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Abstract—Holoscopic imaging is a promising technique that
captures full-colour spatial images using a single aperture. It
uses a micro-lens array to view the scene at different angles and
record 4D information on a two-dimensional surface, making it
useful for depth estimation. However, current disparity estimation
methods suffer from poor performance in texture-less regions.
This paper proposes a novel method to reduce the disparity
error in these regions by directly labelling and grouping elemental
images from a Holoscopic image. The proposed approach involves
extracting a subset of viewpoint images from the Holoscopic
image and subjecting them to conventional image segmentation.
Labels are then applied to the elemental images corresponding to
each segmented object using viewpoint images/elemental image
pixels mapping. Content-based image retrieval is also employed
to improve segmentation. The proposed technique has wide
applications for 3D imaging, including augmented and virtual
reality, inspection, robotics, security, and entertainment.

Index Terms—Holoscopic, elemental image, viewpoint image,
segmentation, texture-less disparity

I. INTRODUCTION

Holoscopic cameras capture light in a scene in its entirety,
both in terms of spatial and angular dimensions. The main
lens in traditional cameras translates the object plane into the
camera’s own image plane. Holoscopic cameras are built on
the same fundamental principles as conventional cameras, with
the addition of an array of micro-lenses (MLA) in front of the
image sensor. The micro-lenses in the MLA focus the light
beams from various directions onto a sub-image of the sensor,
capturing the entire scene in three dimensions. As a result,
the pixels forming behind the micro-lens record the same data
as traditional cameras but do so more precisely by separately
measuring the information coming in from various angles. The
images behind the micro-lens are known as elemental images
(EIs). Each EI pixel indicates a unique angle at which light hits
its micro-lens. Therefore the location and orientation of each
light beam can be determined, pixel by pixel, by analysing the
EIs. A sub-aperture image of a scene can be created from a
specific viewpoint by extracting pixels from the same locations
of the EIs. This is known as a viewpoint Image (VPI).

The raw Holoscopic image is the original data that is
captured by the image sensor and is represented as a grid of
EIs. Each EI convergence point has multiple light rays, each
representing a unique perspective. All EIs receive light from
one VPI at almost the same pixel. As shown in Fig. 3 (d),
pixels from EIs with the same location can be combined to
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Fig. 1: (a) Holoscopic with two texture-less regions. (b) The
top EIs-based disparity map before correction. Due to texture-
less EIs, the region outlined in red has disparity = 0. The
bottom disparity image shows the corrected disparity.

extract a VPI. VPIs are usually used for disparity estimation
because they cover the entire scene from one perspective,
while EIs only cover a portion of the scene. VPIs also
resemble 2D orthographic stereo images, thus stereo image
disparity estimation methods can be applied to them with
minor adjustments. To extract VPIs, one must map sensor
data to reconstruct the scene, which may be challenging. The
lens error and camera calibration should be performed first.
Fig. 2 (a) and (b) show extraction without and with lens
correction. The scene’s geometry (depth of each object) should
be considered when creating VPI, otherwise areas that are not
”in focus” will result in image artefacts like those in Fig. 2
(c). To increase resolution and reduce artefacts, the viewpoint
extraction method requires selecting a set of pixels from each
EI in the same location. Combining multiple VPIs by selecting
a set of pixels rather than a single pixel is time-consuming and
reduces angular information [1]. EIs estimate disparity without
pre-processing beyond lens correction for the reasons above.
However, EI-based disparity computation fails in texture-free
areas as seen in Fig. 1. A flood-fill technique could fill texture-
less areas with the correct disparity values from the textured
EIs around them, but not knowing whether they belong to the
same object could lead to more disparity errors.
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Fig. 2: Extracted viewpoint images

II. RELATED WORK

Stereo VPI, focal stack, and epipolar plane images are the
most common Holoscopic depth estimation methods. Stereo
VPIs is the most popular Holoscopic depth estimation method.
The central VPI generates depth from disparity data from
several outer VPIs [2]. As demonstrated in [2], depth maps,
especially in occluded areas, benefit from using multiple VPIs
as reference images rather than the central view. [3] pre-
sented multiple VPIs with occlusion-aware depth estimation
algorithm. Holoscopic cameras sample many VPIs, creating
narrow baseline VPIs unsuitable for correspondence-block
matching. Phase-shift-based sub-pixel displacement improved
correspondence-block matching in [4]. Using MLA in front of
the camera sensor, each EI pixel represents a different angle
of light from different focal planes, allowing the VPIs to be
refocused after capturing the image. One of a Holoscopic
camera’s most intriguing features. These focus cues can be
used alone or with correspondence and other cues [5, 6].
Holoscopic cameras produce calibrated and rectified VIs that
can be stacked to create an epipolar plane image (EPI). EPI
slices can be compared to see if the correspondence positions
have moved due to VPI angle shifts [7, 8].

In this paper, we propose a new method to minimise the
error in texture-less EIs by first identifying the collection
of EIs that encompass the same object and then using that
information to fill the disparity in the texture-less regions by
the surrounding textured EIs.

III. METHODOLOGY

This section presents a methodology to minimise disparity
error in texture-less areas of raw Holoscopic images using
EI labelling and grouping. The solution involves two steps:
object identification and labelling, and disparity correction.
The object segmentation is performed on central and corner
VPIs, and then the pixels of the segmented objects are mapped
back to their associated EIs to label them. Content-based
image retrieval is used to enhance the classification. For
disparity correction, texture-less EIs are identified and grouped
based on neighbourhood information. The segments are filled
with EIs around them only if they belong to the same object.
The proposed methodology is illustrated in Fig. 3.

