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Abstract

Device-independence is a property of certain protocols that allows one to ensure their

proper execution given only classical interaction with devices and assuming the cor-

rectness of the laws of physics. This scenario describes the most general form of cryp-

tographic security, in which no trust is placed in the hardware involved; indeed, one

may even take it to have been prepared by an adversary. Many quantum tasks have

been shown to admit device-independent protocols by augmentation with “nonlocal

games”. These are games in which noncommunicating parties jointly attempt to ful-

fil some conditions imposed by a referee. We introduce examples of such games and

examine the optimal strategies of players who are allowed access to different possible

shared resources, such as entangled quantum states. We then study their role in self-

testing, private random number generation, and secure delegated quantum computa-

tion. Hardware imperfections are naturally incorporated in the device-independent

scenario as adversarial, and we thus also perform noise robustness analysis where

feasible.

We first study a generalization of the Mermin–Peres magic square game to arbi-

trary rectangular dimensions. After exhibiting some general properties, these “magic

rectangle” games are fully characterized in terms of their optimal win probabilities for

quantum strategies. We find that for 𝑚 × 𝑛 magic rectangle games with dimensions

𝑚, 𝑛 ≥ 3, there are quantum strategies that win with certainty, while for dimensions

1 × 𝑛 quantum strategies do not outperform classical strategies. The final case of di-

mensions 2 × 𝑛 is richer, and we give upper and lower bounds that both outperform

the classical strategies. As an initial usage scenario, we apply our findings to quan-

tum certified randomness expansion to find noise tolerances and rates for all magic

rectangle games. To do this, we use our previous results to obtain the winning proba-

bilities of games with a distinguished input for which the devices give a deterministic

outcome and follow the analysis of C. A. Miller and Y. Shi [SIAM J. Comput. 46, 1304
(2017)].

Self-testing is a method to verify that one has a particular quantum state from

purely classical statistics. For practical applications, such as device-independent del-

egated verifiable quantum computation, it is crucial that one self-tests multiple Bell

states in parallel while keeping the quantum capabilities required of one side to amin-

imum. We use our 3 × 𝑛 magic rectangle games to obtain a self-test for 𝑛 Bell states

where one side needs only to measure single-qubit Pauli observables. The protocol
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requires small input sizes [constant for Alice and 𝑂(log 𝑛) bits for Bob] and is robust

with robustness 𝑂(𝑛5/2√𝜀), where 𝜀 is the closeness of the ideal (perfect) correla-

tions to those observed. To achieve the desired self-test, we introduce a one-side-local

quantum strategy for the magic square game that wins with certainty, we generalize

this strategy to the family of 3 × 𝑛 magic rectangle games, and we supplement these

nonlocal games with extra check rounds (of single and pairs of observables).

Finally, we introduce a device-independent two-prover scheme in which a classi-

cal verifier can use a simple untrusted quantum measurement device (the client de-

vice) to securely delegate a quantum computation to an untrusted quantum server. To

do this, we construct a parallel self-testing protocol to perform device-independent re-

mote state preparation of 𝑛 qubits and compose this with the unconditionally secure

universal verifiable blind quantum computation (VBQC) scheme of J. F. Fitzsimons

and E. Kashefi [Phys. Rev. A 96, 012303 (2017)]. Our self-test achieves a multitude

of desirable properties for the application we consider, giving rise to practical and

fully device-independent VBQC. It certifies parallel measurements of all cardinal and

intercardinal directions in the 𝑋𝑌-plane as well as the computational basis, uses few

input questions (of size logarithmic in 𝑛 for the client and a constant number commu-

nicated to the server), and requires only single-qubit measurements to be performed

by the client device.
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Lay summary
Quantum mechanics is a theory in physics dealing with the behavior of our universe

at scales far smaller than can be seen with the naked eye. While it is true that the in-

teractions with matter we observe in everyday life can be thought of as macroscopic

manifestations of these quantum laws, certain properties of this matter predicted by

quantum mechanics contradict our basic human intuition. Telltale signs of a quan-

tum universe require such precisely controlled conditions to be picked out from the

rest of the noisy world that, quite simply, they seldom appear to us. With the signif-

icant advancements in technology that have taken place over the last few decades,

experimenters can now routinely isolate these quantum effects in the lab, while fur-

ther progress may even allow exploiting them in so-called “quantum technologies”.

Quantum computers are an example that promises to perform certain computations

faster than any traditional computer ever will. Given that the first quantum com-

puters are likely to be held by large corporations and governments that fund their

development, any clients wishing to perform their private computations using these

cutting-edgemachines will have to delegate to them. It is, therefore, a priority that we

find a way to ensure to clients that both the data they send is protected and that the

computation they request is performed correctly by the quantum server computer.

We show that it is possible to make such security assurances, not only in the

case of a potentially malicious remote quantum computer but even when the client

does not trust the internal workings of their own device used to delegate computa-

tions. Moreover, while the quantum computer is assumed to be large and powerful,

client-side devices can be relatively simple (with technology that might fit inside a

future mobile phone). To explore this possibility, we ask for the reverse of an earlier

statement: what simple observations would convince us that quantum phenomena

occurred? We achieve this in the form of new kinds of guessing games played be-

tween two players; if the players jointly succeed often enough in these games, then

it means they are necessarily exploiting the sort of quantum phenomena needed for

our security applications. Just this information is enough, for example, to generate

truly random numbers that are unknowable to any outside party. However, suppose

the players win the maximum possible fraction of the time. In that case, it is possi-

ble to characterize the existence and exact nature of the quantum phenomena they

must have utilized. Such a strong characterization also opens the door to enhancing

security in many other tasks manipulating quantum data.

v



Acknowledgements
I owe colossal gratitude to everyone who has helped me throughout the last few in-

credible years, and I would like to thank them here.

First and foremost, I would like to extend enormous thanks to my supervisor,

Petros Wallden, for his unfaltering support and advice over the years. His passion

and humor are in seemingly unending supply, and I have found our many lengthy

discussions to be invaluable. He undoubtedly (and, for some of our time together,

nonlocally) influenced the person I have become today.

I am grateful to my cosupervisor Chris Heunen for always being a friendly and

stable source of help and suggestions and a fantastic mentor. I also thank Markulf

Kohlweiss, tasked every year with attending my annual review meetings, for offering

his sustained guidance and organizing the five a month PhD lightning talk series: a

much-needed social experience during the pandemic.

I am indebted tomy examiners Raúl García-Patrón Sánchez and Roger Colbeck for

their time and effort in reviewing my thesis and for their feedback. Additionally, Raúl

has been at the center of fun discussions, including his energetic and enlightening

overview of quantum communications over a meal after a long day of talks.

I am also grateful toMatty J. Hoban andAlexandruGheorghiu, who have provided

indispensable feedback and comments on my work. Although mostly virtual, con-

versations with Andru have always been pleasant and incredibly insightful … never

before have I seen someone pack so many books into a single suitcase!

I would like to thank Elham Kashefi, whom, although I did not have the pleasure

of meeting until near the end of my PhD, cemented herself as one of the most enthusi-

astic and talented people I know during a visit from Sorbonne Université in Paris. All

of the other members of the quantum team in Paris who visited also have my thanks

for their many fruitful talks and exchanges. Conversations with other members of the

quantum informatics group at Edinburgh, including Brian Coyle, Ioannis Kolotouros,

and Miloš Prokop, were also of great help to me.

Outside of the academic world, several friends have been irreplaceable in the sup-

port they have offered me: Dylan Kennett and Ma Siyuan, to name just a couple. Fi-

nally, I would like to give special thanks to my parents and my one and only Chuqiao

for all the emotional support, encouragement, and patience they have gifted me. It

is with their help at all twists and turns that I have been able to see this thesis—or

rather, this whole journey—to completion.

vi



Declaration
I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except as

specified.

(Sean A. Adamson)

vii



Publications and manuscripts
Parts of this thesis have been published or made available as preprint manuscripts, as

specified by the following references.

[1] S. A. Adamson and P. Wallden, “Quantum magic rectangles: characterization

and application to certified randomness expansion”, Phys. Rev. Research 2,
043317 (2020).

[2] S. A. Adamson and P. Wallden, “Practical parallel self-testing of Bell states via

magic rectangles”, Phys. Rev. A 105, 032456 (2022).

[3] S. A. Adamson, Parallel remote state preparation for fully device-independent

verifiable blind quantum computation, Dec. 2022, arXiv:2212.05442 [quant-

ph].

viii

https://doi.org/10.1103/PhysRevResearch.2.043317
https://doi.org/10.1103/PhysRevResearch.2.043317
https://doi.org/10.1103/PhysRevA.105.032456
https://arxiv.org/abs/2212.05442
https://arxiv.org/abs/2212.05442


Contents

1 Introduction 1

1.1 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 9

2.1 Notation and elementary results . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Pauli observables and important states . . . . . . . . . . . . . 9

2.1.2 Complex conjugation and composition . . . . . . . . . . . . . 10

2.1.3 Hilbert space notation . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Reflection operators . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 Properties of norms . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.6 Tolerance relations . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.7 Number strings . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.8 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.9 Bell expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.10 Overloading of notation . . . . . . . . . . . . . . . . . . . . . 13

2.2 The magic square game . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Levels of correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Randomness expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Self-testing (with complex measurements) . . . . . . . . . . . . . . . 25

2.6 Sum-of-squares (SOS) decomposition . . . . . . . . . . . . . . . . . . 29

2.7 Regularization of operators . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Magic rectangle games 33

3.1 Magic rectangle games: Definition . . . . . . . . . . . . . . . . . . . . 35

3.2 Properties of magic rectangle games . . . . . . . . . . . . . . . . . . . 37

3.3 Characterization of magic rectangles . . . . . . . . . . . . . . . . . . 43

3.3.1 1-by-n magic rectangles . . . . . . . . . . . . . . . . . . . . . 44

ix



3.3.2 2-by-n magic rectangles . . . . . . . . . . . . . . . . . . . . . 44

3.3.2.1 2-by-2 magic squares . . . . . . . . . . . . . . . . . 44

3.3.2.2 General 2-by-n games . . . . . . . . . . . . . . . . . 47

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Application: Certified private randomness expansion 53

4.1 Win probability with distinguished input . . . . . . . . . . . . . . . . 54

4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Noise tolerances and rates . . . . . . . . . . . . . . . . . . . . 63

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Self-testing via magic rectangle games 69

5.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Overview of techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Self-test of three Bell states . . . . . . . . . . . . . . . . . . . 74

5.2.2 Self-test of many Bell states . . . . . . . . . . . . . . . . . . . 75

5.3 Magic rectangle games (redefinition) . . . . . . . . . . . . . . . . . . 76

5.4 One-side-local magic square strategy . . . . . . . . . . . . . . . . . . 77

5.5 Self-test of three Bell states . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.1 Structure and honest behavior . . . . . . . . . . . . . . . . . . 80

5.5.2 Unknown observables and correlations . . . . . . . . . . . . . 81

5.5.3 Commutation and anticommutation relations . . . . . . . . . 84

5.6 Self-test of many Bell states . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.1 Magic game strategy . . . . . . . . . . . . . . . . . . . . . . . 90

5.6.2 Structure and honest behavior . . . . . . . . . . . . . . . . . . 91

5.6.3 Unknown observables and correlations . . . . . . . . . . . . . 93

5.6.4 Commutation and anticommutation relations . . . . . . . . . 95

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Parallel remote state preparation for device-independent VBQC 105

6.1 Overview of techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Efficient parallel self-testing for DIVBQC . . . . . . . . . . . . . . . . 112

6.2.1 Post-measurement states . . . . . . . . . . . . . . . . . . . . . 115

6.2.2 Correlated complex conjugation . . . . . . . . . . . . . . . . . 118

6.3 Triple CHSH inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 A parallel self-testing isometry (including complex measurements) . 125

x



6.5 The protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5.1 Alice’s question set . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5.2 Bell value observations . . . . . . . . . . . . . . . . . . . . . . 137

6.5.3 Completeness (honest strategy) . . . . . . . . . . . . . . . . . 141

6.6 Operator relations in the self-test subprotocol . . . . . . . . . . . . . 142

6.6.1 Individual relations . . . . . . . . . . . . . . . . . . . . . . . . 146

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Conclusion 155

A Winning 2-by-3 games at NPA hierarchy level 1 159

B Robust anticommutation relations 163

C Estimation lemma 169

D Post-measurement robustness probability 171

E Single-copy self-test 173

F Robustness of single-copy self-test 177

G Many-copy self-test 181

H Action of many untrusted operators 189

I State preparation 191

Bibliography 195

xi





List of figures

2.1 An example round of the magic square game. . . . . . . . . . . . . . . 15

2.2 Fixed arrangements of 3 × 3 tables forming a deterministic strategy

for the magic square game that wins with probability 8/9. . . . . . . . 17

2.3 A quantum strategy for the magic square game in which the players

share the entangled state given in Eq. (2.19). . . . . . . . . . . . . . . 18

3.1 An example of a 2 × 3 magic rectangle game. . . . . . . . . . . . . . . 36

3.2 Example of the equivalence of the 2 × 2 magic square and CHSH games. 48

3.3 Bounds on the optimal quantum win probability of 2 × 𝑛 magic rect-

angle games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 The proposed “one-side-local” magic square strategy. . . . . . . . . . 78

5.2 The layout of unknown observables in a magic square strategy for (a)

Alice and (b) Bob. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 The 3 × 𝑛 magic game strategy that our self-test is based upon. . . . . 90

6.1 A modified partial swap isometry followed by phase kickback unitaries. 122

6.2 The circuit describing the action of the local isometry 𝑉 = 𝐾𝑊. . . . 123

6.3 The circuit describing the action of the local isometry 𝑉 (𝑗) = 𝐾 (𝑗)𝑊 (𝑗). 126

xiii





List of tables

3.1 The bijections used to show the equivalence between the CHSH game

and the 2 × 2 magic square game. . . . . . . . . . . . . . . . . . . . . 46

3.2 Optimal win probabilities for 2 × 𝑛 magic rectangle games under cor-

relations allowed by different levels of the NPA hierarchy. . . . . . . 49

4.1 All 𝑚 × 𝑛 magic rectangle games that can produce quantum-secure

extractable bits in the spot-checking protocol. . . . . . . . . . . . . . 65

5.1 Comparison between certain protocols capable of self-testing 𝑛 EPR

pairs in parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.1 More concise notation for the natural alphabets of the 2 × 3 magic

rectangle game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xv





Chapter 1

Introduction

Quantum theory has been arguably one of the most successful scientific theories, es-

pecially in terms of accuracy of predictions and applications. We are currently in

the midst of the second “quantum revolution”, where the ability to control quantum

systems with great precision has resulted in a new wave of technological applica-

tions. What makes quantum theory unique is the fact that our classical intuition

frequently fails, and it has been proven that understanding the foundations of this

theory is crucial to fully realize the possibilities it offers. Quantum nonlocality (and,

more generally, contextuality) is an example of such a concept that defies our clas-

sical intuition. At the same time, this property enables one of the most interesting

classes of applications of quantum theory: that of device-independent cryptographic

protocols. Device-independence, first introduced byMayers and Yao [4], is a property

that allows parties to achieve cryptographic tasks without trusting the inner work-

ings of their own devices. Examples of these tasks range from certified randomness

expansion [5] to key distribution [6], secure quantum computation [7], and variants

of oblivious transfer [8], among many others.

Nonlocality is frequently expressed in terms of “guessing” games, in which re-

mote parties that share entanglement try to fulfill certain winning conditions (also

called predicates) for the games. Finding the optimal winning strategies for quan-

tum and classical observers in these games is key to using nonlocality for applica-

tions in device-independent cryptography, as well as being of foundational interest

within quantum theory. For example, the most celebrated display of quantum non-

locality is possibly that expressed by physical violations of the CHSH inequality, a

Bell inequality named after Clauser, Horne, Shimony, and Holt, who described it first

[9]. Violation of this inequality was experimentally demonstrated by Freedman and

1



2 Chapter 1. Introduction

Clauser [10], while various experimental loopholes have subsequently been closed.

The locality loophole was closed in 1982 by Aspect et al. [11] and, recently, the first

experimental demonstrations of CHSH violations free from both the detection and lo-

cality loopholes have been reported [12–14]. Alain Aspect, John F. Clauser, andAnton

Zeilinger, were awarded the Nobel Prize in Physics 2022 “for experiments with entan-

gled photons, establishing the violation of Bell inequalities and pioneering quantum

information science” [15]. Values observed as pertaining to the CHSH inequality

can equivalently be rephrased as resulting from a nonlocal game (the CHSH game)

in which the winning condition is as follows: the binary outputs of the two players

must be equal unless their binary inputs are equal, in which case their outputs must

be unequal [16]. In the CHSH game, classical players may only win at most 75% of

the time, while players who are allowed to share entanglement can attain an approx-

imately 85% probability of winning [17]. Another notable nonlocal game is based on

the work of Mermin [18] and Peres [19], and is called the magic square game (we

will introduce this game in further detail in Section 2.2). The magic square game

has a special place in the foundations of quantum theory due to two notable proper-

ties. Firstly, it is one of the simplest examples in which quantum strategies can win

with certainty (probability one) while classical strategies cannot. This property is

also referred to as quantum pseudotelepathy [20] and can be used to illustrate (strong)

contextuality in the spirit of the Kochen–Specker theorem [21]. Secondly, it is the

simplest two-player game where the maximal nonlocality can be demonstrated using

only Clifford computations [22] (as it requires only the preparation of Bell states and

Pauli measurements). In comparison, the CHSH game requires one player to measure

in a non-Pauli basis. The magic square game can, in principle, be used for any of the

device-independent cryptographic tasks, and its performance in comparison to other

games evaluated case-by-case.

As alreadymentioned, one of the first quantumdevice-independent cryptographic

protocols proposed was that of certified private randomness expansion. The idea of

using Bell tests, that exploit the quantum-mechanical property of nonlocality, to cer-

tify the presence of private randomness was first introduced by Colbeck and Kent

[5]. Clearly, some randomness must be consumed in order to perform the required

Bell tests. Conversely, any protocol that does not begin with some initial private

randomness held by its user cannot generate any private randomness, since an ad-

versary could simply presupply the untrusted devices with output data such that all

tests (which are, in this case, known ahead of time) are passed. Thus, the goal of
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randomness expansion is to take a private, uniformly random string and produce a

strictly longer (ideally arbitrary in size) random string, which cannot be predicted by

any outside party.

Interestingly, beyond being able to certify that there is necessarily some underly-

ing quantumness at work, nonlocality also makes it possible to deduce (up to some

local isometry) the exact quantum state of a physical experimental system based on

purely classical statistics [4]. This property is known as “self-testing” [23], and is an-

other exciting device-independent concept (see, for example, [24]). The magic square

game also finds a use in efficient self-testing [25–28]. Beyond the foundational im-

portance of being able to verify the quantum state of a totally untrusted black-box

experimental setup, self-testing has many practical uses due to the high levels of

security it is able to offer. While the standard notions of nonlocality lead to device-

independent cryptography (for example, [5, 6]), self-testing enables applications such

as device-independent secure delegated (verifiable) quantum computation [7, 29–31]

among other device-independent protocols that involve quantum computation. The

crucial point is that to enable device-independent quantum computation one needs

to test the quantum state itself (that is, one must perform self-testing); observation

of the presence of nonlocal correlations alone does not suffice. In addition to tasks

of delegation, one might also envisage other kinds of applications that fit within the

client–server scenario (for example, key distribution performed between parties hold-

ing asymmetric levels of hardware capabilities). Ideally, in all such cases, the client

party would only require strictly classical capabilities. However, as we will see, this

may come with significant drawbacks. Instead, one may allow the client party to

have someminimal quantum technological capabilities (such as the ability to perform

single-qubit measurements) that are foreseeable of possible future personal quantum

devices (e.g. those that might fit inside a mobile phone).

With the advent of cloud-based quantum computing services (such as those now

offered by IBM,Amazon, andMicrosoft among others [32–37]), it is becoming increas-

ingly important to allow the secure delegation of quantum computations to powerful

remote quantum servers. In such a scenario, a client wishes to securely delegate some

computation to one of these remote servers. Such a client desires that the remote

server cannot learn about the computation (a property called “blindness”) and that

they can be sure that the computation was performed correctly by the server (called

“verifiability”). This is known succinctly as verifiable blind delegated quantum com-

putation (VBQC). Delegated quantum computation protocols have been created in
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which the delegating party only requires strictly classical capabilities [28, 38, 39],

but such protocols come with major disadvantages such as not exhibiting blindness,

requiring many provers, or assuming a tensor product structure of the provers’ sys-

tems. Unconditionally secure protocols for VBQC already exist provided instead that

the client can initially ensure the preparation of a product of single-qubit states on the

server side. One of the most prevalent of these is the seminal protocol of Fitzsimons

and Kashefi [40], which we will henceforth refer to as the FK protocol. It requires

input states to be prepared in any of the eight cardinal and intercardinal directions

of the 𝑋𝑌-plane or the computational basis, and is based on the measurement-based

quantum computing (MBQC) model [41–43]. Further improvements have since been

made to the protocol such as reducing the overhead of qubits involved in verifica-

tion [44, 45]. While possible deviations by the server are taken into account in such

protocols, the level of trust given to client side devices must also be taken into con-

sideration. This is important since the devices held by a client are likely to be error-

prone and to have been prepared by external parties. As we have already discussed,

the most general form of security for protocols in this context is known as “device-

independence” [4, 5], in which no assumptions are made about the honesty of the

devices (they may even be adversarially prepared). In contrast, blind verifiable dele-

gation protocols such as [38, 40, 46–51] are not inherently device-independent [52].

One promising approach to the desired device-independent remote state preparation

is that of self-testing. The idea is for a classical verifier (in this case the client) to

certify the existence of maximally-entangled states shared between two provers (in

this case one being the quantum device of the client and the other being the server)

from measurement statistics alone. The client side prover then performs particular

measurements on the entangled states which, depending on their outcomes, teleports

particular states to the server side. Most self-testing protocols, however, do not ex-

hibit the qualities required for practical composability with FK-type VBQC protocols

[7]. Typical approaches have thus far either prepared states sequentially [30] or have

appealed to other verifiable protocols such as [49] and proven their blindness prop-

erty separately as inherited from the use of self-testing itself [53].

1.1 Thesis overview

The thesis is organized into chapters as follows.

Chapter 2 This chapter is dedicated to the preliminary and background information
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required by the rest of the thesis. We introduce the notation used throughout

the thesis (some slightly unconventional), as well as a number of useful ele-

mentary results. The chapter also includes information on the Mermin–Peres

magic square game, the NPA hierarchy for characterizing experimental behav-

iors, some established results in randomness expansion, an introduction to self-

testing, consequences of the sum-of-squares decomposition for Bell operators,

and an explanation of the unitary regularization of Hermitian operators.

Chapter 3 We define magic rectangle games: a set of nonlocal games that are gen-

eralizations to the magic square game of arbitrary sizes. These games also have

the CHSH game as a special case (the 2×2 rectangle games). We first show that

many of the games are equivalent under natural transformations with respect

to their maximum attainable winning probabilities at different levels of the NPA

hierarchy. Specifically, the games may be transposed and constraints on their

rows and columns modified without affecting winning probabilities. We show

that 1×𝑛 games exhibit entirely classical behavior, while games larger than 3×3
in size behave similarly to the standardmagic square game. The remaining 2×𝑛
games cannot be won with certainty using behaviors in the quantum set, but

there exist quantum strategies that win more often than is classically possible.

Numerical values for optimal winning probabilities at low enough levels of the

NPA hierarchy and for small enough 2 × 𝑛 games are shown (Table 3.2), and we

conjecture a closed-form expression for the almost quantum level 1 + 𝐴𝐵 set.

Interestingly, the 2 × 3 game appears to be the first known nonlocal game that

can be won with certainty using NPA level 1 correlations, but not with level

1 + 𝐴𝐵 correlations. We give an explicit NPA level 1 strategy for this game.

These results allow us to state bounds on the win probabilities attainable with

truly quantum strategies.

This chapter is based on work published in [1].

Chapter 4 In this chapter, we take the magic rectangle games defined in Chapter 3

and apply them in the context of certified private randomness. We show which

of our games can be used to generate private randomness and find bounds on

the noise tolerances and rates of randomness expansion for each of the games.

In order to give a general analysis of the rates, we use results on the well-known

spot-checking protocol of Miller and Shi [54]. However, we note that there now

exist techniques based on entropy accumulation that could be used to achieve
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much better rates for magic rectangle games of interest. Such techniques

would require a case-by-case analysis of (an unlimited number of) different

games and, at the time the presented research was performed, were very new.

This chapter is also based on work published in [1].

Chapter 5 Again making use of our magic rectangle games, we turn our attention

to the very general application of nonlocality that is the self-testing of quan-

tum systems. First, we introduce a perfect winning quantum strategy for the

Mermin–Peres magic square game that, unlike the standard strategy, allows for

one of the two players to make only simple single-qubit Pauli measurements

(locally to individual qubit registers of their system). This comes at the cost of

three entangled EPR pairs having to be shared between the parties, rather than

the usual two. Our magic square strategy is motivated by applications in the

client–server scenario, where it is important that the client party (likely being

technologically limited to a simple quantum device) need only perform simple

quantum operations.

While our “one-side-local” magic square strategy is useful in any application as

a drop-in replacement for the usual magic square strategy where measurement

simplicity is more important than the extra entanglement required, we use it

in this chapter as the basis for self-testing with a simple client device. We

generalize our one-side-local 3 × 3 strategy to a deliberately unwieldy strategy

for all 3 × 𝑛 magic rectangle games. Since observing a behavior consistent with

any optimal strategy for the magic square game is only sufficient to certify

the presence of two EPR pairs of entanglement, we supplement our requested

observations with simple additional correlations to obtain a self-test of 𝑛 Bell

states.

This chapter is based on work published in [2].

Chapter 6 We focus specifically on the task of delegated universal quantum compu-

tation. Such delegation protocols that satisfy the properties of both blindness

and verifiability require very specific preparations of qubits sent by the client

to the server. In this chapter, we construct an efficient parallel self-testing pro-

tocol that allows the unconditionally secure Fitzsimons–Kashefi (FK) approach

to universal verifiable blind quantum computation (VBQC) to be lifted into the

fully device-independent security regime. Although the self-test given in Chap-
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ter 5 is geared generally towards the device-independent client–server scenario

and, moreover, could be used to teleport states to the server via client-side mea-

surements of the certified Bell states, it is not immediately composable with the

FK protocol due to a fewmissing properties (including the variety of qubits that

can be prepared).

We begin the chapter by detailing each of eight properties required of self-

testing protocols for them to be used for teleportation-based parallel remote

state preparation in FK-type VBQC protocols. Rather than adapt the self-test

introduced in Chapter 5, we choose to construct an entirely new protocol based

on the careful observation of (triple) CHSH statistics in parallel. In the case of

nonideal statistics, since self-testing protocols typically only certify subnormal-

ized states resulting before measurements are conditioned on observed out-

comes, and the appropriate parallel preparation of qubits for FK-type VBQC

necessarily requires measurements with exponentially many outcomes in the

number of qubits, we must be careful to ensure that the distance of normal-

ized post-measurement states from the ideal does not also scale exponentially.

We take care to show how this issue can be overcome in Theorem 6.4. We

exhibit a result (Theorem 6.9) that allows certain relations between unknown

physical observables measured in the protocol to be turned into appropriate

self-testing isometries, with some of the additional properties required for FK-

composability also covered. We then show that the observables used for our

protocol satisfy these relations, and also that the remaining required properties

are satisfied simultaneously. Importantly, each of eight qubits—evenly spaced

in the 𝑋𝑌-plane—and the two computational basis states can be prepared in

parallel. Furthermore, any undetectable flipping of qubits due to quantum cor-

relations being unaffected by complex conjugation of measurements only oc-

curs globally across all qubits prepared in the computational basis. This ensures

that trap patterns (qubit vertices in the measurement-based model surrounded

by “dummy” computational basis states) used in FK protocols are still effective

in verifying that computations are performed correctly.

This chapter is based on work that is also presented in [3].

Chapter 7 We conclude with a summary of our main findings and a discussion of

the implications of our work, as well as problems that remain open for future

attention.





Chapter 2

Preliminaries

We begin by introducing in Section 2.1 the notation that will be used throughout

the thesis and some useful elementary results thereof. In Section 2.2, we give some

background on the magic square game. In Section 2.3, a hierarchy of correlations

by which given experimental behaviors can be classified (and certified by means of

semidefinite programs) are introduced. We then introduce the idea of self-testing in

Section 2.5, with definitions and some related results given. In Section 2.6 we discuss

sum-of-squares decomposition for Bell operators. Finally, in Section 2.7, we detail the

unitary regularization technique for operators and exhibit a convenient result on the

anticommutativity of such operators.

2.1 Notation and elementary results

In this section, we introduce notation that will be used throughout the rest of thesis.

We also state some useful properties of the mathematical objects presented.

2.1.1 Pauli observables and important states

The Pauli observables 𝜎x, 𝜎y, and 𝜎z will be denoted interchangeably by 𝜎1, 𝜎2, and

𝜎3, respectively. In the computational basis

𝜎x = 𝜎1 =
(

0 1
1 0)

, 𝜎y = 𝜎2 =
(

0 −𝑖
𝑖 0)

, 𝜎z = 𝜎3 =
(

1 0
0 −1)

. (2.1)

In some parts (particularly Chapter 5) it will also be convenient to denote the Pauli

observables by �̂�, ̂𝑌, and �̂�, respectively (this is not to be confused with the regular-

ization of operators introduced in Section 2.7). We will define the |±𝜃⟩ qubit states

9
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for 𝜃 ∈ ℝ as

|±𝜃⟩ =
|0⟩ ± 𝑒𝑖𝜃|1⟩

√2
. (2.2)

We define operators 𝜎x+y and 𝜎x−y (denoted interchangeable by 𝜎4 and 𝜎5) as

𝜎x+y = 𝜎4 =
𝜎x + 𝜎y

√2
, 𝜎x−y = 𝜎5 =

𝜎x − 𝜎y

√2
. (2.3)

The |±0⟩ = |±⟩ states are eigenvectors of 𝜎x, and the |±2𝜋/4⟩ = |±𝑖⟩ states are eigen-

vectors of 𝜎y. Meanwhile, the |±𝜋/4⟩ states are eigenvectors of 𝜎x+y, and the |±3𝜋/4⟩
states are eigenvectors of 𝜎x−y. We will denote by |𝛷+⟩ the maximally entangled Bell

state

|𝛷+⟩ =
|00⟩ + |11⟩

√2
. (2.4)

2.1.2 Complex conjugation and composition

For a vector |𝑣⟩ or linear map 𝑀, we will denote using a star symbol as |𝑣⟩∗ or 𝑀∗

the complex conjugation of their matrix entries with respect to a fixed basis. To

denote the composition of many linear maps, we will adopt product notation, with

the convention for the order in which they are applied given by

𝑛

∏
𝑗=1

𝑀𝑗 = 𝑀1 … 𝑀𝑛. (2.5)

Given also some 𝒔 ∈ {0, 1}𝑛, we define the related notation denoted by an operator

“raised to the power” of this string by

𝑀𝒔 =
𝑛

∏
𝑗=1

𝑀
𝑠𝑗
𝑗 . (2.6)

This is an abuse of notation in which 𝑀 has not been defined on its own, but is

nonetheless used in the notation on the left-hand side due to the same letter being

used for all the given 𝑀𝑗 on the right-hand side. It will always be clear in context to

which set of operators {𝑀𝑗 ∣ 1 ≤ 𝑗 ≤ 𝑛} the notation 𝑀𝒔 is associated with due to

the choice of capital letter being used.

2.1.3 Hilbert space notation

Hilbert spaces will be denoted using calligraphic symbols, for example ℋ. The set of

linear operators on ℋ will be denoted ℒ(ℋ). In the context of delegated computation,
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Alice will refer to the client party, while Bob will refer to the server party. Hilbert

spaces corresponding to the parties Alice and Bob will be denoted by variations of

the symbols 𝒜 and ℬ, respectively. In certain situations, it will be useful to explicitly

write to which space a state belongs. To this end, we will sometimes write the Hilbert

space as a subscript |𝜓⟩ℋ ∈ ℋ. Similarly, for a linear map 𝑀ℋ, a subscript or super-

script calligraphic symbol denotes its domain. In the case of a joint space 𝒜 ⊗ ℬ, we

may omit the tensor product symbol in this notation, so that |𝜓⟩𝒜ℬ ∈ 𝒜 ⊗ ℬ. Given

a state |𝜓⟩ in a joint space 𝒜 ⊗ ℬ and a linear map 𝑀 defined on 𝒜, we will often

also denote by 𝑀 its extension to 𝒜 ⊗ ℬ which acts trivially on ℬ. That is, we adopt

the notation

𝑀|𝜓⟩ = (𝑀 ⊗ 𝐼ℬ)|𝜓⟩, (2.7)

where 𝐼ℬ is the identity operator on ℬ.

2.1.4 Reflection operators

Frequently, wewill deal with ±-outcome projectivemeasurements whose observables

𝑀 have spectral decomposition 𝑀 = 𝑀+ −𝑀− for some orthogonal projections 𝑀+

and 𝑀− satisfying 𝑀+ + 𝑀− = 𝐼 and 𝑀+𝑀− = 𝑀−𝑀+ = 0. Observables of this

type are unitary and satisfy the involutory property 𝑀2 = 𝐼. Such operators that are

both Hermitian and unitary are also referred to as reflection operators.

2.1.5 Properties of norms

The norm ‖⋅‖ will refer throughout to that induced by the inner product of the Hilbert

space being considered as ‖|𝑣⟩‖ = √⟨𝑣|𝑣⟩. In the case of a linear operator 𝑂 defined

on this Hilbert space, ‖𝑂‖𝑝 will refer to its Schatten 𝑝-norm.

Definition 2.1 (Schatten 𝑝-norm). Let ℋ1 and ℋ2 be Hilbert spaces. For 1 ≤ 𝑝 < ∞,

the Schatten 𝑝-norm of a bounded linear operator 𝑂∶ ℋ1 → ℋ2 is given by

‖𝑂‖𝑝 = tr(|𝑂|𝑝)
1
𝑝 , (2.8)

where |𝑂| = (𝑂†𝑂)1/2. If, moreover, 𝑂 is compact and both ℋ1 and ℋ2 are separable

then, equivalently,

‖𝑂‖𝑝 =
(∑

𝑗
𝑠𝑝

𝑗 )

1
𝑝

, (2.9)

where the 𝑠𝑗 ≥ 0 are the singular values of 𝑂 (i.e. the eigenvalues of |𝑂|) given in

descending order.
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Of particular importance are the trace class norm (the case where 𝑝 = 1) and the

operator norm (conventionally denoted with 𝑝 = ∞). We will also denote the oper-

ator norm without any subscript. The operator norm has the important properties

that ‖𝑂|𝑣⟩‖ ≤ ‖𝑂‖ ⋅ ‖|𝑣⟩‖ for all vectors |𝑣⟩, and that ‖𝑈‖ = 1 if 𝑈 is unitary. The

trace class norm satisfies

‖trℬ(𝑂)‖1 ≤ ‖𝑂‖1 (2.10)

if 𝑂 is defined on a joint Hilbert space 𝒜 ⊗ ℬ [55].

2.1.6 Tolerance relations

We define a tolerance relation
𝜀
≈ to denote when two vectors are 𝜀-close in the vector

norm distance. Given vectors |𝑢⟩ and |𝑣⟩ in the same Hilbert space, this relation is

defined by

|𝑢⟩
𝜀
≈ |𝑣⟩ ⟺ ‖|𝑢⟩ − |𝑣⟩‖ ≤ 𝜀. (2.11)

By the triangle inequality, we can then succinctly state the property that

|𝑢⟩
𝜀
≈ |𝑣⟩ and |𝑣⟩

𝛿
≈ |𝑤⟩ ⟹ |𝑢⟩

𝜀+𝛿
≈ |𝑤⟩. (2.12)

The following lemma will prove useful to estimate the action of unitary operators on

some state.

Lemma 2.2. Let |𝜑⟩ and |𝜒⟩ be normalized states belonging to the same Hilbert space

and let 𝜀 ≥ 0. The real part ℜ𝔢 ⟨𝜑|𝜒⟩ ≥ 1 − 𝜀 if and only if

|𝜑⟩
√2𝜀
≈ |𝜒⟩. (2.13)

Proof. Using the property ‖|𝑣⟩‖ = √⟨𝑣|𝑣⟩, we can expand

‖|𝜑⟩ − |𝜒⟩‖2 = ⟨𝜑|𝜑⟩ + ⟨𝜒|𝜒⟩ − ⟨𝜑|𝜒⟩ − ⟨𝜒|𝜑⟩

= 2 − ⟨𝜑|𝜒⟩ − ⟨𝜑|𝜒⟩∗

= 2(1 − ℜ𝔢 ⟨𝜑|𝜒⟩).

(2.14)

Therefore, ‖|𝜑⟩ − |𝜒⟩‖2 ≤ 2𝜀 if and only if 1 − ℜ𝔢 ⟨𝜑|𝜒⟩ ≤ 𝜀.

2.1.7 Number strings

Given any string of length 𝑛, which we will denote in bold by 𝒙 = (𝑥1, … , 𝑥𝑛), we

will sometimes find it convenient to consider the same string but of length 𝑛 − 1 and
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with its 𝑖th element removed. We will write this as the original symbol (in bold) for

the string with a subscript as

𝒙𝑖 = (𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛). (2.15)

To reiterate: 𝑥𝑖 is the 𝑖th element of 𝒙, while 𝒙𝑖 is 𝒙 with its 𝑖th element removed. An

exception to this is given to the 𝑖th standard basis vector of length 𝑛, which we will

always denote unambiguously by

𝒆𝑛
𝑖 = (𝛿𝑖𝑗)𝑛

𝑗=1. (2.16)

Let [𝑃 ] denote the Iverson bracket of a statement 𝑃. We will sometimes use this

notation as an alternative way to express the Kronecker delta function. That is, we

will take

𝛿𝑗𝑘 = [𝑗 = 𝑘]. (2.17)

2.1.8 Complexity

We will interchangeably express the functions with argument 𝑛 that are 2𝑂(log 𝑛) by

writing that they are poly(𝑛).

2.1.9 Bell expressions

A (linear) Bell expression ℐ is defined as a real-valued function taking experimental

probabilities 𝒑 = (𝑝(𝑎, 𝑏 ∣ 𝑥, 𝑦))𝑎,𝑏,𝑥,𝑦 to a linear combination

ℐ[𝒑] = ∑
𝑎,𝑏,𝑥,𝑦

𝛽𝑎,𝑏
𝑥,𝑦𝑝(𝑎, 𝑏 ∣ 𝑥, 𝑦), (2.18)

where 𝛽𝑎,𝑏
𝑥,𝑦 ∈ ℝ. For notational convenience, we will also write values of a Bell

expression as ℐ[𝑝(𝑎, 𝑏 ∣ 𝑥, 𝑦)], where it is understood that all probabilities (varying

over 𝑎, 𝑏, 𝑥, and 𝑦) are arguments to ℐ.

2.1.10 Overloading of notation

Certain symbols will be refitted with different elementary purposes as is most conve-

nient for the context of each surrounding chapter. We summarize themain differences

here, and will recount that this is the case at the beginning of each relevant chapter.

In Chapters 3 and 4 we use the calligraphic letters 𝒜 and ℬ as outcome alphabets

of random variables for the answers of observers Alice and Bob in a Bell scenario.
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Hilbert spaces are denoted in Chapter 5 alongside results from Chapter 3, and thus

to avoid any confusion we use notation such as ℋ𝐴, ℋ′
𝐴, and ℋ̃𝐴 there to denote

different Hilbert spaces on the side of Alice, and similarly with different subscript

letters identifying other named observers. For this reason, rather than adopting our

usual convention for linear maps by including their domain, for example 𝑋ℋ′
𝐴
(which

is rather cumbersome), we instead opt in Chapter 5 to denote only to which observer

the operator corresponds. That is, we would write 𝑋𝐴 and leave the exact Hilbert

space of Alice on which the operator acts (primed in this example) to be clear from

the definition of the operator itself. In Chapter 6, we return to our usual notation

with different Hilbert spaces of Alice denoted by variants of calligraphic letters such

as 𝒜, 𝒜′, and ̃𝒜.

There is also a double usage of the hat symbol placed above operators. Usually,

the operator �̂� is taken to mean the Pauli observable that is also denoted by 𝜎x. How-

ever, in Chapter 6, the operator �̂� refers to the regularized version of some unknown

operator 𝑋 (the process of regularization will be introduced in Section 2.7), while the

Pauli observable is consistently denoted by 𝜎x or 𝜎1. The same is true of the notation

for the other Pauli observables.

2.2 The magic square game

The Mermin–Peres magic square game [56] consists of two players, Alice and Bob,

who are not allowed to communicate during each round of the game. This could be

achieved, for example, by ensuring a spacelike separation between the two players.

Each round consists of Alice and Bob, respectively, being assigned a row and column

of an empty 3 × 3 table uniformly at random, which they must fill according to the

following rules.

S1. Each filled cell must belong to the set {+1, −1}.

S2. Rows must contain an even number of negative entries (i.e., the product of

Alice’s entries to any assigned row must be +1).

S3. Columns must contain an odd number of negative entries (i.e., the product of

Bob’s entries to any assigned column must be −1).

Neither player has knowledge of which row or column the other has been assigned,

nor does either player know what values the other has entered. The game is won if

both players enter the same value into the cell shared by their row and column.
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Concretely, interactions between a referee (who arbitrates the game) and the play-

ers (Alice and Bob) in a round of the magic square game proceed in the following way.

1. The referee chooses 𝑥 ∈ {1, 2, 3} and 𝑦 ∈ {1, 2, 3} both uniformly at random.

These are the inputs (also called questions) to the players Alice and Bob.

2. The referee sends the value 𝑥 to Alice and the value 𝑦 to Bob. Importantly,

Alice does not learn 𝑦 and Bob does not learn 𝑥, as the players are unable to

communicate with one another during a round.

3. Alice returns 𝒂 ∈ {+1, −1}3 and Bob returns 𝒃 ∈ {+1, −1}3 to the referee.

These strings, each comprised of three bits, are the outputs (also called answers)

from the players Alice and Bob. They are also required to satisfy 𝑎1𝑎2𝑎3 = +1
and 𝑏1𝑏2𝑏3 = −1, otherwise the round is considered invalid.

4. The referee arranges 𝒂 as row 𝑥 and 𝒃 as column 𝑦 of a 3 × 3 table and checks

the cell where row 𝑥 and column 𝑦 coincide. If the elements of 𝒂 and 𝒃 placed

in this cell are equal (that is, if 𝑎𝑦 = 𝑏𝑥) then the round is recorded as a win.

Otherwise, the round is recorded as a loss.

This procedure is also depicted graphically (with the 3 × 3 table displayed) in Fig. 2.1.

+1 +1 +1

(a) Alice’s output.

+1

−1

+1

(b) Bob’s output.

+1

−1

+1 +1 +1

(c) Referee combined outputs.

Figure 2.1: An example round of the magic square game in which inputs 𝑥 = 3 for Alice and 𝑦 = 2
for Bob have been provided by the referee. The 3 × 3 table on which the game can be thought of as

being played is displayed. (a) Alice’s output depicted as a string of three ±1 bits placed in row 𝑥 = 3.
(b) Bob’s output depicted as a string of three ±1 bits placed in column 𝑦 = 2. (c) The outputs of both

players combined together, as can only be seen by the referee. After examining the outputs of Alice

and Bob placed in the shared cell of the table (shaded green), the referee records a win in this example

round (both players entered +1 where the chosen row and column coincide).

The optimal classical strategy succeeds with probability 8/9 only, and may be

achieved by both players agreeing to each follow a particular configuration for their
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entire table before the game begins. This can be seen as follows. The success prob-

ability of general probabilistic classical strategy cannot exceed that of the best deter-

ministic strategies (in which each player systematically outputs according to some

function of their possible inputs), since these are just probability distributions over

finite sets of deterministic strategies [20]. It is therefore sufficient to consider only

deterministic strategies. Deterministic strategies for the magic square game corre-

spond to fixed assignments of all cells in a 3 × 3 table for each player, which they

decide upon beforehand and refer to during the game in order to produce their an-

swers. In order to satisfy Rules S2 and S3, each row of Alice’s assignment must have

product +1, and each column of Bob’s assignment must have product −1. In order

to win upon all possible inputs (each corresponding to a different cell of the table

in which the players must match their outputs), both players must refer to the same

fixed assignment of table. However, it is impossible to produce such an assignment

for all cells, since otherwise the product of all cells in the assignment would have to

be +1 and −1 simultaneously (the product of all rowsmust be +1 while the product of

all columns must be −1, a contradiction). Hence, since there are 9 possible questions

and the game cannot be deterministically won upon all questions, the overall classical

success probability is at most 8/9 where the different inputs are asked with uniform

probability. Finally, there exist strategies that attain this 8/9 success probability (see

Fig. 2.2), and so the optimal classical success probability is equal to 8/9.
Strikingly, if the players are allowed to share an entangled quantum state, it has

been shown to be possible for them to win the magic square game with certainty

[18, 19]. Such games are said to exhibit quantum pseudotelepathy [20], setting them

apart frommany other nonlocal games (including the CHSH game) for which optimal

quantum strategies are not guaranteed to win.

A possible quantum winning strategy for the magic square allows the players to

share the entangled state

|𝛹⟩ = |𝛷+⟩1,2 ⊗ |𝛷+⟩3,4, (2.19)

which is the product of two maximally entangled two-qubit Bell states

|𝛷+⟩𝑎,𝑏 ≡
|0⟩𝑎 ⊗ |0⟩𝑏 + |1⟩𝑎 ⊗ |1⟩𝑏

√2
. (2.20)

That is, Alice’s quantum system is composed of qubits 1 and 3, and Bob’s system

of qubits 2 and 4. Depending on which row is asked of Alice and column is asked

of Bob by the referee, the players make measurements on their respective quantum
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+1 +1 +1

+1 −1 −1

−1 +1 −1

(a) Alice’s deterministic strategy.

+1 +1 +1

+1 −1 −1

−1 +1 +1

(b) Bob’s deterministic strategy.

Figure 2.2: Fixed arrangements of 3×3 tables for (a)Alice and (b) Bob forming a deterministic strategy

for the magic square game that wins with probability 8/9. Upon being provided a question, players

refer to their respective table (different rows for Alice and columns for Bob) in order to produce an

answer. The entries in the two tables match in all but the bottom right cell (shaded in red). Therefore,

the players will win the game upon all inputs other than (𝑥, 𝑦) = (3, 3); i.e. in only eight out of nine

uniformly distributed cases.

systems by referring to the observables given in the corresponding cells of Fig. 2.3.

The outcomes of these measurements determine the values that Alice and Bob enter

into their respective row and column to win with certainty.

Let us explain the quantum strategy of Fig. 2.3 in more detail by way of an exam-

ple. If Alice was provided the question 𝑥 = 1 then according to the strategy of Fig. 2.3

she would produce an answer 𝒂 = (𝑎1, 𝑎2, 𝑎3) by letting the measurement outcome

of the binary observable �̂� ⊗ 𝐼 give 𝑎1, �̂� ⊗ �̂� give 𝑎2, and 𝐼 ⊗ �̂� give 𝑎3. These

three observables can be measured on her two-qubit system in any order since they

are pairwise commutative. Moreover, the outcomes are guaranteed to satisfy Rule S2

that 𝑎1𝑎2𝑎3 = 1 since

(�̂� ⊗ 𝐼)(�̂� ⊗ �̂�)(𝐼 ⊗ �̂�) = 𝐼. (2.21)

At the same time, if Bob was provided the question 𝑦 = 2 then he would produce an

answer bymeasuring the observables in the second column—letting themeasurement

outcome of �̂� ⊗ �̂� give 𝑏1, ̂𝑌 ⊗ ̂𝑌 give 𝑏2, and �̂� ⊗ �̂� give 𝑏3. These observables

also pairwise commute, and result in outcomes that satisfy Rule S3 that 𝑏1𝑏2𝑏3 = −1
since

(�̂� ⊗ �̂�)( ̂𝑌 ⊗ ̂𝑌 )(�̂� ⊗ �̂�) = −𝐼. (2.22)

Now, for the inputs (𝑥, 𝑦) = (1, 2) given in this example, the referee will record the

round as a win if and only if 𝑎2 = 𝑏1. The strategy of Fig. 2.3 is constructed such
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�̂� ⊗ 𝐼 �̂� ⊗ �̂� 𝐼 ⊗ �̂�

−�̂� ⊗ �̂� ̂𝑌 ⊗ ̂𝑌 −�̂� ⊗ �̂�

𝐼 ⊗ �̂� �̂� ⊗ �̂� �̂� ⊗ 𝐼

Figure 2.3: A quantum strategy for the magic square game, in which the players share the entangled

state |𝛹⟩ given in Eq. (2.19). Observables �̂�, ̂𝑌, and �̂� are the Pauli spin operators, and 𝐼 is the identity

operator. Answers of Alice correspond to measurement outcomes of rows, and answers of Bob to

measurement outcomes of columns. Each row is formed of mutually commuting observables whose

product is equal to 𝐼, and each column of mutually commuting observables whose product is −𝐼.
The eigenvalues of each observable are +1 and −1. These facts combined show Rules S1 to S3 are

automatically satisfied. Moreover, if 𝑀𝐴 is any of the given observables for Alice’s system, and 𝑀𝐵

is the corresponding observable for Bob’s system, the fact that ⟨𝛹| 𝑀𝐴𝑀𝐵 |𝛹⟩ = 1 guarantees the

players alwayswin. This strategy cannot be realizedwith either player performing onlymeasurements

localized to single-qubit registers.

that both 𝑎2 and 𝑏1 are precisely the measurement outcomes of the observable �̂� ⊗
�̂�, measured once on Alice’s subsystem and once on Bob’s subsystem, respectively.

Therefore, it must be the case that the round is won, since using the shared state of

Eq. (2.19) these observables are perfectly correlated

⟨𝛹| �̂� ⊗ �̂� ⊗ �̂� ⊗ �̂� |𝛹⟩ = 1, (2.23)

where the first and third �̂� act on Alice’s side and the second and fourth act on Bob’s

side. The same argument can be performed for all possible inputs (𝑥, 𝑦), and so this

quantum strategy wins the magic square game with certainty. Figure 2.3 also shows

that (unlike, say, the CHSH game) optimal quantum strategies can be implemented

by performing measurements of the two-qubit Pauli group only.

In the context of practical quantum strategies, we refer to measurements as lo-

cal in the sense that they are performed on only a single-qubit register. It will be

important for our purposes to understand that the strategy depicted here cannot
be implemented, for either player, entirely with local measurements. To see this for
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Bob, consider the three binary observables contained in the second column of Fig. 2.3.

Upon being given the input 𝑦 = 2, Bob is required to answer with three bits, produced

as outcomes to measurements of all three observables performed on his same two-

qubit subsystem. The three observables to be measured �̂� ⊗ �̂�, ̂𝑌 ⊗ ̂𝑌, and �̂� ⊗ �̂�
are compatible when considered over Bob’s entire subsystem, since they are pairwise

commutative. Now suppose that Bob is limited to making only local measurements.

In this case, he would still be able to implement the measurement of the two-qubit

observable �̂� ⊗ �̂� by instead measuring both the compatible observables �̂� ⊗ 𝐼 and

𝐼 ⊗ �̂� and multiplying the outcomes obtained. Similar statements can also be made

about the other two required observables ̂𝑌 ⊗ ̂𝑌 and �̂� ⊗ �̂� individually. However,

while this can be said for each of the three two-qubit observables separately, Bob can-

not implement measurements of all three simultaneously in a local manner. This is

because the set of all six single-qubit observables required for this

�̂� ⊗ 𝐼, 𝐼 ⊗ �̂�, ̂𝑌 ⊗ 𝐼, 𝐼 ⊗ ̂𝑌 , �̂� ⊗ 𝐼, 𝐼 ⊗ �̂� (2.24)

do not all commute with one another when considered together as a single set. For

instance, the commutator [�̂� ⊗ 𝐼, �̂� ⊗ 𝐼] = 2𝑖 ̂𝑌 ≠ 0. Similarly, consideration of

the second row of Fig. 2.3 shows that the strategy for Alice cannot be implemented

by performing only local measurements. We present in Section 5.4 a strategy for the

magic square game that can be realized using only local measurements for one of the

players, at the cost of requiring three shared Bell states.

2.3 Levels of correlations

Weconsider localmeasurementsmade on a system shared by two observers, Alice and

Bob (multipartite generalizations exist, however, we will only focus on two parties, as

it is the setting that we consider in Chapters 3 and 4). Alice chooses an input 𝑥 ∈ 𝒳
and observes a correspondingmeasurement output 𝑎 ∈ 𝒜𝑥. Similarly, Bob chooses an

input 𝑦 ∈ 𝒴 and observes a measurement output 𝑏 ∈ ℬ𝑦. We may implicitly assume

that inputs for Alice and Bob are distinguishable from one another, and further that

each output is labeled by its corresponding input. Hence, we may write the sets of all

possible outputs for Alice and Bob respectively as the disjoint unions 𝒜 = ⋃𝑥∈𝒳 𝒜𝑥

and ℬ = ⋃𝑦∈𝒴 ℬ𝑦. We refer to a fixed configuration of all probabilities 𝑃 (𝑎, 𝑏 ∣
𝑥, 𝑦) as a behavior. These behaviors can also be thought of as vectors in ℝ|𝒜×ℬ|, a

convention that is particularly useful for dealing with classes of behaviors that are



20 Chapter 2. Preliminaries

then mapped to sets of vectors.

Behaviors can be characterized according to properties they have, or according

to what physical theories can give rise to such behaviors. The weakest condition

(and thus the most general set of behaviors) one typically imposes is that “signaling”

should be forbidden; behaviors should not allow for superluminal communication. A

behavior is said to exhibit nonsignaling correlations [57] if it satisfies both

𝑃 (𝑎 ∣ 𝑥) = 𝑃 (𝑎 ∣ 𝑥, 𝑦), (2.25a)

𝑃 (𝑏 ∣ 𝑦) = 𝑃 (𝑏 ∣ 𝑥, 𝑦), (2.25b)

i.e., the input of one party does not influence the probability of outcomes for the other

party. Similarly, a behavior exhibits quantum correlations if it is realizable under the

laws of quantum mechanics, meaning that there exists a joint state |𝜓⟩ and “local”

measurement operators satisfying [𝐸𝑎
𝑥, 𝐸𝑏

𝑦] = 0 that reproduce the behavior, i.e., such

that

𝑃 (𝑎, 𝑏 ∣ 𝑥, 𝑦) = ⟨𝜓| 𝐸𝑎
𝑥𝐸𝑏

𝑦 |𝜓⟩. (2.26)

A behavior exhibits classical correlations if there exists a unique joint probability

distribution such that the behavior arises as marginals. By a theorem of Fine [58],

such behaviors are equivalently local

𝑃 (𝑎, 𝑏 ∣ 𝑥, 𝑦) = ∫ 𝑝𝐴(𝑎 ∣ 𝜆, 𝑥)𝑝𝐵(𝑏 ∣ 𝜆, 𝑦)𝑝(𝜆) 𝑑𝜆, (2.27)

where the “hidden variable” value 𝜆 represents a classical description of a strategy

that Alice and Bob may share beforehand with probability density 𝑝(𝜆). We denote

the sets of nonsignaling, quantum, and local behaviors by 𝑁, 𝑄, and 𝐿, respectively.

Given a behavior, it is not easy to check whether there exists a corresponding

quantum model (and thus whether the behavior belongs to 𝑄). In order to charac-

terize the set of quantum behaviors, Navascués et al. [59, 60], defined an infinite de-

creasing hierarchy of nonsignaling correlations (known as the NPA hierarchy). These

levels of correlations are intermediate; they are stronger than nonsignaling correla-

tions, but weaker than the quantum set. The different sets of behaviors in the NPA

hierarchy are denoted by 𝑄1 ⊇ 𝑄2 ⊇ … , and converge to the quantum set in the

sense that ⋂𝑖≥1 𝑄𝑖 = 𝑄. Each set 𝑄𝑖 can be certified by a different semidefinite pro-

gram. Note that we refer to a set of correlations 𝑆 as stronger than another set 𝑊 if

the former is a subset of the latter 𝑆 ⊂ 𝑊, since knowing that a behavior belongs to 𝑆
also tells us that it is in 𝑊. We thus say that quantum correlations are stronger than
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nonsignaling correlations but weaker than local correlations, for instance. Note that

the reverse convention is not uncommon in the literature, and many authors would

refer to 𝑁 as stronger than 𝑄 since behaviors unique to 𝑁 ⧵ 𝑄 typically correspond

to more strongly correlated measurement outcomes than those found in 𝑄.

A further important set of supra-quantum behaviors are the almost quantum cor-

relations [61], which we denote �̃� ⊋ 𝑄. It has been argued that this set is special,

as it is the smallest set that contains the quantum set and arises naturally from some

information theoretic principle (e.g. local orthogonality [62], nontrivial communica-

tion complexity [63], etc.). These correlations arise naturally by weakening a single

one of the principles defining quantum correlations. Namely, instead of requiring

the local measurement operators to commute, one only requires that they commute

when acting on the special state that gives the behavior, i.e. [𝐸𝑎
𝑥, 𝐸𝑏

𝑦]|𝜓⟩ = 0. It is

shown in [61] that �̃� = 𝑄1+𝐴𝐵, where 𝑄1+𝐴𝐵 is a set of correlations defined in [60]

and satisfying 𝑄1 ⊋ 𝑄1+𝐴𝐵 ⊋ 𝑄2 in the NPA hierarchy.

Overall, the above correlations satisfy the inclusions

𝑁 ⊋ 𝑄1 ⊋ 𝑄1+𝐴𝐵 = �̃� ⊋ 𝑄2 ⊇ ⋯ ⊇ 𝑄 ⊋ 𝐿. (2.28)

Here, it is worth stressing that the win probabilities in any game can only increase

when considering a larger set of behaviors. It follows that to (upper or lower) bound

the win probabilities for players of a nonlocal game in one level, one can use other

levels of correlations that are easier to deal with. In Chapters 3 and 4, we will mainly

be concerned with the nonsignaling, almost quantum, quantum, and local levels of

correlations 𝑁, �̃�, 𝑄, and 𝐿 respectively, where the almost quantum set is used to

upper bound the win probabilities for quantum behaviors.

2.4 Randomness expansion

Given a nonlocal game, we will denote by 𝜔 its maximal win probability over all

quantum devices (those devices whose behaviors can be described as belonging to the

set of quantum correlations), and by �̄� its maximal win probability over all quantum

devices with a distinguished input (that is, quantum devices that are restricted to give

deterministic outputs upon a single one of their possible inputs).

Definition 2.3 (Distinguished input). That a device gives a deterministic output upon

some input �̄� = (�̄�, ̄𝑦) ∈ 𝒳 × 𝒴 means that there exists an output �̄� = ( ̄𝑎, ̄𝑏) ∈ 𝒜 × ℬ



22 Chapter 2. Preliminaries

such that Pr(�̄� ∣ �̄�) = 1. That is, equivalently,

Pr(𝐴 = ̄𝑎 ∩ 𝐵 = ̄𝑏 ∣ 𝑋 = �̄� ∩ 𝑌 = ̄𝑦) = 1. (2.29)

A device for which this statement is satisfied for the input �̄� is said to have a distin-

guished input �̄�.

Remark. The word “device” here in fact refers to two separate parts considered to-

gether, one held by Alice and the other by Bob. Since signaling between Alice and

Bob is forbidden, it is implied by Eq. (2.29) that both

Pr(𝐴 = ̄𝑎 ∣ 𝑋 = �̄�) = 1, (2.30a)

Pr(𝐵 = �̄� ∣ 𝑌 = ̄𝑦) = 1. (2.30b)

That is, it can be said that the local outputs from the device parts held by Alice and

Bob are deterministic upon inputs �̄� and ̄𝑦, respectively.

To illustrate the concept of devices with distinguished inputs consider the CHSH

game, whose inputs and outputs belong to the alphabet {0, 1} × {0, 1} (with the in-

puts drawn uniformly from this set). The measurement statistics of general quantum

devices may follow any behavior in the set of quantum correlations 𝑄 (resulting in a

maximal win probability of 𝜔 ≈ 85.4%). However, if we consider only those quantum

devices that have a distinguished input (0, 0), then the measurement statistics must

follow a behavior that is in the subset �̄� ⊂ 𝑄, where

�̄� = {𝑷 = (𝑃 (𝑎, 𝑏 ∣ 𝑥, 𝑦))𝑎,𝑏,𝑥,𝑦 ∈ 𝑄 | ∃( ̄𝑎, ̄𝑏) s.t. 𝑃 ( ̄𝑎, ̄𝑏 ∣ 0, 0) = 1}. (2.31)

When only devices implementing this set are considered (devices with a choice (0, 0)
of distinguished input), it can be shown that themaximalwin probability is 75%—equal

to that of classical devices in this case [54, Appendix D].

Protocol 𝑅𝑔𝑒𝑛 given by Miller and Shi [54, Figure 2] produces quantum-secure

extractable bits over 𝑁 rounds, provided its score acceptance threshold parameter 𝜒
satisfies 𝜒 > �̄�. We reproduce 𝑅𝑔𝑒𝑛 in Protocol 2.1 for convenience.

In our notation, the main result of Miller and Shi [54] can be stated as in the

following theorem.

Theorem 2.4 (Miller and Shi [54, Theorem 1.1]). For any game, there are functions

𝜋∶ [0, 𝜔] → ℝ≥0 and 𝛥∶ (0, 1]2 → ℝ≥0 such that the following hold:

1. For any 𝑏 ∈ (0, 1], Protocol 𝑅𝑔𝑒𝑛 produces at least 𝑁[𝜋(𝜒) − 𝛥(𝑏, 𝑞)] extractable
bits with soundness error 3 ⋅ 2−𝑏𝑞𝑁.
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Protocol 2.1: The Protocol 𝑅𝑔𝑒𝑛 of Miller and Shi [54, Figure 2].

Let the following arguments of the protocol be given:

• A game 𝐺 with a distinguished input �̄�.

• A quantum device 𝐷 compatible with 𝐺.

• The output length 𝑁 ∈ ℕ∗.

• The test (game round) probability 0 < 𝑞 < 1.

• The score acceptance threshold 0 < 𝜒 < 1.

Execute the following steps, resulting in the protocol either aborting or succeeding:

1. Let 𝑐 denote a real variable which we initially set to 0.

2. Choose a bit 𝑡 ∈ {0, 1} according to the Bernoulli distribution taking value 1
with probability 𝑞. Depending on 𝑡, perform one of the following:

(a) Generation round (𝑡 = 0): Given distinguished input �̄� to 𝐷 and record

the output.

(b) Game round (𝑡 = 1): Play the game 𝐺 with 𝐷 and record the output. Add

the score achieved to the variable 𝑐.

3. Repeat Step 2 until it has been performed 𝑁 times in total.

4. If 𝑐 < 𝜒𝑞𝑁, then the protocol aborts. Otherwise, it succeeds.
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2. The function 𝜋 is nonzero on the interval (�̄�, 𝜔].

3. The function 𝛥 tends to 0 as (𝑏, 𝑞) → (0, 0).

In Theorem 2.4, the number of random bits extractable from the output is di-

rectly proportional to the output length 𝑁 (which is also the number of rounds). Th

proportionality constant (i.e. the number of bits per round obtained on average) is

𝜋(𝜒) − 𝛥(𝑏, 𝑞), where 𝛥(𝑏, 𝑞) is a small error term. For this reason, the function 𝜋 is

called a “rate curve”, as it indicates the rate of extractable randomness with respect

to number of protocol rounds performed. The value of the rate curve depends on

the score acceptance threshold 𝜒, which is the minimum average score that must be

observed in game rounds so that the protocol does not abort. This parameter offers

a trade-off between the rate and noise tolerance of the protocol and must also satisfy

𝜒 > �̄� for any randomness to be produced. The error term 𝛥(𝑏, 𝑞) vanishes when

the test probability 𝑞 and the soundness parameter 𝑏 are sufficiently small. Here,

𝑏 ∈ (0, 1] can be chosen appropriately such that the balance between the soundness

of the protocol and the rate decrease caused by 𝛥(𝑏, 𝑞) is as desired.
Choosing the test probability parameter to be 𝑞 = (log𝑁)2/𝑁, the protocol con-

sumes poly(log𝑁) bits of initial random seed to both approximate the input distri-

bution for the protocol (which of the rounds are game rounds and the game inputs in

these rounds) [64–66] and perform randomness extraction on the final output [67].

