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Abstract  24 
 25 
The specialised regional functionality of the mature human cortex partly emerges through 26 
experience-dependent specialisation during early development. Our existing understanding of 27 
functional specialisation in the infant brain is based on evidence from unitary imaging 28 
modalities and has thus focused on isolated estimates of spatial or temporal selectivity of 29 
neural or haemodynamic activation, giving an incomplete picture.  We speculate that 30 
functional specialisation will be underpinned by better coordinated haemodynamic and 31 
metabolic changes in a broadly orchestrated physiological response.  To enable researchers to 32 
track this process through development, we develop new tools that allow the simultaneous 33 
measurement of coordinated neural activity (EEG), metabolic rate and oxygenated blood 34 
supply (broadband near-infrared spectroscopy) in the awake infant. In 4-to-7-month-old 35 
infants, we use these new tools to show that social processing is accompanied by spatially 36 
and temporally specific increases in coupled activation in the temporal-parietal junction, a 37 
core hub region of the adult social brain. During non-social processing coupled activation 38 
decreased in the same region, indicating specificity to social processing. Coupling was 39 
strongest with high frequency brain activity (beta and gamma), consistent with the greater 40 
energetic requirements and more localised action of high frequency brain activity. The 41 
development of simultaneous multi-modal neural measures will enable future researchers to 42 
open new vistas in understanding functional specialisation of the brain.   43 
 44 
  45 



Introduction 46 
 47 

The adult brain is highly specialised, with core networks coordinating to subserve complex 48 
behaviours. This specialised functioning emerges across development through a combination 49 
of genetically influenced brain architecture and experience-expectant learning processes 50 
(generalised neural development that occurs as a result of common experiences) and 51 
experience-dependent (variation in the  environment contributing to individual differences in 52 
neural response) [1]. During early development, infants undergo significant neural, 53 
physiological, and socio-cognitive changes that are accompanied by large-scale changes in 54 
social communication and interaction. Currently, we have relatively few tools that allow us to 55 
comprehensively capture the emergence of functional specialisation in the infant social brain. 56 
Developing new approaches is critical for advancing our understanding of early brain 57 
physiology and cognitive function.   58 
 59 
Identifying appropriate metrics to index functional specialisation in the infant brain should be 60 
informed by theoretical perspectives on how functional specialisation develops. Interactive 61 
specialisation is a theory of brain development that posits that functional specialisation 62 
emerges through competition between brain regions [2]. Thus, functional specialisation can 63 
be indexed as a smaller spatial extent of neural responses to a particular stimulus category 64 
and  concomitant selectivity in responsive regions [3]. Typically, the extent and selectivity of 65 
brain activation is measured through indirect indices of oxygenated blood flow (e.g. 66 
functional near-infrared spectroscopy or fNIRS [4] or functional magnetic resonance imaging 67 
or fMRI [5]) or of coordinated neural activity (e.g. electroencephalography or EEG [6]). 68 
However, one mechanism that may contribute to competition between brain regions is the 69 
limited energetic resources available to the infant brain. The brain is an energetically costly 70 
organ, consuming 20-25% of the body’s energy in adulthood while representing only 2% of 71 
the body’s mass [7], [8]. There are also substantial developmental changes in the brain’s 72 
energy consumption; in the first year of life, up to 60% of available energy is used by the 73 
brain [9]. When brain regions become functionally active (for example during stimulus 74 
processing) neurons fire more rapidly, requiring greater supplies of adenosine triphosphate or 75 
ATP (energy stores). Producing ATP requires oxygen, and this is supplied through a localised 76 
increase in oxygenated haemoglobin in the blood. Increases in oxygenated haemoglobin do 77 
not happen concurrently in all brain areas, and there are spatial dependencies between 78 
activated and deactivated regions in the adult brain  [10]. Energy supplies are important to 79 
synaptic plasticity, memory and learning [11], and the mechanism through which energy 80 
supplies are coupled to activation (neurovascular coupling) also develops through experience-81 
dependent specialisation in the infant brain [12]. Thus, energy supply constraints may be one 82 
factor that contributes to the emergence of brain specialisation. If this is the case, detecting 83 
functional specialisation in infancy requires not only examining measures of neural activity 84 
and oxygenated haemoglobin, but also identifying whether particular regions show stronger 85 
coupling between neuronal demand and energetic supply.   86 
 87 
As a first step, testing such frameworks requires the availability of methods that can measure 88 
the spatial extent and stimulus selectivity of neuroenergetics coupling in infancy. Previous 89 
studies have typically used single modalities sensitive to distinct aspects of brain function. 90 
For example, studies with fMRI indicate that core regions of the social brain (particular the 91 
fusiform face area) show increases in oxygenated haemoglobin delivery in response to faces 92 
by 4-9 months [13]. Further, functional near-infrared spectroscopy (fNIRS) studies show that 93 
oxygenated haemoglobin delivery in response to naturalistic social videos in a broad region 94 
of temporal cortex emerges over the first hours of life [14]. Work with EEG indicates 95 



