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Abstract

Introduction: Clinical decision-making in the management of diabetes and other chronic

diseases depends upon individualised risk predictions of progression of the disease or complica-

tions of disease. With sequential measurements of biomarkers, it should be possible to make

dynamic predictions that are updated as new data arrive. Since the 1990s, methods have

been developed to jointly model longitudinal measurements of biomarkers and time-to-event

data, aiming to facilitate predictions in various fields. These methods offer a comprehensive

approach to analyse both the longitudinal changes in biomarkers, and the occurrence of

events, allowing for a more integrated understanding of the underlying processes and improved

predictive capabilities. The aim of this thesis is to investigate whether established methods for

joint modelling are able to scale to large-scale electronic health record datasets with multiple

biomarkers measured asynchronously, and evaluates the performance of a novel approach that

overcomes the limitations of existing methods.

Methods: The epidemiological study design utilised in this research is a retrospective observa-

tional study. The data used for these analyses were obtained from a registry encompassing

all individuals with type 1 diabetes in Scotland, which is delivered by the Scottish Care

Information - Diabetes Collaboration platform. The two outcomes studied were time to

cardiovascular disease (CVD) and time to end-stage renal disease (ESRD) from T1D diag-

nosis. The longitudinal biomarkers examined in the study were glycosylated haemoglobin

(HbA1c) and estimated glomerular filtration rate (eGFR). These biomarkers and endpoints

were selected based on their prevalence in the T1D population and the established association

between these biomarkers and the outcomes.

As a state-of-the-art method for joint modelling, Brilleman’s stan_jm() function was evaluated.

This is an implementation of a shared parameter joint model for longitudinal and time-to-

event data in Stan contributed to the rstanarm package. This was compared with a novel

approach based on sequential Bayesian updating of a continuous-time state-space model for the
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biomarkers, with predictions generated by a Kalman filter algorithm using the ctsem package

fed into a Poisson time-splitting regression model for the events. In contrast to the standard

joint modelling approach that can only fit a linear mixed model to the biomarkers, the ctsem

package is able to fit a broader family of models that include terms for autoregressive drift

and diffusion. As a baseline for comparison, a last-observation-carried-forward model was

evaluated to predict time-to-event.

Results: The analyses were conducted using renal replacement therapy outcome data regarding

29764 individuals and cardiovascular disease outcome data on 29479 individuals in Scotland

(as per the 2019 national registry extract). The CVD dataset was reduced to 24779 individuals

with both HbA1c and eGFR data measured on the same date; a limitation of the modelling

function itself. The datasets include 799 events of renal replacement therapy (RRT) or

death due to renal failure (6.71 years average follow-up) and 2274 CVD events (7.54 years

average follow-up) respectively. The standard approach to joint modelling using quadrature

to integrate over the trajectories of the latent biomarker states, implemented in rstanarm,

was found to be too slow to use even with moderate-sized datasets, e.g. 17.5 hours for a subset

of 2633 subjects, 35.9 hours for 5265 subjects, and more than 68 hours for 10532 subjects.

The sequential Bayesian updating approach was much faster, as it was able to analyse a

dataset of 29121 individuals over 225598.3 person-years in 19 hours. Comparison of the fit of

different longitudinal biomarker submodels showed that the fit of models that also included a

drift and diffusion term was much better (AIC 51139 deviance units lower) than models that

included only a linear mixed model slope term. Despite this, the improvement in predictive

performance was slight for CVD (C-statistic 0.680 to 0.696 for 2112 individuals) and only

moderate for end-stage renal disease (C-statistic 0.88 to 0.91 for 2000 individuals) by adding

terms for diffusion and drift. The predictive performance of joint modelling in these datasets

was only slightly better than using last-observation-carried-forward in the Poisson regression

model (C-statistic 0.819 over 8625 person-years).

Conclusions: I have demonstrated that unlike the standard approach to joint modelling,
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implemented in rstanarm, the time-splitting joint modelling approach based on sequential

Bayesian updating can scale to a large dataset and allows biomarker trajectories to be modelled

with a wider family of models that have better fit than simple linear mixed models. However,

in this application, where the only biomarkers were HbA1c and eGFR, and the outcomes

were time-to-CVD and end-stage renal disease, the increment in the predictive performance

of joint modelling compared with last-observation-carried forward was slight. For other

outcomes, where the ability to predict time-to-event depends upon modelling latent biomarker

trajectories rather than just using the last-observation-carried-forward, the advantages of

joint modelling may be greater.

This thesis proceeds as follows. The first two chapters serve as an introduction to the joint

modelling of longitudinal and time-to-event data and its relation to other methods for clinical

risk prediction. Briefly, this part explores the rationale for utilising such an approach to

manage chronic diseases, such as T1D, better. The methodological chapters of this thesis

describe the mathematical formulation of a multivariate shared-parameter joint model and

introduce its application and performance on a subset of individuals with T1D and data

pertaining to CVD and ESRD outcomes.

Additionally, the mathematical formulation of an alternative time-splitting approach is

demonstrated and compared to a conventional method for estimating longitudinal trajectories

of clinical biomarkers used in risk prediction. Also, the key features of the pipeline required

to implement this approach are outlined. The final chapters of the thesis present an applied

example that demonstrates the estimation and evaluation of the alternative modelling approach

and explores the types of inferences that can be obtained for a subset of individuals with T1D

that might progress to ESRD. Finally, this thesis highlights the strengths and weaknesses

of applying and scaling up more complex modelling approaches to facilitate dynamic risk

prediction for precision medicine.
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Lay summary

In medicine, it is very often important to be able to predict who is going to get a disease

in the future, or more particularly, who has a high risk of developing complications shortly

after diagnosis. In order to do this, we can use data from people without the condition who

go on to develop the condition and data from people who stay free of the condition. If we

have measurements made on such individuals at a single point in time, or even better, at

many points in time, this can help us to improve our ability to predict who is at highest risk

and tailor interventions to those who need them most. Moreover, these data points are likely

to be observed at different points in time for different people, and there also are differing

numbers of repeated measurements, which complicates modelling.

For the task of clinical risk prediction, we use measurements called biomarkers, that we might

measure on a regular check-up, such as blood pressure, how much cholesterol is in the blood,

or how much sugar is in the urine, for example. When utilising observations from individuals

for prediction purposes, the first step requires the development of a risk prediction model.

That involves bringing all the data together in intelligent (statistical) ways to maximise our

ability to predict. The statistical methods for bringing a single time point of measurement

per individual together into a prediction model are well established. What could be better

established are the methods for binding multiple measures together into a statistical model.

Yet this is of increasing importance for scientists to be able to do, especially now that with the

advent of electronic healthcare records, we often have many points of data captured routinely

available just from the regular clinical follow-up of patients.

The statistical methods for analysing repeated measurements of biomarkers from individuals

in order to predict future risk of an event is an active area of research and comprises the

topic of my thesis. It concerns taking an established method that has been applied to exploit

multiple biomarker measurements for the prediction of time-to-event, called joint modelling

and trying to apply it to a very large dataset of biomarker data from people with type one
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diabetes so as to predict each one’s risk of cardiovascular disease and kidney disease, as a

consequence of their diabetes.

In this thesis, I first attempted to use a joint modelling approach to predict the risk of

developing cardiovascular disease. However, I found that it takes far too long to construct

such models on a computer. Days and days of intense calculations on a powerful computer

were required even for a cut-down dataset. Because of that, I went on with my approach to

apply more novel Bayesian methods that split the follow-up time in a new way and annotate

the follow-up time with the data from the patient and then conduct a statistical computation

so as to maximise prediction. This approach is enabled by recently emerged software allowing

us to exploit advances in Bayesian computations.

I decided in this part of the thesis to attempt to apply this new method to the problem of

predicting who has a high risk of kidney failure among those with type one diabetes residing

in Scotland. I applied this method, compared it to the standard joint model, and found that

the quality of the prediction obtained was similar. However, the increment in time-to-event

prediction was slight; or at least, it was not enough to help in clinical decision-making.

However, in doing this, I did refine and hone the techniques for it, and I was able to produce

new code that others will be able to use for different problems that might be inherently easier

to predict than cardiovascular disease or kidney disease in diabetes. This required me to

think through the maths involved and underlying these new statistical methodologies and

organise the data in a way that allows us to use them.

In summary, the present thesis discusses the benefits of modelling longitudinal measurements

while acknowledging the complexities involved in handling such data. The work that I have

produced in my thesis will be helpful to others, saving them time by avoiding attempting to

laboriously apply joint modelling where it simply will not perform satisfactorily and pointing

them to newer methods that are much more likely to be useful for their risk prediction

endeavours.
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Chapter 1

Introduction

This doctoral thesis scrutinises the potential of an R implementation of joint modelling for

longitudinal data of biomarkers and clinical outcomes. Additionally, the thesis assesses whether

joint modelling approaches can be used at scale to harness the longitudinal information in

biomarker trajectories and improve time-to-event prediction.

The motivations for undertaking a joint modelling approach to estimate time-to-event de-

termined by the longitudinal nature of predictive biomarker data include the following two

reasons:

• We are interested in how underlying changes in a biomarker (outcome A) influence the

occurrence of an event (outcome B).

• Joint models are naturally suited to the task of dynamic risk prediction. We wish

to build models where predictions of event risk can be updated as new biomarker

measurements become available.

Risk prediction models with time-varying biomarker data are usually developed based on the

last available biomarker observation. To make use of today’s computational potential and

ameliorate public health, researchers develop and optimise machine learning and statistical
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methods designed to exploit hidden information in large collections of medical data and to learn

meaningful patterns from them. The joint modelling approach has been proposed as a means

to incorporate longitudinal data into the survival function estimation since computational

advancements at 1990s. However, researchers are currently limited in their ability to fit these

models routinely. Despite methodological improvements, a coherent and flexible modelling

framework that encapsulates an scalable effective multivariate joint model is lacking.

The remainder of Introduction elaborates on various concepts mentioned in the following

chapters, such as what diabetes is for the non-clinical reader, the concept of precision medicine,

the context of survival analysis and of joint modelling used for prediction of clinical events, as

well as today’s role of biomarker data in risk prediction.

1.1 Overarching framework

A common problem in epidemiology and clinical medicine is the construction of prediction

models for future clinical events. These prediction models are typically used to differentiate

individuals at high risk of future events, so preventive therapies can be introduced. This idea

of tailoring intervention to those who are at the highest risk is one of the key concepts of

precision medicine, also known as tailored medicine.

Clinical prediction models have traditionally used characteristics measured at a single time to

predict future event status over some variable follow-up period. These models are generally

known as survival models and typically comprise Cox and Poisson regression.

The advent of electronic health care records (EHRs) means that there are often large datasets

of clinical measurements in multiple time points for individuals who develop the disease in the

upcoming period. These measurements are potentially predictive characteristics related to the

outcome. In this context, these likely predictive characteristics are referred to as prognostic

biomarkers of a condition that might be of interest.
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However, traditional methods for developing risk models may not be well adapted to handling

irregularly collected clinical covariates (Goldstein et al. 2017). The advantage of using

multiple longitudinal measures in risk prediction models as a means to incorporate more

clinical information is established. Nevertheless, numerous attempts at modelling future

events in the absence of new data involve extrapolations based on single time points, such

as carrying the last observation forward. Inference based on single time points can be less

accurate as opposed to building longitudinal models that capture the underlying biological

behaviours (Molnar, Hutton, and Fergusson 2008). Moreover, longitudinal models can also

be used to examine the biological mechanisms behind the pathogenesis of diseases. Albeit

interesting on its own right, this is not a direction that has been explored herein.

Since the 1990s, there have been several remarkable attempts that exploit more fully the

longitudinal and serial nature of predictive biomarkers, introducing a class of models known

as joint modelling of longitudinal and time to event data (Wulfsohn and Tsiatis 1997; Tsiatis

and Davidian 2004; Brilleman et al. 2018). In modern electronic healthcare records contain a

great variety of longitudinal biomarker data that can be harnessed to predict and possibly

prevent future adverse events. This idea is central to the concept of precision medicine, which

attempts to tailor interventions to those individuals who need them most. Regrettably, the

collected data lack a standard format that can be conveniently used by statistical programs

and relevant prediction algorithms, making their use non straightforward and their processing

heavy. As a result, there have been only a few successful attempts in applying joint modelling

in large datasets of prognostic biomarkers for predicting clinical adverse events (Asar et al.

2015; Long and Mills 2018).

1.2 Epidemiological and clinical contexts

Diabetes mellitus (diabetes (Greek): diabaínō, pass through/siphon; mellitus (Latin): honey

sweet) is a heterogeneous, multifactorial metabolic disease, characterised by chronic hyper-
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glycemia (Lammert et al. 2014) and has two main types: type 1 and type 2. Type 1 diabetes

(T1D), also known as autoimmune diabetes, is characterised by insulin deficiency due to

pancreatic β-cell loss (Katsarou et al. 2017). Type 2 diabetes (T2D) is associated with

lifestyle, primarily diet and lack of exercise, and occurs when insulin production does not

suffice for exceptionally high needs, as a consequence of insulin resistance. The onset of T1D

is usually earlier in life compared with T2D, with 50% of individuals being diagnosed in

childhood.

Diabetes is one of the most prevalent diseases of the 21st century and a major determinant of

additional complications. Long-term complications of T1D, including nephropathy, retinopa-

thy, neuropathy and vascular disease can be life-threatening and may greatly compromise the

quality of life. Diabetic kidney disease (DKD) remains a leading cause of early mortality in

people with T1D, while the risk of developing CVD continues to increase threefold relative to

the general population (Schofield, Ho, and Soran 2019).

However, susceptibility to diabetes complications varies significantly between individuals.

Although the pathogenesis of diabetes complications is complex, a number of factors that

increase the risk for development have been identified. However, existing risk factors of

complications only explain to some extent the inter-individual variation in risk and patterns

of complications (Deshpande, Harris-Hayes, and Schootman 2008). Some patterns reflect

variability in environmental factors, genetics or both. It is well known that the chronic

complications of diabetes are all strongly associated with hyperglycaemia. Furthermore, the

degree of hyperglycaemia may change over time, depending on the extent of the underlying

disease process (Association and others 2006).

A cure for T1D is not available, and patients depend on lifelong insulin injections. Novel

approaches to insulin treatment, such as insulin pumps, continuous glucose monitoring and

hybrid closed-loop systems, are in development. If diabetes is well controlled, the risk of

complications is reduced. However, despite this fact, the majority of T1D patients still
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experience significant microvascular and macrovascular complications.

Being able to differentiate between more and less susceptible individuals is critical for

clinical practice and the furtherance of understanding diabetes. Data linkage with electronic

healthcare records has enabled the study of inter- and intra-individual variation with much

finer granularity. Dynamic disease risk predictions at an individual level can be achieved

by exploiting personalised clinical profiles, particularly through the increasing amount of

available longitudinal biomarker data and computational developments in the realm of survival

modelling.

Therefore, the statistical survival analysis described in the following sections has been

approached from the angle of modelling longitudinal and time to event data simultaneously

to assess whether we can obtain more accurate estimates of the risk of progression to a

complication. The advent of statistical software that handles time-updated data, gives rise to

more precise methods to estimate the underlying hazard of event.

1.2.1 Precision medicine aspects

The primary goal of precision medicine is to build a solid foundation for identifying differential

risk amongst groups so that they can be treated accordingly. Tools that stratify patients

conditional on risk can enable clinicians to perform better evaluations regarding the rate of

progression to a disease, which in turn offers more appropriate treatment allocation.

The precision medicine initiative was first seen in cancer therapy, particularly for managing

certain cancer types, such as breast and ovarian cancers. It started with the realisation that

the harm caused by complex anti-cancer drugs could be reduced if the drugs were designed to

target only a particular protein in the developing tumour, should the protein be expressed.

However, the genomic heterogeneity in tumour development limited this application. In some

cases, tumours had started to mutate and develop primary resistance against the targeted

molecules, discouraging researchers and funding bodies (Tannock and Hickman 2016).
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Moreover, the area of pharmacogenomics, which aims to determine how genetic variations

might influence individual responses to medications, can significantly benefit precision medicine.

Genetic testing for guiding treatment allocation is becoming increasingly available across

diverse areas of medical care. These tests could assign more effective drugs to patients

earlier in their treatment. However, this individualistic approach, i.e., addressing drugs to

each patient separately, involves substantial cost, which poses further limitations to research

programs (Krzyszczyk et al. 2018).

Additional initiatives in precision medicine include growing replacement tissue, molecular

profiling of microbes and personalised diets. These approaches highlight the broader scope of

precision medicine beyond cancer research. Furthermore, more recently, precision medicine has

been relevant in addressing interventions for COVID-19. As we learn more about COVID-19,

we can consider more targeted ways of preventing and treating infections (Zhou et al. 2021)

and protecting the most sensitive groups.

A lesson already learned from the response to the pandemic is that systematic resilience,

primarily at an individual level and secondary at healthcare infrastructure might sabotage

personalised interventions. The overall response to COVID-19 shows that the incentive has

primarily been to treat the public as if everyone is at the same risk rather than switching to

a more tailored and efficient intervention once data started to accumulate.

Arguably, the precision medicine experimentation, especially in cancer research and drug

development, has contributed to improving treatment effects, resulting in considerable patient

benefits, albeit its implementation is still slow and complex. These unfavourable facts should

not undermine the potential positive impact of precision medicine in enhancing treatment

outcomes and patient well-being. This evidence highlights the necessity to formalise the

mathematical basis for personalised medicine applications. Harnessing the growing availability

of data is pivotal to this goal. Having approaches ready to use when data and statistical

methods start to scale to high dimensional data would enable swift adoption and considerably
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ameliorate risk prediction of clinical outcomes.

In conclusion, personalised medicine, albeit a promising initiative, is years away from reaching

its full potential. Although it holds a great promise, there are still challenges and complexities

that are not quick to resolve. Personalised medicine might become more feasible and and

its use is normalised, once there has been a revolution in the way we assess the quality of

large volumes of information, and in how we collect and define measures used in modelling

techniques that allow real-time interventions.

1.2.2 Types of biomarker data

The term biomarker has been employed for many years in biomedical research, referring to

any observation that could be used as an indication of an underlying physiological state.

The growing availability of sequential measurements for patients and further advances in

computational statistics have provided powerful methods for quantifying the underlying,

unknown biological processes conditional on a number of risk factors. However, the quality

of predictions depends on the quality of the biomarker data and the underlying relationship

between biomarkers and outcomes.

Increased glucose levels is a marker for the development of diabetes, for example, and a rise

in prostate-specific antigen (PSA) indicates risk of developing prostate cancer (Shortliffe et al.

2014). Furthermore, changes in microRNA levels in the blood and other body fluids (miRNAs)

have been linked to a diverse set of diseases (Condrat et al. 2020), including type 1 and type

2 diabetes, pre-diabetes, insulin resistance, obesity and metabolic diseases. Modern methods

for analysing molecules have resulted in a vast expansion of the list of known biomarkers,

offering greater visibility to the inner workings of various physiological mechanisms.

Biomarkers are categorised according to their types and characteristics (Food, Administration,

and others 2020). The Biomarkers, EndpointS and other Tools (BEST) Glossary defines

seven biomarker categories: susceptibility/risk, diagnostic, monitoring, prognostic, predictive,

7

https://www.ncbi.nlm.nih.gov/books/NBK402288/
https://www.ncbi.nlm.nih.gov/books/NBK402285/
https://www.ncbi.nlm.nih.gov/books/NBK402282/
https://www.ncbi.nlm.nih.gov/books/NBK402289/
https://www.ncbi.nlm.nih.gov/books/NBK402283/


pharmacodynamic/response, and safety. This thesis focuses on the use of prognostic and

predictive biomarkers to assess whether they contribute to determining the correct time to

event in survival analysis.

1.3 Quality of prediction

Longitudinal studies are commonplace in medical research, where the interest often lies in the

interrelationships between variables. Predictive modelling of time to event aims at developing

tools that can be used for individual prediction of the probability of an event’s occurrence

(or recurrence). The accuracy of such guess depends on what is known about the subjects

and their environments. The growing availability of data from electronic healthcare records

consistently contributes to decipher how those risk factors and observations affect time to

event and risk propensity.

Predictive models should ideally use all relevant and available data. However, various model

assumptions may not be realistic long-term, causing the model to deviate from original

assumptions and projections. The data quality and the biomarker’s prognostic power highly

determine the model’s predictive ability. However, there is a limit on how many predictor

variables can be included in the modelling phase (Kuijk et al. 2019). A clinical model

with too many predictors is more likely to be overfitted on the data used, i.e., the model

performs adequately on the train data, but performs poorly on new datasets. Therefore, using

appropriate methods to avoid issues like overfitting and multicollinearity is paramount (Frost

and others 2017).

From a public health perspective, prediction models may contribute to targeting preven-

tive interventions towards predisposed individuals. Furthermore, they may stimulate the

development of tailored therapeutic approaches when the reversal of complications is still

feasible. For the outcomes studied, targeted interventions may be beneficial in slowing down

the progression of diabetic kidney disease (DKD) or preventing the recurrence of CVD events
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in the future.

In clinical practice, predictive models facilitate informed diagnoses and decision-making about

treatment. Arguably, greater exploitation of biomarker data that are routinely collected over

the course of the disease has revolutionised diagnosis and timely intervention, but it has so

far made limited contributions to improving the prediction of major clinical outcomes.

1.4 Using a joint modelling approach for risk prediction

Survival analysis specifies the time to occurrence of a clinical outcome of interest, such as

death or the development of a condition, while also accounting for serial measurements of one

or more biomarkers pertinent to the outcome, or are surrogate variables of some potential

interest.

Routinely measuring clinical and biomarker data in individuals who receive medical care for

chronic disease is standard practice. Such longitudinal profiles may provide valuable insights

into underlying susceptibility, according to which informed decisions can be taken, such as

interventions that may delay the onset of complications.

However, coupling longitudinal and survival observations is a demanding and complex task,

especially when modelling of multiple biomarkers is involved. These challenges are mostly

met when biomarker measurements are sporadic and different measures are recorded asyn-

chronously.

In addition, it is important to account for the study design when designing a modelling

approach. Information sourced from EHRs deviate from longitudinal and time to event data,

typically met in randomised clinical trials (RCTs) and traditional cohort studies in frequency

and quality. RCTs are more likely to have specific time points of follow-up for all subjects,

while the data used in the given analyses were measured at irregular time points and were

lacking a standard format, as opposed to less noisy data stemming from more conventional
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observational studies. This is an argument that supports employing joint modelling that

better handles scattered observations.

1.4.1 Modelling prerequisites

The most widely used method for modelling longitudinal data is the linear mixed-effects

model (LMM). LMMs are well-suited for repeated observations that exhibit correlation.

However, there might be limited understanding of the inter-relationships amongst the various

components in the model. As discussed later in the thesis, the LMM is a special case of a

broader family of continuous-time structural equation modelling (Hoyle 2012), that can be

extended to provide a better fit to the longitudinal data.

Such models are applicable in settings where individuals are followed up for a long period of

time to monitor disease progression or development. This progression is typically assessed via

repeated measurements of biomarkers pertinent to the medical condition. For the management

of chronic diseases, clinicians need to be able to make dynamic risk predictions that are

updated as new biomarker observations arrive. This is a key requirement for precision

medicine to realise its potential.

Moreover, time to event data require special treatment because the outcome of interest is

composite; whether or not an event occurred and also when that event occurred. By the end

of an observational study, some individuals will have yet to experience the event of interest.

Therefore, their true time to event is still in the process of being determined. In survival

analysis or time to event analysis, outcomes that are still uncertain are treated as censored

observations. Typically, censoring is observed when the event of interest has not occurred for

certain individuals within the study period, or they are lost to follow-up. Censoring affects

the estimation of event probabilities for the entire population, hence it must be appropriately

accounted for to avoid biased calculations.

The central assumption in survival analysis is that of non-informative censoring: individuals
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who are censored for some reason are assumed to have the same probability of experiencing

the event as individuals who remain in the study.

However, the occurrence of time to event may induce informative censoring, as discussed by

Wu and Carroll (1988), Schluchter (1992), and other authors. For example, when they entered

the study, individuals with more severe renal disease may experience the event much earlier

than healthier subjects. They might also have more biomarker data during recruitment for

the same reason. Therefore, sharper declines of the biomarkers and other relevant patterns,

such as fluctuations, must be as explicitly modelled as possible to avoid biased estimations of

quantities of interest.

In more detail, in routine health data, various risk factors and biomarkers are typically

measured at irregular times, with the frequency of the measurements depending on multiple

reasons. The way that information is missing is on its own informative. For example, sicker

patients may be assessed more often. One of the inherent problems in EHRs is non-ignorable

missingness (Sperrin, Petherick, and Badrick 2017).

Missingness, irregularly spaced observations (measurements taken on different dates for

different biomarkers), informative presence (what the presence of a particular observation says

about health status), delayed entry, selection bias, complex correlation structures, mixtures

of time-varying and time-invariant covariates are all instances of elaborate data generation

processes. These factors should either be addressed during the study design or appropriately

accounted for using appropriate statistical modelling techniques.

As such, there is a partial likelihood which cannot be maximised to predict time to event, as

we would need all covariate data at all failure times to do so, and in practice, data are only

available intermittently over follow-up for each subject. To handle missing data, usually a

type of imputation is employed, e.g., the last-observation-carried-forward (LOCF) technique

(Carpenter and Kenward 2007; Prentice 1982). However, naive extrapolations could result

in biased estimation of model parameters (Lachin 2016). Therefore, a more sophisticated
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framework in which the features of censoring and missing data may be incorporated is required

and presented next.

As per Tsiatis and Davidian (2004), models for the possibly error-prone longitudinal process

and the hazard of the possibly censored time to event can be defined to depend jointly on

shared, underlying random effects.

A familiar example is that of HIV clinical trials (Tsiatis, Degruttola, and Wulfsohn 1995),

where covariates, including treatment assignment, demographic information, and physiological

characteristics are recorded at baseline, and measures of immunologic and virologic status,

such as CD4 count and viral RNA copy number are taken at subsequent clinic visits. Time to

progression to AIDS or death is also recorded for each participant, although some subjects

may withdraw early from the study or fail to experience the event by the time of study closure.

An implication has been that the joint modelling construction allows the biomarker trend to

vary with time and induces a within-subject autocorrelation structure that may be thought of

as arising from evolving biological fluctuations in the process.

Two-staged joint models were proposed by Wulfsohn and Tsiatis (1997), who utilised numeri-

cal integration (via low-dimensional Gauss-Hermite quadrature) as part of an expectation-

maximisation algorithm to circumvent the dependence on the unobserved random effects on

the parameter estimates by treating them as missing data.

Using a random slope and random intercept usually is the simplest form to specify the

true longitudinal process. In the study conducted by Wulfsohn and Tsiatis (1997), a linear

mixed-effects model performed well enough, hence it became the de facto approach in the early

years of joint models. However, when the number of longitudinal components, the complexity

of the random effects structure, or both, grows, this approach becomes less tractable due

to the inherent computational burden, which has led to alternative fitting procedures being

utilised: for instance, Monte Carlo techniques (Henderson et al., 2000; Lin et al., 2002; Hickey

et al., 2018a) and Laplace approximations (Rizopoulos et al., 2009). However, as Hickey et
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al. (2018a) draw attention to, the increasing volumes of data collected by clinical trials with

many longitudinal responses and increasingly complex electronic healthcare records would

likely require approximate methods for the numerical integration in the estimation step.

Furthermore, outcome data are typically skewed rather than normally distributed. They

may comprise several early events and relatively few late events, and vice versa, or may form

a U-shaped curve depending on the health condition. Hence, a time to event model must

account for three potential outcomes (survival, failure, censoring) instead of two (survival,

failure). Censored survival times can lead to an underestimation of the true, albeit unknown,

time to event.

These features of longitudinal and survival data have made the suite of modelling techniques,

known as joint models for longitudinal and time to event data emerge, where the event time

distribution and the longitudinal data are taken to depend on a common set of latent random

effects. In the literature, precise statement of the underlying assumptions typically made for

these models has been rare.

What is the relationship between the features of the longitudinal biomarker and the time to

progression?

Conventionally, the hazard depends linearly on the history of the longitudinal biomarker up

to the current time point thus, it depends linearly on the current value, but other forms of

relationship/specifications are possible with joint modelling.

Formalising these objectives is straightforward in terms of the ‘idealised’ data, but addressing

them in practice is complicated by the nature of the data actually collected, e.g., the observed

values are not the true values, but instead, we might observe errors and randomness.

Today’s opportunity to exploit a stream of individual-level data stemming from various

continuous monitoring methods, such as wearable electronic devices and EHRs can be an

excellent application for capturing the underlying dynamics of biological mechanisms and
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better estimate risk. Joint modelling of longitudinal and time to event data has been

fundamental to the application of precision medicine for several decades now (Wulfsohn and

Tsiatis 1997; Henderson, Diggle, and Dobson 2000; Tsiatis and Davidian 2004; Rizopoulos

2012; Gould et al. 2015). Precision medicine must exploit time-updated and correlated

biomarker data to maximise time to event prediction. However, the predictive performance of

this statistical method has been shown to heavily depend on the application and the type of

prediction.

In joint modelling of longitudinal and time to event data, an observation up to each time

point is handled explicitly. Furthermore, the timings of the observations are taken into

account rather than just the observations themselves. Hence, the joint model offers a way to

simultaneously characterise the relationship between the longitudinal process and time to

event for each subject. However, for more than one longitudinal process (multivariate joint

models) and large datasets, the increased dimensionality and complexity of random effects

translate into increased computing time, hampering the implementation of many classical

approaches. As a solution, Bayesian methods can be used to address these challenges and

help with model fitting.

Researchers have been attempting to develop techniques to calculate the probability of

transitioning to a disease based on observations of patient-specific parameters since the 1990s.

Various Bayesian programs have been developed since then, many of which are accurate in

selecting competing explanations of disease states. However, although probabilistic models

are of great promise in explaining data structures in medical records, they are restrictive when

dealing with more complex datasets, and existing Bayesian implementations of continuous-time

models suffer from rather high computing times.
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1.5 Thesis overview

1.5.1 Thesis objectives

A fundamental prerequisite for precision medicine is to develop performant models of highly

predictive power for the risk of adverse outcomes and the effectiveness of interventions.

The thesis objectives concern the development and evaluation of the performance of modelling

techniques for longitudinal data that go beyond the conventional LOCF approach, utilising a

large modern dataset of longitudinal biomarkers and event data.

The thesis explores the limitations of a developed methods for joint modelling, and evaluates

a scalable construction that exploits in a timely manner large electronic healthcare records of

multiple biomarker and event data measured intermittently.

My analysis’s primary objective has been to understand better the methods and approaches

that can maximally exploit the information hidden in the available data. Furthermore, con-

ducting this research helps understand deeper the variability and uncertainty in risk prediction

and its association with translational studies such as precision medicine’s applications.

The models described herein were assessed in terms of increment of risk prediction of developing

complications of diabetes, developed on a sizeable nationwide dataset of electronic linkage

records obtained in Scotland.

To that regard, model implementations that are more likely to identify longitudinal patterns

in complex biomedical data have been explored. Furthermore, the evaluation of the predictive

performance of the constructed models has been done in two ways:

• by generating out-of-sample predictions, i.e., estimating probabilities of events of a

population different from the one used to train the model (a.k.a. previously unseen

individuals) and

• by obtaining forward predictions for individuals included in the training sample up to a
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landmark time.

The latter is implemented by censoring part of the analysis dataset after a landmark time

point. Typically, complications do not occur close to the date of diagnosis but are expected

after a particular age and diabetes duration (ten years or more). Therefore forward prediction

is better suited to an observational setting since previously unseen individuals could comprise

a population with different covariate profiles (measured or unmeasured), and it might include

people who have been recently added to the registry with newly diagnosed diabetes.

1.5.2 Structure of this thesis

This thesis is structured as follows:

Chapter 1 introduces the rationale for precision medicine in T1D. High variation at risk of

developing complications among people with T1D and today’s great opportunity to obtain

insights from massive data collections are discussed here. Major challenges and barriers to

the implementation of a suitable framework that integrates observational data and allows

individualised predictions are also described. A literature review that closely relates to the

researched topics has been conducted and comprises part of the introduction, providing

relevant sources of evidence to support methodology and findings.

Chapter 2 gives an epidemiological background first related to the biological risk of developing

T1D complications, and continues with a methodological background, discussing approaches to

time to event analysis, joint model formulations, and the Bayesian framework used for making

inferences and calculating event probabilities. Finally, the chapter ends with an overview of

current implementations and endeavours to manipulate this type of data, highlighting the very

present trade-off between statistical and computational efficiency in large-scale applications

such as this one.

Chapter 3 describes the data sources used for conducting the analyses.

16



Chapter 4 describes the state-of-the-art joint modelling functionality as implemented in

rstanarm. It introduces the application of joint models in quantifying the risk of developing

cardiovascular disease (CVD) among people with T1D. Assumptions, model formulation, the

range of possible association structures, model performance and diagnostics are discussed in

order to test different fitting settings. The analysis concludes that the joint model fitted with

the modelling function stanjm() is quite restrictive and computationally expensive, albeit its

elegant mathematical formulation.

In light of the aforementioned outcome, I followed an alternative approach based on Bayesian

sequential updating, described in chapter 5, where I broke down the total follow-up time into

shorter consecutive intervals of time. I call this formulation the time-splitting joint model.

The rationale for this splitting is that since the rate of risk is time-varying, the probability

of an event may be estimated more efficiently as a stochastic process. Structural equation

modelling, as implemented in the ctsem package, allows for a broader family of hierarchical

models that include autoregressive drift (gradual smooth changes) and diffusion (sudden

perturbations) to be used to fit the biomarker data. A joint model comprising a Poisson

regression model dependent upon time-updated covariates that have been specified more

dynamically is likely to infer time to event more accurately than conventional LOCF models.

The functionality of the ctsem package and its application to the diabetes dataset is demon-

strated in chapter 6, with the objective of modelling the composite outcome of time to renal

replacement therapy (RRT) and death ascribed to renal failure among people with T1D. A

two-stage approach based on Kalman filter updates and a time-split Poisson counting process

is evaluated as a scalable alternative to rstanarm’s joint model implementation.

In this exemplar, the observed events are modelled as a counting process over many short

person-time intervals and the biomarker values at the start of each interval are imputed by

forward updating, using only observations up to the start of each interval, from a class of

models known as hierarchical continuous-time dynamic models. As a baseline for comparison,
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a last-observation-carried forward model was evaluated for the prediction of time to event.

Chapters 7, 8 and 9 describe the analysis pipeline that produced the thesis results, present

various findings for the ESRD analyses and elaborate on the evaluation of the predictive

performance and calibration of the different models tested.

Chapter 10 contains all final remarks and concluding summary, in addition to contributions

towards the fields of biostatistics and precision medicine. Moreover, insights regarding future

steps are briefly considered.
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Moving forward, chapter 2 elaborates further on the background, on which I review the statis-

tical theory and I briefly mention some details about the aetiology of diabetes complications

and how these matter. Since the focus of this thesis has been on statistical approaches for

improving risk prediction, providing an extensive review on the epidemiology of employing

biomarkers in clinical research and diabetes complications falls out of the scope of a method-

ological thesis. Therefore, the following chapter primarily focuses on the background needed

for the statistical modelling, reviewing prerequisite material for the implementation of joint

models and the theory underlying various approaches to survival analysis. Prior to that, a

brief analysis of past attempts to fit survival models for risk of CVD and ESRD is given to

acquire a more integrated view on the topic.
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Chapter 2

Background

This chapter provides additional contextual background to the importance of these clinical

outcomes in people with diabetes. Henceforth, I examine prior research endeavours pertaining

to developing predictive models for complications, specifically CVD and ESRD in T1D. I

further present various modelling techniques employed in survival analysis, focusing on Cox’s

proportional hazards and Poisson regression models, along with computational methodologies

emerged. Finally, I provide an overview of the approaches typically utilised to evaluate the

predictive performance of such models.

2.1 Susceptibility to complications of T1D

Diabetes mellitus is a group of metabolic diseases. Several pathogenic processes are involved

in the development of diabetes. A mixture of genetic predisposition and environmental factors

contributes to the onset of diabetes and the risk of developing complications. Most types

of diabetes are associated with defects in insulin secretion and share common long-term

complications due to chronic hyperglycemia.

Elevated blood glucose causes particular damage to the cardiovascular and nervous systems

(Lammert et al. 2014). The level of glycaemic control as measured by the degree of nonenzy-
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matic glycation of haemoglobin (HbA1c) is primarily determined by patient behaviour, insulin

therapy and non-insulin anti-diabetic agents. T1D is additionally determined by the level

of residual β-cell function, which in turn is partly under genetic control (Yu et al. 2019;

Gubitosi-Klug et al. 2021). Poorer glycaemic control is further associated with developing

diabetic kidney disease (DKD), amongst other vascular complications. However, even for a

given level of glycaemic control and diabetes duration, the variability in risk of developing

complications indicate that other factors must be relevant (Harjutsalo and Groop 2014). For

example, familial clustering and heritability in DKD have highlighted an underlying genetic

susceptibility (Gu 2019).

Major risk factors for developing CVD and DKD are age, HbA1c, waist-to-hip ratio, blood

pressure and non-HDL cholesterol. Furthermore, cardiovascular risk markers are predictive of

the development of diabetic peripheral neuropathy (DPN), particularly of large-nerve fibre

dysfunction, which may account for the high mortality rate in patients with an abnormal

vibration perception threshold (VPT) (Elliott et al. 2009). Macroalbuminuria, peripheral and

autonomic neuropathy are found to be the most relevant factors for mortality in individuals

with T1D (Soedamah-Muthu et al. 2008).

Previous studies of the relationship of C-peptide to microvascular complications, such as

the Maser et al. (1992), have been too small and underpowered to confirm the association

(Williams et al. 2019). Recent results obtained from a large representative cohort of individuals

with T1D in Scotland (Jeyam, Colhoun, et al. 2021) suggest that even minimal residual

C-peptide secretion could have clinical benefit in T1D. Interestingly, this is in contrast to the

results obtained by a follow-up study of the Diabetes Control and Complications Trial (DCCT)

intensively treated cohort, where an effect on hypoglycemia (low blood glucose) was seen only

at C-peptide levels ≥ 130 pmol/L (Nathan and Group 2014). Such findings emphasise the

importance of early determination of factors that increase the risk of complications.

Part of the interindividual variation in developing complications reflects fluctuation in some
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of the fundamental biological pathways involved, such as advanced glycation end-products

(AGE) formation. In this case, the glucose in the blood attaches itself to proteins without the

aid of an enzyme. As the glucose builds up, resulting in hyperglycaemia, it attaches itself to

the amino-acids and proteins which in turn get modified. AGEs can cause damage throughout

the body, including the blood vessels. They can cause damage to vessels’ walls, and when

this occurs in large and medium sized arteries, it results in accelerating arteriosclerosis, or

hardening of the vessels. Small damaged vessels may lead in turn to retinal, renal and nerve

damage.

Other mechanisms linking T1D with accelerated atherosclerosis, cardiomyopathy, and increased

post-myocardial infarction mortality rates include prolonged increases in reactive oxygen

species (ROS) production in diabetic cardiovascular cells. Insulin resistance causes excessive

cardiomyocyte ROS production by increasing fatty acid flux and oxidation, which causes

cardiomyopathy (Shah and Brownlee 2016). Although the clinical correlations which link

diabetes with its complications are increasingly understood, more studies of new biomarkers

to measure end-products and ROS production are needed.

There is also likely variation between individuals in the extent to which high glucose levels

activate these various pathways. HbA1c does not reflect most glycative and oxidative chemical

pathways that cause complications (Beisswenger 2012). Furthermore, there is likely variability

in the susceptibility of organs to damage. Current biomarkers, retinal examinations and

albuminuria cannot detect early tissue damage. Such glucose-induced tissue damage is

hypothesised to be mediated through a range of pathways, including increased flux of glucose

through the hexosamine biosynthetic pathway (HBP) (Buse 2006). Previous studies have

proposed that glycaemia-related damage in T1D is at least partly attributable to increased

flux through the HBP (Ferranti et al., n.d.).

Other pathways include enzymatic glucose modification of proteins, so-called N-linked glyco-

sylation. Altered N-glycosylation profiles are emerging as a novel risk factor contributing to
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complications development. Evidence indicates that diabetes patients can be distinguished

based on N-glycome composition (Rudman, Gornik, and Lauc 2019). Such modifications

can be described in terms of the amount of N-acetylglucosamine (GlcNAc), fucosylation,

galactosylation, and sialylation (N-acetylneuraminic [sialic] acid), as well as branching. Serum

N-glycome has been previously shown to regulate EGF receptor and TGF-β signaling path-

ways that are generally considered important in mediating DKD (Bermingham et al. 2018).

Also, Bermingham et al. (2018) studied whether the altered N-glycan profile in T1D is part

of the mechanism of glucose-induced kidney damage. They found substantial alterations in

the relative abundance of released total and IgG N-glycans in serum, along with associations

between N-glycans and both higher albumin-to-creatinine ratio (ACR) and steeper estimated

glomerular filtration rate (eGFR) slope in patients with T1D. Although elevated HbA1c is

associated with an altered N-glycan profile in individuals with T1D, none of the N-glycan

peaks has been found to be prognostic of future renal function decline independently of HbA1c

(Colombo et al. 2021).

2.2 Previous literature on prediction of CVD and ESRD

in diabetes

This section provides a concise overview of prior endeavours in modelling the risk of developing

CVD and progression to ESRD using eGFR as a predictive biomarker. It further elucidates

how the reviewed articles motivate the research conducted.

2.2.1 Epidemiology of eGFR and renal disease

Current clinical guidelines in the UK use the estimated glomerular filtration rate as an overall

measure of kidney function and recommend that a patient who is losing kidney function at

a relative rate of at least 5% per year should be referred for specialised treatment (Health

and Excellence 2021). Therefore, progression to ESRD has been characterised by the rate of
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change in a person’s kidney function as measured by eGFR, an adjusted version of the serum

creatinine level found in a blood sample.

Multiple studies have confirmed and consolidated that cystatin C is more accurate than

creatinine for measuring kidney function, although it is not routinely available (Randers and

Erlandsen 1999; Lopez 2015). Shlipak et al. (2009) showed that in elderly persons, cystatin C

predicted substantially more significant kidney function declines than creatinine. Therefore,

it has been argued that cystatin C is a valid marker of glomerular filtration rate (GFR) and

might be more accurate than using creatinine in some age groups. However, it is not routinely

collected and this places eGFR in a better place for usage in longitudinal studies.

Furthermore, β-trace protein, also known as Lipocalin type prostaglandin D synthase, has

recently emerged as a novel marker of GFR, representing a more sensitive marker for mild

kidney dysfunction than serum creatinine (White, Ghazan-Shahi, and Adams 2015). In this

regard, β-trace protein has been proposed as an alternative marker to cystatin C for estimating

renal function (Orenes-Pinero et al. 2013). Beyond its role in estimating renal function,

β-trace protein has also been advocated as a novel biomarker for cardiovascular risk prediction,

which may be relevant to modelling diabetes-related complications. Notwithstanding the

importance of these findings, longitudinal data on β-trace protein and cystatin C are typically

hard to collect. When available, these usually are helpful adjuncts to serum creatinine in

quantifying the risk of progression to DKD.

Circulating kidney injury molecule (KIM)-1 has also been examined as an early biomarker

of renal decline in diabetic kidney disease. Gohda et al. (2020) found that serum KIM-1

was associated with a lower eGFR (<60 mL/min/1.73 m2) after adjustment for covariates in

patients with diabetes.