Since the number of extractable random bits contained in the final output is 𝛩(𝑁),
the protocol achieves exponential randomness expansion.

Modeling noise as a process in which an adversary is allowed to change the out-

puts of a device arbitrarily with some probability, the noise tolerance of the protocol

is 𝜔 − 𝜒 (the adversary is allowed to change the expected score at the game by at

most this amount). The noise tolerance is then maximally 𝜔 − �̄�. Intuitively, that

𝜔 > �̄� means that the score achieved in game rounds (which appear identical to ran-

domness generation rounds from the perspective of the players) can be used to make

sure that the players are employing a strategy wherein some randomness is present

when they are provided the input used for generation rounds. The worst case is that

they do not produce randomness, and are instead acting entirely deterministic upon

being given the randomness generation input (whereupon they will achieve a score

of �̄� over game rounds). Thus, the size of the gap 𝜔 − �̄� corresponds to how con-

vincingly the protocol can be made to show that they do indeed generate randomness

when asked. Practically, we do not allow the protocol to succeed whenever 𝜔 > �̄� is
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observed, but rather when 𝜔 ≥ 𝜒, where 𝜒 > �̄� is some choice of score acceptance

threshold. Opting for a larger 𝜒 generally improves the randomness rate (since we

can be more sure of the gap), but at the cost that the protocol will be more likely to

abort in the presence of experimental noise.

An explicit lower bound on the rate curve function 𝜋 was also proved by Miller

and Shi [54], and can be stated as follows.

Theorem 2.5 (Miller and Shi [54, Theorem 5.8]). Let𝐺 be a game with output alphabet

size 𝑟 ≥ 2, and let �̄� be the maximum win probability of this game over compatible

devices with a distinguished input. Then, the following function is a rate curve:

𝜋(𝜒) =
⎧⎪
⎨
⎪⎩

2(log2 𝑒)(𝜒−�̄�)2

𝑟−1 if 𝜒 > �̄�,

0 otherwise.
(2.32)

2.5 Self-testing (with complex measurements)

In a self-testing scenario, two observers Alice and Bob (who are unable to communi-

cate) share an unknown physical quantum state 𝜌 on 𝒜 ⊗ ℬ. No other assumptions

about the physical state spaces of Alice and Bob are made. In particular, their di-

mensions are not assumed. Given a probability distribution defining the behavior of

untrusted measurement devices held by Alice and Bob, it is often possible to deduce

(up to some local isometry) the quantum state they share. Moreover, one can also

often deduce the local quantum measurements corresponding to different inputs and

outputs for each device. For convenience, it is common to work with a purification

|𝜓⟩ ∈ 𝒜 ⊗ ℬ ⊗ 𝒫 of the physical state for some purifying space 𝒫 separate from the

observers. Since all operations accessible to the observers act trivially on this puri-

fying space, we will usually suppress it in our notation, and treat |𝜓⟩ ∈ 𝒜 ⊗ ℬ as

the physical state. One may also assume that the measurements are projective (see

[24, Appendix B] for a detailed discussion of this topic). The Born rule states that the

probability of outcomes 𝑎 and 𝑏 upon being provided with inputs 𝑥 and 𝑦 is given by

𝑝(𝑎, 𝑏 ∣ 𝑥, 𝑦) = tr(|𝜓⟩⟨𝜓|𝑀𝑎∣𝑥 ⊗ 𝑁𝑏∣𝑦)

= ⟨𝜓| 𝑀𝑎∣𝑥 ⊗ 𝑁𝑏∣𝑦 |𝜓⟩,
(2.33)

where {𝑀𝑎∣𝑥}𝑎 and {𝑁𝑏∣𝑦}𝑏 are the physical, projective, local measurements of Alice

and Bob for questions 𝑥 and 𝑦, respectively. We now state a first definition of what it

means to robustly self-test some reference state and measurements.
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Definition 2.6 (Self-testing of states and realmeasurements). The probabilities 𝑝(𝑎, 𝑏 ∣
𝑥, 𝑦) are said to 𝛿-approximately self-test the state |𝜓′⟩ ∈ 𝒜′ ⊗ ℬ′ and measurement

operators 𝑀′
𝑎∣𝑥 ∈ ℒ(𝒜′) and 𝑁′

𝑏∣𝑦 ∈ ℒ(ℬ′) if, for any state |𝜓⟩ ∈ 𝒜 ⊗ ℬ and mea-

surement operators 𝑀𝑎∣𝑥 ∈ ℒ(𝒜) and 𝑁𝑏∣𝑦 ∈ ℒ(ℬ) from which these probabilities

may arise, there exists a junk state |𝜉⟩ ∈ ̃𝒜 ⊗ ̃ℬ and isometries 𝑉𝒜 ∶ 𝒜 → 𝒜′ ⊗ ̃𝒜
and 𝑉ℬ ∶ ℬ → ℬ′ ⊗ ̃ℬ defining the local isometry 𝑉 = 𝑉𝒜 ⊗ 𝑉ℬ such that for all 𝑎,
𝑏, 𝑥, and 𝑦

𝑉 |𝜓⟩
𝛿
≈ |𝜓′⟩ ⊗ |𝜉⟩, (2.34a)

𝑉 (𝑀𝑎∣𝑥 ⊗ 𝑁𝑏∣𝑦)|𝜓⟩
𝛿
≈ (𝑀′

𝑎∣𝑥 ⊗ 𝑁′
𝑏∣𝑦)|𝜓′⟩ ⊗ |𝜉⟩. (2.34b)

This definition is standard, and accounts for the unobservable possibilities of lo-

cal unitary basis transformations applied to the state and measurements, as well as

embedding of the state andmeasurement operators in a Hilbert space of larger dimen-

sion, or the existence of additional degrees of freedom (on which the measurement

operators do not act). We may assume without loss of generality that the reference

state |𝜓′⟩ is real, meaning that |𝜓′⟩∗ = |𝜓′⟩, since the Schmidt decomposition guar-

antees the existence of local orthonormal bases in which all entries to its matrix are

real. Unless it is also assumed that (𝑀′
𝑎∣𝑥)∗ = 𝑀′

𝑎∣𝑥 and (𝑁′
𝑏∣𝑦)∗ = 𝑁′

𝑏∣𝑦 (that the

reference measurements are real in this basis), Definition 2.6 does not account for

the unobservable possibility that Alice and Bob actually implement complex conju-

gated versions of the reference measurements in a correlated fashion [68, 69]. This is

because probabilities are real numbers, and so

𝑝(𝑎, 𝑏 ∣ 𝑥, 𝑦) = tr(|𝜓′⟩⟨𝜓′|𝑀′
𝑎∣𝑥 ⊗ 𝑁′

𝑏∣𝑦)

= tr(|𝜓′⟩⟨𝜓′|(𝑀′
𝑎∣𝑥)∗ ⊗ (𝑁′

𝑏∣𝑦)∗)

= 𝑝(𝑎, 𝑏 ∣ 𝑥, 𝑦)∗,

(2.35)

but complex conjugation is not a unitary transformation.

It is sufficient for our purposes to consider complex conjugation performed in

some convenient fixed local orthonormal bases for which |𝜓′⟩ is real. This is because

complex conjugation of projectors performed in arbitrary local orthonormal bases is

equivalent (up to some local unitary transformation) to conjugation performed in the

original fixed bases (the complex conjugate of a unitary matrix is also unitary). In

particular, we cannot use Definition 2.6 to self-test a reference state |𝛷+⟩ and (on one

side) the observables 𝜎x, 𝜎y, and 𝜎z; there is no local orthonormal bases in which the

state and corresponding projectors are all real. In cases with complex measurements,
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the following definition allowing also for correlated complex conjugation can be used.

Definition 2.7 (Self-testing of states and complex measurements). The probabilities

𝑝(𝑎, 𝑏 ∣ 𝑥, 𝑦) are said to 𝛿-approximately self-test the state |𝜓′⟩ ∈ 𝒜′ ⊗ ℬ′ and

measurement operators 𝑀′
𝑎∣𝑥 ∈ ℒ(𝒜′) and 𝑁′

𝑏∣𝑦 ∈ ℒ(ℬ′) if, for any state |𝜓⟩ ∈
𝒜 ⊗ ℬ and measurement operators 𝑀𝑎∣𝑥 ∈ ℒ(𝒜) and 𝑁𝑏∣𝑦 ∈ ℒ(ℬ) from which

these probabilities may arise, there exists a junk state |𝜉⟩ ∈ ̃𝒜 ⊗ 𝒜″ ⊗ ̃ℬ ⊗ ℬ″ and

isometries 𝑉𝒜 ∶ 𝒜 → 𝒜′ ⊗ ̃𝒜 ⊗ 𝒜″ and 𝑉ℬ ∶ ℬ → ℬ′ ⊗ ̃ℬ ⊗ ℬ″ defining the local

isometry 𝑉 = 𝑉𝒜 ⊗ 𝑉ℬ such that for all 𝑎, 𝑏, 𝑥, and 𝑦

𝑉 |𝜓⟩
𝛿
≈ |𝜓′⟩ ⊗ |𝜉⟩, (2.36a)

𝑉 (𝑀𝑎∣𝑥 ⊗ 𝑁𝑏∣𝑦)|𝜓⟩
𝛿
≈ (�̄�𝑎∣𝑥 ⊗ �̄�𝑏∣𝑦)|𝜓′⟩ ⊗ |𝜉⟩, (2.36b)

where

�̄�𝑎∣𝑥 = 𝑀′
𝑎∣𝑥 ⊗ |0⟩⟨0|𝒜″ + (𝑀′

𝑎∣𝑥)∗ ⊗ |1⟩⟨1|𝒜″, (2.37a)

�̄�𝑏∣𝑦 = 𝑁′
𝑏∣𝑦 ⊗ |0⟩⟨0|ℬ″ + (𝑁′

𝑏∣𝑦)∗ ⊗ |1⟩⟨1|ℬ″, (2.37b)

and the state |𝜉⟩ has the form

|𝜉⟩ = |𝜉0⟩ ⊗ |0⟩𝒜″|0⟩ℬ″ + |𝜉1⟩ ⊗ |1⟩𝒜″|1⟩ℬ″ (2.38)

for some subnormalized |𝜉0⟩ and |𝜉1⟩ in ̃𝒜 ⊗ ̃ℬ satisfying ⟨𝜉0|𝜉0⟩ + ⟨𝜉1|𝜉1⟩ = 1.

It is often sufficient to deduce a self-testing statement such that, instead of a full

set of probabilities 𝑝(𝑎, 𝑏 ∣ 𝑥, 𝑦), one need only observe certain combinations of them

given by the maximal violation of some Bell inequality ℐ[𝑝(𝑎, 𝑏 ∣ 𝑥, 𝑦)] = 𝛽. One may

replace the probabilities in Definitions 2.6 and 2.7 with such a maximal violation. One

may also choose to self-test measurement operators on only Alice’s subsystem by sim-

ply taking Bob’s measurement operators in these definitions to be identity operators.

Similarly, one need not choose to make a self-testing statement certifying reference

operators used to produce all of the probabilities 𝑝(𝑎, 𝑏 ∣ 𝑥, 𝑦), provided that the result

is shown to hold for all compatible sets of physical measurements.

Let 𝑀 = 𝑀+ − 𝑀− be a ±1-outcome observable on Alice’s subsystem with cor-

responding projectors 𝑀±, and suppose we have statements of the form

𝑉 |𝜓⟩
𝛿
≈ |𝜓′⟩ ⊗ |𝜉⟩, (2.39a)

𝑉 𝑀|𝜓⟩
𝛿
≈ �̄�|𝜓′⟩ ⊗ |𝜉⟩, (2.39b)
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where �̄� = 𝑀′ ⊗ |0⟩⟨0| + (𝑀′)∗ ⊗ |1⟩⟨1| is defined for the reference observable

𝑀′ = 𝑀′
+ − 𝑀′

−. In this case, one automatically obtains statements in terms of the

projectors of the form of Definition 2.7

𝑉 𝑀±|𝜓⟩
𝛿
≈ �̄�±|𝜓′⟩ ⊗ |𝜉⟩, (2.40)

where �̄�± = 𝑀′
± ⊗ |0⟩⟨0| + (𝑀′

±)∗ ⊗ |1⟩⟨1|. This follows from the linearity of 𝑉,
along with the facts

𝑀± = 𝐼 ± 𝑀
2

, 𝑀′
± = 𝐼 ± 𝑀′

2
, (𝑀′

±)∗ = 𝐼 ± (𝑀′)∗

2
. (2.41)

Returning to real measurements only, the following theorem of Coladangelo [27]

(based closely on the work of Chao et al. [70]) allows us to deduce the existence of a

local isometry required for the parallel self-testing of 𝑛 Bell states and (real) single-

qubit Pauli observables. Rather than using measurement statistics directly, the theo-

rem states sufficient conditions in terms of appropriate correlation, anticommutation,

and commutation relations of unknown observables available to Alice and Bob. Much

of Chapter 5 will be dedicated to proving such relations from certain given correla-

tions. We state the theorem here in notation consistent with that used in Chapter 5.

Theorem 2.8 (Coladangelo [27, Theorem 3.5]). Let |𝜓⟩ ∈ ℋ𝐴 ⊗ ℋ𝐵, where ℋ𝐴 and

ℋ𝐵 have even dimension. Suppose there exist balanced reflections 𝑋𝑖
𝐴, 𝑍 𝑖

𝐴 ∈ ℒ(ℋ𝐴)
and 𝑋𝑖

𝐵, 𝑍 𝑖
𝐵 ∈ ℒ(ℋ𝐵) for 𝑖 ∈ {1, … , 𝑛} such that, for 𝐷 either 𝐴 or 𝐵 and for all

distinct 𝑖 and 𝑗, they satisfy

‖(𝑀 𝑖
𝐴 − 𝑀 𝑖

𝐵)|𝜓⟩‖ ≤ 𝛿, (2.42a)

‖{𝑋𝑖
𝐷, 𝑍 𝑖

𝐷}|𝜓⟩‖ ≤ 𝛿, (2.42b)

‖[𝑀 𝑖
𝐷, 𝑁 𝑗

𝐷]|𝜓⟩‖ ≤ 𝛿, (2.42c)

where 𝑀 and 𝑁 can be either of 𝑋 and 𝑍. Then, there exists a state |𝜉⟩ ∈ ℋ̃𝐴 ⊗ ℋ̃𝐵

and a local isometry 𝑉 = 𝑉𝐴 ⊗ 𝑉𝐵, where isometries 𝑉𝐷 ∶ ℋ𝐷 → (ℂ2)
⊗𝑛 ⊗ ℋ̃𝐷, such

that for all 𝑖

‖𝑉 |𝜓⟩ − |𝛷+⟩⊗𝑛
𝐴𝐵 ⊗ |𝜉⟩‖ = 𝑂(𝑛

3
2 𝛿), (2.43a)

‖𝑉 𝑀 𝑖
𝐷|𝜓⟩ − �̂� 𝑖

𝐷|𝛷+⟩⊗𝑛
𝐴𝐵 ⊗ |𝜉⟩‖ = 𝑂(𝑛

3
2 𝛿), (2.43b)

where �̂�𝑖
𝐷 and �̂� 𝑖

𝐷 are Pauli observables acting on the 𝑖th qubit subsystem of side 𝐷.
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The assumptions of Theorem 2.8 that the unknown state spaces ℋ𝐴 and ℋ𝐵 have

even dimension and that the unknown reflection operators acting on these spaces are

balanced (that is, their +1 and −1 eigenspaces have equal dimension) are not an issue

for self-testing. In the construction of the isometry, one can always extend the ℋ𝐷

by direct sum with Hilbert spaces of appropriate dimensions on which the extension

of |𝜓⟩ is defined to have no mass, and correspondingly extend each reflection to have

eigenspaces of equal dimensions. Thus we may freely assume these are automatically

satisfied by any unknown reflections defined later as part of our self-testing proofs.

2.6 Sum-of-squares (SOS) decomposition

A useful tool for proving robust self-testing statements from Bell inequalities is the

sum-of-squares (SOS) decomposition [71, 72]. Suppose that a state |𝜓⟩ achieves the

maximal quantum value 𝛽 of some Bell operator 𝑂 to within an amount 𝜀 ≥ 0. That
is, ⟨𝜓| 𝑂 |𝜓⟩ ≥ 𝛽 − 𝜀. Suppose also that we can write the shifted Bell operator 𝛽 − 𝑂
in the form

𝛽 − 𝑂 = ∑
𝑗

𝐹 †
𝑗 𝐹𝑗 (2.44)

for some linear operators 𝐹𝑗. Then

𝜀 ≥ ⟨𝜓| (𝛽 − 𝑂) |𝜓⟩

= ⟨𝜓| ∑
𝑗

𝐹 †
𝑗 𝐹𝑗 |𝜓⟩

= ∑
𝑗

‖𝐹𝑗|𝜓⟩‖2.

(2.45)

Therefore, for all 𝑗,
‖𝐹𝑗|𝜓⟩‖ ≤ √𝜀. (2.46)

As we shall also see in Section 6.3, the 𝐹𝑗 may be found to have a form such that

Eq. (2.46) gives useful relations from which a self-testing statement may ultimately

be deduced.

2.7 Regularization of operators

We may wish to evolve a state by an operation that acts in the same way as a unitary

operator, but is not itself known to be unitary. Given |𝜓⟩ ∈ 𝒜 ⊗ ℬ and a Hermitian

linear operator 𝑇 on ℬ such that 𝑇 |𝜓⟩
𝜀
≈ 𝑈|𝜓⟩ for some unitary Hermitian operator
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𝑈 on 𝒜 and 𝜀 ≥ 0, it is possible to define a new operator ̂𝑇 on ℬ that is unitary and

acts on |𝜓⟩ almost identically to 𝑇 and 𝑈 [24, 71, 72].

This regularization of 𝑇 is performed in two steps. One first removes all zero

eigenvalues from 𝑇 by defining a new operator ̃𝑇 = 𝑇 + 𝑃, where 𝑃 is the orthogonal

projection onto ker 𝑇 (although we will sometimes explicitly write its adjoint ̃𝑇 †, it

should be noted that this operator is Hermitian and ̃𝑇 † = ̃𝑇, since both 𝑇 and 𝑃 are

Hermitian). All nonzero vectors mapped to 𝟎 under 𝑇 remain unchanged under ̃𝑇
and so have eigenvalue 1 instead. We then have that ̃𝑇 † ̃𝑇 is positive definite: that is

⟨𝑣| ̃𝑇 † ̃𝑇 |𝑣⟩ = ‖ ̃𝑇 |𝑣⟩‖2 > 0 for all nonzero vectors |𝑣⟩ since ̃𝑇 |𝑣⟩ ≠ 𝟎 by construction.

Thus, its principal square root | ̃𝑇 | = ( ̃𝑇 † ̃𝑇 )1/2 is also positive definite. Since this | ̃𝑇 |
is positive definite, it is therefore also invertible.

In the second step, and using that | ̃𝑇 | is invertible, one defines

̂𝑇 = ̃𝑇 | ̃𝑇 |−1. (2.47)

The regularized operator ̂𝑇 is unitary by construction. Furthermore, by considering

an eigenbasis of 𝑇, we see that ̂𝑇 𝑇 = |𝑇 |. We also have that |𝑇 | = |𝑈 †𝑇 | (since

𝑈 † is unitary), and the property that |𝑈 †𝑇 | ≥ 𝑈 †𝑇. This operator inequality is valid

since the operator 𝑈 †𝑇 is Hermitian (𝑈 commutes with 𝑇 and both are Hermitian by

assumption). Therefore,

‖ ̂𝑇 |𝜓⟩ − 𝑇 |𝜓⟩‖ = ‖|𝜓⟩ − ̂𝑇 𝑇 |𝜓⟩‖

= ‖|𝜓⟩ − |𝑇 ||𝜓⟩‖

= ‖|𝜓⟩ − |𝑈 †𝑇 ||𝜓⟩‖

≤ ‖|𝜓⟩ − 𝑈 †𝑇 |𝜓⟩‖

= ‖𝑈|𝜓⟩ − 𝑇 |𝜓⟩‖

≤ 𝜀.

(2.48)

In other words, ̂𝑇 |𝜓⟩
𝜀
≈ 𝑇 |𝜓⟩ and ̂𝑇 |𝜓⟩

2𝜀
≈ 𝑈|𝜓⟩.

Note that the hat notation for regularization performed on operators labeled by 𝑋,

𝑌, or 𝑍 should not be confused with that of Pauli observables. Regularization is only

performed in Chapter 6 and a distinct notation for Pauli observables is consistently

used there.

Given a state-dependent anticommutation relation between two Hermitian op-

erators, we may wish to make a similar statement about their regularized versions.
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Lemma 2.9. Let |𝜓⟩ ∈ 𝒜 ⊗ ℬ. Suppose that 𝑇1 and 𝑇2 are Hermitian operators on ℬ
such that 𝑇1|𝜓⟩

𝜀
≈ 𝑈1|𝜓⟩ and 𝑇2|𝜓⟩

𝜀
≈ 𝑈2|𝜓⟩ for some unitary Hermitian operators

𝑈1 and 𝑈2 on 𝒜 and 𝜀 ≥ 0. Then the regularized operators ̂𝑇1 and ̂𝑇2 satisfy

{ ̂𝑇1, ̂𝑇2}|𝜓⟩
𝑐
≈ {𝑇1, 𝑇2}|𝜓⟩, (2.49)

where 𝑐 = (6 + ‖𝑇1‖ + ‖𝑇2‖)𝜀.

Proof. As discussed earlier, the regularized operators satisfy ̂𝑇𝑗|𝜓⟩
2𝜀
≈ 𝑈𝑗|𝜓⟩. Thus,

{ ̂𝑇1, ̂𝑇2}|𝜓⟩
4𝜀
≈ ( ̂𝑇1𝑈2 + ̂𝑇2𝑈1)|𝜓⟩
2𝜀
≈ (𝑇1𝑈2 + 𝑇2𝑈1)|𝜓⟩,

(2.50)

where we have also used the unitarity of ̂𝑇1 and ̂𝑇2 for the first estimate, and the

unitarity of 𝑈1 and 𝑈2 for the second estimate. We also have that

‖(𝑇1𝑈2 + 𝑇2𝑈1)|𝜓⟩ − {𝑇1, 𝑇2}|𝜓⟩‖ ≤ ‖𝑇1(𝑈2 − 𝑇2)|𝜓⟩‖ + ‖𝑇2(𝑈1 − 𝑇1)|𝜓⟩‖

≤ (‖𝑇1‖ + ‖𝑇2‖)𝜀,

(2.51)

and so the result follows.





Chapter 3

Magic rectangle games

In this chapter, we introduce a class of generalizations to the Mermin–Peres magic

square nonlocal game (see Section 2.2) that we call magic rectangle games. We char-

acterize the winning probabilities that can be achieved in these games and what qual-

itative properties are preserved in the generalization. In the next chapter (Chapter 4),

we will also explore how our generalization can be used in applications. The specific

application we will focus on there is that of certified randomness expansion, while

analyses of other device-independent cryptographic primitives using our games are

deferred to future works. It is important to distinguish our work from that with a

different usage of the term “magic rectangle” that has been used instead in the past to

refer to observables arranged into a rectangular array in order to prove the Kochen–

Specker theorem in 16 dimensions [73, 74]. The contributions wemake in this chapter

can be summarized as follows.

• We define a generalization of the Mermin–Peres magic square game to general

rectangular dimensions (Definition 3.1).

• We fully characterize the optimal winning probabilities for quantum behaviors

of all these magic rectangle games (Theorem 3.13).

• In order to achieve this characterization, we first prove a number of general

properties, showing that the optimal winning probabilities for any set of be-

haviors (local, quantum, almost quantum, or nonsignaling) are: (i) the same

for all games of the same dimension, (ii) symmetric with respect to row/col-

umn exchange, and (iii) monotonically increasing with the dimension of the

rectangle.

33
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• Using the known fact that the regular magic square game (which is a special

case of 3 × 3 magic rectangle games) can be won for quantum strategies with

certainty, we reduce the full characterization of magic rectangles to that of 1×𝑛
and 2 × 𝑛 games (Theorem 3.2). We also show that the CHSH game, according

to our definitions, is a 2 × 2 magic rectangle game (Theorem 3.15). We then

obtain the optimal winning probabilities for the 1 × 𝑛 case, while we lower

and upper bound the winning probabilities for 2 × 𝑛 games. To upper bound

the probabilities, we conjecture the almost quantum winning probability based

on numerical evidence. As a side result, we get that 2 × 𝑛 games with 𝑛 ≥
3 can be won with certainty using behaviors at level 1 of the NPA hierarchy

(and so exhibit a version of “pseudotelepathy”), while the quantum and almost

quantum sets both give winning probabilities strictly smaller than unity (thus

not exhibiting pseudotelepathy).

Related works The magic square game was introduced by Mermin [18] and Peres

[19], while Cabello [75, 76] and subsequently Aravind [77] stated it as a two-player

nonlocal game. Aravind [56] has also given a nontechnical demonstration of the

magic square game. The term quantum pseudotelepathy was first introduced by Bras-

sard et al. [78], and the magic square game, along with many others that share the

property that there exist perfect quantum (but not classical) strategies, were reviewed

in [20]. There are a number of generalizations of the magic square that have been

considered in literature. Cleve and Mittal [79] analyze quantum strategies for “bi-

nary constraint” games—a general class of games that contains the magic rectangles

we define—and give some (weaker than our analysis) upper bounds on winning prob-

abilities from quantum strategies. Arkhipov [80] generalized the magic square and

magic pentagram games to be played on hypergraphs called arrangements, and char-

acterized which arrangements can exhibit quantum pseudotelepathy. Coladangelo

and Stark [81] considered “linear constraint” games, focusing on the uniqueness of

winning quantum strategies in order to use such games for self-testing.

To determine optimal quantum strategies, it is important to be able to check if

a given experimental behavior admits a quantum model/realization. This question

is directly linked with the question of the “degree of nonlocality” present in quan-

tum theory. Navascués et al. [59, 60] addressed this by giving an infinite hierarchy

of conditions that are satisfied by quantum behaviors, known as the NPA hierarchy.

Navascués et al. [61] defined the almost quantum set of behaviors, which is the set



3.1. Magic rectangle games: Definition 35

closest to the quantum set that arises in a “natural” way and is easy to check. Sets

of behaviors that are easy to handle and include the quantum set, as is the case for

the levels of the NPA hierarchy and the almost quantum set, have been used success-

fully to bound the winning probabilities of quantum parties in many cryptographic

settings—something we also exploit in this chapter.

Chapter organization In Section 3.1, we define magic rectangle games, and in

Section 3.2 give some general results for these games. In Section 3.3 we give a full

characterization of the winning probabilities of magic rectangle games. We conclude

in Section 3.4, where we discuss our results and give future directions.

Notation In this chapter (and until Chapter 5), we do not refer to anyHilbert spaces

explicitly. This makes available the notation 𝒜 and ℬ to denote alphabets for the

outcomes of random variables associated with Alice and Bob.

3.1 Magic rectangle games: Definition

More generally than the magic square game of Section 2.2, it is possible to construct

similar games for arbitrary sizes of table; a magic square game with 𝑚 possible ques-

tions for Alice and 𝑛 for Bob corresponds to an 𝑚 × 𝑛 table. Indeed, this may be more

appropriately named a magic rectangle. In order to avoid trivially winning classical

strategies, we must also generalize the game rules.

Definition 3.1 (Magic rectangle games). An 𝑚 × 𝑛 game is specified by fixing some

𝛼1, … , 𝛼𝑚 and 𝛽1, … , 𝛽𝑛 each belonging to {+1, −1}, such that their product satisfies

𝛼1 … 𝛼𝑚 ⋅ 𝛽1 … 𝛽𝑛 = −1. (3.1)

The rules of the given game are then:

R1. Each filled cell must belong to the set {+1, −1}.

R2. Upon being assigned the 𝑖th row, the product of Alice’s entries must be 𝛼𝑖.

R3. Upon being assigned the 𝑗th column, the product of Bob’s entries must be 𝛽𝑗.

As before, the game is won if both players enter the same value into their shared cell.
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Notice that the standard 3×3 magic square game described in Section 2.2 is simply

the special case where 𝛼1 = 𝛼2 = 𝛼3 = 1 and 𝛽1 = 𝛽2 = 𝛽3 = −1. In fact, there are

2𝑚+𝑛−1 different specifications of 𝑚 × 𝑛 games allowed by Eq. (3.1). Another example

of a magic rectangle game configuration is shown in Fig. 3.1. We will often suppress

the numerical values +1 and −1 to the symbols + and − for simplicity.

− 𝛼1 = +

+ + + 𝛼2 = +

𝛽1 = + 𝛽2 = − 𝛽3 = +

Figure 3.1: A 2 × 3 magic rectangle game with example answers (combined from example answers of

Alice and Bob) entered into its table. This is a valid magic rectangle game since the requested row and

column products satisfy 𝛼1𝛼2 ⋅ 𝛽1𝛽2𝛽3 = −1, as required by Eq. (3.1) of Definition 3.1. Rules R1 to R3

are satisfied by the answers entered in this example. The game is won, with the shared cell containing

+1 for both players (shaded green).

The requirement of Eq. (3.1) ensures that no deterministic classical strategy that

wins with certainty can exist. In such a strategy, definite values would be assigned

to each cell of the table which the players must both follow. The product of all cells

would be 𝛼1 … 𝛼𝑚 when calculated according to the rows, and 𝛽1 … 𝛽𝑛 according to

the columns, but Eq. (3.1) is exactly the statement that these products are not equal.

Hence, the optimal classical success rate is at most 1 − (𝑚𝑛)−1. In fact, this success

rate is attainable deterministically by Alice and Bob answering according to fixed (but

different) tables satisfying Rules R1 to R3, since such tables can always be constructed

which differ in only a single one of their cells (Alice’s table need not consider Rule R3

and Bob’s table need not consider Rule R2). We denote this optimal classical success

rate for our 𝑚 × 𝑛 magic rectangle games by

𝜔𝐿(𝑚, 𝑛) = 1 − 1
𝑚𝑛

. (3.2)

Let us introduce some further notation to describe our magic rectangle games.

We will let 𝑋 and 𝑌 be uniformly distributed random variables taking values in the

alphabets 𝒳 = {1, … , 𝑚} and 𝒴 = {1, … , 𝑛}, respectively, labeling the possible input
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rows and columns that may be assigned to Alice and Bob. We will denote the possible

output rows of Alice and columns of Bob by the random vectors 𝑨 = (𝐴1, … , 𝐴𝑛)
and 𝑩 = (𝐵1, … , 𝐵𝑚)𝘛 with alphabets 𝒜 and ℬ, respectively, where each 𝐴𝑗 and 𝐵𝑖

takes values in {+1, −1}. Referring to Rules R1 to R3, the event that the 𝑚 × 𝑛 magic

rectangle game is won upon input (𝑋, 𝑌 ) = (𝑥, 𝑦) is given by

𝑊 𝑚,𝑛
𝑥,𝑦 ≡ (𝐴𝑦 = 𝐵𝑥) ∩ (

𝑛

∏
𝑗=1

𝐴𝑗 = 𝛼𝑥) ∩ (

𝑚

∏
𝑖=1

𝐵𝑖 = 𝛽𝑦). (3.3)

Perhaps more naturally for the games we consider, we can equivalently let 𝒜 and

ℬ denote alphabets of the possible question/answer pairs for Alice and Bob allowed

by the rules of Definition 3.1. To illustrate why this is the natural choice, we point

out that Alice returning a string of ±1’s that is not compatible with Rule R2 is equally

forbidden with her returning the value 5 for one cell, and thus it is the natural choice

to exclude such outcomes from the alphabet altogether. This is mathematically ex-

pressed as

𝒜 = {(𝑥, 𝒂) ∈ 𝒳 × 𝒜 ∶ ∏
𝑗

𝑎𝑗 = 𝛼𝑥}, (3.4a)

ℬ = {(𝑦, 𝒃) ∈ 𝒴 × ℬ ∶ ∏
𝑖

𝑏𝑖 = 𝛼𝑦}. (3.4b)

Then, with (𝑋, 𝑨) and (𝑌 , 𝑩) instead taking values in alphabets 𝒜 and ℬ, respec-

tively, the winning event upon input (𝑋, 𝑌 ) = (𝑥, 𝑦) becomes simply

𝐴𝑦 = 𝐵𝑥. (3.5)

We will refer to these 𝒜 and ℬ as the natural alphabets of a magic rectangle game.

In what follows, we characterize the different sizes of magic rectangle games

in terms of their optimal win probabilities and strategies, under different levels of

allowed nonsignaling correlations (notably quantum, almost quantum, and general

nonsignaling correlations).

3.2 Properties of magic rectangle games

To begin our characterization of the magic rectangle games of Definition 3.1, we first

show some general properties of these games, which allow us to narrow the consid-

erations required for a full characterization.

Lemma 3.5 shows in what sense it is possible to identify games of the same di-

mension together. Corollary 3.6 then shows that for magic rectangle games of a given
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dimension 𝑚×𝑛, all choices of specific values for parameters 𝛼1, … , 𝛼𝑚 and 𝛽1, … , 𝛽𝑛

satisfying Eq. (3.1) yield the same optimal win probability at a given level of allowed

correlations 𝛴. We unambiguously refer to this value as 𝜔𝛴(𝑚, 𝑛) and show in Corol-

lary 3.10 the symmetry 𝜔𝛴(𝑚, 𝑛) = 𝜔𝛴(𝑛, 𝑚). We show in Corollary 3.12 that 𝜔𝛴(𝑚, 𝑛)
is independently increasing in both 𝑚 and 𝑛 (with an explicit lower bound given in

Lemma 3.11 in terms of that for smaller magic rectangle games). Finally, the correla-

tion hierarchy of Eq. (2.28) implies for any particular game

𝜔𝑁 ≥ 𝜔1 ≥ 𝜔1+𝐴𝐵 ≥ 𝜔2 ≥ ⋯ ≥ 𝜔𝑄 ≥ 𝜔𝐿. (3.6)

Combining these facts leads us to the path we will take towards a characterization,

as stated in the following theorem.

Theorem 3.2. In order to fully characterize quantum (or weaker) optimal strategies for

magic rectangle games of arbitrary dimension, it is sufficient to consider only 1×𝑛 games,

2 × 𝑛 games with 𝑛 ≥ 2, and 3 × 3 games. Moreover, only a single example game for

each different dimension need be considered.

Proof. Postponed until the end of this section, after we have shown some general

properties of magic rectangle games.

Definition 3.3 (Equivalence of games). We will call two games 𝐺 and 𝐺′ equivalent,

and write 𝐺 ∼ 𝐺′, if there exist bijections 𝑓∶ 𝒜 → 𝒜 ′ and 𝑔∶ ℬ → ℬ′ taking the

natural alphabets of 𝐺 to those of 𝐺′, such that the winning events are equal. That

is, such that (𝑋′, 𝑨′) = 𝑓(𝑋, 𝑨) and (𝑌 ′, 𝑩′) = 𝑔(𝑌 , 𝑩) imply 𝑊 = 𝑊 ′, where

𝑊 and 𝑊 ′ are the events that each game is won (the sets of underlying outcomes

corresponding to a win are requested to be identical, so that the bijections are simply

relabeling inputs and outputs while preserving win conditions).

Remark. Under Definition 3.3, given a fixed allowed level for correlations, all equiv-

alent games have the same optimal win probability; strategies are identified with

others of equal win probabilities.

Lemma 3.4. Let 𝑏, 𝑏′ ∈ {0, 1}𝑛 be binary sequences of length 𝑛 ≥ 2 with the same

parity (that is their Hamming weights are either both odd or both even). Consider the

operations 𝜑𝑖,𝑗 on binary sequences, which have the effect of flipping the bits in both the

𝑖th and 𝑗th positions. Then, there exists an involutory composition of these operations

𝜑 = 𝜑𝑖𝑚,𝑗𝑚
∘ … ∘ 𝜑𝑖1,𝑗1

such that 𝑏′ = 𝜑(𝑏).
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Proof. Starting with a binary sequence, we can apply operations 𝜑𝑖,𝑗 one-by-one in

the following way: if there are two or more 1’s in the sequence, apply the operation

which replaces two of the 1’s with 0’s. If the initial binary sequence had even par-

ity, repeating this process will eventually yield the sequence of zeros. Else, we will

eventually have exactly one nonzero element in position 𝑘 of the sequence. If it is

not already the case, we can apply 𝜑1,𝑘 to take this to the sequence with exactly one

nonzero element occurring in the first position. Hence, we can apply a sequence of

these operations, taking each binary sequence to a canonical form depending only

on its parity. Since each operation 𝜑𝑖,𝑗 is involutory, and the operations commute,

any sequence of these operations is also involutory and thus invertible. Therefore we

may apply some sequence of the operations 𝜑𝑖𝑚,𝑗𝑚
∘ … ∘ 𝜑𝑖1,𝑗1

taking 𝑏 to its canonical

form, and from its canonical form to 𝑏′.

Lemma 3.5. Let 𝐺 be an 𝑚 × 𝑛 magic rectangle game specified by the parameters

𝛼1, … , 𝛼𝑚 and 𝛽1, … , 𝛽𝑛 satisfying Eq. (3.1), and let 𝐺′ be a magic rectangle game of

identical dimension specified by 𝛼′
1, … , 𝛼′

𝑚 and 𝛽′
1, … , 𝛽′

𝑛 also satisfying Eq. (3.1). Then

𝐺 ∼ 𝐺′ and, moreover, there exists an involution 𝐹 on the set of 𝑚 × 𝑛 games such that

𝐺′ = 𝐹 (𝐺).

Proof. Consider the operations 𝐹𝑖,𝑗 which act on a game with parameters 𝛼1, … , 𝛼𝑚

and 𝛽1, … , 𝛽𝑛 to produce an identical gamewith exception that the sign of both 𝛼𝑖 and

𝛽𝑗 have been flipped (this is a valid game as Eq. (3.1) is still satisfied). Correspondingly,

let 𝑓𝑖,𝑗 and 𝑔𝑖,𝑗 act on the natural alphabets of the game to produce identical alphabets

with the exceptions that each player changes the sign of their output corresponding

to the (𝑖, 𝑗)th cell of the table. That is, 𝑓𝑖,𝑗(𝑋, 𝑨) differs from (𝑋, 𝑨) in that Alice flips

the sign of 𝐴𝑗 if her input is 𝑋 = 𝑖; similarly, in 𝑔𝑖,𝑗(𝑌 , 𝑩), Bob flips the sign of 𝐵𝑖

if his input is 𝑌 = 𝑗. Upon applying 𝐹𝑖,𝑗 to a game, the corresponding functions 𝑓𝑖,𝑗

and 𝑔𝑖,𝑗 leave the winning event Eq. (3.5) unchanged for all possible inputs. Moreover,

the 𝑓𝑖,𝑗 and 𝑔𝑖,𝑗 are bijective when considered as maps to the natural alphabets of the

game produced by 𝐹𝑖,𝑗. Hence, 𝐹𝑖,𝑗 takes games to equivalent games. We will now

show that we can apply some sequence of these operations 𝐹 = 𝐹𝑖𝑘,𝑗𝑘
∘…∘𝐹𝑖1,𝑗1

such

that 𝐺′ = 𝐹 (𝐺). Transitivity of ∼ then shows the desired equivalence.

Consider the parameters of 𝐺 as a binary sequence 𝑏 = (𝛼1, … , 𝛼𝑚, 𝛽1, … , 𝛽𝑛)
containing an odd number of negative elements. The operation 𝐹𝑖,𝑗 applied to 𝐺 acts

to flip the sign of 𝛼𝑖 and 𝛽𝑗. Furthermore, we can always construct an operation 𝐹𝑖2,𝑗 ∘
𝐹𝑖1,𝑗 which flips the sign of 𝛼𝑖1 and 𝛼𝑖2 , and similarly an operation 𝐹𝑖,𝑗2

∘𝐹𝑖,𝑗1
which flips
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the sign of 𝛽𝑗1
and 𝛽𝑗2

. Thus, by applying a sequence of these operations to 𝐺, we can

flip the sign of any pair of its parameters in 𝑏. Therefore applying Lemma 3.4 shows

the existence of a sequence of these operations 𝐹 = 𝐹𝑖𝑘,𝑗𝑘
∘…∘𝐹𝑖1,𝑗1

such that the game

𝐹 (𝐺) has parameters given by the binary sequence (also containing an odd number

of negative elements) 𝑏′ = (𝛼′
1, … , 𝛼′

𝑚, 𝛽′
1, … , 𝛽′

𝑛). That is, 𝐺′ = 𝐹 (𝐺). Finally, since
the 𝐹𝑖,𝑗 are involutory and commute with one another, 𝐹 is involutory.

Corollary 3.6. Given a fixed correlation level𝛴, all magic rectangle games of dimension

𝑚 × 𝑛 have equal optimal win probability, which we denote 𝜔𝛴(𝑚, 𝑛).

Proof. As a direct consequence of Definition 3.3, equivalent games have equal optimal

win probabilities at any given level of correlations. In Lemma 3.5, any two valid

magic rectangle games 𝐺 and 𝐺′ of the same size 𝑚 × 𝑛 are shown to be equivalent

𝐺 ∼ 𝐺′. Since 𝐺 and 𝐺′ may be chosen arbitrarily from all valid 𝑚 × 𝑛 games, all

games of size 𝑚 × 𝑛 are equivalent to one another, and so must have equal optimal

win probabilities.

Definition 3.7 (Transpose game). We define the transpose of an 𝑚 × 𝑛 game 𝐺 (with

parameters 𝛼1, … , 𝛼𝑚 and 𝛽1, … , 𝛽𝑛), denoted by 𝐺𝘛, to be the 𝑛 × 𝑚 game specified

by the parameters 𝛼𝘛
𝑖 = 𝛽𝑖 and 𝛽𝘛

𝑗 = 𝛼𝑗 for all 𝑖 ∈ {1, … , 𝑛} and 𝑗 ∈ {1, … , 𝑚}.

Lemma 3.8. Let 𝐺 be an 𝑚 × 𝑛 magic rectangle game, and fix an allowed level 𝛴 for

correlations. If 𝑆𝛴 is a strategy for 𝐺 that wins with probability 𝑝, then there exists a

strategy 𝑆𝘛
𝛴 for the transpose game 𝐺𝘛 that also wins with probability 𝑝.

Proof. We let 𝑆𝘛
𝛴 be the strategy with the roles of the players exchanged relative to

𝑆𝛴, so that Bob’s former strategy is now played by Alice, and vice versa. In particular,

Alice in the transpose strategy 𝑆𝘛
𝛴 outputs Bob’s columns of the strategy 𝑆𝛴 as rows.

Similarly, Bob in 𝑆𝘛
𝛴 outputs Alice’s rows of 𝑆𝛴 as columns. Since the values of

shared cells remain unchanged by transposing rows and columns, 𝑆𝘛
𝛴 thus wins with

probability 𝑝.

Lemma 3.9. Let 𝐺 be an 𝑚 × 𝑛 magic rectangle game, and let 𝐺′ be an 𝑛 × 𝑚 magic

rectangle game. Fix an allowed level𝛴 for correlations. If𝑆𝛴 is a strategy for𝐺 that wins

with probability 𝑝, then there exists a strategy 𝑆′
𝛴 for 𝐺′ that also wins with probability

𝑝.

Proof. Let 𝑆𝘛
𝛴 be the transpose strategy of 𝑆𝛴, obtained from Lemma 3.8. Then, 𝑆𝘛

𝛴

is a valid strategy for 𝐺𝘛 that wins with probability 𝑝. By Lemma 3.5, 𝐺′ ∼ 𝐺𝘛,
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and so there exists a strategy 𝑆′
𝛴 for 𝐺′ that also wins with probability 𝑝, formed by

performing 𝑆𝘛
𝛴 but with alphabets relabeled according to the equivalence between

the games (Definition 3.3).

Corollary 3.10. Optimal win probability is symmetric in the sense that

𝜔𝛴(𝑚, 𝑛) = 𝜔𝛴(𝑛, 𝑚). (3.7)

Proof. Let 𝑆𝛴 be an optimal strategy for an 𝑚 × 𝑛 game 𝐺, winning with probability

𝑝. Suppose that 𝑆′
𝛴 found from Lemma 3.9 for some 𝑛 × 𝑚 game 𝐺′ (also winning

with probability 𝑝) is not optimal. Then, there exists a strategy for 𝐺′ that wins with

probability 𝑞 > 𝑝. Again by Lemma 3.9, this implies the existence of a strategy for 𝐺
that also wins with probability 𝑞 > 𝑝, contradicting the optimality of 𝑆𝛴. Hence, 𝑆′

𝛴

is an optimal strategy for 𝐺′. Since 𝐺 and 𝐺′ were arbitrary, optimal strategies for

all 𝑚 × 𝑛 and 𝑛 × 𝑚 games win with equal probability 𝑝 = 𝜔𝛴(𝑚, 𝑛) = 𝜔𝛴(𝑛, 𝑚).

Lemma 3.11. Fix a level of allowed correlation 𝛴. Let the optimal win probability of

𝑚 × 𝑛 magic rectangle games be given by 𝜔𝛴(𝑚, 𝑛). If 𝑚′ ≥ 𝑚 and 𝑛′ ≥ 𝑛, then the

optimal win probability of 𝑚′ × 𝑛′ games satisfies

𝜔𝛴(𝑚′, 𝑛′) ≥ 1 − 𝑚𝑛
𝑚′𝑛′ [1 − 𝜔𝛴(𝑚, 𝑛)]. (3.8)

Proof. Let 𝐺 be an 𝑚 × 𝑛 magic rectangle game specified by the parameters 𝛼1, … , 𝛼𝑚

and 𝛽1, … , 𝛽𝑛. From this, define an 𝑚′ × 𝑛′ game 𝐺′ such that its parameters are

𝛼′
𝑖 =

⎧⎪
⎨
⎪⎩

𝛼𝑖 if 1 ≤ 𝑖 ≤ 𝑚,

1 if 𝑚 < 𝑖 ≤ 𝑚′,
(3.9a)

𝛽′
𝑗 =

⎧⎪
⎨
⎪⎩

𝛽𝑗 if 1 ≤ 𝑗 ≤ 𝑛,

1 if 𝑛 < 𝑗 ≤ 𝑛′.
(3.9b)

Note that 𝐺′ is indeed a valid game, as its parameters automatically satisfy Eq. (3.1).

Let 𝑆𝛴 be an optimal strategy for 𝐺, winning with probability 𝜔𝛴(𝑚, 𝑛), in which Al-

ice outputs according to the random row vector 𝑨 = (𝐴1, … , 𝐴𝑛) and Bob according

to the random column vector 𝑩 = (𝐵1, … , 𝐵𝑚)𝘛. Construct a strategy 𝑆′
𝛴 for 𝐺′ in

which Alice and Bob play their part of the strategy 𝑆𝛴 upon inputs 1 ≤ 𝑋′ ≤ 𝑚 and

1 ≤ 𝑌 ′ ≤ 𝑛 respectively, but deterministically append 1’s to their outputs to make up
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the required output length; upon other inputs, the players output only 1’s. That is,

𝑨′ =
⎧⎪
⎨
⎪⎩

(𝐴1, … , 𝐴𝑛, 1, … , 1) if 1 ≤ 𝑋′ ≤ 𝑚,

(1, … , 1) if 𝑚 < 𝑋′ ≤ 𝑚′,
(3.10a)

𝑩′ =
⎧⎪
⎨
⎪⎩

(𝐵1, … , 𝐵𝑚, 1, … , 1)𝘛 if 1 ≤ 𝑌 ′ ≤ 𝑛,

(1, … , 1)𝘛 if 𝑛 < 𝑌 ′ ≤ 𝑛′.
(3.10b)

It is clear that these outputs always satisfy the rules given in Definition 3.1 for the

parameters of 𝐺′ defined in Eq. (3.9). Moreover, by using strategy 𝑆′
𝛴, the players

succeed at 𝐺′ with probability 𝜔𝛴(𝑚, 𝑛) upon 𝑚𝑛 of the 𝑚′𝑛′ possible inputs, and

with certainty upon the remaining inputs. By Corollary 3.6, the win probability of

𝑆′
𝛴 at the 𝑚′ × 𝑛′ game 𝐺′ is at most the optimal win probability for 𝑚′ × 𝑛′ games

𝜔𝛴(𝑚′, 𝑛′). Hence, since the inputs are chosen uniformly at random,

𝜔𝛴(𝑚′, 𝑛′) ≥ 𝑚𝑛
𝑚′𝑛′ 𝜔𝛴(𝑚, 𝑛) + 𝑚′𝑛′ − 𝑚𝑛

𝑚′𝑛′ , (3.11)

which is exactly Eq. (3.8).

Corollary 3.12. Fix a correlation level 𝛴, and let 𝑚′ ≥ 𝑚 and 𝑛′ ≥ 𝑛. Then

𝜔𝛴(𝑚′, 𝑛′) ≥ 𝜔𝛴(𝑚, 𝑛). (3.12)

Proof. Immediate from Eq. (3.8) upon noting 𝑚𝑛
𝑚′𝑛′ ≤ 1 and 𝜔𝛴(𝑚, 𝑛) ≤ 1.

Having stated and proven the preceding properties of magic rectangle games, it

is now easy to see that Theorem 3.2 holds as follows.

Proof of Theorem 3.2. The second part of the claim (that only a single example game

for each different dimension need be considered) is shown by Lemma 3.5 and Corol-

lary 3.6, which state that all games of the same dimension are equivalent.

For the first part of the claim, we first choose to examine optimal strategies for

1×𝑛 games. Then, by Lemma 3.9 and Corollary 3.10, there are maps between optimal

strategies for 𝑛 × 1 games and 1 × 𝑛 games. We next examine 2 × 𝑛 games (with-

out the need to consider the 2 × 1 case already covered). Again, due to Lemma 3.9

and Corollary 3.10, we find we need not consider 𝑛 × 2 cases. Finally, considering the

following observations, we will see that all 𝑚 × 𝑛 games where both 𝑚 ≥ 3 and 𝑛 ≥ 3
can be won with certainty for quantum (or weaker) behaviors. It was pointed out in

Section 2.2 that quantum strategies for the standard 3×3 magic square game that win

with certainty are already known. As the Rules S1 to S3 for the standard 3 × 3 magic
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square game are a special case of our magic rectangle games given in Definition 3.1,

the existence of quantum winning strategies for all general 3 × 3 games is guaranteed

by Corollary 3.6. Therefore, since by Corollary 3.12 the quantum value 𝜔𝑄(𝑚, 𝑛) is in-
creasing in 𝑚 and 𝑛, and noting the inequalities of Eq. (3.6), all magic rectangle games

with 𝑚 ≥ 3 and 𝑛 ≥ 3 satisfy 𝜔𝛴(𝑚, 𝑛) = 1, where 𝛴 is any nonsignaling correlation

level at most as strong as the quantum set. Furthermore, the proof of Lemma 3.11

combined with Lemma 3.5 shows how to construct winning strategies for all such

games from a winning 3 × 3 strategy. Hence, the 3 × 3 games already studied are the

final case required to complete the characterization of magic rectangle games.

3.3 Characterization of magic rectangles

Following Theorem 3.2, we characterize magic rectangle games of all sizes by consid-

ering those of dimension 1 × 𝑛 for 𝑛 ≥ 1 and 2 × 𝑛 for 𝑛 ≥ 2. The final 3 × 3 case was

already discussed in Section 2.2.

Theorem 3.13. The optimal success probabilities of all magic rectangle games can be

characterized as follows.

1. Games of dimension 1 × 𝑛 cannot exhibit superclassical behavior:

𝜔𝑁(1, 𝑛) = 𝜔𝐿(1, 𝑛) = 1 − 1
𝑛

. (3.13)

2. Games of dimension 2 × 𝑛 for 𝑛 ≥ 2 satisfy

1 −
2 − √2

2𝑛
≤ 𝜔𝑄(2, 𝑛) ≤ 𝜔1+𝐴𝐵(2, 𝑛) = 1

2(
1 + √1 − 1

𝑛)
, (3.14)

where the final equality is conjectured, with strong numerical evidence for 𝑛 ≤ 6.
Such games can be won with certainty in the general nonsignaling regime:

𝜔𝑁(2, 𝑛) = 1. (3.15)

Moreover, for NPA hierarchy level 1 (or weaker) correlations and 𝑛 ≥ 3,

𝜔1(2, 𝑛) = 1. (3.16)

3. For all quantum or weaker correlations, games of dimension 𝑚 × 𝑛 where both

𝑚 ≥ 3 and 𝑛 ≥ 3 can be won with certainty:

𝜔𝑄(𝑚, 𝑛) = 1. (3.17)
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Proof. The content of Item 1 is Theorem 3.14. The discussion in Section 3.3.2 covers

Item 2. Item 3 was discussed as part of the proof of Theorem 3.2, and can be seen by

combining Corollary 3.12 with the fact that 𝜔𝑄(3, 3) = 1 by Corollary 3.6.

3.3.1 1-by-n magic rectangles

Theorem 3.14. Under any set of nonsignaling correlations, the optimal win probability

of 1 × 𝑛 games coincides with the classical value,

𝜔𝑁(1, 𝑛) = 𝜔𝐿(1, 𝑛) = 1 − 1
𝑛

. (3.18)

Proof. For all possible inputs 𝑌 = 𝑗 for Bob, his single output value is deterministi-

cally equal to 𝛽𝑗 according to Rule R3 of Definition 3.1. However, recalling Eq. (3.1)

and denoting the product of Alice’s single output row by 𝛼, we require any valid 1×𝑛
game to satisfy 𝛼 ≠ 𝛽1 … 𝛽𝑛. That is, Alice’s output rowmust contain at least one ele-

ment, in position 𝑘 say, which differs from the output value 𝛽𝑘 Bobwould give if his in-

put was 𝑌 = 𝑘. By the assumption of no-signaling, Alice cannot have any knowledge

about which of 𝑛 possible uniform inputs was provided to Bob. Thus the probability of

the losing event that𝐴𝑘 ≠ 𝛽𝑘 (the element of Alice’s output corresponding to Bob’s in-

put differs from Bob’s output) is at least 𝑛−1. Therefore 𝜔𝑁(1, 𝑛) ≤ 1−𝑛−1 = 𝜔𝐿(1, 𝑛).
Since trivially also 𝜔𝑁(1, 𝑛) ≥ 𝜔𝐿(1, 𝑛) by Eq. (3.6), we have the result.

3.3.2 2-by-n magic rectangles

Before discussing the general case of 2×𝑛 magic rectangle games, let us first examine

the special case of 2 × 2 magic square games.

3.3.2.1 2-by-2 magic squares

In this case, Eq. (3.1) states that either exactly one of the possible rows or columns

is required to have a negative product, or exactly one is required to have a positive

product. In fact, any such 2 × 2 magic square game can be identified with the well-

known CHSH game, in which Alice and Bob are provided binary inputs 𝑋CHSH ∈
{0, 1} and 𝑌CHSH ∈ {0, 1} uniformly at random, and win by returning binary outputs

𝐴CHSH ∈ {0, 1} and 𝐵CHSH ∈ {0, 1} which satisfy [9]

𝐴CHSH ⊕ 𝐵CHSH = 𝑋CHSH ∧ 𝑌CHSH. (3.19)
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We will now explicitly construct this equivalence, whereupon we note the state-

ment 𝜔𝐿(2, 2) = 3
4 defines the unique nontrivial facet of the local polytope in the

(2, 2, 2) Bell scenario (which corresponds also to the CHSH inequality) [58, 82].

Theorem3.15. Any 2×2magic square game is equivalent (in the sense of Definition 3.3)

to the CHSH game.

Proof. Consider the 2 × 2 magic square with specified row products (𝛼1, 𝛼2) = (+, +)
and column products (𝛽1, 𝛽2) = (+, −). We first show that this game is equivalent to

the CHSH game. Then, since all 2 × 2 games are equivalent (Lemma 3.5), the desired

result follows by transitivity.

We can identify the input events of the two games as

𝑋CHSH = 0 ⟷ 𝑋 = 1, (3.20a)

𝑋CHSH = 1 ⟷ 𝑋 = 2 (3.20b)

for Alice, and for Bob

𝑌CHSH = 0 ⟷ 𝑌 = 1, (3.21a)

𝑌CHSH = 1 ⟷ 𝑌 = 2. (3.21b)

Alice identifies her two possible outputs as simply

𝐴CHSH = 0 ⟷ 𝑨 = (+, +), (3.22a)

𝐴CHSH = 1 ⟷ 𝑨 = (−, −). (3.22b)

Bob identifies his outputs depending on his assigned input. If 𝑌CHSH = 0 (equivalently

𝑌 = 1), then he makes the identifications

𝐵CHSH = 0 ⟷ 𝑩 = (+, +)𝘛, (3.23a)

𝐵CHSH = 1 ⟷ 𝑩 = (−, −)𝘛. (3.23b)

However, if 𝑌CHSH = 1 (equivalently 𝑌 = 2), then hemakes alternative identifications

𝐵CHSH = 0 ⟷ 𝑩 = (+, −)𝘛, (3.24a)

𝐵CHSH = 1 ⟷ 𝑩 = (−, +)𝘛. (3.24b)

These identifications form bijections 𝑓∶ 𝒜CHSH → 𝒜 and 𝑔∶ ℬCHSH → ℬ between

the natural alphabets of each game, and are explicitly tabulated in Table 3.1.
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Table 3.1: The bijections 𝑓∶ 𝒜CHSH → 𝒜 and 𝑔∶ ℬCHSH → ℬ used to show the equivalence be-

tween the CHSH game and the 2 × 2 magic square game with parameters (𝛼1, 𝛼2) = (+, +) and

(𝛽1, 𝛽2) = (+, −). Elements of the natural alphabets 𝒜, ℬ, 𝒜CHSH, and ℬCHSH have the form of possible

input/output pairs for each game and player, with the input written first.

𝑓 𝑔

𝒜CHSH 𝒜 ℬCHSH ℬ

(0, 0) (1, (+, +)) (0, 0) (1, (+, +)𝘛)
(0, 1) (1, (−, −)) (0, 1) (1, (−, −)𝘛)
(1, 0) (2, (+, +)) (1, 0) (2, (+, −)𝘛)
(1, 1) (2, (−, −)) (1, 1) (2, (−, +)𝘛)

It remains to show that the winning event for the CHSH game, Eq. (3.19), and the

winning event for the 2 × 2 magic rectangle game of Eq. (3.5) over all inputs

⋃
𝑥,𝑦∈{1,2}

[(𝐴𝑦 = 𝐵𝑥) ∩ (𝑋 = 𝑥) ∩ (𝑌 = 𝑦)] (3.25)

are identical under the functions 𝑓 and 𝑔. We can rewrite these two events to more

closely resemble one another as

⋃
𝑥,𝑦∈{0,1}

[(𝐴CHSH ⊕ 𝐵CHSH = 𝑥 ∧ 𝑦) ∩ (𝑋CHSH = 𝑥) ∩ (𝑌CHSH = 𝑦)] (3.26)

for Eq. (3.19), and for Eq. (3.25)

⋃
𝑥,𝑦∈{0,1}

[(𝐴𝑦+1 = 𝐵𝑥+1) ∩ (𝑋 = 𝑥 + 1) ∩ (𝑌 = 𝑦 + 1)]. (3.27)

One can verify from the identifications made (for example by examining Table 3.1)

that terms in the first union Eq. (3.26) are pairwise equal to those in the second union

Eq. (3.27). For example, for the term where inputs 𝑥 = 0 and 𝑦 = 0, Table 3.1

defines that the relevant (𝑥 = 0) input/output pairs for Alice relate through bijection

𝑓∶ 𝒜CHSH → 𝒜 by

(0, 0)
𝑓

↦ (1, (+, +)), (3.28a)

(0, 1)
𝑓

↦ (1, (−, −)), (3.28b)

and the relevant (𝑦 = 0) pairs for Bob relate through bijection 𝑔∶ ℬCHSH → ℬ by

(0, 0)
𝑔

↦ (1, (+, +)𝘛), (3.29a)

(0, 1)
𝑔

↦ (1, (−, −)𝘛). (3.29b)
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We then see that

(𝐴CHSH ⊕ 𝐵CHSH = 0) ≡ (𝐴1 = 𝐵1), (3.30a)

(𝑋CHSH = 0) ≡ (𝑋 = 1), (3.30b)

(𝑌CHSH = 0) ≡ (𝑌 = 1), (3.30c)

and so, combined together into the term in question,

[(𝐴CHSH ⊕ 𝐵CHSH = 0) ∩ (𝑋CHSH = 0) ∩ (𝑌CHSH = 0)]

≡ [(𝐴1 = 𝐵1) ∩ (𝑋 = 1) ∩ (𝑌 = 1)].
(3.31)

Analogous statements can be made for all terms in Eqs. (3.26) and (3.27), since we

have exhibited some 𝑓 and 𝑔 that allow it. That is, for all 𝑥, 𝑦 ∈ {0, 1},

[(𝐴CHSH ⊕ 𝐵CHSH = 𝑥 ∧ 𝑦) ∩ (𝑋CHSH = 𝑥) ∩ (𝑌CHSH = 𝑦)]

≡ [(𝐴𝑦+1 = 𝐵𝑥+1) ∩ (𝑋 = 𝑥 + 1) ∩ (𝑌 = 𝑦 + 1)].
(3.32)

Therefore, the unions Eqs. (3.26) and (3.27) are equal, and thus so are the winning

events for the CHSH and 2 × 2 magic rectangle games of Eqs. (3.19) and (3.25) over

all inputs.

Corollary 3.16. The maximum probability with which the 2 × 2 magic square game

can be won is (i) 1
4(2 + √2) ≈ 0.854 for quantum strategies and (ii) unity for general

nonsignaling strategies.

Proof. The result of Theorem 3.15means that themaximum attainablewin probability

for any quantum strategy coincides with that of the CHSH game, namely 1
4(2+√2) ≈

0.854. For the same reason, under PR box assumptions [83], the 2 × 2 magic square

game can be won with certainty.

An example of the identificationsmade for the 2×2 magic square game considered

in the proof of Theorem 3.15 is depicted in Fig. 3.2.

3.3.2.2 General 2-by-n games

As stated in Theorem 3.2, it is enough to consider 𝑛 ≥ 2. From Eq. (3.2), the optimal

classical win probability for 2 × 𝑛 games is given by

𝜔𝐿(2, 𝑛) = 1 − 1
2𝑛

. (3.33)

Using the discussion of Section 3.3.2.1, we can apply Lemma 3.11 to an optimal 2 × 2
quantum strategy with value 𝜔𝑄(2, 2) = 1

4(2 + √2) as given by Corollary 3.16. The
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− 𝛼1 = +

+ + 𝛼2 = +

𝛽1 = + 𝛽2 = −

Figure 3.2: Example of the equivalence of the 2 × 2 magic square and CHSH games. Shown is a

filled 2 × 2 magic square with row products (𝛼1, 𝛼2) = (+, +) and column products (𝛽1, 𝛽2) = (+, −)
specified. The input row and column 𝑋 = 2 and 𝑌 = 2 were chosen for this example. Alice gave output

𝑨 = (+, +) and Bob gave output 𝑩 = (−, +)𝘛. The outputs from both players are combined in the

single table shown. The game is won since 𝐴2 = 𝐵2 (shaded green). The equivalent input and output

configuration for the CHSH game, using the identifications of Table 3.1, are (𝑋CHSH, 𝐴CHSH) = (1, 0)
and (𝑌CHSH, 𝐵CHSH) = (1, 1). The CHSH win condition of Eq. (3.19) is also satisfied.

win probability of the resulting 2 × 𝑛 strategy lower bounds the 2 × 𝑛 quantum value

via Eq. (3.8) as

𝜔𝑄(2, 𝑛) ≥ 1 −
2 − √2

2𝑛
. (3.34)

In order to find an upper bound for this quantum value, we have used the implemen-

tation of the NPA hierarchy found in the Ncpol2sdpa [84] package with the MOSEK

[85] semidefinite program solver. Optimal values for different 2 × 𝑛 games and levels

of the hierarchy are shown in Table 3.2.