developmental increases in differentiated theta power responses to social versus non-social 96 
stimuli between 6 and 12 months [3]. Thus, work with single modalities indicates 97 
development in functional specialisation across the first year of life. 98 
 99 
Broadband near-infrared spectroscopy (or bNIRS) is a new technique that uses a broad range 100 
of optical wavelengths which allows the measurement of the oxidation state of mitochondrial 101 
respiratory chain enzyme cytochrome-c-oxidase (CCO), thereby providing a direct measure 102 
of cellular energy metabolism [4]. CCO is located in the inner mitochondrial membrane and 103 
serves as the terminal electron acceptor in the electron transport chain (ETC). It therefore 104 
accounts for 95% of cellular oxygen metabolism. In this way, bNIRS allows non-invasive 105 
measurement of cellular energy metabolism alongside haemodynamics/oxygenation in awake 106 
infants.  107 
 108 
Work with single modalities has demonstrated that social selectivity in core regions of the 109 
adult ‘social brain’ can be robustly detected by 4 – 7 months of age, [15]–[18]. We recently 110 
showed the feasibility of using bNIRS in 4-to-7-month-old typically developing infants [19] 111 
and demonstrated the presence of unique task-relevant, regionally specific functional 112 
networks where high levels of haemodynamic and metabolic coupling were observed. Here, 113 
we integrate this methodology with EEG to examine whether specific brain regions show 114 
coordinated energetic coupling and neural activity. We develop a novel analysis pipeline to 115 
identify localised coupling responses that are modulated by naturalistic social content. We 116 
aimed specifically to investigate the relationship between low- and high-frequency neural 117 
activity with haemodynamics and metabolism. For EEG, we expected an increase in neural 118 
activity in response to the social condition and a decrease in neural activity in response to the 119 
non-social condition. Based on previous work, this was expected to be strongest in the theta 120 
frequency band [3]. Moreover, for the combined bNIRS-EEG analyses, we hypothesised 121 
differentiated haemodynamic/metabolic coupling with neural activity for the social and non-122 
social stimulus conditions. We performed two types of statistical tests: a) individual 123 
comparisons of the social and non-social conditions and b) comparison of the social condition 124 
versus the non-social condition. The individual condition tests were performed to show the 125 
scale and spatial location/sensitivity of the coupling between haemodynamics/metabolism 126 
and neural activity for each condition. Meanwhile, the social versus non-social comparison 127 
was performed to show where there was a significant difference in the coupling between the 128 
two conditions. With comparison (a) we aimed to identify regions involved in the processing 129 
of social and non-social stimuli by identifying the regions where the coupling was significant. 130 
With comparison (b) we aimed to identify regions where coupling was significantly different 131 
between conditions. We predicted that for the individual comparison of the social condition, 132 
we would observe positive associations between bNIRS and EEG measures, i.e. a 133 
simultaneous increase in haemodynamics/metabolism and neural oscillatory activity in the 134 
beta and gamma frequency bands (based on previous combined EEG – fMRI studies [20]–135 
[26]) which would be localised to core social brain regions. We hypothesised that for the non-136 
social condition, over the same brain regions, positive associations would be observed 137 
between bNIRS and EEG measures, but they would be a simultaneous decrease in 138 
haemodynamics/metabolism and oscillatory activity. We also expected simultaneous 139 
increases in haemodynamics/metabolism and oscillatory activity to be localised to the parietal 140 
brain region. These predictions are based on our previous work [19] where we demonstrated 141 
that stronger coupling between haemodynamics and metabolism was observed in the 142 
temporo-parietal regions for the social condition and in parietal region for the non-social 143 
condition which is known to play an important role in object processing [27], [28]. For the 144 
social versus the non-social contrast, we predicted that haemodynamic activity and 145 



metabolism would be coupled with neuronal oscillatory activity more strongly for the social 146 
stimuli in comparison to the non-social stimuli, with significant differences being observed in 147 
the temporo-parietal regions. 148 
 149 

Results 150 
 151 
Naturalistic social stimuli elicit expected increases in broadband EEG activity: 5-month-152 
old infants n=42) viewed naturalistic social and non-social stimuli (Fig 1a) while we 153 
concurrently measured EEG and broadband NIRS. Fourier-transform of continuously 154 
recorded EEG data from 32 channels (n=35) in one-second segments across the time course 155 
of stimulus presentation confirmed robust broadband increases in neural activity in response 156 
to social versus non-social stimuli (Fig 1b, replicating [3]).  157 
 158 

 159 
 160 

 161 
Figure 1: a) Illustration of the paradigm; b) Scalp topographies of the grand average RMS power for theta, alpha, beta, and 162 
gamma frequency bands (averaged across participants, averaged across the stimulus period) for the social minus non-social 163 
condition. The orange stars indicate statistically significant EEG electrodes where an increase in activity was observed 164 
(e.g., increase in response to the social condition compared to the non-social condition); a double line indicates significance 165 
after FDR correction.  166 

 167 
Haemodynamic and metabolic coupling and oscillatory activity spatially overlap: We 168 
used a method that we have previously validated to integrate haemodynamic and metabolic 169 
signals from the bNIRS data (n=25) to investigate the relationship between the two signals 170 
[19], [29]. Using this method, we obtained indices that indicated whether specific brain 171 
regions either had a high level of coordinated coupling between haemodynamics and 172 
metabolism (i.e. coupled increases in metabolic function and oxygenated blood flow) or a 173 



mismatched coupling (i.e. an increase metabolic function and a concurrent decrease in 174 
oxygenated blood flow). This revealed distinct locations sensitive to social (Fig 2b) and non-175 
social (Fig 2d) processing; the topography of these locations is similar to the topography of 176 
differentiated broadband EEG activity (Fig 2a, c), particularly for haemodynamic and 177 
metabolic coupling at channels 12 and 14 and EEG theta band activity.  178 
 179 

 180 
 181 

 182 
Figure 2: Scalp topographies of the grand average RMS power for theta, alpha, beta, and gamma frequency bands 183 
(averaged across participants, averaged across the stimulus period for (a) social and (c) non-social conditions. The black 184 
dots show the locations of the EEG electrodes while the orange circles represent the bNIRS channels. Locations of high 185 
haemodynamic and metabolic coupling for (b) social and (d) non-social condition. Figure 2b and 2dn are reproduced from 186 
Figure 7, Siddiqui et al. 2022.  187 

Coupled signals highlight specialised activation in the temporal parietal junction: We 188 
then convolved the time-course of the block-averaged within-hemisphere EEG time-series 189 
responses with an infant-specific haemodynamic response function (n=14; Fig 3). A general 190 