More recently, Colombo et al. (2019) attempted to identify a panel of biomarkers for improving

the prediction of renal disease progression in T1D. Colombo et al. (2019) employed a penalised

Bayesian approach to analyse 297 circulating biomarkers on 859 individuals from the Scottish
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Diabetes Research Network Type 1 Bioresource (SDRNT1BIO) and 315 individuals from the

Finnish Diabetic Nephropathy (FinnDiane) study, all with entry eGFR between 30 and 75

mL/min/1.73 m2. They reported that only a sparse panel of CD27 and KIM-1 contains most

of the predictive information for eGFR progression, with a modest increment in prediction

of renal disease beyond including age, sex, diabetes duration, baseline eGFR and length of

follow-up as covariates in the models. The presented evidence supports the argument that

eGFR is the most reliable predictive biomarker linked to future changes in renal function.

2.2.2 Time to ESRD based on longitudinal eGFR: understanding

the impact of covariates on survival probabilities

It is common practice in survival analysis to use a Cox’s proportional hazards model, also

known as the Cox regression model (Cox 1972; Bellera et al. 2010; Abd ElHafeez et al.

2021). The Cox proportional hazards model allows us to examine the relationship between

covariates (independent variables) and the hazard function, which represents the probability

of experiencing an event at a particular time given survival up to that moment. The model

assumes that the hazard function is a product of two components: a baseline hazard function

that depends only on time and a set of covariate variables, where their effects are independent

of time.

The key assumption of the Cox regression model is the proportionality assumption, which

states that the hazard ratio between any two individuals remains constant over time. This

implies that the effect of covariates on the hazard function is constant over time, and the

hazard curves for different individuals only differ by a constant factor.

The Cox regression model estimates the hazard ratio, which quantifies the relative change

in hazard for a one-unit change in a covariate, adjusting for the remaining covariates in the

model. It does not require the specification of the underlying distribution of survival times,

making it a non-parametric or semi-parametric model.
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For the modelling of clinical outcomes, various statistical methods have been employed and

extended over time. Based on the components drafted in the preliminary skeleton of this

thesis, a comprehensive search of the literature was performed using the PubMed and Google

Scholar search engines. Multiple keywords related to the topic were used. To the best of my

knowledge, the most up-to-date scoping review with respect to predictive modelling of clinical

progression to chronic kidney disease (CKD) has been conducted by Lim et al. (2022), which

is very useful material for reviewing the existing evidence regarding this area.

The data sources of this review are Medline, EMBASE, CINAHL and Scopus from years

2011 to 17th February 2022. They have identified 516 studies, 33 of which were included in

the review in full. All selected articles built statistical or computational model(s) to predict

the risk of developing CKD. The patient data acquired by these studies were sourced from

various healthcare systems, adding diversity which enhances the quality of the conducted

research. The reviewers concluded a lack of reporting consistency regarding the details of

developing risk prediction models for CKD. In the context of my specific interest, it was also

observed that Cox regression modelling was the prevailing method employed, according to

the systematic review.

Despite the relatively low number of studies considered, the existing literature implies that

Cox regression models are most commonly used in survival analysis to investigate and infer

the relationship between covariate data and survival outcomes. The work that is described in

the thesis explains how the traditional Cox approach can be expanded in order to improve

the yielded prediction of time to event.

Foremost, the study conducted by Diggle, Sousa, and Asar (2015) with respect to modelling

longitudinal eGFR to determine progression to kidney disease has been the closest to my

analysis. They utilised a random intercept and a continuous time, non-stationary stochastic

process to obtain a predictive distribution of the the underlying rate of change of kidney

function given via eGFR trajectories. More details about the particular type of modelling
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follow in chapter 6.

2.2.3 CVD risk models developed for T1D

Cardiovascular disease (CVD) is one of the major causes of death worldwide (Ezzati et al.

2005). Individuals with T1D face an elevated susceptibility to developing CVD. In 1961, the

coining of the term ‘risk factor’ resulted from the identification of an initial set of traditional

risk factors for coronary heart disease in the Framingham Heart Study (Kannel et al. 1961).

The important risk factors identified by the Framingham study were age (males ≥ 45 years or

females ≥ 55 years), male sex, hypertension, dyslipidemia, smoking, and diabetes mellitus

(Khambhati et al. 2018).

Soedamah-Muthu et al. (2008) identified important risk factors associated with high CVD

mortality, including age, waist-to-hip ratio, pulse pressure, and non-HDL cholesterol, among

others. Analysis of longitudinal biomarker data in the context of CVD risk prediction is

of utmost importance. By considering biomarker measurements over time, researchers and

clinicians can better understand the dynamic relation between biomarkers and outcomes

over time, i.e., temporal patterns and trajectories of biomarkers and their predictive value

in identifying individuals at risk of CVD. Overall, the analysis of longitudinal biomarker

data helps uncover the relationship between biomarker changes and CVD occurrence, thereby

improving the accuracy and effectiveness of risk assessment and management strategies.

Stevens et al. (2021) carried out a systematic methodological review of the modelling of

cardiovascular disease (CVD) risk using longitudinal biomarker data and risk factor trajectories.

For this purpose, they screened MEDLINE-Ovid from inception until 3 June 2020. Key search

terms focused on data type, modelling type and disease area, including search terms such as

longitudinal, trajectory and cardiovascular, respectively. Studies were selected to meet the

following inclusion criteria: longitudinal individual data in adult patients with more than

three time points and a CVD or mortality outcome.
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The researchers identified 2601 studies, 80 of which were included in the review in full. Four

statistical approaches were identified for modelling the longitudinal data: 4% compared

time points with simple statistical tests, 50% used single-stage approaches, such as single-

time analysis or including summary measures in the survival models, 36% used two-stage

approaches, including an estimated longitudinal parameter in survival models, and 10% used

joint modelling, which modelled the longitudinal and survival data together. The 80 studies

included in the article are given in the following link by model and study characteristics.

The particular systematic review has primarily highlighted that single-stage models are

heavily employed in CVD risk prediction studies for modelling longitudinal data, risking the

induction of bias in retrospective prediction of time to event, as the likelihood of event is

conditioned upon the full longitudinal trajectory, which might comprise data points during

the prediction time. Furthermore, they have affirmed the benefit of employing two-stage and

joint approaches, which utilise the available data resources more cautiously, and they are of

increasing popularity as more exemplar cases become available.

The study of Vistisen et al. (2016) has contributed significantly at identifying a number of

risk factors for CVD risk prediction, including age, sex, diabetes duration, systolic blood

pressure, low-density lipoprotein cholesterol, HbA1c, albuminuria, glomerular filtration rate,

smoking, and exercise and using them as covariates in a Poisson model for a 5-year CVD event.

However, the model was poorly calibrated when validated using an external population with

T1D, which indicates overfitting issues and the need for developing more robust approaches.

Furthermore, markers predicting CVD risk in T1D, or included in the reviewed risk models

for CVD as covariates have been reported by Livingstone et al. (2012) and Rawshani et al.

(2017).

Several additional studies related to the current state of research on CVD risk prediction

have been identified and reviewed in the following section. The studies were selected based

on their relevance to the topic.
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The objectives of the study conducted by Jia et al. (2019) has been to identify key risk factors

that affect the prediction of CVD risk and to develop a 10-year CVD risk prediction model

using the identified risk factors. The study found that heart rate was determined as a novel

risk factor, and a CVD risk model incorporating factors such as age, sex, body mass index

(BMI), hypertension, systolic blood pressure (SBP), tobacco use per day, pulse rate, and

diabetes was constructed. Therefore, the inclusion of heart rate as a predictor extended the

predictive ability of existing risk factors.

Yang et al. (2022) developed a 10-year CVD risk prediction model applicable to diverse

regions of China by excluding blood lipids as predictors. The study involved a large cohort of

individuals and found that after recalibration, the model’s calibration performances improved.

The results were comparable for both women and men. The development of flexible recalibra-

tion models could enable more widespread use of CVD risk prediction in different regions

using healthcare records of the Chinese population.

Furthermore, the objective of Sung et al. (2019) was to compare the performance of a Cox

hazard regression model with a Recurrent Neural Network (RNN) - Long Short-Term Memory

(LSTM) model (Sherstinsky 2020) based on survival analysis, to demonstrate the increment

deep learning might bring in prediction. The study found that the deep learning model

outperformed the Cox regression model in terms of time-dependent area under the curve for

both females and males at 2 years. Layer-wise Relevance Propagation (LRP) (Montavon et al.

2019) analysis revealed that age, SBP, and diastolic blood pressure (DBP) were the variables

with the greatest effect on the outcome of CVD.

McGurnaghan et al. (2021) recently developed a Poisson regression model for individualised

predictions for developing CVD over a 10-year follow-up period. Their 10-year CVD risk

prediction tool could facilitate discussions regarding appropriate statin prescribing. For model

derivation, the Scottish cohort with T1D has been used, which has been previously described

by Livingstone et al. (2012). The person-time of the study cohort was split into one-year
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intervals, and then the model was externally validated using the Swedish National Diabetes

Register. Covariates were included as baseline measurements, apart from age which was

time-updated.

Barbieri et al. (2022) compared deep learning extensions of survival analysis models with Cox

proportional hazards models for predicting CVD risk using national health administrative

datasets. The study found that the deep learning models outperformed the Cox proportional

hazards models in terms of explained variance, calibration, and discrimination. Hazard ratios

estimated by the deep learning models aligned with known CVD risk factors, such as tobacco

use, hypertension, chest pain, and diabetes.

Cooper, Wells, and Mehta (2022) investigated whether accounting for the competing risk of

non-CVD death improves the performance of CVD risk-prediction equations in older adults.

The study analysed a large cohort of older individuals and found that standard Cox models

overestimated the 5-year CVD risk, while Fine-Gray models (Austin, Steyerberg, and Putter

2021), which consider competing risks, were overall better calibrated. The study suggests

that new CVD risk equations that take competing risks into account should be considered for

people aged over 65 years.

According to the broader literature, most discoveries made nowadays are implemented by using

more elaborate methods since conventional methods have been fully exploited. The scope of

the thesis primarily revolves around assessing whether specific methodological advancements

result in a considerable increment in risk prediction of two major complications contributing to

the increasing mortality rates in individuals with T1D. Before proceeding with the introduction

and the assessment of the specific methods that expand the traditional Cox regression, I

briefly introduce the main advancements that have led to the rise of joint modelling, as a

statistical technique.
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2.3 Modelling time to event: survival analysis

Prevalent mathematical concepts used in survival analysis are presented below:

• Survival Function, S(t): the probability that an individual will survive beyond time t

Pr(T > t). When we know the outcomes for all subjects, we can estimate the survival

function empirically. At any time x, the survival function is given by the proportion

of subjects that have not experienced the event yet. In theory, the survival function is

smooth, but in practice, the estimation of the survival function based on observed data

is discretised using, for example, the Kaplan-Meier survival curve estimation (Kaplan

and Meier 1958; Goel, Khanna, and Kishore 2010).

• Probability Density Function, f(t): the relative likelihood that an individual will die at

a time t, and it is the derivative of the cumulative probability function.

• Cumulative Probability Function, F (t): the probability that an individual will have a

survival time less than or equal to t Pr(T ≤ t). The survival function and the cumulative

probability function sum to 1, S(t) = 1 − F (t).

• Hazard Function, h(t): the instantaneous hazard rate of experiencing an event at time

t conditional on having survived to that time. The hazard function is also given by

h(t) = f(t)
S(t) , i.e., the instantaneous hazard equals the unconditional density function of

experiencing the event at time t, scaled by the event-free fraction at time t.

• Cumulative Hazard Function, H(t) (or the cumulative hazard rate): the integral of the

hazard function from time 0 to time t, which equals to the area under the curve h(t)

between time 0 and time t. The cumulative hazard is the total accumulated risk of

experiencing the event of interest that has been gained by progressing to time t.

An additional connection between H(t) and S(t) can be written in the following two ways:

• H(t) = −log[S(t)]: The cumulative hazard function equals the negative log of the

survival function.
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• S(t) = e−H(t): The survival function is the exponentiated negative cumulative hazard

function. An increase in h(t), the instantaneous hazard will lead to an increase in H(t),

the cumulative hazard, which translates into a decrease in S(t), the survival function.

The most common method of depicting survival data is the Kaplan-Meier curve (Kaplan

and Meier 1958; Rich et al. 2010; Goel, Khanna, and Kishore 2010), which is a graphical

representation of survival probabilities over time; the estimated survival function is based

on event status and follow-up length. The Kaplan-Meier survival curve is based on observed

survival times and censoring information, and graphically it appears as a step function, with

a step down at each event occurrence. The Kaplan-Meier estimator breaks up the estimation

of S(t) into a series of steps (intervals) based on known event times. Observations contribute

to the estimation of S(t) until the event occurs or until a subject is censored. For each step,

the probability of surviving until the end of that interval is calculated, given that subjects are

at risk at the beginning of the interval. The estimated S(t) for every value of t equals the

product of surviving each interval up to and including time t.

The main assumptions of this non-parametric method, in addition to a non-informative

censoring mechanism is that censoring occurs after failing and that there is no cohort effect

on survival, so subjects have the same survival probability regardless of when they entered

the study. The estimated S(t) from the Kaplan-Meier method can be plotted as a stepwise

function with time on the X-axis, as shown in figure 2.1.

33



+++++++++++++++++++++++++++++++++++++++++++
++++++++++









0.00

0.25

0.50

0.75

1.00

0 2.5 5 7.5 10
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

eGFR + + + + +0−15 15−30 30−45 45−60 60+

10 50 40 39 18
15 256 216 177 139
6 566 473 351 281

36 790 526 430 309
16 479 470 342 27460+

45−60
30−45
15−30

0−15

0 2.5 5 7.5 10
Time

eG
F

R

Number at risk

Figure 2.1: Non-parametric time-to-event estimates for 2633 individuals with T1D, based on
observed eGFR values spanning a time period of 10 years split into 5 classes.
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Let T be a non-negative random variable representing the waiting time until the occurrence of

an event. Then, we define the hazard rate of event occurrence as the conditional probability

that the event will occur in the interval [t, t + dt), where dt is the length of this time window,

given that an event has not happened until time t. The event rate λ refers to an individual

subject, giving the conditional probability of an event per unit of time. Mathematically,

λ = limδt→0
P (t≤T <t+δt|T ≥t)

δt
. The conditional probability divided by dt shows the rate of event

occurrence per unit of time. It is also called instantaneous event rate to emphasise the fact

that it refers to a specific moment in time.

An exponential distribution of time to event is equivalent to a Poisson process for the arrival

of events, with a constant arrival rate λ. Hence, the Poisson arrival process and exponential

time to event are equivalent terms. Splitting time into short intervals allows the survival

curve to be modelled as a piecewise exponential curve. Over any short interval, the hazard

rate is approximately constant.

The most widely used method to analyse time to event data is the Cox proportional hazards

model, introduced in 1972 (Cox 1972), which is a statistical regression model that describes

the relationship between an event occurring, as expressed by the baseline hazard function

denoted by h0(t), and a set of covariates Xi’s and corresponding coefficients β’s, as given by

the following formula:

h(t) = h0(t)exp(β1X1 + β2X2 + · · · + βpXp).

This formulation allows for estimating hazard ratios, which represent the relative risk associated

with different covariates.

The Cox model is often described as a semi-parametric approach. In semi-parametric models,

certain aspects of the model are specified parametrically, i.e., specific functional forms or

distributions are assumed for certain model parameters, while other components of the model

are left non-parametric, allowing for more flexibility in specifying complex relationships.

35



The Cox model does not make assumptions about the underlying distribution of survival times

when estimating the hazard ratios. In particular, the Cox model assumes that the hazard

ratio remains constant over time, indicating that the ‘proportional hazards’ assumption holds

(Kumar and Klefsjö 1994). This assumption implies that the hazard functions for different

individuals may vary, but the ratio of their hazards remains constant over time.

On the other hand, the Poisson model is typically used for analysing count data, where the

outcome of interest is the number of events occurring within a specified time interval. In

the context of survival analysis, the Poisson model is employed to estimate event rates and

assess the association between covariates and event occurrence. The Poisson model assumes

that the hazard ratio or event rate is constant over time, which may not hold true in some

applications. The Poisson rate parameter λ is the event rate: defined as the expected number

of occurrences per unit of time as a function of the covariates.

The formula gives a Poisson regression model

log(λ) = α + b1x1 + b2x2 + ... + bnxn, (2.1)

where the natural log transformation of the event rate (left-hand side) is a linear combination

of the explanatory variables (right-hand side). In particular,

• xi is the ith explanatory variable (i = 1, ..., n)

• λ is the expected value of the mean, i.e., the expected event rate dependence on the

covariates in the study for an individual with a particular set of values for x1, x2, ..., xn

• α is the estimated constant term, i.e., the intercept, that provides an estimate of the

log event rate when all xi’s of the equation are equal to 0 (the log of baseline hazard)

• bi are the estimated Poisson regression coefficients (log hazard ratios).

The equivalence between piecewise-exponential models and Poisson models:
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The Poisson parameter λ and the hazard ratios (HRs) are closely related in the context of

modelling time-to-event. When comparing two groups using HRs, we are essentially comparing

their hazard functions over time. The HR reflects how the instantaneous risk of an event

differs between the two groups at a given time point. The event rate λ is a component of the

hazard function h(t), and the HR compares the hazard functions between groups. Therefore,

the event rate λ contributes to the HRs when they are compared between different groups.

The estimated HRs from a piecewise-exponential model can be approximated using Poisson

models fitted on finely split time intervals (one interval for each event). A Poisson regression

model can replicate a piecewise-exponential model, in which case, the aforementioned issue of

non-constant hazard is overcome by the time splitting (Dickman et al. 2004; Rodriguez 2007;

Li et al. 2016). A piecewise-exponential model is a type of survival model that estimates

the HR, which represents the instantaneous risk of an event occurring at a specific time,

given that the event has not yet happened. Such models, like Cox regression models, are

particularly applicable when the hazard rate is not constant over time and may vary at specific

time intervals or time points, as in the case of developing risk of complications in T1D. The

piecewise-exponential model can be effectively approximated by a Poisson regression model

that divides the follow-up time into consecutive time intervals, where within each interval, the

event rate is constant. This enables the estimation of different hazards in each time window,

capturing potential changes in risk over follow-up time.

Considering an alternative viewpoint, the hazard ratio (HR) and event rate ratio, or incident

rate ratio (IRR), are both measures of effect size; the value that quantifies the strength of

the relationship between two variables (Sullivan and Feinn 2012). In the Cox proportional

hazards model, the HR is used to quantify the effect of a covariate on the hazard function.

It represents the ratio of the hazards between two groups of a covariate. For example, an

HR of 1 indicates no difference in the hazards between the groups, and an HR greater than 1

indicates an increased hazard in the reference group compared to the comparison group.
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On the other hand, the event rate ratio is commonly used in Poisson regression models to

quantify the effect of a covariate on the incidence rate. It represents the ratio of the incidence

rates between two groups or levels of a covariate (Wilson 2021). An IRR of 1 indicates no

difference in the event rates between the groups, and an IRR greater than 1 indicates an

increased event rate in the reference group compared to the comparison group.

Consequently, the HR measures the relative risk of an event occurring at any given time,

while the IRR measures the relative rate of events occurring over a specific time period.

Therefore, the Cox regression model can be seen as a a special case of Poisson regression in

which the intercept has been eliminated by setting the baseline hazard rate in each interval

to its maximum likelihood value.

It is important to note that although the parameter estimates and standard errors are

effectively interchangeable between Cox and Poisson regression models, the two models do not

make the same assumption a priori; the Poisson models assume that the HRs are constant

within intervals containing the event times, while the Cox models do not make this assumption.

The Poisson model assumes that the event rate or event occurrence follows a Poisson dis-

tribution. For a given individual with covariate values x, the event rate λ(t|x) at time t is

modelled as λ(t|x) = λ0(t) × exp(βx), where λ0(t) is the baseline event rate and β is the

vector of regression coefficients.

The association between the Cox proportional hazards and the Poisson model is the exponential

term exp(βx), which captures the effect of covariates on the hazard or event rate. This term

represents the multiplicative effect of the covariates on the hazard or event rate. For a Cox

proportional hazard model, the inclusion of a time-varying covariate would take the form of

h(t) = h0(t)exp(β1x1(t)).

In conclusion, the Cox model can be effectively approximated by the Poisson model, considering

it as a special case of a parametric Poisson regression model. In this approximation, the

baseline hazard h0(t) is represented by the intercept term associated with time t, and the
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coefficients correspond the log HRs associated with each covariate.

Two papers published separately in the early 1980s, Holford (1980) and Laird and Olivier

(1981), showed that the likelihood of the Cox model was technically equivalent to that of a

Poisson regression model in which individuals are censored at the first event, with an intercept

term for each person-time interval.

They independently formulated that a Poisson arrival process with a constant hazard/event

rate implies an exponential survival function (cumulative probability of time to failure) and

vice versa. Let tij denote the time elapsed by the i-th individual in the j-th interval, that is,

between [tj−1, tj ]. The piecewise exponential model may then be fitted to the data by treating

the events as if they were independent Poisson observations with means µij = tijλij , where λ,

the Poisson parameter, is explicitly linked to each different time interval. The observations in

each person-time interval are obviously not independent draws from a Poisson distribution.

For all person-time intervals, the event indicators are all zero, except for the last interval,

which can take the value 0 or 1. German Rodriguez (2007) has elaborated on this theory and

constitutes a foundation of this work.

To fit the Cox model, the dataset is split at each time point where at least one individual has

an event to construct a dataset in which there is one observation for each of the resulting

person-time intervals. The Cox regression model can be extended to model time-updated

covariates, but it cannot estimate the baseline hazard rate. In some situations, such as a drug

clinical trial, we only need to estimate rate ratios and do not need to estimate the baseline

hazard rate. Nevertheless, in other situations, such as clinical risk prediction, we need the

baseline hazard rate in order to make realistic estimations.

Heterogeneity of susceptibility due to risk factors that cannot be measured, i.e., is unknown

or not represented in available data, is commonly referred to as frailty; a quantity that varies

among individuals (Vaupel, Manton, and Stallard 1979). In many diseases, frailty variation

is a possible explanation for an early peak in incidence (Zarulli 2016). Not accounting for
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unobserved frailty variation in statistical analyses may lead to misleading comparisons of

hazard and incidence rates (Aalen et al. 2015). The statistical interest in frailty stems

partly from the fact that it can lead to waning effects of the predictor under investigation

over time. Observational studies commonly show that the effects of various risk factors may

wane within more extended follow-up periods. For instance, the risk ratio attributable to

smoking and blood pressure decreases as the population transitions from younger to older since

individuals at high risk have been removed from the study. The frailest group experiences

the event first because they are at higher risk. Hence, unmeasured susceptibility decreases

faster in individuals with high risk, who are smokers and have high pressure (Moolgavkar

2015). Although likely, frailty frequently influences susceptibility and severity of progression

to complications in individuals with any health conditions, methods for allowing for it in

survival analysis are still not fully developed.

Although Cox regression is still widely used, statistician Bendix Carstensen has argued that

it is now rarely the most appropriate method for survival analysis (“Who Needs the Cox

Model Anyway?” 2018). With powerful computers and efficient algorithms for fitting Poisson

regression models, there is no longer any computational advantage over Poisson regression. In

a Poisson regression, the baseline hazard can be specified as constant, modelled as a linear

relationship to the timescale, or modelled as a spline function allowing the model to adapt as

required to fit the data.

2.3.1 More flexible modelling of the survival function

The effects of the covariates on the hazard and survival probabilities can also be approximated

by a functional form such as a spline (Whittemore and Keller 1986; Gray 1992) that allows

for non-monotonic relationships to be captured. Splines allow for time-dependent effects,

non-linear effects and interactions between covariates (Fauvernier et al. 2019). Thus, splines

approximate the true underlying relationship between the covariates and the survival function.

Splines are a compromise between fitting a straight line (effectively one parameter for every
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failure time point) and fitting a smoothed function that allows one to fit the data more closely

and capture non-linear, complex patterns.

One possible way to implement such penalised models is to use the described approximation of

the survival likelihood by a Poisson likelihood by splitting the data into person-time intervals.

Dividing the time of follow-up into smaller intervals (having one longitudinal observation per

interval), and then fitting piecewise-polynomial functions within each person-time interval

generates a smooth curve that approximates the true effect of the predictor-biomarker and

might estimate better the overall relationship between the longitudinal and time to event

processes.

The fit of splines heavily depends on the number of knots (degrees of freedom) specified. The

R package mgcv (Mixed GAM Computation Vehicle with Automatic Smoothness Estimation)

allows the number of knots to be learned effectively from the data, and can be used to fit

such penalised models. Restricted cubic splines may be best for dynamic forward projection,

which restricts the function to be linear at the ends where data are sparse.

Furthermore, Royston-Parmar parametric models, also known as Royston-Parmar flexible

parametric survival models are a class of statistical models used in survival analysis (Ng et al.

2018). These models were developed by Patrick Royston and Mahesh Parmar as an extension

of the traditional Cox proportional hazards model.

The Royston-Parmar models allow for more flexible modelling of the baseline hazard function,

providing a wider range of shapes and associations. They model the baseline log cumulative

hazard on the proportional hazard scale. They are specified by a series of spline functions

that approximate the baseline hazard, allowing for more dynamic modelling of the hazard

over time and overcoming the restrictive assumption of constant hazard ratios over time.

This flexibility allows for capturing time-varying effects and non-proportional hazards, which

can be important in certain survival scenarios. These models have been shown to be particularly

useful when the baseline hazard exhibits complex shapes or when there are non-linear
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relationships between covariates and the hazard. However, such modelling technique is not

utilised herein, primarily due to the risk of overfitting the baseline hazard function and the

difficulties of interpreting a model with multiple time-dependent effects, because the hazard

ratios are dependent on more than one covariates (Baade et al. 2015).

A survival dataset reformatted as person-time intervals enables us to incorporate exposures

with values that change over time. Time-varying covariates can be included in survival models

by changing the unit of the analysis from the individual to the period of time when the

exposure is constant (Zhang et al. 2018).

To allow for unequal lengths of person-time intervals, the Poisson regression model needs to

include the log of the length of each interval, as an offset term in the formula. An offset term

is a term in the model defined to have a coefficient of 1. With many short interval lengths,

the continuous-time model can be approximated arbitrarily close by a Poisson time-splitting

model with sufficiently short interval lengths.

In an accelerated failure time model (Wei 1992) in which the hazard rate increases linearly

with follow-up time can be represented by including a covariate term for the time of follow-up.

For instance, the human lifespan, where mortality is high in the first years of life, and low

in later childhood and young adulthood, before rising with increasing steepness in later life,

could be modelled with an appropriate spline function for the hazard rate.

By splitting time into short intervals (the ends must join up), we consider the constant hazard

rate within each interval and specify a survival function that is piecewise-exponential.

Therefore, the time-splitting approach is easy to implement and allows one to fit different

hazard functions and implicitly estimate different hazard ratios for each person-time interval.

Hence, by approximating any underlying survival function by a piecewise-exponential distri-

bution, there is no need for parametric models of other survival functions, such as the Weibull

distribution, where the hazard rate is a linear function of time. This can be addressed by

splitting time into short intervals and including follow-up time as a time-updated covariate.
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Effectively, the time-splitting approach makes any other parametric survival model, which

makes assumptions about the shape of the hazard in advance, obsolete. This is one of several

advantages of the Poisson time-splitting approach.

Thus, the time-splitting approach makes it possible to incorporate time-updated covariates

in the model, fixing the covariate values at the start of each interval. With these types of

regression, time intervals in which no events occur do not contribute to the likelihood and are

dropped from the analysis.

One area for improvement with the time-splitting approach is that the size of the dataset

can become impractically large if we say, split millions of people into a hundred person-time

intervals each. This can be overcome by thinning observations (person-time intervals) where

no event occurs (Gratton et al. 2015). With a Poisson regression, this is of no importance.

Last but not least, parametric approaches rely on the maximum likelihood to estimate

parameters. Akaike Information Criterion (AIC) is commonly used to compare models run

with different parametric forms, with the lowest AIC being indicative of the best fit to the

data.

2.4 Joint modelling of longitudinal biomarker data and

time to event

Joint modelling of time to event and longitudinal data was originally developed during the

1990s to make updated predictions from measurements of biomarkers of immune cells about

progression to AIDS in HIV-positive individuals (Tsiatis, Degruttola, and Wulfsohn 1995).

Other applications are to:

• investigate the relationship between a biomarker and the risk of occurrence of the clinical

outcome,

• improve estimation in either or both outcomes as compared to separate analyses of the
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two outcomes.

Wearable devices and continuous monitoring is an exemplar application of precision medicine

and joint modelling is ideally suited for the task of dynamic prediction.

A shared-parameter joint model consists of two submodels: a longitudinal submodel, such as

a linear mixed-effects model (A) and a time to event submodel (B), such as a proportional

hazards model, which is linked using an association structure. Time-updated biomarker

observations provide information about the last time a subject was observed and remained

event-free. Time is interpreted as time elapsed since entry: the unique time an individual

enters the study is time zero, and after that, the time elapsed since the last observation. The

formulation of a joint model is shown below:

(A): Xim = f(tim, bi, βL) + ϵim

In this formula, Xim is the m-th longitudinal biomarker for the i-th individual at time tij,

f(·) represents the functional form relating the biomarker to time, random effects bi capture

the individual-specific deviations from the population average, βL represents the fixed effects

coefficients, and ϵim is the residual error term.

(B): hi(t) = h0(t) exp(β′
Sxi + αbi)

where hi(t) is the hazard function for the i-th individual at time t, h0(t) is the baseline hazard

function, β represents the fixed effects coefficients for the covariates xi, and α captures the

association between the random effect bi that link the longitudinal submodel and the hazard.

Biomarker trajectories are modelled as random effects, given the observed values.

If an effect is assumed to be a realised value of a random variable, it is called a

random effect. (LaMotte, 1983)
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Inherently, random effects capture the random or unobserved factors that introduce variability

among the groups or levels.

Before I discuss the inner mechanisms of joint modelling in the following chapter, where I

showcase its application on a diabetes dataset, I give a high-level explanation of how the joint

modelling approach has progressed as a technique over the past few years.

Joint modelling can be described as a parallel estimation of two or more statistical models,

which traditionally would have been fitted separately. I have studied the shared-parameter

joint model implementation for longitudinal and time to event data fitted via the R package

rstanarm. The application of joint modelling via rstanarm is described in chapter 4.

A shared-parameter joint model consists of a linear mixed-effects model called the longitudinal

submodel and a time to event submodel. The longitudinal submodel analyses the patterns of

the component that has been measured repeatedly over time. The time to event submodel

specifies the time until an event of interest occurs, such as death or disease progression. In

particular, the longitudinal submodel estimates the fixed effects for covariates and random

effects for individuals. The survival submodel specifies the hazard function and translates the

effects of the covariates into an event likelihood. Fixed effects are constant across individuals,

while random effects vary. For instance, if each subject receives both the drug and placebo on

different occasions in a clinical trial, then the fixed effects term would estimate the effect of

the drug, while the random effects would capture how the response differs among subjects,

i.e., random effects are used to estimate the variability among individuals.

The association structure defines the relationship between the longitudinal processes and the

time to event. The joint model explicitly builds the joint distribution of the longitudinal and

survival outcomes to yield survival probabilities. Because the biomarkers are measured only at

intervals (intermediately) and usually with error, the biomarker trajectories are not observed

directly. Joint modelling accounts for the error measurements inherent in the longitudinal

component, whereas more straightforward modelling techniques in which the last observation
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is carried forward as a time-varying covariate in a Cox regression or Poisson regression do not

allow for this.

A primary limitation of such a naive approach arises when biomarkers are not updated that

often, and when they do, it usually happens because the subject has transitioned to the end

stage of a disease, which changes the baseline assumptions on which the model has been built

on. In particular, diseases such as diabetic kidney disease can remain asymptomatic for many

years.

The premise for joint modelling is to specify appropriate submodels for the longitudinal

component(s), and the time to event, coupled by a dependence of the survival function on

the biomarkers: the so-called shared-parameter model. The model is fitted by maximising the

likelihood of the model parameters given the longitudinal measurements and time to event

observations. Hickey et al. (2016) has discussed recent developments in this area. It provides

appropriate context for scrutinising the state-of-the-art approaches, as such, the rstanarm

implementation.

The likelihood of the standard joint model is derived under the assumption that the longitudinal

and time to event processes are independent, given the random effects. I.e., unobserved

biomarker values, (also called latent parameters) comprise part of the information that

is included in the association structure, that links longitudinal and time to event data.

In addition, the longitudinal observations themselves are considered independent for each

individual, given these random effects. Given these assumptions, the random effects must

be integrated out in order to derive the joint likelihood. However, obtaining a closed-form

solution to the integral, that sums over the random effects, is not trivial, thus numerical

methods are employed to approximate the integral over the random effects.

To that end, the standard approach to joint modelling requires the likelihood to be computed

by integration over these unobserved trajectories using computationally intensive numerical

techniques, such as Gauss–Hermite quadrature (Pinheiro and Bates 1995).
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2.4.1 Two-stage approaches and immortal-time bias

Joint modelling has emerged due to the computational developments of the last years: it has

started to impact the modelling of various clinical outcomes, including these studies Baart et

al. (2021); Brown (2003); Ibrahim, Chu, and Chen (2010).

The two-stage approach, which entails fitting the longitudinal and survival outcomes separately

is the most common solution to overcome the computational requirements of maximising the

joint likelihood. However, substantial research on this topic (Tsiatis and Davidian 2004; Ye,

Lin, and Taylor 2008; Rizopoulos 2012; Mauff et al. 2017) indicates that this approach results

in biased estimates.

Recently, Mauff et al. (2020) have proposed an adaptation of the standard two-stage approach,

which eliminates bias and substantially reduces computational time. They used a correction

factor based on importance sampling theory (Press et al. 2007). This correction factor

allows for reweighing each draw of the Markov Chain Monte Carlo (MCMC) sample obtained

from the Bayesian estimation of the two-stage approach, such that the resulting estimates

more closely approximate those yielded by the shared-parameter multivariate joint model.

The weights are given by the target distribution, i.e., the full posterior distribution of the

multivariate joint model, divided by the product of the posterior distributions for each of

the two stages, evaluated for each iteration of the MCMC algorithm. Before the use of the

correction factor, the two-stage approach is itself modified: where before, in the second stage,

only the parameters of the survival submodel were updated, now the random effects are

updated as well. The iterative reweighing sampling increases linearly and is much faster than

the quadratic computations. These adaptations combined achieve unbiased estimates in a

fraction of the time required to compute the full multivariate model.

Two-stage models, in which the longitudinal submodel is fitted first, and the results are plugged

into the event submodel, have been shown to give biased results (Faucett and Thomas 1996;

Tsiatis and Davidian 2004; Ye, Lin, and Taylor 2008; Rizopoulos 2012). This may be because

47



this procedure uses information from the future (Anderson et al. 1983). Immortal-time bias

(Ho et al. 2013; Yadav and Lewis 2021) can be introduced in the likelihood computation when

the follow-up time for certain subjects is incorrectly computed, leading to biased estimates.

Using information from the future retrospectively to specify the time to event notoriously

gives rise to immortal-time bias (Suissa 2007; Lévesque et al. 2010).

In the survival analysis setting, landmark analysis refers to the practice of designating a time

point occurring during the follow-up period, known as the landmark time and analysing only

those subjects who have survived until such landmark time (Anderson et al. 1983). Dafni

(2011) has extensively described the landmark time approach. The inclusion of a landmark

point ensures that the model uses only observations up to the landmark time to predict events

after that time.

2.4.2 Options for coupling longitudinal and survival processes

A variety of different aspects of the longitudinal process may be related to the risk of event.

Some attention has been given to the selection of the most appropriate functional form to

link the two processes. Among the most prominent association structures are

• the current value of the biomarker variable,

• the current slope of the longitudinal profile, and

• the area under such profile.

The current value refers to models inserting the current state of the longitudinal variable into

the time to event submodel and is used when the current overall value of the longitudinal

trajectory is believed to affect the risk of event. The current slope which is the first derivative

of the population trajectory, could also be inserted into the time to event submodel in

conjunction with the current value or alone. It could also be the case that both the true

underlying value and the area under the curve may affect time to event. This is usually used
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to model the effect of the rate of change of the longitudinal variable on the risk of event.

Moreover, assuming a past value of the biomarker to be related to the survival at time t may

be biologically sensible as well. Thus the link structure can be extended with a lag effect

(Andrinopoulou and Rizopoulos 2016).

For each biomarker that has been used, we have explicitly assumed that the underlying

statuses are related to the biomarkers’ current (actual) value, to work with the simplest

association structure and the one most typically met in the relevant literature. However,

this particular functional form may not be adequate in describing the association structure

between the outcomes in all settings. To this end, alternative association structures have

been proposed (Lin, Taylor, and Ye 2008; Brown, Ibrahim, and DeGruttola 2005; Dimitris

Rizopoulos et al. 2014; Campbell et al. 2021). It could be the case that there is a lag effect

or a cumulative effect of the biomarker on survival. For example, it could be that the total

HbA1c of your lifetime predicts your risk of developing a diabetes complication as opposed to

what was observed in the last few weeks.

The (log) hazard of the event at time t can be associated with the value of the linear predictor

of the longitudinal model evaluated at time t in various ways. The most common association

structure met in the joint modelling literature to date is the linear association of the log

hazard of an event at time t and the linear predictor of the longitudinal submodel at the

same time, and this is the option employed in my analysis.

The dependence between the longitudinal and event submodels is captured through the

association structure, which can be specified in a number of ways. The simplest parametric

association structure between the measurement and event processes is

fmq(β, bim, αmq; t) = αmqηim(t)

and this is often referred to as a current value association structure since it assumes that
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the log hazard of the event at time t is linearly associated with the value of the longitudinal

submodel’s linear predictor also evaluated at time t. In a situation where the longitudinal

submodel is based on an identity link function and normal error distribution (LMM), the

current value association structure can be viewed as a method for including the true underlying

value of the biomarker as a time-varying covariate in the event submodel.

However, other association structures are also possible. For example, we could assume the log

hazard of the event is linearly associated with the current slope (i.e., the rate of change) of

the longitudinal submodel’s linear predictor η, that is

fmq(β, bim, αmq; t) = αmq
dηim(t)

dt
.

The functional form depends on parameters a for each biomarker included in the model

and the number of sequential data each biomarker has. There is, in fact, a whole range of

possible association structures, many of which have been discussed in the literature (Crowther,

Lambert, and Abrams 2013; Hickey et al. 2016; Campbell et al. 2021) and in section 4.2.1.2.

As of the present moment, literature suggests that the most intricate aspect might be the

individual-level variance, wherein each patient is allowed a distinct residual error term in the

linear mixed model.

2.5 Bayesian methods for statistical computation

Classical model-fitting methods maximise the likelihood of the parameters given the data.

The issue arises when the so-called nuisance variables have a marginal likelihood that is not

trivial to be integrated over the parametric space, also known as individual-level parameters

(Berger, Liseo, and Wolpert 1999). In standard Poisson regression models, there are no

nuisance variables. Note that treating the deaths as Poisson conditional on exposure time

leads to exactly the same estimates (and standard errors) as treating the exposure times as
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censored observations from an exponential distribution. This result will be exploited below to

link survival models to generalised linear models with Poisson error structure (“Lecture Notes

on Generalized Linear Models,” n.d.). In generalised linear mixed models, it is straightforward

to maximise the likelihood of the model parameters because the nuisance variables (random

effects) can be integrated out analytically. However, classical model-fitting methods fail

when there are many nuisance variables, and there is no analytical solution. Therefore,

Bayesian computational methods facilitate inference in complex models that might have been

challenging to analyse using traditional methods. With a model specified in a Bayesian form,

with a prior distribution, representing preexisting knowledge, and the likelihood of the data, it

is possible to compute the posterior distribution of all the parameters, including the nuisance

variables, by Markov chain Monte Carlo algorithms.

2.5.1 Sampling from posterior distribution

MCMC algorithms are a class of methods used for sampling from complex probability

distributions. A succinct survey of Markov chain results has been made by Roberts and

Rosenthal (2004). Each algorithm has its own strengths, limitations, and applicability to

different types of problems. The choice of which MCMC algorithm to use depends on the

specific scenario, the structure of the target distribution, and computational considerations.

The Gibbs sampler has been the most widely used MCMC algorithm in Bayesian statistics until

2015. The key idea behind Gibbs sampling is that each variable is sampled conditionally on

the current values of the other variables. Thus, the joint distribution is effectively constructed

by iteratively updating each variable; one variable at a time. Gibbs sampling has also been

used to estimate increasingly complex joint models as per Goudie and Mukherjee (2016). For

example, those with more than one longitudinal biomarkers (Rizopoulos and Ghosh 2011),

two-part longitudinal submodels (Hatfield, Boye, and Carlin 2011), or complex association

structures (Mauff et al. 2017).

General-purpose computer programs for Gibbs sampling include BUGS (Lunn et al. 2000)
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and JAGS (Depaoli, Clifton, and Cobb 2016). Specific programs for joint modelling that

have used Gibbs sampling include JM (Rizopoulos 2010) package implemented in R, and the

PROC NLMIXED (Wolfinger 1999) library in SAS. The first implements frequentist joint

models that feed the fixed and random effects of the longitudinal submodel into the time to

event submodel. The latter allows the fitting of a range of non-linear mixed models. Moreover,

the package JMBayes (D Rizopoulos 2014) has attracted growing attention for fitting joint

models under a Bayesian framework, with a focus on correcting for non-random dropout. A

more comprehensive review of software implementations and computational approaches has

been done by Furgal, Sen, and Taylor (2019).

Although there has been an undeniable surge in computational statistics that improve existing

modelling methods, there has also been a steep increase in the complexity of biomedical

datasets to be analysed. Stan is an innovative, broad purpose probabilistic programming

language, with which a user can input a model to receive the corresponding probability

distribution. I have employed the Bayesian software package Stan (Carpenter et al. 2017) via

rstanarm which has introduced a variant of the Hamiltonian Monte Carlo (HMC) (Hoffman,

Gelman, and others 2014; Gelman, Lee, and Guo 2015) to estimate posterior distributions.

The Hamiltonian Monte Carlo (HMC) algorithm is typically used to sample the posterior

distribution given the data and a model. A salient advantage of HMC is that it updates

all parameters simultaneously, whereas algorithms implemented in BUGS (1996) and JAGS

(2007) can sample only one parameter at a time. That has been a major bottleneck in the

computation of joint models. HMC, albeit being a Markov chain Monte Carlo (MCMC)

algorithm, avoids the random walk behaviour and sensitivity to correlated parameters that

hound many MCMC programs, by taking a series of steps informed by first-order gradient

information.

More formally, sampling aims to draw from a density p(θ) for parameters θ. This is typically

a Bayesian posterior p(θ|y) given data y, particularly a Bayesian posterior coded as a Stan
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program. The Hamiltonian Monte Carlo algorithm starts at a specified initial set of parameters

θ. In Stan, this value is either user-specified or generated randomly. Then, for a given number

of iterations, a new momentum vector is sampled, and the current value of the parameter θ

is updated using the leapfrog integrator with discretisation time ϵ and number of steps L,

according to the Hamiltonian dynamics. Then a Metropolis acceptance step is applied, and a

decision is made on whether to update to the new state (θ∗, ρ∗) or keep the existing state.

Therefore, HMC focuses only on explicit regions of the parameter space, using its adaptive

variant, the No-U-Turn Sampler (NUTS). Efficient NUTS features allow the algorithm to

converge to the target distributions much more quickly than random walk Metropolis or Gibbs

sampling. The method is built upon a rich theoretical foundation that makes it uniquely

suited to high-dimensional settings and non-trivial probability distributions (Betancourt 2017)

of latent longitudinal and time to event processes.