We note that for all levels 1 + 𝐴𝐵 and above that were tested, the optimal value

is identical for each 2 × 𝑛 game, and appears to bound above the quantum value for

𝑛 ≤ 6 by the closed-form expression

𝜔𝑄(2, 𝑛) ≤ 𝜔1+𝐴𝐵(2, 𝑛) = 1
2(

1 + √1 − 1
𝑛)

. (3.35)

Furthermore, the so-called “intersection graph” of a 2 × 𝑛 magic rectangle game (ob-

tained by swapping the roles of vertices and edges in a hypergraph whose edges are

the different rows and columns of the magic rectangle table) corresponds to the com-

plete bipartite graph 𝐾2,𝑛. This graph is planar for all 𝑛, as can be seen by placing

the 𝑛 vertices of one partition in a straight line in the plane with the two vertices of

the other partition above and below the line. Therefore, we know using a result of

Arkhipov [80, Theorem 21] that 𝜔𝑄(2, 𝑛) < 1.
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Table 3.2: Optimal win probabilities for 2 × 𝑛 magic rectangle games under correlations allowed by

different levels of the NPA hierarchy. We see that, for the cases tested, the optimal win probabilities

are identical at every level beyond the almost quantum 1 + 𝐴𝐵 level. Moreover, these values appear

to follow exactly the expression given in Eq. (3.35). For 𝑛 ≥ 3, we observe games which can be won

with certainty at level 1, but with lower than unit probability at the almost quantum and higher levels.

Values were obtained through Ncpol2sdpa [84] with theMOSEK [85] solver. Results were also verified

with the QETLAB [86] toolbox, using MOSEK [87] within CVX [88].

NPA hierarchy level

𝑛 1 1 + 𝐴𝐵 2 3 4

2 0.8535533906 0.8535533906 0.8535533906 0.8535533906 0.8535533906

3 1.0000000000 0.9082482905 0.9082482905 0.9082482905 0.9082482905

4 1.0000000000 0.9330127019 0.9330127019

5 1.0000000000 0.9472135955 0.9472135955

6 1.0000000000 0.9564354646

While the output of the semidefinite program solver, say for the 1 + 𝐴𝐵 level,

explicitly specifies a behavior that is achievable at that level, a truly quantum strategy

of states and measurements implementing these behaviors remains elusive for 2 × 𝑛
games larger than 2 × 2. Indeed, a quantum strategy for the behaviors given at the

levels examined in Table 3.2 may be unachievable, despite the numerical indication. It

is thus unknown precisely where the quantum value of these games sits between the

upper and lower bounds discussed. Another open problem is that of finding a general

analytic proof of Eq. (3.35) extending to any 𝑛 (while for small 𝑛 we can often find this

from inspection of the semidefinite program solver output as noted). The classical

value given by Eq. (3.33) and the quantum bounds given by Eqs. (3.34) and (3.35) are

depicted in Fig. 3.3.

Conjecture 3.17. The expression for 𝜔1+𝐴𝐵(2, 𝑛) given in Eq. (3.35) holds for all 𝑛 ≥ 1.

Remark. Using the SDPA-GMP [89–91] semidefinite program solver with arbitrary-

precision arithmetic, we have been able to verify agreement of Eq. (3.35) with all but

the most computationally intensive entries of Table 3.2 to a much higher precision

than printed.

Since under general no-signaling assumptions the 2 × 2 magic square game can

be won with certainty (Corollary 3.16), so too can all 2 × 𝑛 games with 𝑛 ≥ 2 by

Corollary 3.12. It is interesting to note that, as far as the authors are aware, those
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Figure 3.3: Bounds on the optimal quantum win probability of 2 × 𝑛 magic rectangle games. The

lowermost curve is the classical value for each game, given by Eq. (3.33). The middle curve is the lower

bound of Eq. (3.34) on the quantum value of each game, resulting from application of Lemma 3.11 to

the optimal quantum value for 2×2 games. The solid upper curve shows the maximal almost quantum

win probability (see NPA hierarchy level 1 + 𝐴𝐵 of Table 3.2), which provides an upper bound to the

quantum value; where the line is dashed corresponds to our conjectured values for large 𝑛, given by

Eq. (3.35), which have proved to be too computationally intensive to test. The region within which the

quantum values could possibly lie is shaded.

2 × 𝑛 games for 𝑛 ≥ 3 examined in Table 3.2 are the first examples of nonlocal games

with the property that they can be won with certainty using NPA hierarchy level

1 correlations, but only with less than unit probability using almost quantum level

1 + 𝐴𝐵 correlations. This hints that it may be fruitful to study these games in the

quantum measure theory framework for studying fundamental nonlocality, in which

level 1 NPA correlations imply the existence of a strongly positive joint quantum

measure, while level 1 + 𝐴𝐵 correlations are equivalent to those satisfying a similar

condition [92]. Additionally, when the optimal value of a game is unity, winning

individual rounds of that game offers greater statistical significance; losing even a

single round would immediately discredit the supposed strategy of (ideal) players.

Here, this is the case at level 1 but not at the higher levels of the same underlying

game. An explicit strategy for winning the 2 × 3 game with certainty using NPA

hierarchy level 1 correlations is given in Appendix A. Hence, by Corollary 3.12, the

result that 𝜔1(2, 𝑛) = 1 for all 𝑛 ≥ 3 is exact.
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3.4 Discussion

In this chapter, we defined a class of nonlocal games which we called “magic rectan-

gles”, since they are natural generalizations of the Mermin [18] and Peres [19] magic

square. We obtained a complete characterization of magic rectangle games with re-

spect to the winning probabilities of quantum and classical strategies.

We have shown that 1 × 𝑛 games cannot exhibit superclassical behavior. More-

over, any magic rectangle game of at least size 3 × 3 can be won with certainty us-

ing quantum or weaker correlations. For these games, the interesting properties of

strong contextuality and implementation with only Clifford computations of the reg-

ular magic square game are preserved. We have also shown that the special case of

dimension 2 × 2 is identical to the CHSH game, which is well studied and does not

exhibit the aforementioned properties.

The class of 2 × 𝑛 games for 𝑛 ≥ 3 is seen to exhibit the richest behavior: there

do not exist perfect quantum winning strategies for these games, however, we have

shown superclassical lower bounds on their optimal success probabilities using quan-

tum correlations. We have also given numerical upper bounds on quantumwin prob-

abilities for these games with small 𝑛, and conjectured a closed-form expression ex-

tending to all 𝑛. An interesting consequence of our analysis of 2 × 𝑛 magic rectangle

games is that they provide examples of nonlocal games that can be won with cer-

tainty using NPA level 1 correlations, and yet for which no quantum (or, considering

our numerical results, even almost quantum) strategy winning with certainty exists

(see also Appendix A for a 2 × 3 example strategy using NPA level 1 correlations).

Future works As a first point for future work, it would be interesting to further

generalize our games to the multipartite scenario, in which players would output by

filling (𝑑 − 1)-dimensional slices of a “magic hyperrectangle” of 𝑑 dimensions. Spe-

cific rules for the players of such hyperrectangles games (perhaps resembling the

product of rows/columns and win condition imposed in the rectangular case) would

need to be found such that the generalization is useful (i.e. a gap between classical

and quantum win probabilities exists). By characterizing a suitable generalization of

this kind, it may also be possible to identify other well-known multipartite nonlocal

games as special cases. Another interesting future direction is to closer examine the

special class of 2 × 𝑛 magic rectangles. The problem of finding optimal quantum val-

ues is still an open question, where the possibilities that they coincide with our lower
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bounds, upper bounds, or something between all have interesting implications. In the

first case, optimal strategies could be implemented using CHSH sub-games. Games

of the third case would outperform the CHSH game while also exhibiting a separa-

tion between the quantum and almost quantum sets. We believe the second case, in

which the quantum and almost quantum sets coincide for each magic rectangle, to

be the most likely. This would provide further evidence of the naturality of almost

quantum correlations. Once specific strategies (for games beyond CHSH) have been

obtained, one could directly see how these perform for various device-independent

cryptographic primitives or self-testing.



Chapter 4

Application: Certified private
randomness expansion

In this short chapter, we will be concerned with utilizing the Bell inequality violations

provided by magic rectangle games (as examined in detail in the previous chapter) to

achieve certified randomness expansion using the device-independent spot-checking

protocol 𝑅𝑔𝑒𝑛 described in [54, Figure 2]. The main technical result of this chapter

is to relate the win probabilities of 𝑚 × 𝑛 magic rectangle games that have a distin-

guished input (that is, a game that instead has deterministic outputs upon a single

distinguished choice of input), to those of ordinary (𝑚 − 1) × (𝑛 − 1) games (with no

distinguished input). This enables us to get the optimal noise tolerance of such games,

as well as to simply obtain rates for randomness expansion using general magic rect-

angle games. In terms of rates, there are also new techniques that could significantly

improve our results [93, 94], however, utilizing these would be more involved, with

analysis of each game of interest to be undertaken on a case-by-case basis (see also

Section 4.3).

Related works Certified randomness expansion was first introduced by Colbeck

and Kent [5], with the idea first appearing in Dec. 2006 as part of the thesis of Colbeck

[95, Chapter 5]. Afterwords (2010), renewed attention was brought to this work by

Pironio et al. [64], who developed it further with a proof-of-concept experiment. Vazi-

rani and Vidick [96] demonstrated quantum security for an exponential expansion

protocol. Subsequently (2016), Miller and Shi [66] obtained cryptographic security

and robustness. Acín andMasanes [97] reviewed efforts to design device-independent

quantum random number generators (up to 2016), and included a comparison of the

53



54 Chapter 4. Application: Certified private randomness expansion

main protocols. In Jan. 2017, Miller and Shi [54] gave the spot-checking protocol

that we use for our analysis of certified randomness expansion, and to obtain bounds

on expansion rates. Finally, Arnon-Friedman et al. [93] (2019) and Brown et al. [94]

(2020) detail more modern techniques, which give better rates for the spot-checking

protocol by using the entropy accumulation theorem [98, 99]. These are more in-

volved and case-specific than [54] and, thus, to give a general analysis of certified

randomness for all magic rectangle games, we opt to use the results of Miller and Shi

[54] (summarized using our notation in Section 2.4) in this chapter. Note, however,

that the noise tolerances we obtain for the different magic rectangle games do not

depend on the specific technique used to bound the rates, and thus apply in general.

Chapter organization We use the characterization of our games given in the pre-

vious chapter (Chapter 3) to analyze the certified randomness expansion achievable

using our magic rectangle games. Specifically, we show in Section 4.1 that the win

probability of an 𝑚 × 𝑛 game with a distinguished input can be obtained from that of

the (𝑚 − 1) × (𝑛 − 1) game (this is Theorem 4.2). This, along with the results of The-

orem 3.13 from the previous chapter, allows us in Section 4.2 to determine the noise

tolerance (robustness) in the case of each magic rectangle game. Also in Section 4.2,

we then follow the analysis of Miller and Shi [54] to get rates for certified randomness

expansion using different magic rectangle games (see Table 4.1 for a summary of both

noise tolerance and rate results). We discuss the results and possible future works in

Section 4.3.

4.1 Win probability with distinguished input

Let us recall from Section 3.1 in the previous chapter the events that the 𝑚 × 𝑛 magic

rectangle game with row parameters 𝛼1, … , 𝛼𝑚 and column parameters 𝛽1, … , 𝛽𝑛 is

won and that an input (𝑋, 𝑌 ) = (𝑥, 𝑦) was chosen

𝑊 𝑚,𝑛
𝑥,𝑦 ≡ (𝐴𝑦 = 𝐵𝑥) ∩ (𝑋 = 𝑥) ∩ (𝑌 = 𝑦). (4.1)

The inputs to Alice and Bob can take values 𝑥 ∈ {1, … , 𝑚} and 𝑦 ∈ {1, … , 𝑛} due to

the 𝑚 × 𝑛 size of magic rectangle game being considered. The random variables 𝐴𝑗

and 𝐵𝑖 denote values belonging to {+, −} for individual cells of the outputs given by

Alice and Bob, respectively. Given that the inputs were 𝑋 = 𝑥 and 𝑌 = 𝑦, they are
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assumed to satisfy
𝑛

∏
𝑗=1

𝐴𝑗 = 𝛼𝑥,
𝑚

∏
𝑖=1

𝐵𝑖 = 𝛽𝑦. (4.2)

The events in {𝑊 𝑚,𝑛
𝑥,𝑦 }𝑥,𝑦 are pairwise disjoint, and the overall event corresponding

to winning the game is given by their (disjoint) union

𝑊 𝑚,𝑛 = ⋃
𝑥,𝑦

𝑊 𝑚,𝑛
𝑥,𝑦 . (4.3)

Since 1 × 𝑛 magic rectangle games do not exhibit superclassical behavior (see

Theorem 3.14), such games cannot be used in randomness expansion. We construct

an optimal strategy for arbitrary 𝑚 × 𝑛 magic rectangle games having a distinguished

input, where we may henceforth consider only the cases 𝑚, 𝑛 ≥ 2.
In the proof that follows, we will make use of a simple fact of probabilities, which

we state here for convenience.

Lemma 4.1. Suppose that for some events 𝑊, 𝐸, and 𝐹 we have

Pr(𝐸 ∣ 𝑊 ∩ 𝐹 ) = 1. (4.4)

Then it is true that

Pr(𝑊 ∣ 𝐹 ) = Pr(𝑊 ∩ 𝐸 ∣ 𝐹 ). (4.5)

Proof. By the definition of conditional probabilities, the assumption can be rewritten

as
Pr(𝐸 ∩ 𝑊 ∩ 𝐹 )

Pr(𝑊 ∩ 𝐹 )
= 1 (4.6)

or, equivalently, Pr(𝑊 ∩ 𝐹 ) = Pr(𝐸 ∩ 𝑊 ∩ 𝐹 ). Dividing both sides by Pr(𝐹 ) gives
Pr(𝑊 ∩ 𝐹 )

Pr(𝐹 )
= Pr(𝐸 ∩ 𝑊 ∩ 𝐹 )

Pr(𝐹 )
. (4.7)

After writing both sides of the equality using the definition of conditional probabili-

ties, this is exactly the desired equation.

We now proceed with the proof of optimal strategies assuming the presence of a

distinguished input.

Theorem 4.2. Fix an allowed level 𝛴 for nonsignaling correlations. The optimal win

probability for any 𝑚 × 𝑛 magic rectangle game having a distinguished input, with

𝑚 ≥ 2 and 𝑛 ≥ 2, is given by

�̄�𝛴(𝑚, 𝑛) = 1 − (𝑚 − 1)(𝑛 − 1)
𝑚𝑛

[1 − 𝜔𝛴(𝑚 − 1, 𝑛 − 1)]. (4.8)

A strategy which attains this value is to play an optimal strategy for (𝑚 − 1) × (𝑛 − 1)
games, but with all output strings extended to include one deterministic entry.
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Remark. While the similar expression from Lemma 3.11 depicts a similar expression

as a lower bound (for the win probability when no distinguished input is assumed),

the present result claims that this value is also the greatest achievable win probability

when restricted to devices having a distinguished input.

Proof. We will let the event that the game is won and some input (𝑋, 𝑌 ) = (𝑥, 𝑦)
chosen be denoted by 𝑊𝑥,𝑦 ≡ 𝑊 𝑚,𝑛

𝑥,𝑦 throughout this proof for brevity, as we have

fixed the size of the magic rectangle as 𝑚 × 𝑛. Similarly, we write 𝑊 ≡ 𝑊 𝑚,𝑛 for the

overall event that the game is won.

Without loss of generality, let us choose the distinguished input to be given by the

event (𝑋 = 1) ∩ (𝑌 = 1). By imposing the no-signaling principle, we see that for all

inputs 𝑥 ∈ {1, … , 𝑚} and 𝑦 ∈ {1, … , 𝑛}, there exists an output entry 𝑎𝑥 ∈ {+1, −1}
for Alice such that

Pr(𝐴1 = 𝑎𝑥 ∣ 𝑊 ∩ 𝑋 = 𝑥 ∩ 𝑌 = 𝑦)

= Pr(𝐴1 = 𝑎𝑥 ∣ 𝑊 ∩ 𝑋 = 𝑥 ∩ 𝑌 = 1)

= Pr(𝐵𝑥 = 𝑎𝑥 ∣ 𝑊 ∩ 𝑋 = 𝑥 ∩ 𝑌 = 1)

= Pr(𝐵𝑥 = 𝑎𝑥 ∣ 𝑊 ∩ 𝑋 = 1 ∩ 𝑌 = 1)

= Pr(𝐵𝑥 = 𝑎𝑥 ∣ 𝑊 ∩ 𝑌 = 1) = 1,

(4.9)

where the second equality uses our conditioning on the event that the game is won;

the first, third, and fourth equalities use no-signaling; and the final equality comes

from our choice of distinguished input. Similarly, there exists an output 𝑏𝑦 for Bob

such that

Pr(𝐵1 = 𝑏𝑦 ∣ 𝑊 ∩ 𝑋 = 𝑥 ∩ 𝑌 = 𝑦)

= Pr(𝐴𝑦 = 𝑏𝑦 ∣ 𝑊 ∩ 𝑋 = 1) = 1.
(4.10)

Combining Eqs. (4.9) and (4.10) yields

Pr(𝐴1 = 𝑎𝑥 ∩ 𝐵1 = 𝑏𝑦 ∣ 𝑊 ∩ 𝑋 = 𝑥 ∩ 𝑌 = 𝑦) = 1. (4.11)

Now, from the fact of probabilities stated in Lemma 4.1 and Eq. (4.11), we can see

Pr(𝑊𝑥,𝑦 ∣ 𝑋 = 𝑥 ∩ 𝑌 = 𝑦) = Pr(𝑊𝑥,𝑦 ∩ 𝐴1 = 𝑎𝑥 ∩ 𝐵1 = 𝑏𝑦 ∣ 𝑋 = 𝑥 ∩ 𝑌 = 𝑦). (4.12)

We can now calculate the win probability for a device with a distinguished input.

Expanding according to the uniformly distributed input variables and applying the
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result of Eq. (4.12) gives

Pr(𝑊 ) = 1
𝑚𝑛 ∑

𝑥,𝑦
Pr(𝑊𝑥,𝑦 ∣ 𝑋 = 𝑥 ∩ 𝑌 = 𝑦)

= 1
𝑚𝑛 ∑

𝑥,𝑦
Pr(𝑊𝑥,𝑦 ∩ 𝐴1 = 𝑎𝑥 ∩ 𝐵1 = 𝑏𝑦 ∣ 𝑋 = 𝑥 ∩ 𝑌 = 𝑦).

(4.13)

We shall proceed in cases, bounding above the win probabilities corresponding to

different sets of possible deterministic outputs, until we have covered all of those

possible.

If 𝑎1 ≠ 𝑏1, then the first term of Eq. (4.13) vanishes. This is because, by our choice

of distinguished input, Pr(𝐴1 = 𝑎𝑥 ∣ 𝑋 = 1) = 1 and Pr(𝐵1 = 𝑏𝑥 ∣ 𝑌 = 1) = 1. We

then have the first term bounded above by Pr(𝐴1 = 𝐵1 ∣ 𝑋 = 1 ∩ 𝑌 = 1) = 0. Thus,
in this case, Pr(𝑊 ) ≤ 1 − (𝑚𝑛)−1.

Let us now assume instead that 𝑎1 = 𝑏1. In the case where ∏𝑛
𝑗=1 𝑏𝑗 ≠ 𝛼1, we can

bound the terms of Eq. (4.13) where 𝑋 = 1 as

𝑛

∑
𝑦=1

Pr(𝑊1,𝑦 ∩ 𝐴1 = 𝑎1 ∩ 𝐵1 = 𝑏𝑦 ∣ 𝑋 = 1 ∩ 𝑌 = 𝑦)

≤
𝑛

∑
𝑦=1

Pr(𝐴𝑦 = 𝑏𝑦 ∩ ∏𝑛
𝑗=1 𝐴𝑗 = 𝛼1 ∣ 𝑋 = 1) ≤ 𝑛 − 1.

(4.14)

Similarly, in the case where ∏𝑚
𝑖=1 𝑎𝑖 ≠ 𝛽1, we can bound the terms where 𝑌 = 1 as

𝑚

∑
𝑥=1

Pr(𝑊𝑥,1 ∩ 𝐴1 = 𝑎𝑥 ∩ 𝐵1 = 𝑏1 ∣ 𝑋 = 𝑥 ∩ 𝑌 = 1)

≤
𝑚

∑
𝑥=1

Pr(𝐵𝑥 = 𝑎𝑥 ∩ ∏𝑚
𝑖=1 𝐵𝑖 = 𝛽1 ∣ 𝑌 = 1) ≤ 𝑚 − 1.

(4.15)

Therefore, we have shown Pr(𝑊 ) ≤ 1 − (𝑚𝑛)−1 = 𝜔𝐿(𝑚, 𝑛) in all cases other than

where

(𝑎1 = 𝑏1) ∩ (

𝑚

∏
𝑖=1

𝑎𝑖 = 𝛽1) ∩ (

𝑛

∏
𝑗=1

𝑏𝑗 = 𝛼1). (4.16)

In all such remaining cases of Eq. (4.16), combining this equation with the product

condition for the 𝛼𝑖 and 𝛽𝑗 given by Eq. (3.1), and defining new symbols 𝛼′
𝑖 ≡ 𝑎𝑖+1𝛼𝑖+1

and 𝛽′
𝑗 ≡ 𝑏𝑗+1𝛽𝑗+1, yields

𝛼′
1 … 𝛼′

𝑚−1 ⋅ 𝛽′
1 … 𝛽′

𝑛−1 =
𝑚

∏
𝑖=2

𝑎𝑖𝛼𝑖 ⋅
𝑛

∏
𝑗=2

𝑏𝑗𝛽𝑗 = −1. (4.17)
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Wewill now assume Eq. (4.17) to be true in order to completely bound Pr(𝑊 ). Further
bounding the win probability expansion of Eq. (4.13) by setting terms conditioned on

𝑋 = 1 or 𝑌 = 1 to unity, we get

Pr(𝑊 ) ≤ 𝑚 + 𝑛 − 1
𝑚𝑛

+ (𝑚 − 1)(𝑛 − 1)
𝑚𝑛 [

1
(𝑚 − 1)(𝑛 − 1)

𝑛

∑
𝑦=2

𝑚

∑
𝑥=2

Pr(𝑊𝑥,𝑦 ∣ 𝑋 = 𝑥 ∩ 𝑌 = 𝑦)
]

.

(4.18)

Under a relabeling of the input variables, the square-bracketed terms above coincide

exactly with the win probability of an 𝑚−1×𝑛−1 magic rectangle game, with its rules

for row and column products specified by 𝛼′
1, … , 𝛼′

𝑚−1 and 𝛽′
1, … , 𝛽′

𝑛−1 respectively.

These 𝛼′
𝑖 and 𝛽′

𝑗 specify a valid magic rectangle game since they satisfy Eq. (3.1), as

shown by Eq. (4.17). Hence, we have the attainable upper bound

1
(𝑚 − 1)(𝑛 − 1)

𝑛

∑
𝑦=2

𝑚

∑
𝑥=2

Pr(𝑊𝑥,𝑦 ∣ 𝑋 = 𝑥 ∩ 𝑌 = 𝑦) ≤ 𝜔𝛴(𝑚 − 1, 𝑛 − 1). (4.19)

Combining this with Eq. (4.18) gives the bound

Pr(𝑊 ) ≤ �̄�𝛴(𝑚, 𝑛), (4.20)

where �̄�𝛴(𝑚, 𝑛) is as defined in Eq. (4.8) of the statement of the present theorem.

We have now exhibited (in all possible cases for the values deterministically out-

put by the parties given our distinguished input) bounds that are Pr(𝑊 ) ≤ 1−(𝑚𝑛)−1

and Pr(𝑊 ) ≤ �̄�𝛴(𝑚, 𝑛). Thus, since the latter of the two upper bounds is the greatest,

it is always the case for our distinguished input that

Pr(𝑊 ) ≤ �̄�𝛴(𝑚, 𝑛). (4.21)

That �̄�𝛴(𝑚, 𝑛) ≥ 1 − (𝑚𝑛)−1 follows from inserting the inequality

𝜔𝛴(𝑚 − 1, 𝑛 − 1) ≥ 𝜔𝐿(𝑚 − 1, 𝑛 − 1) = 1 − 1
(𝑚 − 1)(𝑛 − 1)

, (4.22)

which holds for all levels of correlations 𝛴, into Eq. (4.8).

We see that the expression defined in Eq. (4.8) for the value of our Pr(𝑊 ) ≤
�̄�𝛴(𝑚, 𝑛) upper bound

�̄�𝛴(𝑚, 𝑛) = 1 − (𝑚 − 1)(𝑛 − 1)
𝑚𝑛

[1 − 𝜔𝛴(𝑚 − 1, 𝑛 − 1)] (4.23)

has the same form as the lower bound for Eq. (3.8) on the win probability of a larger

magic rectangle game in terms of that of a smaller one (in our present terms, the



4.1. Win probability with distinguished input 59

smaller game is of size 𝑚 − 1 × 𝑛 − 1 and the larger game of size 𝑚 × 𝑛). The strategy

constructed in the proof of Lemma 3.11 attains this bound. It proceeds by the play-

ers outputting fixed predetermined values for any entry of theirs that is to be placed

overlapping the first row or column of the rectangular grid. In particular, this is an

example of a strategy for the 𝑚 × 𝑛 game that is deterministic upon our distinguished

input (𝑋, 𝑌 ) = (1, 1). This means that there exist strategies even using devices with

our distinguished input that have win probability Pr(𝑊 ) ≥ �̄�𝛴(𝑚, 𝑛). We have al-

ready shown in Eq. (4.21) the reverse bound that Pr(𝑊 ) ≤ �̄�𝛴(𝑚, 𝑛). Therefore, such
a strategy is both optimal and achieves Pr(𝑊 ) = �̄�𝛴(𝑚, 𝑛) as claimed.

We now outline an alternative proof of Theorem 4.2 that may be more intuitive.

Proof. Let us suppose that 𝒂 = (𝑎1, … , 𝑎𝑛) is the deterministic output of Alice upon

being given the input 𝑋 = 1. Similarly, let 𝒃 = (𝑏1, … , 𝑏𝑚)𝘛 be the deterministic

output of Bob upon being given the input 𝑌 = 1. We may assume that 𝑎1 = 𝑏1,

otherwise the players would lose with certainty whenever the inputs are (𝑋, 𝑌 ) =
(1, 1), and at best achieve a classical win probability.

Consider a distinguished input strategy with outputs given by random vectors

𝑨 = (𝐴1, … , 𝐴𝑛) for Alice and 𝑩 = (𝐵1, … , 𝐵𝑚)𝘛 for Bob. From this strategy let us

construct another strategy with new outputs for Alice 𝑨′ = (𝐴′
1, … , 𝐴′

𝑛) in which,

when provided an input value 𝑥′, Alice performs some postprocessing on her output.

This new strategy is defined as follows.

1. Alice executes her side of the original strategy and obtains values for all the 𝐴𝑗.

2. If both 𝑋 = 𝑥′ and 𝐴1 ≠ 𝑏𝑥′ then Alice flips the signs of the first two, setting

𝐴′
1 = −𝐴1, 𝐴′

2 = −𝐴2. (4.24)

Otherwise, she leaves them unchanged with 𝐴′
1 = 𝐴1 and 𝐴′

2 = 𝐴2.

3. Alice sets all other 𝐴′
𝑗 (those for all 𝑗 > 2) as in the original strategy 𝐴′

𝑗 = 𝐴𝑗.

4. Alice returns 𝑨′ = (𝐴′
1, … , 𝐴′

𝑛) as her answer to the referee.

The elements of the output 𝑨′ have the same product as the original 𝑨, satisfying

Rule R2, and so it is also a valid answer to the game. Moreover, the new strategy

satisfies the additional property that

Pr(𝐴′
1 = 𝑏𝑥′ ∣ 𝑋 = 𝑥′) = 1 (4.25)
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by construction; whenever the input for Alice takes the value 𝑋 = 𝑥′, the first ele-

ment of her output is deterministic and equal to 𝑏𝑥′ .

We will now argue that the newly defined primed strategy succeeds with at least

the probability of the original strategy. We can expand the win probability of the

original strategy by the different possible inputs as

Pr(𝑊 ) = 1
𝑚𝑛

𝑚

∑
𝑥=1

𝑛

∑
𝑦=1

Pr(𝐴𝑦 = 𝐵𝑥 ∣ 𝑋 = 𝑥 ∩ 𝑌 = 𝑦), (4.26)

and similarly for the primed strategy

Pr(𝑊 ′) = 1
𝑚𝑛

𝑚

∑
𝑥=1

𝑛

∑
𝑦=1

Pr(𝐴′
𝑦 = 𝐵𝑥 ∣ 𝑋 = 𝑥 ∩ 𝑌 = 𝑦). (4.27)

The only terms inside the summations thatmay differ between the original and primed

strategies are those where both 𝑥 = 𝑥′ and 𝑦 ∈ {1, 2}, since otherwise 𝐴′
𝑦 = 𝐴𝑦 by

construction of the primed strategy. We can thus compare the two win probabilities

by considering their difference

𝑚𝑛[Pr(𝑊 ′) − Pr(𝑊 )] = Pr(𝐴′
1 = 𝐵𝑥′ ∣ 𝑋 = 𝑥′ ∩ 𝑌 = 1)

− Pr(𝐴1 = 𝐵𝑥′ ∣ 𝑋 = 𝑥′ ∩ 𝑌 = 1)

+ Pr(𝐴′
2 = 𝐵𝑥′ ∣ 𝑋 = 𝑥′ ∩ 𝑌 = 2)

− Pr(𝐴2 = 𝐵𝑥′ ∣ 𝑋 = 𝑥′ ∩ 𝑌 = 2).

(4.28)

Since the first two terms are conditioned on 𝑌 = 1, we can use Bob’s deterministic

answer to replace 𝐵𝑥′ with 𝑏𝑥′ in them. We can then use the no-signaling principle to

remove conditioning on 𝑌 = 1. Furthermore, by the property of the primed strategy

given in Eq. (4.25), we then see that the first term is unity. Overall, this leaves us with

𝑚𝑛[Pr(𝑊 ′) − Pr(𝑊 )] = 1 − Pr(𝐴1 = 𝑏𝑥′ ∣ 𝑋 = 𝑥′)

+ Pr(𝐴′
2 = 𝐵𝑥′ ∣ 𝑋 = 𝑥′ ∩ 𝑌 = 2)

− Pr(𝐴2 = 𝐵𝑥′ ∣ 𝑋 = 𝑥′ ∩ 𝑌 = 2).

(4.29)

Partitioning the final two terms into four terms by whether 𝐴1 = 𝑏𝑥′ or 𝐴1 ≠ 𝑏𝑥′

affords us further cancellations, since in the former case 𝐴′
2 = 𝐴2. After canceling

the two terms of the former case, we are left with

𝑚𝑛[Pr(𝑊 ′) − Pr(𝑊 )] = 1 − Pr(𝐴1 = 𝑏𝑥′ ∣ 𝑋 = 𝑥′)

+ Pr(𝐴′
2 = 𝐵𝑥′ ∩ 𝐴1 ≠ 𝑏𝑥′ ∣ 𝑋 = 𝑥′ ∩ 𝑌 = 2)

− Pr(𝐴2 = 𝐵𝑥′ ∩ 𝐴1 ≠ 𝑏𝑥′ ∣ 𝑋 = 𝑥′ ∩ 𝑌 = 2).

(4.30)
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Since in the final term we are in the event 𝐴1 ≠ 𝑏𝑥′ , we can replace 𝐴2 = 𝐵𝑥′ with

𝐴′
2 = −𝐵𝑥′ (the complement of 𝐴′

2 = 𝐵𝑥′ appearing in the preceding term) due to

the construction of the primed strategy. Thus, applying the probability rule

Pr(𝐸∁ ∩ 𝐹 ) = Pr(𝐹 ⧵ (𝐸 ∩ 𝐹 ))

= Pr(𝐹 ) − Pr(𝐸 ∩ 𝐹 )
(4.31)

to the final term allows us to rewrite the expression as

𝑚𝑛[Pr(𝑊 ′) − Pr(𝑊 )] = 1 − Pr(𝐴1 = 𝑏𝑥′ ∣ 𝑋 = 𝑥′)

+ 2 Pr(𝐴′
2 = 𝐵𝑥′ ∩ 𝐴1 ≠ 𝑏𝑥′ ∣ 𝑋 = 𝑥′ ∩ 𝑌 = 2)

− Pr(𝐴1 ≠ 𝑏𝑥′ ∣ 𝑋 = 𝑥′ ∩ 𝑌 = 2).

(4.32)

Finally, we can apply the no-signaling principle to the final term to remove its condi-

tioning on 𝑌 = 2. It then cancels with the first two terms, leaving us with

𝑚𝑛[Pr(𝑊 ′) − Pr(𝑊 )] = 2 Pr(𝐴′
2 = 𝐵𝑥′ ∩ 𝐴1 ≠ 𝑏𝑥′ ∣ 𝑋 = 𝑥′ ∩ 𝑌 = 2)

≥ 0.
(4.33)

So far we have shown that, given any strategy with deterministic input (𝑋, 𝑌 ) =
(1, 1) that wins with probability Pr(𝑊 ) and given some 𝑥′, we can construct another

strategy that wins with probability Pr(𝑊 ′) ≥ Pr(𝑊 ) and is such that the first element

of Alice’s output 𝐴1 is equal to the corresponding element of Bob’s deterministic

first column 𝑏𝑥 with certainty whenever she is given the input 𝑋 = 𝑥′ (this is the

property exhibited in Eq. (4.25)). This implies that any optimal strategy must satisfy

this property and, therefore, we can rule out those that do not from being optimal

strategies. From the remaining strategies, we can perform the same argument with a

different 𝑥′ to rule out those too, and so on until all values of 𝑥′ have been exhausted.

We now know that any optimal strategy must satisfy

Pr(𝐴1 = 𝑏𝑥 ∣ 𝑋 = 𝑥) = 1 for all 𝑥 ∈ {1, … , 𝑚}. (4.34)

Now, going back to the construction of the primed strategy we started with and con-

structing a similar strategy for Bob, we can then run through an identical argument to

that we have performed so far, but this time we find a necessary condition for optimal

strategies involving Bob’s output. We can thus proceed to rule out further strategies

in which the first elements of Bob’s outputs are not deterministic. That is, similarly

to Eq. (4.34), we find that any optimal strategy must also satisfy

Pr(𝐵1 = 𝑎𝑦 ∣ 𝑌 = 𝑦) = 1 for all 𝑦 ∈ {1, … , 𝑛}. (4.35)
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As we have now shown, it is sufficient to search for optimal distinguished input

strategies among those simultaneously satisfying both Eqs. (4.34) and (4.35). That is,

among strategies in which both players are forced to deterministically return fixed

values for any elements of their outputs that are to be placed in a cell appearing in

the first row or first column of the 𝑚 × 𝑛 table. To be clear, this is a more restrictive

assumption than that of the distinguished input that we started with: there, Alice was

not required to act deterministically to obtain the element 𝐴1 of her answer unless

she was given the input 𝑋 = 1, and similarly for Bob. In all the strategies that we

need to consider, if 𝑋 > 1 and 𝑌 > 1 then the optimal win probability is that of

an (𝑚 − 1) × (𝑛 − 1) magic rectangle game 𝜔𝛴(𝑚 − 1, 𝑛 − 1) with row parameters

𝛼′
𝑖 = 𝑏𝑖+1𝛼𝑖+1 and column parameters 𝛽′

𝑗 = 𝑎𝑗+1𝛽𝑗+1, where the 𝛼𝑖 and 𝛽𝑗 are the

parameters of the 𝑚 × 𝑛 we started with. Furthermore, if 𝑋 = 1 or 𝑌 = 1 then the

players win with certainty due to Eqs. (4.34) and (4.35). Since there are 𝑚𝑛 possible

inputs, (𝑚 − 1)(𝑛 − 1) of which have 𝑋 > 1 and 𝑌 > 1 and the remaining 𝑚 + 𝑛 − 1
of which have 𝑋 = 1 or 𝑌 = 1, we therefore conclude that the overall optimal win

probability over all strategies with distinguished input and correlation level 𝛴 is

�̄�𝛴(𝑚, 𝑛) = (𝑚 − 1)(𝑛 − 1)
𝑚𝑛

𝜔𝛴(𝑚 − 1, 𝑛 − 1) + 𝑚 + 𝑛 − 1
𝑚𝑛

. (4.36)

This is the claimed Eq. (4.8).

4.2 Performance

We first exhibit for which magic rectangle games randomness expansion can be per-

formed using the 𝑅𝑔𝑒𝑛 spot-checking protocol.

Lemma 4.3. The magic rectangle games that can be used in the 𝑅𝑔𝑒𝑛 protocol are those

of sizes 2 × 𝑛 and 3 × 𝑛 where 𝑛 ≥ 2, along with their transposed counterparts.

Proof. We know from Theorem 3.14 that 1 × 𝑛 games do not exhibit superclassical

behavior, and so cannot be used for randomness expansion. By Theorem 2.4, then,

we seek 𝑚 × 𝑛 games with 𝑚, 𝑛 ≥ 2 for which �̄�𝑄(𝑚, 𝑛) < 𝜔𝑄(𝑚, 𝑛). Conversely,

if �̄�𝑄(𝑚, 𝑛) = 𝜔𝑄(𝑚, 𝑛), then it would be impossible to extract randomness in the

spot-checking protocol 𝑅𝑔𝑒𝑛. This is because randomness is extracted from the out-

puts of generation rounds. In this case, the observed success rate in game rounds

cannot distinguish the strategy being employed from a strategy that always returns

deterministic outputs (containing no extractable randomness) whenever the input

pair used to obtain randomness (in generation rounds) is chosen.
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It is clear that �̄�𝑄(𝑚, 𝑛) = 𝜔𝑄(𝑚, 𝑛) for 𝑚, 𝑛 > 3, since 𝜔𝑄(𝑚, 𝑛) = 1 for 𝑚, 𝑛 ≥ 3,
and substituting this into Eq. (4.8) of Theorem 4.2 yields �̄�𝑄(𝑚, 𝑛) = 1 for 𝑚, 𝑛 ≥ 3.
Thus 𝜔𝑄(𝑚, 𝑛) = �̄�𝑄(𝑚, 𝑛) for 𝑚, 𝑛 > 3.

It remains to show that 2×𝑛 games for 𝑛 ≥ 2 and 3×𝑛 games for 𝑛 ≥ 3 can be used

in 𝑅𝑔𝑒𝑛. Then, the symmetry in 𝜔𝑄(𝑚, 𝑛) provided by Corollary 3.10 (and inherited

by �̄�𝑄(𝑚, 𝑛) through Eq. (4.8)) shows that games with transposed dimensions to those

may also be used. Consider the 2×𝑛 games for 𝑛 ≥ 2. Using Theorem 3.14 in Eq. (4.8)

gives

�̄�𝑄(2, 𝑛) = 1 − 1
𝑛

< 𝜔𝑄(2, 𝑛), (4.37)

where the final inequality is established by comparing with Eq. (3.34). Now consider

the 3 × 𝑛 games for 𝑛 ≥ 3. As in Section 3.3.2.2, from [80] we have the upper bound

𝜔𝑄(2, 𝑛 − 1) < 1. Again substituting into Eq. (4.8) of Theorem 4.2, we get

�̄�𝑄(3, 𝑛) < 1 = 𝜔𝑄(3, 𝑛), (4.38)

where the final equality uses Corollary 3.12.

4.2.1 Noise tolerances and rates

For the magic rectangle games which can be used in the protocol 𝑅𝑔𝑒𝑛 (shown in

Lemma 4.3), Theorem 2.4 results in a maximum noise tolerance of

𝜌max
𝑚,𝑛 = 𝜔𝑄(𝑚, 𝑛) − �̄�𝑄(𝑚, 𝑛). (4.39)

Furthermore, combining Theorem 2.4 with the universal lower bound of Theorem 2.5

shows that𝑅𝑔𝑒𝑛 produces (asymptotically in the number of protocol rounds) quantum-

secure extractable bits at a rate of at least

𝜋(𝜒) =
2(log2 𝑒)(𝜒 − �̄�)2

𝑟 − 1
(4.40)

per round, where 𝜒 ∈ (�̄�, 𝜔], and 𝑟 ≥ 2 is the total size of the output alphabet for the

game. According to Rules R2 and R3, a magic rectangle game of dimension 𝑚 × 𝑛 has

2𝑚−1 ⋅ 2𝑛−1 possible outputs. Substituting the result of Theorem 4.2 for �̄�, this lower

bound on the rate can be written for 𝑚 × 𝑛 magic rectangle games as

𝜋𝑚,𝑛(𝜒) =
2(log2 𝑒)[𝜒 − �̄�𝑄(𝑚, 𝑛)]2

2𝑚+𝑛−2 − 1
, (4.41)

where �̄�𝑄(𝑚, 𝑛) is as given in Eq. (4.8). The maximum possible lower bound that

Theorem 2.5 can achieve for the rate then occurs when the score acceptance threshold
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is set to its maximum 𝜒 = 𝜔𝑄(𝑚, 𝑛), such that there is no tolerance to noise, and is

given by

𝜋max
𝑚,𝑛 = 𝜋𝑚,𝑛(𝜔𝑄(𝑚, 𝑛)) =

2(log2 𝑒)(𝜌max
𝑚,𝑛 )2

2𝑚+𝑛−2 − 1
. (4.42)

While this lower bound has the advantage that it only depends only on the dimension

of the magic rectangle used, it gives rates that are far from optimal. More practical

lower bounds on the rate for the spot-checking protocol could, for example, be cal-

culated based on the techniques of [93], or numerically as in [94].

The noise tolerance for the CHSH game, or equivalently the 2 × 2 magic square

game (Theorem 3.15), is already known to be (√2 − 1)/4 ≈ 10.4%, and this is con-

firmed by Eq. (4.39). Combining our characterization of magic rectangle games from

Section 3.3 with the result of Theorem 4.2, we summarize the performance of all vi-

able magic rectangle games in Table 4.1. Since the exact quantum values of the 2 × 2
and 3 × 3 games are known, inserting Eq. (4.8) of Theorem 4.2 into Eq. (4.39) gives

exactly the optimal noise tolerance for 𝑅𝑔𝑒𝑛 using the 3 × 3 game. Hence, the 3 × 3
noise tolerance stated in Table 4.1 is exact.

It is important to note that, in Table 4.1, the upper bounds given for the noise

tolerance and rate of 2 × 𝑛 games where 𝑛 ≥ 7 are calculated based on our Conjec-

ture 3.17, that Eq. (3.35) holds for all such 𝑛. However, even if this conjecture proved

false, by trivially weakening Eq. (3.35) to 𝜔𝑄(2, 𝑛) ≤ 1 we can still find less strict

upper bounds for these quantities that must still hold. Inputting this relaxation into

Eqs. (4.39) and (4.42), we arrive at

𝜌max
2,𝑛 ≤ 1

2𝑛
, 𝜋max

2,𝑛 ≤
log2 𝑒

2𝑛2(2𝑛 − 1)
. (4.43)

These expressions are also strictly decreasing with 𝑛 and, for the conjectural cases of

𝑛 ≥ 7, do not exceed the upper bounds for even the relatively small 2 × 3 game in the

case that the conjecture is true (see the 2 × 3 row of Table 4.1).

In the non-device-independent case in which privacy of the random string is con-

sidered unimportant, one can generate a bit of randomness per qubit of resource con-

sumed by simply measuring in the computational basis. Considering the best of all

magic rectangle games found in Table 4.1 (the 2 × 2 or CHSH game) using the spot-

checking protocol of Miller and Shi [54] to the non-device-independent case, we see

rates that are approximately 0.01 bits per round (each round consumes two maxi-

mally entangled qubits); loss of privacy yields of the order of a hundred times faster

randomness generation when compared to the protocol that we considered. The no-

tion of noise tolerance used for device-independent protocols (see Section 2.4) is not
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Table 4.1: All 𝑚 × 𝑛 magic rectangle games that can produce quantum-secure extractable bits in

the spot-checking protocol. A selection of specific examples are given in the lower half of the table.

Bounds shown for the maximum attainable noise tolerance of 2 × 𝑛 and 3 × 𝑛 games are given based

on upper and lower bounds for the 2 × 𝑛 quantum value (see Section 3.3.2.2). Corresponding bounds

are displayed for the maximal universal lower bound on the rate, as given by Eq. (4.42). For 2 × 2 and

3 × 3 games, upper and lower bounds coincide, so their optimal noise tolerance is exact. The 3 × 𝑛
lower bounds shown for 𝑛 ≥ 8 are based on Conjecture 3.17. The 2 × 𝑛 upper bounds for 𝑛 ≥ 7 are

also based on Conjecture 3.17, but may be more weakly bound as in Eq. (4.43).

Noise tolerance 𝜌max
𝑚,𝑛 Rate bound 𝜋max

𝑚,𝑛 (bit/round)a

𝑚 × 𝑛 Upper bound Lower bound Upper bound Lower bound

2 × 2 1
4 (√2 − 1) ≈ 10.4% 1

4 (√2 − 1) ≈ 10.4% ≈ 0.01031 ≈ 0.01031

3 × 3 1
9 (2 − √2) ≈ 6.5% 1

9 (2 − √2) ≈ 6.5% ≈ 0.00081 ≈ 0.00081

2 × 𝑛 1
2 [√1 − 1

𝑛 − (1 − 1
𝑛 )]

1
2𝑛 (√2 − 1)

(√𝑛(𝑛−1)+1−𝑛)
2

2(2𝑛−1)𝑛2 ln 2
3−2√2

2(2𝑛−1)𝑛2 ln 2

3 × 𝑛 1
3𝑛 (2 − √2)

1
3 (1 − 1

𝑛 )(1 − √1 − 1
𝑛−1 )

4(3−2√2)
9(2𝑛+1−1)𝑛2 ln 2

2(𝑛−1)(√𝑛−2−√𝑛−1)
2

9(2𝑛+1−1)𝑛2 ln 2

2 × 3 1
6 (√6 − 2) ≈ 7.5% 1

6 (√2 − 1) ≈ 6.9% ≈ 0.00231 ≈ 0.00196

2 × 4 1
8 (2√3 − 3) ≈ 5.8% 1

8 (√2 − 1) ≈ 5.2% ≈ 0.00065 ≈ 0.00052

3 × 4 1
12 (2 − √2) ≈ 4.9% 1

12 (3 − √6) ≈ 4.6% ≈ 0.00022 ≈ 0.00020

3 × 5 1
15 (2 − √2) ≈ 3.9% 2

15 (2 − √3) ≈ 3.6% ≈ 0.00007 ≈ 0.00006

a These rates found fromMiller and Shi [54] depend only on the dimension of magic rectangle game used. More

practical rates could be calculated using the techniques of [93, 94].
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comparable to metrics for noise in the non-DI scenario, since it is measured in units

of win probability for some nonlocal game being considered. However, in the device-

independent space, the CHSH game under spot-checking is known to have the best

noise tolerance. This is not contradicted by our findings, as the CHSH game is equiv-

alent to our 2 × 2 magic rectangle game.

4.3 Discussion

In this chapter, we focused on one possible application for our magic rectangle games

of Chapter 3, namely certified randomness expansion. The optimal noise tolerance

of an 𝑚 × 𝑛 magic rectangle game for certified randomness expansion in the spot-

checking protocol is fully determined by the difference of the optimal quantum win

probability 𝜔𝑄(𝑚, 𝑛) and the optimal quantum win probability with distinguished

input �̄�𝑄(𝑚, 𝑛). In Theorem 4.2, we relate �̄�𝑄(𝑚, 𝑛) with 𝜔𝑄(𝑚 − 1, 𝑛 − 1) and, given
that we have characterized the quantum win probabilities for magic rectangle games

of all dimensions in Theorem 3.13, we can obtain the noise tolerance of all magic

rectangle games (Table 4.1). Specifically, the noise tolerance of an 𝑚 × 𝑛 is given as

the difference between its quantum value, and the corresponding value of the (𝑚 −
1) × (𝑛 − 1) game extended to dimension 𝑚 × 𝑛 by including in each of its outputs a

deterministic entry. It follows that only magic rectangle games of dimension 2×𝑛 and

3 × 𝑛, with 𝑛 ≥ 2, can be used for certified randomness expansion (larger rectangle

games fail since the games can bewonwith certainty evenwith a distinguished input).

Moreover, we can also see from Table 4.1 that the most robust game turns out to be

the 2 × 2 magic square game (which we showed is equivalent to the CHSH game).

The values given for general 2 × 𝑛 and 3 × 𝑛 games are strictly decreasing with 𝑛 and,

furthermore, of these only the 2 × 2 and 2 × 3 games outperform the noise tolerance

and rate bound given for the 3 × 3 game.

From the equivalence with the CHSH game, optimal strategies for the 2 × 2 game

can be implemented using only a single Bell state shared between the players, whereas

all known implementations of optimal strategies for the 3×3 game require a system of

at least two Bell states. However, implementations of certain winning 3 × 3 strategies

may still be advantageous, for example in cases where physical limitations on the

quantum devices dictate certain additional constraints (such as requiring the use of

only Clifford gates), or in the context of self-testing (where the use of pairs of Bell

states enables parallel self-testing).
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Future works An important remaining question is that of the optimal rates that

one can achieve with magic rectangle games. Since we showed that, in terms of noise

tolerance, the optimal game coincides with the CHSH game, analysis of the rates has

already been done extensively. However, it is still an interesting open problem to

obtain rates for all the games (whether this is because one is interested in a specific

game, or because other games may provide better rates despite their worse noise

tolerance—something conceivably possible).

Note that in Table 4.1 we do give some rates for all the different games. Theo-

rem 2.5 directly relates noise tolerance to a lower bound on the rate of randomness

expansion, which we used to directly obtain indicative rates (see the last column of

Table 4.1). However, we would like to stress that the rates obtained in this way (un-

like our noise tolerance analysis) are far from optimal. More practical rates can be

calculated, for example, by referring to the techniques outlined in [93] or found nu-

merically as in [94]. To obtain these improved rates requires an involved, case-by-case

analysis that treats each magic rectangle game separately, something that is sensible

to do if one is interested in a given game, and is left for the future.





Chapter 5

Self-testing via magic rectangle
games

Self-tests of quantum states typically arise as the observation of an optimal quantum

strategy for a certain nonlocal game. Conversely, exploring how different nonlocal

games that appear elsewhere in the literature can be used for self-testing and what

(if any) advantages these offer over other self-tests is, in its own right, an interesting

endeavor. In this chapter, we examine the rectangular generalization of the magic

square game introduced in Chapter 3 to obtain a family of self-tests that compare

favorably with other self-tests.

Many of the most important applications for which one may envisage self-testing

being used (such as delegated verifiable blind quantum computation [40, 100], to

which we return in Chapter 6) exist within a scenario where one party, whom we

often call the “client”, has minimal quantum technological capabilities. On the other

hand, it could also be assumed that the other party (by analogy, the “server”) has

access to a universal quantum computer. This is a setting with increasing practical

relevancy, for example since quantum hardware companies already offer their ser-

vices in the cloud. Having extra quantum operations being performed on this side

as part of a self-test would then come with almost no further practical limitations.

Moreover, the two parties should be able to self-test a large number of maximally

entangled Bell states in parallel. Taking again our example of delegated computation,

this is required in order to perform any interestingly large quantum computation

(otherwise the client could simply perform the computation classically on their side).

It follows that any natural self-test for such applications will have minimal experi-

mental requirements on one side while also being required to test for many Bell states

69
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in parallel. This is precisely the nature of the self-test we obtain in this chapter.

It is worth mentioning that comparisons between self-tests can be made with re-

spect to a number of different figures of merit; the importance of each depending on

the application for which one wishes to use the self-test. We consider several differ-

ent qualities, and in Section 5.7 analyze what our proposed self-tests achieve and how

they compare to otherworks. The first is the experimental complexity required by our

self-test. This depends on the honest strategy and determines the quantum devices

and resources required by each party. The second is that of communication com-

plexity (required input and output sizes for the parties involved). Its most important

ingredient is that of input question size, as this determines the amount of randomness

that must be consumed per round of interaction of the protocol. This can also play an

important role in other aspects, e.g., in how much randomness can be generated in

possible applications to quantum certified randomness expansion. Finally, the third

figure of merit that self-tests can be compared upon is their robustness, i.e., how close

to the ideal behavior the observed correlations need to be in order to ensure that the

tested quantum state is sufficiently close to the desired reference state. Given that ex-

periments have intrinsic imperfections and correlations cannot be perfectly saturated

in a real setting, achieving good robustness is crucial for practical uses of self-testing.

While many self-testing protocols are designed to perform well with respect to few

particular figures of merit, it is key for the type of applications at hand that a protocol

achieves appropriate levels of performance simultaneously across all relevant areas.

This is a major consideration of the self-test we present here.

We aim to obtain an improved self-test of multiple Bell states (with respect to

different figures of merit). The nonlocal games at the core of our approach belong to

the set of magic rectangle games. Our contributions may be summarized specifically

as follows.

• We provide a quantum strategy to win the magic square game with certainty.

This strategy involves three Bell pairs and, importantly, one side (say Alice)

need only ever make local (single-qubit) Pauli measurements.1 We say this

strategy has the “one-side-local” property.

• Based on this quantum strategy, we present a one-side-local self-test of three

Bell states. This requires the introduction of some extra “check” rounds. Com-
1We refer to a measurement performed on an observer’s system of qubits as local (as opposed to

entangled) or single-qubit if it can be realized from measurements made on individual qubits indepen-
dently.
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pared to other self-tests using the magic square game, ours requires a simpler

experimental setup (one-side-local) and certifies a greater number of Bell states

in parallel.

• We also consider the set of 3 × 𝑛 magic rectangle games, obtaining one-side-

local quantum strategies for these (again winning with certainty) involving 𝑛
Bell states.

• From these strategies, we construct a parallel self-test of 𝑛 Bell pairs that is

one-side-local. This is our main result, as it offers an experimentally simpler

parallel self-test that (i) consumes only a small amount of input randomness

with respect to the number of Bell states 𝑛 (a constant number of bits for Alice

and 𝑂(log 𝑛) bits for Bob), (ii) uses only perfect correlations, and (iii) is robust

with robustness 𝑂(𝑛5/2√𝜀), where 𝜀 is the closeness of the ideal (perfect) cor-

relations to those observed. That the size of the (randomly selected) inputs is

small with respect to 𝑛 is not only useful in applications where randomness is

considered an important resource, but it also means that the total number of

inputs (polynomial in 𝑛) is small enough that measurement statistics over all

inputs can be gathered in efficient time. Importantly, all three properties are

achieved simultaneously.

Related works The magic square game was first introduced by Mermin [18] and

Peres [19]. Aravind [56] gives a nontechnical demonstration of the Mermin–Peres

magic square game. In Chapter 3, we examined an extension of the magic square

game to arbitrary rectangular dimensions. A family of these games is used as the

basis for the self-test presented here.

The concept of self-testing was first introduced by Mayers and Yao [4] in a cryp-

tographic context, with the first mention of the term “self-testing” appearing in [23].

Wu et al. [101] gave the first self-test of twomaximally entangled pairs of qubits based

on the magic square game, making use of the work of McKague [102] on self-testing

in parallel. Coudron and Natarajan [26] and Coladangelo [27] independently gave ro-

bust parallel self-tests of arbitrarily many Bell states based on the magic square game.

A result of Coladangelo [27], which is in turn based on results of Chao et al. [70], is

used in the present chapter (see Theorem 2.8). Natarajan and Vidick [28] gave the first

example of a self-test for 𝑛 Bell states with constant robustness. Subsequent work by

the same authors achieved such a test where the number of bits of communication
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required is logarithmic in 𝑛 [103]. A variant of this by Natarajan and Wright [104]

called the “Pauli basis test” is presented as part of the work of Ji et al. [105]. Work in

another direction is offered by Šupić et al. [106], who exhibit (without consideration

of robustness) a constant-input-size parallel self-test for many copies of an arbitrary

state given a self-test for a single copy. On self-testing maximally-entangled states of

arbitrary local dimension 𝑑, the results of Fu [107] and Mančinska et al. [108] provide

robust self-tests using constant-sized questions and answers. However, the robust-

ness of the former is exponential in 𝑑 and in the latter is not constructed. Sarkar et al.

[109] also provide such a self-test, however, its robustness is not studied. More details

on self-testing can be found in the excellent review by Šupić and Bowles [24].

Chapter organization Section 5.1 contains notes on the notation used in this

chapter. An overview of the techniques used in this chapter is given in Section 5.2.

In Section 5.3, we rephrase the definition of certain magic rectangles to better suit

our self-testing purposes. In Section 5.4 a one-side-local optimal quantum winning

strategy for the magic square game is given, and in Section 5.5 this strategy is used as

the basis of a parallel, one-side-local self-test of three Bell states. In Section 5.6 a gen-

eralization of this one-side-local quantum strategy for 3 × 𝑛 magic rectangle games

is given, and the corresponding self-test for 𝑛 Bell states is proven. We conclude in

Section 5.7.

5.1 Notation

Recall from Section 2.1.10 that in this chapter we let observers Alice and Bob be la-

beled by the letters 𝐴 and 𝐵 respectively. We denote a local Hilbert space of Alice by

ℋ𝐴, and similarly a local Hilbert space of Bob by ℋ𝐵. Sometimes we will need to talk

about different Hilbert spaces local to an observer’s subsystem. For this, we will use

notation such as ℋ′
𝐴 or ℋ̃𝐴 to mean different Hilbert spaces on Alice’s side.

All quantum measurements in this chapter will be defined to have two possible

outcomes labeled by ±1. We take all unknown measurements to be projective, with

observables of the form 𝑀 = 𝑀+ − 𝑀−. That an operator is not unknown (but is

instead a reference operator) will be denoted by a hat symbol, for example the Pauli

�̂� observable.

Since we will be dealing with many noncommutative objects, recall from Eq. (2.5)

of Chapter 2 that we unambiguously define the finite product notation to be formed
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with indices in ascending order as
𝑛

∏
𝑗=1

𝑀𝑗 = 𝑀1𝑀2 … 𝑀𝑛. (5.1)

We will use this notation to denote the composition of (not necessarily commutative)

operators.

Due to our labeling convention in this chapter, we will denote the maximally

entangled Bell state shared between Alice and Bob

|𝛷+⟩𝐴𝐵 =
|0⟩𝐴 ⊗ |0⟩𝐵 + |1⟩𝐴 ⊗ |1⟩𝐵

√2
. (5.2)

In cases where Alice and Bob share multiple such states, we may label each by an

additional index so that each qubit of an observer’s register can be uniquely identified.

That is, we may write

|𝛷+⟩(𝑖)
𝐴𝐵 =

|0⟩𝑖
𝐴 ⊗ |0⟩𝑖

𝐵 + |1⟩𝑖
𝐴 ⊗ |1⟩𝑖

𝐵

√2
. (5.3)

To denote the case of 𝑛 copies of such states, with one half of each being held by Alice

and the other by Bob, we will adopt the notation

|𝛷+⟩⊗𝑛
𝐴𝐵 =

𝑛

⨂
𝑖=1

|𝛷+⟩(𝑖)
𝐴𝐵. (5.4)

5.2 Overview of techniques

Our twomain results are self-testing protocols for three and 𝑛 Bell states, respectively.

Informally, to self-test a quantum state one needs to provide a local isometry that

maps an untrusted state (and operators) to a reference state (and operators), which

are close to the desired ones. Our proofs proceed in five steps. In the first step, we

define a nonlocal game (along with an optimal quantum winning strategy for that

game) that will form the basis of the self-test. Importantly, the particular strategy

given should involve the states that we are testing. In the second step, we give the

honest behavior for the self-test. This fixes the experimental requirements for each

side. The honest behavior includes (i) the optimal quantum strategy for the nonlocal

game given earlier; and (ii) additional “check” rounds, where some further correla-

tions (that do not need to exhibit nonlocality on their own) are requested.2 In the
2It is precisely these extra checks that allow us to self-test three Bell states using a nonlocal game

that is normally used to self-test two Bell states (the magic square game). This is extended later for the
𝑛 Bell state case with a game whose optimal winning probability could be saturated with a quantum
strategy involving just a pair of Bell states.
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third step, we define the (untrusted) observables and specify all the correlations that

are to be tested. This is the information we have from experiment; it quantifies the

proximity of the real experiment to the ideal maximum winning probabilities, and

it forms the basis for obtaining the desired isometry. In the fourth step, the above

correlations are used to prove that the untrusted single-qubit Pauli operators have

commutation and anticommutation relations exactly as the corresponding (trusted)

Pauli operators have. This is the hardest step, as it demonstrates that the correlations

obtained from the experiment suffice to construct some untrusted operators that be-

have as the desired trusted operators. The fifth and final step is simply the application

of a theorem of Coladangelo [27], wherein the existence of the desired local isometry

was reduced to the satisfaction of the commutation and anticommutation relations

obtained in the fourth step.

5.2.1 Self-test of three Bell states

Base nonlocal game We introduce a strategy for winning the magic square game

with certainty (Section 5.4). This strategy has two interesting features. Firstly, unlike

the “standard” strategy that involves two Bell states [56], this strategy involves three

Bell states. This means that any self-test based on this would result in self-testing

more Bell states in parallel than using the magic square game in the standard way

[101]. To succeed in the parallel self-testing of more Bell states requires some extra

correlations (obtained from some “check” rounds) to prevent dishonest players from

simply following the standard magic square strategy using only two Bell states. The

second feature is that this strategy can be realized with Pauli measurements (as in the

standardmagic square strategy) butwith one of the players (sayAlice) needing only to

perform local (single-qubit) measurements. In the usual magic square strategy, both

parties must measure in entangled bases (see Section 2.2). This implies that a self-test

based on this strategy would be simpler to execute experimentally and, importantly,

impose fewer quantum-technological requirements on Alice’s side—something of im-

mediate interest for major applications of self-testing.

Honest run Alice plays the one-side-local magic square strategy (see Section 5.4),

with the difference being that she measures locally each of her three qubits and re-

turns these as her answer, allowing the product of pairs to be checked by a referee.

Bob has two types of rounds: game rounds, where he plays the modified magic square
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game by measuring pairs of qubits in the �̂� ⊗ �̂�, ̂𝑌 ⊗ ̂𝑌, and �̂� ⊗ �̂� bases simulta-

neously, and “check” rounds, where he measures his three qubits locally.

Untrusted observables and correlations Alice has only untrusted local Pauli ob-

servables, while Bob has different untrusted observables in game and check rounds.

Interestingly, Bob’s observables in the check rounds are the ones used for the isom-

etry, while the observables of game rounds are used to enforce the suitable com-

mutation and anticommutation relations on Alice’s side. The correlations observed

are those required for the magic square game along with the (perfect) Einstein–

Podolsky–Rosen (EPR) correlations in check rounds.

Commutation and anticommutation The main theorem for this case (Theo-

rem 5.4 of Section 5.5.3) is stated informally here.

Theorem 5.1 (Informal Theorem 5.4). The game-round observables of Alice and the

check-round observables of Bob obey standard commutation and anticommutation rela-

tions up to 𝑂(√𝜀), where 𝜀 is the distance of the observed correlations from the ideal

ones. The observables commute when acting on different qubits; commute when they are

of the same type and act on the same qubit; and anticommute when they act on the same

qubit and are conjugate (e.g. 𝑋 and 𝑍).

Isometry Using the relations provided by the aforementioned theorem and follow-

ing Coladangelo [27], we obtain a suitable local isometry and complete the self-test.

5.2.2 Self-test of many Bell states

Base nonlocal game We introduce a strategy that wins the 3 × 𝑛 magic rectangle

game with certainty using 𝑛 Bell states (Section 5.6.1). Note that the 3 × 𝑛 magic

rectangle game can also be won with only two Bell states, but our strategy enables

the parallel self-test of 𝑛 Bell states, having the same one-side-locality as our previous

result.

Honest run Alice plays the magic rectangle strategy (see Section 5.6.1) described

by measuring all of her qubits in one of the three Pauli bases (all in the same basis).

Suitable products of her outcomes can be checked for consistency in the magic rect-

angle game by a referee. Bob now has three round types: game rounds, local check
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rounds (in which single-qubit correlations are checked), and pair check rounds (in

which correlations of pairs of qubits are checked).

