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Distributed Proportional-Integral Fuzzy State
Estimation Over Sensor Networks Under
Energy-Constrained Denial-of-Service Attacks

Yezheng Wang, Zidong Wang, Lei Zou, Yun Chen, and Dong Yue

Abstract—This paper deals with the distributed proportional-  sensor networks (SNs) have found successful applications in a
integral state estimation problem for nonlinear systems over wide range of areas such as environmental monitoring, traffic
sensor networks, where a number of spatially distributed sensor control and manufacturing automation [47]. As a fundamental
nodes are utilized to collect the system information. The signal . . S . .
transmissions among different sensor nodes are realized via issue in SNs, the Q'Str'bUted state eSt'mat'on_(SE_) problem
their individual channels subject to energy-constrained denial- Over SNs has received much research attention in the past
of-service (EC-DoS) cyber-attacks launched by the adversaries decade, and many SE algorithms have been proposed in the
whose aim is to block the node-wise communications. Such EC-|iterature according to specific performance requirements [4],
DoS attacks are characterized by a sequence of attack starting [20], [26]—[28]. To mention a few, such distributed SE methods

time-instants and a sequence of attack durations. Based on . .
the measurement outputs of each node, a novel distributed include theH.., SE schemes [15], [47], the Kalman filtering

fuzzy proportional-integral estimator is proposed that reflects the  algorithms [9], [23], the set-membership filtering approaches
topological information of the sensor networks. The estimation [12], [21], and fuzzy SE strategies [37], [53].
error dynamics is shown to be regulated by a switching system Among the existing SE methods, the Takagi-Sugeno (T-

under certain assumptions on the frequency and the duration . . .
of the EC-DoS attacks. Then, by resorting to the average dwell S) fuzzy SE approach is particularly effective for general

time method, a unified framework is established to analyze the nonlinear systems with smooth nonlinearities. According to
dynamical behaviors of the resultant estimation error system, the knowledge of nonlinearities, the T-S fuzzy model can be

and sufficient conditions are obtained to guarantee the stability established by combining several linear submodels connected
as well as the weightedi{. performance of the estimation eror ;s the so-called fuzzy membership functions. The T-S fuzzy
dynamics. Finally, a numerical example is given to verify the . - . .
effectiveness of the proposed estimation scheme. modellpossesses concise structur_e and deS|_red approximation
capability for many complex nonlinear functions [39], [40],
[42]. Such distinctive advantages make it convenient to de-
sign the desired state estimators and, as such, the fuzzy SE
problems have recently received increasing research attention
[11], [25], [34], [38], [46]. When it comes to SNs, some initial
. INTRODUCTION attempts have been made to apply the fuzzy SE technique

A typical sensor network is composed of a large numb&r nonlinear systems, and some interesting distributed SE
of sensor nodes deployed in different regions of interestigorithms have been developed in the literature [29], [37],
The battery-powered sensor nodes are capable of sendbg].

data according to a given communication topology. Owing |n the past few years, the proportional-integral observer
to their remarkable information sensing/processing nature, {{f80) design problem has attracted particular research interest
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Nevertheless, little research attention has been paid to that all channels areimultaneously attacked or not [14],
distributed PIO design issues over sensor networks, wh¢Bé], [45]; and 3) the investigated distributed systems under
the network topology comes to play a vitally important roliendependent EC-DoS attacks have been continuous-time, and
in developing the observer, and this results in substanttae corresponding results are therefore inapplicable to the
complexity in reflecting the spatial information acquired frondigital communication scenario [16], [17]. In view of these
the SNs. It is, therefore, the major motivation of this paper wbservations, we conclude that the distributed SE problem has
look into the issue as how the topology structure influencest received adequate attention yet for discrete-time nonlinear
the overall PIO performance. systems over SNs under independent EC-DoS attacks, not to
In the SNs, the communication between sensor nodesmention the consideration of the PIO design. As such, our
generally implemented via wireless communication netwofRain motivation is to narrow such a gap.
(WCN) because of its advantages of lengthening the com-Summarizing the discussions made thus far, it is of both
munication distance, improving the communication flexibilitgheoretical importance and practical significance to investigate
and reducing the communication cost. On the other hand, the distributed PIO design problem over SNs subject to
utilization of the WCN would also bring some new challenge#)dependent EC-DoS attacks. In doing so, some underlying
and one of the key issues in SNs is the security of netwodifficulties are identified as follows: 1) how to construct a
since a typically open WCN is vulnerable to cyber-attack¥oper distributed PIO whose structure takes into account
that can be classified into denial-of-service (DoS) attacke9th the topology of SNs and the effects induced by EC-
deception attacks and replay attacks. Specifically speakiffS attacks? 2) how to analyze the dynamical behavior of the
the DoS attack can interdict the signal transmissions to ca@gimation errors under independent EC-DoS attacks? and 3)
data missing; the deception attack can maliciously replace thew to design observer gains to ensure the convergence and the
original data with the fake one; and the main idea of the replaeightedf/., performance of the estimation error dynamics?
attack is to replace the current information by the historic&lorresponding to these difficulties, the main contributions
data. Undoubtedly, cyber-attacks pose a great threat leadin@tdhis paper are emphasized as follows: 1) the distributed

deterioration of the system performance or even the instabil@joportional-integral SE issue is, for the first time, investigated
of the underlying system. for nonlinear systems over SNs based on the T-S fuzzy

