knowledge into the disease diagnosis generation process.
This incorporation of knowledge serves as a guiding mechanism
to enhance the accuracy and interpretability of disease diag-
noses, empowering our model to provide valuable insights in the
healthcare domain.

• To validate the effectiveness of our model, we evaluate it on
publicly available datasets, including the multimodal EHR dataset
MIMIC-III [23] and the single-modality EHR dataset N2C2-2014
[24].

2. Related works

2.1. Mutimodal learning with EHRs

Typical EHR data exhibit heterogeneity and the nature of multi-
modality. They typically contain textual modalities such as medical
notes, numerical modalities such as laboratory testing results and ECG
waveforms, and discrete modalities such as clinical events. In the
context of textual EHRs, word embeddings with attention mechanisms
have been employed for disease classification [1,2], and LLMs equipped
with attention mechanisms have also been leveraged for multi-disease
diagnosis [4,9]. For numerical and discrete EHR modalities, RNNs
are commonly employed for multi-disease diagnosis, as demonstrated
in studies such as [5,7,25–28]. Moreover, multimodal learning has
been extensively explored and applied in various fields [29–33]. In
the domain of healthcare research, multimodal learning has also been
introduced to address the heterogeneity of multimodal EHR data, en-
hancing the predictive power of models through the appropriate fusion
of different modalities. For example, RAIM [7] exhibited superior per-
formance compared to single-modality models in predicting patient
mortality, physiological decompensation, and ICU stay duration, which
achieved this by simultaneously analyzing ECG waveforms, laboratory
testing results, and clinical events using a multi-channel Gated Recur-
rent Unit (GRU) coupled with multiple attention mechanisms. MNN [3]
adopted a unified approach to model longitudinal medical notes and
multi-disease diagnosis codes of patients for diagnosis prediction. On
the other hand, LDAM [9] employed channel-wise RNNs and Clinical-
BERT with medical notes and laboratory testing results, establishing
a connection between the two modalities using label-dependent atten-
tion mechanisms to provide an explainable and accurate disease risk
prediction.

2.2. Large language models and prompt learning in healthcare

In the field of Natural Language Processing (NLP), language mod-
els have emerged as a powerful tool for various downstream NLP
tasks. Prominent models like BERT [34], BART [35], T5 [22], and
GPT3 [36] have been developed and widely utilized. Within the health-
care domain, models such as ClinicalBERT [12] and MedBERT [14]
have successfully processed textual EHR data for different downstream
tasks in healthcare research. Prompt learning, a promising technique,
employs natural language prompts as input for generation tasks. It
enables fine-tuning of LLMs for specific tasks with limited examples,
thereby reducing the reliance on labeled data for training. Addition-
ally, prompt learning helps bridge the gap in modality distribution
by constructing suitable prompts for each modality [37]. Despite its
potential, prompt learning in healthcare research remains relatively
under-explored. Recently, PromptEHR [17] utilized LLMs and prompt
learning for generating longitudinal multimodal EHRs. In this study,
we incorporate soft prompts [38] into a generative large language
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Fig. 1. The overall structure of EHR-KnowGen involves three components, multimodal encoder, disease-related information extractor, and diagnosis results generator. Initially,
the multimodal EHRs, comprising medical notes, clinical events, and laboratory test results, are fed into the multimodal encoder. This encoder encodes multimodal EHRs and
external knowledge into multimodal representation and external knowledge representations. Then, they are forwarded to the disease-related information extractor. This extractor
comprises a knowledge attention module and a knowledge calibration module, which generates the knowledge-enhanced multimodal representation. Finally, the learned multimodal
representation is used to generate disease names through a diagnosis results generator.

model to enhance the latent multimodal EHR representation, thereby
contributing to the advancement of prompt learning in healthcare
research.

2.3. Explicitly incorporating external knowledge

One of the key challenges in precision medicine is to enhance the
interpretability of deep learning models while maintaining their predic-
tive capabilities. A common approach to tackle this challenge involves
incorporating external medical knowledge. For example, KAME [20]
and GRAM [19] have utilized medical knowledge graphs with attention
mechanisms on ICD codes for multi-disease diagnosis. The attention
weights assigned to the knowledge graph nodes can represent the
diseases a patient experiences during each hospital visit. CAML [1],
LDAM [9], and LERP [4] have introduced external medical information
through the cross-attention mechanism, using target disease risk labels
in their models. This approach enables the disease diagnosis model to
focus more on medical features related to the target label. PRIME [39]
was the pioneering work that incorporated prior medical knowledge
for risk prediction. It models prior medical knowledge as posterior
regularization and learns the desired posterior distribution using a
log-linear model. In our research, we incorporate fine-grained domain
knowledge derived from the names of ICD-9 codes1 and coarse-grained
domain knowledge obtained from the names of grouped ICD-9 codes
provided by HCUP-CSS codes2 for disease diagnosis using a generative
LLM.

3. Methodology

3.1. Model overview

Our proposed model, EHR-KnowGen, is specifically designed to
leverage multimodal EHR data for multi-disease diagnosis. The overall
architecture of EHR-KnowGen is represented in Fig. 1. It comprises
three crucial modules, namely the multimodal encoder, disease-related
information extractor, and diagnosis results generator. The objective
of our model is to enable precise and interpretable disease diagnosis,
thereby enhancing the quality of healthcare outcomes.

In the multimodal EHR encoder module, we process the multimodal
EHR data 𝒙𝑛 of each patient using a dedicated encoder. The encoder

1 https://www.cdc.gov/nchs/icd/icd9~cm.htm.
2 https://hcup-us.ahrq.gov/toolssoftware/ccs/ccsfactsheet.jsp

incorporates medical notes 𝒎𝑛, clinical events 𝒆𝑛, and laboratory testing
results 𝒍𝑛 to generate a multimodal representation 𝑯𝑛. To improve
the quality of this representation, we incorporate soft prompt em-
beddings 𝑷 (𝑚), 𝑷 (𝑒), and 𝑷 (𝑙). These soft prompts provide additional
guidance and context during the encoding process, enhancing the
overall representation of the multimodal EHR data.