Untrusted observables and correlations Alice has only untrusted local Pauli

observables, while Bob has untrusted observables for all three round types. The local-

check-round observables are used to construct the subsequent local isometry, while

the other observables are used to obtain suitable commutation and anticommutation

relations.

Commutation and anticommutation The main theorem (Theorem 5.11 of Sec-

tion 5.6.4) contains the same type of relations as in the case with three Bell states,

where obtaining the anticommutation relations is considerably more complicated

(and requires the extra set of rounds). This is stated informally as follows:

Theorem 5.2 (Informal Theorem 5.11). The game-round observables of Alice and the

local-check-round observables of Bob obey standard commutation relations up to𝑂(√𝜀)
and anticommutation relations up to 𝑂(𝑛√𝜀), where 𝜀 is the distance of the observed

correlations from the ideal ones. The observables commute when acting on different

qubits; commute when they are of the same type and act on the same qubit; and anti-

commute when they act on the same qubit and are conjugate (e.g. 𝑋 and 𝑍).

Isometry Again following Coladangelo [27] and using the relations provided by

Theorem 5.11, we recover the desired local isometry that results in a self-test of 𝑛 Bell

states.

5.3 Magic rectangle games (redefinition)

As we have seen in Chapter 3, the magic square game can be generalized to be played

on an 𝑚 × 𝑛 table. Such a magic rectangle game corresponds to 𝑚 possible questions

for Alice and 𝑛 for Bob. To avoid trivially winning strategies, the game rules are

generalized accordingly in Definition 3.1, which we restate here.

Definition 3.1 (Magic rectangle games). An 𝑚 × 𝑛 game is specified by fixing some

𝛼1, … , 𝛼𝑚 and 𝛽1, … , 𝛽𝑛 each belonging to {+1, −1}, such that their product satisfies

𝛼1 … 𝛼𝑚 ⋅ 𝛽1 … 𝛽𝑛 = −1. (3.1)

The rules of the given game are then:
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R1. Each filled cell must belong to the set {+1, −1}.

R2. Upon being assigned the 𝑖th row, the product of Alice’s entries must be 𝛼𝑖.

R3. Upon being assigned the 𝑗th column, the product of Bob’s entries must be 𝛽𝑗.

As before, the game is won if both players enter the same value into their shared cell.

We will later be concerned specifically with 3 × 𝑛 games in which entries to rows

must all have positive products and entries to columns must all have negative prod-

ucts. Such games are defined by 𝛼𝑖 = 1 and 𝛽𝑗 = −1 for all 𝑖 and 𝑗 and must have

odd 𝑛 due to Eq. (3.1). A particular class of winning strategies for these games will

be used to build part of our self-test of 𝑛 Bell states. In the case of these particular

games, we can rephrase the definition of magic rectangles in a way that will prove

more useful for our self-testing purposes. If (𝑝1, … , 𝑝𝑛) ∈ {+1, −1}𝑛 is any possi-

ble output row of Alice (whose product is required to be +1), then there exists an

assignment of 𝑎1, … , 𝑎𝑛 ∈ {+1, −1} such that 𝑝𝑗 = ∏𝑘≠𝑗 𝑎𝑘 for all 𝑗. To see this,

simply take 𝑎𝑘 = 𝑝𝑘 for all 𝑘. Conversely then, we may ask that Alice outputs some

𝑎1, … , 𝑎𝑛 ∈ {+1, −1} and leave it to the game referees to check whether the appro-

priate products 𝑝𝑗 = ∏𝑘≠𝑗 𝑎𝑘 form a winning row. Notice in our special case of 𝑛
odd, such 𝑝𝑗 automatically satisfy the rule for Alice’s rows ∏𝑛

𝑗=1 𝑝𝑗 = +1 for any

assignment of the 𝑎𝑘. We now rephrase the definition of 3 × 𝑛 magic rectangle games

in this special case.

Definition 5.3 (3 × 𝑛 magic games). Given 𝑛 odd, Alice and Bob receive inputs 𝑥 ∈
{1, 2, 3} and 𝑦 ∈ {1, … , 𝑛}, respectively. Alice outputs 𝑛 bits 𝑎1, … , 𝑎𝑛 ∈ {+1, −1}.
Bob outputs (𝑏1, 𝑏2, 𝑏3) ∈ {+1, −1}3 required to satisfy 𝑏1𝑏2𝑏3 = −1. The game is

won if ∏𝑘≠𝑦 𝑎𝑘 = 𝑏𝑥.

Remark. While Bob’s output here is column 𝑦 of a magic rectangle, Alice’s output

corresponds to filling row 𝑥 as (𝑝1, … , 𝑝𝑛) where 𝑝𝑗 = ∏𝑘≠𝑗 𝑎𝑘. The win condition is

then equivalent to the familiar case when both players enter the same value into the

shared cell 𝑝𝑦 = 𝑏𝑥.

5.4 One-side-local magic square strategy

Recall that the usual quantum winning strategy for the magic square game requires

some measurements of both Alice and Bob to be performed in entangled bases (see



78 Chapter 5. Self-testing via magic rectangle games

the discussion of Section 2.2). We now propose a quantum strategy for the magic

square game, also winning with certainty, which can be realized under the additional

constraint that Alice may only make measurements localized to single qubits of her

quantum system. Each round begins by allowing Alice and Bob to share three Bell

states

|𝜓⟩ = |𝛷+⟩(1)
𝐴𝐵 ⊗ |𝛷+⟩(2)

𝐴𝐵 ⊗ |𝛷+⟩(3)
𝐴𝐵. (5.5)

Half of each Bell state is given to Alice, and the other half to Bob. The proposed

measurement strategy is depicted in Fig. 5.1.

𝐼 ⊗ �̂� ⊗ �̂� �̂� ⊗ 𝐼 ⊗ �̂� �̂� ⊗ �̂� ⊗ 𝐼

𝐼 ⊗ ̂𝑌 ⊗ ̂𝑌 ̂𝑌 ⊗ 𝐼 ⊗ ̂𝑌 ̂𝑌 ⊗ ̂𝑌 ⊗ 𝐼

𝐼 ⊗ �̂� ⊗ �̂� �̂� ⊗ 𝐼 ⊗ �̂� �̂� ⊗ �̂� ⊗ 𝐼

Figure 5.1: The proposed “one-side-local” magic square strategy. To realize any particular row, Alice

is only required to measure each of her qubits locally, as the observables to be measured for any

individual one of her three qubits commute within each row.

Notice in Fig. 5.1 that each row is formed out of commuting observables whose

product is equal to the identity operator. Similarly, the observables in each column

commute and have a product equal to minus the identity operator. Moreover, the

eigenvalues of each observable are +1 and −1. These facts combined show that

Rules S1 to S3 in Section 2.2 are automatically satisfied by the outcomes of measuring

a full row or column. If 𝑀𝐴 is any observable for Alice’s system contained in Fig. 5.1,

and if 𝑀𝐵 is the observable of the same cell for Bob’s system, then it is easy to show

the correlation

⟨𝜓| 𝑀𝐴𝑀𝐵 |𝜓⟩ = 1. (5.6)

This can be seen, for example, by writing the Bell states comprising the shared state
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of Eq. (5.5) in terms of eigenstates of the �̂�, ̂𝑌, and �̂� operators respectively

|𝛷+⟩ =
|+⟩ ⊗ |+⟩ + |−⟩ ⊗ |−⟩

√2

=
|+𝑖⟩ ⊗ |−𝑖⟩ + |−𝑖⟩ ⊗ |+𝑖⟩

√2

=
|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩

√2
.

(5.7)

Alice, therefore, always measures the same outcome as Bob for the shared cell (either

both +1 or both −1), and so they win the game with certainty.

For any particular row assigned to Alice, it is clear from inspection of Fig. 5.1 that

she need only make single-qubit measurements; for any given qubit of her system,

the single-qubit observables she is required to measure with respect to that qubit

of her register mutually commute within the row. That is, it is always possible for

Alice to realize the required observables by recording the measurement outcomes of

a particular Pauli operator (�̂�, ̂𝑌, or �̂� depending on the row) on each one of her

three qubits. This strategy can thus be phrased naturally for the magic square game

in the sense of Definition 5.3 with 𝑛 = 3. Bob generates his outputs according to the

columns of Fig. 5.1 as usual. The 𝑗th output bit 𝑎𝑗 of Alice, however, results from the

outcome of the single-qubit Pauli measurement �̂�𝑗
𝐴, ̂𝑌 𝑗

𝐴, or �̂�𝑗
𝐴 on Alice’s 𝑗th qubit

depending on whether the first, second, or third row was assigned, respectively.

5.5 Self-test of three Bell states

In the quantum strategy for the magic square game introduced in Section 5.4, the

players share three EPR pairs, while in the standard quantum strategy they share two

EPR pairs. Indeed, from observing perfect statistics in the magic square game alone,

it is only possible to extract (under some local isometry) the existence of two EPR

pairs. That is, attaining the quantum value of the magic square game can only self-

test two EPR pairs, even if the players in fact shared three (since they could easily

cheat by only making use of two of their three pairs and implementing the standard

quantum strategy). Nonetheless, we can introduce some simple further questioning

of the players, in addition to asking them to play the magic square game, such that

enough information is gathered about their measurement strategy to assert the exis-

tence of three EPR pairs of entanglement. The exact additional questions are inspired

by the form of the one-side-local strategy we gave in Section 5.4. Furthermore, the
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one-side-local strategy is the honest strategy for the magic square game part of the

modified questioning.

By augmenting the correlations arising from a winning magic square strategy by

certain additional correlations that ensure Alice implements her side of the strategy

locally, it is possible to self-test three copies of the Bell state |𝛷+⟩. These additional

correlations are obtained from Bob making single-qubit Pauli measurements of his

qubits in some rounds of the test, which we will call “check” rounds. Rounds that

are not check rounds will be called “game” rounds. We now describe the structure

of the self-test and specify its honest behavior. Afterwards, we exhibit explicitly the

correlations of unknown observables used in the test. Finally, we show how these

correlations can be used to prove the relevant commutation and anticommutation

relations required for a self-testing proof.

5.5.1 Structure and honest behavior

Alice receives an input 𝑥 ∈ {1, 2, 3} and Bob an input 𝑦 ∈ {1, 2, 3}. Additionally,

Bob receives an input 𝑐 ∈ {0, 1} controlling whether the round is a game or check

round. If the round is a game round (𝑐 = 0), then it is the goal of the players to win

at the magic square game (in the sense of Definition 5.3) with the row and column

assigned to Alice and Bob given by 𝑥 and 𝑦, respectively. Otherwise, if the round is a

check round (𝑐 = 1), then the players are required to perfectly correlate certain com-

binations of their output bits (which will be convenient to state after our description

of the honest behavior). Notice, however, that Alice is not directly provided with the

information of whether the round is to be considered a game or check round. The

protocol is summarized in Protocol 5.1.

In an honest round of the experiment, the players share three Bell states, so that

|𝜓⟩ = |𝛷+⟩⊗3
𝐴𝐵 as in the magic square strategy of Section 5.4. Alice always performs

her side of this magic square strategy, providing each of her output bits 𝑎𝑗 to the

referees (as in Definition 5.3) by measuring

�̂�𝑗
𝐴 if 𝑥 = 1, (5.8a)

̂𝑌 𝑗
𝐴 if 𝑥 = 2, (5.8b)

�̂�𝑗
𝐴 if 𝑥 = 3. (5.8c)

The honest behavior of Bob depends on the type of round 𝑐. If 𝑐 = 0, then Bob also

performs his side of our one-side-local magic square strategy, returning outputs ac-

cording to measuring the observables in column 𝑦 of Fig. 5.1 so that the magic square
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Protocol 5.1: A protocol for certifying three Bell states. Strategies in which Alice uses entangled

measurements are ruled out by local check rounds. The protocol is phrased in terms of the parameter

𝑛, as it will be extended in Section 5.6.2 in order to self-test 𝑛 Bell states.

Let 𝑛 = 3 be the number of Bell states to be certified. In each round, a verifier chooses

𝑐 ∈ {0, 1} and 𝑦 ∈ {1, … , 𝑛}. The verifier sends Bob (𝑐, 𝑦) and, depending on 𝑐, runs
one of the following subprotocols:

0. Magic game: Send Alice 𝑥 ∈ {1, 2, 3}. Alice and Bob answer with 𝑎1, … , 𝑎𝑛 and

𝑏1, 𝑏2, 𝑏3 in {+1, −1} satisfying 𝑏1𝑏2𝑏3 = −1. Accept if and only if ∏𝑘≠𝑦 𝑎𝑘 =
𝑏𝑥.

1. Local check: Send Alice 𝑥 ∈ {1, 3}. Alice and Bob answer with 𝑎1, … , 𝑎𝑛 and

𝑏1, … , 𝑏𝑛 in {+1, −1}.

(a) If 𝑥 = 1, accept if and only if 𝑎𝑦 = 𝑏𝑦.

(b) If 𝑥 = 3, accept if and only if 𝑎𝑗 = 𝑏𝑗 for all 𝑗 ≠ 𝑦.

game is won with certainty. Otherwise, if 𝑐 = 1, then the input 𝑦 determines which

one of three sets of single-qubit Pauli measurements he performs. Specifically, Bob’s

output bits are generated as the measurement outcomes of the set of Pauli observ-

ables,

{�̂�1
𝐵, �̂�2

𝐵, �̂�3
𝐵} if 𝑦 = 1, (5.9a)

{�̂�1
𝐵, �̂�2

𝐵, �̂�3
𝐵} if 𝑦 = 2, (5.9b)

{�̂�1
𝐵, �̂�2

𝐵, �̂�3
𝐵} if 𝑦 = 3. (5.9c)

It is convenient at this point to call attention to the perfect correlations of out-

put bits expected in honest check rounds. These are all the single-qubit quantum

correlations ⟨𝜓| �̂�𝑗
𝐴�̂�𝑗

𝐵 |𝜓⟩ = 1 and ⟨𝜓| �̂�𝑗
𝐴�̂�𝑗

𝐵 |𝜓⟩ = 1. Observation of a version of

these correlations using untrusted observables (which will not be assumed to be iden-

tical for Bob upon his different inputs) will become a requirement for our protocol to

certify the desired reference state.

5.5.2 Unknown observables and correlations

We will now denote the unknown state shared by the players by |𝜓⟩, and the ex-

pectation value of an unknown observable 𝑀 with respect to this state by ⟨𝑀⟩ =
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⟨𝜓| 𝑀 |𝜓⟩. We now describe the unknown observables which will be used by Alice

and Bob in our self-testing proof. Recall that, in contrast to the honest Pauli ob-

servables used in the previous Section 5.5.1, such unknown observables are denoted

without a hat symbol (using 𝑋 for the corresponding unknown version of the Pauli

�̂� observable). We may not assume a priori, in the potentially dishonest case of the

self-testing protocol, that the players measure any of the same observables upon be-

ing given different inputs. For this reason, we introduce notation in such a way that

the observer and their input can always be deduced from the label of an unknown

observable. This choice of notation will be seen in Eqs. (5.10), (5.11) and (5.13).

It is important to note that all unknown observables that are to be measured as

part of the same local input commute by definition. For example, from the observables

defined immediately below, it can always be assumed that [𝑋1
𝐴, 𝑋2

𝐴] = 0, since both

observables correspond to the input 𝑥 = 1 for Alice. Furthermore, it can always be

assumed that any two observables defined for different players commute. These two

properties will be exploited frequently in proofs throughout the rest of the chapter.

Alice’s observables We define sets of mutually commuting unknown observables

on Alice’s side to be measured depending on her input 𝑥 as

{𝑋1
𝐴, 𝑋2

𝐴, 𝑋3
𝐴} if 𝑥 = 1, (5.10a)

{𝑌 1
𝐴 , 𝑌 2

𝐴 , 𝑌 3
𝐴} if 𝑥 = 2, (5.10b)

{𝑍1
𝐴, 𝑍2

𝐴, 𝑍3
𝐴} if 𝑥 = 3. (5.10c)

Each of these unknown observables corresponds to a single-qubit Pauli observable,

which acts on the qubit of Alice indicated by its superscript.

Bob’s observables (game rounds) For game rounds (𝑐 = 0), we will denote the

sets of unknown observables to be measured by Bob, depending on his input 𝑦, by

{𝑋1
𝐵, 𝑌 1

𝐵 , 𝑍1
𝐵} if 𝑦 = 1, (5.11a)

{𝑋2
𝐵, 𝑌 2

𝐵 , 𝑍2
𝐵} if 𝑦 = 2, (5.11b)

{𝑋3
𝐵, 𝑌 3

𝐵 , 𝑍3
𝐵} if 𝑦 = 3. (5.11c)

Figure 5.2 clarifies the meaning of our unknown observables for game rounds.

The overline notation used in each superscript reflects that these observables cor-

respond to the product of single-qubit Pauli observables acting on all qubits of Bob
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𝑋2
𝐴𝑋3

𝐴 𝑋1
𝐴𝑋3

𝐴 𝑋1
𝐴𝑋2

𝐴

𝑌 2
𝐴𝑌 3

𝐴 𝑌 1
𝐴𝑌 3

𝐴 𝑌 1
𝐴𝑌 2

𝐴

𝑍2
𝐴𝑍3

𝐴 𝑍1
𝐴𝑍3

𝐴 𝑍1
𝐴𝑍2

𝐴

(a) Alice’s strategy.

𝑋1
𝐵 𝑋2

𝐵 𝑋3
𝐵

−𝑋1
𝐵𝑍1

𝐵 −𝑋2
𝐵𝑍2

𝐵 −𝑋3
𝐵𝑍3

𝐵

𝑍1
𝐵 𝑍2

𝐵 𝑍3
𝐵

(b) Bob’s strategy.

Figure 5.2: The layout of unknown observables in a magic square strategy for (a) Alice and (b) Bob.

other than that indicated. For example, here the unknown observable 𝑋1
𝐵 corresponds

to �̂�2
𝐵�̂�3

𝐵 in the honest case. Note also that Rule S3 of the magic square game re-

quires columns to have negative products. In terms of unknown observables, that is

⟨𝑋𝑦
𝐵𝑌 𝑦

𝐵𝑍𝑦
𝐵⟩ = −1 for all 𝑦. Thus we need not have defined one observable in each

set, say 𝑌 𝑦
𝐵 , since this implies

𝑌 𝑦
𝐵|𝜓⟩ = −𝑋𝑦

𝐵𝑍𝑦
𝐵|𝜓⟩. (5.12)

We will, however, choose to keep all of these observables for notational convenience,

referring to Eq. (5.12) when necessary.

Bob’s observables (check rounds) For check rounds (𝑐 = 1), Bob’s unknown ob-

servables correspond to single-qubit Pauli 𝑋 and 𝑍 observables acting on his system.

These will be denoted as follows, with an additional subscript to distinguish unknown

observables of different inputs:

{𝑋1
𝐵,1, 𝑍2

𝐵,1, 𝑍3
𝐵,1} if 𝑦 = 1, (5.13a)

{𝑍1
𝐵,2, 𝑋2

𝐵,2, 𝑍3
𝐵,2} if 𝑦 = 2, (5.13b)

{𝑍1
𝐵,3, 𝑍2

𝐵,3, 𝑋3
𝐵,3} if 𝑦 = 3. (5.13c)

Correlations The correlations of unknown observables amounting to a uniformly

𝜀0-close to perfect strategy for the magic square game (i.e. correlations obtained in



84 Chapter 5. Self-testing via magic rectangle games

game rounds) are, for all distinct 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3},

⟨𝑋𝑖
𝐴𝑋𝑗

𝐴𝑋𝑘
𝐵⟩ ≥ 1 − 𝜀0, (5.14a)

−⟨𝑌 𝑖
𝐴𝑌 𝑗

𝐴𝑋𝑘
𝐵𝑍𝑘

𝐵⟩ ≥ 1 − 𝜀0, (5.14b)

⟨𝑍 𝑖
𝐴𝑍𝑗

𝐴𝑍𝑘
𝐵⟩ ≥ 1 − 𝜀0. (5.14c)

The correlations constituting uniformly 𝜀1-close to perfect check rounds are, again

for all distinct 𝑖, 𝑗 ∈ {1, 2, 3},

⟨𝑋𝑖
𝐴𝑋𝑖

𝐵,𝑖⟩ ≥ 1 − 𝜀1, (5.15a)

⟨𝑍𝑖
𝐴𝑍 𝑖

𝐵,𝑗⟩ ≥ 1 − 𝜀1. (5.15b)

5.5.3 Commutation and anticommutation relations

In this section, we prove commutation and anticommutation relations (acting on our

unknown state) for those unknown observables of Alice and Bob corresponding to

single-qubit Pauli measurements. To do this, we use the correlations of Section 5.5.2.

The results of this section are summarized in the following theorem:

Theorem5.4. Let 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, 2, 3} be such that 𝑖 ≠ 𝑘 and 𝑗 ≠ 𝑙. We have correlations

between each unknown observable of Alice with each of the corresponding observables

on Bob’s side

‖(𝑋𝑖
𝐴 − 𝑋𝑖

𝐵,𝑖)|𝜓⟩‖ ≤ √2𝜀1, (5.16)

‖(𝑍 𝑖
𝐴 − 𝑍 𝑖

𝐵,𝑘)|𝜓⟩‖ ≤ √2𝜀1. (5.17)

We have the state-dependent anticommutativity of all unknown 𝑋 observables with all

unknown 𝑍 observables corresponding to the same qubit

‖{𝑋𝑖
𝐴, 𝑍 𝑖

𝐴}|𝜓⟩‖ ≤ 9√2𝜀0 + 16√2𝜀1, (5.18)

‖{𝑋𝑖
𝐵,𝑖, 𝑍 𝑖

𝐵,𝑘}|𝜓⟩‖ ≤ 9√2𝜀0 + 20√2𝜀1. (5.19)

Finally, we have the state-dependent commutativity of unknown 𝑋 and 𝑍 observables.

On Bob’s side we have

‖[𝑋𝑖
𝐵,𝑖, 𝑋𝑗

𝐵,𝑗]|𝜓⟩‖ ≤ 4√2𝜀1, (5.20)

‖[𝑍 𝑖
𝐵,𝑘, 𝑍𝑗

𝐵,𝑙]|𝜓⟩‖ ≤ 4√2𝜀1; (5.21)
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and moreover restricting to observables corresponding to different qubits 𝑖 ≠ 𝑗

‖[𝑋𝑖
𝐵,𝑖, 𝑍𝑗

𝐵,𝑙]|𝜓⟩‖ ≤ 8√2𝜀1. (5.22)

On Alice’s side, for different qubits 𝑖 ≠ 𝑗, we have

‖[𝑀 𝑖
𝐴, 𝑁 𝑗

𝐴]|𝜓⟩‖ ≤ 4√2𝜀1, (5.23)

where 𝑀 and 𝑁 can be either of 𝑋 and 𝑍.

Proof. Combine Propositions 5.5, 5.6 and 5.8.

Proposition 5.5 (Correlation). For all distinct 𝑖, 𝑗 ∈ {1, 2, 3} we have the correlation

estimates

‖(𝑋𝑖
𝐴 − 𝑋𝑖

𝐵,𝑖)|𝜓⟩‖ ≤ √2𝜀1, (5.24a)

‖(𝑍 𝑖
𝐴 − 𝑍 𝑖

𝐵,𝑗)|𝜓⟩‖ ≤ √2𝜀1. (5.24b)

Proof. Apply Lemma 2.2 to the correlations given in Eq. (5.15).

The following proposition shows the commutation of unknown observableswhich

we expect to correspond to local measurements on different qubits. Since observables

defined for different players are assumed to commute, we show commutation for the

observables of each player separately.

Proposition 5.6 (Commutation). For all 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, 2, 3} such that 𝑖 ≠ 𝑘 and 𝑗 ≠ 𝑙
we have

‖[𝑋𝑖
𝐵,𝑖, 𝑋𝑗

𝐵,𝑗]|𝜓⟩‖ ≤ 4√2𝜀1, (5.25a)

‖[𝑍 𝑖
𝐵,𝑘, 𝑍𝑗

𝐵,𝑙]|𝜓⟩‖ ≤ 4√2𝜀1. (5.25b)

Moreover if 𝑖 ≠ 𝑗 we have commutation relations for Bob

‖[𝑋𝑖
𝐵,𝑖, 𝑍𝑗

𝐵,𝑙]|𝜓⟩‖ ≤ 8√2𝜀1 (5.26)

and for Alice

‖[𝑀 𝑖
𝐴, 𝑁 𝑗

𝐴]|𝜓⟩‖ ≤ 4√2𝜀1, (5.27)

where 𝑀 and 𝑁 can be either of 𝑋 and 𝑍.
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Proof. Using the triangle inequality with the estimates of Proposition 5.5, and the

commutation of Alice’s observables corresponding to the same input, we can write

‖[𝑋𝑖
𝐵,𝑖, 𝑋𝑗

𝐵,𝑗]|𝜓⟩‖ ≤ 4√2𝜀1 + ‖[𝑋𝑗
𝐴, 𝑋𝑖

𝐴]|𝜓⟩‖

= 4√2𝜀1,
(5.28)

showing Eq. (5.25a). Similarly, to obtain Eq. (5.25b),

‖[𝑍 𝑖
𝐵,𝑘, 𝑍𝑗

𝐵,𝑙]|𝜓⟩‖ ≤ 4√2𝜀1 + ‖[𝑍𝑗
𝐴, 𝑍 𝑖

𝐴]|𝜓⟩‖

= 4√2𝜀1.
(5.29)

We now assume 𝑖 ≠ 𝑗. From the definition of Bob’s check-round observables

[Eq. (5.13)] we have [𝑋𝑖
𝐵,𝑖, 𝑍𝑗

𝐵,𝑖] = 0. We use this and Proposition 5.5 to get

‖[𝑋𝑖
𝐴, 𝑍𝑗

𝐴]|𝜓⟩‖ = ‖𝑋𝑖
𝐴𝑍𝑗

𝐴|𝜓⟩ − 𝑍𝑗
𝐴𝑋𝑖

𝐴|𝜓⟩‖

≤ 2√2𝜀1 + ‖𝑋𝑖
𝐴𝑍𝑗

𝐴|𝜓⟩ − 𝑋𝑖
𝐵,𝑖𝑍

𝑗
𝐵,𝑖|𝜓⟩‖

= 2√2𝜀1 + ‖𝑋𝑖
𝐴𝑍𝑗

𝐴|𝜓⟩ − 𝑍𝑗
𝐵,𝑖𝑋

𝑖
𝐵,𝑖|𝜓⟩‖

≤ 4√2𝜀1 + ‖𝑋𝑖
𝐴𝑍𝑗

𝐴|𝜓⟩ − 𝑋𝑖
𝐴𝑍𝑗

𝐴|𝜓⟩‖

= 4√2𝜀1.

(5.30)

Combining this with the definition of Alice’s observables [Eq. (5.10)], from which we

have [𝑋𝑖
𝐴, 𝑋𝑗

𝐴] = 0 and [𝑍 𝑖
𝐴, 𝑍𝑗

𝐴] = 0, yields Eq. (5.27). To obtain Eq. (5.26), we again

use Proposition 5.5 to write

‖[𝑋𝑖
𝐵,𝑖, 𝑍𝑗

𝐵,𝑙]|𝜓⟩‖ ≤ 4√2𝜀1 + ‖[𝑍𝑗
𝐴, 𝑋𝑖

𝐴]|𝜓⟩‖ ≤ 8√2𝜀1, (5.31)

where the final inequality uses Eq. (5.27) just proved.

We now show an intermediate result that will allow us to prove the anticom-

mutativity of unknown local 𝑋 and 𝑍 observables. The lemma shows that Alice’s

unknown observables for pairs of 𝑋 and 𝑍 operators not acting on the same qubits

anticommute (cf. the observables used in the magic square strategy of Section 5.4).

The proof follows a similar line to [101].

Lemma 5.7. For all distinct 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3} we have anticommutation relations for

Bob’s game round observables

‖{𝑋𝑖
𝐴𝑋𝑗

𝐴, 𝑍 𝑖
𝐴𝑍𝑘

𝐴}|𝜓⟩‖ ≤ 9√2𝜀0. (5.32)
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Proof. By estimating the game-round correlations of Eq. (5.14) using Lemma 2.2, and

repeatedly applying the triangle inequality,

‖{𝑋𝑖
𝐴𝑋𝑗

𝐴, 𝑍 𝑖
𝐴𝑍𝑘

𝐴}|𝜓⟩‖ ≤ 4√2𝜀0 + ‖𝑍𝑗
𝐵𝑋𝑘

𝐵|𝜓⟩ + 𝑋𝑗
𝐵𝑋𝑖

𝐵𝑍 𝑖
𝐴𝑍𝑘

𝐴|𝜓⟩‖

= 4√2𝜀0 + ‖𝑋𝑗
𝐵𝑍𝑗

𝐵𝑋𝑘
𝐵𝑍𝑖

𝐴𝑍𝑗
𝐴|𝜓⟩ + 𝑋𝑖

𝐵𝑍𝑗
𝐴𝑍𝑘

𝐴|𝜓⟩‖

≤ 6√2𝜀0 + ‖(𝑋𝑗
𝐵𝑍𝑗

𝐵)(𝑋𝑘
𝐵𝑍𝑘

𝐵)|𝜓⟩ + 𝑋𝑖
𝐵𝑍 𝑖

𝐵|𝜓⟩‖

≤ 8√2𝜀0 + ‖(𝑌 𝑖
𝐴𝑌 𝑗

𝐴)(𝑌 𝑖
𝐴𝑌 𝑘

𝐴 )|𝜓⟩ + 𝑋𝑖
𝐵𝑍 𝑖

𝐵|𝜓⟩‖

= 8√2𝜀0 + ‖𝑌 𝑗
𝐴𝑌 𝑘

𝐴 |𝜓⟩ + 𝑋𝑖
𝐵𝑍𝑖

𝐵|𝜓⟩‖

≤ 9√2𝜀0,

(5.33)

where the first equality results from applying unitary operators 𝑍 𝑖
𝐴𝑍𝑗

𝐴 and 𝑋𝑗
𝐵 inside

the norm.

We are now in a position to prove the required anticommutativity of unknown 𝑋
observables with 𝑍 observables which act on the same qubits of the unknown state.

Proposition 5.8 (Anticommutation). For all 𝑖 ∈ {1, 2, 3} we have anticommutation

relations for Alice’s unknown observables

‖{𝑋𝑖
𝐴, 𝑍 𝑖

𝐴}|𝜓⟩‖ ≤ 9√2𝜀0 + 16√2𝜀1. (5.34)

Furthermore, for all 𝑗 ∈ {1, 2, 3} distinct from 𝑖 we have anticommutation relations for

Bob’s check-round observables

‖{𝑋𝑖
𝐵,𝑖, 𝑍 𝑖

𝐵,𝑗}|𝜓⟩‖ ≤ 9√2𝜀0 + 20√2𝜀1. (5.35)

Proof. Let 𝑘 ∈ {1, 2, 3} be distinct from 𝑖 and 𝑗, then

‖{𝑋𝑖
𝐴, 𝑍 𝑖

𝐴}|𝜓⟩‖ = ‖𝑋𝑗
𝐵,𝑗𝑍

𝑘
𝐵,𝑖{𝑋𝑖

𝐴, 𝑍 𝑖
𝐴}|𝜓⟩‖

= ‖𝑋𝑖
𝐴𝑍 𝑖

𝐴𝑋𝑗
𝐵,𝑗𝑍

𝑘
𝐵,𝑖|𝜓⟩ + 𝑍 𝑖

𝐴𝑋𝑖
𝐴𝑋𝑗

𝐵,𝑗𝑍
𝑘
𝐵,𝑖|𝜓⟩‖

≤ ‖𝑋𝑖
𝐴𝑍 𝑖

𝐴𝑍𝑘
𝐵,𝑖𝑋

𝑗
𝐵,𝑗|𝜓⟩ + 𝑍 𝑖

𝐴𝑋𝑖
𝐴𝑋𝑗

𝐵,𝑗𝑍
𝑘
𝐵,𝑖|𝜓⟩‖ + 8√2𝜀1

≤ ‖𝑋𝑖
𝐴𝑍𝑘

𝐵,𝑖𝑋
𝑗
𝐵,𝑗𝑍

𝑖
𝐵,𝑗|𝜓⟩ + 𝑍 𝑖

𝐴𝑋𝑗
𝐵,𝑗𝑍

𝑘
𝐵,𝑖𝑋

𝑖
𝐵,𝑖|𝜓⟩‖ + 10√2𝜀1

= ‖𝑋𝑖
𝐴𝑍𝑘

𝐵,𝑖𝑍
𝑖
𝐵,𝑗𝑋

𝑗
𝐵,𝑗|𝜓⟩ + 𝑍 𝑖

𝐴𝑋𝑗
𝐵,𝑗𝑋

𝑖
𝐵,𝑖𝑍

𝑘
𝐵,𝑖|𝜓⟩‖ + 10√2𝜀1

≤ ‖{𝑋𝑖
𝐴𝑋𝑗

𝐴, 𝑍 𝑖
𝐴𝑍𝑘

𝐴}|𝜓⟩‖ + 16√2𝜀1

≤ 9√2𝜀0 + 16√2𝜀1.

(5.36)
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For the first inequality, we commuted Bob’s check-round observables using Eq. (5.26)

of Proposition 5.6. For the final inequality, we applied Lemma 5.7 to bound the anti-

commutator norm. All other inequalities were found from the correlation estimates

of Proposition 5.5.

To obtain Eq. (5.35) we use Proposition 5.5 to write

‖{𝑋𝑖
𝐵,𝑖, 𝑍 𝑖

𝐵,𝑗}|𝜓⟩‖ ≤ 4√2𝜀1 + ‖{𝑋𝑖
𝐴, 𝑍 𝑖

𝐴}|𝜓⟩‖

≤ 9√2𝜀0 + 20√2𝜀1,
(5.37)

where the final inequality follows from Eq. (5.34) just proved.

5.6 Self-test of many Bell states

We can use similar techniques to Section 5.5 to self-test 𝑛 > 3 Bell states, provided

𝑛 ≡ 3 (mod 4) (which we will assume throughout this section). In this case, the

honest strategy is played using a 3 × 𝑛 magic game, as described by Definition 5.3.

The strategy for this game upon which we base our self-test will be explained in

Section 5.6.1. The structure and honest behavior of the self-test will simultaneously

be described in Section 5.6.2, with all general unknown observables for Alice and

Bob and their required correlations then defined in Section 5.6.3. All commutation

and anticommutation relations required to construct a local self-testing isometry will

finally be shown in Section 5.6.4. From this, we have the final self-testing statement

for many Bell states.

Theorem 5.9. Let |𝜓⟩ ∈ ℋ𝐴 ⊗ ℋ𝐵 be an unknown state shared by Alice and Bob

and let 𝑛 ≡ 3 (mod 4) with 𝑛 > 3 be the number of Bell states to be self-tested. Let

sets of pairwise commutative, ±1-valued, unknown observables in ℒ(ℋ𝐴) for Alice be
given as in Eq. (5.46), and in ℒ(ℋ𝐵) for Bob as in Eqs. (5.47), (5.49) and (5.50). Suppose

that these observables satisfy all correlations given in Eqs. (5.51) to (5.53) and let 𝜀 =
max{𝜀0, 𝜀1, 𝜀2}. Then, for any choice (𝑘𝑖)𝑛

𝑖=1 of elements in {1, … , 𝑛}where each 𝑘𝑖 ≠ 𝑖,
there exists a junk state |𝜉⟩ and isometries 𝑉𝐴 and 𝑉𝐵 defining the local isometry 𝑉 =
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𝑉𝐴 ⊗ 𝑉𝐵 such that, for all 𝑖 ∈ {1, … , 𝑛},

‖𝑉 |𝜓⟩ − |𝛷+⟩⊗𝑛
𝐴𝐵 ⊗ |𝜉⟩‖ = 𝑂(𝑛

5
2 √𝜀), (5.38a)

‖𝑉 𝑋𝑖
𝐴|𝜓⟩ − �̂�𝑖

𝐴|𝛷+⟩⊗𝑛
𝐴𝐵 ⊗ |𝜉⟩‖ = 𝑂(𝑛

5
2 √𝜀), (5.38b)

‖𝑉 𝑍 𝑖
𝐴|𝜓⟩ − �̂� 𝑖

𝐴|𝛷+⟩⊗𝑛
𝐴𝐵 ⊗ |𝜉⟩‖ = 𝑂(𝑛

5
2 √𝜀), (5.38c)

‖𝑉 𝑋𝑖
𝐵,𝑖|𝜓⟩ − �̂�𝑖

𝐵|𝛷+⟩⊗𝑛
𝐴𝐵 ⊗ |𝜉⟩‖ = 𝑂(𝑛

5
2 √𝜀), (5.38d)

‖𝑉 𝑍 𝑖
𝐵,𝑘𝑖

|𝜓⟩ − �̂� 𝑖
𝐵|𝛷+⟩⊗𝑛

𝐴𝐵 ⊗ |𝜉⟩‖ = 𝑂(𝑛
5
2 √𝜀). (5.38e)

Proof. Take the observables {𝑋𝑖
𝐴, 𝑍 𝑖

𝐴}𝑛
𝑖=1 of Eq. (5.46) and {𝑋𝑖

𝐵,𝑖, 𝑍 𝑖
𝐵,𝑘𝑖

}𝑛
𝑖=1 of Eq. (5.49)

to be the (extended if necessary) reflections assumed by Theorem 2.8, with 𝛿 given by

the largest upper bound appearing in Theorem 5.11.

Relatively few of the unknown observables defined as part of the self-test are actu-

ally used to construct the isometry, with most only serving in the proofs of necessary

commutation and anticommutation relations. The total number of observables de-

fined in Eqs. (5.46), (5.47), (5.49) and (5.50) is 2𝑛2 + 4𝑛, while only 4𝑛 of these are

required for the isometry of Theorem 2.8. In particular, we are free to use any 𝑛 of

the 𝑍 𝑖
𝐵,𝑦 of Eq. (5.49) provided that we cover all qubits (denoted by the superscript

index). This freedom is expressed in Theorem 5.9 above by choice of the 𝑘𝑖. In the

honest case, many of the unknown observables are in fact identical to one another.

For this self-test, Bob must make Pauli measurements on pairs of qubits to ensure

their commutation. This was not explicitly required in the self-test of three Bell states,

since Bob’s game-round observables (corresponding to products of Pauli observables

on all but one of his qubits) automatically served this purpose. We would thus like a

way to subdivide all possible pairs of (an odd number of) qubits into as few disjoint

sets of disjoint pairs as possible. This is equivalent to finding an optimal edge coloring

for the complete graph 𝐾𝑛 where 𝑛 is odd. The following lemma constructs such a

coloring.

Lemma 5.10. Consider the complete graph 𝐾𝑛 for 𝑛 odd, whose vertices are labeled

by 𝑉 = {1, … , 𝑛}. For each 𝑣 ∈ 𝑉, color the edges {𝑣 − 𝑖, 𝑣 + 𝑖} by color 𝑣 for all

𝑖 ∈ {1, … , 𝑛−1
2 }, where addition is performedmodulo 𝑛. This is a proper 𝑛-edge-coloring

for 𝐾𝑛 and is optimal in the sense that it uses as few colors as possible.

Proof. Define the color of each edge {𝑎, 𝑏} to be 𝑎+𝑏
2 (mod 𝑛), where the multiplica-

tive inverse of 2 modulo 𝑛 always exists since 2 is coprime to any odd 𝑛. Suppose that
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two edges {𝑥, 𝑖} and {𝑥, 𝑗} have the same color under this definition. Then 𝑥+𝑖
2 ≡ 𝑥+𝑗

2
(mod 𝑛), and thus 𝑖 = 𝑗. Therefore no two distinct adjacent edges can have the same

color. That is, we defined a proper edge coloring. Notice that all edges of the same

color 𝑣 here take the form {𝑣 − 𝑖, 𝑣 + 𝑖} for 𝑖 ∈ {1, … , 𝑛−1
2 }. Hence our coloring

is identical to that given in the statement. Optimality results from the fact that the

chromatic index of 𝐾𝑛 is 𝑛 when 𝑛 is odd.

Remark. If the graph is depicted by straight lines drawn between the vertices of a

regular 𝑛-gon, the given construction assigns a different color to each of 𝑛 sets of

parallel edges.

5.6.1 Magic game strategy

A simple winning strategy for 3 × 𝑛 magic games, in which players share three Bell

states and Alice need only make single-qubit measurements, can be constructed by

appending deterministic columns to the 3 × 3 strategy of Section 5.4. However, we

will base our self-test on an alternative strategy, which will be described here.

Let Alice and Bob share the 𝑛 Bell states

|𝜓⟩ =
𝑛

⨂
𝑗=1

|𝛷+⟩(𝑗)
𝐴𝐵. (5.39)

Figure 5.3 depicts the 3×𝑛 measurement strategy that our self-test will be based upon.

∏
𝑗≠1

�̂�𝑗
∏
𝑗≠2

�̂�𝑗 … ∏
𝑗≠𝑛

�̂�𝑗

∏
𝑗≠1

̂𝑌 𝑗
∏
𝑗≠2

̂𝑌 𝑗 … ∏
𝑗≠𝑛

̂𝑌 𝑗

∏
𝑗≠1

�̂�𝑗
∏
𝑗≠2

�̂�𝑗 … ∏
𝑗≠𝑛

�̂�𝑗

Figure 5.3: The 3 × 𝑛 magic game strategy that our self-test is based upon. Pauli observables which

act on qubit 𝑗 of a player’s register are denoted by �̂�𝑗, ̂𝑌 𝑗, and �̂�𝑗.
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Since 𝑛 ≡ 3 (mod 4), the observable for each square of the strategy is composed

of 2 (mod 4) single-qubit Pauli observables. Hence the three observables in each

column mutually commute and satisfy Bob’s negative product rule

( ∏
𝑗≠𝑦

�̂�𝑗
)( ∏

𝑗≠𝑦

̂𝑌 𝑗
)( ∏

𝑗≠𝑦
�̂�𝑗

) = ∏
𝑗≠𝑦

�̂�𝑗 ̂𝑌 𝑗�̂�𝑗 = 𝑖𝑛−1𝐼 = 𝑖2𝐼 = −𝐼. (5.40)

Since the Pauli observables appearing in each row are all of the same type, the squares

in each rowmutually commute. Moreover, since Pauli observables are involutory and

there are an even number of such observables corresponding to each qubit in each

row, every row has product +𝐼. There is also perfect correlation between Alice’s and

Bob’s observables for each square of the strategy. That is, letting ̂𝑆 stand for �̂�, ̂𝑌, or
�̂�, and for all 𝑦,

⟨𝜓| ∏
𝑗≠𝑦

̂𝑆𝑗
𝐴 ∏

𝑗≠𝑦

̂𝑆𝑗
𝐵 |𝜓⟩ = ∏

𝑗≠𝑦
⟨𝛷+| ̂𝑆𝑗

𝐴
̂𝑆𝑗
𝐵 |𝛷+⟩(𝑗)

𝐴𝐵 = (±1)𝑛−1 = 1. (5.41)

This strategy can again be naturally phrased as a winning strategy for magic

games in the sense of Definition 5.3. Alice generates her outputs 𝑎𝑗 as the outcomes

of measurements of �̂�𝑗
𝐴, ̂𝑌 𝑗

𝐴, or �̂�𝑗
𝐴 depending on whether the first, second, or third

row was assigned respectively. Bob generates his outputs (𝑏1, 𝑏2, 𝑏3) according to the

outcomes of observables in Fig. 5.3 for the column he was assigned. By Eq. (5.40),

Bob’s outputs always satisfy the rule 𝑏1𝑏2𝑏3 = −1. By Eq. (5.41), for input row and

columns 𝑥 and 𝑦, respectively, the outputs always satisfy ∏𝑗≠𝑦 𝑎𝑗 = 𝑏𝑥. Therefore,

in the strategy described, the players win with certainty.

In terms of experimental implementation, note that Alice need only make single-

qubit Pauli measurements for her side of the strategy. On Bob’s side, making the

required compatible measurements of ∏𝑗≠𝑦 �̂�𝑗
𝐵, ∏𝑗≠𝑦

̂𝑌 𝑗
𝐵, and ∏𝑗≠𝑦 �̂�𝑗

𝐵 may seem

impractical for systems with large 𝑛. Note, however, that since the pairs of Pauli

observables �̂� ⊗ �̂�, ̂𝑌 ⊗ ̂𝑌, and �̂� ⊗ �̂� mutually commute, Bob need only measure
3
2 (𝑛 − 1) such pairs to construct measurements of all three required observables.

5.6.2 Structure and honest behavior

As in our self-test for three Bell states, Alice receives an input 𝑥 ∈ {1, 2, 3}. However,

Bob now receives an input 𝑦 ∈ {1, … , 𝑛}. Furthermore, Bob’s input controlling the

type of round is now a trit 𝑐 ∈ {0, 1, 2}. The additional value 𝑐 = 2 determines

that the players are requested to check correlations between certain pairs of Pauli

observables. As such, we will call such rounds where 𝑐 = 2 pair check rounds, and
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rename those rounds where 𝑐 = 1 to local check rounds to avoid ambiguity. Alice

must always output 𝑛 bits, whereas the number of output bits of Bob depends on the

type of round 𝑐. The protocol is summarized in Protocol 5.2.

Protocol 5.2: Protocol for certifying 𝑛 Bell states. Intuitively, pair check rounds rule out those single-

qubit 3 × 𝑛 magic rectangle game strategies found by extending strategies for smaller 3 × 𝑛′ games

using deterministic entries. Otherwise, the required correlations could be satisfied by provers sharing

fewer Bell states.

Let 𝑛 = 3 (mod 4) be the number of Bell states to be certified. The verifier chooses

𝑐 ∈ {0, 1, 2} and performs Protocol 5.1 with an additional subprotocol if 𝑐 = 2 is

chosen:

2. Pair check: Send Alice 𝑥 ∈ {1, 3}. Alice answers with 𝑎1, … , 𝑎𝑛. Bob answers

with 𝑛 − 1 bits 𝑏𝑦−𝑘,𝑦+𝑘 and 𝑏′
𝑦−𝑘,𝑦+𝑘 in {+1, −1} (with addition taken modulo

𝑛) for all 𝑘 ∈ {1, … , 𝑛−1
2 }.

(a) If 𝑥 = 1, accept if and only if 𝑎𝑖𝑎𝑗 = 𝑏𝑖,𝑗 for all 𝑖, 𝑗.

(b) If 𝑥 = 3, accept if and only if 𝑎𝑖𝑎𝑗 = 𝑏′
𝑖,𝑗 for all 𝑖, 𝑗.

Honest rounds consist of the players sharing 𝑛 Bell states,

|𝜓⟩ =
𝑛

⨂
𝑗=1

|𝛷+⟩(𝑗)
𝐴𝐵. (5.42)

Alice always provides each of her output bits 𝑎𝑗 by measuring the 𝑛 observables of

our 3 × 𝑛 magic game strategy (Section 5.6.1),

�̂�𝑗
𝐴 if 𝑥 = 1, (5.43a)

̂𝑌 𝑗
𝐴 if 𝑥 = 2, (5.43b)

�̂�𝑗
𝐴 if 𝑥 = 3. (5.43c)

This is structurally identical to Eq. (5.8) in the previous self-test of three Bell states,

with the exception that 𝑛 measurements are now made upon each input.

Once again the honest behavior of Bob depends on 𝑐. If it is a game round (𝑐 = 0),
then Bob must output three bits, as usual with the goal of winning the 3 × 𝑛 magic

game. In the case of a local check round (𝑐 = 1), Bob proceeds similarly to Eq. (5.9)

of the previous self-test, but now generates his 𝑗th of 𝑛 output bits depending on the
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input 𝑦 as the measurement outcomes of Pauli observables ̂𝑆𝑗
𝐵, where

̂𝑆𝑗
𝐵 =

⎧⎪
⎨
⎪⎩

�̂�𝑗
𝐵 if 𝑦 = 𝑗,

�̂�𝑗
𝐵 otherwise.

(5.44)

Finally, if it is a pair check round (𝑐 = 2), Bob measures 𝑛 − 1 Pauli observables of the

form �̂� ⊗ �̂� and �̂� ⊗ �̂� on disjoint pairs of qubits. Depending on the input 𝑦, the
observables he measures are

{�̂�𝑦−𝑗
𝐵 �̂�𝑦+𝑗

𝐵 }
(𝑛−1)/2
𝑗=1 ∪ {�̂�𝑦−𝑗

𝐵 �̂�𝑦+𝑗
𝐵 }

(𝑛−1)/2
𝑗=1 , (5.45)

where addition is taken modulo 𝑛. Notice that all observables in the set of Eq. (5.45)

mutually commute, and by the construction given in Lemma 5.10 the combination of

all 𝑛 such sets covers every possible pair of 𝑛 qubits.

The correlations that we expect to be satisfied from honest check rounds are the

appropriate perfect correlations between Alice and Bob. For local check rounds, these

are (as before) all the single-qubit correlations ⟨𝜓| �̂�𝑗
𝐴�̂�𝑗

𝐵 |𝜓⟩ = 1 and ⟨𝜓| �̂�𝑗
𝐴�̂�𝑗

𝐵 |𝜓⟩ =
1. For pair check rounds, these are the correlations between all pairs of observables

⟨𝜓| �̂�𝑗
𝐴�̂�𝑘

𝐴�̂�𝑗
𝐵�̂�𝑘

𝐵 |𝜓⟩ = 1 and ⟨𝜓| �̂�𝑗
𝐴�̂�𝑘

𝐴�̂�𝑗
𝐵�̂�𝑘

𝐵 |𝜓⟩ = 1.

5.6.3 Unknown observables and correlations

We will again now denote the unknown state shared by the players by |𝜓⟩. Recall

that, as in Section 5.5.2 for the previous self-test of three Bell states, all unknown

observables must be labeled uniquely with respect to each observer’s possible input

questions in order to avoid assumptions about their measurements in this potentially

dishonest case.

Alice’s observables We define sets of mutually commuting unknown observables

on Alice’s side to be measured depending on her input 𝑥 as

{𝑋𝑗
𝐴}

𝑛
𝑗=1 if 𝑥 = 1, (5.46a)

{𝑌 𝑗
𝐴}

𝑛
𝑗=1 if 𝑥 = 2, (5.46b)

{𝑍𝑗
𝐴}

𝑛
𝑗=1 if 𝑥 = 3. (5.46c)

Each of these unknown observables corresponds in the honest case to a single-qubit

Pauli observable that acts on the qubit of Alice indicated by its superscript. However,

it should be noted that no such assumption is made about the qubit locality of the

untrusted observables defined here.
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Bob’s observables (game rounds) For game rounds (𝑐 = 0), we will denote the

sets of unknown observables to be measured by Bob, depending on his input 𝑦, by

{𝑋𝑦
𝐵, 𝑌 𝑦

𝐵 , 𝑍𝑦
𝐵}. (5.47)

It should once again be noted that one of the observables for each input is redundant,

as

𝑌 𝑦
𝐵|𝜓⟩ = −𝑋𝑦

𝐵𝑍𝑦
𝐵|𝜓⟩ (5.48)

by the rule for the product of Bob’s outputs (see Definition 5.3). We will, however,

keep all for notational convenience.

Bob’s observables (local check rounds) For local check rounds (𝑐 = 1), Bob’s
unknown observables correspond to single-qubit Pauli �̂� and �̂� observables acting

on his system. The set of observables for input 𝑦 is defined by

{𝑋𝑦
𝐵,𝑦} ∪ {𝑍𝑗

𝐵,𝑦 ∶ 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑦}. (5.49)

Bob’s observables (pair check rounds) For pair check rounds (𝑐 = 2), we define

sets of 𝑛 − 1 observables for each input 𝑦 as

{𝑋𝑦−𝑗,𝑦+𝑗
𝐵 }

(𝑛−1)/2
𝑗=1 ∪ {𝑍𝑦−𝑗,𝑦+𝑗

𝐵 }
(𝑛−1)/2
𝑗=1 (5.50)

where addition is taken modulo 𝑛. In contrast to the honest case of Eq. (5.45), we

have not assumed that Bob’s outputs arise as the product of multiple other observ-

ables. The two superscript indices denote that these observables correspond to the

product of Pauli observables on pairs of qubits. For example, the unknown observable

𝑋1,2
𝐵 corresponds to �̂�1

𝐵�̂�2
𝐵 in the honest case. In the notation we have introduced,

the order of superscript indices for an unknown observable is unimportant. Thus,

for convenience, we also introduce labels with reversed ordering of superscripts and

identify these with observables appearing in Eq. (5.50). Specifically, let the labels

𝑋𝑖,𝑗
𝐵 ≡ 𝑋𝑗,𝑖

𝐵 and 𝑍 𝑖,𝑗
𝐵 ≡ 𝑍𝑗,𝑖

𝐵 . This is consistent with the honest case, in which the

corresponding pairs of observables commute. By Lemma 5.10, the pairs of indices

(𝑦 − 𝑗, 𝑦 + 𝑗) appearing in Eq. (5.50) for a given input 𝑦 are pairwise disjoint and the

combination of these pairs over every input gives every possible index pair (up to

ordering of the indices). Thus the 𝑛 sets of 𝑛 − 1 pair check observables defined ac-

count for measurements of �̂� ⊗ �̂� and �̂� ⊗ �̂� on every possible pair of 𝑛 qubits and,

moreover, the observables for a given input mutually commute in the honest case as

expected.
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Correlations The correlations of unknown observables amounting to a uniformly

𝜀0-close to perfect strategy for the 3 × 𝑛 magic game (i.e. correlations obtained in

game rounds) are, with reference to the winning strategy described in Section 5.6.1,

⟨( ∏
𝑗≠𝑘

𝑋𝑗
𝐴)𝑋𝑘

𝐵⟩ ≥ 1 − 𝜀0, (5.51a)

−⟨( ∏
𝑗≠𝑘

𝑌 𝑗
𝐴)𝑋𝑘

𝐵𝑍𝑘
𝐵⟩ ≥ 1 − 𝜀0, (5.51b)

⟨( ∏
𝑗≠𝑘

𝑍𝑗
𝐴)𝑍𝑘

𝐵⟩ ≥ 1 − 𝜀0. (5.51c)

The correlations constituting uniformly 𝜀1-close to perfect local check rounds are, for

all distinct 𝑖, 𝑗 ∈ {1, … , 𝑛},

⟨𝑋𝑖
𝐴𝑋𝑖

𝐵,𝑖⟩ ≥ 1 − 𝜀1, (5.52a)

⟨𝑍 𝑖
𝐴𝑍 𝑖

𝐵,𝑗⟩ ≥ 1 − 𝜀1. (5.52b)

The correlations describing uniformly 𝜀2-close to perfect pair check rounds are, for

all distinct 𝑖, 𝑗 ∈ {1, … , 𝑛},

⟨𝑋𝑖
𝐴𝑋𝑗

𝐴𝑋𝑖,𝑗
𝐵 ⟩ ≥ 1 − 𝜀2, (5.53a)

⟨𝑍𝑖
𝐴𝑍𝑗

𝐴𝑍 𝑖,𝑗
𝐵 ⟩ ≥ 1 − 𝜀2. (5.53b)

From the assumption that all of these correlations are satisfied for our unknown ob-

servables, we will deduce appropriate commutation and anticommutation relations

which imply the existence of a local self-testing isometry by Theorem 2.8.

5.6.4 Commutation and anticommutation relations

Here we will deduce the appropriate state-dependent commutation and anticommu-

tation relations of our unknown reflections from which a local self-testing isometry

can be constructed. The results of this section are summarized in the following the-

orem.

Theorem 5.11. Let 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, … , 𝑛} be such that 𝑖 ≠ 𝑘 and 𝑗 ≠ 𝑙. We have

correlations between each unknown observable of Alice with each of the corresponding

observables on Bob’s side

‖(𝑋𝑖
𝐴 − 𝑋𝑖

𝐵,𝑖)|𝜓⟩‖ ≤ √2𝜀1, (5.54)

‖(𝑍 𝑖
𝐴 − 𝑍 𝑖

𝐵,𝑘)|𝜓⟩‖ ≤ √2𝜀1. (5.55)
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We have the state-dependent anticommutativity of all unknown 𝑋 observables with all

unknown 𝑍 observables corresponding to the same qubit

‖{𝑋𝑖
𝐴, 𝑍 𝑖

𝐴}|𝜓⟩‖ ≤ 3𝑛√2𝜀0 + 2(𝑛 − 1)√2𝜀2 + (
13(𝑛 − 1)

2
+ 17)√2𝜀1, (5.56)

‖{𝑋𝑖
𝐵,𝑖, 𝑍 𝑖

𝐵,𝑘}|𝜓⟩‖ ≤ 3𝑛√2𝜀0 + 2(𝑛 − 1)√2𝜀2 + (
13(𝑛 − 1)

2
+ 21)√2𝜀1. (5.57)

Finally, we have the state-dependent commutativity of unknown 𝑋 and 𝑍 observables.

On Bob’s side we have

‖[𝑋𝑖
𝐵,𝑖, 𝑋𝑗

𝐵,𝑗]|𝜓⟩‖ ≤ 4√2𝜀1, (5.58)

‖[𝑍 𝑖
𝐵,𝑘, 𝑍𝑗

𝐵,𝑙]|𝜓⟩‖ ≤ 4√2𝜀1; (5.59)

and moreover restricting to observables corresponding to different qubits 𝑖 ≠ 𝑗

‖[𝑋𝑖
𝐵,𝑖, 𝑍𝑗

𝐵,𝑙]|𝜓⟩‖ ≤ 8√2𝜀1. (5.60)

On Alice’s side, for different qubits 𝑖 ≠ 𝑗, we have

‖[𝑀 𝑖
𝐴, 𝑁 𝑗

𝐴]|𝜓⟩‖ ≤ 4√2𝜀1, (5.61)

where 𝑀 and 𝑁 can be either of 𝑋 and 𝑍.

Proof. Combine Propositions 5.12 to 5.14.

We begin by expressing the correlations of Eq. (5.52), between those observables

of the players corresponding to local Pauli observables acting on the same qubit, in

terms of norms.

Proposition 5.12 (Correlation). For all distinct 𝑖, 𝑗 ∈ {1, … , 𝑛}we have the correlation
estimates

‖(𝑋𝑖
𝐴 − 𝑋𝑖

𝐵,𝑖)|𝜓⟩‖ ≤ √2𝜀1, (5.62a)

‖(𝑍 𝑖
𝐴 − 𝑍 𝑖

𝐵,𝑗)|𝜓⟩‖ ≤ √2𝜀1. (5.62b)

Proof. Apply Lemma 2.2 to the correlations given in Eq. (5.52).

We now show the required state-dependent commutation relations for observ-

ables that correspond to local Pauli observables acting on different qubits. Since ob-

servables of Alice are defined to commute exactly with those of Bob, it is only nec-

essary to consider state-dependent commutation relations on each side separately.
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Proposition 5.13 (Commutation). For all 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, … , 𝑛} such that 𝑖 ≠ 𝑘 and

𝑗 ≠ 𝑙 we have

‖[𝑋𝑖
𝐵,𝑖, 𝑋𝑗

𝐵,𝑗]|𝜓⟩‖ ≤ 4√2𝜀1, (5.63a)

‖[𝑍 𝑖
𝐵,𝑘, 𝑍𝑗

𝐵,𝑙]|𝜓⟩‖ ≤ 4√2𝜀1. (5.63b)

Moreover if 𝑖 ≠ 𝑗 we have commutation relations for Bob

‖[𝑋𝑖
𝐵,𝑖, 𝑍𝑗

𝐵,𝑙]|𝜓⟩‖ ≤ 8√2𝜀1 (5.64)

and for Alice

‖[𝑀 𝑖
𝐴, 𝑁 𝑗

𝐴]|𝜓⟩‖ ≤ 4√2𝜀1, (5.65)

where 𝑀 and 𝑁 can be either of 𝑋 and 𝑍.

Proof. As the proof of Proposition 5.6, but using the correlations of Eq. (5.52) instead

of Eq. (5.15).

The following proposition states the robust state-dependent anticommutation re-

lations between each pair of unknown 𝑋 and 𝑍 observables corresponding to the

same qubit, depending on the correlation errors 𝜀0, 𝜀1, and 𝜀2. A sketch proof is given

below for the ideal case with vanishing errors, with the more lengthy, full proof being

the contents of Appendix B.

Proposition 5.14 (Anticommutation). For all 𝑖 ∈ {1, … , 𝑛} we have state-dependent

anticommutation relations for unknown observables of Alice

‖{𝑋𝑖
𝐴, 𝑍 𝑖

𝐴}|𝜓⟩‖ ≤ 3𝑛√2𝜀0 + 2(𝑛 − 1)√2𝜀2 + (
13(𝑛 − 1)

2
+ 17)√2𝜀1. (5.66)

Furthermore, for all 𝑗 ∈ {1, … , 𝑛} distinct from 𝑖 we have state-dependent anticommu-

tation relations for Bob’s check-round observables

‖{𝑋𝑖
𝐵,𝑖, 𝑍 𝑖

𝐵,𝑗}|𝜓⟩‖ ≤ 3𝑛√2𝜀0 + 2(𝑛 − 1)√2𝜀2 + (
13(𝑛 − 1)

2
+ 21)√2𝜀1. (5.67)

Sketch proof. For the sake of sketching the proof, take correlation errors to vanish

𝜀0 = 𝜀1 = 𝜀2 = 0. We will show the state-dependent anticommutation relation

{𝑋1
𝐴, 𝑍1

𝐴}|𝜓⟩ = 0. The relations for observables corresponding to the other qubits

follow similarly.