From the adversaries’ perspective, it is quite easy to launggmework under the EC-DoS attacks; 2) a novel yet easy-
the DoS cyber-attacks by overwhelming the online servick&implement fuzzy PIO is proposed to achieve SE tasks with
and rendering them unusable [43]. In the past decade, s@gsired performance index; and 3) the gain matrices of PIO
eral mathematical models have been established to descfffg calculated via feasible computational algorithms.
the DoS behaviors in the context of secure controlffiltering The rest of this paper is organized as follows. Section |l
problems. For instance, the DoS attack has been modei%gnulates the problem to be addressed after establishing the
in [1] by the Bernoulli-type packet-drop model. In [3], themodel of the consid.er.ed plant, proposing adequate structurg of
cyber-attack has been considered in the controller-to-actudf P10, and describing the EC-DosS attacks and the desired
channel, where the DoS attack sequence has been modégdpu_r_poses. Secpon III_ gives the main theoretical re_sults,
by the Markov process. In most relevant literature, the D8 addition to the discussion on the performance analysis and
attacks have been assumed to be randomly occurring wivelopment of the algorithm for designing the P1O’s gains. In
a priori knowledge about the probability distributions. Suckection IV, a numerical example is put forward to verify the
an assumption is, unfortunately, sometimes restrictive as thi§ectiveness of the proposed SE scheme. Finally, in Section V,
adversaries could arbitrarily launch an attack without havinfye draw the conclusion of this paper and give future research

to follow a certain statistical law. topics. . . .
dNotanons In this paper,R" refers to then-dimensional

In the seminal work [24], a novel model has been propos\’%é, id i« th ¢ all o
to represent general DoS attacks via using the average dwelf" ein spacelN; is the set of all positive integers
dN = N, U {0}. The transposition, inverse and max-

time method. In such a model, instead of strict assumptioﬁg - ; | f i d d
on the statistical behaviors of the attacks, only some miﬁ]uET (ﬂrylmum(; /\elgenjza ui ° Z matri a:_rel (jaBnoie
constraints have been posed on the attacks’ frequency add* and Amax(4) (Amin(4)), respectively.5 =

duration. This kind of attack model is particularly suitabl iag{b“’b”’ o ’b"”,} is used to represent a diagonal-block
in describing the energy-constrained DoS (EC-D0S) attac trix. The symmetric parts in a symmetric matrix are denoted
Y an asterisk . I and0 are used to represent, respectively,

with two modes (sleeping mode for charging and active mo ) . : . . .
e identity matrix and zero matrix of proper dimensions. For

for attacking). Owing to the typically limited attacking energ;} . . . .
budget, the EC-DoS attacks have recently received increasi real matricesty a}ndF that have same dimensions, their
damard product is represented Byo F'. 1, refers to a

research attention for various cyber-physical systems and_| _ _ ; .
great number of results have appeared in the literature, $& imension column vector with all elements being 1.
[8], [10], [22], [31], [33], [44], to mention just a few.

For the existing results concerning EC-DoS attacks, we
have had the following observations: 1) most results haveln this paper, we consider a sensor network having €
been obtained for centralized state estimation problems owér) sensor nodes that are distributed in the space in terms of
single communication channel; 2) for the few results regardiran interconnection topology characterized by a directed graph
distributed systems, there has been an implicit assumptign= (1, &, A). Here,V £ {1,2,---,p} is the set of sensor

II. PROBLEM STATEMENT AND PRELIMINARIES
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nodes;€ C Vx V is the set of edges; and £ [a,, j],x, is the For the communication channel from sensor nad® its
nonnegative adjacency matrix associated with the edges ofﬂmghbonng nodej ((n,j) € &), we let {qw}S 1,2,... and

graph, (i.e.an,; > 0 <= edge(n, j) € £), which means that (-()y _, ,  be, respectively, the sequence of the starting
sensor node. can obtain the information from sensor nod@me.-instants of the EC- DoS attack and the sequence of attack
Jj» whereay , =0 (n € V). If (n,j) € & then nodej is  §yrations. Hereg'") and 7\*) denote, respectively, theth
called one of the neighbors of node For alln € V, denote giarting time- instant of the JEC DoS attack and ke EC-

= {j € Vl(n,j) € £} as the set of the neighbors of nodgyos attack duration. Then, the set of thh EC-DoS attack
n. time-instants can be defined by

(@),a0 +1, g + 7 1)

s)A

A. Fuzzy Plants

Consider a kind of nonlinear dynamic systems described by
the following T-S fuzzy systems:

Rule i of the plant: IF ¥, (k) is W; 1, anddy(k) is W o, (ka, ko) ke 4Tk
and---, andd,(k) is W, ,, THEN s (kas ) = | Qi ﬂ{ aska + 1,0 ko)

o(k +1) = Az (k) + EBiw(k) (1) denote the set of the time-instants on the interifal, k]

2(k) =Giz(k), i€T 2{1,2,--- r} during which the communication channel from sensor node
n to nodej is subject to EC-DoS attacks.