linear model (GLM) approach was then used to identify FDR-corrected associations between 191 
all EEG locations and the bNIRS channels that showed significant coupling between the 192 
metabolic and haemodynamic response (Fig 2b, d). In line with the results shown in Fig 2b 193 
and Fig 2d, we expected the spatial coupling between bNIRS and EEG to differ for the social 194 
and non-social conditions. We predicted that for the social condition, we would observe 195 
coordinated increases in haemodynamic/metabolic activity (HbO2 and oxCCO) and neural 196 
oscillatory activity (positive associations between bNIRS and EEG) in the beta and gamma 197 
frequency bands over the temporo-parietal region. Meanwhile we expected that for the non-198 
social condition, we would observe coordinated decreases in haemodynamic/metabolic 199 
(HbO2 and oxCCO) activity and neural oscillatory activity (also resulting in positive 200 
associations between bNIRS and EEG) over the temporo-parietal region and coordinated 201 
increases over the parietal region. We expected negative associations between HHb and 202 
oxCCO for both conditions. We predicted that the comparison of social versus non-social 203 
would show associations between bNIRS and EEG was stronger for the social condition.  204 
 205 
Figure 3 supplement 1 shows the individual statistical comparisons of the social (red colour 206 
scale) and non-social (blue colour scale) conditions. For both conditions, bNIRS – EEG 207 
coupling was consistently observed between bNIRS channel 14 and various EEG channels, 208 
which were positioned over the parietal and superior temporal sulcus – temporal parietal 209 
junction regions respectively.  For the social condition, a coupled increase in 210 
haemodynamic/metabolic activity and neural oscillatory activity was observed in the beta, 211 
gamma, and high-gamma frequency bands, which was primarily concentrated in the temporo-212 
parietal region (e.g., bNIRS channel 14 and EEG electrodes Pz, PO4). A consistent pattern of 213 
coupling with neuronal activity was observed across chromophores particularly for the beta 214 
band. For the non-social condition, no coupling was observed between haemodynamics and 215 
neural activity (i.e., HbO2 and HHb) for the low-frequency theta and alpha frequency bands. 216 
Meanwhile, a coupled increase in metabolic activity and neural activity was observed 217 
between bNIRS channel 14 and occipital and parietal EEG locations (O2, PO8, P10, P4 for 218 
the theta band and P10 for the alpha band). Moreover, in the high-frequency beta, gamma and 219 
high-gamma bands, coupling was observed primarily for HHb and oxCCO between bNIRS 220 
channel 14 and occipital, and parietal EEG locations (Oz, O2 and PO8). A consistent pattern 221 
of coupling was observed between HHb and oxCCO. Several long-range associations were 222 
also observed such as those in the beta frequency bands between bNIRS channels 12 and 13 223 
and EEG locations TP8 and T8 respectively for the social condition for HbO2 and between 224 
bNIRS channel 14 and EEG locations C2 and Cz for the non-social condition for HHb and 225 
oxCCO.  226 
 227 
Figure 3 supplement 2 shows the statistical comparison of the social versus the non-social 228 
condition. Not many significant differences were observed between bNIRS and EEG 229 
associations for the two conditions. Significant differences were observed between bNIRS 230 
channel 14 and Pz (with stronger association for the social condition) in the gamma 231 
frequency band for HbO2. Meanwhile, significant differences were observed between bNIRS 232 
channel 14 and O2 (with stronger association for the non-social condition) in the high-gamma 233 
band for oxCCO. This suggests differential coupling between haemodynamic/metabolic 234 
activity and neural activity for each condition.  235 
 236 
 237 
 238 



 239 
Figure 3: Summary of the procedure for obtaining the associations between bNIRS signals and EEG RMS power at each 240 

bNIRS combination, for each frequency band.  241 

 242 
 243 

 244 



 245 
Figure 3 supplement 1: FDR-corrected significant connections between bNIRS channels (squares) and EEG electrodes 246 

(circles) for the (i) theta, (ii) alpha, (iii) beta, (iv) gamma and (v) high gamma bands for the social condition (red colour 247 
bar) and the non-social condition (blue colour bar) for HbO2, HHb, and oxCCO. 248 
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 249 
Figure 3 supplement 2: FDR-corrected significant connections between bNIRS channels and EEG electrodes for the (i) 250 
theta, (ii) alpha, (iii) beta, (iv) gamma and (v) high gamma bands for the social condition versus the non-social condition for 251 
HbO2, HHb, and oxCCO. The colour bar represents the t-values from the GLM analysis with a positive t-value representing 252 
a significant, positive connection between the bNIRS channel and EEG electrode while a negative t-value represents a 253 
negative connection. 254 
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 255 
Using image reconstruction on the bNIRS data, the spatial sensitivity of the bNIRS location 256 
that showed the clearest differences in coupling (channel 14) are shown in Figure 4. The 257 
method for image reconstruction has been described in detail in the methods section. The 258 
results indicate that the bNIRS – EEG coupling was most consistent with the spatial extent 259 
changes in metabolic activity (CCO).  260 
 261 

 262 
Figure 4: Grand-average image reconstruction at 18 s post-stimulus onset for the social condition (a – c) and the non-social 263 
condition (d – f) at a single time point of 18 s post-stimulus onset. The concentration changes for HbO2 and HHb were 264 
normalised to the maximum concentration change of HbO2 while ΔoxCCO was normalised to its own maximum change in 265 
concentration. Channel 14 has been indicated.  266 

 267 
Discussion 268 

 269 
We develop a tool that enabled multimodal imaging analysis of coordinated neural activation, 270 
metabolic demand, and oxygenated haemoglobin delivery in the infant brain. As a proof of 271 
principle, we examined the relationship between these measures to identify regional 272 
selectivity to social versus non-social stimuli.  To first demonstrate the scale and spatial 273 
sensitivity of the coupling between haemodynamic/metabolic activity and neuronal 274 
oscillatory activity, comparisons were performed individually for the social and non-social 275 
conditions. For this, we predicted a simultaneous increase in haemodynamics/metabolism and 276 
neural activity in the beta and gamma frequency band. We predicted that for the social 277 
condition this would be localised to the core social brain regions (temporo-parietal region) 278 
while for the non-social condition, we expected the coupling to be localised to parietal 279 
regions, known to be involved in object processing [27], [28]. We additionally expected a 280 
simultaneous decrease in haemodynamic/metabolic activity and neural activity over the 281 
temporo-parietal region for the non-social condition, in accordance with our previous work 282 
[19]. Next, to demonstrate differential coupling for social and non-social stimuli, we 283 
performed a comparison of the social condition versus the non-social condition. For this, we 284 
hypothesised that in the beta and gamma frequency bands, there would be stronger coupling 285 
between haemodynamics/metabolism and neural activity for the social condition over the 286 
temporo-parietal region.   287 
 288 
Confirming previous work, naturalistic social and non-social stimuli produce broad 289 
haemodynamic changes, with smaller spatial extent of  locations with coupled haemodynamic 290 
and metabolic activity [19]. We also replicated previously observed greater EEG responses to 291 