From the game correlations Eq. (5.51b) we have

(

𝑛

∏
𝑘=2

𝑍𝑘
𝐵𝑋𝑘

𝐵)|𝜓⟩ + 𝑍1
𝐵𝑋1

𝐵|𝜓⟩ = 0, (5.68)
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where the sign of the first term uses that 𝑛 is odd. Swapping to Alice’s side those

observables acting immediately on the state andmultiplying on the left by appropriate

unitary operators gives

𝑋2
𝐵(

𝑛−1

∏
𝑘=3

𝑍𝑘
𝐵𝑋𝑘

𝐵)𝑍𝑛
𝐵|𝜓⟩ + 𝑍2

𝐵𝑍1
𝐵𝑋𝑛

𝐴𝑋1
𝐴|𝜓⟩ = 0. (5.69)

Rewriting this by commuting those 𝑋 and 𝑍 observables within each term of the

product with 𝑘 odd results in

(

(𝑛−3)/2

∏
𝑘=1

𝑋2𝑘
𝐵 𝑋2𝑘+1

𝐵 𝑍2𝑘+1
𝐵 𝑍2𝑘+2

𝐵 )𝑋𝑛−1
𝐵 𝑍𝑛

𝐵|𝜓⟩ + 𝑍2
𝐵𝑍1

𝐵𝑋𝑛
𝐴𝑋1

𝐴|𝜓⟩ = 0. (5.70)

Using the correlations of Eqs. (5.51a) and (5.51c) to swap Bob’s observables to Alice’s

side (and freely inserting the identity operator as 𝑋𝑛−1
𝐴 𝑋𝑛−1

𝐴 into the resulting first

term) yields

( ∏
𝑘≠𝑛

𝑍𝑘
𝐴)( ∏

𝑘
𝑋𝑘

𝐴)(

(𝑛−3)/2

∏
𝑘=1

𝑋𝑛−2𝑘+1
𝐴 𝑍𝑛−2𝑘+1

𝐴 𝑍𝑛−2𝑘
𝐴 𝑋𝑛−2𝑘

𝐴 )𝑋2
𝐴|𝜓⟩

+ 𝑋𝑛
𝐴𝑋1

𝐴𝑍1
𝐴𝑍2

𝐴|𝜓⟩ = 0. (5.71)

From the correlations of Eq. (5.52) we have

𝑋2
𝐴𝑍1

𝐵,𝑛𝑍2
𝐵,𝑛𝑋𝑛

𝐵,𝑛𝑋1
𝐵,1|𝜓⟩ = 𝑋𝑛

𝐵,𝑛𝑍1,2
𝐵 𝑋1,2

𝐵 |𝜓⟩. (5.72)

Hence multiplying Eq. (5.71) on the left by 𝑍1
𝐵,𝑛𝑍2

𝐵,𝑛𝑋𝑛
𝐵,𝑛𝑋1

𝐵,1, applying Eq. (5.72) via

the triangle inequality in its first term (commuting the resulting observables for Bob

with the existing observables of Alice), and in its second term using the correlations

of Eq. (5.52),

𝑋𝑛
𝐵,𝑛𝑍1,2

𝐵 𝑋1,2
𝐵 ( ∏

𝑘≠𝑛
𝑍𝑘

𝐴)( ∏
𝑘

𝑋𝑘
𝐴)(

(𝑛−3)/2

∏
𝑘=1

𝑋𝑛−2𝑘+1
𝐴 𝑍𝑛−2𝑘+1

𝐴 𝑍𝑛−2𝑘
𝐴 𝑋𝑛−2𝑘

𝐴 )|𝜓⟩

+ (𝑋𝑛
𝐴𝑋1

𝐴𝑍1
𝐴𝑍2

𝐴)
2|𝜓⟩ = 0. (5.73)

Lemma B.1 shows for all 𝑘 ∈ {1, … , 𝑛−3
4 } that in particular

(𝑋4𝑘+2
𝐴 𝑍4𝑘+2

𝐴 𝑍4𝑘+1
𝐴 𝑋4𝑘+1

𝐴 )(𝑋4𝑘
𝐴 𝑍4𝑘

𝐴 𝑍4𝑘−1
𝐴 𝑋4𝑘−1

𝐴 )|𝜓⟩

= 𝑋4𝑘−1,4𝑘+1
𝐵 𝑍4𝑘−1,4𝑘+1

𝐵 𝑍4𝑘,4𝑘+2
𝐵 𝑋4𝑘,4𝑘+2

𝐵 |𝜓⟩.
(5.74)

Since 𝑛 ≡ 3 (mod 4), we can consider successive pairs of terms in the final product

of Eq. (5.73). We can replace each pair of these terms using pair check observables by
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repeatedly applying Eq. (5.74) and commuting the resulting observables of Bob with

those of Alice. This gives

𝑋𝑛
𝐵,𝑛𝑍1,2

𝐵 𝑋1,2
𝐵 (

(𝑛−3)/4

∏
𝑘=1

𝑋4𝑘−1,4𝑘+1
𝐵 𝑍4𝑘−1,4𝑘+1

𝐵 𝑍4𝑘,4𝑘+2
𝐵 𝑋4𝑘,4𝑘+2

𝐵 )

( ∏
𝑘≠𝑛

𝑍𝑘
𝐴)( ∏

𝑘
𝑋𝑘

𝐴)|𝜓⟩ + (𝑋𝑛
𝐴𝑋1

𝐴𝑍1
𝐴𝑍2

𝐴)
2|𝜓⟩ = 0. (5.75)

Lemma B.2 with 𝜎 = id chosen to be the identity permutation shows

( ∏
𝑘≠𝑛

𝑍𝑘
𝐴)( ∏

𝑘
𝑋𝑘

𝐴)|𝜓⟩

= 𝑋𝑛
𝐴𝑋1,2

𝐵 (
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∏
𝑘=1

𝑋4𝑘−1,4𝑘+1
𝐵 𝑋4𝑘,4𝑘+2

𝐵 )𝑍1,2
𝐵 (

(𝑛−3)/4

∏
𝑘=1

𝑍4𝑘−1,4𝑘+1
𝐵 𝑍4𝑘,4𝑘+2

𝐵 )|𝜓⟩.

(5.76)

If we assume that all pair check observables appearing in Eq. (5.75) are measured

as part of the same (pair check round) input for Bob (which is compatible with an

honest strategy since all of these observables have either disjoint or identical super-

script index pairs to all others), then all such observables mutually commute. Thus

applying Eq. (5.76) to Eq. (5.75) and using the involutory property of all pair check

observables to achieve many cancellations, we get

𝑋𝑛
𝐴𝑋𝑛

𝐵,𝑛|𝜓⟩ + (𝑋𝑛
𝐴𝑋1

𝐴𝑍1
𝐴𝑍2

𝐴)
2|𝜓⟩ = 0. (5.77)

It should be noted that, for the simplicity of this sketch, the set ofmutually commuting

pair check observables used as an input here does not necessarily match one of the

inputs defined in Eq. (5.50). Nonetheless, it is still the case that only 𝑛 such sets must

be used to complete the proof for all anticommutation relations of Alice’s observables,

and (with the proof essentially unchanged) the set used here matches one of those in

Eq. (5.50) under a suitable permutation of the qubit labels.

Applying the correlations of Eq. (5.52a) once in the first term of Eq. (5.77) and then

multiplying on the left by 𝑍2
𝐴𝑍1

𝐴𝑋1
𝐴𝑋𝑛

𝐴 gives

{𝑋1
𝐴𝑋𝑛

𝐴, 𝑍1
𝐴𝑍2

𝐴}|𝜓⟩ = 0. (5.78)

By identical argument to the proof of Proposition 5.8, but using Propositions 5.12

and 5.13 instead of Propositions 5.5 and 5.6 and using Eq. (5.78) in place of Lemma 5.7,

this implies the desired state-dependent anticommutation relation {𝑋1
𝐴, 𝑍1

𝐴}|𝜓⟩ = 0
for Alice’s observables.
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The state-dependent anticommutation relations for Bob can all be obtained by

simple application of Proposition 5.12, given those just proved for Alice’s observables.

5.7 Discussion

In this chapter we introduced one-side-local quantum strategies for the magic square

and 3 × 𝑛 magic rectangle games that win with certainty. We then supplemented

these strategieswith some extra correlations obtained via “check” rounds to obtain the

desired self-tests. Our final result is a parallel self-test for 𝑛 maximally entangled Bell

states which has several practical advantages over other protocols. Being a parallel

self-test of 𝑛 Bell states, our protocol makes no assumptions within the 𝑛 single-qubit

systems of each side.

We examine first the experimental requirements of realizing our self-test: some-

thing that is determined by the honest runs. All observables used in the honest strat-

egy for our self-test can be implemented as the tensor product of at most two Pauli

operators (of the same type) acting on different pairs of qubits. Moreover, an advan-

tage of our work is that Alice need only ever make local measurements of single-

qubit Pauli observables in the honest case. This is especially important for uses of

self-testing in which the level of quantum technology available to the parties is asym-

metric. For example, in the context of delegated quantum computation, the “client”

could have very limited quantum capabilities. It suffices that they are able to measure

single qubits in Pauli bases.

Another interesting property of our self-test concerns its communication com-

plexity. Of particular importance is the size of input questions, which quantify how

much randomness must be consumed by the protocol in each round of interaction.

If the input size is too large (for example linear in 𝑛), then estimation of probability

distributions of outcomes for each question becomes unfeasible (exponentially many

questions would take exponential time). Our test requires constant size (1 trit) input

questions for Alice, and for Bob requires 𝑂(log 𝑛) bit inputs. With a few very recent

exceptions [106–109] (in all of which robustness is either not explicitly constructed or

doubly exponential in 𝑛), other works have achieved at best logarithmic input com-

plexities (see for example [70, 103]). In our protocol, one of the players need only

receive questions of a constant size. Players must each output 𝑂(𝑛) bit answers, ex-

cept for in game rounds, in which Bob need only return 2 bit outputs.
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Our protocol also has the practical advantage that it makes use of solely per-

fect correlations; any optimal strategy succeeds with certainty, thus requiring fewer

rounds of experiment to achieve a desired statistical confidence.

The final figure of merit that we consider is robustness to noise. Given corre-

lations that are at worst 𝜀-close to perfect, using a self-testing theorem that can be

found in [27], our results achieve a robustness that is 𝑂(𝑛5/2√𝜀) for the collection

of Bell states and all single-qubit Pauli observables. That is, to achieve a robustness

𝛿 it is sufficient that 𝜀(𝑛, 𝛿) = 𝛺(𝑛−5𝛿2). The self-testing works of Coladangelo [27]

and Coudron and Natarajan [26] using instead the parallel repetition of the magic

square game as a basis perform slightly better in this regard, with 𝜀(𝑛, 𝛿) = 𝛺(𝑛−3𝛿2)
and 𝜀(𝑛, 𝛿) = 𝛺(𝑛−4𝛿4) being sufficient for robustness 𝛿, respectively. The work of

Coudron and Natarajan [26] achieves robustness for observables acting on all qubits

simultaneously, however, both works are examples of strictly parallel self-tests and

thus necessarily require 𝑂(𝑛) bit inputs. A protocol of Natarajan and Vidick [28] ex-

hibits the interesting property that its robustness does not depend explicitly on 𝑛.
The same authors later extended this work to have communication complexity only

logarithmic in the number of entangled states to be certified. The protocol, however,

instead self-tests 𝑁 maximally entangled qudit states and corresponding single-qudit

Pauli observables defined over a finite field 𝔽𝑞, where 𝑞 increases with 𝑁 [103]. It

is unclear whether the honest strategy provided can be realized with local measure-

ments with respect to Bell states.3

Our protocol is unique in that it achieves several desirable properties simultane-

ously. The prover with minimal quantum-technological capabilities (the client) need

only make local single-qubit measurements in Pauli bases upon accepting questions

all of constant size. Despite this, our protocol relies entirely on perfect correlations,

maintains a noise tolerance comparable with that of most others, and requires ques-

tions provided to the server to be of size at most logarithmic in the number of Bell

states tested. Sample comparisons with some other protocols can be found in Ta-

ble 5.1. The list of works included is not exhaustive, and other figures of merit could

also be considered depending on intended applications.

3While maximally-entangled qudit states and generalized qudit Pauli measurement projectors are
isomorphic to tensor products of |𝛷+⟩ and qubit Pauli measurement projectors respectively (as shown
in a lemma of [105]), it is not clear that all of the measurements used in the qudit honest strategy of
[103] can be mapped under such an isomorphism to local measurements with respect to each two-
dimensional register (in general they may become entangled measurements).
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Table 5.1: Comparison between certain protocols capable of self-testing 𝑛 EPR pairs in parallel. Cells

highlighted in green depict favorable comparisons within the property being considered. Those in

red compare unfavorably and those in yellow neutrally. Whether the honest strategy of each protocol

uses only local (single-qubit) measurements, is constructed entirely from measurements of the Pauli

group (on standard Bell states), and makes use of only perfect correlations (so that the strategy wins

with certainty) are considered. The error tolerance 𝜀(𝑛, 𝛿) is a sufficient maximum error in observed

correlations so that the states and measurements (up to local isometry) are a distance at most 𝛿 from

ideal. Input question sizes (the amounts of randomness consumed) are given in units of information.

Protocol Local Pauli Perf. corr. Error tol. Input size

𝜀(𝑛, 𝛿) Alice Bob

3 × 𝑛 protocol (this work) Alice Yes Yes 𝛺(𝑛−5𝛿2) 𝑂(1) 𝑂(log 𝑛)
Šupić et al. [106] Depends on base self-tests N/A 𝑂(1)
Chao et al. [70] Yes No No 𝛺(𝑛−5𝛿2) 𝑂(log 𝑛)
Natarajan and Vidick [103] No No Yes 𝛺(poly(𝛿)) poly(log 𝑛)
Natarajan and Vidick [28] No As CHSH or MS 𝛺(𝛿16) 𝑂(𝑛)
Coladangelo [27] (magic square) No Yes Yes 𝛺(𝑛−3𝛿2) 𝑂(𝑛)
Coladangelo [27] (CHSH) Yes No No 𝛺(𝑛−3𝛿2) 𝑂(𝑛)
Coudron and Natarajan [26] No Yes Yes 𝛺(𝑛−4𝛿4) 𝑂(𝑛)
McKague [102] (Mayers–Yao) Yes No No 𝛺(𝑛−8𝛿8) 𝑂(log log 𝑛)

Future works Aside from our self-testing result, all self-tests whose honest

strategies rely solely on themagic square game (such as those of [26, 27]) can of course

be implemented using our one-side-local strategy if desired. It may also be possible

to use our one-side-local strategy as a direct replacement for honest subroutines in

other protocols (such as the CHSH game in the protocol of Chao et al. [70] or for the

anticommutation test of Natarajan and Vidick [28]), allowing them to function with

the additional benefits of local Pauli measurements and perfect correlations at the

same time.

It may also be possible to devise magic square strategies that makes use of even

more Bell states (four or more) in a nontrivial way. In this case, we could also study

any additional properties of these strategies (similar to the one-side-locality of the

strategy we gave). Additional check rounds would likely need to be used to form a

self-testing statement inspired by such a strategy. However, with ever more kinds of

check rounds being required, it may become difficult to simultaneously preserve any

advantageous properties that are found from the larger magic square strategy.

In our work, we made use of a theorem of Coladangelo [27] to translate our main

state-dependent commutation/anticommutation results into a proper self-testing state-
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ment on the existence of a desired local isometry. Other choices of isometry could

equally-well have been made. On the one hand, other results based on the relevant

commutativity and anticommutativity of untrusted observables exist. For example,

a result of McKague [102, Lemma 6] could be directly substituted for that used here,

offering the additional property of simultaneously testing multiple Pauli measure-

ments at the cost of poorer robustness scaling: requiring 𝜀(𝑛, 𝛿) = 𝛺(𝑛−6𝛿4). On

the other hand, it would be interesting to examine the plausibility of more robust

isometries for our self-test. Such isometries could arise either as improved general

techniques for the construction of self-testing isometries given certain relations be-

tween the untrusted observables (similar to [27, 102]), or alternatively in the form

of specially-constructed isometries making use of features unique to the testing sce-

nario. Another possible future direction is to study the robustness of our protocol ex-

perimentally (or numerically under the semidefinite-programming characterization

of quantum correlations [59, 60, 110, 111]).

Adaptation of our results for device-independent versions of delegated quantum

computation protocols, or other secure quantum computation protocols [112, 113],

could be explored. The utility of our protocol for device-independent quantum key

distribution could also be examined. We hope that our self-test will be of retroac-

tive use in new applications of self-testing with asymmetric quantum technological

requirements that may be developed in the future.





Chapter 6

Parallel remote state preparation for
device-independent VBQC

In this chapter, we exhibit a two-prover parallel self-testing-based scheme in which a

classical verifier is able to delegate a quantum computation to an untrusted quantum

server Bob (who is assumed to be in possession of a powerful universal quantum com-

puter) using only a simple untrusted measurement device (which may only perform

single-qubit measurements) and shared entanglement. In our context, Alice acts both

as the verifier and the client who is in possession of the measurement device. The

computation is performed blindly by the server and its correctness is verifiable by the

client. The protocol proceeds for the verifier in the following way:

1. Certify 𝑛 EPR pairs of entanglement shared between Alice and Bob, and mea-

surements of each in the 𝑋𝑌-plane and computational bases.

2. Prepare a suitable 𝑛-qubit state on Bob’s side by measurements performed on

Alice’s side.

3. Performwith Bob the unconditionally secure interactive protocol of Fitzsimons

and Kashefi [40] (or another FK-type protocol).

The blindness and verifiability properties of our protocol are inherited from the FK

protocol, since using an entanglement-based approach to the remote state preparation

ensures that blindness is not compromised [7, 114]. Our main result is the parallel

device-independent certification of remotely prepared states that can be used for the

first two steps of the protocol.

105
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Theorem 6.1 (Informal Theorem 6.11). Suppose that the maximal quantum expecta-

tion values of all given Bell expressions are approximately attained by the measure-

ment statistics collected from provers Alice and Bob, i.e., Alice and Bob pass all requested

Bell tests with high probability (this is achievable by using the honest strategy of Sec-

tion 6.5.3). Then, with high probability, the state on Bob’s side upon Alice performing a

measurement is close (up to some isometry that is independent of the measurement or

its outcome) in trace distance to an ideal valid input to the FK protocol or that with all

dummy qubits flipped. The prepared state is known only to Alice.

The self-testing protocol that we base Theorem 6.1 on (whose resulting statement

is given in Theorem 6.16) simultaneously exhibits many properties desirable for the

VBQC application we consider. The rationale behind all of these properties is dis-

cussed in further detail in Section 6.2.

1. Our self-test is parallel, meaning that 𝑛 Bell states are certified at once with no

prior assumption on the tensor product structure of the underlying state space.

2. Permutations of 𝑛 single-qubit measurements on Alice’s side, each either in the

computational basis or one of the four bases of the eight canonical states of the

𝑋𝑌-plane (those corresponding to all cardinal and intercardinal directions) are

also certified.

3. The possible correlated complex conjugation freedom that arises for measure-

ment operators of this kind is accounted for and, moreover, is limited to mea-

surements in the computational basis (so as only to affect the preparation of

dummy qubits for the VBQC protocol).

4. The number of possible input questions in the test is small. The client side

measurement device is asked questions of size logarithmic in 𝑛, while questions

of only a constant size need be communicated to the server.

5. In the honest case, Alice need only perform single-qubit measurements local to

each of the EPR pairs she shares with Bob. This reflects the minimal quantum

capabilities she is given access to. Moreover, despite Bob being assumed to

possess a powerful universal quantum computer, he need only perform two-

qubit Bell measurements in the self-testing protocol, and most of the time only

measures single qubits.
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6. The isometry on Bob’s subsystem (and resulting reduced junk state) guaranteed

by the self-test is independent of any string of 𝑛 measurement bases selected

for state preparation. This ensures composability with the FK protocol.

7. Classical processing of the gathered raw experimental data required for the

self-test scales efficiently in 𝑛.

While the parallel self-test based on magic rectangles of Chapter 5 may be useful in a

general variety of client–server applications, it does not quite exhibit all these prop-

erties required for the application of the current chapter. In particular, it is not clear

how it could be adapted to satisfy both Items 2 and 7 (we need the client to be capable

of performing all possible sets of different measurements on 𝑛 individual qubits, while

we also want not to spend time estimating the probabilities for all possible outcomes

of these).

While we do not explicitly attempt to derive robustness bounds for our self-testing

statement, we believe that our derivations are compatible with the many standard

techniques that have been developed and used successfully for this purpose in other

works [27, 70, 102, 115, 116]. Nevertheless, we do phrase all of the subtests comprising

our full self-test in terms of an error tolerance 𝜀, and derive all relations between op-

erators in terms of this quantity. We therefore expect that our self-testing statement

would exhibit analytic robustness at worst 𝑂(√𝜀𝑛2), thereby giving a trace distance

that is 𝑂(𝜀1/3𝑛4/3) in Theorem 6.1. Large improvements in robustness having been

shown achievable using numerical optimization techniques such as semidefinite pro-

gramming [25, 59–61, 101, 106, 110, 111, 117, 118].

The information aggregated from experimental outcomes that is used in each sub-

test is local in the sense that it corresponds to measurements of only individual or

pairs of the 𝑛 Bell states in the honest strategy (despite being conditioned on the mea-

surements that are asked for at other positions). The quantity 𝜀 for each subtest then

does not refer to the noise and statistical uncertainty present over all 𝑛 Bell states, but

rather for constant sized chunks of the experimental resources. Thus, in a (possibly

noisy) physical implementation of the honest strategy, the error estimate 𝜀 would not

typically increase with the number of qubits being prepared 𝑛. It is also for this reason

that the exponential number of possible outcomes in 𝑛 associated with each question

does not lead to the estimation of probabilities requiring exponential time; local con-

sideration of outcomes effectively transforms exponentially many probabilities with

one distribution per question to a linear number of distributions per question each
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with a constant number of probabilities to estimate.

Many of our results are not specific to VBQC alone. In particular, our self-test

and remote state preparation protocol have properties that may be desirable for other

quantum delegation applications. Furthermore, due to the range of measurements we

are able to certify, our tests could be easily adapted to the remote preparation of other

states.

Relatedworks General composability of delegated quantum computationwas stud-

ied by Dunjko et al. [119]. The original two-prover protocol for VBQC that we make

use of is that of Fitzsimons and Kashefi [40], which is a verifiable extension to the

blind protocol of Broadbent et al. [120]. Other forms of resource states and repetition

schemes have since been devised in order to improve the practicality and overhead

of the protocol [44, 45, 121]. This VBQC protocol was proven to be robust and com-

posable with device-independent state preparation protocols by Gheorghiu et al. [7].

In this work, they also used the CHSH rigidity results of Reichardt et al. [122, 123] to

achieve such preparation sequentially, resulting in a device-independent VBQC pro-

tocol using total resources scaling like 𝑔2048, where 𝑔 is the number of gates in the cir-

cuit to be delegated. A more efficient scheme (again with sequential preparation but

this time based on self-testing) was given by Hajdušek et al. [30] and uses 𝛩(𝑔4 log 𝑔)
resources. This, however, requires that the server party is in possession of 𝑛 spacelike

separated provers, which is difficult to achieve in practice and cannot be verified to be

the case by the client. Another many-prover protocol was presented byMcKague [29]

based on self-testing graph states. A more recent approach is the so-called “verifier-

on-a-leash” protocol of Coladangelo et al. [53]. This device-independent protocol is

based on the verifiable delegation approach of Broadbent [49] rather than the FK pro-

tocol, with the blindness property a result of its combination with self-testing. The

efficient resource usage 𝛩(𝑔 log 𝑔) is primarily a result of the self-testing protocol

used: a modified version of the “Pauli braiding test” of Natarajan and Vidick [28].

However, this protocol requires that the client possesses a more powerful quantum

measuring device (being able to perform joint measurements of multiple qubits), has

exponentially many questions of size 𝑂(𝑛) bits, and is not fault-tolerant. The robust-

ness guarantee given by the underlying self-testing protocol is poly(𝜖), where 𝜖 is

the overall rejection probability in the test (a quantity that is not directly comparable

with the local error tolerances 𝜀 used in many other self-testing statements includ-

ing our own). The quantum steering scenario, in which the device of one party is
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entirely trusted, was considered in the context of VBQC by Gheorghiu et al. [31]. In

the setting of computational security, there exist recent single-prover protocols such

as those of Mahadev [124], Gheorghiu and Vidick [125], and Gheorghiu et al. [126],

the latter of which perform remote state preparation in this setting.

The concept of self-testing was first introduced by Mayers and Yao [4] in a cryp-

tographic context, with the first mention of the term “self-testing” appearing in [23].

The question of which states can be self-tested was answered by Coladangelo et al.

[127] in the bipartite case and later for the multipartite case [128]. Arbitrary par-

allel self-testing of EPR pairs was first introduced by McKague [102] and a host of

self-tests for entangled states of arbitrary local dimension have now been proposed

[26–28, 70, 71, 102–104, 106–109, 115, 116, 127, 129–131]. Complex conjugation am-

biguity in self-testing complex measurements was first recognized by McKague and

Mosca [68]. The triple CHSH inequality was first introduced by Acín et al. [132] and

subsequently used for self-testing by Bowles et al. [116], whose results we make use

of in the present work. It was also used by Renou et al. [133] to devise an experi-

ment to rule out quantum theory with real numbers. Commutation-based measures

were introduced by Kaniewski [69] and also used to certify multiple anticommuting

observables. Works of McKague [102] and [27] gave general theorems for convert-

ing certain sets of approximate commutation relations between observables to robust

self-testing statements (with real measurements). The latter is based onwork by Chao

et al. [70] and also gives self-testing statements for parallel repeated CHSH games,

while the former was later used as such by the same author [115]. The possibility

of self-testing with just a single prover by replacing nonlocal correlations by com-

putational assumptions was examined by Metger and Vidick [134]. More details on

self-testing can be found in the excellent review by Šupić and Bowles [24].

Chapter organization An overview of our techniques is given in Section 6.1. In

Section 6.2, we explain in further detail the desirable properties required of self-

testing protocols that are to be used for remote state preparation in the context of

VBQC. The triple CHSH inequality of Acín et al. [132] is exhibited in Section 6.3, and

we use it to show a single-copy self-testing statement that is used as a building block

in later results. Section 6.4 contains our results linking the existence of certain op-

erator relations to a self-testing statement with desired properties, as well as a result

for lifting parallel self-testing statements certifying only single-qubit observables to

those with arbitrary tensor products of observables. Our main protocol is outlined in
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Section 6.5, where we give some intuition behind our self-testing protocol, state our

main remote state preparation result (Theorem 6.11), detail the construction of Alice’s

question set in Section 6.5.1, define the measurement scenario and tests required in

Section 6.5.2, and give the honest strategy in Section 6.5.3. We prove in Section 6.6

that approximate acceptance in our tests yields approximate operator relations, and

thus give our formal self-testing statements of Theorem 6.16 and Corollary 6.17. We

finish in Section 6.7 with some discussion and possible future directions.

Notation The usual notation introduced in Section 2.1 for Hilbert spaces will be

used in this chapter. That is, different Hilbert spaces local to Alice will be denoted

by calligraphic variants such as 𝒜, 𝒜′, and ̃𝒜 (and similarly for Bob). A hat symbol

placed above an operator in this chapter will always mean the regularized version of

a corresponding operator labeled without the hat. For example, �̂� will refer to the

regularized version of some operator 𝑋, rather than referring to the Pauli observable

that will unambiguously be written using the notation 𝜎x or 𝜎1 (and similarly for

other Pauli observables).

Recall also from Section 2.1 that, for a string 𝒙 = (𝑥1, … , 𝑥𝑛), we adopt the nota-

tion that 𝑥𝑖 is the 𝑖th element of 𝒙, while 𝒙𝑖 denotes 𝒙 with its 𝑖th element removed.

6.1 Overview of techniques

The basis for our self-testing is a careful consideration of the statistics one would ex-

pect to find from parallel Clauser–Horne–Shimony–Holt (CHSH) measurements of 𝑛
maximally entangled Bell states shared between provers Alice and Bob [9]. We take

Alice to be the one performing measurements of Pauli observables from the standard

strategy for the CHSH game. By appropriately chunking the raw data received by

the verifier into outcomes for the different questions of a local CHSH inequality con-

ditioned on the different possible fixed input questions asked at other position, it is

possible to construct sets of CHSH-type inequalities for each of the individual Bell

states, all of which would be saturated with honest behavior. We proceed to show

the opposite of this—that the saturation of these inequalities is sufficient to prove

all operator relations required and achieve a self-testing statement for the Bell states

and CHSH measurements. Moreover, we show that after removing many of the re-

quested inequalities, the remaining tests are still sufficient. Enough of the tests can

be removed that the total number of remaining tests (and thus input questions) is
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reduced to scale quadratically (rather than exponentially) in 𝑛, and there are only a

constant number of possible actions that Bob need take. Intuitively, the players can-

not cheat in the tests by sharing fewer than 𝑛 Bell states since Alice cannot be sure

which of 𝑛 positions of Bob she is being tested against, while at the same time Bob

does not know how correlated different positions in Alice’s input question are with

one another. The reduction in the number of our questions comes from the fact that

only pairwise correlations in Alice’s question strings must be hidden (see Section 6.5

for further details).

We show that the “triple CHSH” inequalities introduced by Acín et al. [132] can

be used to extend our technique to include certification of all Pauli observables 𝜎x,

𝜎y, and 𝜎z. We construct our isometry such that the complex conjugation ambigu-

ity appears in 𝜎z rather than the usual 𝜎y measurements. We then introduce further

tests (also efficient), based on perfect correlations between further measurements for

Alice and those present already for Bob, that ensure that these additional untrusted

measurements for Alice certify reference measurements of the intercardinal direc-

tions of the 𝑋𝑌-plane, as required to generate input states to the FK VBQC protocol.

Finally, we augment our self-test thus far with a test that expects Bob to perform Bell

measurements on two sets of pairs of his qubits, in order to ensure that any possible

correlated complex conjugation of the provers’ measurement operators occurs glob-

ally across all 𝑛 of their registers (this is similar to techniques used in [53, 116] for the

same purpose).

One drawback of the technique we use to reduce Alice’s questions to quadratic

order is that the resulting local isometry is only able to certify the measurement oper-

ators for a constant number of choices of bases for Alice’s measurement of the 𝑛 EPR

pairs. The greater structure present in her restricted set of possible inputs may leak

some information about this choice of bases, which in turn would allow Bob to gain

some knowledge of the states prepared for him and cheat in the subsequent VBQC

interactive protocol. To remedy this, we instead use polynomially many different sets

of our quadratically many questions (polynomially many questions in 𝑛 overall) and

perform the certification for each of these. This results in a polynomial-sized subset

𝒮 of questions for Alice (which we call “special” questions), for each of which a differ-

ent local isometry certifies a different string of bases measured on Alice’s reference

system. In order for our remote state preparation protocol to be composable with the

FK interactive protocol, it must be the case that states are prepared up to an isometry

that is independent of the choice of bases in 𝒮 (otherwise one could not assume that
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the physical state of Bob originates from local quantum operations applied to his ideal

reference state without also assuming that he has knowledge of the bases chosen [7]).

This does not present a problem for the use of our self-test as, despite each question

in 𝒮 requiring a different local isometry, we show that the isometry local to Bob’s

subsystem is the same in all of these cases. While it is the case that the resulting se-

curity parameter for the FK protocol will go as the reciprocal of |𝒮|, which is inverse

polynomial in 𝑛 for our choice of questions, this trade-off between question size and

security scaling is an inescapable feature of any remote state preparation protocol

used for FK-type protocols.

Since our protocol must perform remote state preparation, we are interested in

self-testing statements estimate the closeness of (normalized) physical post-measurement

states from their (normalized) ideal counterparts. The robustness guarantees usu-

ally given by self-testing statements estimate this distance for observables acting on

states, which naively lead to similar estimates for (subnormalized) measurement pro-

jectors acting on states. This is acceptable for protocols that prepare states sequen-

tially (such as in [7, 30, 122, 123]), however, for parallel protocols of 𝑛 states (which

have exponentially many outcomes per measurement) would lead to robustness esti-

mates that scale exponentially in 𝑛 for post-measurement states. We overcome this

using Lemma 6.2 and Theorem 6.4 of Section 6.2.1 at the cost of relaxing the estimate

by a factor that is polynomial in the original robustness and allowing acceptance with

high probability.

6.2 Efficient parallel self-testing for DIVBQC

Standard VBQC protocols (such as the original Fitzsimons–Kashefi protocol [40] we

will consider) require that 𝑛 qubits be prepared on the server side, each in one of the

states |±𝜃⟩, or the states |0⟩ or |1⟩ (for dummy qubits). A self-test appropriate for

device-independently preparing states for practical VBQC should satisfy the follow-

ing properties.

1. The self-test should certify the presence of 𝑛 copies of the Bell state |𝛷+⟩ shared
between Alice and Bob. That is, the state |𝛷+⟩⊗𝑛 should be self-tested.

2. Denote by |𝜎𝜆
𝜒⟩ the eigenstate of 𝜎𝜒 with eigenvalue 𝜆 ∈ {+1, −1} and 𝜒 ∈

{x, y, z, x+y, x−y} (see notation in Section 2.1). For 𝑛-tuples of Pauli bases 𝝌 =
(𝜒1, … , 𝜒𝑛) ∈ {x, y, z, x + y, x − y}𝑛, the self-test should certify the projective
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measurement of the certified state |𝛷+⟩⊗𝑛 on Alice’s side

{

𝑛

⨂
𝑗=1

|𝜎
𝜆𝑗
𝜒𝑗⟩⟨𝜎

𝜆𝑗
𝜒𝑗|}𝝀∈{+1,−1}𝑛

(6.1)

with each measurement operator composed of the tensor product of 𝑛 projec-

tors. We will refer to these as special or preparation measurements for reasons

that will become clear.

3. The number of possible input questions, and hence the number of different

measurements required, should be small. Specifically, questions should be of

size at most logarithmic in 𝑛.

4. The self-test should be robust to the observation of nonideal statistics.

5. All measurements performed on Alice’s subsystem (the client side) must be

local to one of her qubits in the honest case.

6. Classical processing of the gathered experimental outcomes should scale effi-

ciently in 𝑛.

7. Possible complex conjugation of measurement operators should occur only in

the preparation of dummy qubits |0⟩ and |1⟩ (i.e. measurement of Pauli 𝜎z).

8. The isometry on Bob’s subsystem and reduced junk state guaranteed by the

self-test should be independent of the choice of preparation question 𝝌.

Together, Properties 1 and 2 allow Alice to remotely prepare 𝑛 qubit states on

Bob’s subsystem (up to the freedoms allowed by self-testing), each in one of the two

states comprising a prechosen basis for the purpose of VBQC (any of the bases corre-

sponding to observables 𝜎x, 𝜎y, 𝜎z, 𝜎x+y, or 𝜎x−y). The outcome Alice receives allows

her to determine the state that has been prepared on Bob’s subsystem. Meanwhile,

Bob is aware of neither the state that was prepared on his side, nor the specific bases

chosen.

Property 3 means that it is experimentally feasible to gather outcome statistics

upon all possible questions. If, instead, questions had size linear in 𝑛, then the time

required to achieve good statistical confidence would scale exponentially with the

number of qubits to be prepared. At first glance, Properties 2 and 3 may appear

slightly contradictory, since the number of possible 𝑛-tuples of bases is exponential in
𝑛. We avoid this issue by requiring that only a single special one of these exponentially
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many measurements be among those self-tested. We still require, however, that this

special measurement may be freely defined using any of the possible basis tuples,

prior to the initiation of the self-testing protocol. The reason for this is that the special

measurement will later be used by Alice to prepare the 𝑛 server-side qubits in the

suitable bases to perform an arbitrary computation (that is prechosen by Alice), for

which the ability to prepare each qubit in an arbitrary basis is desirable. In this sense,

we must in fact define a whole class of self-testing protocols—one for each choice of

special measurement—all of which satisfy the other properties.

The robustness included as Property 4 is important to allow for experimental noise

and imperfections. The connection between the level of robustness guaranteed by a

self-testing statement and that which can be achieved in remote state preparation is

examined in more detail in Section 6.2.1.

Property 5 is included to ensure that it is sufficient for the client to possess only a

simple quantum device. Such a devicemay only be capable of performing single-qubit

measurements and, thus, we must ensure that all measurements included as part of

the honest strategy for the self-test (even those that are not used for preparation) can

be performed by the client.

Property 6 means that the experimental data that is collected may be combined

and processed such that the conditions of the self-test are shown to be true in a reason-

able time. This may not necessarily be the case if, for example, the Bell expressions

which must be evaluated in order to perform the certification have exponentially

many terms in 𝑛 [106].

Property 7 preserves the verifiability property of the FK protocol while still allow-

ing states to be prepared in all required bases. This is discussed further in Section 6.2.2

(see also [7]).

Property 8 is a slight restriction on isometries found in self-testing protocols, al-

lowing the physical states prepared using an untrusted strategy to be used as resource

states for VBQC. In the FK protocol, the possibly deviating server of Bob is allowed

to apply any unitary (or, more generally, quantum channel) to the reference qubits

that are received, but has no knowledge of the bases in which these qubits have been

prepared [40]. We would thus like to interpret the physical state prepared on Bob’s

side due to a self-testing protocol as originating solely from such a process [7]. This

can be done be “undoing” Bob’s self-testing isometry, provided that his junk state

(ancillary to the reference qubits) and isometry do not depend on any information

about the choice of bases (i.e. the preparation question chosen).
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6.2.1 Post-measurement states

Robust parallel self-tests for 𝑛-qubit states and measurements typically guarantee es-

timates for observables acting on the states of the form

𝑉 𝑀𝒔|𝜓⟩
𝛿
≈ 𝑀′𝒔|𝜓′⟩ ⊗ |𝜉⟩ (6.2)

for all 𝒔 ∈ {0, 1}𝑛 (or in expectation over all 𝒔 in some cases [28, 103]). This naively

leads to statements for individual outcomes 𝒂 ∈ {+, −}𝑛 of the form

𝑉 𝑀𝒂|𝜓⟩
𝛿
≈ 𝑀′

𝒂|𝜓′⟩ ⊗ |𝜉⟩, (6.3)

where the 𝑀𝒂 and 𝑀′
𝒂 are projection operators (cf. Eqs. (2.39) and (2.40) and Def-

initions 2.6 and 2.7). For most practical applications (including the present one),

however, one is instead interested in characterizing the physical and reference post-

measurement states
𝑀𝒂|𝜓⟩

√⟨𝜓| 𝑀𝒂 |𝜓⟩
,

𝑀′
𝒂|𝜓′⟩

√⟨𝜓| 𝑀′
𝒂 |𝜓′⟩

. (6.4)

Since there are 2𝑛 possible outcomes 𝒂 (and assuming they occur approximately uni-

formly), their respective probabilities ⟨𝜓| 𝑀𝒂 |𝜓⟩must all be approximately 2−𝑛. There-

fore, self-testing guarantees of the form of Eq. (6.3) typically lead to vector norm dis-

tances 𝛿√2𝑛 of physical post-measurement states from their reference counterparts,

which blow up exponentially in 𝑛.

In the following, we will overcome this impracticality by slightly relaxing the

distance guaranteed by a factor polynomial in 𝛿, and also allowing that this guar-

antee fails to be satisfied with some probability that is polynomially small in 𝛿. In

the noiseless honest case, 𝛿 is written in terms of some error 𝜀 that (as is typical of

the statistical tools used to analyze data for self-testing protocols [135]) can be ex-

perimentally saturated with statistical confidence exponentially close to unity in the

number of experimental trials performed.

We first exhibit in Lemma 6.2 a general result on the trace distance between pure

states that is compatible with distances that are expressed in expectation (as is the

case for some self-testing statements). We then use a special case of this to show

in Theorem 6.4 that, given certain self-testing guarantees of the form that will be

derived in our context later (see Theorems 6.11 and 6.16 and Corollary 6.17), the post-

measurement states of the physical experimentmust be close in trace distance to those

of the reference experiment most of the time.
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Lemma 6.2. Let 𝛴 × 𝛺 be some finite sample space. Let 𝜋 be some probability mass

function on 𝛴 for the random variable 𝑆∶ 𝛴 × 𝛺 → 𝛴 defined by 𝑆(𝜎, 𝜔) = 𝜎. For all
𝜎 ∈ 𝛴 and 𝜔 ∈ 𝛺, let |𝑢𝜔

𝜎 ⟩ be vectors satisfying

∑
𝜔∈𝛺

‖|𝑢𝜔
𝜎 ⟩‖2 = 1. (6.5)

For each 𝜎 ∈ 𝛴, let 𝑝𝜎 be the function on 𝛺 defined by

𝑝𝜎(𝜔) = ‖|𝑢𝜔
𝜎 ⟩‖2. (6.6)

Define the probability mass function 𝑝 on 𝛴 × 𝛺 by

𝑝(𝜎, 𝜔) = 𝑝𝜎(𝜔)𝜋(𝜎). (6.7)

For each 𝜎 ∈ 𝛴 and 𝜔 ∈ 𝛺 satisfying 𝑝(𝜎, 𝜔) > 0, let |𝑣𝜔
𝜎 ⟩ be nonzero vectors. Denote

normalized versions of all the vectors (when they are defined) by

| ̂𝑢𝜔
𝜎 ⟩ =

|𝑢𝜔
𝜎 ⟩

‖|𝑢𝜔
𝜎 ⟩‖

, | ̂𝑣𝜔
𝜎 ⟩ =

|𝑣𝜔
𝜎 ⟩

‖|𝑣𝜔
𝜎 ⟩‖

. (6.8)

Let 𝐷 be a random variable on 𝛴 × 𝛺 defined by the trace distance between these nor-

malized states

𝐷(𝜎, 𝜔) =
⎧⎪
⎨
⎪⎩

1
2‖| ̂𝑢𝜔

𝜎 ⟩⟨ ̂𝑢𝜔
𝜎 | − | ̂𝑣𝜔

𝜎 ⟩⟨ ̂𝑣𝜔
𝜎 |‖1 if 𝑝(𝜎, 𝜔) > 0,

0 if 𝑝(𝜎, 𝜔) = 0.
(6.9)

Suppose that for some 𝛿 ≥ 0 we have

∑
𝜎∈𝛴

𝜋(𝜎) ∑
𝜔∈𝛺

‖|𝑢𝜔
𝜎 ⟩ − |𝑣𝜔

𝜎 ⟩‖2 ≤ 𝛿2. (6.10)

Then, for any 𝑐 > 0,

Pr(𝐷 ≤ 𝛿𝑐) ≥ 1 − 4𝛿2(1−𝑐) (6.11)

for all 𝜎 ∈ 𝛴 for which 𝜋(𝜎) > 0.

Proof. See Appendix D.

The proof of Lemma 6.2 relies on the following elementary lemma, which gives

a useful bound on the trace distance between operators of the form |𝑣⟩⟨𝑣|, where

vectors |𝑣⟩ may be subnormalized.
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Lemma 6.3. Let vectors |𝑢⟩ and |𝑣⟩ belonging to the same Hilbert space satisfy ‖|𝑢⟩‖ ≤
1 and ‖|𝑣⟩‖ ≤ 1. The trace distance is then bounded as

1
2

‖|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|‖1 ≤ 2‖|𝑢⟩ − |𝑣⟩‖. (6.12)

If the vectors have unit length then the bound can be tightened to

1
2

‖|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|‖1 ≤ ‖|𝑢⟩ − |𝑣⟩‖. (6.13)

Proof. See Appendix C for a proof of the general bound. For unit vectors, a simpler

proof suffices, with the result immediately following from the inequality

|⟨𝑢|𝑣⟩| ≥ ℜ𝔢 ⟨𝑢|𝑣⟩ = 1 − 1
2

‖|𝑢⟩ − |𝑣⟩‖2 (6.14)

applied to the Fuchs–van de Graaf expression

1
2

‖|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|‖1 = √1 − |⟨𝑢|𝑣⟩|2 (6.15)

for pure states.

We now proceed to use a special case of Lemma 6.2 to state a similar result for the

context of self-testing with robustness guarantees given for all possible observables

that can be formed from measurement operators for parallel binary outcomes.

Theorem 6.4. Let 𝑉∶ ℋ → ℋ′ be an isometry. Define the probability mass function

𝑝 for outcomes 𝒂 ∈ {0, 1}𝑛 of a projective measurement {𝑀𝒂}𝒂 ⊂ ℒ(ℋ) on a state

|𝜓⟩ ∈ ℋ by 𝑝(𝒂) = ⟨𝜓| 𝑀𝒂 |𝜓⟩. Let |𝜓′⟩ ∈ ℋ′ be a state and let {𝑀′
𝒂}𝒂 ⊂ ℒ(ℋ′) be

a projective measurement such that 𝑀′
𝒂|𝜓′⟩ ≠ 0 for all 𝒂. For all 𝒔 ∈ {0, 1}𝑛, define

observables

𝑀𝒔 = ∑
𝒂

(−1)𝒂⋅𝒔𝑀𝒂, 𝑀′𝒔 = ∑
𝒂

(−1)𝒂⋅𝒔𝑀′
𝒂. (6.16)

Suppose that for all 𝒔 we have

𝑉 𝑀𝒔|𝜓⟩
𝛿
≈ 𝑀′𝒔|𝜓′⟩. (6.17)

Defining a random variable 𝐷 for the trace distance between post-measurement states

𝐷(𝒂) = 1
2‖

𝑉 𝑀𝒂|𝜓⟩⟨𝜓|𝑀𝒂𝑉 †

𝑝(𝒂)
−

𝑀′
𝒂|𝜓′⟩⟨𝜓′|𝑀′

𝒂
⟨𝜓′| 𝑀′

𝒂 |𝜓′⟩ ‖
1

(6.18)

we then have (with respect to the probability distribution 𝑝) that

Pr(𝐷 ≤ 𝛿2/3) ≥ 1 − 4𝛿2/3. (6.19)



118 Chapter 6. Parallel remote state preparation for device-independent VBQC

Remark. We assume without loss of generality that all outcomes satisfy 𝑝(𝒂) > 0,
since values of 𝐷 that could never be observed would not contribute towards the

resulting probability.

Proof. Let us denote

|𝑤𝒂⟩ = 𝑉 𝑀𝒂|𝜓⟩ − 𝑀′
𝒂|𝜓′⟩. (6.20)

Combining Eqs. (6.16) and (6.17), we can write

𝛿2 ≥ 1
2𝑛 ∑

𝒔
‖𝑉 𝑀𝒔|𝜓⟩ − 𝑀′𝒔|𝜓′⟩‖

2

= 1
2𝑛 ∑

𝒔
‖∑

𝒂
(−1)𝒂⋅𝒔|𝑤𝒂⟩‖

2

= 1
2𝑛 ∑

𝒂,𝒃,𝒔
(−1)(𝒂⊕𝒃)⋅𝒔⟨𝑤𝒃|𝑤𝒂⟩

= ∑
𝒂

‖𝑉 𝑀𝒂|𝜓⟩ − 𝑀′
𝒂|𝜓′⟩‖2,

(6.21)

where we have used the fact that

∑
𝒔

(−1)𝒄⋅𝒔 =
⎧⎪
⎨
⎪⎩

2𝑛 if 𝒄 = 𝟎,

0 otherwise.
(6.22)

Note that ‖𝑉 𝑀𝒂|𝜓⟩‖2 = ⟨𝜓| 𝑀𝒂 |𝜓⟩ and ‖𝑀′
𝒂|𝜓′⟩‖2 = ⟨𝜓′| 𝑀′

𝒂 |𝜓′⟩. Finally, apply
Lemma 6.2 with sample spaces 𝛴 = {𝜎} for some 𝜎 (so that 𝜋(𝜎) = 1) and 𝛺 =
{0, 1}𝑛, vectors |𝑢𝒂⟩ = 𝑉 𝑀𝒂|𝜓⟩ and |𝑣𝒂⟩ = 𝑀′

𝒂|𝜓′⟩, and choosing 𝑐 = 2/3.

6.2.2 Correlated complex conjugation

Aswe have already seen in Section 2.5, it is impossible to distinguish a reference strat-

egy from that with its measurement operators replaced by their complex conjugates

(performed in some fixed local orthonormal bases for which the reference state may

be assumed to have real matrix elements). Since there is no basis in which all of 𝜎x, 𝜎y,

and 𝜎z simultaneously have real matrix representations, some complex conjugation

ambiguity must necessarily be included in our self-testing statement in order that we

certify measurements of all 𝜎x, 𝜎y, 𝜎z, 𝜎x+y, and 𝜎x−y on Alice’s side, as required to

satisfy Property 2.

Note that there exist a pair of local orthonormal bases for which the matrix rep-

resentations of the state |𝛷+⟩ and observables 𝜎x and 𝜎y are all real, while 𝜎∗
z = −𝜎z

(with ∗ denoting complex conjugation performed in the aforementioned basis). The
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observable −𝜎z has eigenstate |1⟩ for the eigenvalue +1 and eigenstate |0⟩ for the

eigenvalue −1. With this choice of complex conjugation basis, the only ambiguity

introduced in the preparation of qubits on Bob’s side is that a qubit supposedly pre-

pared by the measurement of 𝜎z in a state |0⟩ or |1⟩ may in fact be prepared in the

opposite state |1⟩ or |0⟩, respectively. States prepared by measurements of any of the

other observables 𝜎x, 𝜎y, 𝜎x+y, or 𝜎x−y remain unambiguous.

The FK protocol correctly handles input states in which all of the “dummy” qubits

of the honest input |0⟩ or |1⟩ are unknowingly (with some unknown probability)

flipped to |1⟩ and |0⟩, respectively. Hence, for the remainder of this work, we take

complex conjugation to be performed in the local orthonormal bases described in this

section, unless otherwise stated.

Proposition 6.5 (Gheorghiu et al. [7, Lemma 10]). If the initial input state of the FK
protocol is close to the ideal input state with all dummy qubits |0⟩ and |1⟩ replaced with
|1⟩ and |0⟩, respectively, the protocol will reject it with high probability.

Proof sketch. Given a trap that has an odd number of dummy qubit neighbors, the

verifier expects to apply a 𝑍 correction based on the parity of the number of |1⟩
neighbors. With all |0⟩ and |1⟩ qubits of the input flipped with respect to the ideal

input, the number of |1⟩ neighbors of the trap has opposite parity to what the verifier

expects. In this case, the verifier will always get the opposite result from the trap to

that which is expected. Therefore, as long as the verifier makes sure that at least one

trap has an odd number of dummy neighbors (which is easily achievable), the state

is rejected in the protocol.

We require that possible flipping of the dummy qubits in the input state occurs

globally: either all such states are flipped or none are flipped. Note that this is in

correspondence with Definition 2.7 of complex self-testing, in which complex conju-

gation is possibly performed on the whole reference measurement operator without

any mention of its structure (in our case the many-qubit tensor product structure).

One may otherwise imagine a weaker statement of self-testing for the special case

of 𝑛-fold product states, in which the reference experiment is certified up to complex

conjugation at any combination of the 𝑛 positions. It is possible to construct tests

that enforce global complex conjugation from some such statements [116].

In previous works lifting the FK protocol to the device-independent scenario, that

complex conjugation must be accounted for in a global fashion was not a considera-
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tion, since state preparation was performed sequentially (self-testing single EPR pairs

as in [30] or based on the rigidity of the CHSH game [122, 123] as in [7]).

6.3 Triple CHSH inequality

Let us first consider the well-known problem of self-testing a single Bell state and

single-qubit Pauli observables in the following scenario. In each round, Alice is pro-

vided with one of three possible input questions 𝑥 ∈ {1, 2, 3} and answers with

𝑎 ∈ {+1, −1}. These are denoted by the ±1-outcome observables acting on Alice’s

subsystem 𝐴1, 𝐴2, and 𝐴3 respectively. Meanwhile, Bob is provided with one of six

possible input questions 𝑦 ∈ {1, … , 6} and answers with 𝑏 ∈ {+1, −1}. These are

denoted by the ±1-outcome observables acting on Bob’s subsystem 𝐷z,x, 𝐸z,x, 𝐷z,y,

𝐸z,y, 𝐷x,y, and 𝐸x,y respectively.

Consider the triple CHSH operator [116, 132] defined as

𝐶 = 𝐴3 ⊗ (𝐷z,x + 𝐸z,x) + 𝐴1 ⊗ (𝐷z,x − 𝐸z,x)

+ 𝐴3 ⊗ (𝐷z,y + 𝐸z,y) + 𝐴2 ⊗ (𝐷z,y − 𝐸z,y)

+ 𝐴1 ⊗ (𝐷x,y + 𝐸x,y) + 𝐴2 ⊗ (𝐷x,y − 𝐸x,y).

(6.23)

This operator is the sum of three CHSH operators, with each of 𝐴1, 𝐴2, and 𝐴3 con-

tained in two of them. The expectation value satisfies ⟨𝜓| 𝐶 |𝜓⟩ ≤ 6√2 for any state

|𝜓⟩ shared between Alice and Bob, since each of the three CHSH operators has ex-

pectation upper bounded by 2√2. We can saturate this bound by taking the shared

state to be

|𝜓⟩ = |𝛷+⟩ ≡
|00⟩ + |11⟩

√2
(6.24)

and the observables to be

𝐴1 = 𝜎x, 𝐴2 = −𝜎y, 𝐴3 = 𝜎z, 𝐷𝑗,𝑘 =
𝜎𝑗 + 𝜎𝑘

√2
, 𝐸𝑗,𝑘 =

𝜎𝑗 − 𝜎𝑘

√2
. (6.25)

In the classical case, we have the triple CHSH inequality ⟨𝐶⟩ ≤ 6. Theminus sign pre-

ceding 𝜎y in Eq. (6.25) is due to the perfect anticorrelation of 𝜎y between the subsys-

tems of Alice and Bob in the state |𝛷+⟩. We could just as easily saturate the quantum

bound instead taking 𝐴2 = 𝜎y by changing the sign of each 𝐴2 in Eq. (6.23).

It has previously been shown (see [116, 132]) that a maximal violation ⟨𝜓| 𝐶 |𝜓⟩ =
6√2 self-tests the reference state |𝛷+⟩ and the reference observables {𝜎x, 𝜎y, 𝜎z} or

their complex conjugates (in the computational basis) {𝜎x, −𝜎y, 𝜎z}, acting on Alice’s
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subsystem (with the complex measurement 𝜎y self-tested in the sense of McKague

and Mosca [68]). Specifically, the following theorem was previously shown.

Theorem 6.6 (Bowles et al. [116]). Suppose the state |𝜓⟩ ∈ 𝒜⊗ℬ and the observables

𝐴𝑗 ∈ ℒ(𝒜) and 𝐷𝑗,𝑘, 𝐸𝑗,𝑘 ∈ ℒ(ℬ) satisfy

⟨𝜓| 𝐶 |𝜓⟩ = 6√2 − 𝜀. (6.26)

Then there exist linear isometries 𝑉𝒜 ∶ 𝒜 → 𝒜⊗𝒜′ ⊗𝒜″ and 𝑉ℬ ∶ ℬ → ℬ⊗ℬ′ ⊗ℬ″

defining the local isometry 𝑉 = 𝑉𝒜 ⊗ 𝑉ℬ such that

𝑉 |𝜓⟩
𝑐√𝜀
≈ |𝛷+⟩𝒜′ℬ′ ⊗ |𝜉⟩, (6.27a)

𝑉 𝐴1|𝜓⟩
𝑐√𝜀
≈ 𝜎𝒜′

x |𝛷+⟩𝒜′ℬ′ ⊗ |𝜉⟩, (6.27b)

𝑉 𝐴2|𝜓⟩
𝑐√𝜀
≈ −𝜎𝒜′

y |𝛷+⟩𝒜′ℬ′ ⊗ 𝜎𝒜″
z |𝜉⟩, (6.27c)

𝑉 𝐴3|𝜓⟩
𝑐√𝜀
≈ 𝜎𝒜′

z |𝛷+⟩𝒜′ℬ′ ⊗ |𝜉⟩, (6.27d)

where 𝑐 is a nonnegative constant and the state |𝜉⟩ ∈ 𝒜 ⊗ 𝒜″ ⊗ ℬ ⊗ ℬ″ has the form

|𝜉⟩ = |00⟩𝒜″ℬ″ ⊗ |𝜉0⟩𝒜ℬ + |11⟩𝒜″ℬ″ ⊗ |𝜉1⟩𝒜ℬ (6.28)

for some subnormalized |𝜉0⟩𝒜ℬ and |𝜉1⟩𝒜ℬ satisfying ⟨𝜉0|𝜉0⟩𝒜ℬ + ⟨𝜉1|𝜉1⟩𝒜ℬ = 1.

The appearance of the additional 𝜎z observable in Eq. (6.27c) acting on the an-

cilla space 𝒜″ can be explained as performing a measurement of Alice’s junk state

ancilla in the computational basis, the outcome of which controls whether 𝜎y or −𝜎y

is applied to Alice’s half of |𝛷+⟩. The probability of applying the complex conjugate

observable is given by ⟨𝜉1|𝜉1⟩𝒜ℬ.

We show a variant of this result that is instead consistent with complex conju-

gation being performed in a basis in which the state |𝛷+⟩ and observables 𝜎x and

𝜎y have real matrices, while 𝜎z satisfies 𝜎∗
z = −𝜎z. The isometry used to do this is

depicted in Fig. 6.1 as a circuit acting on the state |𝜓⟩𝐴𝐵. This circuit is similar to the

usual partial swap isometry (used for self-testing in [136]) followed by phase kickback

unitaries controlled by additional ancilla qubits [68]. It is modified to use physical op-

erators corresponding to Pauli 𝑋 and 𝑌 in the first “swap” stage, and Pauli 𝑍 in the

second “phase kickback” stage. The unitary operators �̂�ℬ, ̂𝑌ℬ, and �̂�ℬ contained on
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Bob’s side of the circuit are regularized versions of

𝑋ℬ =
𝐷x,y + 𝐸x,y

√2
, (6.29a)

𝑌ℬ =
𝐷x,y − 𝐸x,y

√2
, (6.29b)

𝑍ℬ =
𝐷z,x + 𝐸z,x

√2
. (6.29c)

|𝜓⟩𝒜ℬ

|0⟩𝒜′ 𝐻 𝐻

|𝛷+⟩𝒜′ℬ′

|0⟩𝒜″ 𝐻 𝐻

|𝜉⟩
𝑖𝑌𝒜𝑋𝒜 𝑋𝒜 𝑍𝒜

𝑖 ̂𝑌ℬ�̂�ℬ �̂�ℬ �̂�ℬ

|0⟩ℬ″ 𝐻 𝐻

|0⟩ℬ′ 𝐻 𝐻

Figure 6.1: A modified partial swap isometry followed by phase kickback unitaries, acting on the

state |𝜓⟩𝒜ℬ, which is used to self-test the state |𝛷+⟩ and measurements of {𝜎x, 𝜎y, 𝜎z} or {𝜎x, 𝜎y, −𝜎z},
given a maximal violation of the triple CHSH inequality. The unitary operators on Alice’s subsystem

are simply 𝑋𝒜 = 𝐴1, 𝑌𝒜 = −𝐴2, and 𝑍𝒜 = 𝐴3. The unitary operators �̂�ℬ, ̂𝑌ℬ, and �̂�ℬ are regularized

versions of 𝑋ℬ, 𝑌ℬ, and 𝑍ℬ respectively, which are each defined in terms of the operators 𝐷𝑗,𝑘 and

𝐸𝑗,𝑘.

We will state the result in a more explicit form than that of Definition 2.7, as

doing so will later prove useful in the proof of our parallel version of the self-test (see

Appendix G). In order to write the result, we introduce the notation 𝑊∶ 𝒜 ⊗ ℬ →
𝒜 ⊗ 𝒜′ ⊗ ℬ ⊗ ℬ′ and 𝐾∶ 𝒜 ⊗ ℬ → 𝒜 ⊗ 𝒜″ ⊗ ℬ ⊗ ℬ″ for the local “swap” and

“phase kickback” isometries, respectively, that are constructed in Fig. 6.2.

Proposition 6.7. Let |𝜓⟩𝒜ℬ ∈ 𝒜 ⊗ ℬ. Suppose for each 𝑞 ∈ {1, 2, 3} that there exist

±1-outcome observables 𝑆𝑞 on 𝒜 and 𝑇𝑞 on ℬ satisfying (for some 𝜂 ≥ 0) the following
relations:

1. (𝑆𝑞 − 𝑇𝑞)|𝜓⟩𝒜ℬ
𝜂
≈ 0 for all 𝑞.

2. {𝑆𝑞, 𝑆𝑟}|𝜓⟩𝒜ℬ
𝜂
≈ 0 and {𝑇𝑞, 𝑇𝑟}|𝜓⟩𝒜ℬ

𝜂
≈ 0 for all 𝑞 and 𝑟 such that 𝑞 ≠ 𝑟.
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|𝜓⟩𝒜ℬ

|0⟩𝒜′ 𝐻 𝐻

|𝛷+⟩𝒜′ℬ′

|0⟩𝒜″ 𝐻 𝐻

|𝜉⟩
−𝑖𝑆2𝑆1 𝑆1 𝑆3

𝑖𝑇2𝑇1 𝑇1 𝑇3

|0⟩ℬ″ 𝐻 𝐻

|0⟩ℬ′ 𝐻 𝐻

Swapped

Figure 6.2: The circuit describing the action of the local isometry 𝑉 = 𝐾𝑊 on the state |𝜓⟩𝒜ℬ. The

isometries 𝑊𝒜 ∶ 𝒜 → 𝒜 ⊗ 𝒜′ and 𝑊ℬ ∶ ℬ → ℬ ⊗ ℬ′ and the local isometry 𝑊 = 𝑊𝒜 ⊗ 𝑊ℬ

are defined by the first “swap” stage of the circuit (preceding the dotted line), in which a maximally

entangled state is extracted. In the second “phase kickback” stage (succeeding the dotted line), denoted

by 𝐾 = 𝐾𝒜 ⊗ 𝐾ℬ for isometries 𝐾𝒜 ∶ 𝒜 → 𝒜 ⊗ 𝒜″ and 𝐾ℬ ∶ ℬ → ℬ ⊗ ℬ″, possible complex

conjugation in the presence of a Pauli 𝜎z operator is accounted for.

Construct the local “swap” isometry 𝑊∶ 𝒜 ⊗ ℬ → 𝒜 ⊗ 𝒜′ ⊗ ℬ ⊗ ℬ′ and the local

“phase kickback” isometry 𝐾∶ 𝒜 ⊗ ℬ → 𝒜 ⊗ 𝒜″ ⊗ ℬ ⊗ ℬ″ as in Fig. 6.2. Then

𝑊 |𝜓⟩𝒜ℬ
𝑐0𝜂
≈ |𝛷+⟩𝒜′ℬ′ ⊗ |𝜑⟩𝒜ℬ, (6.30a)

𝑊 𝑆1|𝜓⟩𝒜ℬ
𝑐1𝜂
≈ 𝜎ℬ′

x |𝛷+⟩𝒜′ℬ′ ⊗ |𝜑⟩𝒜ℬ, (6.30b)

𝑊 𝑆2|𝜓⟩𝒜ℬ
𝑐2𝜂
≈ 𝜎ℬ′

y |𝛷+⟩𝒜′ℬ′ ⊗ |𝜑⟩𝒜ℬ, (6.30c)

𝑊 𝑆3|𝜓⟩𝒜ℬ
𝑐3𝜂
≈ 𝜎ℬ′

z |𝛷+⟩𝒜′ℬ′ ⊗ 𝑆3|𝜑⟩𝒜ℬ, (6.30d)

where |𝜑⟩𝒜ℬ ∈ 𝒜 ⊗ ℬ is defined as

|𝜑⟩𝒜ℬ = 1
√2

(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩𝒜ℬ (6.31)

and nonnegative constants 𝑐0, 𝑐1, 𝑐2, and 𝑐3 are defined as

𝑐0 = 1
4(18 + 5√2), (6.32a)

𝑐1 = 1
4(26 + 5√2), (6.32b)

𝑐2 = 1
4(34 + 5√2), (6.32c)

𝑐3 = 1
4(66 + 5√2). (6.32d)
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Moreover,

𝐾|𝜑⟩𝒜ℬ
6√2𝜂

≈ |𝜉⟩, (6.33a)

𝐾𝑆3|𝜑⟩𝒜ℬ
6√2𝜂

≈ 𝜎ℬ″
z |𝜉⟩. (6.33b)

where the state |𝜉⟩ ∈ 𝒜 ⊗ 𝒜″ ⊗ ℬ ⊗ ℬ″ has the form

|𝜉⟩ = |0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉0⟩𝒜ℬ + |1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉1⟩𝒜ℬ, (6.34)

and the subnormalized |𝜉0⟩𝒜ℬ and |𝜉1⟩𝒜ℬ are given by

|𝜉0⟩𝒜ℬ =
𝐼 + 𝑇3

2
|𝜑⟩𝒜ℬ, (6.35a)

|𝜉1⟩𝒜ℬ =
𝐼 − 𝑇3

2
|𝜑⟩𝒜ℬ. (6.35b)

Proof. See Appendix E for the ideal case. Robustness is discussed in Appendix F.

The operators 𝑋𝒜, −𝑌𝒜, and 𝑍𝒜 for Alice, and �̂�ℬ, ̂𝑌ℬ, and �̂�ℬ for Bob satisfy

the conditions of Proposition 6.7. This can be seen from the SOS decomposition (see

Section 2.6) of the triple CHSH operator of Eq. (6.23)

6√2 − 𝐶 = 1
√2(

𝐴3 −
𝐷z,x + 𝐸z,x

√2 )

2

+ 1
√2(

𝐴1 −
𝐷z,x − 𝐸z,x

√2 )

2

+ 1
√2(

𝐴3 −
𝐷z,y + 𝐸z,y

√2 )

2

+ 1
√2(

𝐴2 −
𝐷z,y − 𝐸z,y

√2 )

2

+ 1
√2(

𝐴1 −
𝐷x,y + 𝐸x,y

√2 )

2

+ 1
√2(

𝐴2 −
𝐷x,y − 𝐸x,y

√2 )

2

.

(6.36)

Considering the ideal case for simplicity, a maximal violation ⟨𝜓| 𝐶 |𝜓⟩ = 6√2 then

implies that

𝐴1|𝜓⟩ =
𝐷x,y + 𝐸x,y

√2
|𝜓⟩ =

𝐷z,x − 𝐸z,x

√2
|𝜓⟩, (6.37a)

𝐴2|𝜓⟩ =
𝐷x,y − 𝐸x,y

√2
|𝜓⟩ =

𝐷z,y − 𝐸z,y

√2
|𝜓⟩, (6.37b)

𝐴3|𝜓⟩ =
𝐷z,x + 𝐸z,x

√2
|𝜓⟩ =

𝐷z,y + 𝐸z,y

√2
|𝜓⟩. (6.37c)

Since operators 𝐷 + 𝐸 and 𝐷 − 𝐸 anticommute for any ±1-outcome observables 𝐷
and 𝐸, the state-dependent anticommutation relations for Alice’s observables 𝑋𝒜,
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−𝑌𝒜, and 𝑍𝒜 are satisfied. Similarly, since Alice’s operators commute with Bob’s

observables, state-dependent anticommutation relations for 𝑋ℬ, 𝑌ℬ, and 𝑍ℬ are also

satisfied. Applying Lemma 2.9 shows the required state-dependent anticommutation

relations for �̂�ℬ, ̂𝑌ℬ, and �̂�ℬ (which are also unitary as required by Proposition 6.7).