NUTS is a recursive algorithm which adapts the path lengths in Hamiltonian Monte Carlo. It

stops when it hits a U-turn in the trajectory and when there is divergence. In practice, there

is an upper limit of how many trees it doubles (the default is ten usually). When it reaches

the maximum tree depth and still has not got a U-turn, the user gets a warning. Usually, this

is an indication that NUTS is taking too small steps, resulting in poor exploration of space.

In short, the main benefit of Stan is that it uses gradient information to find its way around

the posterior. It uses the derivatives of the density function being sampled to generate efficient

transitions spanning the posterior, as per Betancourt and Girolami (2013); Neal (2012). An

approximate Hamiltonian dynamics simulation based on numerical integration is employed,

which is then corrected by performing a Metropolis acceptance step.

Therefore, the objective is to eliminate the nuisance variables. The problem of computing the

posterior distribution of the data given the parameters is dealt with by using Bayesian tech-

niques that specify a posterior distribution by integrating the random effects out. Therefore,

the approximation of the posterior happens by sampling from a distribution that resembles
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the distribution of the parameters.

The frequentist approximation is typically equal to maximising the likelihood of the fixed-

effects parameters. An alternative, more efficient method is to employ a Bayesian approach

to sample the posterior distribution of the regression coefficients.

2.5.2 Descendants of Gibbs sampling

Markov Chain Monte Carlo algorithms are a broad method for sampling from a probability

distribution, and can be used to obtain draws from the joint posterior distribution of model

parameters given the likelihood and the prior.

The software most widely used for Bayesian analysis before Stan (which proposed alternatives

to Gibbs sampling) were BUGS (Lunn et al. 2000) and JAGS (Depaoli, Clifton, and Cobb

2016) and this contributed to the widespread preference for Gibbs sampling, which was the

main estimation algorithm in those software packages.

The issue with Gibbs sampling is that because only one parameter can be updated at a time,

mixing of the sampler can be very slow if there is high posterior correlation between the

parameters, which usually is true. Since 2015 these earlier methods have been supplanted by

a more efficient class of algorithms for sampling a posterior distribution that can update all

parameters simultaneously. These algorithms are implemented in the program Stan (Carpenter

et al. 2017), making it a very powerful tool. The basic principle is to compute the gradient

of the log posterior distribution with respect to all parameters, and to use the gradient to

propose an update of the parameters. Physicists developed the basic algorithm for using

gradients to propose updates as Hamiltonian Monte Carlo (HMC) (Duane et al. 1987).

Further details of the algorithm are beyond the scope of this thesis. The useful takeaway of

such experiment is that when the sampling algorithm used by Stan does not work, this is

usually obvious and easily detected by built-in diagnostics. This is another advantage over

earlier methods.
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Moreover, Stan can also implement an algorithm for drawing approximate samples from the

posterior, called Automatic Differentiation Variational Inference (ADVI) (Kucukelbir et al.

2015). Variational inference replaces the true posterior distribution with an approximate

distribution, with two options:

• Variational inference with independent normal distributions (mean-field approximation)

• Variation inference with a multivariate normal distribution (full rank approximation)

However, these algorithms do not always work reliably.

2.5.3 Diagnostics

The ability to obtain valid samples from the posterior relies on two factors:

• that the algorithm converges from its starting point to the target posterior distribution,

• that the correlation between subsequent draws in the MCMC chain is negligible, so that

the complete set of MCMC draws can be considered a random sample from the target

posterior.

The amount by which autocorrelation within the chains increases uncertainty in estimates can

be measured by a metric called effective sample size (ESS). Then, given independent samples,

the Central Limit theorem (CLT) premise bounds the uncertainty in estimates, based on

the number of samples N . Given dependent samples, the number of independent samples

is replaced with the effective sample size Neff , which is the number of independent samples

with the same estimation poIr as the N autocorrelated samples. In practice, the probability

function in question cannot be tractably integrated, and thus the autocorrelation cannot be

calculated, nor the effective sample size. Instead, these quantities must be estimated from the

samples themselves.

To sum up, this section has discussed one practical issue concerning advanced statistical

modelling: computing time, i.e., the feasibility of actually applying a particular piece of
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software to a large dataset, which in turn incites using scalable Bayesian methods.

2.6 Methods of evaluation of predictive performance:

a short recap

This section discusses how predictive performance is typically evaluated in survival analysis.

This is typically related to the spread in predictions: how well we can separate low-risk

from high-risk subjects. The most common quantitative metric used for model evaluation in

survival analysis is the concordance (C)-statistic, the so-called Harell’s C-statistic. In time

to event analysis, C-statistics are used to quantify the ability of the yielded risk score in

discriminating among subjects with different event times. The C-statistic provides a universal

assessment of a fitted survival model for the continuous event time, i.e., providing a probability

of correctly classifying a case-control pair as such, rather than assessing the prediction of

t-year survival for a fixed time (Uno et al. 2011).

The C-statistic and the area under the ROC curve (AUROC), or AUC in short, are identical,

for binary outcomes. This is a measure of discriminative ability, where the curve represents

the proportion of the correct predictions (true positive rate) over the false positive rate for

consecutive cutoffs for the predicted probability of the outcome of interest. If the prediction

is higher than a cutoff, the subject is classified as positive, otherwise, as negative. The area

under the ROC curve can be interpreted as the probability that an individual who experiences

the outcome has been given correctly a higher probability of the outcome, than a randomly

chosen subject without the outcome (Hanley and McNeil 1982). As a consequence, the AUC

is upper bound by 1.

In this regard, other metrics have been proposed, including the Lorenz curve (Lorenz 1905),

which shows the true positive subjects versus total classified as positive, the Gini index, usually

given as a summary statistic of the Lorenz curve and shows the total number of outcomes
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missed by the cumulative proportion of negative classifications, the discrimination slope,

which is equal to the mean difference between outcomes predicted, and Harrell’s C-statistic

(the most widely used C-statistic), which considers pairs of subjects at risk at any time during

follow-up (Harrell Jr et al. 1984). I have primarily focused on measures that are in wide use

in medical research nowadays.

Moreover, R2 is the percentage of variance explained by the model and it is commonly used to

quantify the predictability of the outcome. That is, R2 is the fraction by which the variance

of the errors is less than the variance of the dependent variable. In a simple regression model,

it is the square of the correlation between the dependent and independent variables. In a

multiple regression model, R2 is determined by pairwise correlations among all the variables

(including correlations of the independent variables with each other, as well as with the

dependent variable). However, prognostic models usually only have R2 around 20–30%. This

indicates that substantial uncertainty remains at the individual level: we can only provide

probabilities, and we are far away from providing certainty on the individual outcome (Altman

and Royston 2000; Vachon et al. 2007).

As an example, in a clinical trial study for a new drug development, it might be observed that

there are highly variable effects on individual patients, in comparison to standard treatments,

and yet have statistically significant benefits in an experimental study of thousands of subjects.

That is to say, the amount of variance explained when predicting individual outcomes could

be small, and yet the estimates of the coefficients that measure the drug’s effects could be

significantly different from zero (as measured by low p-values) in a large sample.

Furthermore, it is worth mentioning that the C-statistic is considered independent of the

event rate, i.e., the incidence of the outcome, in contrast to R2 or the Brier score, for example,

which makes it quite insensitive to increments in predictive performance when including

accurate predictors, such as biomarkers.

The net reclassification improvement (NRI) has been proposed for assessing the incremental
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value of adding a biomarker to competing risk prediction models (Pencina, D’Agostino

Sr, and Steyerberg 2011; Uno et al. 2013). For time to event and binary data, the NRI

for events is the difference in sensitivity (true positive rate), and the NRI for non-events

is the change in specificity (true negative rate). Note that an increase in AUC does not

necessarily correspond to an increase in both sensitivity and specificity (Van Calster et al.

2014). However, the C-statistic, or AUC, is the most commonly reported measure, as it is

insensitive to miscalibration.

2.6.1 Calibration: a key property of predictive modelling

By the term calibration in statistical analysis we mean the degree of the agreement between

observed and predicted values. Only when a model is calibrated well enough, we can interpret

its outputs as informative, standalone probabilities. Such a task is critical in the sense that

we want to thoroughly understand our model’s predictions in order to improve its precision,

so that is sensitive to correctly predicting true events.

Graphical inspection is a common way to assess calibration. Reliability curves can help

us understand whether there is e.g., a general trend in predictions being too extreme, an

indication of overfitting, etc. Furthermore, we can plot results for subjects grouped by similar

probabilities, creating bins from 0 to 1. This allows us to assess calibration by comparing the

mean observed proportions per group to the mean predicted outcome. For example, we can

plot the observed outcome in groups defined by quintile or by decile of predictions, as explained

later on in 8.2.1. Then, the plot results in a graphical illustration of the Hosmer-Lemeshow

goodness-of-fit test. Note that the choice of groups is important for the visual impression of

calibration: if small groups are plotted, the variability is usually more considerable.
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2.6.2 Evaluating calibration of a Poisson regression model on test

data

As described earlier, in survival analysis, it is common to model the occurrence of event as

a binary variable over many person-time intervals. The event cannot occur in interval i, if

it occurred in any interval prior to i, as it would have been censored at that earlier time.

Thus, the probability of an event occurring in interval i is not independent of whether an

event occurred in interval i − 1. In this context, calibration is the statistical consistency

between a dataset’s predicted number of events and the observed number of events. As

theory guarantees, fitting a Poisson regression, or any other model with the likelihood in

the exponential family guarantees that the observed and expected numbers of events equate

exactly.

Therefore, the expected number of events must agree with the observed number of events

when fitting a Poisson regression model to estimate the event rate on the training set, i.e.,

subjects with known outcomes. This observation showcases the perfect calibration we expect

the trained model to have and can be established in two ways: 1) by taking the sum of the

fitted values of the generated Poisson model, 2) by adding the output values of the build-in

predict() function in R. Both approaches should return the number of observed events in

the training data for the time period the model is fitted on.

The function predict() with type = response and input a generalised linear model with

likelihood from a Poisson distribution returns the hazard λ scaled by the interval lengths t

(exposure time), as shown by the following relationship

exp(log(λ) + log(t)) = exp(log(λ)) × exp(log(t)) = λ × t.

For a more systematic review of performance measures, I refer the reader to the work done by

Habbema and Hilden (1981). In summary, many performance measures are related to each
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other, and there is a debate about the appropriate metrics for each analysis, with a thorny

problem being the concept of calibration, which should receive more attention, especially

when externally validating prediction models (Collins et al. 2014).
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Chapter 3

Data sources used in this thesis

The following chapter addresses a number of questions, such as what is the source of the

biomarker and outcome data, who is the population considered and how did they get to this

database.

The main source of diabetes data comes from NHS Scotland’s national patient record for

diabetes care, called Scottish Care Information - Diabetes Collaboration platform (SCI-

Diabetes). All newly diagnosed patients given a diabetes code in primary care, including

services provided by general practitioners (GPs), clinics and hospitals have a record created

in SCI-Diabetes. Therefore, people are incepted into the database when they first receive a

diagnosis of diabetes by any point of contact with the health care system.

Furthermore, all patients are assigned a Community Health Index (CHI) number, which is

used as the key identifier on all healthcare record systems across Scotland. This allows linkage

of the primary SCI-Diabetes databases to other key sources of data for research purposes.

It is estimated that the coverage of the diabetes population residing in Scotland by SCI-

Diabetes is more than 99% nowadays. Such large-scale datasets provide great advantages to

researchers.
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This linkage has given rise to the Diabetes Research Platform, a population-based cohort of

people with diabetes in Scotland, contains data on 528 721 individuals either alive or not

observable anymore, primarily between January 1984 and April 2020. The diabetes electronic

healthcare record in Scotland was used in some parts of the country since the mid-1990s but

did not reach >95% coverage of the population of Scotland until 2006. For my analyses, I

have used a dataset which includes 472 648 individuals with T1D entered any time between

2006 and 2020, from whom 32317 have been assigned as having T1D between January 2008

and January 2018, and in whom there were approximately 4 million person-years of follow-up

(McGurnaghan et al. 2022).

For the same cohort of individuals, I have used linked datasets including the Scottish Morbidity

Records (Harley and Jones 1996) that cover inpatient (SMR01) and outpatient (SMR00)

attendances, and deaths data from National Records of Scotland (NRS) (Team 2013).

I have further used the Scottish Renal Registry (Simpson 1993) as outcome data source that

includes individuals with established renal failure who receive renal replacement therapy.

Participants’ observation period stops in case they leave the country or die.

Examples of recent studies that have utilised the Diabetes Research Platform and electronic

health care records provided by SCI-Diabetes include McKeigue et al. (2022); Höhn et al.

(2022); Captieux et al. (2021); Prigge et al. (2022), McGurnaghan et al. (2021), O’Reilly et

al. (2021). The objectives observed in these studies have varied, ranging from the relation of

COVID-19 to T1D, to widening socioeconomic disparities in ketoacidosis incidents.

Furthermore, McGurnaghan et al. (2022) provides a detailed description of the cohort

according to the type of diabetes, including the median (IQR) frequency of each measure

from 2006 to 2020 and the percentage of missingness.

More specific cohort characteristics are given in the respective chapters that describe each

analysis.
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The two outcomes studied were incident cardiovascular disease (CVD) and time to end-stage

renal disease (ESRD). The longitudinal biomarkers included in the models were glycosylated

haemoglobin (HbA1c), which reflects the average blood glucose over the past three months,

and estimated glomerular filtration rate (eGFR), which is an estimated index of the overall

kidney function. For the national dataset, all biochemistry results were from SCI-Diabetes;

eGFR was derived from creatinine results from SCI-Diabetes, and it was then calculated using

the CKD-Epi equation, given by the formula 6.1.

There is a slight excess of males in the cohort (55%). The average age during the follow-up

period is 47 years for T1D. The average duration of diabetes during the follow-up period is

18 years. On average, people have at least one reading per year for each year of follow-up.

Thus, the database is a very rich source of longitudinal trajectories of these characteristics in

diabetes.

3.1 Sources of event and biomarker data

3.1.1 CVD analysis

Entry criteria, exclusion criteria: CVD events are captured in the database through hospital

admissions, with a discharge code mentioning CVD. The coding system used is the Inter-

national Classification of Disease version 10 codes (ICD-10). In particular, CVD outcome

data were acquired through linkage to the Scottish Morbidity Records, the National Health

Service admissions dataset and the death registrations with mention of CVD as a cause of

death, held by the General Register Office for Scotland.

CVD was defined as any hospital admission or death due to the following clinical concepts:

myocardial infarction, stroke, unstable angina, transient ischaemic attack or peripheral vascu-

lar disease, any coronary, carotid or peripheral artery revascularisations, major amputation

procedures, or acute coronary heart disease. See the Appendix for the International Classifi-
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cation of Disease version 10 codes (ICD-10) and Office of Population Censuses and Surveys

Classification of Interventions and Procedures (OPCS-4) codes within this definition. It is

important to note that we anticipate a heterogeneous association between biomarkers used

for prediction and the endpoints defining CVD. While some biomarkers may show consistent

associations across different CVD endpoints, others may exhibit differential associations or

contradictory patterns. This could be due to the complexity of CVD, which encompasses a

range of conditions and biological pathways.

Overall, 27527 individuals with T1D were included in the final cohort for analysis following

the exclusion of 1952 individuals with a previous history of CVD. There were 2790 CVD

events in the years 2008-2018.

For the CVD analysis, I have used all participants’ test results for HbA1c levels (a test

regularly done once or twice a year to see how well patients controlled their blood sugar over

the previous three months). Baseline measurements of HbA1c were taken nearest to and prior

to the start of the study and at most 24 months before individuals’ entry. After entry, HbA1c

was updated asynchronously for each subject according to their individualised profiles. All

other covariates, including sex, diabetes duration and current age, were also derived from

SCI-Diabetes.

3.1.2 ESRD analysis

ESRD is a condition characterised by a significant and permanent loss of kidney function.

ESRD is typically diagnosed when an individual’s glomerular filtration rate (GFR), a measure

of kidney function, falls below 15 mL/min/1.73 m2. At this stage, the kidney’s ability to

maintain proper function is severely compromised.

Renal replacement therapy (RRT) refers to the medical interventions used to replace the

lost kidney function in individuals with ESRD. It is a life-sustaining treatment that aims to

manage further complications and maintain the overall status of patients with ESRD.
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In the context of ESRD, RRT has been used as an indicator (or proxy) for the occurrence of

the outcome of interest. RRT serves as a marker for the presence of ESRD and is used to

define the population of interest in many studies and clinical research related to this condition.

In other words, when an individual with ESRD receives RRT, it is seen as an indication that

they have reached the stage where their kidney function has significantly deteriorated and

requires ongoing treatment to sustain life. By using RRT as an indicator, researchers and

clinicians can identify and study individuals who have progressed to the advanced stage of

kidney disease requiring intervention.

For the definition of RRT, I have used a multi-step process which looks for one of:

• hospital records of dialysis-related diagnosis/operation, if the person is on drugs, they

would usually be on dialysis

• hospital renal transplant diagnosis/operation records

• records of the Scottish Renal Registry

and then takes the earliest of these records as the start date of RRT.

For the ESRD/RRT analysis (terms are used interchangeably as of this point), I have defined

the composite outcome comprising (a) initiation of renal replacement therapy, (b) deaths

with a mention of renal failure, after chronic renal disease, in the death certificate. In total,

there were 799 RRT events, of which 473 were fatal: those 473 individuals are censored after

initiation of RRT. No one died before starting RRT among those belonging to the dataset.

The incidence rate of the composite definition of event for renal failure is 799 events over

225598.3 person-years, 4 for every 1000 people. Additionally, I censor the population after

the first event in both analyses.

The progression to renal failure was based on estimated glomerular filtration rate (eGFR)

measurements of people with T1D, derived from SCI-Diabetes. There is a high capture of the

eGFR rate in the database, with at least one measure each year in those with T1D.

65



It is crucial to implement specific serum creatinine cleaning routines before eGFR is calculated

using equations, such as the Modification of Diet in Renal Disease (MDRD) or Chronic Kidney

Disease Epidemiology Collaboration (CKD-EPI) equations. This step is necessary to ensure

accurate and reliable eGFR calculations.

Creatinine is a waste product produced during normal wear and tear in the muscles and is

usually cleared by the kidneys. Further details on longitudinal eGFR measurements are given

in chapter 5.

In the next chapter, I detail the application of joint modelling using rstanarm to predict CVD

in the T1D cohort. First, I provide some details on how the data were set up for modelling

and on the number of events available over the person-years of follow-up. Then, I provide

the theoretical background, particularly how rstanarm is implemented and the underlying

mathematical theory of the models built. I then describe the results of applying the joint

models for CVD prediction.
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Chapter 4

Application and results of using

rstanarm to predict CVD risk in T1D

4.1 Data characteristics pertinent to the CVD risk

model

The national cohort is a 2019 extract from the Scottish Care Information - Diabetes (SCI-

Diabetes) dataset (Livingstone et al. 2012). The platform has been described in chapter 3

and is based on electronic healthcare records of people with diabetes in Scotland.

Briefly, since 2004, SCI-Diabetes has collated national demographic and clinical data for over

99% of people with an assigned diagnosis of diabetes.

Assignment of diabetes and person-time in the database: Every time an individual has a

clinical encounter in a diabetes clinic, this is captured in SCI Diabetes, as well as every time

they go to the hospital, they are captured in SMR01. If this person dies, it is captured by the

Death registry data, and they stop being part of the platform. Additionally, a person stops

being observable if they leave the country.
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The study cohort comprises adults 18 years and above, who were diagnosed with type 1

diabetes before their 50th year. Those with a previous CVD event were omitted. The study

started on 1 January 2008 and ended on 1 January 2018.

The baseline characteristics of the T1D population with CVD outcome data are given in table

4.1.
Patient cohort

Variable Population In study CVD No CVD

Sex

Male 16615 14821 1316 13505

Female 12981 11662 958 10704

Age (years)

0-20 18.35 (0.59) 18.25 (0.53) 18.23 (0.37) 18.25 (0.53)

20-50 35.06 (8.53) 38.11 (15.75) 40.35 (7.17) 34.72 (8.52)

50+ 59.67 (7.86) 60.59 (8.47) 62.95 (9.09) 59.97 (8.19)

Diabetes duration (years)

1-5 1.57 (1.75) 1.23 (1.67) 1.56 (1.71) 1.22 (1.66)

6+ 19.4 (10.42) 19.26 (10.67) 25.13 (12.42) 18.56 (10.22)

Mean HbA1c (mmol/mol) Unknown 71.44 (18.46) 77.74 (20.21) 70.86 (18.16)

Mean eGFR (mL/min/1.73 m2) Unknown 95.64 (23.3) 78.87 (24.48) 97.22 (22.56)

Follow-up (years) 9.02 (2.05) 8.07 (2.91) 5.34 (2.73) 8.32 (2.8)

Table 4.1: Demographics of individuals with CVD outcome data. Those with history of CVD
are not included in the study.
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A cohort of 26483 subjects with T1D and without prior CVD was defined. Each individual’s

entry date was defined as the latest of the study start date, date of diagnosis, date of turning

18 years old or date of first coming under observation with T1D in the registry. The end date

was defined as the earliest of the study ending date, date of death, date of incident CVD or

ceasing to be under observation in the diabetes registry.

There were 2274 CVD events during 199,552 person-years of follow-up. CVD outcome data

were established from hospital admissions and death registrations. In particular, CVD outcome

data were acquired through linkage to the Scottish Morbidity Records, the National Health

Service admissions dataset and the death registrations held by the General Register Office for

Scotland. CVD was defined as any hospital admission or death due to myocardial infarction,

stroke, unstable angina, transient ischaemic attack or peripheral vascular disease; or any

coronary, carotid or peripheral artery revascularisations; or major amputation procedures; or

any death due to these conditions; or acute coronary heart disease.

The factors used as predictors for CVD risk include sex, age and diabetes duration at

baseline the latter taken as time from T1D diagnosis, routine measurements of HbA1c and

eGFR, along with the time of measurement taken with respect to time of entry to the study.

Based on reviewing the relevant literature, the choice of covariates for the models of interest

aligns with previous modelling endeavours aiming to predict time to CVD. Moreover, this

selection emphasises the need to maintain computational efficiency in model fitting. Instead of

incorporating all the available information that exists in the platform, the focus is on including

a subset of covariates that strike a balance between predictive accuracy and computational

burden.
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4.2 Joint modelling with a new Bayesian program:

stan_jm()

At the time of beginning this thesis, a state-of-the-art implementation of the standard

approach to joint modelling (based on integrating over biomarker trajectories) had been

released as the R function stan_jm(), bundled with the R package rstanarm, which provides

an implementation in Stan of algorithms for fitting mixed-effects regression models (Brilleman

2022). The stan_jm() function can be used to fit a joint model (also known as a shared

parameter model) for longitudinal and time to event data under a Bayesian framework. The

underlying estimation is carried out using the Bayesian C++ package Stan. My first step

was to investigate whether this program could overcome the barrier of fitting joint models for

time to CVD, in terms of inference reliability, and computational power.

The rstanarm package provides users with the capability to fit models using standard R

syntax, eliminating the need for manually coding directly in Stan. Its functionality allows for

modelling multiple longitudinal outcomes of multiple biomarkers, although being bound to

observations measured at the same time points (at individual level), as explained later in this

chapter.

4.2.1 Shared-parameter joint model formulation

The longitudinal submodel is a linear mixed-effects model (LMM) aiming to describe the

shapes of subject-specific longitudinal trajectories. With continuous biomarker data, I have

fitted univariate and multivariate LMMs to model synchronous measurements of HbA1c and

eGFR and link these longitudinal profiles to the underlying risk of developing CVD in a large

T1D population residing in Scotland.

Typically, a linear mixed-effects model consists of two components: an overall slope that

represents the slope of the average individual, and individual-specific random deviations from
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the overall slope. LMMs generally have random intercepts, random slopes, or both. The

overall slope refers to the average change in the outcome variable associated with a unit change

in the predictor variables for the population as a whole, accounting for individual variability,

i.e., it takes into account both the fixed effects and the random effects (individual-specific

effects) in the model. The random effects are typically assumed to follow a multivariate

Gaussian distribution. This assumption allows for capturing the individual-specific variations

around the fixed effects. It generally allows for flexibility in specifying the correlation structure

among the random effects.

The survival submodel utilises the time to event data, typically using a parametric model. Joint

estimation of these submodels is conditional on the assumption that they are correlated via

individual-specific parameters, i.e., individual-level random effects (Brilleman et al. 2018). The

joint model combines the longitudinal submodel and the survival submodel by incorporating

the random effects from the longitudinal submodel into the survival submodel.

The LMM specifies a correlation structure among observations belonging to a specific indi-

vidual, as opposed to observations from others, because of the inclusion of both fixed and

subject-specific (random) effects. Since the longitudinal submodel explicitly expresses the

co-dependency among covariates, it can better capture the trajectory of each predictor by

considering not only past measurements of that predictor itself but also past measurements

of correlated risk factors, and these can be at different times. From a high-level perspective,

the joint model allows for modelling the correlation among multiple longitudinal processes,

such as multiple repeated measurements or multiple longitudinal biomarkers by specifying

a correlation structure that accounts for the dependencies between these processes. This

correlation structure can be modelled through the covariance matrix of the random effects.

The longitudinal component of a joint model gives one a rigorous way of modelling the entire

trajectory of a longitudinal biomarker-covariate through time. Time-updated measurements

of covariates can be included in conventional survival models, but this approach is ad-hoc, as
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one needs to specify how the time updates are dealt with.

A demonstration of the rstanarm joint model formulation follows, as it has been a central

component of my approach to joint modelling. Notation and descriptions are sourced from

the package documentation and the relevant vignette (Brilleman 2022).

4.2.1.1 Joint model components

Let xijm(t) = xim(tij) correspond to the observed value of the mth (m = 1, ..., M) biomarker

for individual i (i = 1, ..., N) at time point tij, j = 1, ..., nim. A (multivariate)1 generalised

linear mixed model is specified that assumes xijm(t) follows a distribution in the exponential

family with mean µijm(t).

The linear predictor is defined as

ηijm(t) = gm(µijm(t)) = uT
ijm(t)βm + zT

ijm(t)bim

where uT
ijm(t) and zT

ijm(t) are covariates, including age at baseline, sex, diabetes duration at

baseline, baseline HbA1c, time-updated HbA1c and eGFR, which likely include some function

of time with population (fixed) βm and individual-specific parameters bim, respectively, and

gm is a known link function.

The vector β = βm;m=1,...,M denotes the population-level parameters across the M longitudinal

submodels.

We further assume

1We specify a longitudinal submodel for each biomarker we want to model. The distribution and link
function may differ among the M longitudinal submodels. It is assumed that the dependence, i.e., the
correlation across the various longitudinal biomarkers is expressed through a shared multivariate normal
distribution for the individual-specific parameters.
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bi1

...

biM

 = bi ∼ N (0, Σ)

for the unknown unstructured variance-covariance matrix Σ.

Furthermore, let Ti = min(T ∗
i , Ci) be an event time, where T ∗

i denotes the true event time for

subject i and Ci denotes the censoring time. The event time may be unobserved.

Thus, the event indicator di = I(T ∗
i ≤ Ci) takes the value 1, if an event is observed and

0, if the subject is censored. The hazard of the CVD event is specified using a parametric

proportional hazards regression model of the form:

hi(t) = h0(t; ω)exp(wT
i (t)γ +

M∑
m=1

Qm∑
q=1

fmq(β, bi, αmq; t))

where hi(t) is the hazard of the event for subject i at time t, h0(t; ω) is the baseline hazard

at time t given parameters ω, wT
i (t) denotes the individual-specific covariates with a vector

of regression coefficients γ, i.e., log hazard ratios, fmq(.) are a set of known functions for

m = 1, ..., M and q = 1, ..., Qm
2, and the αmq are regression coefficients (log hazard ratios).

The correlation between the longitudinal and survival processes is captured via shared random

effects.

The survival probability of individual i still being event-free at time t

Si(t) = Prob(T ∗
i ≥ t) = exp(−Hi(t))

where Hi(t) =
∫ t

s=0 hi(s)ds is the cumulative hazard for individual i.

We assume the baseline hazard h0(t; ω) is modelled parametrically. In the stan_jm() modelling
2The association structure may differ among biomarkers.
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function, the baseline hazard might be specified as either: an approximation using B-splines

on the log hazard scale (the default); a Weibull distribution, or an approximation using

a piecewise constant function on the log hazard scale (sometimes referred to as piecewise

exponential).

Currently, limited post-estimation functionality is available for models estimated with a

piecewise constant baseline hazard, so this is the least preferable choice. Parametric baseline

hazard used for the event submodel: cubic b-splines approximation estimated for the log

baseline hazard (default option among Weibull distribution, piecewise constant baseline

hazard). Furthermore, by default, the degrees of freedom are set to six.

4.2.1.2 Association structure and joint likelihood

The longitudinal and event submodels are linked via a set of functions that may each

be conditional on the population-level parameters from the longitudinal submodel β, the

individual-specific parameters bi and the population-level parameters αmq for m = 1, ..., M

and q = 1, ..., Qm. The αmq are referred to as the association parameters since they quantify

the strength of the association between the longitudinal and event processes.

The stan_jm() modelling function allows for the following association structures:

• Current value (of the linear predictor or expected value)

fmq(β, bim, αmq; t) = αmqηim(t)

• Current slope (of the linear predictor or expected value)

fmq(β, bim, αmq; t) = αmq
dηim(t)

dt
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• Area under the curve (of the linear predictor or expected value)

fmq(β, bim, αmq; t) = αmq

∫ t

0
ηim(u)du

• Interactions between different biomarkers (for some m = m’ or m ̸= m’)

fmq(β, bim, αmq; t) = αmqηim(t)ηim′(t)

• Interactions between the biomarker (or its slope) and observed data (for some covariate

value ci(t))

fmq(β, bim, αmq; t) = αmqci(t)ηim(t)

• Lagged values for any of the above. That is, replacing t with t − u where u is some lag

time, such that the hazard of the event at time t is assumed to be associated with some

function of the longitudinal submodel parameters at time t − u.

More than one association structure can be specified; however, not all possible combinations

are allowed.

The joint likelihood of the shared-parameter model is evaluated by computing the area under

the curve of the estimated hazard rate through time. When the hazard rate is evaluated at a

set of time points chosen to give an approximation to the area under the curve is known as

quadrature estimation. Gauss-Kronrod quadrature with Q nodes is used to approximate the

necessary integrals and ultimately evaluate the cumulative hazard and the survival probability

(Bianconcini 2014). The accuracy of the numerical approximation can be controlled using the

number of quadrature nodes, specified through the qnodes argument in stan_jm(). Using a
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higher number of quadrature nodes will result in a more accurate approximation. However,

this estimation becomes very challenging from a computational point of view, due to the large

vector of random effects involved in the numerical integration of the density of the survival

outcome. When the linear predictor is time-fixed, there is a closed-form expression for both

the hazard rate and survival probability in almost all cases (the single exception is when

B-splines are used to model the log baseline hazard). When there is a closed-form expression

for both the hazard rate and survival probability, there is also a closed-form expression

for the (log) likelihood function. When the linear predictor is time-varying, there is not a

closed-form expression for the survival probability, and this, in turn, creates the requirement

for quadrature approximation. As the number of biomarkers increases, the number of points

required for quadrature scales exponentially, thus becomes computationally intractable.

4.3 Findings: computational tractability

The endeavour to establish a concrete pipeline of how to fit a shared-parameter joint model on

longitudinal and survival outcomes in the T1D population dataset using rstanarm (version

2.19.3) proved futile. Despite some successful fitting on a reduced-scale dataset that utilised

a single biomarker outcome3, leveraging large-scale data from such a rich database with this

implementation ultimately was to no avail.

The subsequent section encapsulates a substantial amount of trial and error, which, albeit

challenging, offered valuable insights and enriched my understanding of feature engineering

and what would comprise a streamlined analysis. These findings could serve as an exemplary

case of this type of modelling, that could guide future attempts in similar modelling attempts.

While it has been evident that extensive debugging and settings refinement were necessary,

it is important to acknowledge that the current framework represents the backbone of a

streamlined analysis, and holds the potential to provide valuable guidance for modelling and

3Intermediate results are shown in embedded notebooks in Chapter 4 and the Appendix.
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scaling up endeavours in the future.

I aimed to compare the fit and performance of the more sophisticated implementation of

the joint model to a simpler Poisson model for the CVD hazard, where the same biomarker

observation is used until the next one becomes available. A joint model, on the other hand,

explicitly specifies a longitudinal trajectory for the biomarker, to prudently specify the rate

of event.

To initiate the analysis, this joint model implementation requires the different longitudinal

biomarkers to be measured on the same date, which regrettably results in significant data

loss. Furthermore, this implementation is inevitably computational cumbersome due to the

quadrature calculations. Running times ranged from days to weeks, even for the simple param-

eterisations (current value) and for a reduced number of individuals as input. Parallelisation

of the code helped to reduce the running time. However, as these models are also memory

intensive, only a few parallel processes could be run at any one time using a powerful server

with 2Tb of memory.

To better understand how rstanarm functionality works, in particular the stan_jm() and

posterior_survfit() functions and to diagnose convergence and other sampling issues, I

analysed various subsets of the data (10%, 20%, 40%, 50%) to acquire a deeper understanding

of the procedure, and also limit running time and memory usage. On every subset, the ratio

of events was maintained to represent the entire population4.

The format of the data is one row per observation for each individual. Since biomarker data

are updated asynchronously, this translates into intervals of varying length for each individual.

Every new observation of an individual teaches the survival submodel that the subject is still

event-free at that time point. Furthermore, working with various subsets of the dataset, in

addition to the entire dataset has allowed me to assess what sample sizes would be sufficient

for specifying the model parameters.
4https://github.com/IoannaThoma/PhD/tree/main/code.
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Working with a smaller dataset on which model fitting would complete quickly, simplified

debugging and model diagnostics. I experimented with gradually increasing sample sizes;

however, running times of posterior sampling remained a stumbling block, as it did not

increase linearly with the number of individuals. The rstanarm methodology is designed to

calculate the random effects of both the training and testing datasets, in order to produce

the latent biomarker values at various time points needed for the specification of the survival

function of each subject. For example, 17.5 hours were needed for fitting a model on a subset

of 2633 subjects, 35.9 hours for 5265 subjects, and more than 68 hours were needed for 10532

subjects. Various edge cases needed special treatment, such as subjects who had limited data,

despite being followed up full-time.

Furthermore, the sampling of the posterior distribution has been very CPU and memory

intensive, taking up weeks to converge even when parallelised.

This heavily depends on model parameterisation and the number of longitudinal data. I

provide some more details regarding my computational experience in the following sections.

The modelling function stan_jm() (version 2.19.3) ran four randomly initialised Markov

chains, each for 2000 iterations (including a warm-up period of 1000 iterations that are

discarded), in its default settings. Several important checks (not mixing chains, trace plots,

etc.) are necessary to ensure that there are no problems with the MCMC procedure used to

get the samples.

An exemplar case of fitting a joint model with stan_jm() is presented below. The subsequent

embedded notebook pages showcase the process of fitting the model on a scaled-down dataset.

It demonstrates several model fitting procedures, allowing for a better understanding of the

methods and libraries employed.
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Fitted model outputs and diagnostics

Ioanna Thoma

2023-07-03

1 Methods and results

The models shown below use the same 10% of the data.

1.1 Continuous-time approach to joint modelling, using the rstanarm package

We use stan_jm() to fit a univariate joint model to the longitudinal biomarker HbA1c and time to CVD
event. A linear mixed model is specified for the biomarker with an individual-specific intercept and slope.
The event model includes age, sex, duration of diabetes, and a 3-year average HbA1c prior to entry as baseline
covariates. The log hazard of CVD at time t is modelled as dependent on the current value of the biomarker.

Table 1: Runtime in minutes of fitting a stan_jm() model with
2000 iterations (default option)

warmup sample total
chain:1 150.5 85.9 236.4
chain:2 155.5 85.7 241.2
chain:3 156.3 86.1 242.4
chain:4 121.6 89.7 211.3

kable(s.base10jm2000[grep("Event|Assoc", rownames(s.base10jm2000)),
c(1, 3, 9)],

digits = c(2, 2, 0), "simple",
caption = "Continuous-time joint model fitted with stan_jm()")

Table 2: Continuous-time joint model fitted with stan_jm()

mean sd n_eff
Event|(Intercept) -9.99 0.39 4634
Event|genderFemale -0.23 0.13 6956
Event|entry.age 0.06 0.01 4390
Event|diabetes.duration 0.03 0.01 4474
Event|entry.hba1c.med 0.02 0.00 5317
Event|b-splines-coef1 -1.84 0.42 7300
Event|b-splines-coef2 -0.78 0.46 6297
Event|b-splines-coef3 -1.42 0.43 5510
Event|b-splines-coef4 0.16 0.36 5648
Event|b-splines-coef5 -0.74 0.38 6109
Event|b-splines-coef6 0.13 0.33 6299

1
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mean sd n_eff
Assoc|Long1|etavalue 0.03 0.01 7239

1.2 Continuous-time approach to joint modelling, using the CmdStanR package

We use CmdStanR to see if we can obtain any speed up. The cmdstan_model() function creates a new
CmdStanModel object from a file containing the Stan program. Under the hood, CmdStan is called to translate
a Stan program to C++ and create a compiled executable.
newcmdstan.no.par.chain <- FALSE
if(newcmdstan.no.par.chain) {
load("~/jm.standata10.Rdata")

inits.jm <- get_inits(base10jm2000$stanfit) # list with one component per chain

## within-chain parallelisation disabled
stan_file <- file.path("/tmp/ioanna/mini-jm-stan-code-extracted.stan")

mod.cmdstan <- cmdstan_model(stan_file,
include_paths = "./rstanarm/src/stan_files",
force_recompile = TRUE,
cpp_options = list(CPPFLAGS = "-Wno-ignored-attributes"))

fit10.no.par.chain <- mod.cmdstan$sample(data = standata,
iter_sampling = 500, iter_warmup = 500,
adapt_delta = 0.9,
init = inits.jm,
chains = 4,
max_treedepth = 10L,
threads_per_chain = 1)

stanfit10.no.par.chain.cmdstan <- rstan::read_stan_csv(fit10.no.par.chain$output_files())
saveRDS(stanfit10.no.par.chain.cmdstan, file = "stanfit10.sin.cmdstan.rds")
}

## diagnostics on stanfit object
kable(get_elapsed_time(stanfit10.no.par.chain.cmdstan), "simple",

caption = "Runtime in seconds of CmdStanR sampler with 500 iterations
(1 thread/chain)")

Table 3: Runtime in seconds of CmdStanR sampler with 500 itera-
tions (1 thread/chain)

warmup sample
chain:1 144.798 174.923
chain:2 9324.200 17226.200
chain:3 139.170 162.015
chain:4 11509.800 2553.940

rstan::traceplot(stanfit10.no.par.chain.cmdstan, pars = "lp__")

2
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sampler_params <- get_sampler_params(stanfit10.no.par.chain.cmdstan,
inc_warmup = FALSE)

mean_energy_by_chain <- sapply(sampler_params, function(x) mean(x[, "energy__"]))
print(mean_energy_by_chain)

## [1] 8.289247e+123 1.626018e+05 1.622088e+22 1.625996e+05
print(summary(do.call(rbind, get_sampler_params(stanfit10.no.par.chain.cmdstan)),

digits = 2))

## accept_stat__ treedepth__ stepsize__ divergent__ n_leapfrog__
## Min. :0.67 Min. : 1.0 Min. :0.0000 Min. :0 Min. : 1
## 1st Qu.:0.97 1st Qu.: 2.0 1st Qu.:0.0000 1st Qu.:0 1st Qu.: 3
## Median :1.00 Median : 7.0 Median :0.0022 Median :0 Median : 127
## Mean :0.98 Mean : 5.2 Mean :0.0151 Mean :0 Mean : 291
## 3rd Qu.:1.00 3rd Qu.:10.0 3rd Qu.:0.0172 3rd Qu.:0 3rd Qu.:1023
## Max. :1.00 Max. :10.0 Max. :0.0561 Max. :0 Max. :1023
## energy__
## Min. : 1.6e+05
## 1st Qu.: 1.6e+05
## Median : 6.9e+20
## Mean :2.1e+123
## 3rd Qu.:2.6e+122
## Max. :4.5e+124
sum.stats <- summary(stanfit10.no.par.chain.cmdstan)$summary[, c(1, 3, 4, 8:10)]
summary(sum.stats[, 6]) # Rhat

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.999 1.715 2.917 5.492 4.836 8599.027 2

3
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keep.rows <- grep("ˆ[almy]", rownames(sum.stats))

kable(sum.stats[keep.rows, ], "simple",
digits = c(4, 4, 4, 4, 4, 4),
caption = "Continuous-time joint model fitted with CmdStanR without
using within-chain parallelisation")

Table 4: Continuous-time joint model fitted with CmdStanR without
using within-chain parallelisation

mean sd 2.5% 97.5% n_eff Rhat
yGamma1[1] 3.659040e+01 3.605140e+01 -2.85000e-01 73.1625 2.0021 163.5002
yAux1_unscaled[1] 1.615000e+00 2.219800e+00 1.05900e-01 5.4256 2.0020 8599.0272
a_z_beta[1] -5.687000e-01 8.224000e-01 -1.79580e+00 0.2431 2.0037 33.1223
a_beta[1] -8.430000e-02 1.219000e-01 -2.66200e-01 0.0360 2.0037 33.1223
yBeta1[1] 2.915100e+00 1.641600e+01 -1.86937e+01 27.5292 2.0032 40.4836
yBeta1[2] 2.096100e+00 2.349600e+00 -2.20200e-01 5.2137 2.0021 135.2098
yBeta1[3] -2.618200e+00 2.689800e+00 -6.38680e+00 -0.0129 2.0021 130.9517
yBeta1[4] 9.018200e+00 9.603100e+00 -3.95900e-01 21.5867 2.0022 164.6894
yAux1[1] 1.511758e+02 2.077917e+02 9.91190e+00 507.8670 2.0020 8598.7697
yAuxMaximum 1.511758e+02 2.077917e+02 9.91190e+00 507.8670 2.0020 8598.7697
mean_PPD[1] 3.632670e+01 3.598710e+01 -3.23510e+00 72.3948 2.0041 30.1686
yAlpha1[1] -3.831530e+01 1.312323e+02 -2.34604e+02 82.5193 2.0020 225.9296
lp__ -2.050368e+123 7.709868e+123 -3.88956e+124 -159833.9500 10.8984 1.3189

1.3 Using within-chain parallelisation feature of CmdStanR

newcmdstan.threads2 <- FALSE
if(newcmdstan.threads2) {
load("~/jm.standata10.Rdata")

inits.jm <- get_inits(base10jm2000$stanfit)
stan_file <- file.path("/tmp/ioanna/mini-jm-stan-code-extracted.stan")

mod_threads2 <- cmdstan_model(stan_file,
include_paths = "/tmp/ioanna/rstanarm/src/stan_files",
force_recompile = TRUE,
cpp_options = list(CPPFLAGS = "-Wno-ignored-attributes",

stan_threads = TRUE))
fit_threads2 <- mod_threads2$sample(data = standata,

iter_sampling = 500, iter_warmup = 500,
adapt_delta = 0.95,
init=inits.jm,
chains = 4,
max_treedepth = 10,
threads_per_chain = 2)

stanfit_threads2_cmdstan <- rstan::read_stan_csv(fit_threads2$output_files())
saveRDS(stanfit_threads2_cmdstan, file = "stanfit_threads2.cmdstan.rds")
}
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Table 5: Runtime in seconds of CmdStanR sampler with 500 iterations (2 threads/chain)

warmup sample
chain:1 5853.15 1375.81
chain:2 4730.41 2048.94
chain:3 5147.23 2028.51
chain:4 4320.60 2265.03

stanfit_threads2_cmdstan <- readRDS("stanfit_threads2.cmdstan.rds")

kable(get_elapsed_time(stanfit_threads2_cmdstan),
caption = "Runtime in seconds of CmdStanR sampler with 500 iterations (2 threads/chain)")

rstan::traceplot(stanfit_threads2_cmdstan, pars = "lp__")
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sampler_params_threads2 <- get_sampler_params(stanfit_threads2_cmdstan,
inc_warmup = FALSE)

mean_energy_by_chain_threads2 <- sapply(sampler_params_threads2,
function(x) mean(x[, "energy__"]))

print(mean_energy_by_chain_threads2)

## [1] 162618.4 162618.0 162601.0 162603.1
print(summary(do.call(rbind, get_sampler_params(stanfit_threads2_cmdstan)),

digits = 2))

## accept_stat__ treedepth__ stepsize__ divergent__ n_leapfrog__
## Min. :0.67 Min. :6.0 Min. :0.051 Min. :0 Min. : 63
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## 1st Qu.:0.92 1st Qu.:7.0 1st Qu.:0.052 1st Qu.:0 1st Qu.:127
## Median :0.97 Median :7.0 Median :0.054 Median :0 Median :127
## Mean :0.95 Mean :6.8 Mean :0.056 Mean :0 Mean :117
## 3rd Qu.:0.99 3rd Qu.:7.0 3rd Qu.:0.057 3rd Qu.:0 3rd Qu.:127
## Max. :1.00 Max. :7.0 Max. :0.064 Max. :0 Max. :255
## energy__
## Min. :162289
## 1st Qu.:162544
## Median :162610
## Mean :162610
## 3rd Qu.:162673
## Max. :162899
sum.stats.threads2 <- summary(stanfit_threads2_cmdstan)$summary[, c(1, 3, 4, 8:10)]
summary(sum.stats.threads2[, 6]) # Rhat

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.9980 0.9988 0.9991 0.9993 0.9997 1.0181 2
keep.rows <- grep("ˆ[almy]", rownames(sum.stats.threads2))

kable(sum.stats.threads2[keep.rows, ], "simple",
digits = c(4, 4, 4, 4, 4, 4),
caption = "Continuous-time joint model fitted with CmdStanR using
within-chain parallelisation (2 threads/chain)")

Table 6: Continuous-time joint model fitted with CmdStanR using
within-chain parallelisation (2 threads/chain)

mean sd 2.5% 97.5% n_eff Rhat
yGamma1[1] 72.6634 0.3086 72.0797 73.2626 354.4502 1.0139
yAux1_unscaled[1] 0.1066 0.0004 0.1058 0.1074 1683.3623 0.9995
a_z_beta[1] 0.1830 0.0363 0.1091 0.2507 3310.2875 0.9982
a_beta[1] 0.0271 0.0054 0.0162 0.0372 3310.2830 0.9982
yBeta1[1] 1.3824 0.6259 0.1486 2.5844 363.3005 1.0038
yBeta1[2] -0.1725 0.0282 -0.2262 -0.1163 278.0027 1.0027
yBeta1[3] -0.0655 0.0333 -0.1292 0.0009 266.5422 1.0074
yBeta1[4] -0.3053 0.0558 -0.4170 -0.1979 332.8192 1.0101
yAux1[1] 9.9763 0.0383 9.9008 10.0490 1683.2880 0.9995
yAuxMaximum 9.9763 0.0383 9.9008 10.0490 1683.2880 0.9995
mean_PPD[1] 72.2811 0.0687 72.1508 72.4161 1980.4671 0.9988
yAlpha1[1] 81.0261 0.9343 79.1556 82.8537 437.2903 1.0037
lp__ -159966.7915 78.4372 -160120.0250 -159813.9750 316.2811 1.0063
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Furthermore, I have tested the options offered in rstanarm for variational inference, but the

parameter space in this application is too complex for the VI algorithms to return meaningful

results. Although VI is useful in some applications for linking a longitudinal component to a

survival process, variational methods are not sufficient.