Different from the traditional single channel with two attack
yn(k) = Cpa(k) + Frw(k), neV (2) modes (under DoS or not) only, the independent channels
utilized in SNs would lead to more complicated attack modes
since the attacks on each edge are independent. For this
purpose, we define

For any time-instank, < ks, let

seNy

with ¢ sensor nodes modeled by

where z(k) € R" is the system state;(k) € R"= is the
signal to be estimatedy, (k) € R™ is the measurement
output of thenth sensor nodew(k) € R™ is the energy-
bounded noisesi(k) £ [0y (k) Ja(k) - ﬁb(k)]T is the T(k) 2 {(n,j) |(n.5) € &,k € B, ;(0,00)} (5)
measurable premise variable vectdV; ;,---, W, , are the
fuzzy sets; and4;, E;, G; (1 € T), Cy,, F,, (n € V) are real as the set of channels which are under attack at time-inktant
constant matrices of appropriate dimensions. Obviously,I'(k) C £ andT'(k) has2/¢! possible constructions,
By using the standard fuzzy inference approach, system (tJhere|€| denotes the number of elements in edgefsédio be
(2) can be rewritten in the following global form: specific,I'(k) = @ means that all channels are saf¢k) =
implies that all channels are under attack; di#) C £ with
z(k+1) Zh ( x(k) —i—Ezw(k)) I'(k) # o indicates that partial channels are under attack.
For example, assume that a sensor network has three nodes
yn(k) —an( )+ Fw(k), nev, (3) with the communication topology given in Fig. 1 (i.€,=
{(1,3),(2,1),(3,2)}), and thenT'(k) has2® = 8 possible
k) = Z hi(9(k))Gix (k) constructions listed as follows:

where
[T Wiq(04(k))
> i1 [t Wig(94(k))

with 0 < W; ,(9,(k)) < 1 being the membership grade of
Yq(k) in W 4. Forvk € N, we have that

hi(9(k)) =

hi(W(k)) >0, i€, Zhi(ﬁ(k))zl. ) N

B. Communication Network -
In this paper, we consider the setting where the information / \

transmission between each sensor node and its neighboring — X .
nodes is realized via the WCN consisting of several indepen- ‘
dent communication channels. The WCN is subject to EC- \ . / ‘K\ Node 2
DoS attacks launched by adversaries who aim at degrading the N =

system performance through maliciously blocking the trans- Fig. 1: Topological structure of the sensor network

mission channels. Due to the independent channels utilized

in SNs, the communication channels (from individual sensor To facilitate the subsequent estimator design, some rather
nodes to their neighboring nodes) may be compromised standard assumptions are adopted from [24] on the EC-DoS

different adversaries. frequency and its duration.
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Assumption 1. (EC-DoS attack frequency) For ary <
ke < ky, there exist scalargo,; > 0 and 6, ; > 1,

((n,j) € €) such that
ky — kq
0.5 (Kas ko) < @nj + be ) (6)
n,j
where 7, j (ko kp) 2 Usen, {20 }ﬂ{ka,-- ky} is the in

4

caused by the independent EC-DoS attacks; and 4) considering
the large-scale of the SNs, the past output estimation error
obtained via sensor nodeis only stored in the correspond-
ing observer node: to ease storing burden. The improved
structure of our proposed distributed fuzzy PIO enables us to
make simultaneous use of the current, the historical and the

novation from neighboring nodes in a unified framework,

starting time-instants set of the EC-DoS attack in the chaniBereby enhancing the robustness of the desired observer.

from noden to nodej during the time intervalk,, k3], and

A

By defining e, (k) £ x(k) — @,(k) and 2, (k) £ z(k) —

|7n,j(ka, ky)| € N denotes the total number of the starting»(k), respectively, as the state estimation error and the output
time-instants of the EC-DoS attack during the time interv&stimation error for the node, we obtain from (3) and (8)

[a, Kb). that
Assumption 2: (EC-DoS attack duration) For ary< k, <
ks, there exist scalars, ; > 0 andg,; > 1 ((n,j) € &) n(k+1) Zzh ()| (Ai = Ay) (k)
such that i= 1(v 1 )
ky — k, + (Ay — K, 0 Ch)en(k)
|c1)n, '(kaa kb)' <My i+ (7)
! T gny — Loy Y njtbn;(T(k)Cje;(k) — M,
where|®,, ;(kq, k)| € N is the total EC-DoS attack duration JENn
in the channel from node to node; during the time interval X Cn(k) — Ny Z an,j¥n,; (T(k))C (k)
[ka? kb]‘ je-/\/n
C. Proportional-Integral Observer + <EZ ~ Kool = Lno EXN: @n.j
J n
By taking fully into account the underlying EC-DoS attacks,
we construct the following distributed fuzzy PIO for sensor| X %,j(r(k))Fj)W(k)
noden (n € V):
W(k+1) Zh (A Fn (k) + My oCo (k)
Zh k) (G = Gu)(k)
+ Kn,'u (yn( ) - ann(k)) i=1v=1
FLw 3 G (T(8) + Gven<k>)-
JENR 9)
X ;i (y; (k) — Cji;(k)) (8) By using the matrix-augmentation approach, the estimation
+N,., Z 1/1nj(r(k))anj<j(k)) error dynamics (9) can be rewritten as the following compact
o ' ' form:
JEN,
Z h ’l§ G xn( ) i=1lw _1 )
x ( (Aiw + B (T (k) (k) 0
where + (Eiw + Fy(D(k)))w(k)
y »(F(k))é{ 0, if (n,j) € (k) -
’ 1, otherwise; B(k) = DD ha@(k))ho (0(k))Gaum(k)
i, (k) and z,,(k) are, respectively, the estimatesft) and i=1v=1
z(k) based on the information of nodeand its neighboring where
nodes;J(k) is the premise vector of the observer; aig ., AT T T T
Ly, My, Npy S, and T, are estimator gains to be n(k) = [e (k) (k) (R T’
designed. e(k) = [el (k) €3 (k) el (k)]
Remark 1: The proposed distributed fuzzy PIO, which is B2 [eT(k T () T T
inspired by the seminal work [41], can be regarded as a €( ) . [Cl( ) & (A) e ( )] ’
kind of generalized P1O. The main features of the proposed Z(k) =1, ® z(k) — 2(k),
observer are highlighted as fourfold: 1) the information of the 2(k) 2 [T (k) 23 (k) gT(k)]T,
neighboring nodes is utilized by considering the topological 1,1) ? (1,3)
structure among sensor nodes; 2) the past information with i A Ay 1,® (Ai Av) Ay
the designed weight is used due to the introduction of the hv = TOC' /(1)1 g ’

integral term (accumulated-sum tergy (k)); 3) the time-
varying scalars),, ;(I'(k)) are employed to reflect the effects