social versus non-social stimuli [3]. However, examining coupling between these two 292 
phenomena uncovered a precise pattern in which specific locations in the parietal and 293 
temporo-parietal regions showed differential coupling between bNIRS-EEG for social and 294 
non-social stimuli, particularly for the beta and gamma band frequency bands, as we 295 
predicted. We contend that this approach identifies a more localised regional area with 296 
selective coordination of neural, haemodynamic, and metabolic activity. The increased 297 
localisation observed in our coupling analysis may indicate our approach provides a more 298 
rigorous measure of functional specialisation. Widespread use of this technique will 299 
accelerate our understanding of both the typically and atypically developing brain. 300 
Unexpectedly, while most associations between haemodynamic/metabolic activity and 301 
oscillatory activity were localised, we observed several long-range connections between 302 
haemodynamic/metabolic and neural signals. It has been hypothesised that long-range 303 
functional connectivity patterns are vital for the organisation of human brain structure and 304 
function [30]. The strongest coupling was observed between temporo-parietal bNIRS channel 305 
14 with parietal EEG locations Pz and PO4 for the social condition (for beta and gamma 306 
frequency bands). Meanwhile, for the non-social condition, coupling was observed between 307 
temporo-parietal bNIRS channel 14 with occipital and parietal EEG locations Oz, O2, PO8 308 
and P10 (for theta and beta frequency bands). While an overall consistent pattern of 309 
associations across chromophores and conditions was observed, some variability was also 310 
seen, particularly across frequency bands. This was expected and in line with previous EEG-311 
fMRI studies that have demonstrated task-dependent variation in coupling between neural 312 
and haemodynamic activity across frequency bands [20]–[26]. For example, for resting state 313 
simultaneous fMRI and EEG, stronger coupling between the BOLD response and neural 314 
activity has been observed for the alpha band [31]. Meanwhile, for cognitive tasks, stronger 315 
coupling has been observed in the gamma frequency band [32]. Scheeringa et al. [20] 316 
investigated trial-by-trial coupling of EEG and BOLD activity and found that low- and high-317 
frequency bands independently contribute to explaining BOLD variance. We therefore 318 
expected the frequency band showing the strongest coupling between bNIRS and EEG for 319 
each of the stimuli to vary. Further, while we did expect and observe significant overlap in 320 
associations between chromophores within each frequency band, some variability was seen. 321 
For example, for the social condition, no associations were observed in the low-frequency 322 
bands for any of the chromophores. Moreover, in the beta frequency bands, all chromophores 323 
displayed significant associations between bNIRS channel 14 and Pz for the social condition 324 
and both HHb and oxCCO displayed significant associations between bNIRS channel 14 and 325 
O2, PO8 and C2. Similarly, in the gamma frequency bands, both HbO2 and oxCCO displayed 326 
significant associations between bNIRS channel 14 and PO4. The variability that was 327 
observed between chromophores was limited mostly to the non-social condition. For 328 
example, only oxCCO displayed significant associations between bNIRS and EEG for the 329 
low-frequency theta and alpha frequency bands. It is well known that various components 330 
involved in neurovascular coupling undergo development postnatally, see the review by [33] 331 
for a full discussion. Briefly, there is extensive structural change within cerebral 332 
microvasculature including growth, extension and proliferation of new blood vessels [34], 333 
[35]. Further, studies have also demonstrated gradual development of vascular reactivity (i.e., 334 
change in vascular tone, vasoconstriction and vasodilation)  [20], [21] which is necessary for 335 
the propagation of the NVC response [38]. Lastly, pericytes and astrocytes which are key 336 
components of NVC are also known to undergo development in size, number, connectivity 337 
and branching [12], [39]–[41]. From the metabolic perspective, infant positron emission 338 
tomography (PET) studies demonstrate regional-specific, progressive increase in the cerebral 339 
metabolic rate of oxygen consumption (CMRO2) [42] while others evidence a developmental 340 
maturational change in oxidative metabolism [43]. In adults, previous research has also 341 



suggested that oxygen consumption is more spatially localised in comparison to changes in 342 
cerebral blood flow [44] and that oxCCO has distinct spatial distributions in the brain [45], 343 
[46], [47], indicating that energy metabolism may be more spatially specific. The spatial 344 
distribution of oxCCO in different brain regions currently remains unmapped in the 345 
developing infant brain, however. Therefore, taken together, given that during early 346 
development there are extensive changes in cerebral vasculature as well as the metabolic 347 
environment and potential variability in the spatial distribution of oxCCO, it is expected that 348 
there will be some variability observed in the associations between the haemodynamics and 349 
metabolism with neural activity. In our study, we observed more consistent oxCCO – EEG 350 
associations across frequency bands and stimuli with more localised (fewer long-range) 351 
associations. Further studies with a larger sample size and longitudinal follow up can provide 352 
a clearer view on how NVC develops in infancy which will help explain some of the 353 
observed variability. Moreover, future studies with high density bNIRS arrays will provide 354 
clarification on the spatial distribution of oxCCO in the infant brain.    355 
 356 
EEG profiles observed in the present study are consistent with previous studies in identifying 357 
increased gamma band activity over temporal and parieto-occipital brain regions during face 358 
processing [48]–[61]. High-frequency neural firing is associated with localised processing  359 
[62] whilst lower-frequency activity is associated with larger-scale network changes and 360 
transfer of information across systems [63]. The increase in lower-frequency activity during 361 
social attention also observed here and in other work  [3], [64] may support larger-scale 362 
connectivity and communication of information through cross-frequency coupling  [49]. Our 363 
work further indicates that measures of metabolic load may provide important additional 364 
information in understanding localisation of brain function. Localised high-frequency activity 365 
exerts strong metabolic demand [65], [66] and subsequent increases in oxygenated 366 
haemoglobin  [25], [67], [68]. These increases in metabolic rate are supported by increased 367 
activity in the mitochondrial electron transport chain, resulting in the changes in cytochrome-368 
c-oxidase we detected with broadband NIRS. Nitric oxide (which competes with oxygen to 369 
bind to cytochrome-c-oxidase) and carbon dioxide (produced as a by-product in the ETC) are 370 
key signalling molecule in controlling neurovascular coupling and thus subsequent oxygen 371 
delivery [69], [70]. Finally, reactive oxygen species produced by the ETC are a key signal in 372 
inducing synaptic plasticity [71]. Thus, our work is consistent with a model in which social 373 
attention induces localised high frequency brain activity in the temporal parietal junction, 374 
which increases local metabolic rates, triggering synaptic plasticity and subsequent oxygen 375 
delivery to a broader region.  376 
 377 
Our work particularly highlights the temporal-parietal junction is showing strong coupling 378 
and social selectivity. Previous studies measuring haemodynamic activity have identified 379 
early sensitivity of this region to social stimuli from at least 4 months [72], alongside a 380 
broader network of other regions.  Here, we pinpoint this specific location as having coupled 381 
neuronal, metabolic, and haemodynamic activity that is modulated in opposite directions by 382 
complex social and non-social content. In the adult brain, the temporal-parietal junction has 383 
received considerable attention and there are several competing models of its function. It has 384 
been linked to mentalising  [73], [74] and reorienting attention to behaviourally relevant 385 
stimuli  [75]; it can be viewed as a nexus area where the convergence of attention, language, 386 
memory and social processing supports a social context for behaviour ([76] or as a region that 387 
is active when awareness of a prediction permits attentional control [77]. Intriguingly, recent 388 
formulations within the predictive coding framework link the right temporal-parietal junction 389 
to a domain-general role in prediction, perhaps representing the precision of priors [78]. 390 
Predictability has been linked to energy-efficiency, with some computational models showing 391 