To fix convergence issues, I tried to increase the number of iterations and the value of the

depth of the tree used by the NUTS sampler, as explained in 2.5.1. The step size gets adapted

during the first iterations, the so-called adaptation phase (also known as burn-in in Gibbs

sampling). Iterations had to increase twice from 1000 to 3000 and from 3000 to 4000 to get a

sufficiently effective sample size, and the argument adapt_delta got from 0.8 to 0.99.

To diagnose issues with model fitting, I performed various checks using the bayesplot

package and the ShinyStan app. The bayesplot package provides various plotting functions

for graphical posterior predictive checking, creating graphical displays comparing observed

data to synthetic data from the posterior predictive distribution (Gabry et al. 2017). The

idea behind posterior predictive checking is that if a model is a good fit, then it should be

able to generate data that look like the observed data.

In the next analysis step, I used the posterior_traj() function, which generates an estimated

subject-specific longitudinal trajectory of the biomarker used in model fitting. These values

are obtained from the generated posterior distribution. Since we know the true values of the

biomarker from the data, we can assess whether these trajectories are realistic or not.

The posterior_survfit() function was used next to generate estimated survival probabilities

based on draws from the posterior predictive distribution. The survival probabilities are

conditional on an individual’s random effects. Therefore for test data, the default behaviour is

to sample new group-specific coefficients for the new individuals using a Monte Carlo scheme

that conditions upon their longitudinal biomarker data. I, therefore, needed to restrict the

testing set size in the interest of running time. Furthermore, I extended the functionality to

generate survival estimates in arbitrary time points, e.g., survival probability at the end of
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each year of follow-up, rather than estimating survival at times with received information

only5.

In light of the scaling issues I was having, I turned my focus to using CmdStanR for model

fitting (the second approach featured in the notebook). CmdStanR is a lightweight shell

interface to Stan for R, that utilises the C++ toolchain. CmdStanR (version 0.3.0.9) contains

the sample() function for model fitting, which requires the input data to be given in a

format readable by Stan. I extracted the Stan code used for the MCMC sampling within the

stan_jm() function of rstanarm to use it as a base for modifying the model’s parametrisation

and prior choices. However, in the given state, the Stan code was not exceptionally readable

due to include-statements and the large number of options it supports. Various compiling

issues and getting familiar with the new toolchain gave me a better understanding of the

inner workings of rstanarm and mainly how the model parameters are handled.

To extract the input data used by the stan_jm() model, I had to modify the rstanarm code

itself to store a record of the data, and I subsequently, plug them into the data argument

of the sample() function in order to compare the sample() and stan_jm() outputs. It was

observed that the CmdStanR sampler ran very fast, giving the wrong impression that the

sampling was performed correctly, but it was actually due to an insufficient exploration of the

parametric space. Therefore, the resulting posterior density was not necessarily reliable and

accurate.

Unfortunately, the standata object lacked essential initial values, such as prior means,

which are crucial for the sampler to effectively specify the joint likelihood. In order to

ensure the proper functionality of the sampler, it was necessary to provide initial values that

closely approximated the region where the majority of the full posterior distribution was

located. These initial values were retrieved from the corresponding stan_jm() model that

had converged to a target distribution.

5https://github.com/IoannaThoma/PhD/tree/main/code.
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On the one hand, the stan_jm() function has a built-in routine to supply initial values

(default option init = “prefit”) by fitting the longitudinal and event submodels separately

and then using values from these to set initial values for sampling the joint likelihood.

However, the CmdStanR does not have a built-in routine to replicate this; thus, the initial

values for each chain needed to be supplied manually. Thus, I extracted the initial values

from the stanfit object created by stan_jm() to provide them as argument to the modelling

method of CmdStanR. Since sample() and stan_jm() share the same Stan code, using the

init = “prefit” option when generating the standata was also valid for CmdStanR.

Running stan_jm() with four chains for fifty iterations, I saved the final values of each chain

and provided them as initial values to the sample() method of the CmdStanR model. Using

the initial values computed from stan_jm(), the CmdStanR modelling function passed all

diagnostics. Displayed below are two figures illustrating the diagnostic assessment of the

fitted generalised linear mixed model.

In figure 4.1, the parameter alpha refers to the intercept of the regression model. It represents

the average response, given that all other predictors are set to zero. Parameters beta[1] and

beta[2] refer to the coefficients or parameter estimates associated with specific predictors

in the model. The values of these coefficients indicate the magnitude and direction of the

relationship between each predictor and the response variable. The parameter sigma_indiv

represents the standard deviation associated with the random effects in the fitted linear mixed

model. It quantifies the variability, i.e., dispersion of the individual-specific random effects,

capturing variations among subjects. Lastly, lp refers to the log probability, and energy

refers to the energy of the Hamiltonian system in HMC sampling.

Figure 4.2 shows the densities of the parameters and provides information about the likelihood

of different values occurring for each variable. The mean of a parameter’s density represents

the expected value of that parameter. No issues have been observed with the parameters in

this instance.

87



alpha

−0.70
−0.65
−0.60
−0.55
−0.50
−0.45

1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

−3.2 −3.0

6950
7000
7050
7100
7150
7200

−0.70 −0.55

beta[1]

beta[2]

−0.10 0.05 0.20

1.05 1.20 1.35

sigma_indiv

lp__

−6150 −6000

6950 7100

−3.2

−3.1

−3.0

−2.9

−0.10
−0.05
0.00
0.05
0.10
0.15
0.20

−6150

−6100

−6050

−6000

energy__

Figure 4.1: 6x6 grid of the parameters of the linear mixed model.

It appeared that the memory problem with the rstanarm package, in which memory usage

spikes during the adaptation phase, was overcome by using CmdStanR. However, the limited

sample size was prone to divergent transitions, and sampling was failing. On the other hand,

the four chains do not mix at all and have very different average energy. A 500 warm-up and

500 sampling iterations were completed in 3 hours, meaning the sampler was not stuck in one

parameter space as before.
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sigma_indiv log−posterior

alpha beta[1] beta[2]
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Figure 4.2: Probability density functions associated with each parameter in the linear mixed
model.

To evaluate the meaningfulness of the posterior quantities, I needed to make the posterior

summaries intelligible by relabelling the variable names. By comparing coefficients, I worked

out which variables from one match the other. Not all parameters from CmdStanR would be

relevant, as not all have a match. The interesting ones were the regression coefficients and

those were relatively easy to reconcile.

89



With default settings on the example dataset PBC (Mayo Clinic Primary Biliary Cholangitis

data) provided within rstanarm, the model takes about three minutes to run with stan_jm().

However, with CmdStanR, without using within-chain parallelisation, some chains complete in

a few seconds, while others take about two minutes.

It is possible that the chains that run fast were not able to explore the parameter space

efficiently as happened before, and therefore they were not exploring the entire posterior

distribution. As a rule of thumb, in this situation, the R̂ diagnostic (which compares the

between- and within-chain estimates for model parameters) should help, and so should a trace

plot of the log posterior.

Furthermore, the fitted model with CmdStanR could not be processed by the posterior_survfit()

function for obtaining posterior predictions as this requires a stan_jm() object, and it does

not work with a stanfit object. The current implementation would need to be extended in

order to accommodate this requirement, which could be explored and addressed in future

iterations6.

As a temporary solution to enable the use of the existing functionality; posterior_survfit()

from rstanarm for posterior predictions, I manually copied the stanfit object from CmdstanR

into the object saved by stan_jm() to generate posterior predictions. However, that was not

a viable solution since CmdStanR parallelisation for gradient calculation over many parallel

computations gave unrealistic timings for larger datasets.

Through further trial and error, I established that there is no easy way to overcome the

computational limitations of stan_jm(), and even porting it to CmdStanR did not speed it

up at the time.

Upon inspecting the Stan code and identifying the key steps, it appears that matrix multipli-

cation is the computationally intensive operation. Rather than looping over individuals, based

on the nature of parallel operations typically performed on GPUs, compiling for GPU support
6Intermediate results are shown in embedded notebooks in Chapter 4 and the Appendix.
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was deemed more likely to be successful than using the reduce_sum() chunking option. This

is because GPUs are specifically designed to handle parallel computations efficiently, and

leveraging GPU support can often lead to improved performance.

I, therefore, ran the sample() function with >1 thread/chain to see if there was any speedup

from some undocumented parallelisation under the hood. Utilising within-chain parallelisation

can only yield noticeable improvements if multithreading is effectively employed. Multithread-

ing refers to the concurrent execution of multiple threads within a single process, allowing for

parallel computation and potentially faster execution of matrix multiplication, which seems

to be the barrier in this type of joint modelling.

CmdStanR was evaluated with 10 threads per chain, with the expectation that parallelised

matrix algebra calculations would be performed noticeably faster. However, with the GPU

support, the mixing of the sampler was regrettably unreliable (Neff = 2 and R̂ values > 100).

It was probable that the retained samples, after discarding the burn-in period, still exhibited

a significant correlation with their respective previous draws.

The presence of high correlation among retained samples in a MCMC simulation can have

both positive and negative implications. On one hand, the correlation between samples

indicates that the chain is exploring the parameter space effectively and not getting stuck

in local regions. This suggests that the chain is mixing well and providing a representative

sample from the target distribution.

On the other hand, high correlation can impact the efficiency of the MCMC algorithm. Highly

correlated samples indicate that subsequent samples do not provide much new information

beyond what has already been sampled. This can result in slower convergence, increased

autocorrelation, and longer runtime.

Therefore, it is important to assess and diagnose the correlation structure of the MCMC

samples to determine the impact on the analysis. In my situation, the trace plot of the log

posterior and the very high R̂ values indicated that the default CmdStanR settings have not
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converged. Using GPU parallelisation might raise issues if there are errors or bugs in the GPU

code or if the GPU hardware or software environment is not properly set up or compatible

with the Stan program, causing the program to misbehave.

Hence, it is important to note that the specific implementation and configuration of GPU

parallelisation can influence the behaviour of a Stan program in applications like this. Some

of the potential issues that may arise with GPU parallelisation include:

- Compatibility: Ensuring that the GPU hardware and software environment is compatible

with the Stan program and its requirements. This includes verifying that the GPU device is

supported, drivers are up to date, and necessary libraries are installed.

- Implementation errors: Writing GPU code can be more complex than traditional CPU code,

and errors in the implementation can lead to unexpected behaviour and unreliable results.

Gaps in implementation were the most probable reason for failing at the time I attempted to

use it.

- Memory management: GPU parallelisation requires careful management of memory resources.

Incorrect memory allocation, deallocation, or data transfers between CPU and GPU can

cause issues such as memory leaks, crashes, or performance degradation.

Another point of interest is that within-chain parallelisation is not given as an option to

the user. In fact, the user needs to rewrite parts of the Stan code to use the reduce_sum()

method. The next step was to parallelise the loop over individuals that increments the log

posterior using reduce_sum() to split it into the necessary chunks.

Using CmdStanR for fitting the joint model resulted in a considerably slower sampling process;

with an approximate rate of 100 iterations per hour when applied to the 10% dataset.

Nonetheless, this method was advantageous as it avoided confinement to a limited region, as

observed previously. Ideally, parallelisation of the sampling would be desirable to achieve a

significant speedup in computation.

92



4.3.1 Implications

In summary, one should be able to run almost any model with a single biomarker with

parallelisation.However, the quadrature step in this joint modelling implementation scales

exponentially with the number of biomarkers, hampering modelling efforts that include more

than two biomarkers.

The primary limitation of using the CmdStanR method for sampling the posterior distribution

of the joint model is that the user needs to reformat the output from CmdStanR as a rstanarm

object, in order to be able to use rstanarm functionality for posterior predictions of the

longitudinal outcome(s) and of survival/time to event.

In summary, the state-of-the-art implementation of stan_jm() function of the rstanarm

package does not perform computationally efficiently, and alternative of porting the code into

the CmdStanR functionality for sampling, which would allow for GPU parallelisation, required

a lot of code manipulation and made us lose the convenient functions already implemented in

rstanarm for posterior predictions. Given that the time savings were neither guaranteed nor

very promising, and CmdStanR was too limited to help improve the efficiency of stan_jm(),

it was clear that the primary use of the stan_jm() joint model would be to establish a

benchmark against which I would compare other predictive models.

To recapitulate, it was found that there were severe limitations in the application of joint

modelling to this set of data, including:

• the computation of multivariate joint models is not that straightforward, albeit mathe-

matically sound and comprehensive,

• the need to drop available data to satisfy the requirements of the specific implementation

in case of a multivariate submodel,

• the variance-covariance matrix for random effects becomes more complicated as the

number of longitudinal processes increases, and
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• using a quadrature-based method is poorly suited to numerical computation, as compu-

tational cost then rises exponentially with the number of biomarkers.

It is important to consider these implications when fitting joint models, as the number and

estimation of individual-level parameters relies on both the number of individuals (sample size)

and the number of longitudinal responses. With a larger sample size, there is more information

to estimate the parameters accurately. As the number of observations per individual increases,

it provides more data points for estimating individual-specific trajectories. Consequently, the

precision and reliability of estimating individual-level parameters tend to improve with an

increased sample size.

Similarly, the number of longitudinal measurements per individual affects the number of

individual-level parameters. If there are more longitudinal measurements available, it allows

for a more detailed characterisation of individual trajectories. This may lead to a higher

number of individual-level parameters needed to capture the variation and heterogeneity in

longitudinal profiles accurately, which translates into an increased computational burden.

Hence, there exist certain limitations and factors that necessitate careful consideration when

employing joint modelling techniques. These drawbacks and issues include the following:

Choosing the appropriate model structure and selecting relevant covariates can be challenging

in joint modelling. The selection process requires careful consideration of the relationships

between the longitudinal and time to event processes, as well as consideration of potential

confounding factors. Having a sufficient amount of data, to obtain reliable estimates. If data

are sparse or subject to missingness, the performance of joint models may be compromised.

Furthermore, like any statistical model, joint models are based on certain assumptions about

the input data. Violations of these assumptions, such as non-linearity or non-normality, can

affect the model’s validity and the quality of its results.

Therefore, extracting meaningful and actionable insights from joint modelling outputs requires

careful consideration and interpretation. It is important to note that these disadvantages
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are not inherent to all joint modelling implementations, and they can vary depending on

the specific methods and datasets being used. Researchers should carefully evaluate these

limitations and consider their implications before applying joint models in their analyses.

In light of the limited predictive performance observed in CVD risk models, I deemed it

necessary to select an outcome that would be more conducive to developing a robust and

high-performing joint model. Predicting CVD was proven challenging due to the complex

interactions among various risk factors, however, this joint modelling approach is not reliable

to handle and capture multiple longitudinal responses. Moreover, CVD often has a long

latency period, during which individuals may remain asymptomatic. Hence, risk prediction

models need to account for this extended period and accurately capture the early signs or risk

indicators that may precede the onset of clinical symptoms. Therefore, I shifted to using a

Bayesian sequential updating approach based on time-splitting. In the next chapter, I go on

to describe the theory underpinning the model set up for the Bayesian time-splitting approach

in more detail.

To that end, I opted for an outcome where the biomarkers are expected to demonstrate

greater predictive power and a stronger prior association, namely predicting time to renal

replacement therapy (RRT) from longitudinal eGFR data. This deliberate choice serves two

purposes: first, it allows for a more pronounced demonstration of the development of a more

effective joint model, and second, it leverages the inherent relationship between the selected

outcome and the biomarker to enhance the model’s predictive capabilities.
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Chapter 5

Theory and development of the

Bayesian updating time splitting

approach with ctsem

The chapter is structured as follows:

1. Gaussian state-space models (section 5.1)

2. The Kalman filter, an efficient algorithm for updating the imputed biomarker values

(section 5.2)

3. Fitting a joint model by sequential updating (section 5.3)

4. Hierarchical Gaussian state-space models, implemented in the R package ctsem (section

5.4)

This chapter describes a reformulation of the joint model based on sequential Bayesian

updating, developed and evaluated as an alternative approach to the stan_jm() function

included in the rstanarm package. Instead of trying to model the time to event by integrating

over the unobserved trajectories of the biomarkers, this approach is based on splitting follow-up
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time into short intervals and fitting a Poisson regression model where the covariates are the

predicted values of the latent biomarkers at the start of each person-time interval, based on

all observations up to that time point.

The motivation for considering this alternative approach is that it offers a wider functionality

for specifying the longitudinal component and latent process of the joint model, and it is a

computationally efficient method that can scale to large datasets with multiple biomarkers.

In the previous chapter, I showed the limitations of applying joint modelling to HbA1C and

CVD outcome data, using functionality implemented in rstanarm, where the standard joint

modelling approach can only fit a generalised linear mixed model to the biomarker data. The

most widely used class of models is a linear mixed model with individual-varying intercepts

and slopes. With the sequential updating approach, we can fit a broader family of models

known as Gaussian state space models or continuous-time structural equation models. These

models generalise the linear mixed model to include terms for autoregressive drift and diffusion

(Voelkle et al. 2012).

P. McKeigue (2022) has recently elaborated on the concept of using a sequential updating

approach to jointly model biomarker and time to event outcomes, providing a demonstration

of the theory using publicly available data, in particular, the so-called Mayo Clinic Primary

Biliary Cholangitis (PBC) dataset (Dickson et al. 1989). The implementation he discusses is

based upon recently emerged software, namely the package ‘ctsem‘ (Driver, Oud, and Voelkle

2017). This work has been a major source of inspiration for my research and has expanded

my research horizon providing valuable insight of survival modelling.

In the following sections, I am placing this methodological construction within the appropriate

context for my setting, considering the relevant factors and conditions that are necessary for

its comprehension and application to using the Kalman filter for the longitudinal component

and then proceeding to the prediction of time to event within a sizeable dataset of individuals

with T1D.

98



5.1 Continuous-time structural equation modelling

Structural equation modelling (SEM) represents the dependencies between multiple variables,

usually including unobserved (latent) variables, by equations.

A continuous-time model is a model within which variables that evolve over time are modelled.

Consider a continuous-time model with observed variables X, latent variables L, and error

terms E. The structural equation model can be represented using path coefficients (λ) (i.e., the

connection strength) and error variances (θ) (Hair Jr et al. 2021). A simplified representation

of a continuous-time model in SEM is given by the equations:

X = ΛXL + EX

L = ΛLL + EL

In this formulation, X represents the observed variables, L represents the latent variables, and

EX and EL represent the corresponding error terms. ΛX and ΛL denote the path coefficients

that represent the relationships between the underlying latent and observed states of a

longitudinal process.

Although continuous-time models have a long history (Coleman and others 1964; Hannan

and Tuma 1979), their use in the biological sciences has been sparse, in part due to a lack

of suitable software to specify and estimate continuous-time models. Many applications of

dynamic systems modelling (Izzo and Vecchio 2007) (Grijalva et al. 2007) are limited to

discrete-time constructions, conditional on the assumption that the time intervals between

measurements and/or subjects are constant. Although this is not common in observational

studies, intervals of non-varying lengths are more commonly achievable, when desired, in
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clinical trials.

In the broader literature on longitudinal data analysis, continuous-time modelling, which

explicitly accounts for the timing of measurements, has several important advantages over

discrete-time modelling, see, e.g., Oud and Delsing (2010); Voelkle et al. (2012); Deboeck and

Preacher (2016). Continuous-time modelling can make full use of the information contained

not only in the observations themselves, but also in the exact timing of the measurements.

By using stochastic differential equations to estimate the underlying process, continuous-time

models allow for any pattern of measurement occasions, e.g., irregularly spaced intervals.

The key idea of continuous-time structural equation modelling (CTSEM) is to model a

stochastic process for how the latent variables evolve over time.

The growing availability of health records has fuelled the interest in continuous-time models,

because they are inherently well-suited to handling asynchronous measurement occasions and

enabling comparisons of studies with different time intervals between observations (Hecht and

Zitzmann 2020). However, their use has yet to be widely adopted, and for the most part, this

is attributable to the lack of suitable software to fit efficiently continuous-time state-space

models. Although a range of R packages deals with stochastic differential equation modelling,

most implementations are applied to a single subject applications. These include sde (Iacus

2007), yuima (Brouste et al. 2014), SIM.DiffProc (Guidoum and Boukhetala 2020), and

POMP (King, Nguyen, and Ionides 2015).

Linear mixed models are a special case of this more general family of models for longitudinal

data known as continuous-time dynamic models or state-space models. In the context of

SEM, models can be expanded to allow for the estimation of measurement error through the

use of multiple indicator latent factors. The generalised mixed model which is a combination

of fixed and random effects can be considered as one where the latent factors underlying the

repeated measures reflect the fixed and random effects associated with stability and change of

the repeated measures over time (Curran 2003). Importantly, this family of models can be
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extended to include autoregressive drift and diffusion, and this is implemented in ctsem.

5.1.1 Drift process

An autoregressive drift model can be represented as follows:

Yt = λYt−1 + ϵt + δt

In this equation, Yt represents the observed variable at time point t, Yt−1 represents a

lagged value at time point t − 1, λ is the autoregressive coefficient, ϵt is the error term, and

δt represents the drift term. To estimate the autoregressive drift model within the SEM

framework, we would like to specify the paths between the observed variables at different

time points, including the autoregressive paths (λ) and the drift paths (δ). Additionally, we

need to include the error terms (ϵ) and specify a constant variance structure based on the

dependencies in the data (Draper and Smith 1998; Pardoe 2020).

Autoregressive drift can be seen as a mean-reverting process, as it depicts the overall trend of

a family of random variables (a stochastic process) to drift back to their grand average. It

primarily captures gradual, smooth changes in a process in which the properties might have

been changed so that there is a tendency for the changing process to move back towards a

central location (of high concentration), with a greater force when the process is away from

the centre.

5.1.2 Diffusion process

In the context of SEM, a diffusion process refers to a specific type of model that captures the

spread or diffusion of influence or information through a network of variables. Mathematically,

a diffusion process can be represented using equations that describe the change in each variable

over time, taking into account the influences from other variables. These equations often

involve autoregressive terms and time-varying coefficients.
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A diffusion process is a stochastic process that describes a trajectory that consists of a

succession of random steps, such as a random walk. Such a process might be the solution

to a stochastic differential equation. The one-dimensional random walk can be seen as a

continuous-time Markov chain. In the diffusion process resulting from a random motion, there

is movement from a region of high concentration to a region of low concentration. A familiar

example is the scent of a flower that quickly permeates the still air of a room. The concept

could be incorporated into the structural modelling of longitudinal biomarker data.

Over long follow-up times, models that allow for diffusion (random walk in continuous time)

are more realistic than models that only allow a fixed slope with time. Such models have

been shown to give a better fit for specifying the longitudinal eGFR (Diggle, Sousa, and Asar

2015).

This family of models can be specified with the stochastic differential equation (Voelkle et al.

2012):

dη(t) = (Aη(t) + b)dt + GdW(t)

where A is autoregressive effect (drift), b is slope, G scales the diffusion process W (t)

with measurement errors generated by

x = Λη + ϵ

The matrix Λ specifies the loadings of the observed biomarkers x on the latent variables η.

The A (autoregressive) matrix encodes autoregressive effects on the diagonal and cross-lagged

effects (the directional effects between variables at different points in time) off the diagonal.

The vector b specifies the slopes of the biomarkers with time. In the stochastic differential

equation, it appears as the intercept. With individual-specific random effects for the intercepts
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and slope, we have a hierarchical state-space model.

The Cholesky factor matrix G scales the Wiener process W. This diffusion process is the

limiting form of a discrete-time random walk. dW (t) /dt is Brownian motion.

Several other models used for longitudinal data can be viewed as special cases of this

hierarchical continuous-time dynamic model:

• With A = 0, G = 0, and Λ = I we have a linear mixed model

• With A = 0, b = 0, and Λ = I we have a diffusion-only model as used by (Diggle,

Sousa, and Asar 2015) to model longitudinal measurements of kidney function.

• With A = I, G = 0, Λ = I and ϵ = 0 (no measurement error), we have a last-observation-

carried-forward model.

In summary, to fit a state-space model, the Kalman filter makes a forward pass through

the data to compute the state probability distribution at each time point, conditional on all

observations up to that time point. This technique allows us to estimate the imputations of

the latent variables at the start of each time interval (Luo 2018) and thus implementing the

Poisson time-split joint model.

5.2 Kalman filter: a message-passing algorithm

Sequential updating requires an efficient algorithm for imputing the values of the latent

biomarkers at each time point recursively, conditional on all observations up to that time

point.

For any Gaussian state-space model (i.e., ctsem), the Kalman filter algorithm can be used

to impute the biomarkers. The Kalman filter takes as input some noisy measurements and

tries to infer from those measurements of the possible state of a latent part of the stochastic

process (MacKay, Mac Kay, and others 2003; Russell, Norvig, and Davis 2009). The Kalman
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filter consists of two main steps: the prediction step and the updating step. The prediction

step estimates the state of the system at the next time point, based on the previous state

estimate and the system dynamics. The updating step incorporates new measurements into

the state estimation, adjusting the estimate based on new data and the uncertainty associated

with the measurements.

Kalman filter was first applied to a wide range of tracking and navigation problems and it is

much applied in time series analysis (Durbin and Koopman 2012; Commandeur, Koopman,

and Ooms 2011; Petris, Petrone, and Campagnoli 2009; Hyndman and Athanasopoulos 2018).

Defining the filter in terms of state-space models simplifies the implementation of the filter

in the discrete scale, another reason for its usefulness to our application, which depends on

discrete person-time intervals (time split).

Message-passing algorithms help to construct a solution to a global problem by splitting

the calculation into smaller parts that are easier to specify. Kalman filters are widely used

to implement inferences for Gaussian state-space models. The Kalman filter provides a

prediction about the next state being x, integrating over the error covariance matrix, px,

representing the uncertainty of the state estimate. Therefore, the estimate of the next latent

state is updated accordingly every time to reflect what is learnt. At every time point, the

Kalman filter computes the probability distribution of the latent variables, conditional on all

observations up to that point. At the next time point, this distribution is combined with the

new observations to generate an updated distribution. We can obtain multiple imputations of

the latent states from this distribution or a single best estimate. A graphical representation

of updating the estimate of a parameter vector β if additional data become available is shown

in figure 5.1:

An n-dimensional dynamic random process can be modeled as follows. A vector difference

equation

xk+1 = Φkxk + uk, k = 0, 1, 2, ...
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Figure 5.1: A visualisation of the parameter vector β being projected onto different subspaces
of a Hilbert space H. Intuition: Given new data, the updating is based on the part of the
new data that is orthogonal to the old data.

which defines how the random vector xk change over time (Masnadi-Shirazi, Masnadi-Shirazi,

and Dastgheib 2019).

Here, xk is an n-dimensional state vector where each component is a random variable, Φk is a

known n × n matrix, uk is an n-dimensional input random vector with zero mean such that

there is zero correlation between present input at k and past input at l, i.e.,:

E[ukuT
l ] = Qkδkl =


Qk if k = l

0 if k ̸= l

Taking a wide enough period, the rate at which the process changes might look reasonably

constant, whereas when we zoom in, the rate of the changes may look rather substantial.

There might be considerable changes in the short term, but the long-term trend is much

smoother. Moreover, time intervals of finer granularity lead to a better approximation of the

continuous time and enable more precise estimation of dynamic structure parameters, e.g.,

autoregressive effects, where the current value depends linearly on the past values.
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As we build better and better representations incorporating the most recent data, what was

once process noise and uncertainty about the parameter values is slowly turned into predictable

elements, allowing for a whole range of possibilities for the current states. Although the

state-space model will fail to predict, to some extent, genuine fluctuations and incorporate

entirely the variance inherited in the latent process generation, the value of continuous-time

models is rather high. They are flexible and retrospectively adapt to the gained knowledge

from the errors acquired in the data generation, yielding more accurate predictions.

Let us consider data arriving from a process sequentially and wish to update inference on

an unknown parameter θ. The joint distribution f(x1, x2, . . . , xn|θ) represent the probability

distribution of X given the parameters θ, i.e., the likelihood of observing different values of

X under specific parameter values θ. The Bayesian prior distribution π(θ) at time n leads to

a density for data conditional on θ as

f(x1, x2, . . . , xn|θ) = f(x1|θ)f(x2|x1, θ) · · · f(xn|xn−1, θ)

where we let xi = (x1, . . . , xi). Note that we are not assuming X1, X2, X3, . . . , Xn, . . . to be

independent conditionally on θ. At time n, we update the distribution of θ to its posterior

πn(θ) = f(θ|xn) ∝ π(θ)f(xn|θ),

where π(θ) is the prior distribution of the set of parameters in θ. From a dynamic perspective,

when a new observation arrives, we claim that just before time n + 1, our knowledge of θ is

summarised in the distribution πn(θ) so we just use this as prior distribution for the new

piece of observation and update the posterior as

πn+1(θ) ∝ πn(θ) × Ln+1(θ) = πn(θ)f(xn+1|xn, θ),

where Ln+1(θ) is the likelihood to observe the data given these values of θ. Hence, we notice
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that at time n we only need to keep a representation of πn and ignore the past. The current

πn contains all the information required to revise knowledge i.e. the likelihood L(θ) when a

new data point arrives becomes Ln+1(θ). This updating is known as recursive.

Hence, we use a Markovian model for the changing states of the parameter θ of the form:

f(θ0) = π(θ0), f(θi+1|θi) = f(θi+1|θi),

where θ0, θ1, . . . are latent states which are dynamically updated, as new data points arrive:

f(xi|θi, xi−1) = f(xi|θi),

which suggests that the distribution of the random variable xi given the parameters θi and

the previous observations xi−1 is independent of the previous observations xi−1 conditional on

the parameter θi. Hence, the joint density of states and observations is given by the formula:

f(xn, θn) = π(θ0)
n∏

i=1
f(θi+1|θi)f(xi|θi).

The most common tasks associated with inference about the changing states of θ are

• Filtering: specify the current state, f(θn|xn)

• Prediction: specify the next state, f(θn+1|xn)

• Smoothing: specify the past state at time k, f(θk|xn), k < n

This approach is traditionally attributed to Kalman from a result in 1960 (Kalman 1960),

but was, in fact, fully described by the Danish statistician T.N. Thiele in 1880 (Thiele 1880)

(Hald 1981), where he modelled sequential data consisting of a sum of a regression component,

a Brownian motion and a white noise, and derived the procedure known as Kalman filtering;

a recursive construction that evaluates the regression component and estimates the Brownian
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motion (Lauritzen 1981).

Therefore, the Kalman filter is an efficient algorithm for generating updated predictions of

the hidden states (biomarkers) from a Gaussian state-space model. The fitting of a Gaussian

state-space model and the use of the Kalman filter to generate imputations is implemented in

the R package ctsem.

The next step involves using Poisson regression models, including the underlying true value

of the biomarker as a time-varying covariate as generated for the Kalman filter at the start of

each person-time interval.

Furthermore, a last-observation-carried forward model was evaluated as a baseline for com-

parison of predictive performance.

5.3 Fitting a joint model by Bayesian sequential updat-

ing

Two-stage joint modelling approaches in which a model for the biomarker trajectories is fitted

first, and the results are plugged into a model for the time to event in the second stage have

been shown to be incorrect, because the likelihood does not factor over these two stages: the

likelihood of the parameters for biomarker trajectories depends on the observed events. This

may introduce severe bias (Henderson, Diggle, and Dobson 2000; Sweeting and Thompson

2011). This type of bias in survival analysis is known as ‘immortal time bias’. This bias can

lead to distorted estimates of the association between exposure and outcome.

Immortal time is a time period during which the outcome of interest cannot occur due to the

study design or the exposure definition. This can happen when the exposure is defined based

on a time-dependent event, or when the follow-up time is not correctly recorded. During this

immortal time, individuals may appear to have a lower risk of the outcome solely because

they have not yet reached the point where the outcome could occur.
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The bias arises because the immortal time is inadvertently included in the exposed group but

excluded from those censored during the analysis. This creates an artificial difference in the

follow-up times between the two groups, leading to biased estimates of the exposure-outcome

association (Yadav and Lewis 2021).

Existing approaches to joint modelling of time to event and longitudinal biomarker observations

in a single model are based on modelling time to event as the response variable. With a time-

varying covariate like the trajectory of a biomarker, the likelihood of the model parameters

given time to event has to be evaluated by computing the hazard rate at a set of time points

chosen to give an approximation to the area under the curve: a procedure known as quadrature.

As the number of biomarkers increases, the number of points required for quadrature scales

exponentially and model fitting becomes computationally intractable (Mauff et al. 2020). I

have been able to fit joint models of two biomarkers, so up to a point it is tractable, albeit

computationally intensive.

Sequential updating is an alternative way to capture the coupling between the longitudinal

and event submodels. In the early 1980s, it was shown that instead of modelling the time

to event for a survival analysis, the events can be modelled as a Poisson arrival process, in

which each individual is censored at the first event. Even though the observations in each

person-time interval are not independent draws from a Poisson distribution, they can be

modelled as if they were (Rodriguez 2007).

With time split into many short time intervals, the hazard rate can be modelled as constant

within each interval: this is equivalent to a survival curve that is piecewise exponential. With

time-updated covariates, any survival curve can be modelled using Poisson regression.

To eliminate immortal-time bias, at each person-time interval the likelihood must depend

only on observations made up to the beginning of the interval. With sequential Bayesian

updating at each time an observation arrives, the posterior distribution of parameters from

the last update becomes the prior for the next update. The log-likelihood of the model is

109



accumulated as a sum over updates at the start of time intervals.

Let ηi denote the value of the latent state and xi the observed value. At each update, the

probability p(ηi) is conditioned on no event or censoring having occurred up to the ith time

point, as shown below

revised distribution ∝ current distribution × new likelihood

p(ηi | ηi−1) = p(ηi | ηi−1, yi−1 = 0)

In the i-th interval, we observe whether an event occurs, and compute the likelihood of the

event occurrence y ∈ {0, 1} as the average of p(yi | ηi) over the distribution given by p(ηi). If

no event occurs, we can update the longitudinal model using the biomarker observation that

arrives at the (i + 1)-th time point.

p(ηi+1 | xi+1, ηi, yi = 0) ∝ p(ηi+1 | ηi) × p(xi+1 | ηi+1)

Therefore, for this type of model (observed xi conditional on unobserved ηi that evolve as a

Markov process) there is an efficient algorithm for computing the likelihood of the model and

the probability distribution of ηi at each time point, conditional on all observations up to

that point, by a forward pass through the data.

The likelihood of the model is the probability of the observations x1, . . . , xn given the model

(eliminating the ηi).

Each interval of a Poisson process may be perceived as a Bernoulli trial, which is either a

success or a failure.

The latent state is assumed to evolve as a Markov process; in other words that probability

distribution at time i depends only on value at time point i − 1. The observed values xi

depend only on the latent state ηi at that time point. We do not have to condition on the
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event, because no event has occurred. As soon as an event occurs, the observations stop.

The Poisson distribution probability mass function gives the likelihood λ of observing k events

in a time period, given the length of the exposure and the average events per unit of time.

The rate parameter λ can be thought of as the expected number of events in an interval T .

If the rate of occurrence is µ per unit of time, then the number of incidents is Poisson with

mean λ = µ × T . To get the hazard rate, we take the log µ = X × β, using the Poisson

generalised model’s coefficients β from 2.1.

The models used for prediction are based on the inclusion of a landmark time point, up

to which individuals need to be observable and after which all biomarker observations are

deliberately censored in a 2-fold cross-validation approach. I have set the landmark time to

be five years since the subject’s entry into the study. The interest lies in quantifying the

increment in risk prediction when more rigorous models that explicitly account for the time

of each measurement are considered for specifying the longitudinal trajectory of a biomarker,

using it as a benchmark the last-observation-carried-forward model.

The performance of the constructed Poisson models is assessed on previously unseen data,

provided that the imputed biomarker values are strictly taken at the start of the prediction

interval, and these prediction intervals are not truncated, but they run to the end. The rationale

for that is that the time of the event is unknown in the test data. Model discrimination is

quantified using the area under the receiver operating characteristic curve (AUC), also known

as C-statistic. Furthermore, model calibration, the accuracy of risk estimates concerning the

agreement between the predicted and observed number of events, is evaluated thoroughly by

decile of predicted risk.

111



5.4 Implementation of hierarchical state-space models

Continuous-time models involve a two-level data structure, repeatedly measured values nested

within individuals (groups). Forward updating is conditional on all past values prior to a

time point t∗. The Kalman filter algorithm propagates new estimates upon the arrival of new

information and uses a time step specified by the user. Therefore, the time split is determined

from the time step and the timing of the last observation before an arbitrary t∗. For example,

given a 45-day time step and no arrival of new observations, the Kalman filter would update

the latent variable every 45 days. By updating when new observations arrive, the intervals

can be a maximum of 45 days long or shorter.

In this context of SEM, I have fitted models to specify the longitudinal biomarker data.

The following figures (7.5 and 5.4) depict the LMM specification for the longitudinal eGFR,

in which the deterministic change (drift) A and the random change (diffusion) G are both

0, whereas, in the drift and diffusion LMM that follows, both components are defined and

estimated by the system. The outputs are given from the function ctModelLatex() in

the ctsem package. The ctsem-model is a ctStanFit object, and the linearised normal

approximation for subject parameters and covariates effects is shown. In addition to the

time-updated eGFR data, the covariates gender, baseline age and baseline diabetes duration

have been included in the models.
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Figure 5.2: Model fitting output. Equation of subject-level structural equation model. Repre-
sentation of a continuous-time linear mixed-effects model displaying matrix dimensions and
equation structure for eGFR.
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Figure 5.3: Model fitting output. Continuous-time representation of an LMM with drift and
diffusion enabled, displaying matrix dimensions and equation structure. This comprises a
mathematical extension of the simpler LMM to include drift and diffusion components for
eGFR.

5.4.1 State-space model fitted to longitudinal data with ctsem

I have used the R package ctsem and Poisson regression models as a scalable alternative

to rstanarm for the task of dynamic risk prediction. Firstly, for the longitudinal biomarker

trajectories, a continuous-time model must be specified by creating an object of ctsem class,

using the function ctModel(). Upon specification, the model is fitted to the longitudinal

data using the function ctFit(), after which summary and plot methods may be used to

examine parameter estimates, standard errors, and fit statistics.

Expectation matrices are then generated for each individual according to the specified input

data and observed timing data. Optimisation using the Kalman filter is used to estimate the

parameters, typically with a first pass using a penalty term (or prior) to find a region of high

probability without extreme parameters, and then a second pass using the first as starting

values.
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Figure 5.4: Model fitting output. Continuous-time representation of an LMM with drift and
diffusion for two biomarkers.
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5.4.1.1 Specifications of state-space models fitted to longitudinal data

To specify a linear mixed model with random intercepts and slopes but no drift and no diffusion,

we specify options DRIFT=0, DIFFUSION=0 and CINT=“slope”. The only individual-specific

parameters are the intercepts and slopes for each biomarker. To impute time-split values

from the ctsem model fitted to the training dataset, I have used the function ctKalman(),

looping over all subjects.

I have first examined the fit of alternative models based on a multilevel bivariate Gaussian

state-space model, using the R package ctsem.

The specification of each model is based on the following formula:

• dη(t) = (Aη(t) + b)dt + GdW (t) where A is autoregressive effect (drift), b is slope, G

scales the diffusion process W (t)

– With A = 0, G = 0, we have a linear mixed model,

– With A = 1, b = 0, G = 0, we have a last-observation-carried-forward mode, which

is used as baseline.

In the case of using two latent variables: To specify a model with drift and diffusion but no

slopes, we comment out the lines DRIFT=0, DIFFUSION=0 to allow these effects to be learned,

and comment out the line CINT=c('slope1','slope2') so that the slope parameters are set

to their default values of zero.