In the disease-related information extractor module, we introduce
ICD codes to facilitate the extraction of disease-related information
from the multimodal EHR data. This module employs a cross-attention
mechanism to focus on and extract valuable disease-related details from
the multimodal EHR embedding. Fig. 2 illustrates the coarse-grained
and fine-grained ICD codes. The fine-grained diseases are represented
as 𝑪 (𝑓 ), while the coarse-grained diseases are represented as 𝑪 (𝑐). For
each patient 𝑛, the diseases to be diagnosed are represented as 𝒚(𝑐)𝑛 and
𝒚(𝑓 )𝑛 . 𝒚(𝑓 )𝑛 is the subset of the corresponding ICD codes. The presence or
absence of diseases at the coarse-grained level is indicated by the binary
vector 𝒚(𝑐)𝑛 , while 𝒚(𝑓 )𝑛 contains a list of fine-grained disease names that
are related to patient 𝑛. This design enables the capturing of diseases
at different levels of granularity. To predict the coarse-grained diseases,
we employ a multi-class classifier. Determining coarse-grained diseases
provides valuable insights that aid in determining fine-grained diseases,
supporting the process of disease diagnosis. The disease-related infor-
mation extractor module outputs the disease-related encoding matrices
𝑯 (𝑓 )

𝑛 and 𝑯 (𝑐)
𝑛 , which contain the extracted disease-related information

at different levels of granularity.
In the disease diagnosis generator module, we employ the latent

representations 𝑯 (𝑓 )
𝑛 , 𝑯 (𝑐)

𝑛 , and 𝑯𝑛 to generate the predicted fine-
grained diseases 𝒚(𝑓 )𝑛 . Instead of using a classifier, we utilize a language
model-based generator due to the presence of fine-grained diseases and
the potential challenge of limited sample sizes for each disease, which
can make classification more difficult. In the subsequent subsections,
we will provide a more detailed explanation of each module.

3.2. Multimodal encoder

In this section, we will introduce the multimodal encoder of the
EHR-KnowGen model. With the objective of capturing and integrat-
ing various modalities within a unified encoding space, our approach
employs a large language mode T5. To further enhance the latent
multimodal representation, we introduce soft prompts for each EHR
modality during the encoding process.

The example input multimodal EHR data is illustrated in Fig. 3. We
apply three different textualization methods to convert three modalities

https://www.cdc.gov/nchs/icd/icd9~cm.htm
https://hcup-us.ahrq.gov/toolssoftware/ccs/ccsfactsheet.jsp


Information Fusion 102 (2024) 102069

4

S. Niu et al.

Fig. 2. The illustration of external domain knowledge from coarse-grained and fine-grained ICDs.

Fig. 3. Illustration of multimodal EHR data and data preprocessing steps.

into textual formats. For unstructured medical notes 𝒎𝑛, we deploy data
pre-processing methods to remove stopwords and noises. For discrete
clinical events, we employ a filtering mechanism to remove repeated
events, resulting in a refined set of events that are subsequently de-
scribed in textual formats. As for the time-series laboratory testing
results, we apply the box-plot outlier detection method [40] to identify
abnormal signals within the continuous sequence. These abnormal
signals are then described in textual formats. In addition, we define

three learnable soft prompts 𝑷 (𝑚), 𝑷 (𝑒), and 𝑷 (𝑙) ∈ R𝑁𝑝×𝐷 for medical
notes, clinical events, and laboratory testing results, respectively. In this
context, 𝑁𝑝 denotes the length of the embeddings for the soft prompts,
while 𝐷 signifies the dimensionality of the embeddings. For the sake
of convenience, we shall exclude the explicit mention of the length
of the soft prompt embeddings (𝑁𝑝) in the subsequent sections. The
soft prompt embeddings are then fed into the encoder along with the
medical notes, clinical events, and laboratory testing results to get the



Information Fusion 102 (2024) 102069

5

S. Niu et al.

multimodal representation:

𝑯𝑛 = 𝑓𝑒𝑛𝑐 (𝑷 (𝑚),𝑷 (𝑒),𝑷 (𝑙),𝒙𝑛). (1)

Here, 𝑯𝑛 ∈ R𝑁𝑛×𝐷 represents the fused embeddings of the three
modalities for patient 𝑛 and 𝑁𝑛 is the length of 𝒙𝑛. 𝑓𝑒𝑛𝑐 (⋅) denotes
the Transformer-based encoder. The incorporation of the soft prompts
during the encoding process would facilitate the integration of diverse
EHR data sources as discussed in [37].

3.3. Disease-related information extractor

The extraction and representation of valuable information from dif-
ferent multimodal EHRs, as well as capturing the relationships between
various modalities, pose a significant challenge for a basic multimodal
encoder. To overcome this challenge, we can leverage external medical
knowledge to enhance feature extraction and facilitate the fusion of
valuable multimodal information. In our approach, we incorporate fine-
grained diseases to provide interpretation evidence that aids in the
identification of important tokens and phrases from multimodal EHRs.
This is accomplished through the use of a fine-grained knowledge atten-
tion module, which focuses on capturing disease-related features with a
higher level of granularity. Furthermore, we introduce coarse-grained
disease information as parent nodes within the knowledge represen-
tation. The coarse-grained diseases serve as higher-level categories or
groups that include multiple fine-grained diseases. By incorporating
coarse-grained disease information, we can refine and contextualize the
extracted disease-related features, providing a more comprehensive and
accurate representation of the patient’s condition.