Agl’l) é diag{flvﬂl, AU’Q, cee ,A
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AM 24, — Ky ,Ch, Before proceeding further, let define some auxiliary vari-
AL3) 2 diag{— M.y, — Moy, , M, }, ables for later convenience in deriving our main results. Firstly,
v ’ ’ ' we rewrite the edge sét by arranging its elements according
T =diag{Th, T3, --- , To}, to any-but-fixed order:
A
?—dlag{51,527...,59}7 52{61,62,---,e§}
C édiag{Cl, CQ, s ,CQ},
N = where the term; (s = 1,2, -, <) represents theth element
Bo(T(k)) 2 B”(E(k)) 8 Bv(g(k)) in £ ands = |£] € N refers to the total number of elements
v - ’ in £. Then, we define
0 0 0 .
By(D(k)) & = Ly ((9(T'(k)) 0 A) © I,) C, U(T(k)) £ (Z 25 s + 1) eD
(LK) = [Vn i (C(E))]n =12 00 =1
_ N i (D(E)), if (n,j)eé& where, fors =1,2,--- g,
Ung (D(R)) = { 0 otherwise ;
B 75 ) . ﬁ{ O, if es € F(k)
B,(T(k)) £ = Ny(((T'(k)) 0o A) @ I,,), s 1, otherwise,
Nv édlag{Nl,vaNQ,va : aN,Q,v}a and
Lvédlag{h vsL2w, Lo}, Dé{1,27"' 2%} (12)
N, ., 2 { 0, if (n,j) ¢ € for vj €V, Note that, through the above definitions, a relation is es-
’ Nn,,  otherwise, tablished between the attack constructiofk) and a newly
i oa { 0, if (n,j) ¢ & for Vj eV, introduced positive intege® (I'(k)) which would be helpful
e Ly v, otherwise, in representing mod&{k)-dependent variables to be defined
Kv £ diag{Kl,va K2,va e aK,Q,v}a later.
- A s
Gi"” R [GU Lo®(Gi-G) 0], [1l. MAIN RESULTS
Gy = diag{Gy, Gv, -, Gu}, In this section, our purpose is to deal with the performance
e analysis and observer design issues under the independent EC-
(1, ® E; — K, F DoS attacks.
E;, & E; ; In the following theorem, sufficient conditions are given
i TF that guarantee the desired performance requirements of the
Fa [FT FT ... FT]T estimation error system (10).
S1o720 0 0te ] o _ Theorem 1: Consider the fuzzy system (3) and the dis-
_ R _Lv((¢(r(k)) o A) ®Iny)F tributed fuzzy PIO (8). Let the observer gains and scalars
E,(I(k) = 0 0 <Byry <1L,p>17v>00< 0 <1 be gien.
L 0 Then, the estimation error system (10) is asymptotically stable

The objective of this paper is to investigate the, dis-

5

(whenw(k) = 0) and satisfies the weighted., performance

tributed PIO design problem over SNs subject to independ&@nstraint if, forvl' € &, (n,j) € & ¥(I') € D and

EC-DoS attacks such that the following two requirements afe? € 7, n € V, there are matrice®, v () > 0, Qu(r) > 0,

satisfied simultaneously:
R1) for w(k) = 0, the estimation error system (10) is

R, w1 > 0, scalarss,, ; ande, ; such that

o - .
asymptotically stable, i.elim_,. n(k) — 0; and Ao @ Py i) + Froom) <0 (13)
R2) for all nonzerav(k) € 12[0,00) and under zero initial
condition, the estimation errof(k) satisfies the following Po—pPe <0, veeD, ve (14)
weightedH ., performance constraint [7]: 921
np
> ot (k)E(k) <77 W (k)w(k) (11) (n.j)ee ™I
k=0 k=0 < Z Kn,j + Z En,j (15)
where0 < ¢ < 1 and# > 0 are two scalars. (n,j)€T (n,5)¢T
Remark 2: The weightedH ., performance constraint (11),
which is also called the exponential,, performance index Fnj — €ng =0 (16)
due to the introduction of the term*, is often used to deal
with the disturbance attenuation problems for systems subject Z (Fén,j —En,j te ) <0 (17)
to average-dwell-time-related constraints and energy-bounded . Gn.j ™I
noises [7], [32], [35]. Note that, i — 1, then the evaluated (m.i)eé
performance index reduces to the nornfdl, performance g
index over the entire time domain. TS (18)
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wheref £ 37, e 52 and

A; () &

P 9 (m)

[Aio + Bu(T)  Ejp+ Fo(T)],
—(1 = Byy)Par + é;{véivv
0

= diag{ﬁ’q,(p), Qu(r)s R\P(F)}a
= diag{ P1,w(r), Pow(ry, s Pou(r) }
= diag{ Ry w(r), Rawr), *  Rpwr) }-