Similar arguments apply in the robust case, resulting in the following counterpart to

Theorem 6.6, which has possible complex conjugation appearing in the certification

of 𝜎z rather than 𝜎y.

Corollary 6.8. Suppose the state |𝜓⟩ ∈ 𝒜 ⊗ ℬ and the observables 𝐴𝑗 ∈ ℒ(𝒜) and
𝐷𝑗,𝑘, 𝐸𝑗,𝑘 ∈ ℒ(ℬ) satisfy

⟨𝜓| 𝐶 |𝜓⟩ = 6√2 − 𝜀. (6.38)

Then there exist linear isometries 𝑉𝒜 ∶ 𝒜 → 𝒜⊗𝒜′ ⊗𝒜″ and 𝑉ℬ ∶ ℬ → ℬ⊗ℬ′ ⊗ℬ″

defining the local isometry 𝑉 = 𝑉𝒜 ⊗ 𝑉ℬ such that

𝑉 |𝜓⟩
𝑐√𝜀
≈ |𝛷+⟩𝒜′ℬ′ ⊗ |𝜉⟩, (6.39a)

𝑉 𝐴1|𝜓⟩
𝑐√𝜀
≈ 𝜎𝒜′

x |𝛷+⟩𝒜′ℬ′ ⊗ |𝜉⟩, (6.39b)

𝑉 𝐴2|𝜓⟩
𝑐√𝜀
≈ −𝜎𝒜′

y |𝛷+⟩𝒜′ℬ′ ⊗ |𝜉⟩, (6.39c)

𝑉 𝐴3|𝜓⟩
𝑐√𝜀
≈ 𝜎𝒜′

z |𝛷+⟩𝒜′ℬ′ ⊗ 𝜎𝒜″
z |𝜉⟩, (6.39d)

where 𝑐 is a nonnegative constant and the state |𝜉⟩ ∈ 𝒜 ⊗ 𝒜″ ⊗ ℬ ⊗ ℬ″ has the form

|𝜉⟩ = |00⟩𝒜″ℬ″ ⊗ |𝜉0⟩𝒜ℬ + |11⟩𝒜″ℬ″ ⊗ |𝜉1⟩𝒜ℬ (6.40)

for some subnormalized |𝜉0⟩𝒜ℬ and |𝜉1⟩𝒜ℬ satisfying ⟨𝜉0|𝜉0⟩𝒜ℬ + ⟨𝜉1|𝜉1⟩𝒜ℬ = 1.

6.4 A parallel self-testing isometry (including com-

plex measurements)

We will state in Section 6.5 a measurement scenario and Bell observations for which

any valid measurement strategy results in the existence of observables which satisfy

certain natural state-dependent relations, as though they are Pauli operators acting

on Bell states. Typically, one can use such relations to construct a self-testing isom-

etry. For example, as is often done in the case of real Pauli measurements [27, 70,

101, 102, 115, 136]. We require such a result which can, in the complex sense of Def-

inition 2.7, certify Bell states and all (possibly complex) Pauli operators from similar
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relations. Such a construction was also discussed in [116]. In Fig. 6.3, we exhibit a

robust isometry of this form, which also captures the effect of complex conjugation

in 𝜎z measurements (as desired for VBQC), instead of in 𝜎y as is standard.

|𝜓⟩𝒜ℬ

|0⟩𝒜′
𝑗 𝐻 𝐻

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗

|0⟩𝒜″
𝑗 𝐻 𝐻

−𝑖𝑆(𝑗)
2 𝑆(𝑗)

1 𝑆(𝑗)
1 𝑆(𝑗)

3

𝑖𝑇 (𝑗)
2 𝑇 (𝑗)

1 𝑇 (𝑗)
1 𝑇 (𝑗)

3

|0⟩ℬ″
𝑗 𝐻 𝐻

|0⟩ℬ′
𝑗 𝐻 𝐻

Swapped

Figure 6.3: The circuit describing the action of the local isometry 𝑉 (𝑗) = 𝐾 (𝑗)𝑊 (𝑗) on the state |𝜓⟩𝒜ℬ.

In the first “swap” stage (preceding the dotted line), denoted by 𝑊 (𝑗) = 𝑊 (𝑗)
𝒜 ⊗ 𝑊 (𝑗)

ℬ , a maximally

entangled state is extracted. In the second “phase kickback” stage (succeeding the dotted line), denoted

by 𝐾 (𝑗) = 𝐾 (𝑗)
𝒜 ⊗𝐾 (𝑗)

𝒜 , possible complex conjugation in the presence of a Pauli 𝜎z operator is accounted

for. The full isometry 𝑉 = 𝑉 (𝑛) … 𝑉 (1) is a parallel version of this circuit. It is defined by applying

the circuit for each 𝑗 successively, appending ancillae states in 𝒜′
𝑗 and ℬ′

𝑗 for each swap stage, and

𝒜″
𝑗 and ℬ″

𝑗 for each phase kickback stage. Each isometry 𝑉 (𝑘) is defined to act trivially on all ancilla

spaces with 𝑗 < 𝑘.

The following result shows (by application of the isometry defined in Fig. 6.3) the

existence of a local isometry with self-testing properties, given natural relations that

we will find for our protocol in Section 6.6.

Theorem 6.9. There exists a function 𝛿∶ ℝ≥0 × ℕ∗ → ℝ≥0 satisfying 𝛿(0, 𝑛) = 0 for

all 𝑛 such that the following holds. Let 𝑛 ∈ ℕ∗ and let |𝜓⟩𝒜ℬ be a state. Suppose for

each 𝑞 ∈ {1, 2, 3} and 𝑗 ∈ {1, … , 𝑛} that there exist ±1-outcome observables 𝑆(𝑗)
𝑞 on

𝒜 and 𝑇 (𝑗)
𝑞 on ℬ satisfying (for some 𝜂 ≥ 0) the following relations:

1. (𝑆(𝑗)
𝑞 − 𝑇 (𝑗)

𝑞 ) |𝜓⟩𝒜ℬ
𝜂
≈ 0 for all 𝑞 and 𝑗.

2. {𝑆(𝑗)
𝑞 , 𝑆(𝑗)

𝑟 } |𝜓⟩𝒜ℬ
𝜂
≈ 0 and {𝑇 (𝑗)

𝑞 , 𝑇 (𝑗)
𝑟 } |𝜓⟩𝒜ℬ

𝜂
≈ 0 for all 𝑞, 𝑟 and 𝑗 such that

𝑞 ≠ 𝑟.
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3. [𝑆(𝑗)
𝑞 , 𝑆(𝑘)

𝑟 ] |𝜓⟩𝒜ℬ
𝜂
≈ 0 and [𝑇 (𝑗)

𝑞 , 𝑇 (𝑘)
𝑟 ] |𝜓⟩𝒜ℬ

𝜂
≈ 0 for all 𝑞, 𝑟 and 𝑗, 𝑘 such that

𝑗 ≠ 𝑘.

4. (𝐼 + 𝑆(𝑗)
1 𝑆(𝑗+1)

1 𝑆(𝑗)
2 𝑆(𝑗+1)

2 𝑆(𝑗)
3 𝑆(𝑗+1)

3 ) |𝜓⟩𝒜ℬ
𝜂
≈ 0 for all 𝑗 < 𝑛.

Then there exist subnormalized |𝜉0⟩𝒜ℬ and |𝜉1⟩𝒜ℬ satisfying ⟨𝜉0|𝜉0⟩𝒜ℬ+⟨𝜉1|𝜉1⟩𝒜ℬ = 1
that do not depend on any of the 𝑆(𝑗)

𝑞 , an isometry 𝑉𝒜 ∶ 𝒜 → 𝒜 ⊗ 𝒜′ ⊗ 𝒜″, and an

isometry 𝑉ℬ ∶ ℬ → ℬ ⊗ ℬ′ ⊗ ℬ″ that does not depend on any of the 𝑆(𝑗)
𝑞 such that for

all 𝑞 ∈ {1, 2, 3} and 𝑘 ∈ {1, … , 𝑛} we have

𝑉 |𝜓⟩𝒜ℬ
𝛿(𝜂,𝑛)

≈
𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ |𝜉⟩, (6.41a)

𝑉 𝑆(𝑘)
𝑞 |𝜓⟩𝒜ℬ

𝛿(𝜂,𝑛)
≈ 𝜎

ℬ′
𝑘

𝑞

𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ 𝜎ℬ″

3[𝑞=3]|𝜉⟩, (6.41b)

where 𝑉 = 𝑉𝒜 ⊗ 𝑉ℬ and the junk state |𝜉⟩ ∈ 𝒜 ⊗ 𝒜″ ⊗ ℬ ⊗ ℬ″ is defined as

|𝜉⟩ = |0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉0⟩𝒜ℬ + |1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉1⟩𝒜ℬ. (6.42)

Remark. In the statement, the untrusted observables are treated so that the 𝑇 (𝑗)
2 rep-

resent Pauli 𝜎y operators acting on Bob’s side, while the 𝑆(𝑗)
2 represent −𝜎y operators

acting on Alice’s side.

That 𝑉ℬ, |𝜉0⟩, and |𝜉1⟩ do not depend on 𝑆(𝑗)
𝑞 means that if we replaced this ob-

servable with some ̃𝑆(𝑗)
𝑞 such that all assumptions were still satisfied, then the same

𝑉ℬ, |𝜉0⟩, and |𝜉1⟩ would still be sufficient to meet the conditions of the result.

We will prove that the robustness 𝛿(𝜂, 𝑛) satisfies 𝛿(0, 𝑛) = 0 for all 𝑛, which is

the ideal, noiseless case. For the case where 𝜂 > 0, we expect that standard existing

techniques [27, 70, 102, 115, 116] can be applied to achieve polynomial robustness

bounds in the sense 𝛿(𝜂, 𝑛) = 𝑂(𝜂𝑛2) as 𝜂 → 0 or 𝑛 → ∞.

Proof sketch. See Appendix G for full details. As noted, here we consider only the

ideal case with 𝜂 = 0. We show that a sufficient local isometry is 𝑉 = 𝑉 (𝑛) … 𝑉 (1),

where each 𝑉 (𝑗) = 𝐾 (𝑗)𝑊 (𝑗), and 𝐾 (𝑗) = 𝐾 (𝑗)
𝒜 ⊗ 𝐾 (𝑗)

ℬ and 𝑊 (𝑗) = 𝑊 (𝑗)
𝒜 ⊗ 𝑊 (𝑗)

ℬ
are as defined in Fig. 6.3. We could also have considered the isometry constructed

by first applying all swap isometries, followed by applying all phase kickback isome-

tries. However, applying 𝐾 (𝑗) immediately after the corresponding 𝑊 (𝑗) reduces the

number of terms that must be manipulated at a time. This, along with the usage of Re-

lation 4 (via Lemma G.1) at each step, allows us to keep the number of terms constant

after the application of each 𝑉 (𝑗).
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The isometry 𝑉ℬ = 𝑉 (𝑛)
ℬ … 𝑉 (1)

ℬ , where each 𝑉 (𝑗)
ℬ = 𝐾 (𝑗)

ℬ 𝑊 (𝑗)
ℬ , is immediately

seen from the construction given in Fig. 6.3 not to depend on any of the observables

𝑆(𝑗)
𝑞 . Let us define, for all 1 ≤ 𝑘 ≤ 𝑛, the vectors

|𝜉𝑘
±⟩ = 1

(2√2)
𝑘

𝑘

∏
𝑗=1

(𝐼 ± 𝑇 (𝑗)
3 )(𝐼 + 𝑖𝑇 (𝑗)

2 𝑇 (𝑗)
1 ) |𝜓⟩. (6.43)

With this notation, Proposition 6.7 gives that

𝑉 (1)|𝜓⟩ = |𝛷+⟩𝒜′
1ℬ′

1
⊗ (|0⟩𝒜″

1
|0⟩ℬ″

1
⊗ |𝜉1

+⟩ + |1⟩𝒜″
1

|1⟩ℬ″
1

⊗ |𝜉1
−⟩), (6.44a)

𝑉 (1)𝑆(1)
𝑞 |𝜓⟩ = 𝜎

ℬ′
1

𝑞 |𝛷+⟩𝒜′
1ℬ′

1
⊗ (|0⟩𝒜″

1
|0⟩ℬ″

1
⊗ |𝜉1

+⟩ + (−1)[𝑞=3]|1⟩𝒜″
1

|1⟩ℬ″
1

⊗ |𝜉1
−⟩).

(6.44b)

For all 1 < 𝑘 ≤ 𝑛, we have the following properties. Firstly,

𝑉 (𝑘)|𝜉𝑘−1
+ ⟩ = |𝛷+⟩𝒜′

𝑘ℬ′
𝑘

⊗ |0⟩𝒜″
𝑘

|0⟩ℬ″
𝑘

⊗ |𝜉𝑘
+⟩, (6.45a)

𝑉 (𝑘)|𝜉𝑘−1
− ⟩ = |𝛷+⟩𝒜′

𝑘ℬ′
𝑘

⊗ |1⟩𝒜″
𝑘

|1⟩ℬ″
𝑘

⊗ |𝜉𝑘
−⟩. (6.45b)

That is, 𝑉 (𝑘) extracts a Bell state from |𝜉𝑘−1
± ⟩, raises its superscript index from 𝑘 − 1

to 𝑘, and appends the appropriate ancilla states depending on the sign in subscript.

Secondly,

𝑉 (1)𝑆(𝑘)
𝑞 |𝜓⟩ = 𝑆(𝑘)

𝑞 𝑉 (1)|𝜓⟩. (6.46)

Thirdly, whenever 𝑗 ≠ 𝑘,

𝑉 (𝑘)𝑆(𝑗)
𝑞 |𝜉𝑘−1

± ⟩ = 𝑆(𝑗)
𝑞 𝑉 (𝑘)|𝜉𝑘−1

± ⟩. (6.47)

Finally,

𝑉 (𝑘)𝑆(𝑘)
𝑞 |𝜉𝑘−1

+ ⟩ = 𝜎
ℬ′

𝑘
𝑞 |𝛷+⟩𝒜′

𝑘ℬ′
𝑘

⊗ |0⟩𝒜″
𝑘

|0⟩ℬ″
𝑘

⊗ |𝜉𝑘
+⟩, (6.48a)

𝑉 (𝑘)𝑆(𝑘)
𝑞 |𝜉𝑘−1

− ⟩ = (−1)[𝑞=3]𝜎
ℬ′

𝑘
𝑞 |𝛷+⟩𝒜′

𝑘ℬ′
𝑘

⊗ |1⟩𝒜″
𝑘

|1⟩ℬ″
𝑘

⊗ |𝜉𝑘
−⟩. (6.48b)

After the full application of the isometry 𝑉 = 𝑉 (𝑛) … 𝑉 (1), and defining

|0⟩𝒜″ = |0 … 0⟩𝒜″, (6.49a)

|1⟩𝒜″ = |1 … 1⟩𝒜″, (6.49b)

|0⟩ℬ″ = |0 … 0⟩ℬ″, (6.49c)

|1⟩ℬ″ = |1 … 1⟩ℬ″, (6.49d)
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Eqs. (6.44a) and (6.45) give

𝑉 |𝜓⟩ =
𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ (|0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉𝑛

+⟩ + |1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉𝑛
−⟩). (6.50)

Similarly, using Eqs. (6.44b) and (6.45), we have

𝑉 𝑆(1)
𝑞 |𝜓⟩ = 𝜎

ℬ′
1

𝑞 |𝛷+⟩𝒜′
1ℬ′

1
⊗ 𝑉 (𝑛) … 𝑉 (2)

(|0⟩𝒜″
1

|0⟩ℬ″
1

⊗ |𝜉1
+⟩

+ (−1)[𝑞=3]|1⟩𝒜″
1

|1⟩ℬ″
1

⊗ |𝜉1
−⟩)

= 𝜎
ℬ′

1
𝑞

𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ (|0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉𝑛

+⟩

+ (−1)[𝑞=3]|1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉𝑛
−⟩)

= 𝜎
ℬ′

1
𝑞

𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ 𝜎ℬ″

3[𝑞=3](|0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉𝑛
+⟩ + |1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉𝑛

−⟩).

(6.51)

Furthermore, for 1 < 𝑘 ≤ 𝑛, we can use Eqs. (6.44a) and (6.45) to (6.48) to write

𝑉 𝑆(𝑘)
𝑞 |𝜓⟩ = |𝛷+⟩𝒜′

1ℬ′
1

⊗ 𝑉 (𝑛) … 𝑉 (2)𝑆(𝑘)
𝑞 (|0⟩𝒜″

1
|0⟩ℬ″

1
⊗ |𝜉1

+⟩

+ |1⟩𝒜″
1

|1⟩ℬ″
1

⊗ |𝜉1
−⟩)

=
𝑘−1

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ 𝑉 (𝑛) … 𝑉 (𝑘)𝑆(𝑘)

𝑞 (|0 … 0⟩ ⊗ |𝜉𝑘−1
+ ⟩

+ |1 … 1⟩ ⊗ |𝜉𝑘−1
− ⟩)

= 𝜎
ℬ′

𝑘
𝑞

𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ (|0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉𝑛

+⟩

+ (−1)[𝑞=3]|1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉𝑛
−⟩)

= 𝜎
ℬ′

𝑘
𝑞

𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ 𝜎ℬ″

3[𝑞=3](|0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉𝑛
+⟩ + |1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉𝑛

−⟩).

(6.52)

Together, Eqs. (6.50) to (6.52) have the desired form by taking |𝜉0⟩ = |𝜉𝑛
+⟩ and |𝜉1⟩ =

|𝜉𝑛
−⟩. These |𝜉0⟩ and |𝜉1⟩ have the desired properties: the observables 𝑆(𝑗)

𝑞 are not

present in their definition given in Eq. (6.43), and they satisfy ⟨𝜉+|𝜉+⟩ + ⟨𝜉−|𝜉−⟩ = 1
due to Eq. (6.50) together with the fact that the isometry 𝑉 preserves inner products.

Theorem 6.9 allows us to certify the action of one Pauli operator at a time. In

order to prepare all of Bob’s qubits, however, we require that Pauli measurements of

all 𝑛 of Alice’s qubits be certified simultaneously. This is not immediate from Theo-

rem 6.9 since, after applying one of the physical operators to |𝜓⟩, its conclusion says
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nothing about the action of a second physical operator on the new state, even if the

two operators commute. Using the symmetry properties of pairs of Pauli operators

with respect to |𝛷+⟩, this limitation can be overcome.

Lemma 6.10. Let |𝜓⟩ ∈ 𝒜 ⊗ ℬ and |𝜙⟩ ∈ ̃𝒜 ⊗ ̃ℬ. For some 𝑚 > 1, let 𝐴𝑗 ∶ 𝒜 →
𝒜 satisfy ‖𝐴𝑗‖ ≤ 1 and ̃𝐴𝑗 ∶ ̃𝒜 → ̃𝒜 for all 𝑗 ∈ {1, … , 𝑚}. Let linear isometries

𝑉𝒜 ∶ 𝒜 → ̃𝒜 and 𝑉ℬ ∶ ℬ → ̃ℬ defining the local isometry 𝑉∶ 𝒜 ⊗ ℬ → ̃𝒜 ⊗ ̃ℬ by

𝑉 = 𝑉𝒜 ⊗ 𝑉ℬ be such that, for all 𝑗,

𝑉 |𝜓⟩
𝛿
≈ |𝜙⟩, (6.53a)

𝑉 𝐴𝑗|𝜓⟩
𝛿
≈ ̃𝐴𝑗|𝜙⟩. (6.53b)

Suppose that, for all 𝑗, there exist ̃𝐵𝑗 ∶ ̃ℬ → ̃ℬ satisfying ‖ ̃𝐵𝑗‖ ≤ 1 such that

̃𝐴𝑗|𝜙⟩ = ̃𝐵𝑗|𝜙⟩. (6.54)

Then, the combined action of all operators satisfies

𝑉 (𝐴1 … 𝐴𝑚)|𝜓⟩
(2𝑚+1)𝛿

≈ ̃𝐴1 … ̃𝐴𝑚|𝜙⟩. (6.55)

Proof. See Appendix H.

Remark. In practice, the 𝐴𝑗 may represent some physical ±1-outcome observables

or orthogonal projections acting on a physical state |𝜓⟩. In both cases, ‖𝐴𝑗‖ ≤ 1
is automatically satisfied. Similarly, the ̃𝐴𝑗 are understood to represent reference

measurements, and we may take the reference state |𝜙⟩ = |𝛷+⟩⊗𝑛 ⊗ |𝜉⟩.

6.5 The protocol

We consider a scenario in which Alice is provided with one of 𝑚𝑛 questions 𝒙 ∈ 𝒳 ⊂
{1, … , 𝑚}𝑛 and answers with 𝒂 ∈ {+1, −1}𝑛. Bob, on the other hand, is provided

with a question 𝑦 and answers with 𝒃, whose form depends on the input 𝑦. Pro-

tocol 6.1 exhibits our process for the preparation of 𝑛 qubits on Bob’s side, which

together are to act as the initial state in a VBQC protocol. We will soon make all

definitions required for this, but first let us introduce some intuition.

The idea is that Alice and Bob should play 𝑛 triple CHSH games in order achieve 𝑛
corresponding maximal Bell violations. For the 𝑗th game, Alice receives an input ba-

sis 𝑥𝑗 ∈ {x, y, z} and outputs 𝑎𝑗 ∈ {+, −}. Bob receives the same input 𝑦 ∈ {1, … , 6}
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Protocol 6.1: A protocol that performs the blind preparation of 𝑛 qubits in appropriate bases on the

server-side subsystem, followed by VBQC.

The number of qubits to be prepared is 𝑛 ∈ ℕ∗. A verifier first performs the initial

setup of the protocol as follows:

1. The verifier chooses a random set of “special” questions 𝒮 ⊂ {1, … , 5}𝑛 with

polynomial cardinality |𝒮| = poly(𝑛), each element of which represents an 𝑛-
tuple of bases in which 𝑛 qubits may be prepared.

2. The verifier expands 𝒮 to the full set of input questions for Alice 𝒳 ⊂ {1, … 5}𝑛

(which has cardinality |𝒳| = poly(𝑛) by construction) as in Eq. (6.62).

The verifier then performs the following subprotocols:

1. Self-test : In each self-testing round, the verifier chooses questions 𝒙 ∈ 𝒳 and

𝑦 ∈ 𝒴 = {1, … , 6} ∪ {♦,�}. The verifier sends 𝒙 to Alice and 𝑦 to Bob, and

receives an answer 𝒂 ∈ {+, −}𝑛 from Alice.

(a) If 𝑦 ∈ {1, … , 6}, Bob answers with 𝒃 ∈ {+, −}𝑛. For all 𝑗 ∈ {1, … 𝑛},
this contributes to the correlations

⟨𝐴(𝑗)
𝒙 𝐵(𝑗)

𝑦 ⟩.

(b) Conjugation: The question sent to Bob was 𝑦 ∈ {♦,�}.

i. If 𝑦 = ♦, Bob answers with 𝒃 ∈ {1, 2, 3, 4}⌊
𝑛
2 ⌋.

ii. If 𝑦 = �, Bob answers with 𝒃 ∈ {1, 2, 3, 4}⌈
𝑛
2 ⌉−1

.

For all 1 ≤ 𝑗 < 𝑛, letting 𝑘 = ⌈
𝑗
2⌉, these contribute to the correlations

⟨𝐴(𝑗)
𝒙 𝐴(𝑗+1)

𝒙 𝛤 (𝑗)
𝑏𝑘 ⟩ . (6.56)

By combining the correlations appropriately, the verifier can estimate all Bell

expressions of Eqs. (6.79), (6.81) and (6.82) and check that the experiment sat-

isfies the assumptions of the self-testing statement.

2. VBQC : On some round after the desired confidence threshold has been reached,

the verifier asksAlice a special question𝝌 ∈ 𝒮 and then performs an interactive

FK-type protocol with the server.
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for all 𝑛 games, and outputs 𝑏𝑗 ∈ {+, −} for the 𝑗th game. To ensure that the players

cannot cheat by sharing fewer than 𝑛 Bell states, we must examine the experimental

outcomes in such a way that we can detect that they originated from 𝑛 indepen-

dent games. Intuitively this is possible since (round and communication complexities

aside) the overall scenario is identical with one in which, instead of reporting the out-

comes for all 𝑛 games simultaneously, Bob’s input also contains a specified index of

a single one of the games to play and in each round he reports only a single-bit out-

come for this game. Alice is unable to be sure which of the 𝑛 games Bob is instructed

to play, while Alice is not necessarily instructed to measure in the same basis in all 𝑛
games, and so it is possible to check independence between all games.

It will be necessary in order to perform VBQC that the verifier can also choose

to prepare qubits in the eigenbases corresponding to observables 𝜎x+y and 𝜎x−y. For

this purpose, Alice should accept input questions 𝑥𝑗 ∈ {x+y, x−y} to each game, in

addition to those already stated. That is, we will take 𝑚 = 5 in our protocol, with the

five values 1, … , 5 forming Alice’s inputs used interchangeably to denote input bases

x, y, z, x + y, and x − y. At positions where x + y or x − y are chosen in Alice’s input,

we enforce that relevant perfect correlations between Alice and Bob are observed.

This forces the untrusted operations for both inputs x±y to act consistently with the

correct combination of untrusted operations for inputs x and y.

Wewould like to restrict the possible questions for Alice to a subset𝒳 ⊂ {1, … , 𝑚}𝑛

whose cardinality in the worst case scales polynomially in 𝑛, which is required in or-

der to satisfy Property 3 discussed in Section 6.2. This must be done in such a way

that the possibility of cheating does not arise from possible correlations between dif-

ferent positions of Alice’s inputs. It turns out that it is sufficient to keep only inputs

with the following two constraints in mind:

1. Given any pair of positions, there are inputs with all pairs of values at those

positions.

2. At any given position, there are inputs taking all possible values.

The precise formulation of Alice’s question set 𝒳 is the subject of Section 6.5.1.

While we attempt to ensure the independence of the outcomes of 𝑛 triple CHSH

games, a certain dependence between the measurements used in the different games

is desirable. Namely, in order to satisfy Definition 2.7 of self-testing with complex

measurements, it is required that any possible complex conjugation of measurement

operators only ever applies simultaneously to measurements at every position. This
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global complex conjugation has been achieved previously [53, 116] (and as we do also)

by allowing Bob to accept an additional two inputs 𝑦 ∈ {♦,�}, each representing Bell

measurements being performed on many pairs of qubits.

Relations that we will derive between untrusted observables from the observation

of requested Bell values and correlations allow us to make our desired self-testing-

based statement for remote state preparation. After exhibiting it here, wewill proceed

to expand on the details of our discussion thus far.

Theorem 6.11. There exists a function 𝜏∶ ℝ≥0 × ℕ∗ → ℝ≥0 satisfying 𝜏(0, 𝑛) = 0 for

all 𝑛 such that the following holds. Let 𝑛 ∈ ℕ∗ be the number of qubits to prepare, let

|𝜓⟩ be a state in 𝒜 ⊗ ℬ. Choose a set of special questions 𝒮 ⊂ {x, y, z, x + y, x − y}𝑛

and let 𝛱𝒜
𝒂∣𝝌 denote the physical projectors on 𝒜 corresponding to Alice answering with

𝒂 ∈ {+, −}𝑛 upon being asked 𝝌 ∈ 𝒮. Define the tensor products of qubits

|𝑒𝒂∣𝝌⟩ =
𝑛

⨂
𝑗=1

|𝜎
𝑎𝑗
𝜒𝑗⟩, (6.57a)

|𝑒
∗
𝒂∣𝝌⟩ =

𝑛

⨂
𝑗=1

|𝜎
𝑎𝑗(−1)[𝜒𝑗=z]

𝜒𝑗 ⟩, (6.57b)

and denote the reduced physical states on Bob’s subsystem after Alice’s possible mea-

surements by

𝜌𝒂∣𝝌
ℬ = tr𝒜

⎛
⎜
⎜
⎝

𝛱𝒜
𝒂∣𝝌|𝜓⟩⟨𝜓|𝛱𝒜

𝒂∣𝝌

⟨𝜓| 𝛱𝒜
𝒂∣𝝌 |𝜓⟩

⎞
⎟
⎟
⎠
. (6.58)

Suppose that all requested Bell inequalities and correlations are 𝜀-approximately sat-

urated (for some 𝜀 ≥ 0) as in Eqs. (6.79), (6.81) and (6.82) of Section 6.5.2 and let

𝑉ℬ ∶ ℬ → ℬ′ ⊗ ℬ″ ⊗ ℬ be the isometry thus constructed from Bob’s measurement

operators as in Theorem 6.16. Then there exist subnormalized density operators 𝛽0 and

𝛽1 on ℬ satisfying tr(𝛽0) + tr(𝛽1) = 1 such that, with probability at least 1 − 4𝜏(𝜀, 𝑛)
over all possible answers 𝒂 given any special question 𝝌, we have

1
2‖𝑉ℬ𝜌𝒂∣𝝌

ℬ 𝑉 †
ℬ − (|𝑒𝒂∣𝝌⟩⟨𝑒𝒂∣𝝌| ⊗ |0⟩⟨0| ⊗ 𝛽0

+ |𝑒
∗
𝒂∣𝝌⟩⟨𝑒∗

𝒂∣𝝌| ⊗ |1⟩⟨1| ⊗ 𝛽1)‖1
≤ 𝜏(𝜀, 𝑛).

(6.59)

Remark. The robustness of Theorem 6.9 expected using the standard techniques men-

tioned is inherited here to yield 𝜏(𝜀, 𝑛) = 𝑂(𝜀1/3𝑛4/3) as 𝜀 → 0 or 𝑛 → ∞.

Proof. See Appendix I.
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That all the special questions 𝒮 correspond to valid input states to the FK protocol

is easily achievable, since the only requirement is that enough dummy qubits (those

in the 𝜎z basis) are prepared from which to create enough traps. For example, using

the “dotted triple graph” resource state construction [44], the number of additional

physical qubits needed to be prepared for verification is linear in the size of the de-

sired computation (the number of qubits needed without any verification). Thus, to

achieve a given level of verifiability, one only needs that a constant fraction of the

qubits prepared are dummies. This can clearly be achieved by instead preparing a

large enough constant multiple of the number of qubits and then discarding some of

those that are not prepared as dummies. The probability that a special question still

corresponds to too few dummy qubits is exponentially small.

6.5.1 Alice’s question set

We construct the specific subset of questions 𝒳 based on a set of possible special

input questions 𝒮 ⊂ {1, … , 𝑚}𝑛, each element of which is chosen to correspond

to preparation bases desired by the verifier. Throughout, we will take addition of

questions to be performed (componentwise for strings) modulo 𝑚.

We first define the set

𝒟 = {𝑘𝒆𝑛
𝑖 + 𝑙𝒆𝑛

𝑗 | 𝑘, 𝑙 ∈ {0, … , 𝑚 − 1} and 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}, (6.60)

where 𝒆𝑛
𝑖 = (𝛿𝑖𝑗)𝑛

𝑗=1 denotes the 𝑖th standard basis vector with 𝑛 entries. The possible

input set 𝒳 for Alice is selected by expanding some choice of 𝒮. This is performed as

follows. For each 𝝌 ∈ 𝒮, we let

𝒳𝝌 = {𝝌 + 𝒅 ∣ 𝒅 ∈ 𝒟}. (6.61)

Then, we combine all such questions to form

𝒳 = ⋃
𝝌∈𝒮

𝒳𝝌. (6.62)

For example, if 𝑚 = 3, 𝑛 = 3, and 𝒮 = {𝝌}, where 𝝌 = (1, 1, 1), then 𝒳𝝌 (and 𝒳 in
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this case) has elements

(1, 1, 1),

(2, 1, 1), (3, 1, 1),

(1, 2, 1), (1, 3, 1),

(1, 1, 2), (1, 1, 3),

(2, 2, 1), (3, 2, 1), (2, 3, 1), (3, 3, 1),

(2, 1, 2), (3, 1, 2), (2, 1, 3), (3, 1, 3),

(1, 2, 2), (1, 3, 2), (1, 2, 3), (1, 3, 3).

Each expanded special set has cardinality |𝒳𝝌| = 1 + (𝑚 − 1)𝑛 + 1
2 (𝑚 − 1)2𝑛(𝑛 − 1),

and so the total number of questions for Alice is bounded by

|𝒳| ≤ |𝒮| ⋅ [1 + (𝑚 − 1)𝑛 + 1
2

(𝑚 − 1)2𝑛(𝑛 − 1)] (6.63)

(quadratic in the number of qubits if the number of special questions is taken to

be constant). We can thus choose 𝒮 to be such that |𝒮| = poly(𝑛), so that indeed

|𝒳| = poly(𝑛). The sets 𝒳𝝌 are constructed such that starting with any particular spe-

cial question, for any pair of positions, every possible pair of values from {1, … , 𝑚}
appears. Additionally, at any position, every possible value appears. We formalize

this here.

Lemma 6.12. Fix 𝑚 ≥ 1 and let 𝝌 ∈ 𝒮 ⊂ {1, … , 𝑚}𝑛 for some 𝑛 ≥ 1. Define 𝒳𝝌 ⊂
{1, … , 𝑚}𝑛 as in Eq. (6.61) and 𝒳 as in Eq. (6.62). The following properties then hold:

1. If 𝑛 > 1 then, for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 and 𝑞, 𝑟 ∈ {1, … , 𝑚}, there exists 𝒙 ∈ 𝒳𝝌 ⊂
𝒳 such that 𝑥𝑖 = 𝑞, 𝑥𝑗 = 𝑟, and, moreover, 𝑥𝑘 = 𝜒𝑘 for all 𝑘 ∈ {1, … , 𝑛} ⧵ {𝑖, 𝑗}.

2. For any 1 ≤ 𝑖 ≤ 𝑛 and 𝑞 ∈ {1, … , 𝑚}, there exists 𝒙 ∈ 𝒳𝝌 ⊂ 𝒳 such that 𝑥𝑖 = 𝑞
and, moreover, 𝑥𝑘 = 𝜒𝑘 for all 𝑘 ≠ 𝑖.

Furthermore, |𝒳𝝌| = 𝑂(𝑛2).

Proof. For the first property, take 𝒙 = 𝝌 +(𝑞 −𝜒𝑖)𝒆𝑛
𝑖 +(𝑟−𝜒𝑗)𝒆𝑛

𝑗 . The second property

is implied by the first for 𝑛 > 1 using the choice 𝑣 = 𝜒𝑗, and for 𝑛 = 1 we can take

𝒙 = 𝝌 +(𝑞 −𝜒1)𝒆𝑛
1. Let 𝒟 be defined as in Eq. (6.60). The cardinality |𝒳𝝌| = |𝒟| since

each element of 𝒟 is simply shifted by addition with the fixed 𝝌 to form 𝒳𝝌. Finally,

|𝒟| = 1 + (𝑚 − 1)𝑛 + 1
2 (𝑚 − 1)2𝑛(𝑛 − 1).
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Remark. It is clear from Eq. (6.62) that |𝒳| ≤ |𝒮| ⋅ |𝒳𝝌| = |𝒮| ⋅ |𝒟|.

The set 𝒳 of Eq. (6.62) is generated from the many questions in 𝒮 (rather than

just from a single choice of preparation question) so that Alice has a low chance of

guessing which 𝝌 is used for the computation from her knowledge of the structure

of 𝒳 (the elements of which she can deduce from the questions asked of her during

self-test rounds of Protocol 6.1).

We will now present another construction of the same set 𝒳, which will be useful

in Section 6.5.2 to define the Bell expressions we must consider. Recall the notation

𝒙𝑗 = (𝑥1, … , 𝑥𝑗−1, 𝑥𝑗+1, … , 𝑥𝑛) for a string 𝒙 = (𝑥1, … , 𝑥𝑛) excluding the 𝑗th posi-

tion. For each 𝝌 ∈ 𝒮 and 1 ≤ 𝑗 ≤ 𝑛, define

ℛ(𝑗)
𝝌 = {𝝌𝑗 + 𝑘𝒆𝑛−1

𝑖 | 0 ≤ 𝑘 ≤ 𝑚 − 1 and 1 ≤ 𝑖 ≤ 𝑛 − 1} (6.64)

and then use this to define

ℛ(𝑗) = ⋃
𝝌∈𝒮

ℛ(𝑗)
𝝌 . (6.65)

These satisfy |ℛ
(𝑗)
𝝌 | = 1 + (𝑚 − 1)𝑛 for all 𝝌 ∈ 𝒮 and thus

|ℛ(𝑗)| ≤ |𝒮| ⋅ [1 + (𝑚 − 1)𝑛]. (6.66)

Define further

𝒳 (𝑗) = {(𝑟1, … , 𝑟𝑗−1, 𝑞, 𝑟𝑗, … , 𝑟𝑛−1) | 0 ≤ 𝑞 ≤ 𝑚 − 1 and 𝒓 ∈ ℛ(𝑗)}. (6.67)

We now have the notation to reconstruct 𝒳 as follows.

Lemma 6.13. The set 𝒳 of Eq. (6.62) can alternatively be written as

𝒳 =
𝑛

⋃
𝑗=1

𝒳 (𝑗). (6.68)

Proof. We first show that 𝒳 (𝑗) ⊂ 𝒳 for all 1 ≤ 𝑗 ≤ 𝑛. Let 0 ≤ 𝑞 ≤ 𝑚 − 1 and 𝒓 ∈ ℛ(𝑗).

Then there exists 𝝌 ∈ 𝒮 such that 𝒓 ∈ ℛ(𝑗)
𝝌 . Thus, there exists 0 ≤ 𝑘 ≤ 𝑚 − 1 and

1 ≤ 𝑖 ≤ 𝑛 such that 𝒓 = 𝝌𝑗 + 𝑘𝒆𝑛−1
𝑖 . We can therefore write for some 𝑙 ≠ 𝑗 that

(𝑟1, … , 𝑟𝑗−1, 𝑞, 𝑟𝑗, … , 𝑟𝑛−1) = 𝝌 + (𝑞 − 𝜒𝑗)𝒆𝑛
𝑗 + 𝑘𝒆𝑛

𝑙 ∈ 𝒳𝝌 ⊂ 𝒳. (6.69)

For the reverse inclusion, take any 𝒙 ∈ 𝒳. Then there exists 𝝌 ∈ 𝒮 such that

𝒙 ∈ 𝒳𝝌. For some 𝑘, 𝑙 ∈ {0, … , 𝑚 − 1} and 𝑖, 𝑗 ∈ {1, … , 𝑛} satisfying 𝑖 < 𝑗, we

thus have 𝒙 = 𝝌 + 𝑘𝒆𝑛
𝑖 + 𝑙𝒆𝑛

𝑗 . Choosing 𝑞 = 𝜒𝑗 + 𝑙 and 𝒓 = 𝝌𝑗 + 𝑘𝒆𝑛−1
𝑖 gives 𝒙 =

(𝑟1, … , 𝑟𝑗−1, 𝑞, 𝑟𝑗, … , 𝑟𝑛−1). Finally, since 𝒓 ∈ ℛ(𝑗)
𝝌 ⊂ ℛ(𝑗), we have 𝒙 ∈ 𝒳 (𝑗).
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A useful property of certain input questions for switching the local subsystem on

which pairs of observables act in Section 6.6.1 is given by the following.

Lemma 6.14. Let 𝝌 ∈ 𝒮, let 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, and let 𝑞, 𝑟 ∈ {1, … , 𝑚}. Suppose

that 𝒙 ∈ {1, … , 𝑚}𝑛 is defined such that 𝑥𝑖 = 𝑞, 𝑥𝑗 = 𝑟, and 𝑥𝑘 = 𝜒𝑘 for all 𝑘 ∈
{1, … , 𝑛} ⧵ {𝑖, 𝑗}. Then 𝒙𝑖 ∈ ℛ(𝑖)

𝝌 ⊂ ℛ(𝑖) and 𝒙𝑗 ∈ ℛ(𝑗)
𝝌 ⊂ ℛ(𝑗).

Proof. It is clear that 𝒙𝑖 = 𝝌𝑖 + (𝑟 − 𝜒𝑗)𝒆𝑛−1
𝑗−1 and 𝒙𝑗 = 𝝌𝑗 + (𝑞 − 𝜒𝑖)𝒆𝑛−1

𝑖 .

6.5.2 Bell value observations

Let us model Alice’s behavior upon the question 𝒙 ∈ 𝒳 as projective measurements

with projection operators 𝛱𝒜
𝒂∣𝒙, where 𝒂 ∈ {+, −}𝑛. Similarly, let us model Bob’s

behavior upon the question 𝑦 ∈ {1, … , 6} ∪ {♦,�} using projections 𝛱ℬ
𝒃∣𝑦. For 𝑦 ∈

{1, … , 6} Bob answers with 𝒃 ∈ {+, −}𝑛, while for 𝑦 = ♦ he answers with 𝒃 ∈

{1, 2, 3, 4}⌊
𝑛
2 ⌋ and for 𝑦 = � with 𝒃 ∈ {1, 2, 3, 4}⌈

𝑛
2 ⌉−1

.

For all questions 𝒙 ∈ 𝒳 for Alice and 𝑦 ∈ {1, … , 6} for Bob, we define projections

corresponding to Alice observing 𝑎 and Bob observing 𝑏 at the 𝑗th positions of their

respective answers

𝛱𝒜,𝑗
𝑎∣𝒙 = ∑

𝒂∣𝑎𝑗=𝑎
𝛱𝒜

𝒂∣𝒙, (6.70a)

𝛱ℬ,𝑗
𝑏∣𝑦 = ∑

𝒃∣𝑏𝑗=𝑏
𝛱ℬ

𝒃∣𝑦. (6.70b)

In the case of 𝑦 ∈ {♦,�}, we similarly define projections corresponding to Bob ob-

serving 𝑏 ∈ {1, 2, 3, 4} at the 𝑘th position of 𝒃 as

𝛤 (2𝑘−1)
𝑏 = ∑

𝒃∣𝑏𝑘=𝑏
𝛱ℬ

𝒃∣♦, (6.71a)

𝛤 (2𝑘)
𝑏 = ∑

𝒃∣𝑏𝑘=𝑏
𝛱ℬ

𝒃∣�. (6.71b)

Notice that, due to the form of 𝒃 in the cases 𝑦 = ♦ and 𝑦 = �, the projections 𝛤 (𝑗)
𝑏

are defined for 1 ≤ 𝑗 < 𝑛. In the honest case, such projectors will correspond to an

outcome 𝑏 for the Bell measurement of the 𝑗th and (𝑗+1)th qubit pair of Bob’s subsys-

tem. Performing the measurements {𝛤 (𝑗)
1 , 𝛤 (𝑗)

2 , 𝛤 (𝑗)
3 , 𝛤 (𝑗)

4 } for all odd 𝑗 is equivalent

to the original measurement {𝛱ℬ
𝒃∣♦}𝒃, and for all even 𝑗 is equivalent to the original

measurement {𝛱ℬ
𝒃∣�}𝒃.
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Wemay now define corresponding ±1-outcome observables for each input 𝒙 ∈ 𝒳
for Alice and 𝑦 ∈ {1, … , 6} for Bob, and each position 𝑗 ∈ {1, … , 𝑛}, as

𝐴(𝑗)
𝒙 = 𝛱𝒜,𝑗

+∣𝒙 − 𝛱𝒜,𝑗
−∣𝒙 , (6.72a)

𝐵(𝑗)
𝑦 = 𝛱ℬ,𝑗

+∣𝑦 − 𝛱ℬ,𝑗
−∣𝑦. (6.72b)

Alice’s observables commute with Bob’s observables since they are defined on sepa-

rate subsystems. Moreover, for any questions 𝒙 and 𝑦, and any positions 𝑗 and 𝑘, we

have commutation relations

[𝐴(𝑗)
𝒙 , 𝐴(𝑘)

𝒙 ] = 0, (6.73a)

[𝐵(𝑗)
𝑦 , 𝐵(𝑘)

𝑦 ] = 0. (6.73b)

Measuring 𝐴(𝑗)
𝒙 and 𝐵(𝑗)

𝑦 for all 𝑗 is equivalent to performing the original measure-

ments {𝛱𝒜
𝒂∣𝒙}𝒂 and {𝛱ℬ

𝒃∣𝑦}𝒃, respectively.

As mentioned previously, we have that 𝑚 = 5 for constructing 𝒳 in our protocol.

It will be convenient to assign some alternative labels to the observables defined in

Eq. (6.72). We will sometimes use notation defined by

𝐴(𝑗)
𝑥𝑗,𝒙𝑗

= 𝐴(𝑗)
𝒙 (6.74)

for all 1 ≤ 𝑗 ≤ 𝑛 and 𝒙 ∈ 𝒳. In particular, at any position 𝑗, we can write labels for

the observables of Alice associated with all input values 1 ≤ 𝑞 ≤ 5 at position 𝑗 and

a fixed question at all other positions

𝐴(𝑗)
𝑞,𝒙𝑗

, (6.75)

provided that this fixed question 𝒙 ∈ 𝒳 (𝑗). All such observables are well defined due

to Eq. (6.67) and Lemma 6.13.

We define 𝐷(𝑗)
z,x, 𝐸(𝑗)

z,x, 𝐷(𝑗)
z,y, 𝐸(𝑗)

z,y, 𝐷(𝑗)
x,y, and 𝐸(𝑗)

x,y for all 1 ≤ 𝑗 ≤ 𝑛 on Bob’s side such

that

𝐵(𝑗)
𝑦 =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝐷(𝑗)
z,x if 𝑦 = 1,

𝐸(𝑗)
z,x if 𝑦 = 2,

𝐷(𝑗)
z,y if 𝑦 = 3,

𝐸(𝑗)
z,y if 𝑦 = 4,

𝐷(𝑗)
x,y if 𝑦 = 5,

𝐸(𝑗)
x,y if 𝑦 = 6.

(6.76)
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We also define on Bob’s side the (not necessarily unitary) combinations of these ob-

servables

𝑋(𝑗)
x,y =

𝐷(𝑗)
x,y + 𝐸(𝑗)

x,y

√2
, (6.77a)

𝑌 (𝑗)
x,y =

𝐷(𝑗)
x,y − 𝐸(𝑗)

x,y

√2
, (6.77b)

𝑍(𝑗)
z,x =

𝐷(𝑗)
z,x + 𝐸(𝑗)

z,x

√2
, (6.77c)

𝑋(𝑗)
z,x =

𝐷(𝑗)
z,x − 𝐸(𝑗)

z,x

√2
, (6.77d)

𝑌 (𝑗)
z,y =

𝐷(𝑗)
z,y − 𝐸(𝑗)

z,y

√2
, (6.77e)

𝑍(𝑗)
z,y =

𝐷(𝑗)
z,y + 𝐸(𝑗)

z,y

√2
. (6.77f)

Finally, we define on Bob’s side the observables

𝑄(𝑗)
1 = 𝑋(𝑗)

x,y, (6.78a)

𝑄(𝑗)
2 = 𝑌 (𝑗)

x,y , (6.78b)

𝑄(𝑗)
3 = 𝑍(𝑗)

z,x, (6.78c)

𝑄(𝑗)
4 = 𝐷(𝑗)

x,y, (6.78d)

𝑄(𝑗)
5 = 𝐸(𝑗)

x,y. (6.78e)

It is from (regularized versions of) the observables defined in Eqs. (6.75) and (6.78)

which, after proving the necessary relations between them, we will construct our

isometry. In order to prove the relations, we request that certain Bell expressions be

observed to take maximal values (within some small 𝜀 to account for experimental

imperfections).

Commutation structure In order that the observables satisfy themain state-dependent

commutativity and anticommutativity properties required, we request that, at all po-

sitions 1 ≤ 𝑗 ≤ 𝑛, maximal violations

⟨𝜓| 𝐶 (𝑗)
𝒙𝑗

|𝜓⟩ ≥ 6√2 − 𝜀
√2

(6.79)
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are observed of the triple CHSH operators

𝐶 (𝑗)
𝒙𝑗

= 𝐴(𝑗)
3,𝒙𝑗

⊗ (𝐷(𝑗)
z,x + 𝐸(𝑗)

z,x) + 𝐴(𝑗)
1,𝒙𝑗

⊗ (𝐷(𝑗)
z,x − 𝐸(𝑗)

z,x)

+ 𝐴(𝑗)
3,𝒙𝑗

⊗ (𝐷(𝑗)
z,y + 𝐸(𝑗)

z,y) + 𝐴(𝑗)
2,𝒙𝑗

⊗ (𝐷(𝑗)
z,y − 𝐸(𝑗)

z,y)

+ 𝐴(𝑗)
1,𝒙𝑗

⊗ (𝐷(𝑗)
x,y + 𝐸(𝑗)

x,y) + 𝐴(𝑗)
2,𝒙𝑗

⊗ (𝐷(𝑗)
x,y − 𝐸(𝑗)

x,y)

(6.80)

for all inputs for Alice at other positions 𝒙𝑗 ∈ ℛ(𝑗).

The expectation values of all terms appearing in Eq. (6.80) for 𝐶 (𝑗)
𝒙𝑗

are derivable

from the observed statistics. For any 1 ≤ 𝑗 ≤ 𝑛, since 𝒙𝑗 ∈ ℛ(𝑗), the observables for

Alice all correspond to questions in 𝒳 (𝑗) ⊂ 𝒳 by its definition in Eq. (6.67), and so are

well defined. Moreover, for each 𝑗 there are 12|ℛ(𝑗)| correlations. Due to the choice

|𝒮| = poly(𝑛) of special questions, inserting Eq. (6.66) then gives a total of at most

12𝑛[1 + 4𝑛]|𝒮| = poly(𝑛) correlations needed to verify these requests.

Additional bases So that qubits may be prepared in the additional bases necessary

for VBQC, we incorporate the additional observables of Alice corresponding to inputs

where 𝑥𝑗 = x + y and 𝑥𝑗 = x − y. We request that, for all special questions 𝝌 ∈ 𝒮,

perfect correlations

⟨𝜓| 𝐴(𝑗)
4,𝝌𝑗

⊗ 𝐷(𝑗)
x,y |𝜓⟩ ≥ 1 − 𝜀, (6.81a)

⟨𝜓| 𝐴(𝑗)
5,𝝌𝑗

⊗ 𝐸(𝑗)
x,y |𝜓⟩ ≥ 1 − 𝜀 (6.81b)

are observed for all 1 ≤ 𝑗 ≤ 𝑛. This serves to ensure that (in the case of any special

question) the untrusted operations corresponding to inputs where 𝑥𝑗 = x ± y are

consistent with the correct combinations of those for the separate inputs 𝑥𝑗 = x and

𝑥𝑗 = y.

All of Alice’s observables appearing in Eq. (6.81) arewell defined (see Lemma 6.12).

There are at most 2𝑛|𝒮| = poly(𝑛) correlations needed to verify these requests.

Complex conjugation To ensure that possible complex conjugation of measure-

ment operators may only occur across all positions simultaneously, we enforce cer-

tain correlations that include (commuting) pairs of Alice’s observables. This has also

been achieved previously by similar methods [53, 116]. Fix any choice of 𝝌 ∈ 𝒮. We

request for all 1 ≤ 𝑗 < 𝑛 and 𝑞 ∈ {1, 2, 3} that

⟨𝜓| 𝐴(𝑗)
𝒘 𝐴(𝑗+1)

𝒘 ⊗ [(−1)[𝑞=2]𝛤 (𝑗)
1 + (−1)[𝑞=1]𝛤 (𝑗)

2 + (−1)[𝑞=3]𝛤 (𝑗)
3 − 𝛤 (𝑗)

4 ] |𝜓⟩ ≥ 1 − 𝜀
2

,
(6.82)
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where 𝒘 = (𝜒1, … , 𝜒𝑗−1, 𝑞, 𝑞, 𝜒𝑗+2, … , 𝜒𝑛).

All of Alice’s observables appearing in Eq. (6.82) are well defined since 𝒘 ∈ 𝒳𝝌 ⊂
𝒳, as can be seen from Eqs. (6.61) and (6.62). The observables 𝐴(𝑗)

𝒘 and 𝐴(𝑗+1)
𝒘 are

chosen so that they both correspond to the same question 𝒘, and thus commute with

one another. This ensures that the correlations being considered are derivable from

observed statistics, since 𝐴(𝑗)
𝒘 𝐴(𝑗+1)

𝒘 is then a valid observable corresponding to re-

stricting measurement to the product of entries 𝑎𝑗𝑎𝑗+1 ∈ {+, −} in the outcome 𝒂.
There are a total of 𝑂(𝑛) probabilities involved in verifying these requests.

Classical processing Overall, the total amount of classical processing required to

check all of the Bell values and correlations requested in this section grows at worst

as 𝑂(𝑛2)|𝒮| = poly(𝑛). It is thus efficient to perform these checks; the desirable

Property 6 discussed in Section 6.2 is satisfied.

6.5.3 Completeness (honest strategy)

The ideal values of Bell expressions and correlations given at the end of Section 6.5.2

can be satisfied using an honest strategy. We take the shared state to be

|𝜓⟩ =
𝑛

⨂
𝑗=1

|𝛷+⟩𝒜𝑗ℬ𝑗
, (6.83)

where 𝒜𝑗 and ℬ𝑗 denote the 𝑗th reference qubit registers of Alice and Bob, respec-

tively. For all 1 ≤ 𝑗 ≤ 𝑛 and all 𝒓 for which they are defined, we take Alice’s observ-

ables to be

𝐴(𝑗)
1,𝒓 = 𝜎

𝒜𝑗
1 , (6.84a)

𝐴(𝑗)
2,𝒓 = −𝜎

𝒜𝑗
2 , (6.84b)

𝐴(𝑗)
3,𝒓 = 𝜎

𝒜𝑗
3 , (6.84c)

𝐴(𝑗)
4,𝒓 = 𝜎

𝒜𝑗
5 , (6.84d)

𝐴(𝑗)
5,𝒓 = 𝜎

𝒜𝑗
4 , (6.84e)
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where 𝜎4 and 𝜎5 are defined as stated in Section 2.1. We take Bob’s observables for

the questions 𝑦 ∈ {1, … , 6} to be

𝐷(𝑗)
𝑘,𝑙 =

𝜎
ℬ𝑗
𝑘 + 𝜎

ℬ𝑗
𝑙

√2
, (6.85a)

𝐸(𝑗)
𝑘,𝑙 =

𝜎
ℬ𝑗
𝑘 − 𝜎

ℬ𝑗
𝑙

√2
, (6.85b)

where 𝑘, 𝑙 ∈ {1, 2, 3}. In the case 𝑘 = 1 and 𝑙 = 2, these are 𝜎4 and 𝜎5, respectively.

As for the inputs 𝑦 ∈ {♦,�}, the correlations of Eq. (6.82) can be achieved by per-

forming a Bell measurement of pairs of qubits on Bob’s subsystem. The projections

𝛤 (𝑗)
𝑏 denote the projective measurement operator with outcome 𝑏 ∈ {1, 2, 3, 4} for

such a measurement performed on Bob’s 𝑗th and (𝑗 + 1)th qubits. Specifically, at any

position 1 ≤ 𝑗 < 𝑛, we take

𝛤 (𝑗)
1 = |𝛷+⟩⟨𝛷+|ℬ𝑗ℬ𝑗+1

, (6.86a)

𝛤 (𝑗)
2 = |𝛷−⟩⟨𝛷−|ℬ𝑗ℬ𝑗+1

, (6.86b)

𝛤 (𝑗)
3 = |𝛹 +⟩⟨𝛹 +|ℬ𝑗ℬ𝑗+1

, (6.86c)

𝛤 (𝑗)
4 = |𝛹 −⟩⟨𝛹 −|ℬ𝑗ℬ𝑗+1

, (6.86d)

and perform the projective measurement specified by {𝛤 (𝑗)
1 , 𝛤 (𝑗)

2 , 𝛤 (𝑗)
3 , 𝛤 (𝑗)

4 }.

6.6 Operator relations in the self-test subprotocol

In this section, we demonstrate that the values for Bell expressions and correlations

requested as part of Protocol 6.1 (detailed at the end of Section 6.5.2) imply the exis-

tence of unitary observables satisfying Theorem 6.9. That is, the observed experimen-

tal probabilities self-test (in the sense of Definition 2.7) 𝑛 Bell states, and also Pauli

measurements for Alice. We go on to state this self-testing result in Theorem 6.16

and Corollary 6.17. The following theorem summarizes the relations derived between

observables, which are shown in individual detail subsequently in Section 6.6.1.

Theorem 6.15. Suppose that the values of Bell expressions and correlations requested

in Section 6.5.2 are attained (within the tolerance specified in terms of 𝜀). Then the

±1-outcome observables �̂�(𝑗)
𝑞 (regularized versions of the observables 𝑄(𝑗)

𝑞 ) defined by

Eqs. (6.78a) to (6.78c) and, for any choice of special question 𝝌 ∈ 𝒮 ⊂ {1, … , 5}𝑛, the
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±1-outcome observables 𝐴(𝑗)
𝑞,𝝌𝑗

defined for 𝑞 ∈ {1, 2, 3} and 1 ≤ 𝑗 ≤ 𝑛 by Eq. (6.75),

satisfy the assumptions of Theorem 6.9 with 𝜂 ≤ 21√𝜀.

Proof. For any given 𝝌 ∈ 𝒮, take 𝑆(𝑗)
𝑞 = 𝐴(𝑗)

𝑞,𝝌𝑗
and 𝑇 (𝑗)

𝑞 = �̂�(𝑗)
𝑞 for Theorem 6.9.

Proposition 6.18 shows Relation 1. Relation 3 on the commutativity of observables is

shown by Propositions 6.19 and 6.20. Relation 2 on anticommutativity is shown by

Propositions 6.21 and 6.22. Finally, Relation 4 (which ensures global complex conju-

gation) is shown by Proposition 6.23. All relations are shown to within a maximum

of 21√𝜀 from the ideal, and thus we may choose 𝜂 ≤ 21√𝜀.

Each of the triple CHSH operators of Eq. (6.80) has an SOS decomposition

6√2 − 𝐶 (𝑗)
𝒙𝑗

= 1
√2(

𝐴(𝑗)
3,𝒙𝑗

−
𝐷(𝑗)

z,x + 𝐸(𝑗)
z,x

√2 )

2

+ 1
√2(

𝐴(𝑗)
1,𝒙𝑗

−
𝐷(𝑗)

z,x − 𝐸(𝑗)
z,x

√2 )

2

+ 1
√2(

𝐴(𝑗)
3,𝒙𝑗

−
𝐷(𝑗)

z,y + 𝐸(𝑗)
z,y

√2 )

2

+ 1
√2(

𝐴(𝑗)
2,𝒙𝑗

−
𝐷(𝑗)

z,y − 𝐸(𝑗)
z,y

√2 )

2

+ 1
√2(

𝐴(𝑗)
1,𝒙𝑗

−
𝐷(𝑗)

x,y + 𝐸(𝑗)
x,y

√2 )

2

+ 1
√2(

𝐴(𝑗)
2,𝒙𝑗

−
𝐷(𝑗)

x,y − 𝐸(𝑗)
x,y

√2 )

2

(6.87)

Thus, for all 𝑗, Eq. (6.79) implies (see Section 2.6) for all 𝒙𝑗 ∈ ℛ(𝑗) specified that

(𝐴(𝑗)
1,𝒙𝑗

− 𝑋(𝑗)
x,y) |𝜓⟩

√𝜀
≈ 0, (6.88a)

(𝐴(𝑗)
2,𝒙𝑗

− 𝑌 (𝑗)
x,y) |𝜓⟩

√𝜀
≈ 0, (6.88b)

(𝐴(𝑗)
3,𝒙𝑗

− 𝑍(𝑗)
z,x) |𝜓⟩

√𝜀
≈ 0, (6.88c)

(𝐴(𝑗)
1,𝒙𝑗

− 𝑋(𝑗)
z,x) |𝜓⟩

√𝜀
≈ 0, (6.88d)

(𝐴(𝑗)
2,𝒙𝑗

− 𝑌 (𝑗)
z,y ) |𝜓⟩

√𝜀
≈ 0, (6.88e)

(𝐴(𝑗)
3,𝒙𝑗

− 𝑍(𝑗)
z,y) |𝜓⟩

√𝜀
≈ 0. (6.88f)

Due to the definitions made in Eq. (6.78), Bob’s observables in Eqs. (6.88a) to (6.88c)

may also be replaced with 𝑄(𝑗)
1 , 𝑄(𝑗)

2 , and 𝑄(𝑗)
3 , respectively. Since Alice’s observ-

ables in Eq. (6.88) are unitary, regularization can be applied to Bob’s observables (see
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Section 2.7). This results in expressions involving only unitary operators

(𝐴(𝑗)
1,𝒙𝑗

− �̂�(𝑗)
x,y) |𝜓⟩

2√𝜀
≈ 0, (6.89a)

(𝐴(𝑗)
2,𝒙𝑗

− ̂𝑌 (𝑗)
x,y) |𝜓⟩

2√𝜀
≈ 0, (6.89b)

(𝐴(𝑗)
3,𝒙𝑗

− �̂�(𝑗)
z,x) |𝜓⟩

2√𝜀
≈ 0, (6.89c)

(𝐴(𝑗)
1,𝒙𝑗

− �̂�(𝑗)
z,x) |𝜓⟩

2√𝜀
≈ 0, (6.89d)

(𝐴(𝑗)
2,𝒙𝑗

− ̂𝑌 (𝑗)
z,y ) |𝜓⟩

2√𝜀
≈ 0, (6.89e)

(𝐴(𝑗)
3,𝒙𝑗

− �̂�(𝑗)
z,y) |𝜓⟩

2√𝜀
≈ 0. (6.89f)

Similarly to before, Bob’s observables in Eqs. (6.89a) to (6.89c) may also be replaced

with �̂�(𝑗)
1 , �̂�(𝑗)

2 , and �̂�(𝑗)
3 , respectively.

Additionally to the relations required for Theorem 6.9, we have from Eqs. (6.77a)

and (6.77b) that, for all positions 1 ≤ 𝑗 ≤ 𝑛,

𝐷(𝑗)
x,y =

𝑋(𝑗)
x,y + 𝑌 (𝑗)

x,y

√2
, 𝐸(𝑗)

x,y =
𝑋(𝑗)

x,y − 𝑌 (𝑗)
x,y

√2
. (6.90)

The required observation of the correlations in Eq. (6.81) then implies (via Lemma 2.2)

that

𝐴(𝑗)
4,𝝌𝑗

|𝜓⟩
√2𝜀
≈

𝑋(𝑗)
x,y + 𝑌 (𝑗)

x,y

√2
|𝜓⟩, (6.91a)

𝐴(𝑗)
5,𝝌𝑗

|𝜓⟩
√2𝜀
≈

𝑋(𝑗)
x,y − 𝑌 (𝑗)

x,y

√2
|𝜓⟩. (6.91b)

From the relations of Eqs. (6.88a) and (6.88b) inferred from the triple CHSH inequali-

ties (in the special case 𝒙𝑗 = 𝝌𝑗), we then have for all 𝝌 ∈ 𝒮 that

𝐴(𝑗)
4,𝝌𝑗

|𝜓⟩
2√2𝜀

≈
𝐴(𝑗)

1,𝝌𝑗
+ 𝐴(𝑗)

2,𝝌𝑗

√2
|𝜓⟩, (6.92a)

𝐴(𝑗)
5,𝝌𝑗

|𝜓⟩
2√2𝜀

≈
𝐴(𝑗)

1,𝝌𝑗
− 𝐴(𝑗)

2,𝝌𝑗

√2
|𝜓⟩. (6.92b)

We may now write a version of Theorem 6.9 for the experimental observations re-

quired by our protocol which also incorporates certification of 𝜎4 and 𝜎5. This, along

with Lemma 6.10, will allow us to prove Theorem 6.11.
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Theorem 6.16. There exists 𝛿(𝜀, 𝑛) ≥ 0 satisfying 𝛿(0, 𝑛) = 0 such that the following

holds. Suppose that values of Bell expressions and correlations requested in Section 6.5.2

are attained (within the tolerance specified in terms of 𝜀). Then there exist subnormalized

|𝜉0⟩𝒜ℬ and |𝜉1⟩𝒜ℬ satisfying ⟨𝜉0|𝜉0⟩𝒜ℬ + ⟨𝜉1|𝜉1⟩𝒜ℬ = 1, isometries 𝑉 𝝌
𝒜 ∶ 𝒜 → 𝒜 ⊗

𝒜′ ⊗ 𝒜″ for all 𝝌 ∈ 𝒮, and an isometry 𝑉ℬ ∶ ℬ → ℬ ⊗ ℬ′ ⊗ ℬ″ such that for all

𝑞 ∈ {1, … , 5}, 𝑘 ∈ {1, … , 𝑛}, and 𝝌 ∈ 𝒮 we have

𝑉 𝝌|𝜓⟩𝒜ℬ
𝛿(𝜀,𝑛)

≈
𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ |𝜉⟩, (6.93a)

𝑉 𝝌𝐴(𝑘)
𝑞,𝝌𝑗

|𝜓⟩𝒜ℬ
𝛿(𝜀,𝑛)

≈ 𝜎
ℬ′

𝑘
𝑞

𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ 𝜎ℬ″

3[𝑞=3]|𝜉⟩, (6.93b)

where 𝑉 𝝌 = 𝑉 𝝌
𝒜 ⊗ 𝑉ℬ and the junk state |𝜉⟩ ∈ 𝒜 ⊗ 𝒜″ ⊗ ℬ ⊗ ℬ″ is defined as

|𝜉⟩ = |0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉0⟩𝒜ℬ + |1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉1⟩𝒜ℬ. (6.94)

Proof. For 𝑞 ∈ {1, 2, 3}, Theorem 6.9 can be applied for each 𝝌 ∈ 𝒮 due to Theo-

rem 6.15, giving an appropriate function 𝛿, junk state |𝜉⟩, and isometries 𝑉 𝝌
𝒜 and 𝑉ℬ.