3.3.1. Fine-grained knowledge attention module
As illustrated in Fig. 4, the fine-grained knowledge attention module

utilizes external domain knowledge from fine-grained disease names
𝑪 (𝑓 ) to identify important features within the multimodal EHR em-
bedding 𝑯𝑛. To incorporate fine-grained knowledge, we introduce a
learnable soft prompt 𝑷 (𝑓 ) ∈ R𝑁𝑝×𝐷 and combine it with 𝑪 (𝑓 ) within
the encoder to get:

𝑬(𝑓 ) = 𝑓𝑒𝑛𝑐 (𝑷 (𝑓 ),𝑪 (𝑓 )), (2)

where 𝑬(𝑓 ) ∈ R|𝑪 (𝑓 )
|×𝐷, |𝑪 (𝑓 )

| refers to the number of diseases in 𝑪 (𝑓 ).
Next, we use the embeddings 𝑯𝑛 and 𝑬(𝑓 ) to compute the knowl-
edge attention score vector 𝜶𝑛. This involves applying three learnable
weights 𝑾 𝑞 , 𝑾 𝑘, and 𝑾 𝑣 to transform 𝑬(𝑓 ) and 𝑯𝑛 into the query,
key, and value matrices:

𝑸 = 𝑾 𝑞𝑬(𝑓 ),

𝑲𝑛 = 𝑾 𝑘𝑯𝑛,

𝑽 𝑛 = 𝑾 𝑣𝑯𝑛.

(3)

The scaled-dot similarity between 𝑲𝑛 and 𝑸 are obtained from:

𝑮𝑛 = 𝑲𝑛 ⋅𝑸 =
𝑲𝑇

𝑛 𝑸
√

𝐷
, (4)

where, ⋅ is the scale-dot operation, 𝑇 denotes the transpose operator,
𝑮𝑛 ∈ R𝑁𝑛×|𝑪 (𝑓 )

| is the scaled-dot similarity matrix.
To capture the relative spatial information of consecutive words

and improve the extraction of implicit information from multimodal
textual EHR data, we utilize a one-dimensional (1D) CNN along with a
max-pooling layer applied to the scaled-dot similarity matrix 𝑮𝑛. This
process results in the following transformation:

𝒖𝑛 = 𝑓𝑚𝑝(𝑓𝑅𝑒𝐿𝑈 (𝑓𝑐𝑜𝑛𝑣(𝑮𝑛, 𝑘1, 𝑟)), 𝑘2) (5)

where 𝒖𝑛 ∈ R𝑁𝑛 represents the resulting embedding after applying the
1D CNN and max-pooling layers. The function 𝑓𝑐𝑜𝑛𝑣(⋅) denotes the 1D
CNN layer, 𝑓𝑚𝑝(⋅) represents the max-pooling layer, and 𝑓𝑅𝑒𝐿𝑈 (⋅) cor-
responds to the nonlinear activation layer. The parameter 𝑘1 indicates
the kernel width of the CNN, 𝑟 denotes the padding size of the CNN,

and 𝑘2 represents the kernel width of the max-pooling operation. After
obtaining 𝒖𝑛, we employ the softmax function to generate the similarity
score vector 𝜶𝑛 ∈ R𝑁𝑛 , where its 𝑖th element is obtained from:

𝛼𝑛,𝑖 =
𝑒𝑢𝑛,𝑖

∑𝑁𝑛
𝑖=1 𝑒

𝑢𝑛,𝑖
. (6)

Afterwards, the weighted fusion embedding vector 𝑯 (𝑓 )
𝑛 ∈ R𝑁𝑛×𝐷 is

generated by combining 𝑽 𝑛 and 𝜶𝑛 through:

𝑯 (𝑓 )
𝑛 = 𝑽 𝑛 ⊙ (𝜶𝑛𝟏𝑇 ) + 𝑽 𝑛, (7)

where, 𝟏 ∈ R𝐷 represents a column vector of ones, ⊙ denotes the
element-wise production, (𝜶𝑛𝟏𝑇 ) results in a matrix where each column
is a copy of the vector 𝜶𝑛.

3.3.2. Coarse-grained knowledge calibration module
In order to further improve the extraction and fusion of multi-

modal information in EHRs using external fine-grained knowledge,
we introduce coarse-grained disease knowledge labels denoted as 𝒚(𝑐)𝑛 .
These labels are utilized to calibrate and constrain the weights used in
generating the knowledge attention scores 𝜶𝑛 during the multimodal
fusion process, which can be achieved through backpropagation. The
structure of the knowledge calibration module is depicted in Fig. 5. The
multimodal embedding 𝑯 (𝑓 )

𝑛 is employed to generate a coarse-grained
disease distribution score vector denoted as 𝒚̂(𝑐)𝑛 ∈ R|𝑪 (𝑐)

|, where |𝑪 (𝑐)
|

refers to the number of diseases in 𝑪 (𝑐) and each element 𝑖 is obtained
from:

𝒚̂(𝑐)𝑛 = 𝜎(𝑓𝑐 (
1
𝑁𝑛

𝑁𝑛
∑

𝑖=1
𝑯 (𝑓 )

𝑛,𝑖 )). (8)

Here, 𝑯 (𝑓 )
𝑛,𝑖 is the 𝑖th row of 𝑯 (𝑓 )

𝑛 , 𝜎(⋅) is the Sigmoid activation function,
𝑓𝑐 (⋅) is a fully connected layer and used to decrease embedding dimen-
sion from 𝐷 to |𝑪 (𝑐)

|. The loss function for predicting coarse-grained
diseases is defined as:

𝑐 = − 1
𝑁|𝑪 (𝑐)

|

𝑁
∑

𝑛=1

|𝑪 (𝑐)
|

∑

𝑗=1
(𝑦(𝑐)𝑛,𝑗 log(𝑦̂

(𝑐)
𝑛,𝑗 ) + (1 − 𝑦(𝑐)𝑛,𝑗 ) log(1 − 𝑦̂(𝑐)𝑛,𝑗 )), (9)

where 𝑁 is the total number of patients.
The predicted coarse-grained disease label 𝒚̂(𝑐)𝑛 is utilized to generate

an embedding matrix, 𝑯 (𝑐)
𝑛 , which contains coarse-grained disease-

related information from EHRs. This embedding matrix is generated
using the following equation:

𝑯 (𝑐)
𝑛 = 𝑬(𝑐) ⊙ (𝒚̂(𝑐)𝑛 𝟏𝑇 ) + 𝑬(𝑐), (10)

where (𝒚̂(𝑐)𝑛 𝟏𝑇 ) yields a matrix in which each column is a copy of the
vector 𝒚̂(𝑐)𝑛 . Here, we have:

𝑬(𝑐) = 𝑓𝑒𝑛𝑐 (𝑷 (𝑐),𝑪 (𝑐)), (11)

where 𝑷 (𝑐) ∈ R𝑁𝑝×𝐷 is the learnable soft prompt for 𝑪 (𝑐), 𝑬(𝑐) ∈
R|𝑪 (𝑐)

|×𝐷 and 𝑯 (𝑐)
𝑛 ∈ R|𝑪 (𝑐)

|×𝐷.