For a linear mixed model that allows diffusion but no drift, we uncomment the lines DRIFT=0

and CINT=c('slope1','slope2'). For a linear mixed model that allows drift but no diffusion,

we uncomment the lines DIFFUSION=0 and CINT=c('slope1','slope2'). Finally, for a linear

mixed model that allows drift and diffusion, we uncomment the lines DIFFUSION=0, DRIFT=0

and CINT=c('slope1','slope2').

The ctsem software package allows a hierarchical CTSEM to be fitted, including both
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population-level and individual-level parameters. The original R package ctsem (Driver,

Oud, and Voelkle 2017; Neale et al. 2016) has been rewritten to use the Bayesian package

Stan (Driver and Voelkle 2018). Stan uses gradient-based algorithms to sample the posterior

distribution or to fit a maximum likelihood model (Carpenter et al. 2017; Betancourt 2017).

This makes it possible to average over the posterior distribution of unobserved variables.

Each individual trajectory is built by sequential Bayesian updating based on a Kalman filter

run of the specified state-space models. Then the fit of the state-space models fitted to the

biomarker data with the package ctsem is inspected and employed for forward prediction.

In this chapter, I described the theory of using a Kalman filter to update sequential data

of biomarkers with the goal of including them as time-updated covariate data in Poisson

regression models for time to event. In addition, I have highlighted the importance of

landmarking, i.e., censoring all data coming after the start of the prediction window, to avoid

biased extrapolations of individualised profiles. In the next chapter, I show how this theory is

applied to predict the progression rate of renal failure in a T1D population, and I elaborate

further on the strengths and limitations of such an approach.
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Chapter 6

Progression to renal replacement

therapy in a T1D population

This chapter discusses the application of the previously discussed methodology to dynamically

model longitudinal biomarker data, obtained by SCI-diabetes, with a focus on eGFR and time

to renal replacement therapy (RRT), as a proxy to predict end-stage renal disease (ESRD),

using data from a national cohort of individuals with type 1 diabetes.

Chronic kidney disease (CKD) is defined as a reduction in kidney function or structural damage

(or both) present for more than three months, with associated health implications (Webster et

al. 2017). CKD is classified based on the underlying cause of the disease (e.g. hypertension,

diabetes, glomerular disease), GFR/eGFR and the level of proteinuria (Transplant Work

Group and others 2009). Patients are classified as G1-G5, based on the eGFR, and A1-

A3 based on the ACR (albumin:creatinine ratio) as detailed in figure 6 (National Kidney

Foundation webpage):
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While the outcome of ESRD is usually defined as being in receipt of RRT or having an eGFR

< 15 mL/min/1.73 m2 (Colombo et al. 2020), the eGFR component of the definition of

ESRD has deliberately been left out, as the primary objective of such a translational study is

centered around improving the contribution of eGFR trajectories through the longitudinal

biomarker submodel towards the accurate specification of time-to-event.

One argument for using a composite end-point of ESRD defined as start of RRT or eGFR

< 15 is that using RRT only would exclude those who are evaluated as unlikely to benefit

from RRT (for instance someone severely disabled by a stroke). It is also arguable that the

composite end-point of ESRD is what clinicians want to be able to predict.

For this study, I have defined a composite outcome comprising (a) initiation of renal replace-
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ment therapy (RRT) as a proxy for ESRD, (b) deaths with a mention of renal failure in

the death certificate, assuming that censoring is independent or unrelated to the likelihood

of progression to ESRD, also known as non-informative censoring. This means that the

participants whose data are censored would have the same time to failure distribution if they

were actually observed until the end of the study.

Previously, I attempted to predict cardiovascular disease from biomarkers, but found that

although the fit to the biomarker submodel was much better with ‘ctsem‘ than with a simple

LMM, this did not appreciably improve prediction of time-to-event. For that reason, I

intentionally chose to evaluate joint modelling in a situation where the biomarker (eGFR) and

the event (start of RRT) are very tightly coupled. This aligns with other statistically sound

joint modelling and precision medicine exemplars where a threshold value of the biomarker is

included in the definition of the event. (Ilic et al. 2018; Sheikh et al. 2021; Parr, Hall, and

Porta 2022).

The structure of this chapter is as follows:

1. I first describe the dataset used in this analysis and some details for the definition of

the RRT outcome (section 6.1.1)

2. I briefly give some background pertinent to modelling ESRD via eGFR with a focus on

the statistical models (section 6.2)

3. The objectives of the analysis are given next, followed by the methods (section 6.3.1)

4. Comparison of the fitting of the submodels for eGFR trajectories leveraging the various

specifications described in chapter 5 (section 6.4)

5. Implications are drawn from the different modelling variations for the eGFR trajectories

(section 6.4.2)
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6.1 Data set up for modelling

In the following section, the reader can get some insight into the data setup, the definition of

the outcome, the incident rate within the observed person-years and a table that summarises

the baseline characteristics.

6.1.1 Population characteristics pertinent to the analysis

The analysis has been conducted using the information on individuals registered in Scottish

Care Information (SCI) - Diabetes. Access to such data has generated many longitudinal

studies in the last years (Wild et al. 2016; Walker et al. 2018; Captieux et al. 2021; Jeyam,

Gibb, et al. 2021; Jeyam et al. 2022).

The study spans a decade: from 1-1-2008 to 1-1-2018. The T1D cohort with renal disease

outcome data comprises 29121 individuals residing in Scotland who were closely followed by

the healthcare system, with 449,330 eGFR measurements available.

I have defined a subgroup of 2633 individuals with a baseline eGFR below 60 mL/min/1.73 m2

at the study start for various sensitivity analyses. This subgroup does not necessarily include

individuals that experience chronic kidney disease (defined as eGFR < 60 mL/min/1.73 m2

that persists for 3 months or more). This filtered dataset represents individuals with at least

mild kidney function loss, presumably due to T1D. This filtering aims to investigate whether

this subgroup’s rate of progressing to RRT is predicted more closely compared to individuals

with T1D and no sign of kidney dysfunction at baseline.

Person-time is the total time contributed to the study by all subjects. The full cohort included

29121 individuals whose average age at baseline is 39.9 years, and average diabetes duration

is 15.4 years. Mean follow-up length is 7.7 years. There are 16303 males and 12818 females,

each of whom has 15.4 eGFR observations on average. The RRT incidence is 799 events, 2.7%.

Table 6.1 summarises the population characteristics for the entire cohort and the filtered

subgroup over the entire follow-up period. From those with baseline eGFR < 60, there was a
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Patient cohort

Variable Population RRT No RRT eGFR<60 RRT No RRT

Sex

Male 16303 420 15883 1123 250 873

Female 12818 379 12439 1510 246 1264

Age (years)

0-20 18.25 (0.52) 19.13(0.66) 18.25 (0.52) 18.49 (0.74) 19.8 (NA) 18.42 (0.69)

20-50 35.41 (8.56) 38.23 (7.93) 35.34 (8.57) 40.7 (6.9) 40.44 (6.8) 40.83 (6.96)

50+ 61.62 (8.87) 65.54 (10.06) 61.41 (8.75) 67.58 (9.53) 66.79 (10.17) 67.71 (9.42)

Diabetes duration (years)

1-5 1.21 (1.66) 1.39 (1.67) 1.21 (1.66) 1.14 (1.61) 1.22 (1.13) 1.14 (1.64)

6+ 20.13 (11.22) 24.75 (12.04) 19.97 (11.16) 27.17 (12.99) 26.9 (11.79) 27.23 (13.27)

Mean eGFR (ml/min/1.73 m2) 90.92 (27.84) 21.75 (20.93) 92.87 (25.41) 42.44 (22.29) 17.98 (13.52) 48.12 (19.97)

Follow-up (years) 8.18 (2.89) 5.52 (2.88) 8.26 (2.86) 6.95 (3.35) 4.81 (2.9) 7.45 (3.26)

Table 6.1: Demographics of individuals with renal failure outcome data.

single individual with eGFR < 30 at baseline. The overall distribution of eGFR measurements

across the entire follow-up period is given by the table 6.1.1.

Table 6.2: Summary statistics of eGFR data at baseline

values

Min. : 3.00

1st Qu.: 76.00

Median : 96.00

Mean : 90.93

3rd Qu.:111.00

Max. :165.00
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6.2 Previous work on predicting time to renal disease

Despite considerable improvements in the management of glucose levels in the last years, the

mortality rate in patients with T1D is still high (Mameli et al. 2015). A finding confirmed by

several studies in the United States and internationally, with respect to standardised mortality

ratios revealing that patients with T1D have mortality rates that are 3–18 times higher than

would be expected in their respective countries. There is marked geographic variation in

mortality, and further notable differences between males and females, compared to the general

population (Secrest, Washington, and Orchard 2021).

In addition, excess mortality in people with long T1D duration (over 30 years) stems partly

from cardiovascular events (Deckert, Poulsen, and Larsen 1978). Interestingly, within the

first 20 years from the onset of T1D, the most significant part of the excess mortality is

attributed to renal failure (Dorman et al. 1984). Diabetic nephropathy turning into end-stage

renal disease (ESRD), which may result in renal replacement therapy (RRT) contributes

significantly to increased mortality (Orchard et al. 2010) (Stadler et al. 2006). Mortality rates

for all major diabetes-related complications (acute, renal, cardiovascular, and infectious) have

been summarised by Secrest et al. (2010) and can be reviewed analytically in the following

link.

In the last decade, new technologies have emerged, e.g., insulin pumps, glucose sensors, etc.,

offering reasons to be hopeful that late T1D complications might be prevented through better

monitoring. Moreover, drug development advancements for preventing or reversing moderately

acute impaired renal function have been pivotal. Finally, accurate estimation of the rate of

progression to renal failure is critical in lowering T1D mortality rates.

Creatinine is routinely used as a marker of renal function. Creatinine is a molecule that is

processed by the kidney, and therefore the rate by which creatinine is removed, divided by

the blood plasma concentration, indicates the rate of glomerular filtration (GFR) and the

diluting capacity of kidneys, known as tubular function. Glomeruli are tiny filters in the
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kidneys that help remove toxins from the blood.

The creatinine clearance is specified from serum creatinine (SCr) levels reported in mg/dL

and 24-hour urine monitoring. The following is the Cockcroft and Gault formula, which was

introduced in 1973 for assessing creatinine clearance:

CCr = (140 − age) × weight
72 × SCr [×0.85 if female].

The expected range of the creatinine clearance test is 100-130 ml/min in females and 110-150

ml/min in males (Gowda et al. 2010). Although creatinine is usually produced at a fairly

constant rate by the body depending on muscle mass, it is also influenced by muscle function

and composition, activity, diet and health status (Banfi and Del Fabbro 2006). In addition,

fluctuations in the values of serum creatinine may indicate kidney dysfunction.

Serum creatinine has been the gold standard for assessing kidney function despite being an

insensitive and unreliable predictive biomarker (Samra and Abcar 2012; Ostermann, Kashani,

and Forni 2016; Swedko et al. 2003; Delanaye, Cavalier, and Pottel 2017; Bargnoux et

al. 2018). However, accumulated experience and studies have led to discussion towards

markers of kidney function, which would be non-invasive, accessible in blood or urine samples,

cost-effective and capable of early detection, among other characteristics.

The gold standard measurement of GFR involves the injection of inulin and its clearance

by the kidneys (Kampmann and Hansen 1981). However, the use of inulin is invasive, time-

consuming, and an expensive procedure. Alternatively, the biochemical marker creatinine

found in serum and urine is commonly used in the estimation of GFR (Gowda et al. 2010).

Creatinine clearance (CrCl) is the volume of blood plasma cleared of creatinine per unit time

(Shahbaz and Gupta 2023).

In order to avoid the invasive creatinine clearance test, clinicians routinely use the estimated

glomerular filtration rate (eGFR) to measure how much blood the kidney filters clean every
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minute based on body size. The eGFR is usually calculated from serum creatinine using

an isotope dilution mass spectrometry (IDMS) traceable equation. The Chronic Kidney

Disease Epidemiology Collaboration (CKD-EPI) formula is one of the most widely used IDMS

traceable equations for estimating GFR in patients aged 18 and over (Brand et al. 2011).

The CKD-EPI formula uses a two-slope spline model to specify the relationship between GFR

and serum creatinine, age, sex, and race. The CKD-EPI equation is given below (Raman et

al. 2017):

eGFR = 141×min(SCr
κ

, 1)α×max(SCr
κ

, 1)−1.209×0.993age [×1.018 if female] [×1.159 if black],

(6.1)

where κ is 0.7 for females, and 0.9 for males, and α is -0.329 for females and -0.411 for

males. The equation does not take in weight or height data because the results are reported

normalised to 1.73 m2 body surface area, which is an accepted average adult surface area.

To sum up, the advantages of using eGFR are that serum creatinine is measured routinely and

offers an accurate approximation of the filtration rate based on blood samples only, instead of

the cumbersome and invasive screening of urine levels for 24 hours.

The consensus is that renal failure is defined as eGFR less than 15 mL/min/1.73 m2, and

it is therefore expected that eGFR trajectories would be the ultimate determinants of renal

replacement therapy (RRT). However, a few patients with ESRD have preserved eGFR levels

(Chang et al. 2013). Therefore, screening of eGFR might not be always ideal as an early

clinical marker to early detect declining kidney function and must be complemented by

spotting urine for albumin-to-creatinine ratio (ACR) to detect albuminuria (Nelson et al.

2006; Botev and Mallié 2008; Toffaletti 2010).

Scientists and clinicians have made great efforts in the past decades to discover and validate

novel biomarkers for predicting the risk of renal disease. Recently emerged biomarkers for

early detection of renal impairment have been discussed in Section 2.2.1.
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Yang et al. (2021) in their attempt to build a machine learning risk prediction model of

renal failure for a CKD population, confirmed the consensus view that the top risk factors

associated with renal failure are serum creatinine, age, urine acid, systolic blood pressure,

and blood urea nitrogen.

Tangri et al. (2017) developed a regression model for people with CKD stages 3 to 5, including

age, sex, and urinary albumin-creatinine ratio at baseline as time-invariant covariates, and

eGFR, serum albumin, phosphorus, calcium, and bicarbonate values as time-dependent

covariates. In addition, they constructed a last-observation-carried-forward (LOCF) model

for time-updated covariates. They have found that eGFR is more strongly associated with

kidney failure in the LOCF model versus the baseline model (HR, 0.44 versus 0.65). They

have additionally found that the LOCF regression model with eGFR as a time-dependent

covariate incrementally improves risk prediction for kidney failure over a static model with

only baseline eGFR.

For many decades, physicians have been taught that the slope of the decline in reciprocal serum

creatinine versus time reflects quite accurately the underlying changes in creatinine clearance

and allows an accurate assessment of the rate of progression to renal disease. Although

a linear trend is more informative than assuming a simple random walk for the changing

eGFR levels, likely, calculating a slope for eGFR is not as perfectly informative as it was

considered back in the 1970s because the decline of kidney function is not strictly linear

(Kassirer 1971; Levey, Perrone, and Madias 1988; Lacour 1992). In addition, the rate at which

kidney function declines in different age groups and under specific preexisting conditions has

not been conclusively determined. Therefore, the questions I am interested in answering are

how informative of RRT the slope of longitudinal eGFR might be, and whether a better model

for longitudinal eGFR improves the prediction of the rate of progression to renal failure.
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6.3 Methods & Observations

6.3.1 Objectives of the analysis

The rate of progression to renal failure of individuals early in the course of renal disease

cannot be reliably estimated. Hence, a question arises about whether employing models

more sensitive to the biomarker changing could perform better than conventional approaches

in fitting the longitudinal data like last-observation-carried-forward (LOCF). The LOCF

approach is commonly used to assess the risk of progression to a disease when time-varying

covariates are considered.

It is expected that the past trajectory of eGFR represents a quite informative individual

slope given that loss of kidney function progresses with time. However, there is no conclusive

evidence that this trend is linear. In contrast to HbA1c, where fluctuations and higher values

can be brought down with treatment and might follow a random walk over a while, a biomarker

like eGFR, which is even more directly associated with organ function, is more likely to follow

a monotonic trajectory.

The following sections describe our approach to:

• evaluate how eGFR trajectories evolve over time using a dynamic systems modelling

approach based on differential equations of a continuous-time form,

• and produce risk predictions of time to renal failure, conditional on individual-level

parameters of longitudinal eGFR, where various Kalman filter algorithms estimate

latent states.

The study conducted by Diggle, Sousa, and Asar (2015) is the most closely related to the

analysis described herein and has been a source of inspiration for us. They have developed a

routine for real-time monitoring of progression to renal failure, employing a linear mixed-effects

model extended by a random intercept and integrated Brownian motion, i.e., diffusion (section

2.2.2).
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The overarching aim of this chapter is to evaluate how informative longitudinal eGFR is in

assessing the development of renal disease in individuals with T1D and the contribution of

using more dynamic models for the longitudinal biomarker to predict the rate of progression

to ESRD.

Furthermore, the research question is extended to how long the time-updated eGFR trajectories

of individuals with T1D must be to add to the prediction of the rate of progression to renal

failure on top of clinical variables like sex, age at baseline and diabetes duration.

The choice of predicting time to RRT based on longitudinal eGFR observations was made on

the belief that eGFR is a better predictor for ESRD (as it is used effectively in the definition

of the outcome) compared to HbA1c. Thus, the eGFR-RRT prediction problem would make a

better exemplar for joint modelling than predicting time to CVD from HbA1c. It is important

to emphasise that the biomarker data used in my analyses belong to individuals diagnosed

with a chronic disease, namely T1D, that might drift more than usual over time. In most

instances, these longitudinal processes are highly dynamic; thus, we need to employ dynamic,

Bayesian modelling to handle changing trends through time and identify potential proxies

that contribute to the accurate specification of risk. For this reason, the development and

evaluation of joint models that specify the correlation and error structures between noisy

sequential biomarker measurements are essential to maximise dynamic risk prediction.

Furthermore, since the joint modelling approach specifies the entire trajectory of every

biomarker-subject pair to compute the survival function, as opposed to conventional modelling

approaches that only exploit biomarker observations at single time-points, we anticipate that

there will be an increment in prediction of time-to-event, even for complicated relationships

and biological pathways. Notwithstanding the speculated increment in risk prediction, joint

modelling remains computationally intensive and not yet fully optimised. Hence, the most

reasonable approach was to first leverage the most predictive/strongly related biomarker

option in order to develop and demonstrate the modelling process.
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As a first step, the performance of various state-space models and a traditional last-observation-

carried-forward (LOCF) model for eGFR have been compared. In the second stage, the

time-updated imputed eGFR data were provided into generalised linear models of Poisson

likelihood with the intent of estimating the event rate.

In the following, I describe:

1. the use of time-splitting Bayesian models for predicting progression to renal failure in a

T1D population

2. the results of the development of the biomarker submodel using ctsem and LOCF, and

the way those specifications influence the prediction.

In chapter 5, I have examined the underlying theory of fitting the so-called time-splitting joint

model, which is split into two components. The first piece of work involves the development

of the biomarker trajectory, i.e., the submodel for the longitudinal component, which I

constructed using the ctsem functionality.

Subsequently, I have evaluated the performance of the different submodels using metrics such

as deviance and AIC, intending to evaluate the developed longitudinal models for eGFR and

HbA1c initially, and by comparison to deduce the number of parameters needed to fit the

longitudinal trajectories of the biomarkers in the most optimal way regarding deviance and

AIC. Finally, in the following results chapter, I describe the final fitting of the model for

progression to RRT, comparing the performance characteristics of each joint model.

The main conclusions drawn so far from my developments have been that:

1. Extending the LMM also to include a term for drift and diffusion leads to the best fit

of the biomarker data in this population of individuals with T1D.

2. A population-level parameter model needs to be revised to specify individual-level

parameters of previously unseen data, especially if such individuals have not been part

of the training.
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6.3.2 Approaches to exploiting time-updated data

I have employed the ctsem package for the specifications of the longitudinal trajectories.

This software produces projections of the biomarker trajectories based upon individual-level

parameters for the rate of change of eGFR. A limitation of this approach is that we cannot

learn the individual parameters for those who have not been included in the training.

Therefore, for the development of this methodology such software limitations have been

a major factor. To work around this software limitation, as part of the training set, the

setup includes a deliberate censoring of those individuals for whom we make predictions after

a particular point of their follow-up, so-called landmark time point. This enables forward

predictions based only on previous data, and eliminates the introduction of immortal-time

bias, introduced in section 2.4.1.

Were the ctsem software designed for clinical prediction applications, optimally it would

have been implemented in a way that uses the population-level model in order to learn the

individual-level parameters and make predictions for entirely new patients, for whom we do

not have available data. For instance, those previously unseen individuals may be homeless

and not registered with a general practitioner.

Hence, the landmark time point works as a cutoff, after which we update the eGFR trajectories

which are used for dynamic prediction, based on knowledge accumulated until the landmark

point. The landmark point is set up to 5 years after the subjects’ entry. During the first

2826.527 person-years (up to 5 years since entry for each subject), there were 290 RRT

occurrences and 37070 out of the 62812 eGFR observations.

Put differently, the landmark point is calculated with respect to individuals’ entry point to the

study. Single landmark point to eliminate immortal-time bias was proposed by Anderson et al.

(1983) in order to perform a survival analysis of tumour response. The paper suggested that

when we compare people that responded to treatment with those that did not, we create bias

in favour of responders, who have survived long enough to record their response. Therefore,
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the artificial censoring I have introduced does not allow for information on eGFR arrival

times to be considered in the specification of the survival function of those who technically

are ‘unseen’ by the model during the prediction period.

6.3.3 Splitting the dataset into training and testing subsets

In this analysis, I have employed a k-fold cross-validation approach with an external validation

on unseen data of T1D patients using a landmark time point.

The pipeline of the analysis goes as follows: First, the original sample is randomly partitioned

into k equally-sized subsets. Next, each data partition is used to train a separate model,

which is then validated on the withdrawn proportion of the data. Overall, this process is

repeated k times, using a different partition of the data at each iteration. Therefore, each

observation is used for validation exactly once. The advantage of this approach is that all

observations are used for training and validating the fitted models. This allows us to validate

the fitted models on the largest number of events possible.

The cross-validation approach requires refitting a generalised Poisson model k times to different

subsets of the data. For the task of dynamic prediction, a different segment of the data (test

individuals) is deliberately censored at five years within each training fold. Those individuals,

who are censored on purpose at five years within the current training fold, comprise the

complementary testing fold to be used with that model. In this case, the model is fitted

using longitudinal data for N individuals for up to five years. After that point, biomarker

information and event indicators are withheld from training. Using data from the future would

notoriously give rise to immortal time bias, which in turn would yield biased estimations.

Therefore, the training/test split concerns the individual follow-up.

The testing folds are created upon the condition that subjects must have contributed five years

to the study. Dynamic predictions are based on imputed data, i.e., Kalman filter imputations

of eGFR, which are agnostic to any observation of these individuals after five years. The
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implementation of ctsem requires that within each training fold, there are at least some

individuals who are still followed up five years after entry to be able to make predictions for

those ‘unseen’ individuals in the five-year prediction window.

6.3.4 Kalman filter setup and presentation of training scenarios

At this point, someone might ask why we need to include those that have less than five years

of follow-up to train the model. As explained later on, the fitting process has been adapted to

test both scenarios (A. follow-up ≤ 5 years and B. follow-up ≥ 5 years), only to understand

at a later stage, the intricacies of including only in training subjects who progressed to RRT

in their first 5 years of follow-up.

The current section gives an overview of the steps that led us to two major statistical analysis

designs. The estimation is based on coupling time-updated biomarker data generated from a

Kalman filter algorithm with Poisson models for time to event (as described in chapter 5). In

addition, I have specified a range of stochastic processes to determine the rate of change of

longitudinal eGFR, and assess whether there were systematic differences between the entire

cohort and the filtered subgroup.

The imputation algorithm of the Kalman filter depends on two parameters. Imputed eGFR

data are generated conditional on past observations up to

1. pre-determined time points, as specified by a time step given by the user, and

2. the original arrival times of observed data for each subject.

A k-fold cross-validation design has been employed, and a landmark time point is determined,

up to which an individual needs to be observable and free of an event in order to be assigned

in one of the k testing folds. This landmark point has set up to five years, i.e., half of the

longest possible follow-up. Recall that the average follow-up time for the filtered dataset

is 6.95 years and respectively for the full cohort 8.18 years. Therefore, five years after the
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baseline is a reasonable threshold that most participants have outlived.

The first design allows subjects that have been followed up for less than five years to contribute

to the training phase. Although those individuals (with length of follow-up ≤ 5 years) are

not included in the test set, they actively contribute to model fitting for as long as they are

event-free. Subjects that are observable but contribute zero observations to the study during

the first five person-years are excluded from the analysis. I call this statistical analysis design

analysis A, i.e., inclusion of all individuals in model training, regardless of follow-up length.

Limitations of this study design: The subjects that are followed up for less than five years

do not enter the cross-validation process. They are only included in the training folds, as

they do not meet the criterion to enter the testing folds (having a follow-up length of at

least five years). As a result, the event distributions between training and test subjects differ

substantially since the testing folds are constructed on the basis that subjects are event-free

for 5 person-years. On the contrary, the training data also include events that occurred within

the first five person-years.

The predictive models, in this case, are less calibrated: they assign a very low probability of

an event in each interval for most individuals because the test subjects were seen as low risk

since they do not have an event within five years from entry. Therefore I refined the analysis

to restrain the training folds so that they include subjects with follow-up ≥ 5 years to be

compatible with the testing folds. I call this analysis B. When both training and testing folds

are taken together in this scenario, they have equal numbers of individuals. Hence, in this

case, the cross-validation concerns individual observation time before and after the landmark

point.

By excluding from cross-validation those individuals whose follow-up was shorter than five

years, I ensure that the training set does not include any individuals who had an event within

the first five years (had an event occurred, they would not be part of any test fold). Hence,

the training folds of analysis B include only individuals who were event-free during their
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initial five years. As a result, the event distributions between train and test folds do not

deviate significantly from each other, and model predictions are well-calibrated, as explained

next in chapter 7.

To sum up, the number of events in the training folds under this specification matches the

number of events that occurred after the landmark point. Analysis B discards those subjects

with an event within the first five years. Therefore, the total number of events in the training

phase equals the number of events occurring during the prediction period.

Note that in this refined design, the initial five years are all control-years (years that do not

contain any event). The total length of follow-up between training and test data is now almost

the same, with the difference being that the last interval of the training set may be truncated

if an event occurs. On the other hand, the prediction intervals are all of equal, fixed length (I

have studied various options such as one year, half year, etc., which is further discussed in

chapter 9) since event time is a priori unknown, and the hazard rate must remain constant

throughout the interval for the prediction to be accurate.

To demonstrate the designs and get the pipeline working, I have split individuals who are

followed up for at least five years into two folds, in one of which their biomarker data and event

status are withheld to allow for forward predictions of time to RRT. I then used the model

agnostic to any data for these test individuals after the landmark time to make predictions.

Analyses have also been performed using a 10-fold cross-validation, yielding similar results.

However, using ten folds to replicate all different settings, i.e., eight model specifications

(described in section 6.4), two designs: follow-up length restrained to 5 years or not, six

different time steps to produce imputations, and two input samples (total and filtered cohort)

has been relatively computationally intensive.
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6.3.5 Format of input: eGFR data

I have log-transformed the eGFR data to reduce any skewness in the dataset and be more

compatible with other studies. The log-transformation helps stabilise the variance of the data,

particularly in this context where the variability increases with the magnitude of the data.

Since more granular time steps than one year have also been used, most of the final ‘made-up’

datasets feature a substantial number of imputed sequential data, especially when individuals

are followed up for long periods. I have preserved the original mean and standard deviation

of eGFR to reverse the transformation if deemed necessary. The eGFR, age and diabetes

duration data are also standardised.

To motivate more clearly the reason for transforming the data, the distributions of the raw

eGFR values and the scaled and log-transformed eGFR values for the filtered dataset are

shown respectively by figures 6.1 and 6.2.

Figure 6.1: Distribution of original eGFR Figure 6.2: Distribution of transformed
eGFR

The format of the input that goes into the model is one row per observation for each subject

(long format), as shown in the following extract:
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Table 6.3: Raw and standardised log-transformed eGFR

given with time of measurement (lapsed since baseline),

and event indicator. Ten first observations for a randomly

selected patient who experienced no RRT event.

raw eGFR log eGFR time of obs event

52.204 0.574 0.137 0

67.856 1.107 0.808 0

67.845 1.106 0.830 0

56.716 0.742 1.843 0

56.706 0.742 1.867 0

60.017 0.857 2.801 0

60.001 0.857 2.839 0

76.493 1.350 5.292 0

74.743 1.303 6.308 0

60.434 0.871 7.461 0

The imputation frequency depends on the user’s time step and the observations’ original

arrival times.

Informative example

Suppose a subject had a biomarker value lastly measured at Time = 8.5 years since entry to

the study and an event at Time = 10 years (1.5 years after the last biomarker update). In

this thought experiment, we are using a time step for the Kalman filter equal to 1, i.e., to

impute eGFR values every one-year during the training period. Additionally to the imputed

values at the end of one-year-long intervals, we could also get imputations sooner, as long as

new biomarker data become available within the one-year interval. Put differently, the arrival
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of a data point triggers a Kalman filter imputation, whenever this comes.

An one year and half long interval, (starting at Time = 8.5, which is the last arrival of their

observation, ending at Time = 10, which is the event time) would not be valid because this

interval would run longer than the maximum interval length, set to be one year.

Since an interval such as [8.5, 10], i.e., one year and half long interval is prohibitive in this

particular setup, the algorithm operates as follows: Counting backwards from the moment of

event, the subject would have an interval spanning from 9 to 10 years (since entry), along

with an interval starting at 8.5 (biomarker data arrival), and ending at Time 9. The flag for

the event within the interval [9, 10] is 1, and elsewhere is 0, because in intervals prior to [9,

10], the subject has been event-free.

6.4 Development of the biomarker submodel using

ctsem

6.4.1 Specification of state-space models

I compared a range of state-space models, also known as continuous-time structural equation

models or dynamic Bayesian networks, to determine which model fits the eGFR data best.

Continuous-time models involve a two-level data structure, sequentially measured values

nested within subjects. The most challenging part of the model to estimate is individual-

level parameters, i.e., random effects. Among the models I trained, I used continuous-time

autoregressive effects models coupled with a stochastic diffusion process.

Among the benefits of this model class is that it scales favourably to high-dimensional datasets

and is likely to explain highly variable biomarker trajectories among between people with

T1D concerning the estimated variance of the distribution of the longitudinal data.

I have used hierarchical state-space models that rely on differential equations to capture the
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underlying variance in observations and infer time to event. In addition, the initial LMM has

been extended to allow for autoregressive effects that vary over time and random effects to

account for the between-subject variability. In this case, the longitudinal process has been

explicitly specified based on a multi-level univariate Gaussian state-space model.

Brownian motion, and Langevin processes are all instances of Gaussian processes (stochastic

differential equations) that explain how a system evolves according to a set of deterministic and

fluctuating (i.e., random) forces. In the Brownian motion of molecules, for example, a sample

path of a diffusion process infers the trajectory of a molecule subjected to rearrangement

due to collisions with other molecules. Equivalently, the Wiener process is a specific type of

continuous-time stochastic process that integrates a Gaussian process that exhibits Brownian

motion.

The following properties signify the equality between Wiener process and Brownian motion:

Like Brownian motion, the Wiener process exhibits the Markov property, where the future

behaviour depends only on the current state and not on the past. Gaussian increments signify

the increments of the Wiener process, i.e., the changes in value between two time points, are

normally distributed with mean zero and variance proportional to the time interval.

In linear mixed-effects models with autoregressive drift effect, the current state is regressed on

the previous response along with the fixed and random effects, i.e., the current state depends

on current values and past covariate trajectories (Diggle et al. 2002).

The developed models for eGFR were interfaced via the R package ctsem 3.7.6 running on R

version 4.1.2 (2021-11-01). All the models for the longitudinal data apart from the LOCF

model have been referred to as ctsem models for convenience as they have been developed using

the particular software. Mainly, the model specification was carried out via the modelling

function ctModel(), and fitting was derived via ctStanFit() that employs the powerful

probabilistic language Stan as a backend.

The models under consideration are the following (in order of increasing complexity):
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1. Regression model with individual slopes and intercepts, i.e., a linear mixed-effects model

(LMM),

2. Regression with drift as an autoregressive effect, implying that the process tends to

drift towards the areas of high concentration/average values over time,

3. Regression with diffusion to model sudden nudges/perturbations of the longitudinal

process,

4. Regression with drift and diffusion but no slopes (i.e., no LMM),

5. LMM with diffusion,

6. LMM with autoregressive drift effect,

7. LMM with both drift and diffusion (full model).

6.4.2 Model comparison

For modelling the longitudinal eGFR data, I employ and demonstrate the ctsem functionality.

The ctKalman() function uses the Kalman filter algorithm to output the predicted estimates of

the latent states of the biomarker base d on the data fit with ctStanFit(). The ctKalman()

output depends on the mode of the parameter distribution. Ideally, one would sample multiple

imputations from the posterior distribution and take the average prediction. However, as a

start, I used the posterior mode to obtain a single imputation of each biomarker state as the

default specification in my attempts to sample the posterior distribution of the longitudinal

data.

Furthermore, using the ctKalman() function, I generated various graphs that depict the

original data y and the estimates of the ‘true’ value of y, given all observations. By replacing

‘y’ by η, the function returns the latent states of the so-called manifest variable, as shown in

figures 6.3, 6.4 and 6.5.
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Figure 6.3: Linear mixed model with no diffusion or drift: updates to trajectory of five
individuals by Kalman filter

More specifically,

• Filter: the first panel of figure 6.4 depicts the Kalman filter predictions for each time

point conditional on the actual data of a randomly selected subject. Here, the model

extrapolates forward in time any prior knowledge obtained from the data, determining

the latent states. The model updates its predictions as new observations arrive.

• Smoother: the smoothed estimates depicted on the second panel of figure 6.4 are

conditional on all time points in the data - past, present, and future.

In figure 6.4, the first panel depicts the yprior computation: original data y of subject 118

and the prior distribution updating mechanism. The second panel depicts the ysmooth

computation: the estimates of the true value of y given all observations for the same subject.

141



● ●
●
● ●

●
●

●

●●

●
●

●
●●

●

●
●

● ●● ●●
●

●

●
●

●

●

●

●
●
●●

●
●

●●

●

●

●

20

40

60

2 4 6 8
Time

eg
fr Variable

● egfr

● ●
●
● ●

●
●

●

●●

●

●

●
●●

●

●
●

●
●
● ●●

●

●

●

●
●

●

●

●
●
●●

●

●

●●

●

●

●

20

40

60

2 4 6 8
Time

eg
fr Variable

● egfr

20

40

60

2 4 6 8
Time

eg
fr Variable

● egfr

Subject 118 − yprior, ysmooth, etaupd

Figure 6.4: LMM state-space model specified for longitudinal eGFR of random subject

The smoothed estimates depicted in the plot are not included in modelling time to event

to minimise algorithmic bias. The third panel depicts the etaupd computation: replacing

the original values y by the predicted latent states η, the Kalman filter generates a complete

trajectory of eGFR, which is in turn plugged into a Poisson regression model for time to event

as time-updated predictor.
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Figure 6.5: Three state-space model specifications under comparison

In figure 6.5, the first, second, and third panel depict an LMM, a model with diffusion,

and an LMM with drift and diffusion, respectively. These diagrams show the Kalman filter

imputations of the latent states, conditional on observations strictly up to the prediction time.

The updating mechanism of the prior distribution is also shown. The imputations of latent

states slightly differ depending on the model specification (whether the model includes slopes,

drift or diffusion processes). The second and third panels arguably look quite similar. This is
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because the diffusion process dominates in both modelling specifications.

However, the functionality for smoother estimates has been used for illustration purposes

only. Including information from the future at the time of prediction would induce severe bias.

Thus the smoothing algorithm has not been employed for the task of dynamic prediction.

Lastly, the graphs are respectively based on the maximum likelihood estimate and posterior

mean of the parameters.

The following two data extracts show the actual data of subject 118 at original arrival time

points (table 6.5) and the respective Kalman filter predictions of latent states of eGFR based

on the LMM (table 6.4.2). Not each time point shown in the second table is an original time

point of arrival of an observation. The algorithm produces imputations for any arbitrary time

point specified by the user. The filter uses the estimated prior distribution and the observed

data up to that point to impute the states of eGFR.

Table 6.4: Actual observations times

arrival time of observation original eGFR

0.05476 50.73734

0.10130 50.72075

0.38056 49.39172

0.50650 49.34804

0.76934 43.86357

0.81040 46.94766

0.81314 46.94675

0.93908 48.41158

0.94456 48.40972

1.03765 42.83192
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Table 6.5: Extra biomarker values and times based on

Bayesian updating

time of imputation imputation of stand/sed log eGFR

0.00000 45.76539

0.05476 49.68982

0.10130 50.06144

0.38056 49.21433

0.50650 48.94547

0.76934 47.00294

0.81040 46.87303

0.81314 46.87749

0.93908 46.74716

0.94456 46.96477

1.00000 46.78285

1.03765 46.11076

1.28679 44.15129

1.63176 40.68697

1.76591 38.71778

1.80698 37.66357

1.99316 37.41287

2.00000 37.37475

2.06708 37.73202

2.09719 38.10346

Figures 6.6 and 6.7 give an overview of the two staged imputation-regression pipeline.
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Figure 6.6: Stage 1 Randomly generated initial data. Time-split and imputations generated
via a Kalman filter at regular intervals including original time points.

Figure 6.7: Stage 2 Approximate the hazard function. Imputed values fed into a Poisson
regression model as time-updated data.

Summarily, the ctsem software encodes functionality for estimating the biomarker’s latent

states using the Kalman filter algorithm. The Kalman filter estimates a distribution for the

input data and the mode representing the latent state at an arbitrary time, see figure 6.3.

Therefore, evaluating how the Kalman filter performs for different individuals is interesting. At

the individual level, the Kalman filter updates the state each time there is a new observation

available, i.e., the number of sequential observations might determine the frequency at which

the updating happens. Additionally, the Kalman filter also performs with a time step, which

evokes updates (to specify a latent state) without new data has arrived.
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Note that the updates evoked by the time step all occur simultaneously for every individual.

Therefore under this updating scheme, one could obtain synchronous biomarker data to be

used by other joint modelling implementations that operate under this requirement, such as

rstanarm.

6.4.3 Running times of joint model fitted using stan_jm() and of

state-space models fitted to longitudinal data with ctsem

I have also fitted in parallel a univariate joint model per fold to use it as benchmark for the

filtered subgroup, employing the modelling function stan_jm() from rstanarm. Table 6.6

gives the running times required to fit the joint model.

Table 6.6: Runtime in hours of fitting a stan_jm() model

with 1000 iterations and 4 chains on 2673 subjects and

one biomarker.

warmup sample total

chain 1 4.255 2.015 6.270

chain 2 5.288 2.042 7.330

chain 3 7.670 7.162 14.832

chain 4 6.225 1.977 8.202

To highlight the contrast, the running times required for fitting five ctsem models in parallel

(LMM, LLM with drift, LMM with diffusion, No LMM (a model with drift and diffusion but

no slopes), LMM with drift and diffusion) for three study designs are given in table 6.7:
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Table 6.7: Running times of fitting biomarker data using

ctsem.

individuals biomarkers time unit

29118 2 81.576 hours

29764 1 28.464 hours

2673 1 2.790 hours

6.4.4 Varying interval lengths

Individual time-splitting is determined by both the time step given by the user and the

original time points that data have arrived at. Hence, each subject’s follow-up time has been

split into intervals of varying length.

Via the Kalman filter algorithm, I had an imputed value assigned at the beginning of each

interval. The longest possible interval between two updates (in the absence of observed data)

is 365.25 days. This choice is motivated by the observed frequency of the available data. each

subject included in the analysis had at least three eGFR observation per year (90.2% of the

full dataset).

With the Kalman filter, one can obtain updates dynamically as frequently as every one day,

without substantially complicating the analysis. Since all imputed data comprise the input

used in Poisson regression models, in which time is split into person-time intervals with a

biomarker imputation being available at the beginning of each interval, we are interested in

approximating the continuous hazard of the event by using a piecewise exponential survival

function which assumes a constant hazard rate in each interval and can change between

intervals. Therefore, I have applied the developed pipeline using a selection of interval lengths

to assess how it affects the prediction of time to event.
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By using gradually smaller interval lengths, the number of sequential updates, which are not

introduced by the arrival of a new biomarker measurement, is increased. The shortest interval

length I determined through the time step argument was 1.4 days (365.25 days/256). Note

that all interval length choices divide 5 exactly to ensure that we always have an interval

starting at the landmark point (Time = 5 years).

Although short interval lengths meet the assumption of a constant hazard within each interval,

from an algorithmic point of view, frequent updates (determined by short interval lengths)

might increase the error of the estimation of latent states if a value is carried forward for a

long time until we have new information.

A peek into results: the closest imputations to actual data were estimated when the specified

time step was the one closest to the original arrival rate of the repeated measurements.

Although this varies between individuals, the most observed frequency was monthly to weekly.

In the following part, I elaborate more on the interval lengths and how this affects the

calibration of predictions. I also present various visualisations of the imputed data to ease

comprehension.
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Chapter 7

Rationale of imputations before and

after the landmark point

As indicated in the previous chapter, I outlined the theory and explained that I first fit a

submodel to the longitudinal biomarker and then fit the Poisson model for time to event,

including the submodel of the longitudinal component as a time-updated covariate. In this

chapter, I describe the fitting of the biomarker submodel in more detail and evaluate the

performance of that fitting.

As explained before, the time-split joint model formulation involves two stages: the imputed

data obtained by various Kalman filters for the longitudinal eGFR as an extension to the

LOCF model in the first step are used as time-varying covariates to fit a Poisson regression

model on the training set. Follow-up of individuals who comprise the test set is deliberately

censored at Time 5.

The Poisson model accounts for the varying intervals between observations (biomarker data

arrive frequently but not periodically) by including an offset term for the logarithm of the

interval length. The additional information I provide the model with is an eGFR value, sex,

baseline age and baseline diabetes duration. All covariates are standardised, and eGFR has
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also been log-transformed.

This method aims to emulate a realistic situation in which I am making forward predictions for

individuals who have been followed up for a number of years. Therefore, if enough information

is accumulated, it can enable forward prediction, based on a model already trained on a

similar population. Unfortunately, due to software limitations bound to ctsem, we cannot

use a model that has never seen any data for the individuals chosen for forward prediction.

Therefore, the training set has to include participants who are fully observed and followed up

to the end of the study period and then censor the subjects whom one wants to predict for.

For the task of forward prediction, I have defined a landmark time point, up to which the

subject we wish to predict for must be event-free and observable. After landmark time, all data

for the particular subject are deliberately censored to evaluate the predictive performance of

the trained model on the test data, which are imputed data taken to reflect past trajectories.

To fit the Poisson model, the data of individuals comprising the testing population are not

included after the landmark time point. Hence, a cross-validation approach is employed to

split N event-free individuals up to the landmark point (analysis B is the dominated approach

for reasons explained in section 6.3.4) into two folds. Data after five years are deliberately

censored if those people are selected for forward prediction. Otherwise, the data are given to

the Kalman filter as usual, and imputations rely on this new information. Each fold contains
N
2 censored individuals. Hence, the model that has not seen data for the group of N

2 subjects

is then used for forward prediction on this half.

Biomarker data imputed after landmark time have dual use and come from two imputation

schemes. The first one yielded data spanning the entire course of follow-up in order to be used

for training. For this task, imputed data are computed at (a) pre-determined time points (e.g.,

1, 2, 3), which all these individuals share according to a user-chosen time step, and (b) the

observed time points of observations for each subject, which apply to each one individually.