that energy limitations are the only requirement for driving the emergence of predictive 392 
coding [79]. Increases in beta/gamma have also been linked to unexpected reward processing 393 
[80]. Taken together, our results may indicate the early presence of priors for social 394 
interaction that are being actively updated (in contrast to the dynamic toys, which may 395 
already be more predictable). 396 
 397 
The methods we developed could be broadly applied to study both neurotypical and atypical 398 
brain function. Assessing coupling over developmental time may reveal the mechanisms 399 
underpinning neural specialisation and constrain theoretical frameworks seeking to explain 400 
specialisation in the adult brain. The mechanisms of neurovascular coupling remain unclear 401 
in the adult brain [69], and are developing in infancy [12], and novel multimodal and non-402 
invasive approaches to their identification could yield significant progress. Computational 403 
models could test the role of constraints in energy supply on developing localisation of 404 
function. Further, the region identified here also shows atypical haemodynamic 405 
responsiveness in infants with later symptoms of autism [18]; since mitochondrial 406 
dysfunction has become an increasing focus in autism [81] the possibility that atypical 407 
coupling may impact specialisation in autism is an important hypothesis to test. Further, our 408 
methods have applicability in determining the impacts of early brain injury. Recent work [82] 409 
measured both cerebral oxygenation and energy metabolism in neonates with brain injury 410 
(hypoxic-ischaemic encephalopathy) and demonstrated that the relationship between 411 
metabolism and oxygenation was able to predict injury severity. This therefore provided a 412 
clinical, non-invasive biomarker of neonatal brain injury. Indicating applicability across the 413 
lifespan [83] simultaneous measurements of cerebral oxygenation, metabolism and neural 414 
activity in epilepsy revealed unique metabolic profiles for healthy brain regions in 415 
comparison to those with the regions of the epileptic focus. The work in epilepsy 416 
demonstrates the strength of combining measurements from multiple modalities to investigate 417 
brain states, particularly in clinical populations.  418 
 419 
Our work has several limitations. We used naturalistic stimuli to maximise ecological 420 
validity; however, this reduces our ability to probe the function of the temporal-parietal 421 
junction across specific stimulus dimensions and this is an important target for future work. 422 
Limitations of current technology meant we recorded from the right hemisphere only and 423 
thus cannot determine the specificity of our findings to left temporal-parietal junction; 424 
engineering advances are required to produce whole-head bNIRS devices. Moreover, we only 425 
studied one age group of infants between 4 and 7 months therefore, we could not investigate 426 
developmental change.   427 
 428 
Conclusion: Energy metabolism and neural activity are known to be tightly coupled in order 429 
to meet the high energetic demands of the brain, both during a task [84], [85] and at rest [86]. 430 
It has been hypothesised that the level of correspondence between energy metabolism and 431 
neuronal activity may be an indicator for brain specialisation [84], [87], [88]. Here, we 432 
developed a system to simultaneously measure multichannel broadband NIRS with EEG in 4-433 
to-7-month-old infants to investigate the neurovascular and neurometabolic coupling. We 434 
presented a novel study combining bNIRS and EEG and show stimulus-dependent coupling 435 
between haemodynamic, metabolic, and neural activity in the temporal-parietal junction. The 436 
results highlight the importance of investigating the energetic basis of brain functional 437 
specialisation and opens a new avenue of research which may show high utility for studying 438 
neurodevelopmental disorders and in clinical populations where these basic mechanisms are 439 
altered. 440 
 441 
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 468 
The data contains human subject data from minors and guardians provided informed consent 469 
to having data shared only with researchers involved in the project, in anonymised form. A 470 
Patient and Public Involvement (PPI) initiative at the Centre for Brain and Cognitive 471 
Development aimed to actively work in partnership with parents and guardians participating 472 
in research studies to help design and manage future research. A comprehensive public 473 
survey was conducted as part of this initiative which aimed to evaluate parent attitudes to 474 
data sharing in developmental science. This survey revealed that majority of parents do not 475 
want their data to be shared openly but are open to the data being shared with other 476 
researchers related to the project. Therefore, in order to adhere to participant 477 
preference/choice, a curated data sharing approach must be followed wherein the data can 478 
only be made available upon reasonable request through a formal data sharing and project 479 
affiliation agreement. The researcher will have to contact MFS and complete a project 480 
affiliation form providing their study aims, a detailed study proposal, plan for the analysis 481 
protocol, ethics, and plans for data storage and protection. Successful proposals will have 482 
aims aligned with the aims of the original study. Raw NIRS data, EEG data and integrated 483 
NIRS-EEG data can be made available in anonymised form. ID numbers linking the NIRS 484 
and EEG data, however, cannot be provided as parents/guardians have consented only to data 485 
being shared in anonymised form. All code used to analyse the NIRS data and the integration 486 
of the NIRS and EEG data is available on GitHub 487 
(https://github.com/maheensiddiqui91/NIRS-EEG). EEG data was processed using EEGlab 488 
which is a publicly available toolbox.     489 



 490 
Methods  491 
 492 
Participants: The study protocol was approved by the Birkbeck Ethics Committee, ethics 493 
approval number 161747. Participants were forty-two 4-to-7-month-old infants (mean age: 494 
179± 16 days; 22 males and 20 females); parents provided written informed consent to 495 
participate in the study, for the publication of the research and additionally for the publication 496 
and use of any photographs taken during the study of the infant wearing the NIRS-EEG 497 
headgear. Inclusion criteria included term birth (37 – 40 weeks); exclusion criteria included 498 
known presence or family history of developmental disorders. The sample size was 499 
determined by performing a power analysis of existing data using G*Power.  500 
 501 
Experimental Procedure: The experimental stimuli were designed using Psychtoolbox in 502 
Matlab (Mathworks, USA) and consisted of social and non-social videos. The social videos 503 
consisted of a variety of full-colour video clips of actors performing nursery rhymes such as 504 
“pat-a-cake” and “wheels on the bus”. The non-social videos consisted of dynamic video 505 
clips of moving mechanical toys. The visual and auditory components of both social and non-506 
social videos was matched. These videos have been used extensively in prior infant studies in 507 
both EEG studies [3] and NIRS studies [89], [90]. Both social and non-social experimental 508 
conditions were presented alternatingly for a varying duration between 8-12 s. The baseline 509 
condition consisted of static transport images, for example cars and helicopters, which were 510 
presented for a pseudorandom duration of 1 – 3 s each for a total of 8 s. Following the 511 
presentation of the baseline condition, a fixation cross in the shape of a ball or a flower 512 
appeared in the centre of the screen to draw the infant’s attention back to the screen in case 513 
the infant had become bored during the baseline period. The following experimental 514 
condition was then presented once the infant’s attention was on the fixation cross. Error! 515 
Reference source not found.a depicts the order of stimulus presentation. All infants sat in 516 
their parent’s lap at an approximate distance of 65 cm from a 35-in screen which was used to 517 
display the experimental stimuli. The study began with a minimum 10 s rest period to draw 518 
the infant’s attention towards the screen during which the infant was presented with various 519 
shapes in the four corners of the screen. Following this, the baseline and experimental stimuli 520 
were presented alternatingly until the infant became bored or fussy.  521 
 522 
Data acquisition and array placement: bNIRS and EEG data was acquired simultaneously 523 
and the bNIRS optodes and EEG electrodes were positioned on the head using custom-built, 524 
3-D printed arrays which were embedded within a soft neoprene cap (Neuroelectrics, Spain). 525 
Figures 5a and 5b show the locations of bNIRS optodes and EEG electrodes on the head. 526 
Figure 1b shows the combined bNIRS-EEG headgear positioned on an infant. The array was 527 
designed to allow measurement from several cortical regions which included occipital, 528 
parietal, temporal, and central regions to allow investigation of neurovascular coupling in 529 
different cortical regions that are expected to be activated by dynamic stimuli.  530 
 531 