3.4. Diagnosis results generator

In the diagnosis results generator, the matrices 𝑯𝑛, 𝑯 (𝑓 )
𝑛 , and 𝑯 (𝑐)

𝑛
are first combined via:

𝑯 (𝑑)
𝑛 = 𝑓𝑛(𝑯 (𝑐)

𝑛 ⊕𝑯 (𝑓 )
𝑛 ⊕𝑯𝑛), (12)

where 𝑓𝑛 is a layer normalization layer. Then, a Transformer-based de-
coder is used to generate the disease diagnosis prediction 𝑝(𝒚(𝑓 )𝑛 |𝑯 (𝑑)

𝑛 ;𝜽).
Therefore, the second training objective is to minimize the negative
log-likelihood given by:

𝑓 = − 1
𝑁

𝑁
∑

𝑛=1
log 𝑝(𝒚(𝑓 )𝑛 |𝑯 (𝑑)

𝑛 ; 𝜃) = − 1
𝑁

𝑁
∑

𝑛=1
log 𝑝(𝒚(𝑓 )𝑛 |𝒙𝑛,𝑪 (𝑐),𝑪 (𝑓 );𝜽),

(13)



Information Fusion 102 (2024) 102069

6

S. Niu et al.

Fig. 4. Fine-grained knowledge attention module.

Fig. 5. Coarse-grained knowledge calibration module.

where 𝜽 represents the model parameters to be trained, 𝒙𝑛 repre-
sents the input data for patient 𝑛, and 𝑪 (𝑐) and 𝑪 (𝑓 ) refer to the
coarse-grained and fine-grained disease representations, respectively.
The negative log-likelihood is calculated for each patient and then
averaged over the entire dataset with 𝑁 patients.

In EHR-KnowGen, the training objective for our model is defined as
follows:

 = 𝑓 + 𝜆𝑐 . (14)

Here, 𝑐 represents the prediction loss for coarse-grained diseases,
𝑓 represents the negative log-likelihood loss for fine-grained disease
prediction, and 𝜆 is a trade-off hyperparameter that balances the im-
portance of the two objectives. The training procedure to optimize
EHR-KnowGen by minimizing the loss defined in Eq. (14) is outlined
in Algorithm 1.

4. Results and discussions

In the experimental section, we commence by introducing a publicly
available EHR dataset that encompasses diverse modalities, thereby
providing a comprehensive representation of patient information. This
enables our proposed model, EHR-KnowGen, to leverage the rich and
diverse data within EHRs for enhanced multi-disease diagnosis. To
evaluate the performance of our model, we conduct quantitative assess-
ments by comparing it against baseline methods in the disease diagnosis
task. Through these experiments, we demonstrate the effectiveness and
superiority of our proposed EHR-KnowGen model when compared to
existing approaches.

To show the model robustness and effectiveness of different mech-
anisms of our model, we perform ablation studies and sensitivity anal-
yses. This involves examining the performance of our model across
different ablations of the various functions within each module, as
well as exploring the impact of different hyperparameter settings. This

analysis provides valuable insights into the effects of different modules
and configuration options on the predictive capabilities of our model.

Furthermore, we place emphasis on the interpretability aspect of
our model. Through thorough analyses, we investigate the knowledge
attention mechanism employed by our model with fine-grained knowl-
edge to identify the specific elements within the multimodal EHR data
that significantly contribute to the disease diagnosis. This interpretabil-
ity feature allows us to gain insights and explain the important factors
considered by our model.

Through these comprehensive evaluations, our objective is to val-
idate the effectiveness, interpretability, and applicability of our pro-
posed EHR-KnowGen model in disease diagnosis using multimodal EHR
datasets. Additionally, we specifically investigate the model’s applica-
bility in predicting less frequent or rare diseases, which often present
challenges in accurate diagnosis and risk assessment. Furthermore, we
also conduct a study using our model on a publicly available single
modality dataset, N2C2-2014 [24], to demonstrate the effectiveness
and robustness of our model in disease diagnosis.

4.1. Dataset

The MIMIC-III dataset [23] is a publicly available database contain-
ing de-identified health data from patients. In our research, we focused
on utilizing medical notes, laboratory testing results, and clinical events
as the primary input modalities for generating disease codes. Table 1
shows the details of the MIMIC-III dataset.

To preprocess the data, we performed several steps. We first ex-
tracted patients’ EHRs that contained medical notes. Then, non-English
words and stop-words of medical notes were removed from the medical
notes and clinical events. We retained only unique clinical events for
each hospital visit. A box-plot anomaly detection method [40] was
applied to transform continuous laboratory testing results into textual
descriptions that identify discrete anomaly signs. Additionally, we fill
the missing data of clinical events or laboratory testing results with
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Algorithm 1 The EHR-KnowGen model

1: Input Given patients’ EHR data and external knowledge data 𝑪 (𝑓 )

and 𝑪 (𝑐), where each patient’s EHR data 𝒙𝑛 consists of multimodal
information including medical notes 𝒎𝑛, clinical events 𝒆𝑛, and
laboratory testing results 𝒍𝑛.

2: while not converge do
3: for Each batch do
4: for Each patient 𝑛 do
5: Generate multimodal representation of EHR 𝑯𝑛 from 𝒙𝑛

using (1).
6: Encode fine-grained knowledge data 𝑪 (𝑓 ) to 𝑬(𝑓 ) based on

(2).
7: Calculate the fine-grained knowledge attention score vector

𝜶𝑛 using (3), (4), (5), and (6).
8: Generate the knowledge-weighted multimodal embedding

𝑯 (𝑓 )
𝑛 using (7).

9: Generate the coarse-grained disease distribution score vector
𝒚̂(𝑐)𝑛 using (8).

10: Calculate the binary cross-entropy loss between predicted
coarse-grained disease distribution 𝒚̂(𝑐)𝑛 and ground truth
distribution 𝒚(𝑐)𝑛 as in (9).