To get the remaining cases 𝑞 ∈ {4, 5}, note the linearity of 𝑉 𝝌 and use Eq. (6.92).

The isometry on Bob’s subsystem 𝑉ℬ given by each application of Theorem 6.9 to

Theorem 6.15 (once for each 𝝌 ∈ 𝒮) is that of Fig. 6.3. For each 𝝌 ∈ 𝒮 it is constructed

from the same set of Bob’s observables, as stated in Theorem 6.15. Thus, given any

choice of measurement strategy for Bob as in Eqs. (6.70b) and (6.71), Theorem 6.9

guarantees that the isometry 𝑉ℬ remains unchanged under all different choices of

special question 𝝌 ∈ 𝒮. That the same |𝜉⟩ is sufficient for all 𝝌 can be seen from the

fact that the junk states in Theorem 6.9 do not depend on any of Alice’s observables.

Remark. That 𝑉ℬ does not depend on the choice of special question 𝝌 leads to the

required Property 8 of self-tests applicable to our DIVBQC protocol.

The local isometries 𝑉 𝝌 in Theorem 6.16 are constructed such that the actions of

all observables 𝐴(𝑘)
𝑞,𝝌𝑘

on |𝜓⟩𝒜ℬ under 𝑉 𝝌 are shown (in a slightly different form) to

be

𝑉 𝝌𝐴(𝑘)
𝑞,𝝌𝑘

|𝜓⟩𝒜ℬ
𝛿(𝜀,𝑛)

≈ (𝜎
ℬ′

𝑘
𝑞 ⊗ |0⟩⟨0|ℬ″ + 𝜎

ℬ′
𝑘

𝑞
∗

⊗ |1⟩⟨1|ℬ″)

𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ |𝜉⟩.

(6.95)

In particular (by looking at the case 𝑞 = 𝜒𝑘 for each 𝑘), it is constructed so that the

actions of all 𝐴(𝑘)
𝝌 = 𝐴(𝑘)

𝜒𝑘,𝝌𝑘
(corresponding to special questions 𝝌 ∈ 𝒮) are shown.

The following statement is then immediate.
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Corollary 6.17. For some 𝛾(𝜀, 𝑛) ≥ 0 satisfying 𝛾(0, 𝑛) = 0, the isometries 𝑉 𝝌 =
𝑉 𝝌

𝒜 ⊗ 𝑉ℬ resulting from Theorem 6.16 act for all 𝒔 ∈ {0, 1}𝑛 as

𝑉 𝝌𝐴𝒔
𝝌|𝜓⟩𝒜ℬ

𝛾(𝜀,𝑛)
≈ [

𝑛

⨂
𝑗=1

(𝜎
ℬ′

𝑗
𝜒𝑗 )

𝑠𝑗
⊗ |0⟩⟨0|ℬ″

+
𝑛

⨂
𝑗=1

(𝜎
ℬ′

𝑗
𝜒𝑗

∗

)

𝑠𝑗
⊗ |1⟩⟨1|ℬ″]

𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ |𝜉⟩. (6.96)

Proof. For each 𝝌 ∈ 𝒮, apply Lemma 6.10 to Eq. (6.95) with |𝜙⟩ = ⨂𝑛
𝑗=1|𝛷+⟩𝒜′

𝑗 ℬ′
𝑗

⊗
|𝜉⟩.

As discussed after the statement of Theorem 6.9, for which Theorem 6.15 guar-

antees 𝜂 ≤ 21√𝜀, we expect standard techniques to yield 𝛿(𝜀, 𝑛) = 𝑂(√𝜀𝑛2) and

𝛾(𝜀, 𝑛) = 𝑂(√𝜀𝑛2) in the previous Theorem 6.16 and Corollary 6.17.

6.6.1 Individual relations

We now show each relation that forms Theorem 6.15 in individual detail. We will

take it as given throughout this section that the values of all Bell expressions and

correlations requested in Section 6.5.2 are attained (within the tolerance specified in

terms of 𝜀).

Proposition 6.18 (Symmetry, Alice and Bob). For any 𝝌 ∈ 𝒮,

(𝐴(𝑗)
𝑞,𝝌𝑗

− �̂�(𝑗)
𝑞 ) |𝜓⟩

2√𝜀
≈ 0 (6.97)

for any position 𝑗 and for all 𝑞 ∈ {1, 2, 3}.

Proof. The relations are special cases of those of Eq. (6.89) with 𝒙𝑗 = 𝝌𝑗.

Proposition 6.19 (Commutativity, Bob). For any distinct positions 𝑗 and 𝑘 such that

𝑗 ≠ 𝑘, and for all 𝑞, 𝑟 ∈ {1, 2, 3},

[�̂�(𝑗)
𝑞 , �̂�(𝑘)

𝑟 ] |𝜓⟩
8√𝜀
≈ 0. (6.98)

Proof. By construction (see Lemma 6.12), there exists 𝝌 ∈ 𝒮 and an input 𝒙 ∈ 𝒳 such

that 𝑥𝑗 = 𝑞, 𝑥𝑘 = 𝑟, and 𝑥𝑖 = 𝜒𝑖 for all 𝑖 ∈ {1, … , 𝑛} ⧵ {𝑗, 𝑘}. For this 𝒙, consider
the observables 𝐴(𝑗)

𝒙 and 𝐴(𝑘)
𝒙 which commute by construction as in Eq. (6.73a). Since

𝑥𝑗 = 𝑞 and 𝑥𝑘 = 𝑟, we have 𝐴(𝑗)
𝒙 = 𝐴(𝑗)

𝑞,𝒙𝑗
and 𝐴(𝑘)

𝒙 = 𝐴(𝑘)
𝑟,𝒙𝑘

, respectively. Lemma 6.14
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ensures that 𝒙𝑗 ∈ ℛ(𝑗) and 𝒙𝑘 ∈ ℛ(𝑘), and thus from Eq. (6.89) we have 𝐴(𝑗)
𝑞,𝒙𝑗

|𝜓⟩
2√𝜀
≈

�̂�(𝑗)
𝑞 |𝜓⟩ and 𝐴(𝑘)

𝑟,𝒙𝑘
|𝜓⟩

2√𝜀
≈ �̂�(𝑘)

𝑟 |𝜓⟩. Therefore,

[�̂�(𝑗)
𝑞 , �̂�(𝑘)

𝑟 ] |𝜓⟩
8√𝜀
≈ [𝐴(𝑘)

𝑟,𝒙𝑘
, 𝐴(𝑗)

𝑞,𝒙𝑗] |𝜓⟩ = [𝐴(𝑘)
𝒙 , 𝐴(𝑗)

𝒙 ] |𝜓⟩ = 0 (6.99)

as required.

Proposition 6.20 (Commutativity, Alice). For any 𝝌 ∈ 𝒮,

[𝐴(𝑗)
𝑞,𝝌𝑗

, 𝐴(𝑘)
𝑟,𝝌𝑘] |𝜓⟩

16√𝜀
≈ 0 (6.100)

for any distinct positions 𝑗 and 𝑘 such that 𝑗 ≠ 𝑘, and all 𝑞, 𝑟 ∈ {1, 2, 3}.

Proof. The observables 𝐴(𝑗)
𝑞,𝝌𝑗

and 𝐴(𝑘)
𝑟,𝝌𝑘

are valid due to Lemma 6.12. One out of the

six commutation relations has both its observables coincide with 𝝌, and so also holds

exactly and state-independently. Let us suppose 𝑞 and 𝑟 are chosen such that this is

not the case. By Eqs. (6.64) and (6.65), 𝝌𝑗 ∈ ℛ(𝑗) and 𝝌𝑘 ∈ ℛ(𝑘), and so we may use

Eq. (6.89) to see that

𝐴(𝑗)
𝑞,𝝌𝑗

|𝜓⟩
2√𝜀
≈ �̂�(𝑗)

𝑞 |𝜓⟩, 𝐴(𝑘)
𝑟,𝝌𝑘

|𝜓⟩
2√𝜀
≈ �̂�(𝑘)

𝑟 |𝜓⟩. (6.101)

Therefore,

[𝐴(𝑗)
𝑞,𝝌𝑗

, 𝐴(𝑘)
𝑟,𝝌𝑘] |𝜓⟩

8√𝜀
≈ [�̂�(𝑘)

𝑟 , �̂�(𝑗)
𝑞 ] |𝜓⟩

8√𝜀
≈ 0, (6.102)

where the final equality is simply Eq. (6.98).

Proposition 6.21 (Anticommutativity, Alice). For any 𝝌 ∈ 𝒮,

{𝐴(𝑗)
𝑞,𝝌𝑗

, 𝐴(𝑗)
𝑟,𝝌𝑗} |𝜓⟩

2(1+√2)√𝜀
≈ 0 (6.103)

for any position 𝑗 and for all distinct 𝑞, 𝑟 ∈ {1, 2, 3} such that 𝑞 ≠ 𝑟.

Proof. The observables 𝐴(𝑗)
𝑞,𝝌𝑗

and 𝐴(𝑗)
𝑟,𝝌𝑗

are valid due to Lemma 6.12. Note that if 𝐷
and 𝐸 are ±1-outcome observables, then {𝐷 + 𝐸, 𝐷 − 𝐸} = 0. It follows from the

definitions made in Eq. (6.77) that

{𝑋(𝑗)
x,y, 𝑌 (𝑗)

x,y} = 0, (6.104a)

{𝑋(𝑗)
z,x, 𝑍(𝑗)

z,x} = 0, (6.104b)

{𝑌 (𝑗)
z,y , 𝑍(𝑗)

z,y} = 0. (6.104c)
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Since 𝝌𝑗 ∈ ℛ(𝑗) by Eqs. (6.64) and (6.65), we can use Eq. (6.88) to exchange the ob-

servables 𝐴(𝑗)
𝑞,𝝌𝑗

and 𝐴(𝑗)
𝑟,𝝌𝑗

with the appropriate two of Bob’s observables from one of

Eqs. (6.104a) to (6.104c), matching the values of 𝑞 and 𝑟. Let us denote these two

observables here by 𝑅𝑞 and 𝑅𝑟. Since {𝑅𝑞, 𝑅𝑟} = 0, we have

‖{𝐴(𝑗)
𝑞,𝝌𝑗

, 𝐴(𝑗)
𝑟,𝝌𝑗} |𝜓⟩‖ = ‖{𝐴(𝑗)

𝑞,𝝌𝑗
, 𝐴(𝑗)

𝑟,𝝌𝑗} |𝜓⟩ − {𝑅𝑞, 𝑅𝑟}|𝜓⟩‖

≤ (2 + ‖𝑅𝑞‖ + ‖𝑅𝑟‖)√𝜀,
(6.105)

where the inequality follows from Eq. (6.88), the triangle inequality, unitarity of 𝐴(𝑗)
𝑞

and 𝐴(𝑗)
𝑟 , and the definition of the operator norm. Applying the triangle inequality to

Eq. (6.77) to get

‖𝑅𝑞‖ ≤ √2, ‖𝑅𝑟‖ ≤ √2 (6.106)

yields the desired expression.

Proposition 6.22 (Anticommutativity, Bob). For any position 𝑗,

{�̂�(𝑗)
1 , �̂�(𝑗)

2 } |𝜓⟩
2(3+√2)√𝜀

≈ 0, (6.107a)

{�̂�(𝑗)
1 , �̂�(𝑗)

3 } |𝜓⟩
2(4+√2)√𝜀

≈ 0, (6.107b)

{�̂�(𝑗)
2 , �̂�(𝑗)

3 } |𝜓⟩
2(5+√2)√𝜀

≈ 0. (6.107c)

Proof. Since 𝑄(𝑗)
1 = 𝑋(𝑗)

x,y and 𝑄(𝑗)
2 = 𝑌 (𝑗)

x,y , we have as before that 𝑄(𝑗)
1 and 𝑄(𝑗)

2 anti-

commute by construction. Furthermore, applying the triangle inequality to the oper-

ator norms of Eqs. (6.77a) and (6.77b) shows that

‖𝑄(𝑗)
1 ‖ ≤ √2, ‖𝑄(𝑗)

2 ‖ ≤ √2. (6.108)

Thus, Lemma 2.9 applied using Eqs. (6.88a) and (6.88b) immediately gives the first

desired relation for the regularized operators �̂�(𝑗)
1 and �̂�(𝑗)

2 .

We also know, as before, that 𝑋(𝑗)
z,x anticommutes with 𝑍(𝑗)

z,x . Our strategy is thus

to write the state-dependent anticommutator of the regularized operators �̂�(𝑗)
1 = �̂�(𝑗)

x,y

and �̂�(𝑗)
3 = �̂�(𝑗)

z,x in terms of 𝑋(𝑗)
z,x and 𝑍(𝑗)

z,x (note the differing subscripts between �̂�(𝑗)
x,y

and 𝑋(𝑗)
z,x). Taking any 𝝌 ∈ 𝒮 (which satisfies 𝝌𝑗 ∈ ℛ(𝑗) by definition), we have

�̂�(𝑗)
x,y�̂�(𝑗)

z,x|𝜓⟩
4√𝜀
≈ 𝐴(𝑗)

3,𝝌𝑗
𝐴(𝑗)

1,𝝌𝑗
|𝜓⟩

(1+√2)√𝜀
≈ 𝑋(𝑗)

z,x𝑍(𝑗)
z,x|𝜓⟩, (6.109)
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where the first estimate uses Eqs. (6.89a) and (6.89c), and the second estimate uses

Eqs. (6.88c) and (6.88d) alongwith the triangle inequality applied to the operator norm

of Eq. (6.77d). We can also write

�̂�(𝑗)
z,x�̂�(𝑗)

x,y|𝜓⟩
3√𝜀
≈ 𝑍(𝑗)

z,x𝐴(𝑗)
1,𝝌𝑗

|𝜓⟩
√2𝜀
≈ 𝑍(𝑗)

z,x𝑋(𝑗)
z,x|𝜓⟩, (6.110)

where this time for the first estimate (since we do not need to change the subscripts

on the first operator) we use the property of regularization that gives

�̂�(𝑗)
z,x|𝜓⟩

√𝜀
≈ 𝑍(𝑗)

z,x|𝜓⟩ (6.111)

in light of Eq. (6.88c) (see Section 2.7). Therefore, we can now combine Eqs. (6.109)

and (6.110) conclude the second desired relation

{�̂�(𝑗)
1 , �̂�(𝑗)

3 } |𝜓⟩ = {�̂�(𝑗)
x,y, �̂�(𝑗)

z,x} |𝜓⟩
2(4+√2)√𝜀

≈ {𝑋(𝑗)
z,x, 𝑍(𝑗)

z,x} |𝜓⟩ = 0. (6.112)

To derive the third and final relation, we know that 𝑌 (𝑗)
z,y anticommutes with 𝑍(𝑗)

z,y.

Now we can perform the same process as in deriving Eq. (6.109) to write both

̂𝑌 (𝑗)
x,y �̂�(𝑗)

z,x|𝜓⟩
4√𝜀
≈ 𝐴(𝑗)

3,𝝌𝑗
𝐴(𝑗)

2,𝝌𝑗
|𝜓⟩

(1+√2)√𝜀
≈ 𝑌 (𝑗)

z,y 𝑍(𝑗)
z,y|𝜓⟩, (6.113a)

�̂�(𝑗)
z,x ̂𝑌 (𝑗)

x,y |𝜓⟩
4√𝜀
≈ 𝐴(𝑗)

2,𝝌𝑗
𝐴(𝑗)

3,𝝌𝑗
|𝜓⟩

(1+√2)√𝜀
≈ 𝑍(𝑗)

z,y𝑌 (𝑗)
z,y |𝜓⟩. (6.113b)

Finally, we conclude that

{�̂�(𝑗)
2 , �̂�(𝑗)

3 } |𝜓⟩ = { ̂𝑌 (𝑗)
x,y , �̂�(𝑗)

z,x} |𝜓⟩
2(5+√2)√𝜀

≈ {𝑌 (𝑗)
z,y , 𝑍(𝑗)

z,y} |𝜓⟩ = 0 (6.114)

and have now shown all desired anticommutation relations for Bob.

Proposition 6.23 (Complex conjugation relation). For any 𝝌 ∈ 𝒮 and 1 ≤ 𝑗 < 𝑛 we

have

|𝜓⟩ + 𝐴(𝑗)
1,𝝌𝑗

𝐴(𝑗+1)
1,𝝌𝑗+1

𝐴(𝑗)
2,𝝌𝑗

𝐴(𝑗+1)
2,𝝌𝑗+1

𝐴(𝑗)
3,𝝌𝑗

𝐴(𝑗+1)
3,𝝌𝑗+1

|𝜓⟩
21√𝜀

≈ 0. (6.115)

Proof. Suppose that 𝝌 ′ ∈ 𝒮 is the special question for which Eq. (6.82) is satisfied. For

all 𝑞 ∈ {1, 2, 3}, we can see immediately from the definitions in Eqs. (6.64) and (6.65)

that 𝒘𝑗 ∈ ℛ(𝑗)
𝝌 ⊂ ℛ(𝑗) and 𝒘𝑗+1 ∈ ℛ(𝑗+1)

𝝌 ⊂ ℛ(𝑗+1), where

𝒘 = (𝜒′
1, … , 𝜒′

𝑗−1, 𝑞, 𝑞, 𝜒′
𝑗+2, … , 𝜒′

𝑛).

Similarly, we can see for all 𝝌 ∈ 𝒮 that 𝝌𝑖 ∈ ℛ(𝑖)
𝝌 ⊂ ℛ(𝑖) for all 𝑖.
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We can thus write for all 𝝌 and 𝑞 that

𝐴(𝑗)
𝑞,𝝌𝑗

𝐴(𝑗+1)
𝑞,𝝌𝑗+1

|𝜓⟩
3√𝜀
≈ �̂�(𝑗+1)

𝑞 𝑄(𝑗)
𝑞 |𝜓⟩

3√𝜀
≈ 𝐴(𝑗)

𝒘 𝐴(𝑗+1)
𝒘 |𝜓⟩, (6.116)

where both estimates use Eqs. (6.88) and (6.89), and again

𝒘 = (𝜒′
1, … , 𝜒′

𝑗−1, 𝑞, 𝑞, 𝜒′
𝑗+2, … , 𝜒′

𝑛).

Notice now that the operators

𝛤 (𝑗)
1 − 𝛤 (𝑗)

2 + 𝛤 (𝑗)
3 − 𝛤 (𝑗)

4 , (6.117a)

−𝛤 (𝑗)
1 + 𝛤 (𝑗)

2 + 𝛤 (𝑗)
3 − 𝛤 (𝑗)

4 , (6.117b)

𝛤 (𝑗)
1 + 𝛤 (𝑗)

2 − 𝛤 (𝑗)
3 − 𝛤 (𝑗)

4 , (6.117c)

are unitary, since the 𝛤 (𝑗)
𝑏 as defined in Eq. (6.71) form a projective measurement

for each 𝑗. Alice’s operators appearing in Eq. (6.82) are also unitary by definition in

Eq. (6.72a). We can thus apply Lemma 2.2 to Eq. (6.82). Together with Eq. (6.116)

holding for all 𝑞, this implies

𝐴(𝑗)
1,𝝌𝑗

𝐴(𝑗+1)
1,𝝌𝑗+1

|𝜓⟩
7√𝜀
≈ (𝛤 (𝑗)

1 − 𝛤 (𝑗)
2 + 𝛤 (𝑗)

3 − 𝛤 (𝑗)
4 ) |𝜓⟩, (6.118a)

𝐴(𝑗)
2,𝝌𝑗

𝐴(𝑗+1)
2,𝝌𝑗+1

|𝜓⟩
7√𝜀
≈ (−𝛤 (𝑗)

1 + 𝛤 (𝑗)
2 + 𝛤 (𝑗)

3 − 𝛤 (𝑗)
4 ) |𝜓⟩, (6.118b)

𝐴(𝑗)
3,𝝌𝑗

𝐴(𝑗+1)
3,𝝌𝑗+1

|𝜓⟩
7√𝜀
≈ (𝛤 (𝑗)

1 + 𝛤 (𝑗)
2 − 𝛤 (𝑗)

3 − 𝛤 (𝑗)
4 ) |𝜓⟩. (6.118c)

Therefore,

𝐴(𝑗)
1,𝝌𝑗

𝐴(𝑗+1)
1,𝝌𝑗+1

𝐴(𝑗)
2,𝝌𝑗

𝐴(𝑗+1)
2,𝝌𝑗+1

𝐴(𝑗)
3,𝝌𝑗

𝐴(𝑗+1)
3,𝝌𝑗+1

|𝜓⟩

7√𝜀
≈ (𝛤 (𝑗)

1 + 𝛤 (𝑗)
2 − 𝛤 (𝑗)

3 − 𝛤 (𝑗)
4 )𝐴(𝑗)

1,𝝌𝑗
𝐴(𝑗+1)

1,𝝌𝑗+1
𝐴(𝑗)

2,𝝌𝑗
𝐴(𝑗+1)

2,𝝌𝑗+1
|𝜓⟩

7√𝜀
≈ (−𝛤 (𝑗)

1 + 𝛤 (𝑗)
2 − 𝛤 (𝑗)

3 + 𝛤 (𝑗)
4 )𝐴(𝑗)

1,𝝌𝑗
𝐴(𝑗+1)

1,𝝌𝑗+1
|𝜓⟩

7√𝜀
≈ − (𝛤 (𝑗)

1 + 𝛤 (𝑗)
2 + 𝛤 (𝑗)

3 + 𝛤 (𝑗)
4 ) |𝜓⟩.

(6.119)

Since ∑𝑏 𝛤 (𝑗)
𝑏 = 𝐼, the result follows.

6.7 Discussion

We have shown that the self-testing protocol given in this chapter exhibits all of the

requirements to be combined with Fitzsimons–Kashefi-type verifiable blind quan-

tum computation delegation schemes to achieve fully device-independent security.
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Furthermore, our protocol achieves several properties that are desirable for future

practical implementations. Of particular note is that, despite being able to certify the

remote preparation of a wide variety of states in parallel, only a rudimentary quantum

measurement device is needed by the client party. The input randomness required

for generating questions is also small, scaling logarithmically in the number of qubits

for the client and with constant-sized questions being sent to the remote server. Our

combined protocol would also enjoy many of the benefits brought by further devel-

opments in VBQC protocols. It can already be optimized, for example, by starting

with different resource state structures [44, 45, 121], and can be made fault-tolerant

as in [7]. Many of the properties shown of our self-test are also desirable in other

applications (especially those involving device-independent state preparation), and

as such our work is not restricted to use in delegated quantum computation. In such

cases, it may not be necessary to use as many possible input questions as we have

done, and simpler special cases of our tests could be used as is necessary.

Resource consumption Let us comment on the resources used by our protocol

by first focusing on the self-testing and remote state preparation components. Using

standard statistical techniques, achieving a fixed statistical confidence (of say 99%)

for a given error tolerance 𝜀 in our protocol is possible in 𝑂(1/𝜀2) experimental trials

of each of 𝑂(𝑛2)|𝒮| questions. Using the conservative self-testing robustness esti-

mate we expect to be achievable, some fixed constant distance between physical and

reference states in our self-testing and remote state preparation statements (Theo-

rems 6.11 and 6.16 and Corollary 6.17) would require an error tolerance 𝜀 = 𝛺(1/𝑛4).
Thus, a given fixed robustness can be achieved (with 99% confidence) in 𝑂(𝑛8) ex-

perimental trials per question. For the sake of argument, let us take our number of

special questions to be |𝒮| = 𝑂(𝑛), resulting in 𝑂(𝑛3) questions overall and a total of

𝑂(𝑛11) trials. Since each of our questions consume 𝑂(log 𝑛) bits of randomness, the

total self-testing cost is 𝑂(𝑛11 log 𝑛) bits in this case.

A circuit with 𝑔 gates may be delegated using 𝑁 = 𝑂(𝑔) qubits [40, 120, 137].

Starting with the dotted triple graph version of the brickwork resource state used for

composability in the robust FK protocol of [7], it is possible to achieve exponential

security with a number of repetitions that is constant in the size of the computa-

tion, all the while conserving the composability and fault tolerance properties of the

protocol [44, Appendix F]. In this case, the overhead due to verification for a fixed

level of security is 𝑂(𝑁) additional qubits prepared and 𝑂(𝑁) bits of total commu-
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nication (thanks to the constant number of repetitions). The total number of qubits

that must be prepared is then 𝑛 = 𝑂(𝑔) and the total computation cost also scales

as 𝑂(𝑔). Errors in soundness and completeness of the robust FK protocol due to a

nonideal input state depend only of the trace distance of this state from the ideal [7].

Therefore, to obtain a correct answer with some fixed high probability is estimated to

cost 𝑂(𝑔11 log 𝑔) bits of self-testing resources and 𝑂(𝑔) total computation resources,

resulting in an overall resource cost estimate for our composite device-independent

VBQC protocol that is 𝑂(𝑔11 log 𝑔).

Clearly, despite outperforming a number of previous works in this metric, this is

not ideal (the state-of-the-art is 𝛩(𝑔 log 𝑔) [53]). It should be noted, however, that

while our extra nonlinear cost enters entirely from self-testing, resource estimation

is performed under the assumption of noiseless and honest provers, with errors orig-

inating only from statistical analysis. In a more realistic setting with non-adversarial

provers contending with depolarizing experimental noise local to each of their 𝑛 EPR

pairs, the comparison is less transparent. The error tolerance 𝜀 we can achieve would

only be worsened by a constant factor (depending on the level of noise), as it refers

to outcomes for fixed-sized chunks of registers (one or two EPR pairs each). Mean-

while, self-testing protocols with robustness depending on an 𝜖 that instead repre-

sents global failure rate in its tests would see 𝜖 increasing to some nonzero constant

exponentially quickly in 𝑛 due to such noise. In this case, even with robustness guar-

antees scaling polynomially (as 𝜖 → 0) in 𝜖 alone, it would be extraordinarily difficult

to achieve the fidelities required in such an experiment as the number of qubits grows.

Further discussion of this point can be found in [138].

Future works While we believe that the robustness bounds used for our estima-

tion are conservative and achievable using standard existing techniques, we have

opted to wait for techniques yielding improved bounds to be developed (perhaps us-

ing techniques such as in [28, 69, 103, 106, 139–142]) that are applicable to local error

tolerances. Any analytic improvements on results of the form of our Theorem 6.9

or Lemma 6.10 would be of direct consequence to our resource costs. For practi-

cal applicability, numerical optimization approaches such as those using semidefinite

programming have yieldedmuch better robustness values (and apparent scaling) than

those analytically derived [25, 59–61, 101, 106, 110, 111, 117, 118]. Advances of the

computational efficiency of such techniques are, thus, also of great interest.

In case a much more technologically capable client device is acceptable, it may be
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possible to adapt the rigidity results conceived by Coladangelo et al. [53] to prepare

input states to FK-type VBQC protocols. This would likely lead to a protocol whose

total resources scale as 𝑂(𝑔) in the noiseless case, an improvement by a logarith-

mic factor over the state-of-the-art. Whether the more recent self-testing protocol of

Natarajan and Vidick [103] with smaller communication could also be used for the

required state preparation is an open question. Device-independent “one-shot” tests

in the spirit of [138, 143] could also be studied in the context of state preparation.





Chapter 7

Conclusion

The narrative we have presented in this thesis was composed of three main phases.

Firstly, we united for the first time arguably the twomost famous two-player nonlocal

games (the CHSH and magic square games) under a single framework, inspired as a

generalization to the rules of the magic square game of Mermin [18], Peres [19], and

Aravind [77] to be played on rectangular tables of arbitrary sizes. Secondly, armed

with the additional structure brought by these nonlocal games and guided by our re-

sults, we embarked on a search for exciting contexts withinwhich they could be put to

work in the form of cryptographic applications. The particular tasks that we chose to

focus upon were those of certified private randomness expansion and the self-testing

of quantum systems, although any number of other applications could also have been

considered. As an aside, whether or not self-testing should fall under the umbrella of

quantum cryptography is often debated, however, we are comfortable in regarding it

as such due to its usefulness in many specifically cryptographic applications and also

the inherently low level of trust afforded to devices in the device-independent regime

of which it forms a part. Thirdly, having already exhibited a protocol certifying the

presence of arbitrarily many maximally entangled Bell states with many properties

appropriate for simple-client tasks in the device-independent scenario, we turned our

attention to arguably one of the most crucial of such applications: universal verifi-

able blind delegated quantum computation (VBQC). We constructed another self-test

tailored specifically for (but certainly not limited to) lifting existing VBQC protocols

into the fully device-independent security setting. This scheme satisfies an extensive

list of properties that allow for the efficiency and composability achieved. We now

comment on some of the implications of each part of the thesis.

In Chapter 3, we studied optimal winning probabilities for our magic rectangle
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games, considering various levels of correlations characterized by the NPA hierarchy.

As mentioned, we would like to see whether a useful definition for the multipartite

case of “magic hyperrectangles” could be made. It may be possible to then incorpo-

rate further well-known (say, tripartite examples of) nonlocal games under the same

framework, as we already say for the 2×2 case of the CHSH game. In these cases, the

multipartite extension to the usual techniques of the NPA hierarchy could be applied

[60]. Also, in any case, the open question as to the optimal quantum values for all

2 × 𝑛 games is an interesting one. That our 2 × 3 game exhibits a separation between

the NPA level 1 and almost quantum sets (with the former having a perfect winning

strategy) may indicate some usefulness in quantum measure theory (a generalization

of measure theory in which the 𝜎-additivity property of probability measures is weak-

ened to a similar condition that allows for interference between pairs of alternative

histories for a system, but not triples) [92, 144]. Since being presented, our magic

rectangle games have also been studied as a special case of graph incidence games by

Paddock et al. [145].

The applications that we considered for our magic rectangles were those of cer-

tified private randomness (Chapter 4) and self-testing (Chapter 5). For randomness

expansion, we found that the smallest games perform the best in terms of noise toler-

ance, starting with the CHSH game (the 2 × 2 case). In terms of rates, while we have

used very weak general bounds (resulting in quite suboptimal rates), we also find that

smaller games perform better. This is somewhat expected, since the smaller magic

rectangles exhibit a larger classical–quantum gap (the classical win probability tends

to unity as the rectangles grow larger). The smaller games also require fewer input

questions, leading to lower consumption of randomness in the required Bell tests of

expansion protocols (although performing spot checking as is usually done signifi-

cantly reduces the impact of this). Even so, it may be worthwhile to examine some of

our games using the recent techniques based on entropy accumulation [94], with the

smallest nonstandard 2 × 3 magic rectangle game being an ideal first candidate. As a

starting point for our self-testing application, we gave a perfectly winning “one-side-

local” strategy for the Mermin–Peres magic square game in which one of the parties

requires only to perform single-qubit Pauli measurements. This strategy would also

be of practicality in any existing (or future) scenario employing the magic square

game in which the cost of sharing three EPR pairs of entanglement does not exceed

in magnitude the benefit of measurement simplicity for one side. Our protocol was

particularly suited for certifying many Bell states in the client–server setting, per-
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forming favorably with respect to some of the properties it simultaneously exhibits

in this case.

Finally, we gave in Chapter 6 a self-testing protocol instead based primarily on

(triple) CHSH statistics that allows (by parallel remote state preparation via telepor-

tation) existing VBQC schemes of the Fitzsimons–Kashefi type to be brought into the

realm of fully device-independent security. This scheme provides an alternative in the

measurement-based quantum computation model to that of Coladangelo et al. [53],

which instead makes use of the verifiability scheme of Broadbent [49]. Our scheme is

also designed to be efficient (e.g. in terms of communication complexity and classical

postprocessing) as well as practical in terms of the technological simplicity required

of client devices. It is an open problem as to whether the rigidity results of Coladan-

gelo et al. [53] (that are in turn based on the “Pauli braiding test” of Natarajan and

Vidick [28]) could also be adapted for use with FK-type VBQC protocols. If this could

be done, it would likely yield a further improved protocol with total resource con-

sumption scaling linearly in the number of gates in the delegated circuit (although

it would still require entangled measurements for both parties). Since first present-

ing the work of this chapter, progress has been made on verification whereby qubits

need only be prepared in a single plane of the Bloch sphere [146]. We also note that,

while we did not choose to explicitly analyze exact robustness guarantees for our

protocol (although they certainly could be derived using standard techniques), such

bounds are very simple to derive in this exact special case, since complex conjugation

of measurements need not be considered, and are of the form indicated in the relevant

results of the chapter.

We hope that through the work that has been presented in this thesis, it has be-

come evenmore apparent that the study of nonlocal games and of device-independent

protocols can form a largely symbiotic relationship, with developments taking place

in one often giving rise to interesting developments in the other. This type of rapid

and accelerating evolution is taking place across the whole domain of quantum sci-

ence and technology, and the full potential of such advances is only just beginning to

come to fruition.





Appendix A

Winning 2-by-3 games at NPA
hierarchy level 1

Consider the 2 × 3 magic rectangle game in which entries to the first column are

required to have a negative product, and all other row and column products are re-

quired to be positive. That is, the 2×3 game specified by the parameters (𝛽1, 𝛽2, 𝛽3) =
(−, +, +) and (𝛼1, 𝛼2) = (+, +) satisfying Definition 3.1. In order to write our strategy

more easily, in Table A.1 we introduce a more concise alphabet for the inputs and

outputs of the game.

Table A.1: The natural alphabets 𝒜 and ℬ defined here denote new notation for the natural alpha-

bets of the 2 × 3 magic rectangle game under consideration, with parameters (𝛼1, 𝛼2) = (+, +) and

(𝛽1, 𝛽2, 𝛽3) = (−, +, +). Elements of each alphabet have the form of input/output pairs for each player,

with the input written first.

𝒜2×3 𝒜 ℬ2×3 ℬ

(1, (+, +, +)) (1, 1) (1, (+, −)𝘛) (1, 1)
(1, (+, −, −)) (1, 2) (1, (−, +)𝘛) (1, 2)
(1, (−, +, −)) (1, 3) (2, (+, +)𝘛) (2, 1)
(1, (−, −, +)) (1, 4) (2, (−, −)𝘛) (2, 2)
(2, (+, +, +)) (2, 1) (3, (+, +)𝘛) (3, 1)
(2, (+, −, −)) (2, 2) (3, (−, −)𝘛) (3, 2)
(2, (−, +, −)) (2, 3)
(2, (−, −, +)) (2, 4)

Under the new notation defined in Table A.1, the success probability of a behavior
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𝑃 (𝑎, 𝑏 ∣ 𝑥, 𝑦) where (𝑥, 𝑎) ∈ 𝒜 and (𝑦, 𝑏) ∈ ℬ is

𝑝 = 1
6 [𝑃 (1, 1 ∣ 1, 1) + 𝑃 (2, 1 ∣ 1, 1) + 𝑃 (3, 2 ∣ 1, 1) + 𝑃 (4, 2 ∣ 1, 1)

+ 𝑃 (1, 1 ∣ 1, 2) + 𝑃 (2, 2 ∣ 1, 2) + 𝑃 (3, 1 ∣ 1, 2) + 𝑃 (4, 2 ∣ 1, 2)

+ 𝑃 (1, 1 ∣ 1, 3) + 𝑃 (2, 2 ∣ 1, 3) + 𝑃 (3, 2 ∣ 1, 3) + 𝑃 (4, 1 ∣ 1, 3)

+ 𝑃 (1, 2 ∣ 2, 1) + 𝑃 (2, 2 ∣ 2, 1) + 𝑃 (3, 1 ∣ 2, 1) + 𝑃 (4, 1 ∣ 2, 1)

+ 𝑃 (1, 1 ∣ 2, 2) + 𝑃 (2, 2 ∣ 2, 2) + 𝑃 (3, 1 ∣ 2, 2) + 𝑃 (4, 2 ∣ 2, 2)

+ 𝑃 (1, 1 ∣ 2, 3) + 𝑃 (2, 2 ∣ 2, 3) + 𝑃 (3, 2 ∣ 2, 3) + 𝑃 (4, 1 ∣ 2, 3)].

(A.1)

We now state a behavior, achievable using NPA level 1 correlations, for which the

win probability 𝑝 of Eq. (A.1) is unity. This behavior is defined via the matrices

(𝑃 (𝑎, 𝑏 ∣ 1, 1))𝑎,𝑏 = 1
4

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0
1 0
0 1
0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (A.2a)

(𝑃 (𝑎, 𝑏 ∣ 2, 1))𝑎,𝑏 = 1
4

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1
0 1
1 0
1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (A.2b)

(𝑃 (𝑎, 𝑏 ∣ 1, 2))𝑎,𝑏 = (𝑃 (𝑎, 𝑏 ∣ 2, 2))𝑎,𝑏 = 1
4

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0
0 1
1 0
0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (A.2c)

(𝑃 (𝑎, 𝑏 ∣ 1, 3))𝑎,𝑏 = (𝑃 (𝑎, 𝑏 ∣ 2, 3))𝑎,𝑏 = 1
4

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0
0 1
0 1
1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (A.2d)

Indeed, the behavior defined by Eq. (A.2) admits an NPA hierarchy level 1 certificate,
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given by the matrix

𝛤 = 1
8

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

8 2 2 2 2 2 2 4 4 4
2 2 0 0 1 −1 1 2 2 2
2 0 2 0 −1 1 1 2 0 0
2 0 0 2 1 1 1 0 2 0
2 1 −1 1 2 0 0 0 2 2
2 −1 1 1 0 2 0 0 0 0
2 1 1 1 0 0 2 2 2 0
4 2 2 0 0 0 2 4 2 2
4 2 0 2 2 0 2 2 4 2
4 2 0 0 2 0 0 2 2 4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A.3)

By Corollary 3.6, we thus have that 𝜔1(2, 3) = 1. Therefore, by Corollary 3.12,

𝜔1(2, 𝑛) = 1 for all 𝑛 ≥ 3.
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Robust anticommutation relations

Lemma B.1. For all distinct 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, … , 𝑛} we have the estimate between Alice’s

observables and Bob’s pair check observables,

‖(𝑋𝑙
𝐴𝑍𝑙

𝐴𝑍𝑘
𝐴𝑋𝑘

𝐴)(𝑋𝑗
𝐴𝑍𝑗

𝐴𝑍 𝑖
𝐴𝑋𝑖

𝐴)|𝜓⟩ − 𝑋𝑖,𝑘
𝐵 𝑍 𝑖,𝑘

𝐵 𝑍𝑗,𝑙
𝐵 𝑋𝑗,𝑙

𝐵 |𝜓⟩‖ ≤ 18√2𝜀1 + 4√2𝜀2.
(B.1)

Proof. First, commuting 𝑋𝑗
𝐴 with 𝑋𝑘

𝐴 (as they correspond to the same input) and then

using Proposition 5.12 and the triangle inequality to swap four of Alice’s observables

to Bob’s side, we have

‖(𝑋𝑙
𝐴𝑍𝑙

𝐴𝑍𝑘
𝐴𝑋𝑘

𝐴)(𝑋𝑗
𝐴𝑍𝑗

𝐴𝑍 𝑖
𝐴𝑋𝑖

𝐴)|𝜓⟩

− 𝑋𝑙
𝐴𝑍𝑙

𝐴𝑍𝑘
𝐴𝑋𝑗

𝐴𝑋𝑖
𝐵,𝑖𝑍

𝑖
𝐵,𝑘𝑍𝑗

𝐵,𝑘𝑋𝑘
𝐵,𝑘|𝜓⟩‖ ≤ 4√2𝜀1. (B.2)

Commuting 𝑋𝑘
𝐵,𝑘 with observables of the same input (𝑍 𝑖

𝐵,𝑘 and 𝑍𝑗
𝐵,𝑘) and then again

using the correlations to swap observables back to Alice’s side gives

‖(𝑋𝑙
𝐴𝑍𝑙

𝐴𝑍𝑘
𝐴𝑋𝑘

𝐴)(𝑋𝑗
𝐴𝑍𝑗

𝐴𝑍 𝑖
𝐴𝑋𝑖

𝐴)|𝜓⟩ − 𝑋𝑙
𝐴𝑍𝑙

𝐴𝑍𝑘
𝐴𝑋𝑗

𝐴𝑍𝑗
𝐴𝑍 𝑖

𝐴𝑋𝑘
𝐴𝑋𝑖

𝐴|𝜓⟩‖ ≤ 8√2𝜀1.
(B.3)

Applying Eq. (5.53a) correlations between Alice’s observables and Bob’s pair check

observables once followed by swapping five of Alice’s observables to Bob’s side gives

‖(𝑋𝑙
𝐴𝑍𝑙

𝐴𝑍𝑘
𝐴𝑋𝑘

𝐴)(𝑋𝑗
𝐴𝑍𝑗

𝐴𝑍 𝑖
𝐴𝑋𝑖

𝐴)|𝜓⟩

− 𝑋𝑖,𝑘
𝐵 𝑋𝑙

𝐴𝑍𝑖
𝐵,𝑙𝑍

𝑗
𝐵,𝑙𝑋

𝑗
𝐵,𝑗𝑍

𝑘
𝐵,𝑗𝑍

𝑙
𝐵,𝑗|𝜓⟩‖ ≤ 13√2𝜀1 + √2𝜀2. (B.4)

Commuting 𝑋𝑗
𝐵,𝑗 with observables of the same input (𝑍𝑘

𝐵,𝑗 and 𝑍𝑙
𝐵,𝑗) and again swap-

ping local check observables back to Alice’s side yields

‖(𝑋𝑙
𝐴𝑍𝑙

𝐴𝑍𝑘
𝐴𝑋𝑘

𝐴)(𝑋𝑗
𝐴𝑍𝑗

𝐴𝑍 𝑖
𝐴𝑋𝑖

𝐴)|𝜓⟩

− 𝑋𝑖,𝑘
𝐵 𝑋𝑙

𝐴𝑋𝑗
𝐴𝑍𝑙

𝐴𝑍𝑘
𝐴𝑍𝑗

𝐴𝑍 𝑖
𝐴|𝜓⟩‖ ≤ 18√2𝜀1 + √2𝜀2. (B.5)
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Finally, commuting 𝑍𝑗
𝐴 with 𝑍𝑘

𝐴 and applying three correlations of Eq. (5.53) to switch

all observables of Alice with pair check observables of Bob gives the result.

Lemma B.2. For any permutation 𝜎 of {1, … , 𝑛}, letting 𝜎𝑘 = 𝜎(𝑘) for each 𝑘, we have
the estimate

‖( ∏
𝑘≠𝑛

𝑍𝜎𝑘
𝐴 )( ∏

𝑘
𝑋𝜎𝑘

𝐴 )|𝜓⟩

−𝑋𝜎𝑛
𝐴 𝑋𝜎1,𝜎2

𝐵 (

(𝑛−3)/4

∏
𝑘=1

𝑋𝜎4𝑘−1,𝜎4𝑘+1
𝐵 𝑋𝜎4𝑘,𝜎4𝑘+2

𝐵 )𝑍𝜎1,𝜎2
𝐵 (

(𝑛−3)/4

∏
𝑘=1

𝑍𝜎4𝑘−1,𝜎4𝑘+1
𝐵 𝑍𝜎4𝑘,𝜎4𝑘+2

𝐵 )|𝜓⟩‖

≤ 2𝑛√2𝜀1 + (𝑛 − 1)√2𝜀2. (B.6)

Proof. Noting that all the𝑋𝑘
𝐴 pairwise commute and using the correlations of Eq. (5.53a)

to swap Alice’s observables with Bob’s pair check observables,

‖( ∏
𝑘≠𝑛

𝑍𝜎𝑘
𝐴 )( ∏

𝑘
𝑋𝜎𝑘

𝐴 )|𝜓⟩

− 𝑋𝜎1,𝜎2
𝐵 (

(𝑛−3)/4

∏
𝑘=1

𝑋𝜎4𝑘−1,𝜎4𝑘+1
𝐵 𝑋𝜎4𝑘,𝜎4𝑘+2

𝐵 )( ∏
𝑘≠𝑛

𝑍𝜎𝑘
𝐴 )𝑋𝜎𝑛

𝐴 |𝜓⟩‖ ≤ 𝑛 − 1
2

√2𝜀2. (B.7)

Consider only the final part of the second term in Eq. (B.7). We can repeatedly apply

the triangle inequality with Proposition 5.12 to write

‖( ∏
𝑘≠𝑛

𝑍𝜎𝑘
𝐴 )𝑋𝜎𝑛

𝐴 |𝜓⟩ − 𝑋𝜎𝑛
𝐵,𝜎𝑛( ∏

𝑘≠𝑛
𝑍𝜎𝑘

𝐵,𝜎𝑛)|𝜓⟩‖ ≤ 𝑛√2𝜀1. (B.8)

Since all of Bob’s observables in this equation correspond to the same input, we can

commute 𝑋𝜎𝑛
𝐵,𝜎𝑛

with the product to its right and then use Proposition 5.12 again to

give

‖( ∏
𝑘≠𝑛

𝑍𝜎𝑘
𝐴 )𝑋𝜎𝑛

𝐴 |𝜓⟩ − 𝑋𝜎𝑛
𝐴 ( ∏

𝑘≠𝑛
𝑍𝜎𝑘

𝐴 )|𝜓⟩‖ ≤ 2𝑛√2𝜀1. (B.9)

Combining this with Eq. (B.7) via the triangle inequality yields

‖( ∏
𝑘≠𝑛

𝑍𝜎𝑘
𝐴 )( ∏

𝑘
𝑋𝜎𝑘

𝐴 )|𝜓⟩

− 𝑋𝜎𝑛
𝐴 𝑋𝜎1,𝜎2

𝐵 (

(𝑛−3)/4

∏
𝑘=1

𝑋𝜎4𝑘−1,𝜎4𝑘+1
𝐵 𝑋𝜎4𝑘,𝜎4𝑘+2

𝐵 )( ∏
𝑘≠𝑛

𝑍𝜎𝑘
𝐴 )|𝜓⟩‖

≤ 2𝑛√2𝜀1 + 𝑛 − 1
2

√2𝜀2. (B.10)
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Finally, since all the 𝑍𝑘
𝐴 pairwise commute, the correlations of Eq. (5.53b) imply

‖( ∏
𝑘≠𝑛

𝑍𝜎𝑘
𝐴 )|𝜓⟩−𝑍𝜎1,𝜎2

𝐵 (

(𝑛−3)/4

∏
𝑘=1

𝑍𝜎4𝑘−1,𝜎4𝑘+1
𝐵 𝑍𝜎4𝑘,𝜎4𝑘+2

𝐵 )|𝜓⟩‖ ≤ 𝑛 − 1
2

√2𝜀2. (B.11)

Combining this with the previous Eq. (B.10) using the triangle inequality yields the

result.

We now exhibit the full proof of Proposition 5.14 with nonzero correlation errors.

Proposition 5.14 (Anticommutation). For all 𝑖 ∈ {1, … , 𝑛} we have state-dependent

anticommutation relations for unknown observables of Alice

‖{𝑋𝑖
𝐴, 𝑍 𝑖

𝐴}|𝜓⟩‖ ≤ 3𝑛√2𝜀0 + 2(𝑛 − 1)√2𝜀2 + (
13(𝑛 − 1)

2
+ 17)√2𝜀1. (5.66)

Furthermore, for all 𝑗 ∈ {1, … , 𝑛} distinct from 𝑖 we have state-dependent anticommu-

tation relations for Bob’s check-round observables

‖{𝑋𝑖
𝐵,𝑖, 𝑍 𝑖

𝐵,𝑗}|𝜓⟩‖ ≤ 3𝑛√2𝜀0 + 2(𝑛 − 1)√2𝜀2 + (
13(𝑛 − 1)

2
+ 21)√2𝜀1. (5.67)

Proof. Let 𝑖 ∈ {1, … , 𝑛} and let 𝜎𝑘 = 𝜎(𝑘) for each 𝑘 ∈ {1, … , 𝑛}, where 𝜎 is some

permutation of {1, … , 𝑛}. Assume that 𝜎 is such that 𝜎1 = 𝑖. From the game correla-

tions Eq. (5.51b) we have

‖(

𝑛

∏
𝑘=2

𝑌 𝜎𝑘
𝐴 )|𝜓⟩ + 𝑍𝜎1

𝐵 𝑋𝜎1
𝐵 |𝜓⟩‖ ≤ √2𝜀0. (B.12)

Again, from the same correlations,

‖(

𝑛

∏
𝑘=2

𝑍𝜎𝑘
𝐵 𝑋𝜎𝑘

𝐵 )|𝜓⟩ + 𝑍𝜎1
𝐵 𝑋𝜎1

𝐵 |𝜓⟩‖ ≤ 𝑛√2𝜀0, (B.13)

where the sign of the first term uses that 𝑛 is odd. Now using the game correlations

Eq. (5.51a),

‖(

𝑛−1

∏
𝑘=2

𝑍𝜎𝑘
𝐵 𝑋𝜎𝑘

𝐵 )𝑍𝜎𝑛
𝐵 ( ∏

𝑘≠𝑛
𝑋𝜎𝑘

𝐴 )|𝜓⟩ + 𝑍𝜎1
𝐵 ( ∏

𝑘≠1
𝑋𝜎𝑘

𝐴 )|𝜓⟩‖ ≤ (𝑛 + 2)√2𝜀0. (B.14)

Multiplying on the left by the unitary operators ∏𝑘≠𝑛 𝑋𝜎𝑘
𝐴 and 𝑍𝜎2

𝐵 leaves the norm

unchanged and gives

‖𝑋𝜎2
𝐵 (

𝑛−1

∏
𝑘=3

𝑍𝜎𝑘
𝐵 𝑋𝜎𝑘

𝐵 )𝑍𝜎𝑛
𝐵 |𝜓⟩ + 𝑍𝜎2

𝐵 𝑍𝜎1
𝐵 𝑋𝜎𝑛

𝐴 𝑋𝜎1
𝐴 |𝜓⟩‖ ≤ (𝑛 + 2)√2𝜀0. (B.15)
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Rewriting this by commuting those 𝑋 and 𝑍 observables within each term of the

product with 𝑘 odd results in

‖(

(𝑛−3)/2

∏
𝑘=1

𝑋𝜎2𝑘
𝐵 𝑋𝜎2𝑘+1

𝐵 𝑍𝜎2𝑘+1
𝐵 𝑍𝜎2𝑘+2

𝐵 )𝑋𝜎𝑛−1
𝐵 𝑍𝜎𝑛

𝐵 |𝜓⟩

+ 𝑍𝜎2
𝐵 𝑍𝜎1

𝐵 𝑋𝜎𝑛
𝐴 𝑋𝜎1

𝐴 |𝜓⟩‖ ≤ (𝑛 + 2)√2𝜀0. (B.16)

Using the correlations of Eqs. (5.51a) and (5.51c) to swap Bob’s observables to Alice’s

side (and freely inserting the identity operator as 𝑋𝜎𝑛−1
𝐴 𝑋𝜎𝑛−1

𝐴 into the resulting first

term) yields

‖( ∏
𝑘≠𝑛

𝑍𝜎𝑘
𝐴 )( ∏

𝑘
𝑋𝜎𝑘

𝐴 )(

(𝑛−3)/2

∏
𝑘=1

𝑋𝜎𝑛−2𝑘+1
𝐴 𝑍𝜎𝑛−2𝑘+1

𝐴 𝑍𝜎𝑛−2𝑘
𝐴 𝑋𝜎𝑛−2𝑘

𝐴 )𝑋𝜎2
𝐴 |𝜓⟩

+ 𝑋𝜎𝑛
𝐴 𝑋𝜎1

𝐴 𝑍𝜎1
𝐴 𝑍𝜎2

𝐴 |𝜓⟩‖ ≤ 3𝑛√2𝜀0. (B.17)

Now notice from the correlations of Eq. (5.52) we have the estimate

‖𝑋𝜎2
𝐴 𝑍𝜎1

𝐵,𝜎𝑛
𝑍𝜎2

𝐵,𝜎𝑛
𝑋𝜎𝑛

𝐵,𝜎𝑛
𝑋𝜎1

𝐵,𝜎1
|𝜓⟩−𝑋𝜎𝑛

𝐵,𝜎𝑛
𝑍𝜎1,𝜎2

𝐵 𝑋𝜎1,𝜎2
𝐵 |𝜓⟩‖ ≤ 3√2𝜀1 +2√2𝜀2, (B.18)

where we achieved this by commuting 𝑋𝜎𝑛
𝐵,𝜎𝑛

with other observables of the same input

and converting local check observables to observables of Alice and then to pair check

observables. Hence multiplying Eq. (B.17) on the left by 𝑍𝜎1
𝐵,𝜎𝑛

𝑍𝜎2
𝐵,𝜎𝑛

𝑋𝜎𝑛
𝐵,𝜎𝑛

𝑋𝜎1
𝐵,𝜎1

, ap-

plying Eq. (B.18) via the triangle inequality in its first term (commuting the resulting

observables for Bob with the existing observables of Alice), and in its second term

using the correlations of Eq. (5.52),

‖𝑋𝜎𝑛
𝐵,𝜎𝑛

𝑍𝜎1,𝜎2
𝐵 𝑋𝜎1,𝜎2

𝐵 ( ∏
𝑘≠𝑛

𝑍𝜎𝑘
𝐴 )( ∏

𝑘
𝑋𝜎𝑘

𝐴 )

(

(𝑛−3)/2

∏
𝑘=1

𝑋𝜎𝑛−2𝑘+1
𝐴 𝑍𝜎𝑛−2𝑘+1

𝐴 𝑍𝜎𝑛−2𝑘
𝐴 𝑋𝜎𝑛−2𝑘

𝐴 )|𝜓⟩ + (𝑋𝜎𝑛
𝐴 𝑋𝜎1

𝐴 𝑍𝜎1
𝐴 𝑍𝜎2

𝐴 )
2|𝜓⟩‖

≤ 3𝑛√2𝜀0 + 7√2𝜀1 + 2√2𝜀2. (B.19)

Since 𝑛 ≡ 3 (mod 4), we can consider successive pairs of terms in the final product

of Eq. (B.19). We can estimate each pair of terms using pair check observables by

repeatedly applying the estimate of Lemma B.1 in the first term and commuting the
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resulting observables of Bob with those of Alice. This gives

‖𝑋𝜎𝑛
𝐵,𝜎𝑛

𝑍𝜎1,𝜎2
𝐵 𝑋𝜎1,𝜎2

𝐵 (

(𝑛−3)/4

∏
𝑘=1

𝑋𝜎4𝑘−1,𝜎4𝑘+1
𝐵 𝑍𝜎4𝑘−1,𝜎4𝑘+1

𝐵 𝑍𝜎4𝑘,𝜎4𝑘+2
𝐵 𝑋𝜎4𝑘,𝜎4𝑘+2

𝐵 )

( ∏
𝑘≠𝑛

𝑍𝜎𝑘
𝐴 )( ∏

𝑘
𝑋𝜎𝑘

𝐴 )|𝜓⟩ + (𝑋𝜎𝑛
𝐴 𝑋𝜎1

𝐴 𝑍𝜎1
𝐴 𝑍𝜎2

𝐴 )
2|𝜓⟩‖

≤ 3𝑛√2𝜀0 + (
9(𝑛 − 3)

2
+ 7)√2𝜀1 + (𝑛 − 1)√2𝜀2. (B.20)

Wemay assume the permutation 𝜎 to in fact be such that all pair check observables

appearing in Eq. (B.6) of Lemma B.2 and Eq. (B.20) correspond to the same (pair check

round) input for Bob. This is compatible with an honest behavior (in which pair check

observables correspond to pairs of Pauli observables) since all of these observables

𝑀 𝑙,𝑚
𝐵 (where 𝑀 represents either 𝑋 or 𝑍) have either disjoint or identical indices to

all others. Specifically, referring to the definition [see Eq. (5.45)] of Bob’s observables

to be measured upon an input 𝑦 when 𝑐 = 2, we may assume they all correspond to

the input 𝑦 = 𝜎𝑛, in which qubit 𝜎𝑛 is not to be tested. Therefore, after applying the

estimate of Lemma B.2 to the first term in Eq. (B.20), we may freely commute all pair

check observables and use their involutory property to achieve many cancellations.

This yields

‖𝑋𝜎𝑛
𝐴 𝑋𝜎𝑛

𝐵,𝜎𝑛
|𝜓⟩ + (𝑋𝜎𝑛

𝐴 𝑋𝜎1
𝐴 𝑍𝜎1

𝐴 𝑍𝜎2
𝐴 )

2|𝜓⟩‖

≤ 3𝑛√2𝜀0 + 13(𝑛 − 1)
2

√2𝜀1 + 2(𝑛 − 1)√2𝜀2. (B.21)

Applying the correlations of Eq. (5.52a) once in the first term and then multiplying

on the left by 𝑍𝜎2
𝐴 𝑍𝜎1

𝐴 𝑋𝜎1
𝐴 𝑋𝜎𝑛

𝐴 gives

‖{𝑋𝜎1
𝐴 𝑋𝜎𝑛

𝐴 , 𝑍𝜎1
𝐴 𝑍𝜎2

𝐴 }|𝜓⟩‖ ≤ 3𝑛√2𝜀0+(
13(𝑛 − 1)

2
+1)√2𝜀1+2(𝑛−1)√2𝜀2. (B.22)

By identical argument to the proof of Proposition 5.8, but using Propositions 5.12

and 5.13 instead of Propositions 5.5 and 5.6 and using the bound of Eq. (B.22) in place

of Lemma 5.7, this implies

‖{𝑋𝜎1
𝐴 , 𝑍𝜎1

𝐴 }|𝜓⟩‖ ≤ 3𝑛√2𝜀0 + (
13(𝑛 − 1)

2
+ 17)√2𝜀1 + 2(𝑛 − 1)√2𝜀2. (B.23)

That 𝜎1 = 𝑖 yields the result of Eq. (5.66).

To obtain Eq. (5.67) we use Proposition 5.12 to write

‖{𝑋𝑖
𝐵,𝑖, 𝑍 𝑖

𝐵,𝑗}|𝜓⟩‖ ≤ 4√2𝜀1 + ‖{𝑋𝑖
𝐴, 𝑍 𝑖

𝐴}|𝜓⟩‖

≤ 3𝑛√2𝜀0 + (
13(𝑛 − 1)

2
+ 21)√2𝜀1 + 2(𝑛 − 1)√2𝜀2,

(B.24)

where the final equality follows from Eq. (5.66) just proved.





Appendix C

Estimation lemma

Proof of Lemma 6.3. First note that for any trace-class operator 𝑇 we have ‖𝑇 ‖1 ≤
√rank(𝑇 )‖𝑇 ‖2, where ‖𝑇 ‖2 = √tr(𝑇 †𝑇 ) denotes the Hilbert–Schmidt norm. Since

rank(|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|) ≤ 2, we thus have

‖|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|‖1 ≤ √2‖|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|‖2. (C.1)

We then evaluate

2‖|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|‖2
2 = 2 tr[(|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|)2]

= 2‖|𝑢⟩‖4 + 2‖|𝑣⟩‖4 − 4|⟨𝑢|𝑣⟩|2.
(C.2)

Using the definition of the norm induced by the inner product,

2|⟨𝑢|𝑣⟩| ≥ 2 ℜ𝔢 ⟨𝑢|𝑣⟩ = ‖|𝑢⟩‖2 + ‖|𝑣⟩‖2 − ‖|𝑢⟩ − |𝑣⟩‖2. (C.3)

For simplicity, let us adopt the notation

𝛿 = ‖|𝑢⟩ − |𝑣⟩‖, (C.4a)

𝑀 = max{‖|𝑢⟩‖, ‖|𝑣⟩‖}. (C.4b)

Inserting Eq. (C.3) into Eq. (C.2) and using that ‖|𝑢⟩‖2 + ‖|𝑣⟩‖2 ≤ 2𝑀2, we have

2‖|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|‖2
2 ≤ (‖|𝑢⟩‖2 − ‖|𝑣⟩‖2)

2 + 4𝑀2𝛿2 − 𝛿4. (C.5)

It can be seen (similarly to the reverse triangle inequality) that

|‖|𝑢⟩‖2 − ‖|𝑣⟩‖2| ≤ ‖|𝑢⟩ − |𝑣⟩‖2 + 2max(‖|𝑢⟩‖, ‖|𝑣⟩‖)‖|𝑢⟩ − |𝑣⟩‖. (C.6)

Inserting this into the previous equation gives

2‖|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|‖2
2 ≤ 8𝑀2𝛿2 + 4𝑀𝛿3. (C.7)
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Since ‖|𝑢⟩‖ ≤ 1 and ‖|𝑣⟩‖ ≤ 1, the triangle inequality implies 𝛿 ≤ 2, and so 𝛿3 ≤ 2𝛿2.

We thus have

2‖|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|‖2
2 ≤ 8(𝑀2 + 𝑀)𝛿2. (C.8)

Combining this with Eq. (C.1) gives

‖|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|‖1 ≤ 𝛿√8(𝑀2 + 𝑀). (C.9)

Finally, since by assumption 0 ≤ 𝑀 ≤ 1, we get

‖|𝑢⟩⟨𝑢| − |𝑣⟩⟨𝑣|‖1 ≤ 4𝛿 (C.10)

as required.