Furthermore, inferring a long trajectory from a limited number of observations may be
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less reliable. To that effect, I have excluded a few individuals with less than three eGFR

measurements throughout follow-up, to ascertain that a realistic long-term trend can be

identified and fed back into the Poisson regression for the event. These individuals are 2855

out of 29121.

To evaluate the model’s predictive performance, I use the predict() function on test data

generated from the Kalman filter. However, the frequency of the updates this time only

depends on the selected time step (how often the biomarker value needs to be updated).

These imputations are unrelated to any observed information after Time 5. This imputation

scheme inherently includes more uncertainty because the trajectory does not depend on new

observations arriving after the landmark time, but it only depends on the built-up trajectory

until that time. As a consequence, the censored follow-up, i.e., the prediction window for each

individual who is intentionally censored, is split into equally-spaced intervals, the length of

which is determined exclusively by the user’s time step. The Kalman filter imputations for

the testing folds are generated at selected time points, which do not exceed the maximum

duration of the study.

The predicted values, i.e., test data generation process goes as follows: for the user-specified

time step, the Kalman filter estimates the latent eGFR states. The prediction intervals span

years five until the end of individual follow-up, rounded up to the closest integer1.

For instance, if a subject is observed for 1965 days = 5.38 years in total, the last estimate

will fall into the interval whose upper bound is 6. For significant splits of time, e.g., one-year

versus one-week-long intervals, there will be a single or a few imputations that are included

in an interval that goes beyond the observed end of follow-up. But the beginning of the last

interval always starts before the end of follow-up.

Therefore, every subject in the testing fold has data imputed on the same data points for

as long as they are observed. If they are removed from the study, their last interval will be
1The end of an interval may not be an integer when the timestep is a fraction of a year. Bottomline is that

each prediction interval should always run to its designated end value.
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rounded up to the next integer.

To predict the event status, I use the model fitted on the training set to compute the probability

of an event in each person-time interval from 5 years until the personal end of follow-up. The

constructed intervals for which we predict a failure probability represent person-time between

imputed (synthetic) biomarker observations: the model is agnostic of any actual data after

the landmark time. This scheme is followed for the generation of the test data.

The rationale for letting the last interval run slightly beyond the end of follow-up, instead

of truncating at the moment of the event, is to prevent the model from miscalculating the

predicted risk at the interval. The time of event is not included in these predicted data: the

model has been outcome-agnostic for the individuals included in the test set. All prediction

intervals are of equal length, with the last running to a predetermined end to allow for equal

chances of an event happening within the interval of choice.

7.1 What is being projected forwards after five years?

7.1.1 How do the observed and predicted values compare?

The figures 7.1 to 7.4 included in this section show the original and imputed biomarker data

of a randomly selected individual. They showcase the two imputation schemes: each Poisson

model is fitted on eGFR imputations generated according to the true arrival times of new

observations that fall into the first five years of follow-up, plus imputations at pre-determined

time points retrieved by the chosen time step. This imputation scheme applies to the data

generation of individuals used to fit the models. The imputed data of individuals used to test

the fitted models, which cover years five to ten (at most), are generated differently. There is a

value yielded for pre-defined, equally-spaced time points (same time step according to which I

generated values before landmark time). The trajectory of the test individuals is updated

when new data arrive strictly up to Time 5. After that, the trajectory is projected forward
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based on what has been learned so far.

The following visualisations help to understand how the imputed trajectories look like before

and after year five, and the data that go into training/testing, respectively.

Each Poisson model has been trained with imputed data from a Kalman filter up to Time

5 for test individuals. The test imputations are given by the smoothed segment (coloured

either red or green, depending on the fold the individual belongs to), which starts at the

dashed vertical line. From this point forward, the trajectory is not updated according to new

biomarker data. Thus, the trajectory looks relatively flattened: it is converging to a long-term

average. In the case of the LOCF model for the longitudinal eGFR data, the trajectory after

Time 5 remains flat. In the alternative scenario where the subjects do not get intentionally

censored at training in order to be used as test subjects afterwards (which happens in one of

the two folds for a given individual each time), all data coming after Time 5 are taken into

account as normal. In this case, the Kalman filter imputations follow the observed values (as

shown in the following figures) for the entire length of follow-up, i.e., landmarking does not

affect the data generation process.

Fig 7.1 depicts the observed and imputed trajectories of a random subject who did not

progress to renal replacement therapy until the end of the study. The black data points give

the original observations. The selected subject did not experience an event within the first

five years of follow-up, thus, is eligible to get intentionally censored for forward prediction.

Due to cross-validation, the subject will be fully observed in one of the two folds, shown by

the (green line) and censored in the second one. The red line depicts the trajectory that stops

being updated after five years (landmark time). The diagram shows all the imputed eGFR

latent states up to five years (jagged red segment) and the projected trajectory (smoothed

red segment) in the absence of new data, conditional solely on past values. The green and

red paths (each one corresponds to one fold) are negligibly different in places before Time 5,

because they come from two runs of the Kalman filter with an LMM with drift and diffusion
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configuration.

Figure 7.1: Observed trajectory (black). Full follow-up imputed eGFR based on LMM, drift
and diffusion (green). Time-censored, imputations until 5 years are updated conditional on the
real data (red). After landmark time, the real data are unavailable, and the learned trajectory
is projected forwards (shown by the smoothed segment) to assess predictive performance.

Figure 7.2 depicts the same individual as figure 7.1 with baseline eGFR 30, who survives

follow-up, where a range of state-space models is compared for eGFR imputations. The

trajectories closely follow the distribution of observed data until censoring time. After five

years, the observed data are withheld, and the path is extrapolated forward, conditional

on previous Kalman filter updates (red smoothed segment). Whether the projected path is

slope-free or not depends on the Kalman filter configuration. We observe that the diffusion
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model’s projection closely approximates the LMM, drift and diffusion trajectory for that

individual. Therefore, it is seen that the diffusion component captures the fluctuations in

changing eGFR, while the mixed-effects component conveys the underlying long-term trend.

An LMM with just slopes or the drift model does not render an adequately realistic situation.

Figure 7.2: Subject 11, baseline eGFR 30. Observed values (black). Continuously-updated
imputed trajectory (green). Kalman filter imputations are generated as new data arrive until
year 5, comprising the training input (red). The predictive performance is evaluated based on
imputations shown by the smoothed segment after year 5 every 21 days.
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Figure 7.3 depicts a random individual with baseline eGFR 50 who progressed to renal

replacement therapy during their 8th year of follow-up. A range of state-space models is

compared for imputed eGFR. The subject’s trajectory of eGFR has a downward trend,

monotonically decreasing, which is best described by the LMM model (slopes) with drift.

When the diffusion process is included in this model, it places the trajectory higher, which is

not coinciding with reality.

Figure 7.3: Subject 118, baseline eGFR 50. Observed values (black). Continuously-updated
imputed trajectory (green). Kalman filter imputations are obtained as new data arrive until
year 5, comprising the training input (red). The predictive performance is evaluated based on
imputations shown by the smoothed segment after year 5 every 21 days.

Figure 7.4 depicts an individual with baseline eGFR 84 who survives follow-up. Fluctuating
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eGFR, which falls from year 2 to year 7 and rises thereafter. The mixed-effects and diffusion

model better depicts the rate of change of eGFR. On the other hand, the LMM with drift

makes the projected trajectory look more optimistic than the actual situation.

Figure 7.4: Subject 1, baseline eGFR 84. Observed values (black). Continuously-updated
imputed trajectory (red). Kalman filter imputations generated after year 5 (green). The
predictive performance is evaluated based on imputations shown by the smoothed segment
after year 5 every 21 days.
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Those imputations, therefore, may not be as accurate as the information used for training

due to the lack of newly observed data after the threshold of five years. Imputations used

in model training depend on new data coming throughout follow-up, whereas for forward

predictions, all observed data are censored after landmark time (at the beginning of the

prediction window). This absence of external information is necessary when testing the

model’s predictive performance to avoid biased estimations that stem from data from the

future.

Hence, to guess future biomarker values and, subsequently, time to event, only the trend built

up to the landmark point informs future trajectories. This difference in the generation of train

and test biomarker data could translate into reduced model calibration, which is dealt with

by ignoring the censoring of the interval containing the event, as explained further below.
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7.2 Evaluation and comparison of the submodels of

eGFR

Model comparison has been based on the log-likelihood given the training data with a penalty

for the number of parameters. I have used the log-likelihood, the number of parameters and

the Akaike information criterion (AIC) of each model as means for model ranking. The AIC

is defined as 2k − 2Ltrain where k is the adequate number of parameters and Ltrain is the

log-likelihood given the training data. As a rule of thumb, AIC can be used to compare

models run with different parametric forms, with the lowest AIC indicative of the best fit. In

fact, among the seven developed ctsem models, the LMM, which includes drift and diffusion

components, presents the lowest deviance (−2Ltrain) and the lowest AIC, in every used sample

of the filtered group (baseline eGFR < 60 mL/min/1.73 m2). An extract of a single fold is

shown in table 7.1.

The fit of each model is standardised. I have used the LMM as the reference model, and

reported the differences from the reference model (Ltrain of model X - Ltrain of LMM, AIC of

model X - AIC of LMM). The larger the deviation from the reference model, the better the

fit of the model.

Therefore, the best ∆ Loglik is the largest positive value, whereas the best ∆ AIC is the lowest

negative value. The LMM with drift and diffusion has the lowest deviance and the lowest

AIC. It has been found that including a diffusion term in the longitudinal model outperforms

the models without it in terms of fitting the biomarker data.

The measures used to compare the observed versus the predicted values on the test data after

the five-years landmark have been discussed in the predictive evaluation chapters 8 and 9.

161



Table 7.1: Model comparison using the log-likelihood and

Akaike Information Criterion (AIC)

Long/nal model ∆ Loglik N of pars ∆ AIC

model.lmm 0.0 15 0.0

model.drift -12502.9 13 25001.7

model.diff 5071.8 13 -10147.7

model.driftdiff 5078.0 17 -10152.1

model.lmmdiff 5250.5 19 -10493.1

model.lmmdrift 3.3 19 1.4

model.lmmdriftdiff 5285.6 23 -10555.3

A number of graphical illustrations is given next (figures 7.5 to 7.8) that help us compare the

various model fits for a random group of subjects. The graphs feature a random sample of

subjects, two of whom are censored at the landmark time (subjects 56 and 60) and utilised

for prediction, and the remaining three are followed up until the end of the study. As before,

eGFR is log-transformed and standardised to facilitate presentation.
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Figure 7.5: Here, we inspect trajectory plots developed based on the LMM. We see that the
shrinkage towards the population mean could be better. The individual intercept and slope
dominate in this example.

163



●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●● ●
●

●

● ●
●

●

●

●
●

●

●

−2

−1

0

1

2

0.0 2.5 5.0 7.5 10.0
Time

eg
fr

Subject

●

●

●

●

●

11

43

49

56

60

Figure 7.6: Inspecting trajectory plots developed based on the drift model.
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Figure 7.7: Inspecting trajectory plots developed based on the drift and diffusion model.
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Figure 7.8: Inspecting trajectory plots developed based on the LMM with drift and diffusion.
Extending the LMM to allow for drift and diffusion allows the trajectories to curve slightly
away from a linear path towards the population mean.
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7.3 Discussion

In this chapter, I have given some examples to ease comprehension regarding the different

imputation configurations that apply to the developed method. The figures may have

provided a better understanding of how the synthetic data are being used. When the updating

mechanism is agnostic to the external information arriving after the landmark time, the

generated imputations are then used as test data to evaluate the fitted Poisson models. When

the updating mechanism generates imputations conditional on external information, the data

are used to train the various Poisson models.

The more frequently (routinely) the biomarker data are updated in real life, the better the

dynamic techniques approximate the rate of progression to renal complications. That, in turn,

allows clinicians to make informed decisions about the course of treatment and time until the

next assessment.

I have shown that differential equations to specify biomarker trajectories better fit the

longitudinal data over a basic LMM. An additional strength of using a broader family of

continuous-time state-space models via ctsem is that it facilitates the inclusion of all available

biomarker data, without putting restrictions in terms of how sporadically or asynchronously

(in the case of modelling more than one biomarker) the measurements have been. Time-varying

intervals between observations are supported in rstanarm too, but rstanarm requires the

biomarker data to have been measured synchronously, i.e., the observed time points to indicate

all biomarker measurements, if more than one. This is particularly restrictive and resulted

in the discarding of a considerable amount of unmatched biomarker observations (HbA1c,

eGFR). Moreover, the need to average data to represent a fixed period of one interval using a

single value is circumvented by using ctsem.

Furthermore, every diagram within the chapter that shows how the models may compare

proves that, different components of the longitudinal model are required to capture different

aspects of the process, and different rates of change for unique trajectories and individuals.
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For example, when the rate of change can be characterised as deterministic, the LMM coupled

with a drift term outperforms the LMM models that include diffusion terms. However, in

case of random fluctuations in individual levels of eGFR, the diffusion process is better suited

for learning the underlying variance in the data.

It is observed that including autoregressive drift does not fit well with fluctuating eGFR data.

Drift’s tension to pull the new imputations towards the long-term average explains this poor

fitting. It is thus resembling, in many cases, the LOCF imputation. In general, drift is helpful

when fitting longitudinal data in which the rate of change is primarily monotonic.

The bottom line is that whether drift or diffusion improves the fit to the data depends on the

overall trend of the biomarker of each individual, meaning the evolution and the derivatives

of the process over time. Diffusion may capture nudges in the data but broadly converges to

an average value when used for the trajectory projection. Conversely, an LMM coupled with

drift effects predicts satisfactorily the future states, with a monotonic biomarker’s trajectory.

Therefore, as a rule of thumb I support fitting many possible specifications for projecting

longitudinal trajectories using the functionality available in ‘ctsem‘ and, after assessing them

based on their log-likelihood and using their AIC, choosing the model that provides the closest

fit to the data.

In both datasets analysed (filtered and full cohorts), the LMM with drift and diffusion

specification has the best fit to the longitudinal eGFR data. However, to avoid overfitting,

I have utilised all the longitudinal submodels constructed for the time-updated eGFR, and

employed a cross-validation approach to assessing the predictive performance of Poisson

regression models with respect to time until a renal replacement therapy. In the following

evaluation chapter, I present the fitting of the Poisson models when using time-updated

data given by different Kalman filter specifications and evaluate their predictive performance

compared to an LOCF-based Poisson model.
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Chapter 8

Comparison of the use of ctsem with

LOCF for fitting joint models for

eGFR and RRT

In the previous chapter, I explained and evaluated the various models built for the longitudinal

data. Before detailing that, I first gave more details about the content of the dataset used

for this modelling, some elements of the dataset and the setup for the structural equation

modelling, followed by details for model fitting. Here, I elaborate on the Poisson models fitting

using the data generated from the Kalman filter as time-updated covariates. Then I compare

those models to a simpler Poisson model that uses as time-updated eGFR a trajectory made

by carrying the last available observation forward.

To recap, the Poisson time-splitting joint model has been implemented as follows: a Kalman

filter configuration is used first to obtain imputations of latent states of eGFR at the beginning

of each person-time interval. This imputation step is completed very fast compared to the

alternative modelling within rstanarm. In the second step, the estimated trajectories of

eGFR are fed as a time-updated covariate into the Poisson regression models for time to

169



event. I have used a cross-validation approach to improve the fitting of the Poisson regression

models.

The current chapter concerns the fit and predictive performance of the developed Poisson

models for time to RRT, conditional on time-updated eGFR data. Two separate analyses

have been performed using the full cohort, one being a subset of the other, with baseline

eGFR at most 60 mL/min/1.73 m2. The main dataset is an extract of the national T1D

population with linkage to renal outcome records from the national renal registry.

Finally, the chapter discusses the refinements made in the analysis to include B-splines for

fitting the time-updated eGFR data. Then, I present the performance characteristics of the

models I have fitted. The log-likelihood and AIC show how well the models fit the data for

the number of parameters that have been specified. Using these metrics, one can evaluate the

strength of the association between the parameters and the outcome, i.e., the coefficients of

the covariates. This is how the probability of an event is estimated, given that the log odds

for the event are a linear combination of the covariates included in the model. In this case,

the function that converts the log odds to probability is the logistic function.1

Hence, the reader can expect to see the following in the coming sections:

1. Results of the model fitting procedure and model calibration

2. The impact of censoring and calibration per decile of predicted risk

3. Using B-splines for trajectories made up using LOCF and ctsem

4. Calibration of model performance with and without fitting B-splines for eGFR

5. Overall insights before proceeding to the final remarks in the last result chapter

1The sigmoid curve is given by the equation f(x) = L
1+exp(−k)(x−x0) , where x0 the x value of the sigmoid

midpoint, L is the maximum value of the function and k is the logistic growth rate (steepness) of the curve.
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8.1 Do we learn the same Poisson model regardless of

how eGFR is modelled?

For the task of forward prediction of progression to end-stage renal disease, I have fitted

Poisson models with imputed eGFR data as time-updated covariates. As part of a joint

model construction, each Poisson model has been given a longitudinal eGFR submodel, one

specification out of the eight available (seven longitudinal submodels obtained by using the

Kalman filter algorithm and the last one by using the LOCF approach), and has been fitted

using the glm() function with a Poisson likelihood for the rate of event. The Poisson equation

for the current application is:

RRT rate = exp(β0 + β1baselineage + β2gender + β3baselineduration + β4egfr + offset(log(interval length))

The interest lies in assessing how different the coefficients are estimated from the different

fitted models. The outputs of the eight fitted Poisson models that employ the values of eGFR

taken by the longitudinal models fitted with ctsem are given for comparison in Ttables 8.1,

8.2, 8.3, and 8.4. All models correspond to the filtered group (eGFR < 60 mL/min/1.73

m2), and apart from the time-updated eGFR, they include time-invariant information about

subjects’ baseline age, baseline duration of diabetes and sex. The last three covariates are

standardised and given at the beginning of each person-time interval as years elapsed since

entry. Finally, each model accounts for the duration of each person-time interval as an offset

term (tstart).
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Table 8.1: Poisson model fitted to latent biomarker values

imputed by a Kalman filter based on an LMM (columns

1, 2, 3), and a drift effects model (columns 4, 5, 6)

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|)

(Intercept) -3.792 0.087 0.000 -4.580 0.111 0.000

tstart -0.082 0.023 0.000 0.112 0.019 0.000

gender -0.096 0.052 0.063 -0.165 0.051 0.001

baselineage 0.132 0.051 0.010 -0.061 0.046 0.187

baselineduration 0.120 0.054 0.026 0.088 0.058 0.127

egfr -1.035 0.033 0.000 -1.792 0.051 0.000

Table 8.2: Poisson model fitted to latent biomarker values

imputed by a Kalman filter based on a diffusion model

(columns 1, 2, 3), and a drift-diffusion model (columns 4,

5, 6)

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|)

(Intercept) -4.752 0.116 0.000 -4.765 0.116 0.000

tstart 0.017 0.020 0.389 0.019 0.020 0.325

gender -0.102 0.051 0.046 -0.115 0.051 0.024

baselineage 0.096 0.046 0.039 0.102 0.046 0.029

baselineduration 0.118 0.058 0.042 0.111 0.059 0.059

egfr -1.689 0.044 0.000 -1.701 0.044 0.000
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Table 8.3: Poisson model fitted to latent biomarker values

imputed by a Kalman filter based on an LMM with diffu-

sion model (columns 1, 2, 3), and an LMM drift model

(columns 4, 5, 6)

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|)

(Intercept) -4.195 0.096 0.000 -3.778 0.087 0.000

tstart -0.061 0.021 0.004 -0.082 0.023 0.000

gender -0.144 0.051 0.005 -0.095 0.052 0.067

baselineage 0.176 0.050 0.000 0.134 0.052 0.009

baselineduration 0.105 0.056 0.062 0.109 0.054 0.043

egfr -1.350 0.037 0.000 -1.017 0.032 0.000

Table 8.4: Coefficient comparison of the full Poisson model

based on a Kalman filter including LMM, drift and dif-

fusion processes (columns 1, 2, 3), and an LOCF model

(columns 4, 5, 6).

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|)

(Intercept) -4.082 0.093 0.000 -4.921 0.117 0.000

tstart -0.069 0.022 0.001 0.070 0.019 0.000

gender -0.218 0.051 0.000 -0.091 0.051 0.074

baselineage 0.193 0.052 0.000 0.127 0.045 0.005

baselineduration 0.114 0.056 0.043 0.134 0.058 0.021

egfr -1.248 0.035 0.000 -1.516 0.038 0.000

The ‘gender’ predictor was coded as numerical, although any linear transformation of its
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values does not change either the shape of the distribution or the correlation of scores on that

variable with those of any other variable. This does not make any difference in terms of fit,

but it hides the label of the non-reference sex.

Typically the information that can be found in model summaries is the estimated Poisson

regression coefficients with standard error, the estimated relative rates (i.e., the exponential

of the coefficients), a Wald test statistic (testing the null hypothesis that the regression

coefficient is zero or, equivalently, the relative rate of event associated with this explanatory

variable is unit) and an associated P -value.

In a Poisson regression model, the coefficients represent the logarithm of the expected count of

the outcome variable per unit change in the corresponding independent variable. Analogously,

the coefficients in the Poisson models can be interpreted as the expected change in the log

of the rate of event occurrence corresponding to a unit increase in the predictor of interest,

holding constant all other predictors in the model.

Since the exponential function is used in the Poisson regression equation, a negative coefficient

implies that as the value of the independent variable decreases, the expected count of the

outcome variable increases. The outputs of the models are comparably close. Tables 8.1 to

8.4 show how the coefficients compare depending on the model specification for eGFR. In all

Poisson models, among eGFR, baseline age, sex, and baseline diabetes duration, the strongest

impact on the incidence rate of RRT stems from eGFR; as its value decreases over time, the

expected rate of event increases.

The outputs suggest that while the drift and diffusion LMM has been shown to fit best the

longitudinal data of the filtered group (lowest deviance and AIC), demonstrated at table 7.1,

the fit of the Poisson regression models for the rate of event does not deviate significantly

among those model specifications for the time-updated covariate; eGFR always has the largest

effect on the rate of event. More particularly, the drift model identifies the strongest effect

of eGFR on the rate of event (coeff: -1.792), and the LMM model and LMM drift estimate
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the lowest effects (coeffs: -1.035 and -1.017, respectively). In this filtered population, the

Poisson based on the LOCF model does quite well (coeff: -1.516), presumably due to the

strong observed autoregressive effect in the data, the last observation is the most informative

of the coming one.

I have also fitted a Poisson model using B-splines with six degrees of freedom to specify the

effect of the arrival times of each biomarker measurement on time to event and reviewed

the fitting. Table 8.5 shows the summary of such a model for reference and comparison of

the coefficients derived from the Poisson models that do not employ splines for the timings.

However, to simplify the analysis, I did not employ B-splines in the final construction, as

observation times progress linearly with follow-up.
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Table 8.5: Poisson time-splitting model fitted to latent

biomarker values imputed by a Kalman filter specifying

an LMM with diffusion and drift effects.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.02 0.63 -9.49 0.000

gender -0.33 0.07 -4.76 0.000

diabetesduration 0.31 0.08 4.11 0.000

entryage 0.40 0.07 5.51 0.000

entryhba1cavg 0.24 0.08 2.86 0.004

hba1cvalue 0.45 0.09 4.93 0.000

egfrvalue -0.31 0.08 -3.94 0.000

splines::bs(tstart, df = 6)1 1.94 0.97 2.00 0.045

splines::bs(tstart, df = 6)2 1.18 0.62 1.89 0.058

splines::bs(tstart, df = 6)3 2.19 0.78 2.79 0.005

splines::bs(tstart, df = 6)4 0.74 0.75 0.98 0.325

splines::bs(tstart, df = 6)5 1.82 0.84 2.18 0.029

splines::bs(tstart, df = 6)6 1.78 0.75 2.38 0.017

The following part summarises the coefficients of fitting the various Poisson models, including

eGFR trajectories specified by LMM, drift and diffusion models with and without slopes, and

an LOCF model, using biomarker data from the full cohort for visual comparison (tables

8.6, 8.7, 8.8, and 8.9). The effects of the covariates on the incidence rate are milder in this

non-filtered population with T1D, with age at baseline (at study entry) being less statistically

significant. The coefficients of eGFR remain larger and negative as well; decreasing values

have a greater effect on the rate of event, which matches a clinician’s intuition. Moreover, the
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strongest eGFR effect is again found by using the autoregressive drift effects model (coeff:

-1.960) and the lowest effect is estimated by the LOCF model (coef: -1.452). The remaining

model specifications estimate a coefficient of around -1.60, which implies that both slopes

and drift are important in order to capture the effect in this wider population with unfiltered

eGFR at baseline.
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Table 8.6: Poisson model fitted to latent biomarker values

imputed by a Kalman filter, including an LMM (columns

1, 2, 3) and drift model (columns 4, 5, 6) as part of the

time-splitting joint modelling approach applied to the full

cohort.

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|)

(Intercept) -7.762 0.372 0.000 -7.889 0.365 0.000

tstart 0.144 0.047 0.002 0.230 0.046 0.000

gender -0.226 0.067 0.001 -0.177 0.066 0.008

baselineage -0.128 0.073 0.078 -0.426 0.075 0.000

baselineduration -0.224 0.070 0.001 -0.229 0.075 0.002

egfr -1.600 0.038 0.000 -1.960 0.050 0.000

Table 8.7: Poisson model fitted to latent biomarker values

imputed by a Kalman filter, including diffusion (columns

1, 2, 3) and drift-diffusion effects (columns 4, 5, 6), as

part of a time-splitting joint modelling approach applied

to the full cohort.

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|)

(Intercept) -7.449 0.365 0.000 -7.427 0.365 0.000

tstart 0.088 0.047 0.060 0.085 0.047 0.070

gender -0.199 0.067 0.003 -0.197 0.067 0.003

baselineage -0.125 0.075 0.097 -0.121 0.076 0.109

baselineduration -0.234 0.071 0.001 -0.247 0.072 0.001
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Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|)

egfr -1.610 0.036 0.000 -1.617 0.036 0.000

Table 8.8: Poisson model fitted to latent biomarker values

imputed by a Kalman filter, including LMM and diffusion

(columns 1, 2, 3) and an LMM and drift effects (columns 4,

5, 6), as part of a time-splitting joint modelling approach

applied to the full cohort.

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|)

(Intercept) -7.453 0.366 0.000 -7.747 0.371 0.000

tstart 0.087 0.047 0.065 0.141 0.047 0.002

gender -0.195 0.067 0.003 -0.231 0.067 0.001

baselineage -0.124 0.076 0.101 -0.113 0.073 0.124

baselineduration -0.229 0.071 0.001 -0.246 0.071 0.001

egfr -1.606 0.036 0.000 -1.603 0.038 0.000

Table 8.9: Coefficient comparison of the full Poisson model

based on a Kalman filter including LMM, drift and dif-

fusion processes (columns 1, 2, 3), and an LOCF model

(columns 4, 5, 6) for the full cohort

Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|)

(Intercept) -7.421 0.365 0.000 -7.674 0.373 0.000

tstart 0.084 0.047 0.073 0.124 0.047 0.009

gender -0.170 0.066 0.010 -0.128 0.066 0.053
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Estimate Std. Error Pr(>|z|) Estimate Std. Error Pr(>|z|)

baselineage -0.146 0.076 0.053 -0.041 0.075 0.584

baselineduration -0.258 0.073 0.000 -0.143 0.070 0.042

egfr -1.611 0.036 0.000 -1.452 0.031 0.000
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8.2 Impact of censoring on model calibration

As mentioned before, the offset term in the Poisson regression model allows for varying

lengths of intervals, particularly for the last interval of each individual being truncated, if an

event has occurred. Therefore, both censoring and unequal lengths of intervals are correctly

accounted for, when computing the fitted values (of predicted events). I have confirmed that

the observed and expected number of events perfectly agree within the training sets, verifying

that the fitted models are perfectly calibrated, as described in section 2.6.2.

Subsequently, the fitted Poisson models have been used to estimate the expected number

of events in the test datasets. The peculiarity of this case is that the time of event is not

known until it is observed, thus the last intervals must run all the way to the end and

not be truncated in order to return meaningful results. Furthermore, I have observed that

model calibration is better when the trajectory projected forward depends on a Kalman filter

estimation rather than the LOCF scheme for imputing the unknown test data. This was

established by assessing how the hazard rates change as we progressively shorten the interval

lengths. I have experimented with the following interval lengths for obtaining imputations:

1. 365.25 days,

2. 365.25/2 = 182.625 days,

3. 365.25/4 = 91.3125 days,

4. 365.25/8 = 45.65625 days,

5. 365.25/16 = 22.82812 days,

6. 365.25/32 = 11.41406 days,

7. 365.25/64 = 5.707031 days,

8. 365.25/128 = 2.853516 days,

9. 365.25/256 = 1.426758 days.
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I have only used values that divide 5 years (5*365.25) exactly to ascertain that we always have

an interval starting at the landmark point. However, working with truncated representations

of floating numbers is better avoided, due to various implications that it can bring to the

analysis, such as complicating comparisons when rounding to different decimal points, and

reproducibility.

Furthermore, as a sanity check, I fitted a Poisson model on the test data like they were

training data, and used this model to assess calibration and ensure that there was not an

artefact hidden in the data. Correctly, the sum of fitted values agreed with the sum of the

predict() output regarding the expected number of events.

Last but not least, I have investigated calibration patterns in each year of follow-up separately.

That can be extended to all months and weeks that comprise follow-up. The rationale for

this check was to evaluate how well the model performs in terms of predicting time to event

accurately as we go further into the future. It would make sense that the further we go into

the future, the less accurate the predictions become. However, this was not conclusively

observed, as the quality of predictions seems independent of whether there is a long-term

trend to be captured on an individual trajectory, or the direction of change is too arbitrary to

be deduced.

8.2.1 Calibration plots per decile of predicted risk

The discrimination metric in statistical theory measures how often a model estimates a higher

risk for individuals who experience the event of interest than those who do not. Similarly,

calibration is the ability of a model to assign accurate probabilities of an event occurring at a

particular time.

The person-time of the training set is censored, either at the first event or exit from the study

due to other causes. On the contrary, the last interval of the test set is not censored to avoid

biased results: time of event is not known a priori. As a result, the length of follow-up in
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the test set gets slightly inflated, i.e., it may run negligibly beyond the individual’s observed

follow-up to meet the condition of having complete, non-truncated prediction intervals.

Some implications stemming from whether the last interval of an individual is censored at the

time of event, or it runs all the way to the end in the training data this time are relevant to

mention and demonstrate.

8.2.2 Implications

The fitted values generated by the function glm() with Poisson likelihood are the expected

numbers of events up to the end of each person-time interval, allowing for censoring at time

of event. The fitted values are obtained by transforming the linear predictors by the inverse

of the link function used. On a general note, the link function generalises linear regression by

allowing the magnitude of the variance of each measurement to be a function of its predicted

value.

An agreement between observed and fitted sums of the response variable is guaranteed when

maximising the fitting of a model with a likelihood in the exponential family. However,

unequally spaced person-time intervals cannot be considered exchangeable. Therefore the

response variable (event/no event) on these intervals cannot be represented as a mixture of

independent and identically-distributed Bernoulli variables.

Hence, the computation of the expected number of events in each person-time interval, while

allowing for censoring at first event, does not naturally rank individuals by predicted risk.

However, the fitting infers how many events to expect in each interval, primarily identifying

high-risk individuals.

This phenomenon is further demonstrated by the calibration plots shown in figures 8.1 to

8.3, where I have grouped the fitted values obtained from fitting the Poisson model using

the training data into deciles of predicted risk (from low to high). This was done for every

Poisson model fitted and for both study groups. Figures 8.1, 8.2 demonstrate the second

183



training fold of the filtered subgroup, in which the sum of the observed events is 387 and the

sum of the fitted values is 387 (383 events are contained in the first fold respectively).

I have plotted observed against the expected number of events by decile of predicted risk,

depicted on the left-hand side. On the right-hand side, there is a scatter plot of the observed

number of events which shows how these compare to the expected number of events, which

remains constant among deciles. The horizontal dotted line depicts the expected number of

events in each bin. The majority of predicted events is expected to fall within the interquartile

range, which is depicted by the shaded area.

From a well-calibrated predictive model, it is expected that most predicted events fall within

the 25th and 75th percentiles. However, because the person-time intervals which contain an

event are right-censored, the model may miscalculate the number of expected events that fall

into the very right of the interval. To address this issue, I have plotted the fitted values of

a model in which last person-time intervals are indifferent to event occurrence and run to

the end - the same concept as with the test set. This adjustment is necessary to correctly

assess model performance and compare the calibration obtained using the fitted model against

unseen data.

Furthermore, the observed events in each decile of predicted risk should be, in principle,

evenly distributed above and below the expected number of events. This rule is adequately

met when censoring in the training/test data is disregarded, as we see by comparing figures

8.1 and 8.2. This happens because, under this condition, the model assimilates the prediction

intervals to the training intervals that contain an event.

In particular, figure 8.1 depicts the second fold of the training data, which contains 2633

individuals, of whom 387 advanced to renal replacement therapy. The person-time intervals

are at most one-year long. In this scenario, the last person-time interval is truncated, if an

event occurs. The fitted values shown are from a Poisson model, which assumes a linear

relationship between eGFR and event risk. The time-updated eGFR is specified via a Kalman
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filter based on an LMM-drift-diffusion model.
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Figure 8.1: Half training data with some events being deliberately censored (landmarking)
and some intervals being truncated.

Figure 8.2 depicts the same training data again. However, this time, the last interval of each

subject is non-truncated, i.e., all intervals have a length equal to one (year). All last person-

time intervals are indifferent to event occurrences and run to their designated end. Indeed,

ignoring the event occurrence and running all intervals until the end improves calibration
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because it treats the training person-time the same as prediction person-time.
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Figure 8.2: Half training data with some events being deliberately censored (landmarking),
but all intervals have equal length, ignoring event occurrence.

Figure 8.3 shows the test data comprising 1725 individuals and 222 observed events. The

length of intervals is set to one (year). The fitted values shown are derived from a Poisson

model that takes in time-updated eGFR data specified by an LMM coupled with drift and

diffusion processes. The testdata are generated by models that consider actual measurements
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until a landmark time and then project the trajectories forward. It looks like the model

underestimates the number of individuals being low-risk, and overestimates those at high-risk.
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Figure 8.3: Event data corresponding to those individuals who are deliberately censored in
the training data shown in figures 8.1 and 8.2.
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8.3 Model refinement to include a B-spline function

In light of the aforementioned findings, the effect of longitudinal eGFR on renal failure

progression might be non-linear for chunks of time. Since we do not make predictions that fall

beyond the end of the study, we may use as well a B-spline function (as introduced in Section

2.3.1) to specify the complex relationship between longitudinal eGFR and time to event.

Therefore, I refined the model to specify a B-spline for log-eGFR starting with using six

equidistant knots. Recall that I previously used six degrees of freedom with the stan_jm()

modelling function in rstanarm as the default option. Therefore, reusing the default, given

that the average follow-up duration of the full cohort has been 15.4 years, sounded reasonable.

Furthermore, given the cross-validation approach, where within the training set, half subjects

are followed all the way to the end of the study, and half subjects are intentionally censored

to perform forward prediction, the model considers data only for half of the population for

the years after the landmark point. This fact also justified the choice of six nodes. Moreover,

the knots are placed at equally spaced percentiles of observed event times.

However, identifying the optimal knot number is not trivial for non-uniform spaces, e.g.,

curves with various turning points or being discontinued at places (Dung and Tjahjowidodo

2017). Hence, future work could investigate the minimum number of knots needed to specify

the biomarker data on such a large dataset.

In addition, it is worth mentioning that the refined models with splines have been fitted using

a different data format. The reasoning behind reconstructing the input data was to perform

diagnostics with respect to having moderately calibrated predictions. Therefore, I carried out

the time-splitting using the times of observations of every subject as times of measurements

for every subject included in the training set. I used the Kalman filter imputations given at

pre-determined time points for each individual to impute at a second step, the eGFR values

of time points that were observed in some individuals but were missing in some others by

carrying forward the last available Kalman filter imputation. Arguably, this approach inflates
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the number of imputations plugged into the Poisson model and increases the computational

time needed to generate such input. Therefore, I trained a limited number of Poisson models

dependent on this data format. In particular, the LMM model with drift and diffusion for

eGFR was used in the refined Poisson model.

Table 8.10 shows the Poisson coefficients of a model fitted on imputed eGFR data of 2633

individuals (filtered subgroup) using B-splines. The number of the measurements has been

increased to 4799869, under the splitting and imputations settings described earlier.

Table 8.10: Poisson model fitted to latent biomarker

values imputed by a Kalman filter, including LMM and

drift effects, using B-splines for the eGFR data.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -33.379 5.855 -5.701 0.000

tstart 0.038 0.021 1.829 0.067

splines::bs(egfr, df = 6)1 46.685 8.011 5.828 0.000

splines::bs(egfr, df = 6)2 30.500 5.216 5.847 0.000

splines::bs(egfr, df = 6)3 28.444 5.973 4.762 0.000

splines::bs(egfr, df = 6)4 16.319 6.040 2.702 0.007

splines::bs(egfr, df = 6)5 108.518 64.375 1.686 0.092

splines::bs(egfr, df = 6)6 -1221.674 1460.507 -0.836 0.403

gender -0.156 0.051 -3.066 0.002

baselineage 0.041 0.047 0.859 0.390

baselineduration 0.073 0.059 1.241 0.215
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This alternative data format is worth further exploring. However, it inflates the input of the

model and requires much more computational time than creating the previously used input

format, in which all individuals share imputations at pre-determined time points according to

user’s time step, and apart from that, they have individual times of observations.

Of course, the smaller the time step, the more frequent the time points that all individuals

have an imputation generated. Hence, the Poisson model that uses updated daily input data

converges to the refined model that uses all times of observations observed in the dataset for

every subject. For the latter, the input is created by carrying forward the last imputed value

to fill in time points observed in other individuals.

Figure 8.4 depicts the same data as do figures 8.1 and 8.2. In this scenario, the fitted Poisson

model includes a B-spline for log-eGFR, the trajectory of which is specified using an LMM

with drift and diffusion. The plot depicts the scenario where interval truncation is not ignored

on the left-hand side, while on the right-hand side, all intervals run to the end. We observe

that calibration is further improved by using B-splines to determine the magnitude of the

effect of eGFR on the rate of event.

Figure 8.4 shows an illustration based on the test data of 1725 individuals, of whom 222 had

an event (same as in figure 8.3) and one year-long person-time intervals. The fitted Poisson

model includes a B-spline for log-eGFR, the trajectory of which is based on an LMM with

drift and diffusion. There is apparently some overfitting taking place when using B-splines

for eGFR to train the model. This is primarily due to the fact that we need to generate

observations for every observed arrival time of all individuals for everyone and this inflates

the data points. As an ad-hoc solution, I have carried the last observation forward, between

Kalman filter imputations, when necessary.

The calibration of the model with a B-spline for log-eGFR is improved compared to the

calibration plots shown first (figures 8.1 and 8.2), which are based on fitted values of the

Poisson models without splines for eGFR. The refined model has been fitted without restricting
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Figure 8.4: Analysis A, fitting on training data of model with splines. Interval truncation at
event occurrence included (left column), intervals being complete ignoring event occurrence
(right column).

follow-up length to be longer than five years. The calibration plots of the Poisson models

with B-splines for log-eGFR of individuals with follow-up ≥ 5 years are further improved,

which also improves prediction, as shown in figures 8.6 and 8.7.

Fig 8.6 shows the same training data as before. Similarly, the fitted Poisson model includes
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Figure 8.5: Analysis A, the prediction model underestimates the number of individuals being
at risk in all deciles of predicted risk.

a B-spline for log-eGFR, the trajectory of which is specified using an LMM with drift and

diffusion. The plot depicts the alternative scenario, where only subjects with length of

follow-up ≥ 5 years are included in the models instead of the previous set of calibration plots

8.4, 8.5. This refinement shows the best model calibration.

Fig 8.7 shows an enhanced calibration on the predictions based on the test data of 1725
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Figure 8.6: Analysis B fitting on training data of model with splines. Interval truncation at
event occurrence included (left column), intervals being complete ignoring event occurrence
(right column).

individuals with 222 RRT events within one-year-long intervals. Analysis B is shown to be

the most calibrated scenario of them all.
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Figure 8.7: Analysis B, prediction with test data from the model with splines.

8.4 Evaluation of designated Poisson models for RRT

risk

With a survival dataset reformatted as person-time intervals of fixed length, the predictive

performance of the Poisson models can be evaluated by comparing case person-time intervals

in which an event occurs with non-case person-time interval in which no event occurs.
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To predict event status in the test data, I use the models fitted to the training dataset and

compute the probability of an event in each person-time interval from the 5th year onwards.

For any subject who is censored before the end of the study, we round the length of individual

follow-up to the closest interval end (e.g., a follow-up of 264 days corresponds to 1 year, and

not 0 years, for a time step of 365.25 days).

I have evaluated the predictive performance of the fitted models on withdrawn data using

a 2-fold cross-validation approach to maximise the number of events used for assessing the

fitted models, and compared the results obtained by models, including time-updated eGFR

from stochastic models and the LOCF approach.

The probabilities of events from the 2 folds combined are computed conditionally on imputed

biomarker data from five years onwards on all the 1725 subjects (filtered dataset) who have

been followed up for at least five years and have been intentionally censored in one of the two

folds: 863 individuals belong in fold one, and 862 individuals belong in fold two.

Table 8.13 shows what the test data of a random subject look like for intervals one year

long. This individual has not experienced renal failure during a follow-up period of 3653 days

(approximately ten years). This extract aims to show how the probabilities of event change

over time conditional on the imputation method. Imputations shown are computed via

1. a Kalman filter configuration, including diffusion,

2. a Kalman filter based on LMM, drift and diffusion,

3. the LOCF approach.
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Table 8.11: Biomarker imputations for a random subject

based on a diffusion process. We observe that the values

remain very close because they only depend on the most

recent value due to a random walk assumption. This is

quite similar to the LOCF process.

interval begins interval ends imputed log eGFR prob. of event

5 6 -0.0361595 0.0101505

6 7 -0.0361594 0.0102216

7 8 -0.0361594 0.0102931

8 9 -0.0361593 0.0103652

9 10 -0.0361593 0.0104378

Table 8.12: Biomarker for the same random subject im-

puted by an LMM with drift and diffusion.

interval begins interval ends imputed log eGFR prob. of event

5 6 -0.0646023 0.0136371

6 7 -0.1344659 0.0146557

7 8 -0.1962433 0.0155831

8 9 -0.2508704 0.0164135

9 10 -0.2991748 0.0171446
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Table 8.13: Same subject, biomarker given based on

LOCF.

interval begins interval ends imputed log eGFR prob. of event

5 6 -0.1390048 0.0134864

6 7 -0.1390048 0.0142828

7 8 -0.1390048 0.0151259

8 9 -0.1390048 0.0160184

9 10 -0.1390048 0.0169631

The updates provided by each Kalman filter algorithm represent past data and estimations up

to the beginning of the interval I am predicting for. The Kalman filter is agnostic to any data

arriving after five years, i.e., the calculated trajectory only depends on data observed before

Time 5, and after this point, it gives a projection of possible future values against which the

fitted Poisson model is evaluated. Furthermore, the LOCF approach is also employed for the

test data, which extrapolates forward the last imputation obtained right before the landmark

time point.

8.5 Strengths and limitations

A salient point to mention is imputations used to validate the fitted Poisson models deviate

from imputations used in the training process, due to the model being agnostic to any

biomarker data arriving after the landmark time for all subjects comprising the test folds.