11: Generate the coarse-grained disease embedding 𝑯 (𝑐)
𝑛 which

is weighted by 𝒚̂(𝑐)𝑛 based on (10) and (11).
12: Combine 𝑯𝑛, 𝑯

(𝑓 )
𝑛 , and 𝑯 (𝑐)

𝑛 using (12).
13: Generate fine-grained diseases and calculate the negative

log-likelihood loss of the disease generation as defined on
(13).

14: end for
15: Update model parameters by minimizing the loss defined in

Eq. (14) for patients in each batch.
16: end for
17: end while

‘‘no patient’s clinical events’’ or ‘‘no patient’s laboratory testing results’’.
To evaluate the performance of our model, we adopted the same data
splitting strategy as in [41], dividing the dataset into training and test
sets at a ratio of 4:1 for performance evaluation.

4.2. Baselines

We utilized the following baseline methods for comparison in our
study.

• GRU: GRU [42] is a typical type of RNNs that has been widely
used for processing time-series numerical data. It employs gate
mechanisms to capture long-range dependencies and model com-
plex temporal dynamics in sequential data.

• TRANS: Transformer [42] is an encoder–decoder language model
for processing sequential data. The main structure is based on the
self-attention mechanism, which allows the model to pay different
attention to different parts of the input sequence to calculate the
representation of each element.

• BERT: BERT [34] is a pre-trained language understanding model
that employs a bidirectional transformer encoder architecture for
various NLP tasks, including sentiment analysis, named entity
recognition, and question-answering systems.

• CAML: CAML [1] is an interpretable medical textual classifica-
tion model that integrates label-embedding and cross-attention
mechanisms to provide an interpretable medical text classification
model. For a fair comparison, we upgraded the encoder of CAML
with BERT.

• GPT2: GPT2 [43] is a pre-trained language understanding model
that builds upon the transformer decoder architecture, utilizing a
unidirectional, self-attention mechanism to generate coherent and
contextually relevant text.

Table 1
Summary of the MIMIC-III dataset.

Dataset MIMIC-III

# EHRs 22,220
# Patients 19,017
# Medical Notes 22,220
# Clinical Events 21,307
# Lab Testing 21,509

Data Samples

Text: "the female ... bathroom floor estimated
initially elevated glucose admitted icu started
insulin anion gap closed sugars transitioned insulin
glargine units transferred medical acute renal failure
initial creatine decrease wnl lisinopril restarted medical
hip started perioperative beta-blocker medically cleared
operating underwent or if tolerated procedure transferred
recovery floor physical therapy improves strength
transfused units packed red blood cells acute...
Event: ‘‘kcl, normal saline, insulin, potassium phosphate’’
Lab: ‘‘normal diastolic blood pressure,
high fraction inspired oxygen, high glucose,
normal heart rate, high mean blood pressure,
normal oxygen saturation, low respiratory rate,
low systolic blood pressure, normal temperature,
normal weight, normal ph’’

• T5: T5 [22] is a versatile language model with encoder–decoder
architecture that frames various NLP tasks as a unified text gen-
eration problem, achieving state-of-the-art results across a wide
range of language understanding and generation tasks.

• VSET: VSET [44] is a transformer-based multimodal learning
model for processing video and audio processing, by designing
an attention-based multimodal fusion component. In this work,
we replace the video with a concatenation of medical notes and
clinical events and replace the audio input with laboratory testing
results.

• LDAM: LDAM [9] is a multimodal learning model for multi-
disease diagnosis by incorporating a label-dependent attention
mechanism with modalities of medical notes and laboratory test-
ing data, the discrete clinical events will be fed into the model
with medical notes together.

• PromptEHR: PromptEHR [17] is an EHR generation model using
prompt learning and a pretrained language understanding model.
In this work, we use PromptEHR to process medical notes, clinical
events, and laboratory testing results for multi-disease diagnosis.

• LLaMA: LLaMA [16] is a Human Feedback Reinforcement Learn-
ing (HFRL)-based instruction large language model. For this re-
search, we use LLaMA on multimodal EHR data to diagnose
diseases.

For all comparative models, except LLaMA, the learning rate was set
to 1×10−5, and the embedding size was 512. The ADAM optimizer was
chosen for the model training. We also applied the dropout strategy
with a dropout rate of 0.3. As for LLaMA, we trained it using the
DeepSpeed framework,3 with a learning rate of 2 × 10−5 and gradient
accumulation. All models were implemented using PyTorch and trained
on two NVIDIA TESLA A100-80G GPUs.

4.3. Disease diagnosis performance

4.3.1. Evaluation metrics
For the following baseline model comparison, we apply both Micro

and Macro Precision, Recall, F1 score, and Accuracy to measure the
model evaluation performance.

• True Positives (TP): The actual class of the sample is positive
and the result recognized by the model is also positive.

3 https://github.com/microsoft/DeepSpeed

https://github.com/microsoft/DeepSpeed
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Table 2
Risk prediction results for the MIMIC-III dataset.

Models MIMIC-III

Modality Micro Macro ACC

Pre Recall F1 Pre Recall F1

BERT M 0.3136 0.2202 0.2588 0.2643 0.1829 0.2075 0.3359
GPT2 M 0.3674 0.2047 0.2629 0.3166 0.1688 0.2091 0.3694
T5 M 0.3707 0.2041 0.2641 0.2880 0.1530 0.1967 0.3545
CAML M 0.2978 0.2269 0.2618 0.2537 0.1859 0.2134 0.3407
LLaMA M 0.3530 0.2351 0.2822 0.2910 0.1848 0.2178 0.3798

BERT E 0.2049 0.0726 0.1072 0.1428 0.0407 0.0596 0.3382
GPT2 E 0.1829 0.0859 0.1169 0.1208 0.0566 0.0750 0.3173
T5 E 0.2007 0.0976 0.1313 0.1222 0.0643 0.0788 0.3543
LLaMA E 0.2985 0.0447 0.0778 0.1420 0.0240 0.0368 0.3749