Appendix D

Post-measurement robustness
probability

Proof of Lemma 6.2. For the case where 𝛿 = 0, it is clear from Eq. (6.10) that for all

𝜎 ∈ 𝛴 satisfying 𝜋(𝜎) > 0 we have |𝑢𝜔
𝜎 ⟩ = |𝑣𝜔

𝜎 ⟩ for all 𝜔 ∈ 𝛺, and thus we have that

Pr(𝐷 ≤ 0) = 1. We may henceforth assume that 𝛿 > 0. First, let us introduce a new

random variable 𝑁 on 𝛴 × 𝛺 defined as

𝑁(𝜎, 𝜔) =
⎧⎪
⎨
⎪⎩

‖| ̂𝑢𝜔
𝜎 ⟩ − | ̂𝑣𝜔

𝜎 ⟩‖ if 𝑝(𝜎, 𝜔) > 0,

0 if 𝑝(𝜎, 𝜔) = 0.
(D.1)

Let 𝑎 > 0. By Lemma 6.3 we have 𝐷(𝜎, 𝜔) ≤ 𝑁(𝜎, 𝜔) for all 𝜎 ∈ 𝛴 and 𝜔 ∈ 𝛺, and

thus

Pr(𝐷 ≥ 𝑎) ≤ Pr(𝑁 ≥ 𝑎). (D.2)

We now bound the expected value of 𝑁2. We evaluate

𝔼(𝑁2) = ∑
𝜎∈𝛴

𝜋(𝜎) ∑
𝜔∈𝛺

𝑝𝜎(𝜔)𝑁(𝜎, 𝜔)2

= ∑
𝜎∈𝛴

𝜋(𝜎) ∑
𝜔∈𝛺

‖|𝑢𝜔
𝜎 ⟩‖2 ⋅ 𝑁(𝜎, 𝜔)2

= ∑
𝜎∈𝛴

𝜋(𝜎) ∑
𝜔∈𝛺

‖|𝑢𝜔
𝜎 ⟩ − ‖|𝑢𝜔

𝜎 ⟩‖| ̂𝑣𝜔
𝜎 ⟩‖

2

(D.3)

Now note that

‖‖|𝑢𝜔
𝜎 ⟩‖| ̂𝑣𝜔

𝜎 ⟩ − |𝑣𝜔
𝜎 ⟩‖ = |‖|𝑢𝜔

𝜎 ⟩‖ − ‖|𝑣𝜔
𝜎 ⟩‖|

≤ ‖|𝑢𝜔
𝜎 ⟩ − |𝑣𝜔

𝜎 ⟩‖,
(D.4)
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where we have used the reverse triangle inequality. Starting with the triangle in-

equality, we can then write for the terms of Eq. (D.3) that

‖|𝑢𝜔
𝜎 ⟩ − ‖|𝑢𝜔

𝜎 ⟩‖| ̂𝑣𝜔
𝜎 ⟩‖ ≤ ‖|𝑢𝜔

𝜎 ⟩ − |𝑣𝜔
𝜎 ⟩‖ + ‖|𝑣𝜔

𝜎 ⟩ − ‖|𝑢𝜔
𝜎 ⟩‖| ̂𝑣𝜔

𝜎 ⟩‖

≤ 2‖|𝑢𝜔
𝜎 ⟩ − |𝑣𝜔

𝜎 ⟩‖,
(D.5)

where the final inequality uses Eq. (D.4). We thus have

𝔼(𝑁2) ≤ 4 ∑
𝜎∈𝛴

𝜋(𝜎) ∑
𝜔∈𝛺

‖|𝑢𝜔
𝜎 ⟩ − |𝑣𝜔

𝜎 ⟩‖2 ≤ 4𝛿2, (D.6)

where the final inequality comes from the assumption of Eq. (6.10). Markov’s inequal-

ity states that

Pr(𝑁 ≥ 𝑎) = Pr(𝑁2 ≥ 𝑎2)

≤ 1
𝑎2 𝔼(𝑁2).

(D.7)

Combining this with Eqs. (D.2) and (D.6) gives

Pr(𝐷 ≥ 𝑎) ≤ 4𝛿2

𝑎2 . (D.8)

Taking complements yields

Pr(𝐷 ≤ 𝑎) ≥ Pr(𝐷 < 𝑎) ≥ 1 − 4𝛿2

𝑎2 . (D.9)

Finally, choosing the parameter 𝑎 = 𝛿𝑐 gives the desired result.



Appendix E

Single-copy self-test

Here, we exhibit a proof of Proposition 6.7 in the ideal case that 𝜂 = 0. The robust

case of 𝜂 > 0 is discussed in Appendix F.

Proof of Proposition 6.7 (ideal case). We first consider the isometry applied to the state

|𝜓⟩𝒜ℬ. After the “swap” stage of the circuit, given by 𝑊, we have the state

𝑊 |𝜓⟩ = 1
4

[|00⟩𝒜′ℬ′ ⊗ (𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |01⟩𝒜′ℬ′ ⊗ (𝐼 − 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩

+ |10⟩𝒜′ℬ′ ⊗ 𝑆1(𝐼 + 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |11⟩𝒜′ℬ′ ⊗ 𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩].

(E.1)

We now simplify this expression. Using the relations of the statement we can write

(𝐼 ± 𝑖𝑆2𝑆1)(𝐼 ± 𝑖𝑇2𝑇1)|𝜓⟩ = 0. (E.2)

Thus, the terms corresponding to ancilla states |01⟩𝒜′ℬ′ and |10⟩𝒜′ℬ′ vanish, and we

are left with

𝑊 |𝜓⟩ = 1
4

[|00⟩𝒜′ℬ′ ⊗ (𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |11⟩𝒜′ℬ′ ⊗ 𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩].
(E.3)

Using Relation 2, we have that

𝑆1(𝐼 + 𝑖𝑆2𝑆1)|𝜓⟩ = (𝐼 − 𝑖𝑆2𝑆1)𝑆1|𝜓⟩, (E.4a)

𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩ = (𝐼 + 𝑖𝑇2𝑇1)𝑇1|𝜓⟩. (E.4b)

Thus, using these in addition to Relation 1 and the fact that our observables are in-

volutory results in

𝑊 |𝜓⟩ = |𝛷+⟩𝒜′ℬ′ ⊗ 1

2√2
(𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩. (E.5)
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Using the relations, and again that our observables are involutory, the state simplifies

to

𝑊 |𝜓⟩ = |𝛷+⟩𝒜′ℬ′ ⊗ |𝜑⟩. (E.6)

With this, we have now extracted the desired maximally entangled state from our

initial unknown state. In a similar fashion, it can be shown that

𝑊 𝑆1|𝜓⟩ = 𝜎ℬ′
x |𝛷+⟩𝒜′ℬ′ ⊗ |𝜑⟩, (E.7a)

𝑊 𝑆2|𝜓⟩ = 𝜎ℬ′
y |𝛷+⟩𝒜′ℬ′ ⊗ |𝜑⟩. (E.7b)

Furthermore, although with a little more work (as this is the case where complex

conjugation will later become relevant), it can be shown that

𝑊 𝑆2|𝜓⟩ = 𝜎ℬ′
z |𝛷+⟩𝒜′ℬ′ ⊗ 𝑆3|𝜑⟩. (E.8)

We now apply the “phase kickback” stage of the isometry, given by 𝐾, to the

above simplified states. We suppress the extracted state of the primed ancillae in our

notation, as it is entirely unaffected by 𝐾. When the state is |𝜑⟩, this gives

𝐾|𝜑⟩ = 1
4√2

[|0⟩𝒜″|0⟩ℬ″ ⊗ (𝐼 + 𝑆3)(𝐼 + 𝑇3)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |0⟩𝒜″|1⟩ℬ″ ⊗ (𝐼 + 𝑆3)(𝐼 − 𝑇3)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |1⟩𝒜″|0⟩ℬ″ ⊗ (𝐼 − 𝑆3)(𝐼 + 𝑇3)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |1⟩𝒜″|1⟩ℬ″ ⊗ (𝐼 − 𝑆3)(𝐼 − 𝑇3)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩].

(E.9)

We now simplify this expression. Since 𝑆3(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩ = 𝑇3(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩ by

Relations 1 and 2, and using that (𝐼 ±𝑇3)(𝐼 ±𝑇3) = 2(𝐼 ±𝑇3) and (𝐼 ±𝑇3)(𝐼 ∓𝑇3) = 0,
we get

𝐾|𝜑⟩ = |0⟩𝒜″|0⟩ℬ″ ⊗
𝐼 + 𝑇3

2
|𝜑⟩ + |1⟩𝒜″|1⟩ℬ″ ⊗

𝐼 − 𝑇3
2

|𝜑⟩. (E.10)

Otherwise, when the state is 𝑆3|𝜑⟩, we have

𝐾𝑆3|𝜑⟩ = 1

4√2
[|0⟩𝒜″|0⟩ℬ″ ⊗ (𝐼 + 𝑆3)𝑆3(𝐼 + 𝑇3)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |0⟩𝒜″|1⟩ℬ″ ⊗ (𝐼 + 𝑆3)𝑆3(𝐼 − 𝑇3)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |1⟩𝒜″|0⟩ℬ″ ⊗ (𝐼 − 𝑆3)𝑆3(𝐼 + 𝑇3)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |1⟩𝒜″|1⟩ℬ″ ⊗ (𝐼 − 𝑆3)𝑆3(𝐼 − 𝑇3)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩].

(E.11)

Since 𝑆3 is involutory, we have (𝐼 + 𝑆3)𝑆3 = (𝐼 + 𝑆3) and (𝐼 − 𝑆3)𝑆3 = −(𝐼 − 𝑆3).
By the same argument as before, we arrive at

𝐾𝑆3|𝜑⟩ = |0⟩𝒜″|0⟩ℬ″ ⊗
𝐼 + 𝑇3

2
|𝜑⟩ − |1⟩𝒜″|1⟩ℬ″ ⊗

𝐼 − 𝑇3
2

|𝜑⟩. (E.12)
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Upon defining |𝜉0⟩ and |𝜉1⟩ as in the statement, we have now finished applying the

isometries.





Appendix F

Robustness of single-copy self-test

Here, we expand upon the proof of the ideal case in which 𝜂 = 0 discussed in Ap-

pendix E. We fill in details concerning the robustness of that proof, extending it to

handle also cases where 𝜂 > 0, and thus achieving the full claim of Proposition 6.7.

Proof of Proposition 6.7 (robustness). Expanding the left-hand side of Eq. (E.2) and tak-

ing its norm gives

‖(𝐼 ± 𝑖𝑆2𝑆1)(𝐼 ± 𝑖𝑇2𝑇1)|𝜓⟩‖ = ‖(𝐼 − 𝑆2𝑆1𝑇2𝑇1)|𝜓⟩ ± 𝑖(𝑆2𝑆1 + 𝑇2𝑇1)|𝜓⟩‖

≤ ‖|𝜓⟩ − 𝑆2𝑆1𝑇2𝑇1|𝜓⟩‖ + ‖𝑆2𝑆1|𝜓⟩ + 𝑇2𝑇1|𝜓⟩‖.

(F.1)

Using Relation 1 and that the observables are both unitary and involutory, we have

𝑆𝑞𝑇𝑞|𝜓⟩
𝜂
≈ 𝑆𝑞𝑆𝑞|𝜓⟩ = |𝜓⟩. (F.2)

Since norms are preserved under unitary operations, we can then bound the norm of

all the expressions

‖|𝜓⟩ − 𝑆2𝑆1𝑇2𝑇1|𝜓⟩‖ = ‖𝑆2𝑆1|𝜓⟩ − 𝑇1𝑇2|𝜓⟩‖

= ‖𝑆1𝑇1|𝜓⟩ − 𝑆2𝑇2|𝜓⟩‖

≤ 2𝜂.

(F.3)

Nowwe have bounded the first term of Eq. (F.1). For the second term, using Relation 2

gives

𝑆2𝑆1|𝜓⟩ + 𝑇2𝑇1|𝜓⟩
𝜂
≈ 𝑆2𝑆1|𝜓⟩ − 𝑇1𝑇2|𝜓⟩, (F.4)

for which we have already bounded the norm. Thus,

‖𝑆2𝑆1|𝜓⟩ + 𝑇2𝑇1|𝜓⟩‖ ≤ 3𝜂. (F.5)
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Combining Eqs. (F.1), (F.3) and (F.5), we arrive at a robust version of Eq. (E.2). That is

(𝐼 ± 𝑖𝑆2𝑆1)(𝐼 ± 𝑖𝑇2𝑇1)|𝜓⟩
5𝜂
≈ 0. (F.6)

This immediately allows us to write a robust version of Eq. (E.3)

𝑊 |𝜓⟩
5𝜂/2
≈ 1

4
[|00⟩𝒜′ℬ′ ⊗ (𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |11⟩𝒜′ℬ′ ⊗ 𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩].
(F.7)

We now examine the second term of Eq. (F.7). We can write Eq. (E.4) robustly as

𝑆1(𝐼 + 𝑖𝑆2𝑆1)|𝜓⟩
𝜂
≈ (𝐼 − 𝑖𝑆2𝑆1)𝑆1|𝜓⟩, (F.8a)

𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩
𝜂
≈ (𝐼 + 𝑖𝑇2𝑇1)𝑇1|𝜓⟩. (F.8b)

Now, since ‖𝑆1(𝐼 + 𝑖𝑆2𝑆1)‖ ≤ 2, Eq. (F.8b) implies that

𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩
2𝜂
≈ 𝑆1(𝐼 + 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)𝑇1|𝜓⟩. (F.9)

Similarly, since ‖(𝐼 + 𝑖𝑇2𝑇1)𝑇1‖ ≤ 2, Eq. (F.8a) implies that

𝑆1(𝐼 + 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)𝑇1|𝜓⟩
2𝜂
≈ (𝐼 − 𝑖𝑆2𝑆1)𝑆1(𝐼 + 𝑖𝑇2𝑇1)𝑇1|𝜓⟩. (F.10)

Finally, since ‖(𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)‖ ≤ 4, Relation 1 implies that

(𝐼 − 𝑖𝑆2𝑆1)𝑆1(𝐼 + 𝑖𝑇2𝑇1)𝑇1|𝜓⟩
4𝜂
≈ (𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩. (F.11)

Combining Eqs. (F.9) to (F.11) through the triangle inequality gives

𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩
8𝜂
≈ (𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩. (F.12)

We can now apply this to Eq. (F.7) to estimate 𝑊 |𝜓⟩ by

𝑊 |𝜓⟩
9𝜂/2
≈ |𝛷+⟩𝒜′ℬ′ ⊗ 1

2√2
(𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩. (F.13)

Since ‖𝐼 + 𝑖𝑇2𝑇1‖ ≤ 2, we have

(𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩
4𝜂
≈ (𝐼 + 𝑖𝑇2𝑇1)(𝐼 − 𝑖𝑇1𝑇2)|𝜓⟩

= (2𝐼 + 𝑖𝑇2𝑇1 − 𝑖𝑇1𝑇2)|𝜓⟩
𝜂
≈ 2(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

= 2√2|𝜑⟩,

(F.14)
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where for the first line we used Eq. (F.3) and for the third line we used Relation 2.

Thus, we can apply this to Eq. (F.13) to estimate 𝑊 |𝜓⟩ by

‖𝑊 |𝜓⟩ − |𝛷+⟩𝒜′ℬ′ ⊗ |𝜑⟩‖ ≤ 1
4(18 + 5√2)𝜂. (F.15)

To estimate 𝑊 𝑆1|𝜓⟩, we note that

(𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)𝑆1|𝜓⟩
2𝜂
≈ 𝑆1(𝐼 + 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩, (F.16a)

(𝐼 − 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)𝑆1|𝜓⟩
2𝜂
≈ 𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩, (F.16b)

𝑆1(𝐼 + 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)𝑆1|𝜓⟩
2𝜂
≈ (𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩, (F.16c)

𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)𝑆1|𝜓⟩
2𝜂
≈ (𝐼 − 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩. (F.16d)

Therefore, we have

𝑊 𝑆1|𝜓⟩
2𝜂
≈ 1

4
[|00⟩𝒜′ℬ′ ⊗ 𝑆1(𝐼 + 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |01⟩𝒜′ℬ′ ⊗ 𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩

+ |10⟩𝒜′ℬ′ ⊗ (𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |11⟩𝒜′ℬ′ ⊗ (𝐼 − 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩].

(F.17)

The right-hand side of this equation is just that of Eq. (E.1) but with different states

in 𝒜′ ⊗ ℬ′ identifying each term of the superposition. Considering this, we can use

the same robustness arguments as before to deduce that

‖𝑊 𝑆1|𝜓⟩ − 𝜎ℬ′
x |𝛷+⟩𝒜′ℬ′ ⊗ |𝜑⟩‖ ≤ 1

4(26 + 5√2)𝜂. (F.18)

To estimate 𝑊 𝑆2|𝜓⟩, we note that

(𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)𝑆2|𝜓⟩
4𝜂
≈ 𝑖𝑆1(𝐼 + 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩, (F.19a)

(𝐼 − 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)𝑆2|𝜓⟩
4𝜂
≈ 𝑖𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩, (F.19b)

𝑆1(𝐼 + 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)𝑆2|𝜓⟩
4𝜂
≈ −𝑖(𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩, (F.19c)

𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)𝑆2|𝜓⟩
4𝜂
≈ −𝑖(𝐼 − 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)𝑆2|𝜓⟩. (F.19d)

Therefore, we have

𝑊 𝑆2|𝜓⟩
4𝜂
≈ 1

4
[𝑖|00⟩𝒜′ℬ′ ⊗ 𝑆1(𝐼 + 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ 𝑖|01⟩𝒜′ℬ′ ⊗ 𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩

− 𝑖|10⟩𝒜′ℬ′ ⊗ (𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

− 𝑖|11⟩𝒜′ℬ′ ⊗ (𝐼 − 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩].

(F.20)
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Again, we can use the same robustness arguments as before to deduce that

‖𝑊 𝑆2|𝜓⟩ − 𝜎ℬ′
y |𝛷+⟩𝒜′ℬ′ ⊗ |𝜑⟩‖ ≤ 1

4(34 + 5√2)𝜂. (F.21)

The final case of estimating 𝑊 𝑆3|𝜓⟩ requires a little more care. By repeatedly

applying Relation 2, it can be shown that

(𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)𝑆3|𝜓⟩
8𝜂
≈ 𝑆3(𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩, (F.22a)

(𝐼 − 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)𝑆3|𝜓⟩
8𝜂
≈ 𝑆3(𝐼 − 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩, (F.22b)

𝑆1(𝐼 + 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)𝑆3|𝜓⟩
16𝜂
≈ −𝑆3𝑆1(𝐼 + 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩, (F.22c)

𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)𝑆3|𝜓⟩
16𝜂
≈ −𝑆3𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩. (F.22d)

Therefore, we have

𝑊 𝑆3|𝜓⟩
12𝜂
≈ 1

4
[|00⟩𝒜′ℬ′ ⊗ 𝑆3(𝐼 − 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

+ |01⟩𝒜′ℬ′ ⊗ 𝑆3(𝐼 − 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩

− |10⟩𝒜′ℬ′ ⊗ 𝑆3𝑆1(𝐼 + 𝑖𝑆2𝑆1)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩

− |11⟩𝒜′ℬ′ ⊗ 𝑆3𝑆1(𝐼 + 𝑖𝑆2𝑆1)𝑇1(𝐼 − 𝑖𝑇2𝑇1)|𝜓⟩].

(F.23)

We can use the same robustness arguments as before (but this time being careful to

note that each estimate is unaffected by the presence of the observables 𝑆3 as it is

unitary) to deduce that

‖𝑊 𝑆3|𝜓⟩ − 𝜎ℬ′
z |𝛷+⟩𝒜′ℬ′ ⊗ 𝑆3|𝜑⟩‖ ≤ 1

4(66 + 5√2)𝜂. (F.24)

For the robust phase kickback stage, first note that by Relations 1 and 2 we have

𝑆3(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩
6𝜂
≈ 𝑇3(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩. (F.25)

Using also that (𝐼 ± 𝑇3)(𝐼 ± 𝑇3) = 2(𝐼 ± 𝑇3) and (𝐼 ± 𝑇3)(𝐼 ∓ 𝑇3) = 0, we get

(𝐼 ± 𝑆3)(𝐼 ± 𝑇3)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩
12𝜂
≈ 2(𝐼 ± 𝑇3)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩, (F.26a)

(𝐼 ± 𝑆3)(𝐼 ∓ 𝑇3)(𝐼 + 𝑖𝑇2𝑇1)|𝜓⟩
12𝜂
≈ 0. (F.26b)

Therefore, in place of Eq. (E.10), we have the robust version

𝐾|𝜑⟩
6√2𝜂

≈ |0⟩𝒜″|0⟩ℬ″ ⊗
𝐼 + 𝑇3

2
|𝜑⟩ + |1⟩𝒜″|1⟩ℬ″ ⊗

𝐼 − 𝑇3
2

|𝜑⟩. (F.27)

In order to estimate 𝐾𝑆3|𝜑⟩, we use (as in the ideal case) that (𝐼 + 𝑆3)𝑆3 = (𝐼 + 𝑆3)
and (𝐼 − 𝑆3)𝑆3 = −(𝐼 − 𝑆3). A robust version of Eq. (E.12) given by

𝐾𝑆3|𝜑⟩
6√2𝜂

≈ |0⟩𝒜″|0⟩ℬ″ ⊗
𝐼 + 𝑇3

2
|𝜑⟩ − |1⟩𝒜″|1⟩ℬ″ ⊗

𝐼 − 𝑇3
2

|𝜑⟩ (F.28)

is then immediate by identical argument to before.



Appendix G

Many-copy self-test

Before exhibiting the proof of Theorem 6.9, we show the following lemma that will be

used repeatedly to cancel terms corresponding to correlated complex conjugation of

reference measurements at only some (but not all) positions. We note that a similar

argument was also used in [116, Appendix E] in part of a proof of an analogous result.

Lemma G.1. Let |𝜓⟩ ∈ 𝒜 ⊗ ℬ. Suppose for each 𝑞 ∈ {1, 2, 3} and 𝑗 ∈ {1, … , 𝑛} that

there exist ±1-outcome observables 𝑆(𝑗)
𝑞 on 𝒜 and 𝑇 (𝑗)

𝑞 on ℬ satisfying (for some 𝜂 ≥ 0)
the following relations:

1. (𝑆(𝑗)
𝑞 − 𝑇 (𝑗)

𝑞 ) |𝜓⟩
𝜂
≈ 0 for all 𝑞 and 𝑗.

2. {𝑆(𝑗)
𝑞 , 𝑆(𝑗)

𝑟 } |𝜓⟩
𝜂
≈ 0 and {𝑇 (𝑗)

𝑞 , 𝑇 (𝑗)
𝑟 } |𝜓⟩

𝜂
≈ 0 for all 𝑞, 𝑟 and 𝑗 such that 𝑞 ≠ 𝑟.

3. [𝑆(𝑗)
𝑞 , 𝑆(𝑘)

𝑟 ] |𝜓⟩
𝜂
≈ 0 and [𝑇 (𝑗)

𝑞 , 𝑇 (𝑘)
𝑟 ] |𝜓⟩

𝜂
≈ 0 for all 𝑞, 𝑟 and 𝑗, 𝑘 such that 𝑗 ≠ 𝑘.

For all 𝑗 < 𝑛, if (emulating the conclusion of Proposition 6.23) it also holds that

(𝐼 + 𝑆(𝑗)
1 𝑆(𝑗+1)

1 𝑆(𝑗)
2 𝑆(𝑗+1)

2 𝑆(𝑗)
3 𝑆(𝑗+1)

3 ) |𝜓⟩
𝜂
≈ 0, (G.1)

then we have

(𝐼 ± 𝑇 (𝑗)
3 )(𝐼 + 𝑖𝑇 (𝑗)

2 𝑇 (𝑗)
1 )(𝐼 ∓ 𝑇 (𝑗+1)

3 )(𝐼 + 𝑖𝑇 (𝑗+1)
2 𝑇 (𝑗+1)

1 ) |𝜓⟩
118𝜂
≈ 0. (G.2)

Proof. The left-hand side of Eq. (G.2) can be expanded and then rewritten by grouping

181
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pairs of terms as

(𝐼 + 𝑇 (𝑗)
3 𝑇 (𝑗)

2 𝑇 (𝑗)
1 𝑇 (𝑗+1)

3 𝑇 (𝑗+1)
2 𝑇 (𝑗+1)

1 ) |𝜓⟩

∓ (𝑇 (𝑗+1)
3 + 𝑇 (𝑗)

3 𝑇 (𝑗)
2 𝑇 (𝑗)

1 𝑇 (𝑗+1)
2 𝑇 (𝑗+1)

1 ) |𝜓⟩

+ 𝑖 (𝑇 (𝑗+1)
2 𝑇 (𝑗+1)

1 − 𝑇 (𝑗)
3 𝑇 (𝑗)

2 𝑇 (𝑗)
1 𝑇 (𝑗+1)

3 ) |𝜓⟩

± 𝑖 (𝑇 (𝑗)
3 𝑇 (𝑗+1)

2 𝑇 (𝑗+1)
1 − 𝑇 (𝑗)

2 𝑇 (𝑗)
1 𝑇 (𝑗+1)

3 ) |𝜓⟩

∓ 𝑖 (𝑇 (𝑗+1)
3 𝑇 (𝑗+1)

2 𝑇 (𝑗+1)
1 − 𝑇 (𝑗)

3 𝑇 (𝑗)
2 𝑇 (𝑗)

1 ) |𝜓⟩

− (𝑇 (𝑗)
2 𝑇 (𝑗)

1 𝑇 (𝑗+1)
2 𝑇 (𝑗+1)

1 + 𝑇 (𝑗)
3 𝑇 (𝑗+1)

3 ) |𝜓⟩

− 𝑖 (𝑇 (𝑗)
3 𝑇 (𝑗+1)

3 𝑇 (𝑗+1)
2 𝑇 (𝑗+1)

1 − 𝑇 (𝑗)
2 𝑇 (𝑗)

1 ) |𝜓⟩

± (𝑇 (𝑗)
2 𝑇 (𝑗)

1 𝑇 (𝑗+1)
3 𝑇 (𝑗+1)

2 𝑇 (𝑗+1)
1 + 𝑇 (𝑗)

3 ) |𝜓⟩.

(G.3)

By applying the given relations to Eq. (G.1), it can be seen that each of the eight

resulting terms approximately vanishes. Specifically, we have

(𝐼 + 𝑇 (𝑗)
3 𝑇 (𝑗)

2 𝑇 (𝑗)
1 𝑇 (𝑗+1)

3 𝑇 (𝑗+1)
2 𝑇 (𝑗+1)

1 ) |𝜓⟩
15𝜂
≈ 0, (G.4a)

(𝑇 (𝑗+1)
3 + 𝑇 (𝑗)

3 𝑇 (𝑗)
2 𝑇 (𝑗)

1 𝑇 (𝑗+1)
2 𝑇 (𝑗+1)

1 ) |𝜓⟩
10𝜂
≈ 0, (G.4b)

(𝑇 (𝑗+1)
2 𝑇 (𝑗+1)

1 − 𝑇 (𝑗)
3 𝑇 (𝑗)

2 𝑇 (𝑗)
1 𝑇 (𝑗+1)

3 ) |𝜓⟩
17𝜂
≈ 0, (G.4c)

(𝑇 (𝑗)
3 𝑇 (𝑗+1)

2 𝑇 (𝑗+1)
1 − 𝑇 (𝑗)

2 𝑇 (𝑗)
1 𝑇 (𝑗+1)

3 ) |𝜓⟩
17𝜂
≈ 0, (G.4d)

(𝑇 (𝑗+1)
3 𝑇 (𝑗+1)

2 𝑇 (𝑗+1)
1 − 𝑇 (𝑗)

3 𝑇 (𝑗)
2 𝑇 (𝑗)

1 ) |𝜓⟩
17𝜂
≈ 0, (G.4e)

(𝑇 (𝑗)
2 𝑇 (𝑗)

1 𝑇 (𝑗+1)
2 𝑇 (𝑗+1)

1 + 𝑇 (𝑗)
3 𝑇 (𝑗+1)

3 ) |𝜓⟩
10𝜂
≈ 0, (G.4f)

(𝑇 (𝑗)
3 𝑇 (𝑗+1)

3 𝑇 (𝑗+1)
2 𝑇 (𝑗+1)

1 − 𝑇 (𝑗)
2 𝑇 (𝑗)

1 ) |𝜓⟩
17𝜂
≈ 0, (G.4g)

(𝑇 (𝑗)
2 𝑇 (𝑗)

1 𝑇 (𝑗+1)
3 𝑇 (𝑗+1)

2 𝑇 (𝑗+1)
1 + 𝑇 (𝑗)

3 ) |𝜓⟩
15𝜂
≈ 0. (G.4h)

The triangle inequality then gives Eq. (G.2), as required.

We now proceed with the main body of proof for Theorem 6.9.

Proof of Theorem 6.9. Consider the isometry and the corresponding notation intro-

duced in Fig. 6.3. We begin by considering, for any 𝑗 ∈ {1, … , 𝑛}, the action of the

isometry 𝑉 (𝑗). For this, Proposition 6.7 shows that after the “swap” stage of the circuit,
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given by 𝑊 (𝑗), we have that

𝑊 (𝑗)|𝜓⟩ = |𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ 1

√2
(𝐼 + 𝑖𝑇 (𝑗)

2 𝑇 (𝑗)
1 ) |𝜓⟩, (G.5a)

𝑊 (𝑗)𝑆(𝑗)
1 |𝜓⟩ = 𝜎

ℬ′
𝑗

x |𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ 1

√2
(𝐼 + 𝑖𝑇 (𝑗)

2 𝑇 (𝑗)
1 ) |𝜓⟩, (G.5b)

𝑊 (𝑗)𝑆(𝑗)
2 |𝜓⟩ = 𝜎

ℬ′
𝑗

y |𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ 1

√2
(𝐼 + 𝑖𝑇 (𝑗)

2 𝑇 (𝑗)
1 ) |𝜓⟩, (G.5c)

𝑊 (𝑗)𝑆(𝑗)
3 |𝜓⟩ = 𝜎

ℬ′
𝑗

z |𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ 1

√2
𝑆(𝑗)

3 (𝐼 + 𝑖𝑇 (𝑗)
2 𝑇 (𝑗)

1 ) |𝜓⟩, (G.5d)

We now apply the “phase kickback” stage of the isometry, given by 𝐾 (𝑗), to the

expressions of Eq. (G.5). To make clearer the resulting equations, let us suppress

the extracted state of the primed ancillae in our notation for now, as it is entirely

unaffected by the remainder of the isometry. For this purpose, let us define (similarly

to Proposition 6.7)

|𝜑𝑗⟩ = 1
√2

(𝐼 + 𝑖𝑇 (𝑗)
2 𝑇 (𝑗)

1 ) |𝜓⟩. (G.6)

For Eqs. (G.5a) to (G.5c), Proposition 6.7 gives the action of 𝐾 (𝑗) as

𝐾 (𝑗)|𝜑𝑗⟩ = |0⟩𝒜″
𝑗

|0⟩ℬ″
𝑗

⊗ 1

2√2
(𝐼 + 𝑇 (𝑗)

3 )(𝐼 + 𝑖𝑇 (𝑗)
2 𝑇 (𝑗)

1 ) |𝜓⟩

+ |1⟩𝒜″
𝑗

|1⟩ℬ″
𝑗

⊗ 1

2√2
(𝐼 − 𝑇 (𝑗)

3 )(𝐼 + 𝑖𝑇 (𝑗)
2 𝑇 (𝑗)

1 ) |𝜓⟩.
(G.7)

For Eq. (G.5d), Proposition 6.7 gives the action of 𝐾 (𝑗) as

𝐾 (𝑗)𝑆(𝑗)
3 |𝜑𝑗⟩ = |0⟩𝒜″

𝑗
|0⟩ℬ″

𝑗
⊗ 1

2√2
(𝐼 + 𝑇 (𝑗)

3 )(𝐼 + 𝑖𝑇 (𝑗)
2 𝑇 (𝑗)

1 ) |𝜓⟩

− |1⟩𝒜″
𝑗

|1⟩ℬ″
𝑗

⊗ 1

2√2
(𝐼 − 𝑇 (𝑗)

3 )(𝐼 + 𝑖𝑇 (𝑗)
2 𝑇 (𝑗)

1 ) |𝜓⟩.
(G.8)

We have now finished examining the action of 𝑉 (𝑗) on |𝜓⟩ and 𝑆(𝑗)
𝑞 |𝜓⟩.

Notice that Eqs. (G.7) and (G.8) have a form consistent with that required by the

junk state of Eq. (6.42), however, we have only yet extracted a single copy of |𝛷+⟩.
Suppressing the ancillae once again when convenient, we will examine the action of

𝑉 (𝑗) on two subnormalized states of a similar form to those contained in the two terms

of Eqs. (G.7) and (G.8). Specifically, let us define for all 𝑘 ∈ {1, … , 𝑛} the vectors

|𝜉𝑘
±⟩𝒜ℬ = 1

(2√2)
𝑘

𝑘

∏
𝑗=1

(𝐼 ± 𝑇 (𝑗)
3 )(𝐼 + 𝑖𝑇 (𝑗)

2 𝑇 (𝑗)
1 ) |𝜓⟩𝒜ℬ =

𝑘

∏
𝑗=1

𝐽 (𝑗)
± |𝜓⟩𝒜ℬ, (G.9)
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where

𝐽 (𝑗)
± = 1

2√2
(𝐼 ± 𝑇 (𝑗)

3 )(𝐼 + 𝑖𝑇 (𝑗)
2 𝑇 (𝑗)

1 ). (G.10)

We note that, with this notation, we can now combine Eqs. (G.5a) to (G.5c) with

Eq. (G.7) and Eq. (G.5d) with Eq. (G.8) to write

𝑉 (𝑗)|𝜓⟩ = |𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ (|0⟩𝒜″

𝑗
|0⟩ℬ″

𝑗
⊗ 𝐽 (𝑗)

+ |𝜓⟩

+ |1⟩𝒜″
𝑗

|1⟩ℬ″
𝑗

⊗ 𝐽 (𝑗)
− |𝜓⟩),

(G.11a)

𝑉 (𝑗)𝑆(𝑗)
𝑞 |𝜓⟩ = 𝜎

ℬ′
𝑗

𝑞 |𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ (|0⟩𝒜″

𝑗
|0⟩ℬ″

𝑗
⊗ 𝐽 (𝑗)

+ |𝜓⟩

+ (−1)[𝑞=3]|1⟩𝒜″
𝑗

|1⟩ℬ″
𝑗

⊗ 𝐽 (𝑗)
− |𝜓⟩).

(G.11b)

In the special case of 𝑗 = 1, since |𝜉1
±⟩ = 𝐽 (1)

± |𝜓⟩, we recover

𝑉 (1)|𝜓⟩ = |𝛷+⟩𝒜′
1ℬ′

1
⊗ (|0⟩𝒜″

1
|0⟩ℬ″

1
⊗ |𝜉1

+⟩ + |1⟩𝒜″
1

|1⟩ℬ″
1

⊗ |𝜉1
−⟩), (G.12a)

𝑉 (1)𝑆(1)
𝑞 |𝜓⟩ = 𝜎

ℬ′
1

𝑞 |𝛷+⟩𝒜′
1ℬ′

1
⊗ (|0⟩𝒜″

1
|0⟩ℬ″

1
⊗ |𝜉1

+⟩ + (−1)[𝑞=3]|1⟩𝒜″
1

|1⟩ℬ″
1

⊗ |𝜉1
−⟩).

(G.12b)

We now examine 𝑉 (𝑘)|𝜉𝑘−1
± ⟩𝒜ℬ, where 1 < 𝑘 ≤ 𝑛. We begin by showing that

𝑉 (𝑘)
ℬ |𝜉𝑘−1

± ⟩ =
(

𝑘−1

∏
𝑗=1

𝐽 (𝑗)
± )

𝑉 (𝑘)
ℬ |𝜓⟩. (G.13)

To do this, notice by the definition of 𝑉 (𝑘)
ℬ = 𝐾 (𝑘)

ℬ 𝑊 (𝑘)
ℬ given in Fig. 6.3 that

𝑉 (𝑘)
ℬ |𝜓⟩ = 1

4[|0⟩ℬ′
𝑘

⊗ |0⟩ℬ″
𝑘

⊗ (𝐼 + 𝑖𝑇 (𝑘)
2 𝑇 (𝑘)

1 ) |𝜓⟩

+ |0⟩ℬ′
𝑘

⊗ |1⟩ℬ″
𝑘

⊗ 𝑇 (𝑘)
3 (𝐼 + 𝑖𝑇 (𝑘)

2 𝑇 (𝑘)
1 ) |𝜓⟩

+ |1⟩ℬ′
𝑘

⊗ |0⟩ℬ″
𝑘

⊗ 𝑇 (𝑘)
1 (𝐼 − 𝑖𝑇 (𝑘)

2 𝑇 (𝑘)
1 ) |𝜓⟩

+ |1⟩ℬ′
𝑘

⊗ |1⟩ℬ″
𝑘

⊗ 𝑇 (𝑘)
3 𝑇 (𝑘)

1 (𝐼 − 𝑖𝑇 (𝑘)
2 𝑇 (𝑘)

1 ) |𝜓⟩].

(G.14)

After applying all the 𝐽 (𝑗)
± on the left and bringing operators with index 𝑘 past all

operators with other indices to the front via a chain of state-dependent commutation
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and swapping operators between Alice and Bob (Relations 1 and 3) we get

(

𝑘−1

∏
𝑗=1

𝐽 (𝑗)
± )

𝑉 (𝑘)
ℬ |𝜓⟩ = 1

4[|0⟩ℬ′
𝑘

⊗ |0⟩ℬ″
𝑘

⊗ (𝐼 + 𝑖𝑇 (𝑘)
2 𝑇 (𝑘)

1 )

𝑘−1

∏
𝑗=1

𝐽 (𝑗)
± |𝜓⟩

+ |0⟩ℬ′
𝑘

⊗ |1⟩ℬ″
𝑘

⊗ 𝑇 (𝑘)
3 (𝐼 + 𝑖𝑇 (𝑘)

2 𝑇 (𝑘)
1 )

𝑘−1

∏
𝑗=1

𝐽 (𝑗)
± |𝜓⟩

+ |1⟩ℬ′
𝑘

⊗ |0⟩ℬ″
𝑘

⊗ 𝑇 (𝑘)
1 (𝐼 − 𝑖𝑇 (𝑘)

2 𝑇 (𝑘)
1 )

𝑘−1

∏
𝑗=1

𝐽 (𝑗)
± |𝜓⟩

+ |1⟩ℬ′
𝑘

⊗ |1⟩ℬ″
𝑘

⊗ 𝑇 (𝑘)
3 𝑇 (𝑘)

1 (𝐼 − 𝑖𝑇 (𝑘)
2 𝑇 (𝑘)

1 )

𝑘−1

∏
𝑗=1

𝐽 (𝑗)
± |𝜓⟩].

(G.15)

By Eq. (G.9), and again by the definition of𝑉 (𝑘)
ℬ , the right-hand side is simply𝑉 (𝑘)

ℬ |𝜉𝑘−1
± ⟩.

This is the desired Eq. (G.13). Since all 𝐽 (𝑗)
± act on Bob’s subsystem, they commute

with 𝑉 (𝑘)
𝒜 . We can then apply 𝑉 (𝑘)

𝒜 to both sides of Eq. (G.13) to get

𝑉 (𝑘)|𝜉𝑘−1
± ⟩ =

(

𝑘−1

∏
𝑗=1

𝐽 (𝑗)
± )

𝑉 (𝑘)|𝜓⟩. (G.16)

Substituting Eq. (G.11a) for 𝑉 (𝑘)|𝜓⟩ then gives

𝑉 (𝑘)|𝜉𝑘−1
± ⟩ = |𝛷+⟩𝒜′

𝑘ℬ′
𝑘

⊗
(

𝑘−1

∏
𝑗=1

𝐽 (𝑗)
± )(|0⟩𝒜″

𝑘
|0⟩ℬ″

𝑘
⊗ 𝐽 (𝑘)

+ |𝜓⟩

+ |1⟩𝒜″
𝑘

|1⟩ℬ″
𝑘

⊗ 𝐽 (𝑘)
− |𝜓⟩). (G.17)

Lemma G.1 implies

(𝐼 ± 𝑇 (𝑘−1)
3 )(𝐼 + 𝑖𝑇 (𝑘−1)

2 𝑇 (𝑘−1)
1 )(𝐼 ∓ 𝑇 (𝑘)

3 )(𝐼 + 𝑖𝑇 (𝑘)
2 𝑇 (𝑘)

1 ) |𝜓⟩ = 0 (G.18)

which, rewriting in terms of the 𝐽 (𝑗)
± , then implies

𝐽 (𝑘−1)
± 𝐽 (𝑘)

∓ |𝜓⟩ = 0. (G.19)

Thus, using this to simplify Eq. (G.17), we have

𝑉 (𝑘)|𝜉𝑘−1
+ ⟩ = |𝛷+⟩𝒜′

𝑘ℬ′
𝑘

⊗ |0⟩𝒜″
𝑘

|0⟩ℬ″
𝑘

⊗ |𝜉𝑘
+⟩, (G.20a)

𝑉 (𝑘)|𝜉𝑘−1
− ⟩ = |𝛷+⟩𝒜′

𝑘ℬ′
𝑘

⊗ |1⟩𝒜″
𝑘

|1⟩ℬ″
𝑘

⊗ |𝜉𝑘
−⟩. (G.20b)



186 Appendix G. Many-copy self-test

By definition of 𝑉 (𝑘)
𝒜 ,

𝑉 (𝑘)
𝒜 |𝜓⟩ = 1

4[|0⟩𝒜′
𝑘

⊗ |0⟩𝒜″
𝑘

⊗ (𝐼 − 𝑖𝑆(𝑘)
2 𝑆(𝑘)

1 ) |𝜓⟩

+ |0⟩𝒜′
𝑘

⊗ |1⟩𝒜″
𝑘

⊗ 𝑆(𝑘)
3 (𝐼 − 𝑖𝑆(𝑘)

2 𝑆(𝑘)
1 ) |𝜓⟩

+ |1⟩𝒜′
𝑘

⊗ |0⟩𝒜″
𝑘

⊗ 𝑆(𝑘)
1 (𝐼 + 𝑖𝑆(𝑘)

2 𝑆(𝑘)
1 ) |𝜓⟩

+ |1⟩𝒜′
𝑘

⊗ |1⟩𝒜″
𝑘

⊗ 𝑆(𝑘)
3 𝑆(𝑘)

1 (𝐼 + 𝑖𝑆(𝑘)
2 𝑆(𝑘)

1 ) |𝜓⟩].

(G.21)

Therefore, using Relations 1 and 3, whenever 𝑗 ≠ 𝑘

𝑉 (𝑘)
𝒜 𝑆(𝑗)

𝑞 |𝜓⟩ = 𝑆(𝑗)
𝑞 𝑉 (𝑘)

𝒜 |𝜓⟩. (G.22)

From this, it follows by noting 𝑉 𝑘
ℬ commutes with 𝑆(𝑗)

𝑞 that

𝑉 (𝑘)𝑆(𝑗)
𝑞 |𝜓⟩ = 𝑆(𝑗)

𝑞 𝑉 (𝑘)|𝜓⟩. (G.23)

A special case is (remembering that 1 < 𝑘 ≤ 𝑛)

𝑉 (1)𝑆(𝑘)
𝑞 |𝜓⟩ = 𝑆(𝑘)

𝑞 𝑉 (1)|𝜓⟩. (G.24)

Furthermore, again since 𝑉 𝑘
𝒜 and 𝑆(𝑗)

𝑞 defined on Alice’s side commute with 𝑉 (𝑘)
ℬ and

all 𝐽 (𝑖)
± , and by applying Eq. (G.23),

𝑉 (𝑘)𝑆(𝑗)
𝑞 |𝜉𝑘−1

± ⟩ =
(

𝑉 (𝑘)
ℬ

𝑘−1

∏
𝑖=1

𝐽 (𝑖)
± )

𝑉 (𝑘)
𝒜 𝑆(𝑗)

𝑞 |𝜓⟩

=
(

𝑉 (𝑘)
ℬ

𝑘−1

∏
𝑖=1

𝐽 (𝑖)
± )

𝑆(𝑗)
𝑞 𝑉 (𝑘)

𝒜 |𝜓⟩

= 𝑆(𝑗)
𝑞 𝑉 (𝑘)|𝜉𝑘−1

± ⟩.

(G.25)

Finally, it follows similarly to Eq. (G.20) that

𝑉 (𝑘)𝑆(𝑘)
𝑞 |𝜉𝑘−1

+ ⟩ = 𝜎
ℬ′

𝑘
𝑞 |𝛷+⟩𝒜′

𝑘ℬ′
𝑘

⊗ |0⟩𝒜″
𝑘

|0⟩ℬ″
𝑘

⊗ |𝜉𝑘
+⟩, (G.26a)

𝑉 (𝑘)𝑆(𝑘)
𝑞 |𝜉𝑘−1

− ⟩ = (−1)[𝑞=3]𝜎
ℬ′

𝑘
𝑞 |𝛷+⟩𝒜′

𝑘ℬ′
𝑘

⊗ |1⟩𝒜″
𝑘

|1⟩ℬ″
𝑘

⊗ |𝜉𝑘
−⟩. (G.26b)

This is because acting with 𝑆(𝑘)
𝑞 followed by 𝑉 (𝑘)

𝒜 on both sides of Eq. (G.13) gives

𝑉 (𝑘)𝑆(𝑘)
𝑞 |𝜉𝑘−1

± ⟩ =
(

𝑘−1

∏
𝑗=1

𝐽 (𝑗)
± )

𝑉 (𝑘)𝑆(𝑘)
𝑞 |𝜓⟩. (G.27)

Substituting Eq. (G.11b) for 𝑉 (𝑘)𝑆(𝑘)
𝑞 |𝜓⟩ then gives

𝑉 (𝑘)𝑆(𝑘)
𝑞 |𝜉𝑘−1

± ⟩ = 𝜎
ℬ′

𝑘
𝑞 |𝛷+⟩𝒜′

𝑘ℬ′
𝑘

⊗
(

𝑘−1

∏
𝑗=1

𝐽 (𝑗)
± )(|0⟩𝒜″

𝑘
|0⟩ℬ″

𝑘
⊗ 𝐽 (𝑘)

+ |𝜓⟩

+ (−1)[𝑞=3]|1⟩𝒜″
𝑘

|1⟩ℬ″
𝑘

⊗ 𝐽 (𝑘)
− |𝜓⟩).

(G.28)
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Thus, using Eq. (G.19) to simplify this, we have the desired Eq. (G.26).

After the full application of the isometry 𝑉 = 𝑉 (𝑛) … 𝑉 (1), and defining

|0⟩𝒜″ = |0 … 0⟩𝒜″, (G.29a)

|1⟩𝒜″ = |1 … 1⟩𝒜″, (G.29b)

|0⟩ℬ″ = |0 … 0⟩ℬ″, (G.29c)

|1⟩ℬ″ = |1 … 1⟩ℬ″, (G.29d)

Eqs. (G.12a) and (G.20) together give

𝑉 |𝜓⟩ =
𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ (|0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉𝑛

+⟩ + |1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉𝑛
−⟩). (G.30)

Similarly, we have

𝑉 𝑆(1)
𝑞 |𝜓⟩ = 𝜎

ℬ′
1

𝑞 |𝛷+⟩𝒜′
1ℬ′

1
⊗ 𝑉 (𝑛) … 𝑉 (2)

(|0⟩𝒜″
1

|0⟩ℬ″
1

⊗ |𝜉1
+⟩

+ (−1)[𝑞=3]|1⟩𝒜″
1

|1⟩ℬ″
1

⊗ |𝜉1
−⟩)

= 𝜎
ℬ′

1
𝑞

𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ (|0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉𝑛

+⟩

+ (−1)[𝑞=3]|1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉𝑛
−⟩)

= 𝜎
ℬ′

1
𝑞

𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ 𝜎ℬ″

3[𝑞=3](|0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉𝑛
+⟩ + |1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉𝑛

−⟩).

(G.31)

The first equality follows from Eq. (G.12b) and the second equality from Eq. (G.20).

Furthermore, for 1 < 𝑘 ≤ 𝑛, we can write

𝑉 𝑆(𝑘)
𝑞 |𝜓⟩ = |𝛷+⟩𝒜′

1ℬ′
1

⊗ 𝑉 (𝑛) … 𝑉 (2)𝑆(𝑘)
𝑞 (|0⟩𝒜″

1
|0⟩ℬ″

1
⊗ |𝜉1

+⟩

+ |1⟩𝒜″
1

|1⟩ℬ″
1

⊗ |𝜉1
−⟩)

=
𝑘−1

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ 𝑉 (𝑛) … 𝑉 (𝑘)𝑆(𝑘)

𝑞 (|0 … 0⟩|0 … 0⟩ ⊗ |𝜉𝑘−1
+ ⟩

+ |1 … 1⟩|1 … 1⟩ ⊗ |𝜉𝑘−1
− ⟩)

= 𝜎
ℬ′

𝑘
𝑞

𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ (|0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉𝑛

+⟩ + (−1)[𝑞=3]|1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉𝑛
−⟩)

= 𝜎
ℬ′

𝑘
𝑞

𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ 𝜎ℬ″

3[𝑞=3](|0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉𝑛
+⟩

+ |1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉𝑛
−⟩).

(G.32)
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For the first equality we used Eqs. (G.12a) and (G.24); for the second equality we used

Eqs. (G.20) and (G.25); and the third equality used Eqs. (G.20) and (G.26). Together,

Eqs. (G.30) to (G.32) have the desired form by taking |𝜉0⟩ = |𝜉𝑛
+⟩ and |𝜉1⟩ = |𝜉𝑛

−⟩.



Appendix H

Action of many untrusted operators

Proof of Lemma 6.10. Consider some unitary operators 𝑈 ̃𝒜 ∶ ̃𝒜 → ̃𝒜 and 𝑈 ̃ℬ ∶ ̃ℬ →
̃ℬ which extend the isometries 𝑉𝒜 and 𝑉ℬ to have domains ̃𝒜 and ̃ℬ, respectively.

This can be achieved by extending orthonormal bases of the images of each isometry

to orthonormal bases of each full space. Define the local unitary 𝑈 = 𝑈 ̃𝒜 ⊗ 𝑈 ̃ℬ on
̃𝒜 ⊗ ̃ℬ. We may also consider the trivial extension (by appropriate direct sums) of

all operators 𝐴𝑗 to ̃𝒜 and the state |𝜓⟩ to ̃𝒜 ⊗ ̃ℬ, each with zero weight in their new

components. This preserves the norms of the state and each operator. Reusing the

notation of the original state and operators also for their trivial extensions, we can

now write that for all 𝑗

𝑈|𝜓⟩ = 𝑉 |𝜓⟩, (H.1a)

𝑈𝐴𝑗|𝜓⟩ = 𝑉 𝐴𝑗|𝜓⟩. (H.1b)

From the assumption of Eq. (6.53a) and that ‖ ̃𝐵𝑗‖ ≤ 1, it follows that

̃𝐵𝑗𝑈|𝜓⟩
𝛿
≈ ̃𝐵𝑗|𝜙⟩. (H.2)

Using the assumptions of Eqs. (6.53b) and (6.54), we can write

̃𝐵𝑗|𝜙⟩ = ̃𝐴𝑗|𝜙⟩
𝛿
≈ 𝑈𝐴𝑗|𝜓⟩. (H.3)

Thus, combining Eqs. (H.2) and (H.3) using the triangle inequality yields

̃𝐵𝑗𝑈|𝜓⟩
2𝛿
≈ 𝑈𝐴𝑗|𝜓⟩. (H.4)

Since 𝑉𝒜 is an isometry, 𝑉 †
𝒜𝑉𝒜 = 𝐼𝒜, where 𝐼𝒜 is the identity operator on 𝒜. Thus,

𝑉 𝐴𝑗 = 𝑉𝒜𝐴𝑗 ⊗ 𝑉ℬ

= 𝑉𝒜𝐴𝑗𝑉
†

𝒜𝑉𝒜 ⊗ 𝑉ℬ

= 𝑉𝒜𝐴𝑗𝑉
†

𝒜𝑉 .

(H.5)

189
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Similarly, 𝑈𝐴𝑗 = 𝑈 ̃𝒜𝐴𝑗𝑈
†

̃𝒜
𝑈. We can therefore rewrite Eq. (H.4) as

̃𝐵𝑗𝑈|𝜓⟩
2𝛿
≈ (𝑈 ̃𝒜𝐴𝑗𝑈

†
̃𝒜)𝑈|𝜓⟩. (H.6)

We now use the properties just exhibited to examine the state ̃𝐴1 … ̃𝐴𝑚|𝜙⟩. Repeated
use of Eq. (6.54) and the fact that operators defined on ̃𝒜 commute with those defined

on ̃ℬ gives
̃𝐴1 … ̃𝐴𝑚|𝜙⟩ = ̃𝐵𝑚 … ̃𝐵1|𝜙⟩. (H.7)

Using Eq. (6.53a) one time, and again that ‖ ̃𝐵𝑗‖ ≤ 1, we can then write

̃𝐴1 … ̃𝐴𝑚|𝜙⟩
𝛿
≈ ( ̃𝐵𝑚 … ̃𝐵1)𝑈|𝜓⟩. (H.8)

Repeated use of Eq. (H.6), noting that ‖𝑈 ̃𝒜𝐴𝑗𝑈
†

̃𝒜
‖ ≤ ‖𝐴𝑗‖ ≤ 1 for all 𝑗 since 𝑈 ̃𝒜 is

unitary, gives via the triangle inequality

( ̃𝐵𝑚 … ̃𝐵1)𝑈|𝜓⟩
2𝑚𝛿
≈ (𝑈 ̃𝒜𝐴1𝑈 †

̃𝒜) … (𝑈 ̃𝒜𝐴𝑚𝑈 †
̃𝒜)𝑈|𝜓⟩. (H.9)

Therefore,

̃𝐴1 … ̃𝐴𝑚|𝜙⟩
(2𝑚+1)𝛿

≈ (𝑈 ̃𝒜𝐴1𝑈 †
̃𝒜) … (𝑈 ̃𝒜𝐴𝑚𝑈 †

̃𝒜)𝑈|𝜓⟩. (H.10)

Again using the fact that 𝑉 †
𝒜𝑉𝒜 = 𝐼𝒜, we have

(𝑉𝒜𝐴1𝑉 †
𝒜) … (𝑉𝒜𝐴𝑚𝑉 †

𝒜)𝑉 = 𝑉𝒜(𝐴1 … 𝐴𝑚)𝑉 †
𝒜𝑉

= 𝑉𝒜(𝐴1 … 𝐴𝑚)𝑉 †
𝒜𝑉𝒜 ⊗ 𝑉ℬ

= 𝑉𝒜(𝐴1 … 𝐴𝑚) ⊗ 𝑉ℬ

= 𝑉 (𝐴1 … 𝐴𝑚),

(H.11)

and similarly

(𝑈 ̃𝒜𝐴1𝑈 †
̃𝒜) … (𝑈 ̃𝒜𝐴𝑚𝑈 †

̃𝒜)𝑈 = 𝑈(𝐴1 … 𝐴𝑚). (H.12)

Thus, Eq. (H.10) becomes

̃𝐴1 … ̃𝐴𝑚|𝜙⟩
(2𝑚+1)𝛿

≈ 𝑈(𝐴1 … 𝐴𝑚)|𝜓⟩. (H.13)

Due to the construction of 𝑈 and the extended versions of the operators 𝐴𝑗 and the

state |𝜓⟩, we have 𝑈(𝐴1 … 𝐴𝑚)|𝜓⟩ = 𝑉 (𝐴1 … 𝐴𝑚)|𝜓⟩. Therefore,

̃𝐴1 … ̃𝐴𝑚|𝜙⟩
(2𝑚+1)𝛿

≈ 𝑉 (𝐴1 … 𝐴𝑚)|𝜓⟩ (H.14)

as required.



Appendix I

State preparation

Proof of Theorem 6.11. Denote the state

|𝜓′⟩ =
𝑛

⨂
𝑗=1

|𝛷+⟩𝒜′
𝑗 ℬ′

𝑗
⊗ |𝜉⟩ (I.1)

and projective measurement operators

�̂�𝒂∣𝝌 =
𝑛

⨂
𝑗=1

|𝜎
𝑎𝑗
𝜒𝑗⟩⟨𝜎

𝑎𝑗
𝜒𝑗|ℬ′

𝑗
⊗ |0⟩⟨0|ℬ″ +

𝑛

⨂
𝑗=1

|𝜎
𝑎𝑗
𝜒𝑗⟩⟨𝜎

𝑎𝑗
𝜒𝑗|

∗

ℬ′
𝑗

⊗ |1⟩⟨1|ℬ″

=
𝑛

⨂
𝑗=1

|𝜎
𝑎𝑗
𝜒𝑗⟩⟨𝜎

𝑎𝑗
𝜒𝑗|ℬ′

𝑗
⊗ |0⟩⟨0|ℬ″ +

𝑛

⨂
𝑗=1

|𝜎
𝑎𝑗(−1)[𝜒𝑗=z]

𝜒𝑗 ⟩⟨𝜎
𝑎𝑗(−1)[𝜒𝑗=z]

𝜒𝑗 |ℬ′
𝑗

⊗ |1⟩⟨1|ℬ″.

(I.2)

For any 𝜒 ∈ {1, … , 5}, the Bell state |𝛷+⟩ can be written in the form

|𝛷+⟩ = 1
√2

(|𝜎+
𝜒 ⟩

⋆ ⊗ |𝜎+
𝜒 ⟩ + |𝜎−

𝜒 ⟩
⋆ ⊗ |𝜎−

𝜒 ⟩), (I.3)

where the superscript ⋆ (as opposed to the usual ∗) denotes complex conjugation

performed in the computational basis. This is such that

|𝜎
±
x ⟩

⋆ = |𝜎
±
x ⟩, |𝜎

±
y ⟩

⋆ = |𝜎
∓
y ⟩, |𝜎

±
z ⟩

⋆ = |𝜎
±
z ⟩,

|𝜎+
x±y⟩

⋆ = |𝜎+
x∓y⟩, |𝜎−

x±y⟩
⋆ = |𝜎−

x∓y⟩.
(I.4)

We then have

�̂�𝒂∣𝝌|𝜓′⟩

√⟨𝜓′| �̂�𝒂∣𝝌 |𝜓′⟩
=

𝑛

⨂
𝑗=1

|𝜎
𝑎𝑗
𝜒𝑗⟩

⋆

𝒜′
𝑗

⊗
𝑛

⨂
𝑗=1

|𝜎
𝑎𝑗
𝜒𝑗⟩ℬ′

𝑗
⊗ |0⟩𝒜″|0⟩ℬ″ ⊗ |𝜉0⟩𝒜ℬ

+
𝑛

⨂
𝑗=1

|𝜎
𝑎𝑗(−1)[𝜒𝑗=z]

𝜒𝑗 ⟩

⋆

𝒜′
𝑗

⊗
𝑛

⨂
𝑗=1

|𝜎
𝑎𝑗(−1)[𝜒𝑗=z]

𝜒𝑗 ⟩ℬ′
𝑗

⊗ |1⟩𝒜″|1⟩ℬ″ ⊗ |𝜉1⟩𝒜ℬ. (I.5)
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Tracing out 𝒜, 𝒜′, and 𝒜″ gives

tr𝒜𝒜′𝒜″
(

�̂�𝒂∣𝝌|𝜓′⟩⟨𝜓′|�̂�𝒂∣𝝌

⟨𝜓′| �̂�𝒂∣𝝌 |𝜓′⟩ )
=

𝑛

⨂
𝑗=1

|𝜎
𝑎𝑗
𝜒𝑗⟩⟨𝜎

𝑎𝑗
𝜒𝑗|ℬ′

𝑗
⊗ |0⟩⟨0|ℬ″ ⊗ tr𝒜(|𝜉0⟩⟨𝜉0|)

+
𝑛

⨂
𝑗=1

|𝜎
𝑎𝑗(−1)[𝜒𝑗=z]

𝜒𝑗 ⟩⟨𝜎
𝑎𝑗(−1)[𝜒𝑗=z]

𝜒𝑗 |ℬ′
𝑗

⊗ |1⟩⟨1|ℬ″ ⊗ tr𝒜(|𝜉1⟩⟨𝜉1|)

= |𝑒𝒂∣𝝌⟩⟨𝑒𝒂∣𝝌|ℬ′ ⊗ |0⟩⟨0|ℬ″ ⊗ 𝛽0 + |𝑒
∗
𝒂∣𝝌⟩⟨𝑒∗

𝒂∣𝝌|ℬ′
⊗ |1⟩⟨1|ℬ″ ⊗ 𝛽1, (I.6)

where 𝛽0 = tr𝒜(|𝜉0⟩⟨𝜉0|) and 𝛽1 = tr𝒜(|𝜉1⟩⟨𝜉1|) and we have tr(𝛽0)+tr(𝛽1) = 1. Using

properties of the partial trace, we also have

tr𝒜𝒜′𝒜″

⎛
⎜
⎜
⎝

𝑉 𝝌𝛱𝒜
𝒂∣𝝌|𝜓⟩⟨𝜓|𝛱𝒜

𝒂∣𝝌𝑉 𝝌†

⟨𝜓| 𝛱𝒜
𝒂∣𝝌 |𝜓⟩

⎞
⎟
⎟
⎠

= 𝑉ℬ𝜌𝒂∣𝝌
ℬ 𝑉 †

ℬ . (I.7)

Using the linearity of the partial trace to combine Eqs. (I.6) and (I.7), and since the

trace class norm is decreasing under the partial trace, we have

‖𝑉ℬ𝜌𝒂∣𝝌
ℬ 𝑉 †

ℬ − (|𝑒𝒂∣𝝌⟩⟨𝑒𝒂∣𝝌| ⊗ |0⟩⟨0| ⊗ 𝛽0 + |𝑒
∗
𝒂∣𝝌⟩⟨𝑒∗

𝒂∣𝝌| ⊗ |1⟩⟨1| ⊗ 𝛽1)‖1

≤
‖
‖
‖‖

𝑉 𝝌𝛱𝒜
𝒂∣𝝌|𝜓⟩⟨𝜓|𝛱𝒜

𝒂∣𝝌𝑉 𝝌†

⟨𝜓| 𝛱𝒜
𝒂∣𝝌 |𝜓⟩

−
�̂�𝒂|𝜓′⟩⟨𝜓′|�̂�𝒂

⟨𝜓′| �̂�𝒂 |𝜓′⟩

‖
‖
‖‖1

. (I.8)

Let us introduce a bijection 𝑢∶ {+, −}𝑛 → {0, 1}𝑛 which converts between repre-

sentations of binary strings by taking every entry + to 0 and every entry − to 1. Let
𝒔 ∈ {0, 1}𝑛 be any string. Equations (6.70a) and (6.72a) together imply that

𝐴𝒔
𝝌 = ∑

𝒂∈{+,−}𝑛
(−1)𝑢(𝒂)⋅𝒔𝛱𝒜

𝒂∣𝝌. (I.9)

Defining ̂𝐵𝒔
𝝌 by

̂𝐵𝒔
𝝌 = ∑

𝒂∈{+,−}𝑛
(−1)𝑢(𝒂)⋅𝒔�̂�𝒂∣𝝌

=
𝑛

⨂
𝑗=1

(𝜎
ℬ′

𝑗
𝜒𝑗 )

𝑠𝑗
⊗ |0⟩⟨0|ℬ″ +

𝑛

⨂
𝑗=1

(𝜎
ℬ′

𝑗
𝜒𝑗

∗

)

𝑠𝑗
⊗ |1⟩⟨1|ℬ″,

(I.10)

the result of Corollary 6.17 in this notation is that

‖𝑉 𝝌𝐴𝒔
𝝌|𝜓⟩ − ̂𝐵𝒔

𝝌|𝜓′⟩‖ ≤ 𝛾(𝜀, 𝑛). (I.11)

Due to Eqs. (I.9) to (I.11), we can now apply Theorem 6.4 for each 𝝌 ∈ 𝒮. This gives,

with probability at least 1 − 4𝛾(𝜀, 𝑛)2/3 over all 𝒂 ∈ {+, −}𝑛 given 𝝌, that one half
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multiplied by the right-hand side of Eq. (I.8) is bounded above as

1
2

‖
‖
‖‖

𝑉 𝝌𝛱𝒜
𝒂∣𝝌|𝜓⟩⟨𝜓|𝛱𝒜

𝒂∣𝝌𝑉 𝝌†

⟨𝜓| 𝛱𝒜
𝒂∣𝝌 |𝜓⟩

−
�̂�𝒂∣𝝌|𝜓′⟩⟨𝜓′|�̂�𝒂∣𝝌

⟨𝜓′| �̂�𝒂∣𝝌 |𝜓′⟩

‖
‖
‖‖1

≤ 𝛾(𝜀, 𝑛)2/3. (I.12)

Therefore, with probability at least 1 − 4𝜏(𝜀, 𝑛) over all 𝒂 ∈ {+, −}𝑛 given 𝝌, we have

1
2‖𝑉ℬ𝜌𝒂∣𝝌

ℬ 𝑉 †
ℬ − (|𝑒𝒂∣𝝌⟩⟨𝑒𝒂∣𝝌| ⊗ |0⟩⟨0| ⊗ 𝛽0

+ |𝑒
∗
𝒂∣𝝌⟩⟨𝑒∗

𝒂∣𝝌| ⊗ |1⟩⟨1| ⊗ 𝛽1)‖1
≤ 𝜏(𝜀, 𝑛), (I.13)

where we define 𝜏(𝜀, 𝑛) = 𝛾(𝜀, 𝑛)2/3.
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