_721 )
Py (r)
p‘l’(r)
Ry

Proof: See Appendix A. |

6

4
=Y LXOL((W(T) 0 A) & 1,),
s=1
o Q
QBD LNTTIXOLC, QBY AN TIXPLLF
s=1 s=1
4
Qi & 3 IO,
s=1
— ‘g — ~ —
ot LyW (1,0 E) -y LXOLF

In Theorem 1, the system performance analysis has been . 2 -
conducted with the help of the switching-system-based the- B ZISX§=3IS((w(F) o A) @ I, )F,
ory, based on which the observer gains are designed in the R = T
following theorem. s = [0 0 In, U 0] g
Theorem 2: Consider the fuzzy system (3) and the distribut- the 1xs block
ed fuzzy PIO (8). Let the scalabs< Byry < 1, > 1,7 >0 I, 2 [00 I, 0 - 0]

and0 < o < 1 be given. Then, the estimation error system

(10) is asymptotically stable (when(k) = 0) and satisfies
the weightedH., performance constraint if, fovlI’ C £,

(n,j) € £, ¥(T") € D,n € Vandi, v €T, there are matrices
Poowry >0, Qur) > 0, Ry gy > 0, X’r(lll)) Xff%. XT({?’U,

x4, xP, x19, nonsingular matriced,", V2. | v®),

scalarsk, ; ande, ; such that (14)-(18) and the following

inequalities hold:
(1,1)
Qz v,¥(T)

Q(z 1)( r) (19)

*
(272) < O
QU,Q(F)]

where

£ diag{ﬁ\p(r), Q\I/(r)7 R\p(r)},

Pyry £ diag{ P\ w(r), Pow(r). -

Ryry £ diag{ Ry w(r), Re,u(r), -
v Ediag{y)}), vy, Y)Y,

Yyir 2 diag{V\% 1, Yoo

Y3 2 diag{Y; ®3) yz(?’)’ . 7yg(3)}7
Qz(lvl\%(p) £ diag{ — (1 — ﬁ\p(r))p\p(r)a —(1 = By))Qu(r),
— (1= By Ryry, =1} + diag{G],Gi.,,0},

Al 2 diag{ Pary - V.0 - v T,

Py(r)
) Pg,\I/(F)}a
s Rowm)}s

(2)
lIl(F)}?

¥y

2) ()T
Qu(r) — Yy(r) = Yy Rq}(r) —Y® - Y(z")T}7
atvm kP o) oy
Q) 0 Yﬂf()F)Ai 0 Yﬁ(v?mEi ,
Qe 0 QB:3) QB34
Qtmy2yMA, — Zsts(lngCi
s=1
g T T _
~ S LXEIL(@(T) o A @ 1,)C,

Q12 2

7,v

[I>

QL(r)

the 1xs block

Furthermore, if the above inequalities are solvable, then the
observer gains can be calculated by

Knw =YX, Low = (G0 1XD),
n,v — (Yélv)f1X7(131)” Npw = (Yn(lv))il 7(141))’
T, = (V) ' XP, S, = (V)X

Proof: See Appendix B.

Remark 3: So far, we have addressed the distributed fuzzy
PIO design problems for nonlinear systems subject to the
independent EC-DoS cyber-attacks. First, we have constructed
a proper distributed PIO whose structure takes into account
both the topology of SNs and the effects induced by EC-
DoS attacks. In Theorem 1, we have analyzed the dynamical
behavior of the estimation errors under independent EC-
DoS attacks and, in Theorem 2, we have further designed
observer gains to ensure the convergence and the weighted
H. performance of the estimation error dynamics. Note that,
in the main results presented in Theorems 1 and 2, all the
system parameters and the factors quantifying the effects from
EC-DoS cyber-attacks have been adequately included.

Remark 4: Compared with the numerous existing literature
about SNs and PIO, the distinctive novelties of our paper are
highlighted as follows: 1) the addressed SE problem is new as
the effects caused by the independent EC-DoS attacks are, for
the first time, analyzed for T-S fuzzy systems over SNs; and
2) the proposed fuzzy PIO is new that exhibits distributed
structure and improved flexibility. In addition, by utilizing
similar design ideas, our proposed distributed SE algorithm
can be easily extended to other large-scale systems such as
multi-agent systems and complex dynamical networks.

IV. SIMULATION EXAMPLE

In this section, a numerical example and some comparison
results are given to show the effectiveness of the proposed SE
scheme.
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Consider the following controlled fuzzy system with twan the form of (8) whose gains are obtained by solving linear
fuzzy rules and five sensor nodes: matrix inequalities presented in Theorem 2. By running Matlab
software with the constructed parameters, simulation results