GRU L 0.4286 0.0004 0.0008 0.0347 0.0001 0.0002 0.4241
TRANS L 0.1324 0.0028 0.0050 0.0028 0.0027 0.0026 0.4180

BERT M,E,L 0.3360 0.2176 0.2641 0.2833 0.1866 0.2188 0.3414
GPT2 M,E,L 0.3662 0.2116 0.2682 0.3313 0.1715 0.2163 0.3657
T5 M,E,L 0.3344 0.2262 0.2689 0.2814 0.1883 0.2153 0.3613
CAML M,E,L 0.3079 0.2321 0.2658 0.2708 0.1972 0.2210 0.3256
VSET M,E,L 0.3296 0.2268 0.2688 0.2788 0.1756 0.2049 0.3740
LDAM M,E,L 0.3128 0.2388 0.2706 0.2776 0.2036 0.2273 0.3523
PromptEHR M,E,L 0.3050 0.2601 0.2808 0.2499 0.2037 0.2155 0.3678
LLaMA M,E,L 0.3197 0.2606 0.2871 0.2679 0.2020 0.2232 0.3489
EHR-KnowGen M,E,L 0.2742 0.3228 0.2965 0.2354 0.2537 0.2376 0.3813

★ M, E, and L represents medical notes, clinical events, and laboratory testing results, respectively.

• False Positives (FP): The actual class of the sample is negative
but the result recognized by the model is positive.

• True Negative (TN): The actual class of the sample is negative
and the result recognized by the model is also negative.

• False Negative (FN): The actual class of the sample is positive
but the result recognized by the model is negative.

𝑀𝑖𝑐𝑟𝑜 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑

𝑖 𝑇𝑃𝑖
∑

𝑖 𝑇𝑃𝑖 +
∑

𝑖 𝐹𝑃𝑖
,

𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 =
∑

𝑖 𝑇𝑃𝑖
∑

𝑖 𝑇𝑃𝑖 +
∑

𝑖 𝐹𝑁𝑖
,

𝑀𝑖𝑐𝑟𝑜 𝐹1 = 2 ∗ 𝑀𝑖𝑐𝑟𝑜 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙
𝑀𝑖𝑐𝑟𝑜 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙

,

𝑀𝑎𝑐𝑟𝑜 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑

𝑖
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖∕𝐿,

𝑀𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 =
∑

𝑖
𝑅𝑒𝑐𝑎𝑙𝑙𝑖∕𝐿,

𝑀𝑎𝑐𝑟𝑜 𝐹1 = 2 ∗ 𝑀𝑎𝑐𝑟𝑜 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑀𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙
𝑀𝑎𝑐𝑟𝑜 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑀𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙

,

(15)

where 𝑖 denotes the class index, and 𝐿 represents the total number of
classes.

4.3.2. Comparison with baseline methods
Based on the data presented in Table 2, we have made several key

findings regarding the evaluation performance of various comparative
models and our model, EHR-KnowGen.

Firstly, when only focusing on the textual modality, it is observed
that BERT, GPT2, and T5 attain comparable evaluation performance
within the encompassing Micro and Macro perspectives. Moreover,
the introduction of label-embedding and cross-attention mechanisms in
BERT by CAML shows a positive impact on disease diagnosis. Further-
more, LLaMA exhibits the most favorable evaluation performance in
both Micro and Macro F1 scores and Accuracy, highlighting the signif-
icant effectiveness of the HFRL approach utilized in LLaMA. Secondly,
when only considering the clinical events modality, large language
understanding models face challenges in effectively leveraging their
capabilities due to the limited volume and information available in
each clinical event of a patient for making predictions on the disease
diagnosis. Thirdly, in the case of purely using the time-series numerical
laboratory testing modality, classical time-series processing models
such as GRU and Transformer encounter difficulties in predicting a

large amount of disease diagnosis problems. Despite achieving high
accuracy values, their F1 scores are considerably low, suggesting label
imbalance issues.

When incorporating multiple modalities, it is observed that most
models achieve improved evaluation performance in terms of Micro
F1 score, Macro F1 score, and Accuracy compared to models trained
solely on a single modality. This suggests that the utilization of multiple
modalities positively affects the task of multi-disease diagnosis. Fur-
thermore, baseline models like VSET, LDAM, and LLaMA, which utilize
multiple modalities, outperform competing baseline models that only
use a single modality. Notably, LLaMA achieves the highest evaluation
performance in both Micro and Macro F1 scores across all baseline
models, which can be attributed to the employment of HFRL tech-
niques. Additionally, generative models such as PromptEHR, LLaMA,
and our proposed model EHR-KnowGen exhibit superior prediction
performance compared to comparative discriminant models, indicating
the superiority of generative models in handling complex multi-disease
prediction tasks using the MIMIC-III dataset.

Finally, our proposed model, EHR-KnowGen, exhibits the most fa-
vorable evaluation performance on the MIMIC-III datasets. It
achieves the best Micro and Macro F1 scores and Accuracy among
all comparative models. These findings indicate that EHR-KnowGen
represents a state-of-the-art generative model for effectively tackling
the challenges associated with complex multi-disease prediction tasks.
Overall, these findings shed light on the strengths and weaknesses of
various models across different modalities and datasets, underscoring
the efficacy of our EHR-KnowGen model in tackling the challenges
inherent in complex disease prediction.

4.3.3. Model complexity analysis
The graph displayed in Fig. 6 offers an analysis of the computa-

tional times required by our proposed model, EHR-KnowGen, compared
to several baseline models. These models were all run under iden-
tical conditions, utilizing consistent batch sizes and epoch numbers,
and leveraging the computational capabilities of the NVIDIA TESLA
A100-80G GPU and Xeon Gold 6226 CPU.

A close examination of Fig. 6 reveals that BERT, T5, and CAML
have notably lower computational times compared to the other models.
However, it is crucial to point out that these models still fall short of
achieving optimal Micro and Macro F1 scores. On the opposite end of
the spectrum, GPT2 takes an inordinately long time to process, and the



Information Fusion 102 (2024) 102069

9

S. Niu et al.

Fig. 6. Computation time of all comparative models during training.

incremental improvements it offers are modest at best when compared
with other baseline language models. Among multimodal models like
VEST, LDAM, and PromptEHR, the latter emerges as the most promis-
ing, albeit with increased computational time. Specifically, PromptEHR
outclasses VEST and LDAM in both effectiveness and efficiency. On a
different note, LLaMA, an HFRL model, achieves the highest Micro and
Macro F1 scores among all baseline models, albeit with considerable
computational demands.