 532 
Figure 5: Schematic representation of bNIRS and EEG channel locations. (a) Locations of bNIRS channels (grey circles) 533 

over the occipital cortex and the right hemisphere and locations of the bNIRS sources (orange circles) and detectors (green 534 
circles) relative to EEG 10/20 locations. Channels shown in blue (3, 6, 8 and 10) were excluded from the analysis (b) 535 

Locations of the 32 EEG electrodes. 536 

 537 
Broadband NIRS: Brain haemodynamic (Δ[HbO2], Δ[HHb]) and metabolic changes 538 
(Δ[oxCCO]) were measured using an in-house broadband NIRS system developed at 539 
University College London [91]. The bNIRS system consisted of two light sources that 540 
consisting of halogen light bulbs (Phillips) that emitted light in the near-infrared range (504 – 541 
1068 nm). The light was directed to the infant’s head through customised bifurcated optical 542 
fibres (Loptek, Germany), allowing each light source to split into two pairs of light sources. 543 
This formed a total of four light sources at the participant-end and each pair of light sources 544 
were controlled by a time multiplexing mechanism whereby one pair of light sources was on 545 
every 1.4 s. The system also consisted of fourteen detector fibres at the participant-end which 546 
were connected to two spectrometers, seven for each spectrometer (in-house developed lens 547 
spectrographs and PIXIS512f CCD cameras (Princeton Instruments). The configuration of 548 
four light sources and fourteen detectors formed a total of nineteen measurement channels. 549 
These were positioned over the occipital cortex and the right hemisphere as shown in Figure 550 
5a. The source-detector separation was 2.5 cm.  551 
 552 
Data were analysed in Matlab (Mathworks, USA) using in-house scripts. First, for each 553 
participant, across all wavelengths, wavelet-based motion correction [92] was applied to the 554 
attenuation change signal to correct for motion artifacts. The tuning parameter α = 0.8 was 555 
used. Following this, the UCLn algorithm [4] was used with a wavelength-dependent, age-556 
appropriate fixed differential path-length factor (DPF) value of 5.13 [93]. While the light 557 
sources emitted light between 504 – 1068 nm, the changes in concentration of HbO2, HHb 558 
and oxCCO were calculated using 120 wavelengths between 780 – 900 nm. A 4th-order 559 
bandpass Butterworth filter from 0.01 – 0.4 Hz was used to filter the data. For each infant, 560 
channels were assessed for signal quality and any channels with poor signal quality were 561 



rejected. Following this, the HbO2, HHb and oxCCO time-series were entered into a General 562 
Linear Model (GLM) to correlate bNIRS and EEG data.  563 
 564 
For each infant, intensity counts (or photon counts) from each of the fourteen detectors were 565 
used to assess the signal-to-noise (SNR) ratio at each channel and the channels with intensity 566 
counts lower than 2000 or higher than 40,000 were excluded [91]. If an infant had more than 567 
60% of channels excluded, they were excluded from the study. At the group level, five 568 
channels over the occipital cortex were excluded due to poor SNR in majority of infants 569 
(Channel 3 excluded in 64% of infants, Channel 6 excluded in 83% of infants, Channel 7 570 
excluded in 64% of infants, Channel 8 excluded in 79% of infants) and one channel over the 571 
right hemisphere was excluded in 100% of infants due to a damaged optical fibre. The 572 
average number of blocks included at each channel was 6.  573 
 574 
EEG: EEG was used to measure neural activity simultaneously to haemodynamic and 575 
metabolic activity using the Enobio EEG system (Neuroelectrics, Spain) which is a wireless 576 
gel-based system. The system consisted of 32 electrodes, the locations of which are shown in 577 
Figure 5b. The sampling rate of the system was 500 Hz. The experimental protocol in 578 
Psychtoolbox sent event markers to both bNIRS and EEG systems using serial port 579 
communication which was then used to synchronise the bNIRS and EEG.  580 
 581 
All data were analysed using the EEGlab Toolbox (Schwartz Centre for Computation 582 
Neuroscience, UC San Diego, USA) and in-house scripts in Matlab (Mathworks, USA). The 583 
raw EEG signal was band-pass filtered between 0.1 – 100 Hz and a notch filter (48 – 52 Hz) 584 
was applied to remove artifacts due to line noise. Following this, blocks of the data were 585 
created such that they consisted of the baseline period prior to the stimulus presentation and 586 
the entire following stimulus period. These blocks were then segmented into 1 s segments 587 
such that for both the baseline and the stimulus, each 8 – 12 s presentation of the baseline 588 
condition or the stimulus condition yielded 8 – 12 x 1 s segments. These 1 s segments 589 
consisted of 200 ms of the previous 1 s segment and 800 ms of the current segment and the 590 
200 ms was used for baseline correction of each 1 s segment. This will be referred to as 591 
“within-segment baseline correction” from here. Segments where the infants were not 592 
visually attending to the stimulus were removed. An average of 30 x 1 s segments were 593 
included per infant. Artifacts were detected using automatic artifact-detection in EEGlab and 594 
through manual identification. EEG segments were rejected if the signal amplitude exceeded 595 
200 μV, or if electro-ocular, movement, or muscular artifacts occurred. Channels with noisy 596 
data were interpolated by an algorithm incorporated within EEGlab. Data were then re-597 
referenced to the average reference.   598 
 599 
Within each block (consisting of the baseline period and the stimulus period), each artifact-600 
free 1 s segment was subjected to a power analysis to calculate the average root mean square 601 
(RMS) power for both low and high frequency bands – theta (3 – 6 Hz), alpha (8 – 12 Hz), 602 
beta (13 – 30 Hz), gamma (20 – 60 Hz) and high gamma (60 – 80 Hz), within each 1 s 603 
segment. This then yielded the average RMS power across the block (baseline period + 604 
following stimulus period). Baseline correction was performed by subtracting the average of 605 
the 2 s of the baseline period from the entire block. This will be referred to as the “block 606 
baseline correction” from here on.  RMS power was chosen as the metric to correlate bNIRS 607 
and EEG data as previous studies have demonstrated that task-related BOLD changes are best 608 
explained by RMS [94], [95]. The blocks were then averaged across trials to obtain an 609 
averaged RMS response per participant. A portion of the averaged RMS power was then 610 
entered into a GLM analysis described below – this consisted of 8 seconds of the stimulus 611 