2
ok +1) = Zhi(ﬁ(k))(Aix(k) + Byu(k) + Ew(k)) are plotted in Figs. 7-10. To be more specific, the evolution
Pt trajectory of the original system state and its estimation
yn(k) = Cra(k) + Faw(k), n=1,2,34,5 (obtained by five designed estimator nodes) is displayed in
9 Fig. 7 (about the first element), Fig. 8 (about the second
(k) = Z hi(9(k)) Gz (k) element) and Fig. 9 (about the third element). From these three
i figures, we can see that the estimated states can track the real
(20) system states as time goes on. The evolution trajectory of the
h estimation errorz, (k) is depicted in Fig. 10 which shows
where -~ that the estimation error of five nodes is gradually convergent.
01 04 0 01 0 0.1 Furthermore, by simple calculation with = 0.9249 and
Ay =102 08 01{, Ay,=102 05 0], 5 = 1.5296, we have
0.1 0.2 0.1 0.2 0.1 0.5
[ 0.1 —0.1 ty ty
FEi=1-01|, FE,= 0.1 |, C, = [09 0.7 05} s fy* 2 nggT(k)g(k)/ ZwT(k)w(k)
| 0.1 0.1 o o
Cy=1[07 05 05], C3=[08 01 0.1], =0.7300 < 7
Cy=[05 07 05], C;=[05 0.7 0.5],
F, =011, Fy = 0.1, Fy = 0.12, which implies that the desired weightell,, performance

requirement is achieved. It can be seen from these figures

Gi = [0'2 0.2 0'1] , Ga= [0'2 0.2 0'1} ’ and the calculation result that our proposed estimator has a

0.321 good estimation performance as the estimation requirements
u(k)=| 0.1 | ya(k), h(d(k)) =1 —sin®(aM (k) are met.

| 0.2 To further check the effects of DoS attacks on estimation

(2 (k) performance, we conclude some simulation results in Table
(k) 2 [z k)|, ha((k)) =1 — h1(I(k)), | to show the obtained/* under four different DoS attacks

_:1:(3)(k) (launched according to Fig. 3-Fig. 6, respectively). Here, Case

1 represents the situation that attacks in four channels are inde-

pendent; Case 2 stands for the attacks occurred simultaneously
In this example, a sensor network with five sensor nod@sfour channels; Case 3 is corresponding to the situation that

is utilized to collect data of the fuzzy system (20). The¢he attacks in four channels are activated sequentially; and

information exchange among these nodes is conducted baSede 4 is a combination of Case 2 and Case 3. It can be seen

on a fixed communication topology given in Fig. 2, from whiclirom Table | that the obtained disturbance attenuation levels

we can see that node 2 can obtain data from node 1; nodg*3in four DoS cases are all less than the prescribed value

can obtain data from node 2; node 4 can obtain data from noge= 1.5296 (i.e., v* < 7). Thus, the estimation requirement

3; and node 5 can obtain data from node 4. The correspondiggatisfied.

adjacency matrix is given as follows:

Fy=0.14, Fy=0.2, By = By =diag{1,1,1}.

0O 00 0 O

1 O O 0 0 attacks,
A=10 1 0 0 0 ’

0 01 0 O Node4 | >

There are four channels (labeled as channel (2,1), (3,2), ._» o
(4,3) and (5,4)) among sensor nodes for information exchange, % “'

where EC-DoS attacks (satisfying Assumptiong) would
occur which aim at intercepting signal transmissions among [E—
sensor nodes. In this example, the EC-DoS attacks on the four ‘

channels are first simulated according to Fig. 3.
The aim of this example is to design a PIO in the form of (8)
to estimate system states under the effects of external noises _
and independent EC-Do$S attacks, such that requirements R1) Fig- 2: Topological structure of the sensor network of the
and R2) are satisfied. simulation example
For simulation purpose, we first let the energy-bounded
external noise bes(k) = 4 cos(k)/k. Set the simulation run  In addition to the parameter*, the value of accumulated
length to bet; = 50 andy = 1.5. Then, we construct a PIO estimation error is another variable to reflect the estimation



This article has been accepted for publication in a future issue of this conference proceedings, but has not been fully edited. Content may
change prior to final publication. Citation information: DOI 10.1109/tcyb.2023.3288829, IEEE Transactions on Cybernetics

FINAL VERSON
5 +  attacks on channel (2,1)
%  attacks on channel (3,2)
45| O attacks on channel (4,3)] ]
: O  attacks on channel (5,4)
4 0000 000000 0000 b
35 4
3 00000 0000000 0000 b
251 7
2r ARARAN Fdelok
151 7
1 ++++ +H+ +H B
05 4
0 I I I I
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Time (k)
Fig. 3: DoS attacks on four channels (Case 1)
5 +  attacks on channel (2,1) |
%  attacks on channel (3,2)
45t O attacks on channel (4,3)] |
. O  attacks on channel (5,4)
4 0000 [eee] 000 [e/0 o] B
351 7
@ 310000 [eee] 000 [e/0 0] q
Z 25t 1
g
T2 kK KK ok ok 1
151 7
1+ +++ +++ ++ b
05 7
0 . . . .
0 25 30 35 40 45 50
Time (k)
Fig. 4: DoS attacks on four channels (Case 2)
+  attacks on channel (2,1)
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Fig. 5: DoS attacks on four channels (Case 3)
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. 6: DoS attacks on four channels (Case 4)
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Fig. 7: Dynamical trajectory of state) (k) and its estimation

Fig. 8: Dynamical trajectory of state® (k) and its estimation
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Fig. 9: Dynamical trajectory of state® (k) and its estimation
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Fig. 10: Dynamical trajectory of estimation errgg (k),
n=1,23,4,5

TABLE . The Attained~* under Different Cases of DoS
Attacks

DoS attacks

*

~

Case 3
0.729721

Case 4
0.731304

Case 2
0.731317

Case 1
0.729967

performance. To display the superiority of the proposed PI
we define the accumulated estimation error as follows:

ty
Zam =Y 2T (k)2 (R)
k=0
wheret; is the terminal time of simulation. Then, Table |
lists results of the calculated,,, with PIO, P-type observer
and linear observer (LO) [29], respectively, and the obtain

~* (with PIO) under different noises. Obviously, a smaller

Zsum Means a better estimation performance. From Table 11,
can conclude that 1) the prescribed weightéd requirement
is achieved; and 2) the proposed PIO can provide a be

estimation performance as compared to the P-type observer.

b.2023.3288829, IEEE Transactions on Cybernetics
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All simulation results verify the effectiveness and advantages
of the proposed estimation methods.