Our EHR-KnowGen model’s computational time aligns closely with
multimodal models like VEST and LDAM. Importantly, it significantly
outperforms all other models when evaluated on the designated met-
rics, underlining its superior efficacy in this context.

4.3.4. Ablation studies
In order to demonstrate the effectiveness of different mechanisms

in our model, we included the following ablated versions in our exper-
iment:

• EHR-KnowGen-I: EHR-KnowGen-I is an ablated version of our
model EHR-KnowGen, where the whole information extractor
module is removed.

• EHR-KnowGen-II: EHR-KnowGen-II is an ablated version of our
model EHR-KnowGen, where the coarse-grained knowledge cal-
ibration module is removed while retaining the fine-grained
knowledge attention module.

• EHR-KnowGen-III: EHR-KnowGen-III is an ablated version of our
model EHR-KnowGen, where the soft prompts are removed.

• EHR-KnowGen-IV: EHR-KnowGen-IV is an ablated version of our
model EHR-KnowGen, where a classifier was used instead of the
generation decoder.

Table 3 presents the results of the ablation studies conducted on our
EHR-KnowGen model, revealing several noteworthy findings. Firstly,
EHR-KnowGen-I exhibited a significant decrease in both the Micro
and Macro F1 scores, highlighting the effectiveness of the knowledge
attention module and knowledge calibration module. The inclusion
of the fine-grained knowledge attention module in EHR-KnowGen-II
resulted in a noticeable improvement in its F1 scores. Conversely,
EHR-KnowGen-III showed decreased performance across various eval-
uation metrics, emphasizing the importance of incorporating prompts
for multimodal learning. Among the ablation models, EHR-KnowGen-
IV also exhibits a notable decline in F1 score and Accuracy compared
to our principal model, EHR-KnowGen, reinforcing the notion that

generative models are more effective than discriminative models in
complex disease diagnosis tasks.

In summary, the ablation studies conducted on EHR-KnowGen val-
idate the efficacy of the knowledge attention module and knowledge
calibration module in enhancing performance. They also highlight the
significance of prompt learning in multimodal learning and underscore
the superiority of generative models over discriminant models in the
context of disease diagnosis tasks.

4.3.5. Sensitivity analysis
We conducted several sensitivity analyses to assess the impact of

various factors on the performance of our EHR-KnowGen model. Fig. 7
illustrates the F1 scores and Accuracy achieved when varying different
factors in our model.

We conduct a comparative analysis of four hyperparameters asso-
ciated with EHR-KnowGen in both the model training and inference
phases. Firstly, the hyperparameter 𝜆 serves as a pivotal factor in
balancing the trade-off between two objective loss functions. Secondly,
the number of beams and the number of temperatures emerge as
crucial parameters. The former pertains to the count of candidate
sequences taken into consideration throughout the generation process.
Conversely, the latter parameter operates within the sampling process,
regulating the degree of randomness and creativity of the generated
text. Lastly, the prompt length is indicative of the scope encompassing
the learnable soft prompts. Specifically, Fig. 7(a) shows the results
obtained by varying the loss balance hyperparameter 𝜆 within the range
of [0.01, 0.1, 1, 10, 100]. Fig. 7(b) depicts the results obtained with
varying numbers of beams [1, 2, 3, 4]. Fig. 7(c) represents the results
obtained with different temperature values, ranging from [0.2, 0.4, 0.6,
1.2, 1.6]. Fig. 7(d) displays the results obtained with different prompt
embedding lengths 𝑁𝑝, using settings ranging from [4, 8, 12]. The
results demonstrate that there is minimal significant fluctuation in the
F1 scores and Accuracy, indicating that our EHR-KnowGen model is not
highly sensitive to these specific hyperparameters.

4.4. Model interpretability

One of the noteworthy contributions of this study is the devel-
opment of a disease diagnosis approach that yields multi-level inter-
pretation results. The obtained explainable outcomes from our model,
incorporating the knowledge attention mechanism and knowledge cal-
ibration module, are illustrated in Fig. 8. To demonstrate the effective-
ness of our model, we randomly selected three patient cases from the
test dataset. In Fig. 8, the highlighted input features correspond to those
receiving high attention scores through the attention mechanism. The
phrases highlighted in red represent the top 20% of important phrases,
while the pink-highlighted phrases represent the top 40% of important
phrases.

For example, in the case of the first patient diagnosed with ‘‘anaemia
unspecified’’ and ‘‘other postoperative infection’’, our model assigns
higher scores to phrases such as ‘‘secondary congestive heart’’, ‘‘ap-
nea’’, ‘‘BiPAP’’, ‘‘low oxygen saturation’’, ‘‘high respiratory rate’’ and
‘‘low temperature’’. Research indicates that approximately one-third
of congestive heart failure cases involve anaemia [45]. Additionally,
anaemia can lead to reduced venous haemoglobin saturation and de-
creased tissue oxygen saturation [46], manifesting symptoms such as
tachypnea and apnea [47]. Furthermore, individuals with anaemia
often experience sensations of coldness, resulting in lowered body
temperature [48]. The use of BiPAP is associated with an elevated risk
of postoperative infection [49]. In addition, with respect to coarse-
grained disease distribution, our model assigns the highest score to
‘‘deficiencies and other anaemia’’ as the coarse-grained cause of the
diagnosis of the fine-grained disease ‘‘anaemia unspecified’’. The second
highest score is given to the category of ‘‘complications of surgical
procedures or medical care’’, which underlies the diagnosis of ‘‘other
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Table 3
Ablation results of risk prediction for the MIMIC-III dataset.
Models Modality Micro Macro ACC

Pre Recall F1 Pre Recall F1

EHR-KnowGen-I M,E,L 0.3736 0.2216 0.2781 0.3055 0.1749 0.2112 0.3856
EHR-KnowGen-II M,E,L 0.3359 0.2499 0.2865 0.2847 0.1906 0.2170 0.3613
EHR-KnowGen-III M,E,L 0.3194 0.2530 0.2829 0.2701 0.2015 0.2113 0.3457
EHR-KnowGen-IV M,E,L 0.3356 0.2390 0.2792 0.3062 0.1853 0.2187 0.3605
EHR-KnowGen M,E,L 0.2742 0.3228 0.2965 0.2354 0.2537 0.2376 0.3813

Fig. 7. The sensitive analysis with different hyper-parameters settings of our model EHR-KnowGen on the MIMIC-III dataset.

postoperative infection’’. Similar patterns were observed in the other
two patient cases.