Personalised probabilities of risk of events span time five until end of individual follow-up.

To avoid biased estimates of the hazard rate, the prediction intervals must run until their

designated end (as if they do not contain an event), as opposed to the person-time intervals

used in training that are explicitly truncated, when an event occurs. In addition, prediction
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intervals must remain complete, so that the rate of event is distributed uniformly throughout

the interval. Incorporating information about the time of an observed event, or biomarker

arrival, would severely bias risk prediction.

The presented two-staged method is compatible with the state-of-the-art joint modelling

approach implemented in rstanarm, which fits a mixed-effects model to the longitudinal data

first and then uses the learned parameters to fit a time to event model.

So far in the thesis, I have demonstrated a scalable joint modelling method as an alternative

to the rstanarm implementation, and I have applied this method to estimate the rate of

progression to renal replacement therapy up to five years in the future, starting from a set

landmark time, using the national T1D cohort of individuals with renal disease records in

Scotland (30000 individuals). In addition, the demonstrated formulation obtains survival

probabilities for any arbitrary future time point within the prediction window, as opposed to

the rstanarm implementation that provides predictions only at the time points a biomarker

measurement arrives.

The main limitation of rstanarm is the need to integrate the random effects out of the joint

distribution calculation by computing the quadrature of the relevant area, which becomes

intractable for more than a single frequently-measured biomarker.

Despite the scalability issue met, the rstanarm functionality remains a useful building block

for future extensions, and can be successfully applied in smaller-scale datasets. This software

was evaluated and slightly extended using a small subset of T1D individuals (N=2000) with

cardiovascular disease as outcome data and time-updated HbA1c and eGFR as manifest

variables for the outcome.

I have also used this functionality as a benchmark against which I have compared the

performance of the alternative methodological approach for joint modelling of longitudinal

and time to event data . The sequential updating process via a Kalman filter, as a first step

and the Poisson regression model for the rate of event based on the longitudinal trajectories
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obtained by the Kalman filter may handle person-time intervals of fine granularity in a timely

manner, and performs comparably well to the continuous-time Bayesian model estimated by

stan_jm() for the rate of progression to RRT (C-statistic > 0.80).

The demonstrated joint modelling approach has been developed using the functionality offered

by ctsem to specify longitudinal trajectories of biomarker data. The available information

spans a decade the most (observational study), and I have assessed retrospectively whether the

generated biomarker data and predictions of time to event are accurate and outperform the

traditional LOCF for the biomarker trajectory. The strength of this research is its flexibility; I

have explored many paths on how to maximise the information accrued on the biomarker data

over time efficiently and estimate in turn, risk prediction robustly. The closer the model’s

projections are to reality, the greater their application in clinical settings.

Specifically for the rate of progression to RRT, proper specification of the rate of change of

eGFR plays a critical role in predicting time to event robustly. Therefore, in the interest

of time and given the large number of individuals with available outcome data, I stopped

including HbA1c as the second predictor in the survival model for RRT to assess the predictive

power of eGFR explicitly, which counts as a limitation of this study. Having established

that the procedure yields comparable estimates, extending it to more than one biomarkers is

straightforward.

This modelling approach can help precision medicine in diabetes by predicting and prevent-

ing acute and long-term complications. Furthermore, obtaining frequent outcome updates

promptly can identify the patients at the highest risk and, in turn, reduce emergency hospital

admissions and mortality attributable to diabetes.

Last but not least, the time-splitting joint modelling approach serves a twofold purpose. First,

I have investigated whether the LMM specification if extended to include drift and diffusion

components performs better than simpler methods that do not infer a longitudinal pattern in

the data. Extending the LMMs perform better in terms of predicting latent characteristics
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of individual biomarker trajectories. Moreover, I have studied how the different Kalman

filter configurations affect the Poisson model estimations and to what extent it affects the

predictions yielded. This has been evaluated by projecting individualised profiles forward

agnostic to real measurements and used as test data.

A limitation also worth mentioning is that while more granular intervals might approximate

the Poisson hazard rate more accurately, the imputations based on the sequential updating

approach may be less reliable as time progresses. Predicting forward for a relatively long

period in the lack of actual new data might not be that trustworthy, depending also on the

stochastic process configured. In my research, this phenomenon was not observed, because the

prediction time was relatively short and the biomarker data were collected in high frequency;

a fact that might implies that those individuals were monitored more closely due to actually

being ’high-risk’ (Glasziou, Irwig, and Mant 2005; Peyroteo et al. 2021).

Note that this implication concerns the imputation scheme used for generating the test data,

against which I evaluated the fitted Poisson models, since those updates are data-agnostic.

Hence, it is likely that a trade-off exists between the accuracy of predictions and the frequency

of updating in the absence of new data.

Last but not least, the current implementation of ctsem has been employed to impute latent

states of eGFR trajectories on those individuals with at least three observations in the study

period. However, it can be restrictive in terms of out-of-sample predictions. The Kalman

filter can only extrapolate a longitudinal trajectory for individuals who have been included

in the train set. Note that a trajectory can be built up to an arbitrary time point, which

does not need to be the same for all subjects, and this consists a major strength on the

other hand. Therefore, the cross-validation split I have performed essentially concerns the

individual follow-up length, not the people themselves. Each subject for whom I need to

generate predictions should be observable for at least some duration, a feature that has

resulted in the inclusion of a landmark time point, up to which people need to be event-free.
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This constraint of ctsem implementation can be limiting, but landmarking appears to be a

good workaround.

In the next and final evaluation chapter, I discuss the numerous variables embedded in the

analyses, and how these parameters intertwine with each other with respect to the final

increment in prediction.

201



202



Chapter 9

Reflection of the development and

predictive accuracy of models for RRT

risk

9.1 Interpretation of performance

To study the hazard rate of time to renal failure in (a) the national T1D cohort with

renal outcome data and (b) a frail subset of the national cohort with baseline eGFR < 60

mL/min/1.73 m2 (so-called filtered subgroup), I have split follow-up time, using a selection of

time intervals ranging from 1 year to 1 day. In principle, the shorter the interval length, the

better the approximation of the hazard of an event occurring within a person-time interval.

Furthermore, I have fitted models on different training subsets of data concerning their follow-

up length and whether an event occurred before landmark time. Arguably, an individual

who has an event before landmark time cannot be part of the test population because

they are censored at the event occurrence and thus removed from the study. However,

individuals who have an event within the first five years still contribute some time to model
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training. Consequently, the first analysis design implemented included every individual

without restricting whether they have an event within the first five years or later.

• Analysis A accounts for any follow-up length in model fitting, allowing the model to

learn from the event times observed before landmark time.

• Analysis B restricts the model’s training to those who have been observed for at least

five years: thus, there are zero events included in training before landmark time.

Moving from analysis A to analysis B was required to correct for the fact that the distributions

of events were dissimilar between training and test sets, resulting in poorly calibrated outcomes.

In addition, since the test individuals have all outlived the landmark time in analysis A, they

were considered low-risk for the event. Finally, the inclusion of the people who have been

event-free for the first five years in model fitting was challenging to think of in advance because,

in the real world, every patient with renal disease, followed up by a clinician, contributes to

their clinician learning experience, despite the actual renal failure time, if any.

Consequently, each of the two configurations above yielded different results. They also

demonstrate an artefact, a well-known epidemiological paradox worth mentioning. Studying

a group of older patients who already have signs of renal dysfunction at baseline with eGFR

< 60 mL/min/1.73 m2 would make an expert expect that the probability of an event will be

much higher in the years to come, as opposed to the rest of the cohort, which includes less

frail individuals.

For connection, the filtered group has an average baseline age of 61 years and diabetes

for 25 years, with the full dataset having an average baseline age of 40 years and diabetes

duration of 15 years (table 6.1). However, highly frail subjects do not benefit from intervention

or improvements in treatment plans as they have already substantially degraded and get

dismissed from the study early on, quite earlier than the landmark time. Hence, survival later

in the study improves and, counter-intuitively, is better than one would initially expect.
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The Poisson models estimate a lower hazard rate when the pool is not restricted to a follow-up

length of at least five years. This finding is demonstrated by figures 9.1 and 9.2, which compare

the predicted events as estimated per each analysis design and for various interval lengths.

Each plot of the grid represents the predictive performance of the respective Poisson model

that utilises eGFR imputations based on a particular configuration, as explained already.

9.1.1 Increment in predictive performance moving from one-year

to one-day intervals

I have evaluated the calibration of the refined Poisson model separately, as presented before.

The refined model includes a B-spline to specify the effect of changing eGFR on the risk of

an event.

The new model has been evaluated against a dataset formatted as imputed observations at all

time points that people have a measurement within the original data plus some pre-determined

time points common among all individuals. The respective model calibration is shown in

figure 8.4. The predictive performance of the refined model favours the assumption that the

rate of change of longitudinal eGFR varies non-linearly over time and heavily depends on

individual-level random effects: thus, it is fair to say that the impact of eGFR on the risk of

ESRD is not rigidly linear throughout follow-up.

The following figures represent the change in the calibration of the initial Poisson models that

do not include a B-spline specification for the time-updated eGFR.

In particular, figure 9.1 show the Poisson models fitted using cross-validation of imputed eGFR

data on the filtered group. The horizontal line depicts the observed (albeit unknown to the

model) number of events within the test data. The featured subset contains 222 events between

years 5 and 10. The LMM models are characterised by a tension to overestimate the risk of

event due to assumptions of linearity, which, as discussed earlier, does not always hold for the

relationship between changing eGFR and RRT occurrence. It might be that their relationship
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is curved or has a threshold effect. Furthermore, it might be that the measurements of

individuals are substantially correlated, i.e., the random effects are not entirely captured the

correlation structure between observations. Last but not least, there might be some imbalance

in the data or some influential observations, which have a disproportionate effect on model

estimates.

On the other hand, the models with autoregressive drift and without linear mixed-effects

are more likely to underestimate the number of events, because not all measurements and

individuals are reverting to a long-term average within follow-up. That might have been

true for a healthier group at baseline. Moreover, LMMs coupled with drift and diffusion

processes exhibit the closest predictive performance to reality. It looks like the diffusion

element (more like a random walk in the biomarker sequence) is essential to counterbalance

the drift element, which fits moderately non-monotonic trajectories, as it does not incorporate

all the random and sudden fluctuations in eGFR data. Finally, the model with diffusion

components approximates the number of events in the test data well for all interval lengths,

which overall implies that eGFR progression in people with T1D is quite irregular over time.

Figure 9.2 shows the predictive performance of all Poisson models for the test folds using the

full dataset. In this broader population, the linear patterns are more obvious, ranking the

LOCF model, the diffusion model and the diffusion-drift model last with respect to guessing

the observed number of events. The full dataset is more balanced, and possible outliers are

likely less ambiguous. Therefore, the mixed-effects models manage to specify sufficiently the

rate of event. In addition to specifying linear slopes, the inclusion of a diffusion component

appears to attain the best calibration. A likely interpretation of the numbers of predicted

events being continuously on the rise (especially for intervals shorter than 45 days) might

be that the fitted models do not assign a zero probability in an interval, which does not

contain an event. As a consequence, the shorter the interval length, the more these non-zero

probabilities add up, inflating the estimation of predicted events and the rate in the Poisson

models, respectively.
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Figure 9.1: How does the specification of the longitudinal model for eGFR affect the calibration
of Poisson models? Predictions regarding the filtered group for all interval lengths assessed.

As opposed to the complex Kalman filter configurations for the eGFR profiles, the simple

LOCF approach extrapolates the last existing value until the end of the prediction period.

This more naive imputation is not always sufficient, especially for individuals with a more

linear, monotonic rate of change. For most individuals however, assuming a constant eGFR

over the prediction period is broadly better than predicting a particular trend which is not
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The black line depicts estimations obtained by Poisson models trained on every length of follow up,
the blue line depicts estimations of events based on Poisson models that restrict follow up > 5 years.

Figure 9.2: Predictions regarding the full cohort, all interval lengths assessed. The horizontal
line depicts the observed, albeit unknown to the model, number of events within the testing
folds; 446 events between years 5 and 10.

met in reality.

However, the LOCF approach is worth attempting, because it emulates the real-world scenario,

where physicians do not have records for patients who have not interacted with the healthcare

system because they are healthy, or cannot access treatment (Handy et al. 2017). Then,
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physicians may project a simple trajectory based on a single measurement of a clinical

variable, when this becomes available. Yet, they might estimate the rate of progression and

make decisions about the course of treatment, and when that patient should be referred for

evaluation next.

9.1.2 How does the LMM component add to the predictive per-

formance?

It is expected that the models that include (a) random slopes and (b) autoregressive effects

for building individualised eGFR profiles would outperform the more straightforward random

walk and LOCF processes that do not depend on past trajectories.

Inspecting the trajectories obtained via a Kalman filter for a few individuals, it is observed

that a drift and diffusion model which does not estimate slopes yields predicted trajectories

that resemble a last-observation-carried-forward model. Extending the drift and diffusion

model to also allow for slopes allows the trajectories to curve slightly away from a linear path

towards the population mean.

Figure 9.1, which features the frail subgroup shows that the inclusion of random effects

specified by the linear mixed-effects model is necessary for the correct estimation of the

hazard rate over the test intervals, but not always enough. The Poisson models that have

included time-updated eGFR measurements given by longitudinal models that include an

LMM component provide an insightful slope regarding the individual trajectory, as opposed to

the diffusion, drift and LOCF imputation schemes for eGFR, which cannot infer a gradient for

the changing biomarker data. We recognise that the diffusion model resembles the performance

of the LOCF model in the sense that these models feature a random walk and do not infer

any kind of slope. Most importantly, the models that do not include slopes tend to infer a

lower probability of event due to being agnostic to an average, long-term tendency; either

increasing or decreasing trend.
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Therefore, while including autoregressive drift when modelling the eGFR of the frail subgroup

is not always performant, it still captures well the direction of change of the broader population

with T1D. This is likely the case because someone with a normal range of eGFR can more

easily revert to their long-term average. If eGFR levels suddenly deteriorate due to sickness

or hospitalisation, it then stabilises back to the average level in most patients (Astor et al.

2008; Hemmelgarn et al. 2010).

In conclusion, using at least linear mixed-effects models for the longitudinal data, with or

without drift and diffusion processes, enhances the prediction of the outcome as shown in

figures 9.1 and 9.2; the predictions approximate more closely the observed number of effects

compared to the other specifications.

The table 9.1 contains the measures of predictive performance for all models for a particular

interval length, evaluated against the test data of the filtered subgroup. All models achieve

adequately good discriminative performance (C-statistic > 0.8) on average. While it is helpful

to assess performance in terms of C-statistic, the figures 9.1 and 9.2 give a more comprehensive

view of models’ performance for the entire range of interval lengths used.

Table 9.1: Predictive performance of Poisson models using

the filtered group. Person-years equal to 8625.

model observed predicted hazard rate log-lik C-statistic

lmm 222 526.727 264.677 -1113.916 0.801

drift 222 318.241 268.469 -933.738 0.825

diff 222 270.933 203.784 -999.707 0.807

driftdiff 222 252.504 195.602 -993.935 0.808

lmmdiff 222 410.688 235.177 -1050.421 0.817

lmmdrift 222 511.344 261.3 -1106.217 0.801

lmmdriftdiff 222 393.678 210.83 -1112.147 0.802
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model observed predicted hazard rate log-lik C-statistic

locf 222 268.689 216.554 -951.19 0.819

The performance of autoregressive drift effects when is coupled with a slope specification

approximates closely the performance of just having an LMM alone, because especially the

frail subgroup’s eGFR trajectories tend to drop and does not usually revert to an overall trend.

The LMM-diffusion and LMM-diffusion-drift models are the most calibrated in estimating

the hazard rate of the frail subgroup, while the drift model is the most performant in terms

of C-statistic (table 9.1).

The Poisson model is likely to associate lower risk of event with extended follow-up periods.

The subjects in the test sets have been event-free within the first five years, and they are

therefore, given a low probability of event over the assessed period, as the rate of change of

eGFR appears to get more stable; in terms of observing less frequent updates (as opposed to

the years before landmarking) and less informative updates due to the lack of new information.

9.1.3 Regarding the computations of the predicted number of

events

The vector of hazard rates defines the cumulative hazard rate, i.e., the output of the predict()

function multiplied by the fixed length of the prediction intervals (depending on the timestep

each time) and our own hazardrate.poisson() function, shown here:

hazardrate.poisson <- function(model.poisson, Xmatrix) {

## returns hazard rates using coeffs from model.poisson,

## covariates from matrix Xmatrix, which has been generated by

## model.matrix to add a column of ones and to recode categorical

## variables as indicator variables
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beta <- matrix(model.poisson$coefficients, ncol=1)

xbeta <- as.numeric(Xmatrix %*% beta) # linear predictor

return(exp(xbeta))

}

In particular, the generalised linear Poisson model is used, with the argument type equal to

‘response’ to specify the rate of an event in each person-time interval. The output is obtained

by evaluating the regression function of the new data provided (including imputed data and

time-invariant covariates), specifying where to look for explanatory variables to be used for

prediction.

Then we compute the probability of event occurrence in each person-time interval, as

1 − exp(−hrate × interval length).

In principle, we expect these two likelihoods of predicted events to get closer as we shorten the

interval length. However, taking complete person-time intervals inflates the total person-time

of observation so that the total expected events no longer equates to the observed events.

I indeed observe a discrepancy between the observed and estimated number of events (the

expected events are typically more than the observed) in the evaluation data with fixed length

intervals.

It is worth pointing out that the hazard rates must be interpreted in the same units of time

that are used to measure exposure. If a subject is observable at the beginning of an interval,

we need to include them in the entire interval. Therefore, the exposure time always represents

one unit of time, i.e. one complete interval: it is not allowed for an individual in the test set to

get partially exposed. We can set the time unit to any length, e.g., half-year or quarter-year.

This configuration leads to exchangeable person-time intervals, where the individuals can be

ranked by predicted risk. Each subject contributes to the risk set of cases or non-cases with
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respect to the time being exposed.

By including a time-varying covariate, like eGFR, into the piece-wise exponential survival

function, I have assumed that the effect of the time-updated covariate on risk does not depend

on time. The effect must be constant within each person-time interval. According to this, it is

fully legitimate to represent the response variable on these complete (uncensored) intervals as

a mixture of independent and identically distributed Bernoulli variables, as explained in 8.2.1.

The inclusion criterion for entering the testing folds introduces a survival bias, on the grounds

that the models underrate the event probability of subjects who have outlived the landmark

point, because they are supposed to be less frail and less likely to have an event.

The predictive performance of the time-splitting joint model based on updated biomarker

trajectories at the start of each person-time interval can be considered as valid as the

fully Bayesian continuous-time joint model, if not more, because of the use of a broader

family of models supported by ctsem compared to rstanarm, which specifies the longitudinal

component.

Both approaches build a linear mixed model with random intercepts and slopes, which is a

minimal requirement to specify a longitudinal submodel. However, the LMM, coupled with

drift and diffusion fits the biomarker data best and is rather performant in predicting time

to event, with the drift model being a fair compromise between treating eGFR as constant

during the prediction period (LOCF), and inferring a gradient which is not met in reality,

due to arbitrary fluctuation in eGFR of individuals who are not surging ahead in the course

for renal failure.

The main takeaway points are the following:

The better fit to the longitudinal data, obtained by using the ctsem functionality, as opposed

to the LOCF model, translates into a moderate increment in C-statistic for the risk of event.

There is no substantial increase in the computational load if more than one biomarker is used
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as inferred by longitudinal models built for both eGFR and HbA1c in parallel in a timely

manner.

Although the C-statistic of the Poisson model employing the LOCF imputed eGFR is relatively

high, it significantly underestimates the expected number of events (figure 9.2), even when

taking shorter intervals. On the other hand, as fitting and evaluation specifically elucidate,

eGFR requires a better stochastic model to be determined more closely. There is a trade-off

between model performance and fitting when actually observing an eGFR trend over the

training window, and despite that observation, constant values (via LOCF) are used for

prediction. With LMM and LMM-drift estimates of hazard rate being close, but rather higher

than the estimates of the other models, it can be seen how the imputations from the various

configurations resemble. As before, including the random slope component extrapolates the

trajectories rather well, while the drift or diffusion processes may render a fairly conservative

guess.

Likewise, the models which include an LMM component tend to be better calibrated (due to

better capturing the long-term trend), especially when the interval of prediction is shorter

and the hazard rate may change faster between intervals, in contrast to Poisson models, that

include imputed eGFR obtained by employing solely drift, diffusion or LOCF imputation

schemes (as shown in figures 9.1 and 9.2). From this point of view, the performance of the

LOCF model is significantly poorer, and it is not improving with shorter interval lengths.

This is a valid justification for using more elaborate imputation schemes instead of plain

LOCF.

Additionally, the models which appear to be best calibrated are not the ones with the best

C-statistic. Thus, the models are good in differentiating between event occurrence or not, but

the predicted probabilities does not accurately reflect the true likelihoods of the outcomes.

Moreover, the differences in C-statistics among Poisson models are much smaller than the

differences among predicted probabilities of events derived by each model. The reason, why
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the best-calibrated models may not have the highest C-statistic, can vary depending on the

specific features of the dataset and the modelling context. It could be due to factors such as

group imbalances or model’s complexity. Focusing on calibration is particularly important in

scenarios where accurate probability estimation is crucial, such as risk prediction.

In particular, models that include diffusion broadly perform better in discriminating cases

from non-cases, however, models that include random slopes along with diffusion are the best

in terms of calibration. Besides, although the LOCF models are less calibrated, they do quite

well at differentiating cases from non-cases. The relatively good differential performance is

speculated to stem from the similarity of LOCF to the diffusion process in the sense that they

both weigh more on the most recent observation of the subject in order to predict the risk.

9.2 Implications

The filtered dataset contains subjects who are progressing faster to renal failure, as opposed

to the total cohort. Predicting time to renal disease is an excellent example to demonstrate

that building more precise functions of the longitudinal biomarker data makes a difference

in the prediction of time to event. In both datasets, the most performant model in terms of

model fitting to the data is the Poisson model, which depends on random slopes, drift and

diffusion for eGFR trajectories.

When analysing all individuals together, then most patients appear to be at a lower risk of

progression to ESRD –maybe because they have less frequently collected measurements of

eGFR since they are not experiencing a decline in renal function yet, which explains why the

survival models with time-varying eGFR based on stochastic processes for the longitudinal

data, are more likely to overestimate the risk of event, as opposed to what it was observed by

using the frail subgroup’s observations, where the difference between observed and expected

numbers of events is smaller.

The repeated measurements of eGFR can provide insights into the progression or decline of
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renal function. A circular relationship or feedback loop is likely to exist; eGFR is commonly

used as a prognostic measure of renal function. When eGFR data are collected more frequently,

it allows for monitoring changes in kidney function over time. Frequent measurements, however,

serve as an indication of declining kidney function, which in turn prompts further monitoring

and medical interventions.

The LOCF imputation technique is outperformed by smarter imputation schemes, despite

performing well at identifying the most vulnerable population. Furthermore, the Poisson-

LOCF models fail to assign a substantially increased probability to subjects with high risk,

which is a crucial drawback.

To recap, when dynamic system modelling is employed to specify time-varying covariates,

such as biomarker data that are used in risk prediction models, these predictive models, in

turn, perform considerably well in determining what proportion of individuals will remain

event-free for the ensuing period beyond the landmark time point. They also, yield more

reasonable latent state predictions than the LOCF models for eGFR.

In this chapter, I have examined the predictive performance of a time-splitting joint modelling

approach to assess the risk of progression to renal failure using two overlapping groups of

a national T1D population. Exploiting the joint modelling concept reduces bias since it

explicitly disregards data coming during the forecast period and instead bases the predictions

exclusively on past information. The findings presented herein contribute to the literature

that estimates the effect of a changing longitudinal process, such as a biomarker, on time to

event.

Therefore, these results add to existing evidence that stochastic processes, such as autoregres-

sive drift coupled with a linear mixed-effects model and diffusion components can approximate

better any long-term trends in fluctuating eGFR data. It is also found that longitudinal

eGFR is more likely not to be linearly related to the risk of event throughout the follow-up

length and, hence, a piece-wise exponential survival function that includes a B-spline function
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would perform better in estimating the changing rate of eGFR in individuals with T1D.

On the other hand, the conventional LOCF model, which has been broadly used in clinical

modelling of time-updated data, is not robust enough when the hazard rate is changing fast,

as in the frail subgroup with baseline eGFR less than 60 mL/min/1.73 m2. Despite its good

differential performance, the Poisson-LOCF model predicted risk in each person-time is more

conservative than the alternative state-space models.

This statistical formulation approach might be helpful to identify patients who are progressing

fast towards renal failure and thus having eGFR measurements updated frequently, and also

mitigate overtreatment towards the proportion of the T1D population that experiences a

regular rate of progression to renal failure. The significant strength of the Bayesian sequential

updating approach is that it outperforms the LOCF models in settings with sparser collections

of biomarker data, i.e., less frequently collected and updated.
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Chapter 10

Discussion

10.1 Concluding summary

Today’s great opportunity to maximise prediction stems from large-scale electronic health

record collections containing longitudinal data on risk factors for important clinical outcomes.

To that end, I have harnessed data on a cohort with type 1 diabetes for whom there are

available records on developing cardiovascular disease and renal failure outcomes, along with

a variety of relevant biomarker data. Firstly, I applied joint modelling of longitudinal and

time to event data, a flexible suite of models, which is the current state-of-the-art approach to

survival analysis based on longitudinal data. The rationale behind this approach was to assess

if using joint modelling improves the risk prediction of CVD in people with T1D, supported

by the evidence that harnessing the information hidden in longitudinal data could better

inform risk prediction.

However, having encountered substantial scaling problems using this method, I have turned my

attention to an alternative two-staged joint modelling approach based on sequential Bayesian

updating for the longitudinal data and Poisson time-splitting for time to event. I applied the

latter joint modelling approach to the problem of predicting progression to end-stage renal
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disease (ESRD), using collected data on renal replacement therapy (RRT) of the particular

cohort.

The reasoning for demonstrating the method, modelling the rate of potential progression

to RRT instead of CVD, using longitudinal eGFR data, was to develop a simplified and

manageable exemplar of applying joint modelling to a more tractable prediction problem. The

longitudinal eGFR profiles were extrapolated frequently enough and contained measurements

to evaluate the joint model formulation; therefore, using a single biomarker for showcasing

the development was the most natural choice. In that matter, I assessed the performance of

multiple model specifications since the fitting was less computationally cumbersome for the

purpose of demonstrating the method.

My research has made a significant contribution to addressing the identified scaling issues

of the evaluated rstanarm implementation and using more flexible stochastic models to

determine the underlying process of the changing biomarkers and connect natural processes to

the rate of progression to developing complications of diabetes. With the aim of establishing

a place for joint models in the statistician’s toolkit, I conducted a thorough examination of

two formulations that facilitate more flexible and efficient risk prediction.

The use of a broader class of continuous-time state-space models has been examined with

the objective of specifying more robust individual biomarker trajectories able to inform time

to event. Improving the prediction of time to event highly depends on the effect of the

longitudinal process on the development of the clinical outcome. A more precise fitting to

the underlying transition states of the biomarker data could translate to bigger increments

in risk estimation. To establish the gain, I used as a benchmark against the join models

the traditionally used last-observation-carried-forward approach for the specification of the

biomarker trajectory.

The predictive analysis of the rate of progression to RRT suggests that longitudinal eGFR

trajectories determined by using autoregressive drift effect and diffusion processes, fit the data

220



best, along with specifying random intercepts and slopes, and outperform the constant LOCF

extrapolated trajectory when used as new data to predict future events. To effectively specify

a longitudinal process, the choice of the method depends on whether the biomarker exhibits a

monotonically changing pattern over time, fluctuates considerably, or lacks a clear direction.

In terms of improving public health, the scrutiny of promising implementations and the

choice of appropriate methods for specifying longitudinal processes and biomarkers can have

significant implications. By identifying effective models and methodologies, practitioners can

gain deeper insights into the progression of health conditions and better predict individual

risk.

This, in turn, can lead to more tailored and targeted interventions, early detection of health

issues, and optimised allocation of resources to prevent or manage diseases. The application

of joint models and appropriate longitudinal analysis contributes to evidence-based decision-

making, which is crucial for designing effective public health strategies, enhancing healthcare

outcomes, and ultimately improving the overall health of populations.

Within individual-level, the reviewed Bayesian joint modelling implementation requires all

biomarkers to be measured synchronously; otherwise, they cannot be modelled jointly. This

feature severely restricts the ability to specify multiple longitudinal processes in parallel,

resulting in a significant proportion of the original observations being discarded when the

dates of biomarker measurements do not match.

However, despite this limitation, these implementations serve adequately for demonstrative

purposes and lay the foundation for further development and refinement. They offer valuable

insights and initial evidence of the potential of joint modelling techniques in addressing

complex longitudinal relationships between biomarkers. As research in this area grows, it

is expected that more versatile approaches will be devised to accommodate asynchronous

measurements and overcome the challenges associated with the joint modelling of multiple

longitudinal processes, like the introduction of a Kalman filter to infer the unobserved latent
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states of the true values of the biomarkers conditional on all past observed data up to an

arbitrary time point.

An additional bottleneck concerning multivariate joint models is that likelihood estimation is

computationally intense, and the computation time scales unfavourably, as the number of

biomarkers increases due to complex quadrature calculations.

The statements made herein may be considered as post-hoc observations. The introduction

of precision medicine and personalised profiles of a growing number of individuals with

chronic diseases has highlighted the magnified heterogeneity in substantial collections of data,

making it challenging to determine in advance how individual longitudinal trajectories will

behave over time. Through a major overhaul of my work on predicting future states for

individuals with diverse biomarker trajectories, I have come to realise the significance of

improving computational efficiency, which currently serves as a major bottleneck in the concept

of precision medicine. I aspire that joint modelling approaches will facilitate meaningful

interventions based on individual characteristics.

The number of software implementations that compute the likelihood of clinical outcomes

based on time-updated biomarker data is rising (Bohr and Memarzadeh 2020; Johnson et al.

2021; Subbiah 2023; Hadjichrysanthou et al. 2020). My work has been influenced by recent

advancements in inference algorithms that specify the likelihood of the predictive distribution

surface. However, due to the substantial number of individual-level parameters requiring

estimation, the computation of the likelihood surface needs to be approximated. Achieving

an accurate approximation, or model fitting, involves sampling the most probable values from

the underlying distribution. However, this process can become computationally intensive,

especially for large-scale datasets.

As such, there is a growing need for more efficient schemes for posterior predictive inference.

Developing improved algorithms and computational approaches can help address the challenges

posed by large datasets and complex models, allowing for faster and more precise inference in
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the context of predictive modelling and precision medicine applications. These advancements

are critical for leveraging the potential of coupling statistical machine learning and precision

medicine and enhancing the understanding and specification of diverse health trajectories.

Arguably, predicting the time to renal failure is an important practical problem, and improving

existing risk prediction models might mitigate undertreatment in patients early in the course

of the disease. Moreover, as new information becomes more frequently available, the concept

of providing real-time risk prediction becomes more attractive. For example, preventing acute

ketoacidosis in people with diabetes would be a fitting application to showcase methods for

dynamically updated prediction. To that end, the use of differential equations to study the

dependencies between underlying latent processes offers valuable insights, particularly in cases

where these relationships may not follow linear patterns for the majority of instances.

The joint model fitted within the R package rstanarm accounts for the correlation that is

induced by clustered observations (e.g., subjects, hospital, country). Albeit mathematically

well designed, in the presence of two or more biomarkers, the computational limitations of

quadrature become apparent; this method is poorly suited to numerical computation. In par-

ticular, the computation time scales unfavourably -exponentially- as the number of biomarkers

increases. The joint model implemented in rstanarm requires numeric integration of thou-

sands of biomarker trajectories, which is prohibitively time-consuming and computationally

intensive for even moderately-sized datasets.

On the other hand, the Poisson time-splitting approach replaces the evaluation of the likelihood

as an integral over the hazard function by factoring the likelihood over many short intervals. As

this does not require quadrature computation, which is much faster than the continuous-time

multivariate joint model.

The main takeaway point is that rstanarm was the state-of-the-art package up until recently,

using the most advanced algorithms available at the time for Bayesian analysis. However, the

developers themselves also expressed that its current implementation does not really scale
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to any reasonably big dataset, to the effect that they allow other developers to find a way

to speed it up. This is arguably feasible, but not by the currently employed approach that

requires random effects integration, which fundamentally depends on rather slow quadrature

computations.

To sum up, I have demonstrated an efficient approach that enables the fitting of joint models

in realistic computing times and does not require quadrature computation for the longitudinal

biomarker data like the most modern approach of stan_jm() that severely hampers the

inclusion of more than two biomarkers. I have specified longitudinal profiles of eGFR and

HbA1c of individuals with T1D using various state-space models as an extension to the LOCF

model for the biomarker trajectory. The imputations of missing values using an LOCF model

have been used as a benchmark. Finally, all imputations have been fed as time-updated

covariates into Poisson regression models for time to event.

Understanding the intertwined nature of biological processes is crucial for enhancing our

ability to predict disease outcomes, develop targeted interventions, and ultimately advance

the field of precision medicine.

The results obtained from the renal failure study provide convincing evidence that robust

models can effectively determine the progression to end-stage renal disease. Incorporating

longitudinal eGFR along with the clinical variables of sex, age, and diabetes duration leads to

relatively modest improvements in predicting the time to event, even though the predictions

are already reasonably accurate. The C-statistic, which measures average discrimination

performance, does not show substantial improvement, which is unsurprising.

From a clinical perspective, the association parameter may be of greater interest in under-

standing the relationships between the variables. Currently, only the current value of the

biomarker data has been experimented with, but exploring whether considering the rate of

change or the area under the curve could enhance individual profiles and predictions is an

essential research direction worth pursuing.
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Regarding data handling, the LOCF approach works well in this exemplar case, as there are

frequently collected observations. This translates into adequate model training, which can, in

turn, provide informative time to event predictions.

Overall, the study’s findings underscore the potential of robust modelling in predicting renal

and cardiovascular disease progression, and further investigations into various data aspects can

contribute to the promotion of precision medicine in managing complex biological processes

like progression to renal failure.

10.2 Final remarks

This thesis has the following salient messages:

1. Calculating survival functions when we have time-varying covariates is complicated

because it needs to specify a trajectory for each variable. Recently implemented software

enables us to apply more flexible dynamic models to specify latent states of time-varying

biomarker data pertinent to the outcome of interest and quantify the impact of the

time-varying effects on the shape of the hazard rate of event.

2. This work investigates an alternative joint modelling approach, based on Poisson time-

splitting, in which the observed events are modelled as a counting process over many

short person-time intervals. The biomarker values at the start of each interval are

imputed based on Bayesian sequential updating, using only observations up to the start

of that interval from a class of models, known as hierarchical continuous-time dynamic

models, of which linear mixed models are a special case.

3. With my approach, the generated biomarker imputations that fall after the landmark

point are held for testing via cross-validation and do not include any real data arriving

after this time.

4. I have conducted a double-prediction task: A. the Kalman filter predicts the trajectory
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after the landmark time, conditional on the actual observations up to this time, and

these imputed values are subsequently treated as test data, B. The Poisson model is first

fitted on the imputed biomarker data conditional on observations until the landmark

time, and it then predicts time to event using the imputed test data.

5. I have tested the performance of the Poisson models using Kalman filter imputations

about future states of the biomarker trajectory instead of taking the conventional

approach, which is to test the Poisson models on actual withheld observations. This

approach has two prediction stages and errors are likely to be reflected in the calibration

of the fitted models.

6. The proposed approach constructs the longitudinal trajectories based on advanced

equations and uses the time-updated trajectories to fit a model for time to event.

Furthermore, using one of the simplest parametric models to estimate the event rates

is advantageous because including time-updated biomarker data in each interval helps

reweigh the baseline hazard function as necessary.

7. The risk of the event is evaluated at every person-time interval. With many short

intervals, the approximation of a Poisson time-splitting approach to a continuous-time

survival model can be made arbitrarily close. For each constructed person-time interval,

I have predicted the latent state of the biomarker, according to a Gaussian state-

space model. I have also carried out the last-observation-carried-forward method as

a benchmark. The piece-wise exponential approach based on the Poisson likelihood

is reasonably robust for settings where the hazard rate remains constant within each

interval. To be helpful, the trajectory should be somewhat informative of the hazard

rate.

8. To control for immortal-time bias when generating the biomarker path, it is crucial

to ensure that we are not including any observations from future time intervals. To

elaborate on this, when using the Kalman filter algorithm to estimate latent states, it is
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not allowed to use smoothing functions but only to conduct a filtering pass to compute

the posterior distribution, given the observed data up to the beginning of each interval.

9. Partial exposure is not allowed in a time-splitting approach: I thus allow for the time

intervals of the testing set to run all the way to the end. Observed censoring in training

data is accounted for by including an offset term of exposure time (interval length) in

the Poisson model. This is a necessary condition for treating the predicted events as

exchangeable observations among intervals.

10. From a clinical perspective, the small increments in the predictive performance of the

rate of progression of renal failure reflect the complexity of the processes defining time

to developing complications in T1D. Models that perform well at guessing patients

who will experience the outcome of interest (yes/no decision) in the near future are not

necessarily predicting the time to event accurately.

11. Using a stochastic variation to capture the changes in risk factors could be a major

determinant of hazard heterogeneity. Variation in disease risk often goes far beyond

what is captured by measured risk factors (Aalen et al. 2015). Even in the case of

predicting renal failure from longitudinal eGFR, frailty remains a large component. In

fact, a large number of people with renal problems do not progress to the later stages of

the disease but die prematurely due to numerous comorbidities and complications.

12. Heterogeneity is inherent due to stochastic processes. Varying frailty between individuals

may have several different explanations: environment, genetics etc. (or it may be a

purely stochastic phenomenon). In addition, some randomness averages out at the

population-level model. Therefore, individualised risk prediction may need to be more

accurate than estimating the overall population trends.

13. For the biomarker model, diffusion and autoregressive drift effects are larger than the

linear trend. Our models do not allow for any lag in the effect of the latent biomarker on

the hazard rate, so if the latent biomarker rises, the modelled hazard rate will increase
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simultaneously. There may be lag effects of the changing biomarker, but even in this

large dataset, we do not have enough information to detect them.

14. Frailty (unmeasured heterogeneity in individual susceptibility) can cause rate ratios

associated with risk factors to “wear off” with time, in a survival analysis. This is

because those who have survived without developing the disease, the rate at which the

most susceptible individuals are removed is higher among those who have high levels

of the risk factor than among those who have has low levels of the risk factor. This

is relevant mainly to cardiovascular disease, where the rate ratios associated with risk

factors wear off with age. This is especially likely to affect people with type 1 diabetes

because the risk of CVD is high even at young ages, so the most frail individuals are

removed more rapidly.

10.3 Outlook & Further directions

Risk prediction at the individual level presents a challenging task, both mathematically and

computationally, primarily due to the significant number of random effects that determine the

longitudinal process and influence the outcome of interest. While joint models implemented

in rstanarm are elegantly formulated, they become impractical for modelling large-scale

observational study data and electronic health care records due to their reliance on quadrature.

To tackle the intractable parameter estimation, a possible solution would be a method

proposed by Mauff et al. (2020), known as importance sampling. This technique improves

the estimation of the posterior probability distributions. In addition, one would expect the

performance to be further improved by using multiple imputations of the biomarkers followed

by averaging over the models.

Bottom line is that the time-splitting joint modelling approach, based on ctsem and Poisson

regression, provides a better fit to the longitudinal data, producing risk predictions comparable

to those obtained by continuous-time Bayesian joint models. This approach offers a scalable
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alternative to rstanarm, and its predictive performance is acceptable when the risk factors

adequately relate to the outcome of interest. Additionally, its cautious design helps overcome

common pitfalls encountered in survival analysis, leading to unbiased estimates.

Considering these advantages, it is strongly recommended to adopt the time-splitting joint

modelling approach for fitting robust joint models efficiently when dealing with large datasets.

By leveraging this approach, researchers can obtain timely and accurate risk predictions,

making it particularly valuable for precision medicine applications where large amounts of

data need to be analysed to gain insights into disease progression and individual biomarker

trajectories.
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Appendix

ICD & OPCS codes used for defining CVD

Prior CVD ICD codes used to exclude people who have had an event in a period of 10 years

prior to the study start date ICD10: I20, I21, I22, I23, I24, I25, I61, I63, I64, G45, I70.2,

I70.8, I70.9, I73.9, E10.5, E11.5, E13.5, E14.5 ICD9: 410, 411, 412, 413, 414, 431, 433, 434,

435, 443.9, 440.2, 440.3, 440.4, 440.9, 250.7 Study CVD codes used to determine an event

during the study period ICD10: I20, I21, I22, I23, I24, I25, I61, I63, I64, G45, I70.2, I70.8,

I70.9, I73.9, E10.5, E11.5, E13.5, E14.5 ICD9: 410, 411, 412, 413, 414, 431, 433, 434, 435,

443.9, 440.2, 440.3, 440.4, 440.9, 250.7 OPCS4: K40, K41, K42, K43, K44, K45, K46, K48,

K49, K50, K75, L29, L30, L31.0, L31.1, L31.3, L31.4, L31.5, L31.6, L31.7, L31.8, L31.9, L33,

L34, L35, X09.1, X09.2, X09.3, X09.4, X09.5 OPCS3: 304, 082.8, 871.2, 873 CHD related

death during the study period ICD10: I20, I21, I22, I23, I24, I25, I46 ICD9: 427.5, 410, 412,

413, 414

Intermediate outputs
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Dynamic prediction of time to event given longitudinal
observations: Evaluation of forward prediction using a joint model
of longitudinal and time to event data. Evaluation of a two-stage
approach based on Kalman filter updates and a time-split counting

process as a scalable alternative to joint modelling.

Ioanna Thoma et al.

2021-05-17

Background

We present a real world data application to study the association between longitudinal biomarkers, namely
HbA1c and eGFR, and time to CVD event in individuals with type 1 diabetes.

We first consider a multivariate shared parameter joint model. For each biomarker a linear mixed model is
specified with an individual-specific intercept and slope. We then estimate the hazard of the event using
a parametric proportional hazards regression model. The probability of individual i still being event-free
at time t is often referred to as the ‘survival probability’. The log hazard of death at time t is modelled as
dependent on the current values of the biomarkers.

The joint modelling approach specifies the likelihood of event by computing the hazard rate at a set of time
points chosen to give an approximation to the area under the curve: a procedure known as quadrature. As the
number of biomarkers increases, the number of points required for quadrature scales exponentially and model
fitting becomes computationally intractable. This limitation has hampered the application of multivariate
joint models with real data in practice.

Another approach that enables the fitting of such models with more realistic computational times* is the
use of a multivariate mixed effects state space model. In this case the values of the longitudinal variables
are modelled by the latent state of the state space model and then these are used as predictors in a Poisson
regression model for the survival probability. Details about the model formulation are given below.

State space models are powerful in modelling dynamic processes due to their flexibility. Population effects
and subject random deviations of any variable can be described by different stochastic processes. However,
the expensive computational cost is a major hindrance to the application of the mixed effects state space
model to healthcare data with large numbers of individuals.

Lastly, we compare these continuous-time methods to modelling time to event as a counting process over
many short person-time intervals. The major assumption here is that if the intervals are short, the hazard rate
within intervals can be treated as constant and the counts of events can be modelled by Poisson regression.
With many short interval lengths, the approximation of a Poisson time-splitting model to a continuous-time
survival model can be made arbitrarily close.
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Study population

The study started on 1/1/2008 and ended on 1/1/2018. The study population includes 26327 individuals
with HbA1c data, where each has 22.09 observations on average. 97.3% of them (25616 individuals) also have
eGFR data, with each having 26.21 observations on average.