period. Figure 6 supplement 1 provides a visual depiction of how the RMS power was 612 
derived from the pre-processed EEG data. For each participant, the RMS power was also 613 
averaged across the stimulus period for statistical analysis of the EEG data. For each 614 
frequency band, statistical t-tests were performed on this averaged RMS power comparing 615 
the social condition versus the baseline (RMS power was averaged during the baseline 616 
period), the non-social condition versus the baseline and social versus non-social. The false 617 
discovery rate (FDR) procedure using the Benjamin Hochberg method [96] as performed to 618 
correct for multiple comparisons, across the 32 EEG channels.  619 
 620 
Data Analysis: Figure 6 supplement 2 outlines the data analysis pipelines for both bNIRS and 621 
EEG data, as well as the procedure for the combined bNIRS-EEG analysis.  622 
 623 

624 
Figure 6: Simplified summary of the signalling pathways that mediate neurovascular coupling. High-frequency neural 625 

activity causes the release of neurotransmitters such as glutamate and noradrenaline which bind to either N-methyl-D-626 
aspartate (NMDA) receptors in interneurons or metabotropic glutamate receptors (mGluR) or adrenaline receptors in 627 
astrocytes. In both cases, this causes an influx of calcium (Ca2+) which in turn leads to an increase in ATP production 628 

through the mitochondrial electron transport chain (ETC). As a by-product, in interneurons, nitric oxide (NO) is produced in 629 
the interneurons which dilates arterioles to increase blood flow leading to increased oxygen delivery in surrounding brain 630 

regions. Alternatively, in astrocytes derivates of arachidonic acid (AA) which include prostaglandins (PG) and 631 
epoxyeicosatrienoic acids (EET) which cause vasodilation 632 



 633 

 634 
Figure 6 supplement 1: Procedure for deriving the EEG RMS power from the pre-processed EEG data. Each 1 s segment is 635 
made up of 200 ms of the previous segment and 800 ms of the current segment. The task-averaged RMS power shown here is 636 

average theta power across all infants from a single channel for the purposes of outlining the procedure. 637 



 638 
Figure 6 supplement 2: Flow chart for the data analysis pipelines for bNIRS (left), EEG (middle) and combined bNIRS-EEG 639 
(right). 640 
 641 
Combined NIRS-EEG analysis: A GLM [97] approach was employed to investigate the 642 
relationship between the bNIRS hemodynamic and metabolic data with the EEG neural data. 643 
The canonical GLM typically uses a model of the expected haemodynamic response, i.e. the 644 
hemodynamic response function (HRF), to predict the hemodynamic signal. However, given 645 
the differences in the haemodynamic response in adults and infants, the standard adult HRF 646 
model cannot be assumed for infant data. For example, infants display a delay in their 647 
haemodynamic responses [98]–[100]. In addition, the analogous of the HRF is not established 648 
for the metabolic response (i.e. the metabolic response function or MRF). Therefore, the first 649 
step of this analysis involved reconstructing the HRF for HbO2 and HHb and the MRF for 650 
oxCCO before combing bNIRS and EEG data.    651 
 652 
The reconstruction of the infant HRF and MRF started with block-averaging the HbO2, HHb, 653 
and oxCCO signals for social and non-social conditions within each infant. Based on our 654 
previous study [19], we selected only the channels that displayed statistically significant 655 
responses to the contrast task versus baseline. The single subjects block-averaged responses 656 
were averaged across the social and non-social conditions and then across the significant 657 
channels. The resulting block-averaged responses were then averaged across the group to 658 
obtain a “grand average” HbO2, HHb and oxCCO response.  659 
 660 
The grand average was then used in an iterative approach to estimate the HRF and MRF that 661 
best fit the HbO2, HHb and oxCCO responses. This involved fitting the grand averaged 662 
signals with different HRF/MRF models starting from the canonical HRF made of two 663 
gamma functions and varying the following parameters: 1) delay of response, 2) delay of the 664 

(c)

Image 
reconstruction



undershoot and 3) ratio of response to undershoot to identify the combination of parameters 665 
that best reconstructed the infant HRF/MRF for the social/non-social stimuli. The parameters 666 
were varied in increments of 1 s such that the delay of the response was varied from 5 s to 15 667 
s from the stimulus onset, the delay of the undershoot was varied from 5 to 20 s and the ratio 668 
of the response to the undershoot was varied from 2 to 6 s. All possible combinations of 669 
parameters were tested. The grand average responses were fitted with each HRF/MRF in 670 
GLM approach, and β-values were obtained for each combination of the HRF/MRF 671 
parameters. The β-values were entered into a statistical test and the parameter combinations 672 
that yielded the highest, statistically significant β-values (i.e. the model best fitting the data) 673 
were selected to reconstruct the infant HRF/MRF. This is approach is similar to those used 674 
previously to reconstruct the infant HRF [100] and identified the best fit to be with a 2-s 675 
delay of response for HbO2 and HHb and a 3-s delay of response for oxCCO in comparison 676 
to the adult HRF (i.e. 6 s). Moreover, the delay of the undershoot was 9-s earlier for all 677 
chromophores and the ratio of the response to the undershoot was 2 for HbO2 and HHb and 3 678 
for oxCCO, in comparison to 6 for the adult HRF. These correspond to the basis function 679 
representing the hemodynamic/metabolic response to an event of zero duration/impulse 680 
function. The new reconstructed HRF and MRF were then used for the GLM approach to 681 
correlate bNIRS and EEG data. The process for estimating the HRF and MRF has been 682 
depicted in Figure 7.  683 
 684 