This analysis effectively shows how our model delivers interpretable
and contextually relevant information for the multi-disease diagnosis,
highlighting the importance of specific phrases and their associations
with the diagnosed conditions.

4.5. Applicability in different scenarios

4.5.1. Applicability to less frequent diseases
To demonstrate the effectiveness of our EHR-KnowGen model in the

context of rare disease diagnosis, we conducted an evaluation using
the MIMIC-III dataset. Specifically, Fig. 9 shows the average F1 score
for the Top 10% and Top 30% least common diseases. Upon analyz-
ing this figure, it is evident that the comparative generative models
PromptEHR and LLaMA did not exhibit superiority when compared to
the comparative discriminant models in this specific context. However,
our generative model EHR-KnowGen achieved the highest F1 scores

for both the Top 10% and 30% least common diseases among all
the comparative models. This outcome underscores the significance
of the knowledge adaptor component in guiding disease generation
and its crucial role in enhancing the performance of our model. This
analysis highlights the effectiveness of EHR-KnowGen, specifically in
the realm of rare disease diagnosis, and emphasizes the importance of
incorporating the knowledge adaptor for improved disease generation
outcomes.

4.5.2. Applicability to single-modal EHRs
To assess the robustness of our EHR-KnowGen model, we conducted

an evaluation on an additional publicly available EHR dataset known
as N2C2-2014 [24]. This dataset was specifically curated for natu-
ral language processing (NLP) research and consists of EHRs along
with corresponding annotations. It encompasses 1304 medical notes
obtained from 296 individuals. To prepare the dataset for our task, we
removed stop-words and non-alphabetic characters from the medical
notes. Our study focused on predicting four major disease diagnoses:
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Fig. 8. Attention results obtained from the knowledge-attention module and knowledge calibration module for three randomly selected patient cases. Important data inputs are
highlighted by the attention mechanism, where red represents the top 20% attention scores and pink represents the top 40% attention scores, which provide important information
for multi-morbidity diagnosis.

Fig. 9. The distribution of F1 scores for the Top 10% and the Top 30% of least common
diseases.

‘‘hyperlipidemia’’, ‘‘hypertension’’, ‘‘coronary artery disease’’, and ‘‘di-
abetes’’, which are due to their relevance to diseases of interest in
all diagnoses. Performance assessment of the predictive models was
carried out using an 4:1 training-test dataset split.

Table 4 presents the evaluation results of our EHR-KnowGen model
alongside other comparative models. In contrast to the evaluation con-
ducted on the MIMIC-III dataset, where LLaMA demonstrated the best
performance in terms of F1 scores and Accuracy with other baseline
models, here we found that GPT2 and T5 achieved similar results
and exhibited the highest evaluation performance across all baseline
models. This difference can be attributed to the requirement of a large
volume dataset for the HFRL approach utilized by LLaMA, whereas the
N2C2-2014 dataset consisted of only 1304 medical notes. Despite the
relatively small size of the N2C2-2014 dataset, EHR-KnowGen outper-
formed all other comparative models in terms of Micro and Macro F1
scores and Accuracy. This result underscores the superior structure of
our model for multi-disease diagnosis tasks.

5. Conclusions

This paper introduces EHR-KnowGen, a novel generative multi-
modal language model specifically designed for disease diagnosis
using medical notes, clinical events, and laboratory testing results
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Table 4
Risk prediction results for the N2C2 dataset.

Models N2C2-2014

Micro Macro ACC

Pre Recall F1 Pre Recall F1

BERT 0.9154 0.9386 0.9269 0.9099 0.9309 0.9200 0.7018
GPT2 0.9378 0.9496 0.9436 0.9324 0.9427 0.9372 0.7631
T5 0.9329 0.9548 0.9437 0.9345 0.9455 0.9394 0.7544
CAML 0.9030 0.9677 0.9343 0.9015 0.9622 0.9305 0.7304
LLaMA 0.9317 0.9168 0.9242 0.9314 0.9003 0.9142 0.6839
EHR-KnowGen 0.9449 0.9534 0.9492 0.9389 0.9459 0.9422 0.7826

from EHRs. The primary objective of our model is to efficiently ex-
tract multimodal information from EHRs while providing interpretable
evidence to support disease diagnosis. To achieve this goal, we pro-
pose a disease-related information extractor module that utilizes fine-
grained domain knowledge to extract disease-related features from
latent multimodal EHR representations. Furthermore, we incorporate
coarse-grained domain knowledge to calibrate these extracted fea-
tures, thereby enhancing interpretability. The resulting fine-grained
and coarse-grained knowledge distributions serve as valuable evidence
for disease diagnosis. Moreover, we leverage the latent representations
of fine-grained and coarse-grained knowledge to guide the process
of generating disease diagnosis results. Through extensive experimen-
tation, our model consistently outperforms state-of-the-art generative
language models and other discriminant models when applied to real-
world EHR datasets like MIMIC-III, demonstrating its superiority in
disease diagnosis. Remarkably, our model exhibits impressive perfor-
mance even for less frequent diseases, showing its robustness and
effectiveness as a knowledge-enhanced generative language model.
Furthermore, our model also demonstrates strong capabilities in single-
modality disease diagnosis, as evidenced by its performance on the
N2C2-2014 dataset. These findings emphasize the effectiveness of EHR-
KnowGen in accurately diagnosing diseases across diverse modalities,
positioning it as a valuable and reliable tool in the field of healthcare.
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