TABLE II: The Attained~* and Zy,,,, under Different Noises

Noise w(k) 4sin(k) Sig(k) 400:(k) 5001k 042+4ksin(k)
* 0.5300 0.7300 0.2098 0.4812
Zsum (P1O) 4.7841 4.8109 4.9701 4.7835
Zsum (P-type) 4.7903 4.8174 4.9743 4.7895
Zsum (LO [29]) | 13.1444 | 8.0886 21.7012 | 15.3565

V. CONCLUSION

In this paper, we have addressed the distributed SE problems
for T-S fuzzy systems. A sensor network with a number of
sensor nodes has been employed to measure the information
of the plant according to a fixed communication topology. We
consider the case that the signal transmissions among sensor n-
odes are achieved via WCN with independent channels, whose
transmitted data would be corrupted by the EC-DoS attacks.
The constrained energy of attacks has been reflected in some
standard assumptions on the frequency and duration of attacks.
To achieve the desired SE performance, a novel distributed
fuzzy PIO has been proposed that can simultaneously use
the current and historical innovation with designed weights.
With the assistance of the switching-system-based theory, the
multiple modes induced by independent EC-DoS attacks have
been analyzed, and sufficient conditions have been obtained
to check the stability and weighteH ., performance of the
estimation error system. Finally, our proposed SE scheme has
been validated via a numerical example. The future topics
include the extension of the results to systems subject to other
complex phenomena [2], [13], [18], [19], [30], [49]-[51], [54].
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APPENDIX Vi) (k) =n" (k) Paoeyn(k)
A. Proof of Theorem 1 <" (k) Pa(rge (k) = pVaw g (k),
Proof: Choose the following Lyapunov function: which implies that
Var ey (k) = 0" (k) Paogyn(k). @) Vg k)

Let k; (I € N, ko = 0) denote the time-instants at which < (1 — By r,))* ™" V() (k)
I'(k) changes (meaning that at least one EC-DoS off/on or u(l—
on/off transition occurs). Fak € [k, k1), assuming’(k) = k)
(k) =T (' € &), we calculate that <L = Buw)” (1= Buwg ) Vawn ) (ki —1)

< (1 = Byra)) (1 = Bowpa_1))?
V) (k+1) = Varwy) (k) + Burr) Vo) (k) o (r( L>(>kl ) (T(ki—1))
U(I'(k;— -
=n"(k+ 1) Pyr@yn(k + 1) (C(ki-1))
(

Bowie)” " Vart_ 1) (ki)

< e
-(1-5 n" (k)P n(k _ _
o ;I/(F(Tk))) (k) Py rryn(k) <M(1_B\P(F(kl)))k kl(l—ﬁw(r(kl,l)))kl ki1
=333 B0 k) o (D (k) (9(k)) s (D(K)) X V(1)) (k1-1)
i=1 v=143=1 v=1 < e
_ _ _ _ T -
X ((Ai,v + B,(T))n(k) + (Ei» + U(F))w(k)> Pyr) (R0 B (K., k) Vig (0 (1 ) (Ko
% ((Azs + Ba(T))n(k) + (B + Fo(T))w(k)) where .
~ ' (= Bam) Poryn(h) Blhko.k) 2 (1= Bucrqen) ™ [T (0= Buawag) ™,
. i=0
< hi(9(k))h, (I(k -
- ;UZI (kDA (9(k)) and H (ko, k) denotes the total switching number of construc-
B B B B T tionsT in time interval[ko, k.
X (( iw + Bo(D))n(k) + (Eio + Fv(F))w(k)) Py r) According to [8], [31] and the constraint on DoS frequency
. _ _ _ (see Assumption 1), we obtain
% ((As+ BoT)) (k) + (Bso + Fu(D))(k)) Bk <2 S i b
5 >~ Tn,j )
091 Bt Pac4 P 2
K K R 2
=3 @) () < Y 2wt S ok
i=1 v=1 ) ) . (n,j)€E (n,j)ee ™7
n(k) Al + B, (T) Al, + B, (') L6+ 0k (23)
) [w(kﬂ ( [ET + FIm)| O [E1 + FI(T) here
' wi
(1= Be))Pur) 0}) [n(k)} N 5 A 2
- [ : (22) it > 2w, 0% .
0 0 (U(k) ()€€ (no)EE Hnyj
We first consider the stability analysis issue by letting Sinceyu > 1, we further have
w(k) = 0. It follows from (22) that o) (ko k) < 1= B (ko k)
14 o 05 Sy 05
V) (k+1) = Vo) (k) + Buwn) Vewn) (k) _ @ g (K In - (0.0)
<0 @)Dk (k) (AT, + BI (1)) where

i=1 v=1

B _ 3(0, k) 2 IIr(0, k)| In(1 — ,
XP\I/(F)(Ai,v+Bv(F))—(1—[3\11(r))P\11(r))77(k)- B0, %) ggl r(0 (1 = fury)
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andIIr (0, k) is a set denoting the time intervals over which th&hen, it follows that

system is subject to the attack constructioin time interval

[0,k], and |TIp(0, k)| € N is the total number of elements in
setIIr(0, k). Here, the setlr(0, k) is introduced to facilitate

the later stability analysis for each attack constructiofi6].