 685 
Figure 7: Procedure for obtaining the reconstructed haemodynamic response function (HRF) and the metabolic response 686 

function (MRF). The panel on the right shows the estimated HRF and MRF with the corresponding basis function 687 
parameters giving the best fit with the group averaged HbO2, HHb, oxCCO responses. The yellow shaded areas represent 688 

the stimulation periods. 689 

To constrain the analysis, we chose to investigate coupling of haemodynamic and metabolic 690 
with neural activity at specific channels. For this, we used the results from an analysis we 691 
described previously that combined bNIRS haemodynamic and metabolic signals [19], [101]. 692 
The results from this identified task-relevant cortical regions that displayed high levels of 693 
haemodynamic and metabolic coupling. The bNIRS channels that displayed significant 694 
haemodynamic and metabolic coupling for social and non-social conditions were used here. 695 
All EEG channels were used as EEG is not as spatially specific as bNIRS. For each infant, 696 
for each chromophore, for each channel and each EEG frequency band, the new infant 697 



HRF/MRF that was reconstructed in the previous step was convolved with the events to 698 
obtain the “predicted” bNIRS signal. The “predicted” bNIRS signal was then convolved with 699 
the EEG RMS power block (consisting only of the data from the stimulus period) at each 700 
frequency band to obtain the neural regressor for the bNIRS data, considering both social and 701 
non-social conditions together. The design matrix thus included the neural regressor 702 
reflecting the increased in EEG activity to the social and non-social stimuli and used to fit the 703 
bNIRS data. This was performed for HbO2, HHb, and oxCCO individually for all the 704 
channels. β-values were estimated for each channel and t-tests against 0 were conducted to 705 
test whether there was a statistically significant association between bNIRS signals and EEG 706 
frequency bands. The false discovery rate (FDR) procedure using the Benjamin Hochberg 707 
method [96] was performed  to correct for multiple comparisons across EEG and bNIRS 708 
channels. The FDR-corrected significant t-values were plotted. This method has been used in 709 
numerous studies previously in correlating fMRI BOLD – EEG [21]. Only bNIRS channels 710 
that displayed significant (prior to FDR correction) haemodynamic and metabolic coupling 711 
were used for this analysis (as indicated in Figure  and Error! Reference source not 712 
found.). For the social condition, channels 12, 13 and 14 for HbO2, channels 11, 12, 14 and 713 
18 for HHb and channels 11, 12, 13, 14 and 18 for oxCCO displayed significant 714 
haemodynamic and metabolic coupling. Moreover, for the non-social condition, channels 12 715 
and 14 for HbO2, channels 12, 14 and 16 for HHb and channels 12, 14 and 16 for oxCCO 716 
displayed significant coupling. For consistency, the channels selected for the bNIRS-EEG 717 
analysis were the same across chromophores and conditions. The final channels included in 718 
the analysis therefore were channels 11, 12, 13, 14, 16 and 18. For the integrated bNIRS-EEG 719 
analysis, 6 channel-wise t-tests were carried (one per included bNIRS channel, e.g. 6) for 720 
each EEG frequency band. Therefore, the FDR correction was applied across the 6 bNIRS 721 
channels for each of the hypotheses tested.   722 
 723 
For the bNIRS analysis, data from 25 infants was included while for the EEG analysis, data 724 
from 35 infants were included. For the joint bNIRS-EEG analysis, only infants that had both 725 
valid bNIRS and EEG data for both social and non-social conditions were included and 726 
therefore 14 infants were included in this analysis.  727 
 728 
Image reconstruction: Image reconstruction was performed on the bNIRS data, at the 729 
individual subject level and then averaged across infants to produce a grand average that is 730 
shown in Figure 4. This was done to visually assess the similarities in the spatial distributions 731 
of the changes in HbO2, HHb, oxCCO. For this analysis, three additional long-distance 732 
channels were created over the right hemisphere (in addition to the 19 bNIRS channels) that 733 
had a source/detector separation of 4.3cm to generate multiple and overlapping channels.  734 
 735 
More precisely, the block averaged attenuation changes at 13 discrete wavelengths (from 780 736 
– 900 nm at 10 nm intervals) for each infant were selected from the bNIRS data. This was 737 
done to reduce the computational burden of the reconstruction [102]. A four-layer infant 738 
head-model (consisting of the grey matter (GM), white matter (WM), cerebrospinal fluid 739 
(CSF) and extra cerebral tissue) was built using averaged MRI data from a cohort of 12-740 
month-old infants presented in Shi et al. [103]. The Betsurf segmentation procedure [104] 741 
was then used to define an outer scalp boundary from the average head MRI template. The 742 
voxelised four-layer model was converted to a high-resolution tetrahedral mesh (∼7.8 × 743 
105 nodes and ∼4.7 × 106 elements) using the iso2mesh software (Fang & Boas, 2009). The 744 
same software was used to create the GM surface mesh (∼5.8 × 104 nodes and ∼1.2 × 105 745 
faces), used to visualise the reconstructed images.   746 
 747 



The reconstruction of images of HbO2, HHb and ΔoxCCO are described elsewhere [105], 748 
using a multispectral approach  [106]. Wavelength-specific Jacobians were computed with 749 
the Toast++ software [107] on the tetrahedral head mesh and projected onto a 50 × 60 × 50 750 
voxel regular grid for reconstruction, using an intermediate finer grid of 100 × 120 × 100 751 
voxels to optimize the mapping between mesh and voxel space. Optical properties were 752 
assigned to each tissue type and for each wavelength by fitting all published values for these 753 
tissue types [108]–[110]. Diffuse boundary sources and detectors were simulated as a 754 
Gaussian profile with a 2-mm standard deviation, and Neumann boundary conditions were 755 
applied. The inverse problem was solved employing the LSQR method to solve the matrix 756 
equations resulting from the minimization and using first-order Tikhonov regularization, with 757 
the parameter covariance matrix containing the diagonal square matrices with the background 758 
concentration values of the three chromophores (23.7 for HbO2, 16 for HHb and 6 for 759 
ΔoxCCO) [111], [112] and the noise covariance matrix set as the identity matrix. The 760 
maximum number of iterations allowed to the LSQR method was set to 50, and with a 761 
tolerance of 10-5. The regularization hyperparameter λ was set to 10-2.   762 
 763 
The reconstructed images, defined on the same regular grid of the Jacobian, were remapped 764 
to the tetrahedral head mesh and then projected to the GM surface mesh, by assigning a value 765 
to each node on the GM boundary surface that was equal to the mean value of all the 766 
tetrahedral mesh node values within a 3-mm radius. The concentration changes for HbO2 and 767 
HHb were normalised to the maximum concentration change of HbO2 while ΔoxCCO was 768 
normalised to its own maximum change in concentration.   769 
 770 
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