To reduce computational complexity we took the observations of eGFR measured on the same date as HbA1c.
This resulted in a reduced number of participants and observation totals per individual. Consequently, 24779
individuals are included in the dataset and the average number of observations per individual now adds up to
14.13 measurements. Over 50% of the patients in the study have had their HbA1c and eGFR measured at
least once per year.

Baseline characteristics

The cohort was initially consisted of 14124 males and 10655 females. The average age was 36.09 and the
average diabetes duration was 15.08 years. The number of CVD incidents occurred in the study period was
2235 (9.02%).

By scaling down the original dataset we make the model fitting process faster. We select 1000 controls and
100 cases such that the ratio of events is maintained. We select the subjects who were not censored within 5
years from their entry. This total corresponds to 795 individuals. We then drop any individuals who are
followed up but have no observation within these first 5 years and this leaves us with 780 subjects. Then we
censor half of the individuals who are followed up for at least 5 year, so that these 398 individuals, followed
from 5 years till the end of study, comprise the test set.

The aim here is emulate a realistic situation in which we are trying to make forward predictions for individuals
who have been followed for several years based on a model trained on the entire population. Therefore, we
need to include in the training set some people who are followed to the end of the study period. This allows
the program to fit a spline model for the baseline hazard rate that covers the entire study period.
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Methods and results

We demonstrate the continuous-time approach to joint modelling by using the function stan_jm() from the
rstanarm package to fit a multivariate joint model to the two longitudinal biomarkers and time to CVD
event.

For each biomarker a linear mixed model is specified with an individual-specific intercept and slope. The
event model includes gender, age, diabetes duration and median HbA1c as baseline covariates. The log
hazard of death at time t is modelled as dependent on the current values of the biomarkers.

Table 1: Runtime in minutes of fitting a stan_jm() model with
1000 iterations

warmup sample total
chain:1 90.2 197.6 287.8
chain:2 132.5 13.7 146.2
chain:3 82.2 17.6 99.8
chain:4 158.5 176.2 334.7

Table 2: Continuous-time bivariate joint model fitted with
stan_jm()

mean sd n_eff
Event|(Intercept) -6.09 1.13 885
Event|gender -0.42 0.21 1202
Event|entryage 0.04 0.01 1222
Event|diabetesduration 0.01 0.01 1492
Event|entryhba1cavg 0.00 0.01 1094
Event|b-splines-coef1 -0.55 0.52 680
Event|b-splines-coef2 -0.76 0.54 495
Event|b-splines-coef3 -0.75 0.73 375
Event|b-splines-coef4 -2.03 0.86 357
Event|b-splines-coef5 0.46 0.74 446
Event|b-splines-coef6 -1.40 1.02 861
Assoc|Long1|etavalue 0.04 0.01 668
Assoc|Long2|etavalue -0.02 0.01 1029

## Warning in bs(x = c(`42` = 9.99041752224504, `42` = 0.042682205037857, `42`
## = 0.254216602137268, : some 'x' values beyond boundary knots may cause ill-
## conditioned bases

## Warning in bs(x = c(`45` = 9.99041752224504, `45` = 0.042682205037857, `45`
## = 0.254216602137268, : some 'x' values beyond boundary knots may cause ill-
## conditioned bases

## Warning in bs(x = c(`70` = 9.99041752224504, `70` = 0.042682205037857, `70`
## = 0.254216602137268, : some 'x' values beyond boundary knots may cause ill-
## conditioned bases
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Comparison of state space models fitted to longitudinal data

We first examine the fit of alternative models based on a multilevel bivariate Gaussian state space model,
using the R package ctsem.

To specify a model with drift and diffusion but no slopes (i.e. no LMM), we comment out the lines DRIFT=0,
DIFFUSION=0 to allow these effects to be learned, and comment out the line CINT=c('slope1','slope2')
so that the slope parameters are set to their default values of zero.

For a linear mixed model that allows diffusion but no drift, we uncomment the lines DRIFT=0 and
CINT=c('slope1','slope2'). For a linear mixed model that allows drift but no diffusion, we uncomment
the lines DIFFUSION=0 and CINT=c('slope1','slope2'). For a linear mixed model that allows drift and
diffusion, we uncomment the lines DIFFUSION=0, DRIFT=0 and CINT=c('slope1','slope2').
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Figure 1: Linear mixed model with no diffusion or drift: updates to trajectory of five individuals by Kalman
filter
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Figure 2: Model with diffusion and drift only: updates to trajectory of five individuals by Kalman filter
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Figure 3: Linear mixed model with diffusion but no drift: updates to trajectory of five individuals by Kalman
filter
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Figure 4: Linear mixed model with drift but no diffusion: updates to trajectory of five individuals by Kalman
filter
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Figure 5: Linear mixed model with drift and diffusion: updates to trajectory of five individuals by Kalman
filter
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Comparison of state space models when used to impute biomarker
values for time-splitting model of events

The imputed values are used to train a Poisson regression model on the training dataset, in which follow-up
of those individuals who appear in the test dataset is censored at five years.

Table 3: Poisson time-splitting model fitted to latent biomarker
values imputed by Kalman filter from linear mixed model with
diffusion and drift

Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.41 1.10 -6.73 0.000
gender -0.31 0.21 -1.51 0.131
entryage 0.06 0.01 6.49 0.000
diabetesduration 0.01 0.01 1.55 0.122
entryhba1cavg 0.02 0.01 4.17 0.000
hba1cvalue 0.02 0.01 2.17 0.030
egfrvalue -0.03 0.00 -7.83 0.000
splines::bs(tstart, df = 6)1 2.22 1.09 2.04 0.042
splines::bs(tstart, df = 6)2 -1.50 0.78 -1.92 0.055
splines::bs(tstart, df = 6)3 2.25 0.90 2.51 0.012
splines::bs(tstart, df = 6)4 -1.62 1.01 -1.60 0.109
splines::bs(tstart, df = 6)5 1.80 1.16 1.55 0.121
splines::bs(tstart, df = 6)6 0.58 1.21 0.48 0.631
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Comparison of fit to training data

Deviance numparams AIC Model
0.0 34 0.0 LMM

-2831.6 47 -2805.6 Drift and diffusion, no LMM
-2374.5 46 -2350.5 LMM with diffusion
-148.3 50 -116.3 LMM with drift
-3931.1 62 -3875.1 LMM with drift and diffusion

Of the five models, the LMM with drift and diffusion has the lowest deviance and the lowest AIC.

Comparison of predictive performance on test data, using joint model as bench-
mark

Table 5: Comparison of predictive performance on test dataset

Model Observed Predicted Person_years C_statistic
lmm.fit 31 22.6 952.6 0.754
nolmm.fit 31 23.4 952.6 0.751
lmmdiff.fit 31 22.1 952.6 0.751
lmmdrift.fit 31 22.2 952.6 0.753
lmmdriftdiff.fit 31 23.0 952.6 0.752
stanjm 12 22.9 1337.5 0.688

Even with only a single imputation, the predictive performance obtained by the time-splitting approach with
biomarker trajectories predicted at the start of follow-up beyond 5 years is as good as that obtained with the
fully Bayesian continuous-time joint model. In both approaches, the longitudinal submodel is a linear mixed
model with random intercepts and slopes.
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Studying time to renal disease in people with type 1 diabetes

Ioanna Thoma

03 September 2021

Abstract
make dynamic prediction of time-to-event (renal replacement therapy in people with type 1 diabetes) given

longitudinal data (eGFR, HbA1c)
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1 Background

Long-term complications of type 1 diabetes (T1D) include nephropathy, retinopathy, neuropathy and vascular disease.
Learning to predict these complications is important for clinical practice and decision making. In addition, for the
management of chronic diseases such as diabetes where biomarkers are measured repeatedly over the course of the
disease, clinicians need to be able to make dynamic risk predictions that are updated as new biomarker observations
arrive. This is a key requirement for precision medicine to realise its potential.

It is imperative to understand why some individuals with T1D face a number of long-term, potentially life-threatening
complications, while others may relish an uncomplicated long lifespan. Despite large improvements in the management
of glucose levels in the last years, the mortality rate in patients with T1D is still high (Mameli et al. 2015). After
a long disease duration, most of the excess mortality in people with T1D is considered to result largely from
cardiovascular events (Deckert, Poulsen, and Larsen 1978).

Interestingly, during the first 20 years of T1D, most of the excess mortality is attributed to renal failure (Dorman et
al. 1984). Diabetic nephropathy causing end-stage renal disease (ESRD) which may result in renal replacement
therapy (RRT) contributes in a major way to increased mortality (Orchard et al. 2010) (Stadler et al. 2006).
Studies provide evidence that life expectancy in haemodialysis patients is reduced fourfold on average versus healthy
age-matched individuals (Cheema 2008).

In the last decade, new technologies have been emerged, e.g. insulin pumps, glucose sensors, etc that provide cause
for optimism that late T1D-related complications may be prevented or at least be delayed. In addition, developing
drugs to prevent or reverse impaired renal function is an important goal. However, there is wide variation in the
rate of renal function decline among those with T1D with some people being much more susceptible than others.
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The aim of the current work is to investigate incidence rates and time-to-renal disease using electronic healthcare
record linkage of a Scottish T1D registry, and identify biomarkers that improve prediction of renal outcomes on top
of clinical records. A key question is how longitudinal eGFR and HbA1c data can contribute usefully to prediction
of progression of renal disease in individuals with T1D.

2 Methods

2.1 Characteristics of study population

This analysis was conducted using information on patients who are registered in SCI-Diabetes (Scottish Care
Information - Diabetes) to provide their personal data for research purposes. This network tracks real-time clinical
information on all 300,000 people with type 1 and type 2 diabetes in Scotland. In particular, the current analysis was
conducted on 29126 individuals with type 1 diabetes and the study period starts on 1/1/2008 and ends on 1/1/2018.

The renal replacement therapy prevalence in the dataset is 466 events, 0.016%. Within the study period, each
subject has 9.96 HbA1c and eGFR observations on average. For greater clarity in their modelling, we have discarded
unmatched biomarkers measurements and used only eGFR measurements that were taken on the same date as
HbA1c.

The total contribution of the participants in this study is 253955 person-years. Person-time is the sum of total time
contributed by all subjects. Furthermore, the dataset contains 16345 male and 12781 female participants aged 18
and above, with average entry age and diabetes duration 39.78 and 15.45 years respectively. The mean follow-up
time is 6.9 years. During the first 5 years of follow-up, there were 200 RRT occurrences and 180258 of the 294043
biomarker observations. Biomarker data and covariates gender, baselineage, baselineduration and currentage are
scaled and centred for the statistical analysis.

To speed up the training process, we selected 2000 subjects, maintaining the rate of events, 32 of whom had an
RRT occurrence. To construct a training subset to be used for dynamic predictions, we censor at 5 years half the
individuals who were still being followed up at 5 years (1652 people).

We evaluated the predictive performance of the biomarker models on withdrawn data using 2-fold cross-validation,
and compared models including longitudinal biomarker information to baseline models that only contain clinical
covariates. The first fold includes 2000 individuals where 826 had their biomarker data censored, and the second
fold includes 2000 individuals of whom 826 are censored after Time 5.

The aim is emulate a realistic situation in which we are trying to make forward predictions for individuals who have
been followed up for several years, based on a model trained on the entire population. Therefore, we need to include
in the training set some people who are followed to the end of the study period. This allows the program to fit a
spline model for the baseline hazard rate that covers the entire study period.

3 Dynamic models

We apply a continuous-time dynamic modelling approach to investigate the association of the biomarker trajectories
and time-to-RRT. The growing popularity of real longitudinal data has fuelled the interest in continuous-time models
because they are inherently well suited to handling unequally spaced measurement occasions and individualised
assessment designs (Hecht and Zitzmann 2020). Furthermore, continuous-time models enable comparisons of studies
with different time intervals between observations.

A number of attractive software solutions for estimating continuous-time models have been introduced, such as the
R package ctsem, which includes both a frequentist (Driver, Oud, and Voelkle 2017) and a Bayesian estimation
module (Driver and Voelkle 2018). Whereas frequentist estimation in ctsem seems appropriately fast, model run
times in the Bayesian ctsem are rather high when using real life data.

Continuous-time models involve a two-level data structure (repeatedly measured values nested within persons). We
perform a Bayesian analysis as we wish to benefit from the ability to include previous knowledge and the potential
to estimate otherwise intractable models e.g., Van De Schoot et al. (2017). Therefore, we chose to use the Bayesian
software STAN for its flexibility and stability.

2

274



3.1 Rationale for time-splitting approach

In survival analysis, it is common to model occurrence of event as a binary variable over many person-time intervals.
The event cannot occur in interval i, if an event has occurred in any interval prior to i. Thus, the probability of an
event occurring in interval i is not independent from whether an event has occurred in interval i − 1. However, if
the intervals are short, the hazard rate within intervals can be treated as constant and the counts of events can
be modelled by Poisson regression, using biomarker values at the start of each interval. With many short interval
lengths, the approximation of a Poisson time-splitting model to a continuous-time model can be made arbitrarily
close.

3.2 Statistical analysis

The most challenging part of the model we try to estimate is individual level parameters (random effects). We fit a
range of dynamic bivariate continuous-time models to the data, including parameters to capture continuous-time
auto-effect and diffusion variance, person-specific random effects, their discrete-time counterparts and an error term
for the process.

To stabilise the estimation, we express the discrete-time process intercepts in terms of the long-range process means,
an approach also employed by Driver, Oud, and Voelkle (2017). All models were interfaced via the R package ctsem
3.5.3 running on R version 3.6.0 (Ripley and others 2001). For more explanations, examples, and illustrations of this
(and other) continuous-time models see Hecht, Hardt, et al. (2019), Hecht and Voelkle (2019), Driver et al. (2017),
Driver and Voelkle (2018), and Voelkle, Oud, Davidov, and Schmidt (2012). TODO: Add references

It is widely accepted that some information will be lost when using a model to represent a dynamic process. To
assess the quality of the continuous-time models fitted to given sets of data, we use the log likelihood, number of
parameters and Akaike information criterion (AIC) of each model (for each fold) as means for model selection. The
Akaike Information Criterion (AIC) is defined as 2k − 2Ltrain where k is the effective number of parameters and
Ltrain is the log-likelihood given the training data. Of the six ctsem models, the linear mixed model (LMM) which
includes drift and diffusion components has the lowest deviance and the lowest AIC. Since a LMM model with drift
and diffusion specifies appropriately the longitudinal trajectories of the biomarkers, it can be employed for obtaining
imputations of the biomarkers at the beginning of each interval, in order to implement the time-splitting approach.

Increasing the size of the already big vector of observations might feel counter-intuitive, however so-called message-
passing algorithms can be very effective at imputing latent biomarker values in between existing measurement
occasions. The Kalman filter is such an algorithm that makes a forward pass through the data to compute the state
probability distribution at each time point, conditional on all observations up to that time point. This can be used to
impute the predicted values of the latent variables at the start of each time interval (Zhu, DeSantis, and Luo 2018).

We generate imputations from each training fold within each ctsem model. The imputed values are then used to
train a Poisson regression model on the training dataset, in which follow-up of those individuals who appear in the
test dataset is censored at 5 years. For this purpose the dataset is reformatted as person-time intervals of fixed
length (one year long).

Table 1: Runtime in minutes of fitting a stan_jm() model with
1000 iterations

warmup sample total
chain:1 459.4 71.6 531.0
chain:2 510.8 66.7 577.5
chain:3 255.1 81.9 337.0
chain:4 247.0 471.1 718.1
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Table 2: Continuous-time bivariate joint model fitted with stan_jm()
- Fold 1

mean sd n_eff
Event|(Intercept) -5.89 0.11 2454
Event|gender -0.59 0.28 3192
Event|baselineage -0.68 0.32 3071
Event|baselineduration 0.05 0.29 3602
Event|b-splines-coef1 -12.31 5.21 1834
Event|b-splines-coef2 -4.26 2.72 1897
Event|b-splines-coef3 -5.23 2.01 2535
Event|b-splines-coef4 -5.13 1.94 1539
Event|b-splines-coef5 -3.14 2.16 2561
Event|b-splines-coef6 -8.75 3.03 1802
Assoc|Long1|etavalue 0.54 0.32 2265
Assoc|Long2|etavalue -3.25 0.44 1808

Table 3: Runtime in minutes of fitting a stan_jm() model with
1000 iterations

warmup sample total
chain:1 307.5 65.9 373.4
chain:2 215.0 90.1 305.1
chain:3 217.3 90.3 307.6
chain:4 243.2 84.2 327.4

Table 4: Continuous-time bivariate joint model fitted with stan_jm()
- Fold 2

mean sd n_eff
Event|(Intercept) -5.98 0.13 1443
Event|gender -0.29 0.28 3406
Event|baselineage -0.77 0.31 3753
Event|baselineduration -0.21 0.39 4412
Event|b-splines-coef1 -16.44 6.91 2053
Event|b-splines-coef2 -3.46 3.14 2627
Event|b-splines-coef3 -8.13 2.49 1410
Event|b-splines-coef4 -4.02 2.20 1676
Event|b-splines-coef5 -10.60 3.02 1704
Event|b-splines-coef6 -5.41 1.95 1312
Assoc|Long1|etavalue 0.29 0.36 2826
Assoc|Long2|etavalue -3.89 0.59 1181

Table 5: Model fits

model loglik npars aic
model.lmm -24243.0 34 48554.0
model.lmm -24546.6 34 49161.3
model.lmm1 -25789.7 26 51631.4
model.lmm1 -26026.8 26 52105.7
model.nolmm -21651.4 47 43396.7
model.nolmm -21732.8 47 43559.6
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model loglik npars aic
model.lmmdiff -22316.6 46 44725.1
model.lmmdiff -22396.5 46 44885.0
model.lmmdrift -24101.2 50 48302.4
model.lmmdrift -24395.9 50 48891.8
model.lmmdriftdiff -20738.1 62 41600.3
model.lmmdriftdiff -20803.0 62 41730.1

Table 6: Poisson time-splitting model fitted to latent biomarker
values imputed by Kalman filter from linear mixed model with
diffusion and drift - Fold 1

Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.66 1.40 -9.06 0.000
tstart 0.19 0.08 2.37 0.018
gender -0.43 0.24 -1.79 0.074
baselineage -0.78 0.30 -2.62 0.009
baselineduration 0.04 0.27 0.14 0.891
hba1c 0.33 0.22 1.45 0.147
egfr -3.73 0.48 -7.79 0.000

Table 7: Poisson time-splitting model fitted to latent biomarker
values imputed by Kalman filter from linear mixed model with
diffusion and drift - Fold 2

Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.65 1.54 -8.23 0.000
tstart 0.14 0.09 1.58 0.114
gender -0.01 0.24 -0.02 0.981
baselineage -0.86 0.26 -3.26 0.001
baselineduration -0.14 0.35 -0.39 0.696
hba1c 0.17 0.25 0.67 0.505
egfr -3.82 0.53 -7.15 0.000

Table 8: Poisson time-splitting model fitted to latent biomarker
values imputed by Kalman filter from linear mixed model with drift
- Fold 1

Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.97 1.13 -9.73 0.000
tstart 0.10 0.09 1.11 0.267
gender -0.48 0.24 -1.97 0.049
baselineage -0.74 0.30 -2.45 0.014
baselineduration -0.04 0.29 -0.15 0.879
hba1c 0.60 0.26 2.33 0.020
egfr -3.22 0.41 -7.92 0.000

5

277



Table 9: Poisson time-splitting model fitted to latent biomarker
values imputed by Kalman filter from linear mixed model with drift
- Fold 2

Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.53 1.07 -9.83 0.000
tstart 0.00 0.10 -0.03 0.973
gender 0.04 0.23 0.18 0.857
baselineage -0.85 0.27 -3.13 0.002
baselineduration -0.28 0.34 -0.84 0.402
hba1c 0.47 0.29 1.63 0.104
egfr -3.27 0.41 -8.04 0.000

Table 10: Time-splitting Poisson model with biomarker values
imputed by last observation carried forward

Estimate Std. Error z value Pr(>|z|)
(Intercept) -27.28 128533.80 0 1
gender 0.03 59189.04 0 1
baselineage -0.01 87790.12 0 1
baselineduration -0.05 105489.85 0 1
hba1c 0.01 40356.43 0 1
egfr -0.03 87875.18 0 1

4 Evaluation of predictive performance

To predict event status in the test dataset, we use the model fitted to the training dataset, and compute the
probability of an event in each person-time interval from 5 years to the end of study.

Table 11: Comparison of predictive performance on test dataset

Model Observed Predicted Person-years Log score C-statistic
model.lmm 22 27.37921 8752 -145.4463 0.8970478
model.lmm1 22 23.24346 8752 -144.8489 0.8511455
model.nolmm 22 7.971904 8752 -138.611 0.893804
model.lmmdiff 22 9.453759 8752 -132.6318 0.8966937
model.lmmdrift 22 27.0383 8752 -139.9215 0.9054931
model.lmmdriftdiff 22 7.027217 8752 -157.2087 0.8683484
stanjm 22 15.215 7298.349 NaN 0.8833518
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Abstract
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1 Methods

1.1 Characteristics of study population

This analysis was conducted using information on patients who are registered in SCI-Diabetes (Scottish Care
Information - Diabetes) to provide their personal data for research purposes. This network tracks real-time clinical
information on all 300,000 people with type 1 and type 2 diabetes in Scotland. In particular, the current analysis was
conducted on 29764 individuals with type 1 diabetes and the study period starts on 1/1/2008 and ends on 1/1/2018.

The renal replacement therapy prevalence in the dataset is 487 events, 0.0164%. Within the study period, each
subject has 15.17 eGFR observations on average.

The total contribution of the participants in this study is 256256 person-years. Person-time is the sum of total time
contributed by all subjects. Furthermore, the dataset contains 16671 male and 13093 female participants aged 18
and above, with average entry age and diabetes duration 39.78 and 15.41 years respectively. The mean follow-up
time is 7.1 years. During the first 5 years of follow-up, there were 205 RRT occurrences and 260052 of the 456867
biomarker observations. Biomarker data and covariates gender, baselineage, baselineduration and currentage are
scaled and centred for the statistical analysis. To construct a training subset to be used for dynamic predictions, we
censor at 5 years half the individuals who were still being followed up at 5 years (24471 people).

We evaluated the predictive performance of the fitted models on withdrawn data using 10-fold cross-validation, and
compared the ctsem models to a Poisson model that uses the ‘Last Observation Carried Forward’ technique (LOCF)
to extrapolate the biomarker data at each person-time interval. All 10 folds include full data on 27316 individuals,
meaning that about 2448 subjects are censored after the landmark time of 5 years.

The aim is emulate a realistic situation in which we are trying to make forward predictions for individuals who have
been followed up for several years, based on a model trained on the entire population. Therefore, we need to include
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in the training set some people who are followed to the end of the study period. This allows the program to fit a
spline model for the baseline hazard rate that covers the entire study period.

2 Dynamic models

We apply a continuous-time dynamic modelling approach to investigate the association of the biomarker trajectories
and time-to-RRT. The growing popularity of real longitudinal data has fuelled the interest in continuous-time models
because they are inherently well suited to handling unequally spaced measurement occasions and individualised
assessment designs (Hecht and Zitzmann 2020). Furthermore, continuous-time models enable comparisons of studies
with different time intervals between observations.

A number of attractive software solutions for estimating continuous-time models have been introduced, such as the
R package ctsem, which includes both a frequentist (Driver, Oud, and Voelkle 2017) and a Bayesian estimation
module (Driver and Voelkle 2018). Whereas frequentist estimation in ctsem seems appropriately fast, model run
times in the Bayesian ctsem are rather high when using real life data.

Continuous-time models involve a two-level data structure (repeatedly measured values nested within persons). We
perform a Bayesian analysis as we wish to benefit from the ability to include previous knowledge and the potential
to estimate otherwise intractable models e.g., Van De Schoot et al. (2017). Therefore, we chose to use the Bayesian
software STAN for its flexibility and stability.

2.1 Rationale for time-splitting approach

In survival analysis, it is common to model occurrence of event as a binary variable over many person-time intervals.
The event cannot occur in interval i, if an event has occurred in any interval prior to i. Thus, the probability of an
event occurring in interval i is not independent from whether an event has occurred in interval i − 1. However, if
the intervals are short, the hazard rate within intervals can be treated as constant and the counts of events can
be modelled by Poisson regression, using biomarker values at the start of each interval. With many short interval
lengths, the approximation of a Poisson time-splitting model to a continuous-time model can be made arbitrarily
close.

2.2 Statistical analysis

The most challenging part of the model we try to estimate is individual level parameters (random effects). We fit a
range of dynamic bivariate continuous-time models to the data, including parameters to capture continuous-time
auto-effect and diffusion variance, person-specific random effects, their discrete-time counterparts and an error term
for the process.

To stabilise the estimation, we express the discrete-time process intercepts in terms of the long-range process means,
an approach also employed by Driver, Oud, and Voelkle (2017). All models were interfaced via the R package ctsem
3.5.3 running on R version 3.6.0 (Ripley and others 2001). For more explanations, examples, and illustrations of this
(and other) continuous-time models see Hecht, Hardt, et al. (2019), Hecht and Voelkle (2019), Driver et al. (2017),
Driver and Voelkle (2018), and Voelkle, Oud, Davidov, and Schmidt (2012). TODO: Add references

It is widely accepted that some information will be lost when using a model to represent a dynamic process. To
assess the quality of the continuous-time models fitted to given sets of data, we use the log likelihood, number of
parameters and Akaike information criterion (AIC) of each model (for each fold) as means for model selection. The
Akaike Information Criterion (AIC) is defined as 2k − 2Ltrain where k is the effective number of parameters and
Ltrain is the log-likelihood given the training data. Of the 5 ctsem models, the linear mixed model (LMM) which
includes drift and diffusion components has the lowest deviance and the lowest AIC. Since a LMM model with drift
and diffusion specifies appropriately the longitudinal trajectories of the biomarkers, it can be employed for obtaining
imputations of the biomarkers at the beginning of each interval, in order to implement the time-splitting approach.

Increasing the size of the already big vector of observations might feel counter-intuitive, however so-called message-
passing algorithms can be very effective at imputing latent biomarker values in between existing measurement
occasions. The Kalman filter is such an algorithm that makes a forward pass through the data to compute the state
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probability distribution at each time point, conditional on all observations up to that time point. This can be used to
impute the predicted values of the latent variables at the start of each time interval (Zhu, DeSantis, and Luo 2018).

We generate imputations from each training fold within each ctsem model. The imputed values are then used to
train a Poisson regression model on the training dataset, in which follow-up of those individuals who appear in the
test dataset is censored at 5 years. For this purpose the dataset is reformatted as person-time intervals of fixed
length (one year long).

Table 1: Model fits

model loglik npars aic
model.lmm 0.0 15 0.0
model.lmm 35.3 15 -70.6
model.lmm 581.8 15 -1163.6
model.lmm 448.5 15 -896.9
model.lmm 650.0 15 -1300.0
model.lmm 1025.7 15 -2051.4
model.lmm 393.7 15 -787.4
model.lmm -248.6 15 497.3
model.lmm 238.6 15 -477.1
model.lmm 828.8 15 -1657.6
model.nolmm 25245.6 17 -50487.1
model.nolmm 25197.6 17 -50391.3
model.nolmm 25538.0 17 -51072.0
model.nolmm 25558.1 17 -51112.2
model.nolmm 25737.8 17 -51471.5
model.nolmm 25829.1 17 -51654.1
model.nolmm 25593.4 17 -51182.7
model.nolmm 25011.8 17 -50019.7
model.nolmm 25181.6 17 -50359.3
model.nolmm 25583.2 17 -51162.4
model.lmmdiff 25034.7 19 -50061.5
model.lmmdiff 24979.6 19 -49951.1
model.lmmdiff 25324.7 19 -50641.3
model.lmmdiff 25354.5 19 -50701.1
model.lmmdiff 25537.2 19 -51066.5
model.lmmdiff 25624.4 19 -51240.9
model.lmmdiff 25392.8 19 -50777.7
model.lmmdiff 24786.2 19 -49564.3
model.lmmdiff 24986.9 19 -49965.8
model.lmmdiff 25378.4 19 -50748.8
model.lmmdrift 77.1 19 -146.2
model.lmmdrift 116.0 19 -224.1
model.lmmdrift 660.9 19 -1313.8
model.lmmdrift 530.7 19 -1053.5
model.lmmdrift 739.9 19 -1471.8
model.lmmdrift 1118.3 19 -2228.6
model.lmmdrift 480.0 19 -952.0
model.lmmdrift -170.7 19 349.4
model.lmmdrift 320.4 19 -632.7
model.lmmdrift 917.9 19 -1827.8
model.lmmdriftdiff 27009.7 23 -54003.3
model.lmmdriftdiff 26916.5 23 -53817.0
model.lmmdriftdiff 27315.1 23 -54614.1
model.lmmdriftdiff 27310.8 23 -54605.7
model.lmmdriftdiff 27468.3 23 -54920.7
model.lmmdriftdiff 27587.8 23 -55159.5
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model loglik npars aic
model.lmmdriftdiff 27335.4 23 -54654.8
model.lmmdriftdiff 26770.0 23 -53524.1
model.lmmdriftdiff 26870.8 23 -53725.5
model.lmmdriftdiff 27330.3 23 -54644.6

Table 2: Poisson time-splitting model fitted to latent biomarker
values imputed by Kalman filter from linear mixed model with
diffusion and drift - Fold 1

Estimate Std. Error z value Pr(>|z|)
(Intercept) -16.74 0.52 -32.18 0.000
tstart 0.02 0.02 1.22 0.221
gender -0.15 0.05 -3.20 0.001
baselineage -0.82 0.06 -14.36 0.000
baselineduration -0.30 0.06 -4.91 0.000
egfr -6.57 0.21 -30.98 0.000

Table 3: Poisson time-splitting model fitted to latent biomarker
values imputed by Kalman filter from linear mixed model with
diffusion and drift - Fold 2

Estimate Std. Error z value Pr(>|z|)
(Intercept) -16.45 0.51 -32.09 0.000
tstart 0.03 0.02 1.56 0.118
gender -0.15 0.05 -3.24 0.001
baselineage -0.83 0.06 -14.43 0.000
baselineduration -0.30 0.06 -4.88 0.000
egfr -6.45 0.21 -30.83 0.000

Table 4: Poisson time-splitting model fitted to latent biomarker
values imputed by Kalman filter from linear mixed model with drift
- Fold 1

Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.56 0.26 -40.88 0.000
tstart -0.10 0.02 -5.25 0.000
gender -0.18 0.05 -3.84 0.000
baselineage -0.67 0.05 -12.43 0.000
baselineduration -0.13 0.06 -2.25 0.024
egfr -4.02 0.11 -36.12 0.000

Table 5: Poisson time-splitting model fitted to latent biomarker
values imputed by Kalman filter from linear mixed model with drift
- Fold 2

Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.48 0.26 -40.91 0.00
tstart -0.10 0.02 -5.42 0.00
gender -0.20 0.05 -4.32 0.00
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Estimate Std. Error z value Pr(>|z|)
baselineage -0.69 0.05 -12.70 0.00
baselineduration -0.13 0.06 -2.33 0.02
egfr -4.00 0.11 -36.08 0.00

Table 6: Time-splitting Poisson model with biomarker values im-
puted by last observation carried forward

Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.97 0.24 -45.27 0.000
gender -0.09 0.05 -1.95 0.051
baselineage -0.53 0.05 -10.12 0.000
baselineduration 0.04 0.05 0.81 0.418
egfr -2.80 0.07 -39.59 0.000
splines::bs(tstart.year, df = 6)1 0.95 0.42 2.28 0.022
splines::bs(tstart.year, df = 6)2 2.20 0.35 6.27 0.000
splines::bs(tstart.year, df = 6)3 2.11 0.33 6.30 0.000
splines::bs(tstart.year, df = 6)4 3.00 0.39 7.69 0.000
splines::bs(tstart.year, df = 6)5 2.37 0.46 5.10 0.000
splines::bs(tstart.year, df = 6)6 2.94 0.82 3.58 0.000

3 Evaluation of predictive performance

To predict event status in the test dataset, we use the model fitted to the training dataset, and compute the
probability of an event in each person-time interval from 5 years to the end of study.

Table 7: Comparison of predictive performance on test dataset

Model Observed Predicted Person-years Log score C-statistic
model.lmm 293 364.4608 128844 -8208.457 0.89159
model.nolmm 293 58.88546 128844 -2513.691 0.88987
model.lmmdiff 293 85.10565 128844 -2373.343 0.88988
model.lmmdrift 293 361.9266 128844 -8170.763 0.89121
model.lmmdriftdiff 293 52.83163 128844 -2709.261 0.8723
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Introduction

We model time-to-renal replacement therapy (RRT) via hierarchical dynamical models. Three different RRT
analyses are presented herein.

Evaluation of the predictive accuracy of the developed risk prediction models is done by obtaining forward
predictions for individuals who have been followed up for several years (observational study). This is
implemented by censoring part of the training dataset after a landmark time point. For these analyses the
landmark point is set to year 5.

RRT outcome definition

The RRT outcome is a composite outcome. Cases are all those individuals who initiated renal replacement
therapy within the study period due to loss of kidney function or have died with a mention of renal failure in
their death certificate (N17-N19). An event equal to 1 for an individual means any of these three scenarios:
(death=1, rrt=1) or (death=0, rrt=1) or (death=1, rrt=0).

An individual might have not been observable at the beginning of the study on 1-1-2008, and have entered
the study subsequently. If a subject experiences an event or stops being observable for any other reason, they
get censored and do not contribute to the study any further.

The multivariate (two biomarkers) RRT analysis includes 29118 subjects of whom 767 have experienced an
RRT event and 394 events occurred after year 5. For this analysis we have used HbA1c and eGFR data
measured on the same date. For brevity we call this analysis as analysis A.

We subsequently used only eGFR data to study time-to-RRT on the full dataset as longitudinal eGFR
trajectories are more informative of kidney function. The univariate RRT analysis (called analysis B for
brevity) includes 29764 subjects of whom 816 have experienced an RRT event and 434 events occurred after
year 5.

Last, an extra analysis has been conducted that restricts baseline eGFR to 60 or below, in order to study
explicitly those individuals that are experiencing mild loss of kidney function, thus are more likely to have an
RRT event. For brevity, we will refer to this restricted analysis as analysis C.

There are 2673 individuals included in analysis C. Among them 504 individuals have experienced an RRT
event throughout the decade 2008-2018 and 208 events occurred after year 5.

Methods

A 10-fold cross-validation is performed to enhance training and ensure that the number of cases in the testing
set is sufficent to yield accurate predictions. We use the package ctsem, a recent software implementation
that allows the fitting of a wide range of continuous time state space models that rely on differential equations.
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In conventional joint models (i.e. stan_jm()) a linear mixed model (LMM) is used for each longitudinal
process. The simple LMM is a special case of continuous time state space models, which can include drift
and diffusion processes in addition to a LLM.

After specifying five different continuous time state space models (we call these ctsem models for simplicity’s
sake), we fit them to the longitudinal observations and compare quality of fitting by assessing their log
likelihood, number of parameters and using the Akaike information criterion (AIC). When a statistical model
is used to represent the process that generated the data, the representation will almost never be exact, so
some information will be lost by using the model to represent the process. AIC estimates the relative amount
of information lost by a given model. The less information a model loses, the higher the quality of that
model. Furthemore, the log likelihood describes the joint probability of the observed data as a function of the
parameters of the specified statistical model. The likelihood generally encapsulates both the data-generating
process as well as the missing-data mechanism that produced the observed sample.

The next step was to combine the ctsem longitudinal models with Poisson regression models for the time-to-
event process, splitting the follow-up period into equally spaced person-time intervals. For each person-time
interval, an unobserved (latent) variable representing the true value of the biomarker at the time is imputed
from the longitudinal model and used as input in the time-to-event model. To generate the unobserved values
prior to fitting the Poisson regressions, we use the Kalman filter, a sequential updating algorithm which takes
into account all the available information only up to the beginning of each person-time interval. Using data
from the future would notoriously give rise to immortal time bias. This more advanced method of imputation
is compared to the conventional ‘last observation carried forward’ (LOCF) approach.

We have also fitted in parallel a univariate joint model per fold to use it as benchmark for analysis C, employing
the state-of-the-art modelling function stan_jm() from rstanarm. Joint models are computationally intensive,
therefore we only use it for the univariate restricted analysis where there are fewer subjects. The table below
gives the running times required to fit the joint model.

Table 1: Runtime in minutes of fitting a stan_jm() model with
1000 iterations and 4 chains

warmup sample total
chain:1 255.3 120.9 376.2
chain:2 317.3 122.5 439.8
chain:3 460.2 429.7 889.9
chain:4 373.5 118.6 492.1

State space models fitted to longitudinal data with ctsem

Running times required for fitting the 5 ctsem models in parallel for each analysis:

Table 2: Running times of fitting biomarker data

no. of people no. of biomarkers duration unit
A 29118 2 3.399 days
B 29764 1 1.186 days
C 2673 1 2.790 hours
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Comparison of fit to training data

Table 3: Model fits - A

model loglik npars aic
hba1cegfr.model.lmm 0.0 34 0.0
hba1cegfr.model.nolmm 46571.5 47 -93117.0
hba1cegfr.model.lmmdiff 37414.5 46 -74805.0
hba1cegfr.model.lmmdrift 1942.4 50 -3852.7
hba1cegfr.model.lmmdriftdiff 59127.4 62 -118198.8

Table 4: Model fits - B

model loglik npars aic
model.lmm 0.0 15 0.0
model.nolmm 32826.1 17 -65648.3
model.lmmdiff 33703.9 19 -67399.8
model.lmmdrift 142.2 19 -276.4
model.lmmdriftdiff 34230.1 23 -68444.2

Table 5: Model fits - C

model loglik npars aic
model.lmm 0.0 15 0.0
model.nolmm 7090.2 17 -14176.4
model.lmmdiff 7333.9 19 -14659.9
model.lmmdrift 2.9 19 2.3
model.lmmdriftdiff 7371.6 23 -14727.3
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Comparison of state space models when used to impute biomarker values for
time-splitting model of events

The imputed values are used to train a Poisson regression model on the training dataset, in which follow-up
of those individuals who appear in the test dataset is censored at five years.

Table 6: Poisson time-splitting model fitted to latent biomarker
values imputed by Kalman filter from LMM with drift - A

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.270 0.117 2.311 0.021
tstart 0.045 0.014 3.186 0.001
gender -0.155 0.037 -4.136 0.000
baselineage -0.079 0.039 -2.006 0.045
baselineduration -0.109 0.040 -2.732 0.006
hba1c 0.348 0.046 7.608 0.000
egfr -0.103 0.002 -48.083 0.000

Table 7: Time-splitting model with biomarker values imputed by
last observation carried forward - A

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.698 0.058 -116.455 0.000
gender -0.063 0.036 -1.720 0.085
baselineage 0.298 0.037 7.999 0.000
baselineduration 0.057 0.035 1.602 0.109
hba1c 0.298 0.032 9.284 0.000
egfr -0.906 0.013 -67.712 0.000

Table 8: Poisson time-splitting model only fitted to time invariant
covariates - A

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.639 0.084 -79.260 0.000
tstart 0.143 0.013 10.838 0.000
gender 0.046 0.037 1.233 0.218
baselineage 0.650 0.041 15.989 0.000
baselineduration 0.198 0.036 5.531 0.000

Table 9: Poisson time-splitting model fitted to latent biomarker
values imputed by Kalman filter from LMM with drift - B

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.507 0.107 4.745 0.000
tstart 0.027 0.014 2.012 0.044
gender -0.144 0.036 -3.985 0.000
baselineage -0.063 0.037 -1.684 0.092
baselineduration -0.119 0.039 -3.058 0.002
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Estimate Std. Error z value Pr(>|z|)
egfr -0.112 0.002 -48.611 0.000

Table 10: Time-splitting model with biomarker values imputed by
last observation carried forward - B

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.461 0.054 -118.976 0.000
gender -0.035 0.035 -0.992 0.321
baselineage 0.318 0.036 8.791 0.000
baselineduration 0.074 0.035 2.115 0.034
egfr -1.083 0.016 -68.898 0.000

Table 11: Poisson time-splitting model only fitted to time invariant
covariates - B

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.471 0.079 -81.776 0.000
tstart 0.136 0.013 10.757 0.000
gender 0.042 0.036 1.166 0.243
baselineage 0.672 0.040 16.802 0.000
baselineduration 0.223 0.035 6.315 0.000

Table 12: Continuous-time univariate joint model fitted with
stan_jm() - Poisson time-splitting model fitted to latent biomarker
values imputed by Kalman filter from LMM with drift - C

JM mean JM SD Poisson est. Poisson SE
(Intercept) -3.500 0.013 -3.847 0.086
gender -0.216 0.059 -0.146 0.045
baselineage 0.069 0.056 0.126 0.044
baselineduration 0.070 0.079 0.017 0.046
egfr -1.361 0.217 -0.721 0.020

Table 13: Time-splitting model with biomarker values imputed by
last observation carried forward - C

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.998 0.059 -67.934 0.000
gender -0.151 0.044 -3.434 0.001
baselineage -0.119 0.039 -3.037 0.002
baselineduration 0.040 0.046 0.862 0.389
egfr -0.899 0.030 -29.952 0.000
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Table 14: Poisson time-splitting model only fitted to time invariant
covariates - C

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.952 0.086 -46.222 0.000
tstart 0.076 0.016 4.790 0.000
gender -0.147 0.045 -3.283 0.001
baselineage -0.207 0.042 -4.896 0.000
baselineduration 0.092 0.046 1.996 0.046
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Comparison of predictive performance on testing data

Table 15: Comparison of predictive performance on test dataset - A

Model Observed Predicted Person-years Log score C-statistic
hba1cegfr.model.lmm 458 517.271 127339 -2342.411 0.90636
hba1cegfr.model.nolmm 458 313.5247 127339 -2399.202 0.8888
hba1cegfr.model.lmmdiff 458 384.3632 127339 -2329.494 0.90223
hba1cegfr.model.lmmdrift 458 522.9768 127339 -2333.65 0.90826
hba1cegfr.model.lmmdriftdiff 458 388.7403 127339 -2317.053 0.90746
model.locf 458 259.9159 127339 -2339.564 0.88989
model.invariant 458 594.9419 127339 -2991.269 0.64961

Table 16: Comparison of predictive performance on test dataset - B

Model Observed Predicted Person-years Log score C-statistic
model.lmm 464 519.7593 128844 -2528.531 0.89373
model.nolmm 464 277.3873 128844 -2568.091 0.89163
model.lmmdiff 464 351.0722 128844 -2523.315 0.89197
model.lmmdrift 464 519.5929 128844 -2531.289 0.89331
model.lmmdriftdiff 464 347.4431 128844 -2546.072 0.88944
model.locf 464 266.9784 128844 -2301.496 0.90304
model.invariant 464 612.1535 128844 -3029.036 0.65248

Table 17: Comparison of predictive performance on test dataset - C

Model Observed Predicted Person-years Log score C-statistic
model.lmm 230 229.6886 8768 -1787.442 0.81082
model.nolmm 230 147.9616 8768 -950.9871 0.82687
model.lmmdiff 230 200.8635 8768 -1042.986 0.8245
model.lmmdrift 230 229.374 8768 -1788.35 0.81109
model.lmmdriftdiff 230 196.1925 8768 -1076.55 0.8203
model.locf 230 158.0865 8768 -1011.661 0.72112
model.invariant 230 292.3499 8768 -1069.162 0.5669
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