Rt 0)

(k)1 <
which, together with condition (17), leads go< 0, implying

Considering the fact of . |TIr (0, k)| = k and condition 0 < ¢ < 1, and therefore we know immediately that

(15), we derive

Ok npu+ B(0, k)

21n
=% (w0 -y + X ).
rce (n,jyee ™7
<Z( Z Fn,j + Z En_])|HFOk)|
rce M(n,j)er (n,j)¢r
=y <nn_j > p(0, k)
(n,j)e€ rce,(n,j)er
+eng >, [, k)|)-
rcé,(n,j) ¢l

Considering the following equalities:

>

ICE,(n.j)er

>

FCE,(n,g)gr

[T (0, k)| = [®4,5(0, k)],

we have from (16) that
Oknpu+ B(0, k)

< Z (Hn,j|(1)n,j (07 k)' + En;jk
(n,j)e€

— nj|Pn;(0,5)])

(’inyj - Enyj) M, j

K — &
( S +5n,7)k
gn,j

where

(n,j)e€
K 3
2 T (i)
(e~ I

To this end, we conclude that
Vi (k) < e FHme Vg, 1)) (0).
Furthermore, note the following inequalities

" (k)n(k) <n" (k) Pyray)n(k),
1" (0) Py (r0yyn(0) <An" (0)n(0)

where, forv¥(T') € D (with the definition of D being given
in (12)),

A £ Inin{)\min(P\y(p))}, 5\ £ InaX{)\max(P\I/(F))}'

n(k) — 0 ask — oo. Thus, the estimation error system (10)
is asymptotically stable.

We are now in a position to check the weightéfl,,
performance of system (10). For this purpose, we define

J(k) 2 27 (k)2 (k) — 70" (k)w(k).

For k € [ki, k1) with T'(k;) =T (T' C &), we calculate
that

Vo)) (k+1) = (1 = Bow))) Vawu) (k) +

=3NS hik)) o (D (k) s (9(k) ) hs (D))
i=1 v=1 ;=1 o=1

X ((211-_,1, + By(D))n(k) + (Eiv + F,
x ((Azo + Bo(T))n(k) + (i
- ( )(1—ﬁxp(r )Py ryn(k) +

T

< Z Z Z hi(0(k))h

i=1 v=1 ;=1 v=1

x (A7, (D) Py Az o (D) + Py

I(k))

<Y h@k)h

i=1 v=1
X (AZU(F>P\I’(F)A’L',U(F) + E,U,W(r))-
In terms of the condition (13), it can be derived that

Vo) (kB +1) = (1 = Bawu)) Vawu) (k) + J(k) <0,

which implies that

V) (k) < (1= Baowu) " Varw) (k)

k-1
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=1 J(p)
p=Fk;
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k—1
- Z (1- 5\1:(F(kl)))k7pfln7(p)
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X Vi () (ko) — Ttk )k(l :ﬁwuﬂ))) X < Zuw 2T (p Z Bkt (28)
1— k=p+1
x (1-8 Fa—ko 1-53 R
( W) p;o( W (o)) ®) Since0 < By < 1 for Y¥(I') € D, we know directly
b1 from (18) and (28) that
- Z (1= Burw) 7 (). ad d
p=ki > 0" (k)z(R) <77 w! (k)w(k)
k= k=
Under the zero initial conditioly () (0) = 0 and using 07 0
the factVy r(xy) (k) > 0, we obtain from the above inequalitywherey = g ~. The proof is complete now. ]
that -
g ok) (1 Bw(r(kl)))k_kl X -oox (1= Bxp(r(ko)))kl ko B. Proof of Theorem 2
ki-1 Proof: By means of the Schur Complement Lemma, we
X Z (1= Buroy)™ P I (p) + know that (13) holds if and only if the following holds:
p=ko 4
k-1 P v w(r) *
o 2, 1 | <o. (29)
+ Z (1 — ﬂ\y(p(kl)))k p IJ( ) < 0. (24) Az,v(r) _P\II(I‘)
p=h Then, pre- and post-multiplying the matrix in (29) by
By multiplying both sides of (24) by, =# (%) (4 > 1), one diag{I, v, Y\I(?)F , Y& and its transposition, respective-
has ly, we obtain the following matrix
= P, *
—H(0,p) gk—p—1zT 5 1,0, ¥ (T)
I Prmax 2 (p)Z(p) (30)
p; Voum i) =Y, Pyl VT
k-1 _
<> O P20 T (p)w(p) (25) WhereY, u(r) = diag{vs", Yyip,, Y@},
min t
p=0
where XN =YK, X2 =YL,
- S X® —yOpar o xW — (1)N'n, v
ﬁmax 21— ﬁ7 Bmin £1- ﬁa v v o v ’
A AL x5 :y(3)Tm x(©6) — 3)5'”'
B = max{Byr)}, B =min{fym}, YY) eD. n n n Yo
Recalling (23), one obtains Consider the following terms:
YR, =diag{¥, ) K1, Y3 Kaw, -, YK}
—@, —0p 7 0
Zu p OB 2 ()2 ) S X,
s=1 7
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Summing up both sides of (26) frol=1to k = 0o, we Y,V N —dlag{Yl(lv)Nl vy Yo Noy, o YN, )
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SO w AL B)H) ] N
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k=1 p=0 —
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With the help of the well-known matrix inequality
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