A. Viewpoint Images Extraction and Segmentation

VPIs are used first for object segmentation because they
can encompass all of the objects in the scene, The objects in
VPIs are segmented using contours tracing algorithm [9]. The
canny filter returns image edges without object data. Thus, the

image contouring algorithm searches for image holes to fill.
Each hole represents a VPI object. Aggregating edge pixels
into smooth curves provides this. Fig. 3 (c) shows how each
VPI object is masked. VPI segmentation classifies EIs. Each
Holoscopic VPI pixel represents an EI. We can label an EI with
A by mapping VPI mask pixels from A to its EI. Multiple VPI
per Holoscopic image means an EI could theoretically belong
to multiple classes (one EI can have multiple objects). Central
and corner VPIs are extracted. Structural similarity (’SSIM’)
[10] orders objects from multiple VPIS for coherence. Due
to object positioning, some viewpoints may have fewer seg-
mented objects. The segmentation algorithm can merge nearby
objects. For consistency, SSIM ignores such images.

B. Enhancing Elemental Images Labelling using Content-
Based Image Retrieval

Improved Content-Based Image Retrieval (CBIR) [11] re-
trieves images from a dataset with features such as textures,
colours, shapes, and more using a query image or user-
specified features. The CBIR system uses query images for
searching. A correctly labelled EI from each class (eagle, dice,
and background) can be used as a query image . Multiple query
images per object should be chosen to accurately represent the
object in various EIs.

The query EIs are selected unsupervisedlyFirst, the mean
pixel value µobj of the object image from the viewpoint
segmentation is computed, as well as the mean pixel value
µEI of each EI labelled to contain that object in the initial EI
classification.

The query image with the lowest mean difference will
correspond to the segmented object. Thus, elemental images
are sorted in ascending order by the difference between µobj

and µEI . Finally, the object’s query images are Top-k images
from the sorted results.

CBIR employs the generated query EIs per object to extract
the appropriate EIs for each query. The procedure is described
in terms of images queried. Firstly, The EI are selected on
every query image. The holoscopic image’s EIs are selected
using the query’s average and standard deviation. Texture
and edges are computed from selected EIs. Before using
descriptors from each group, elemental image selection is
done. This process removes EIs with colours that differ from
the query image to reduce the number of candidates.

Image colour mean µ can be sensitive to factors such as
brightness and artefacts. Therefore, comparing the means of
the query image and EI is not optimal. As a result, the colour
standard deviation σ is employed to define a range rangelow =
µq–σq, rangehigh = µq + σq . Lastly, EIs whose mean
pixel value lies within the interval [rangelow, rangehigh] are
selected.

Local binary pattern features are extracted for each query
image. To LBPq , Canny edges replace the V channel. The
image is also converted from RGB to HSV and edge detected
on the V channel. To obtain HSbq (edges with coloured im-
age). Each selected EI (EIs) has texture and edge descriptors
(LBPq , HSbs). After that, the texture and edge differences
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between the EI and the query image are calculated (difflbp
and diffedge, respectively) and added to get the final feature
distance, difffeat:

difffeat = (LBPq − LBPs) + (HSbq −HSbs) (1)

Given that the EIs that are the closest matches to the query
will have the lowest diff feat value, the list of differences is
arranged in ascending order. To conclude, the list is sorted,
and the top-k values are used for the corresponding EIS.

Algorithm 1 CBIR to retrieve corresponding elemental images
per query image

1. Extract local binary patterns (LBPq) features for the
query image q.
2. Convert q to HSV colour space, and replace the V
channel with Canny edges to obtain HSbq .
3. Compute mean (µq) and standard deviation (stdq) of
HSbq .
4. Define: rangelow = µq–stdq , rangehigh = µq + stdq
5. Select elemental images whose mean pixel value falls in
[rangelow, rangehigh].
for selected ELs ∈ EI do

a. Extract local binary patterns LBPs

b. Convert EIs to HSV colour space, and replace V
channel with Canny edges to obtain HSbs

c. Compute difflbp: difference between LBPq and
LBPs features

d. Compute diffedge: difference between HSbq and
HSbs

e. Sum difflbp and diffedge to get final feature dis-
tance, difffeat

f. Append difffeat to a list
end for
7. Sort the difffeat list in ascending order, the idea being
that the most matching EIs to the query will have the
smallest difffeat value and so on.
8. Choose top-k values from the sorted list as the matched
EIs

IV. DISPARITY CORRECTION

Due to its ability to calculate depth using a single-aperture
camera, depth estimation from holoscopic images has gained
interest in recent years. We computed disparity from raw
Holoscopic image from consecutive EIs pair using semi-global
block matching as in [12]. As seen in Fig. 1, raw holoscopic
images (EI-based) divide texture-less areas into texture-less
EIs. Incorrect disparity (disparity = 0) will result from this.
It is ineffective to fix all texture-less regions in a Holoscopic
image with the disparity value of the surrounding area without
identifying if they belong to the same object. Thus, image
labelling and EIs classification are needed to locate texture-
less areas and determine which object they belong to in order
to find the right disparity value to fill the space.

Holoscopic images are 4D, with (s, t) being the viewpoint
images plane and (u, v) being the elemental images plane [13].

First, we use the raw Holoscopic image to determine the binary
(0 or 1) mask for texture-less EIs Me and textured EIs Mt

(which EI has texture and which does not). The mask’s raw
Holoscopic image dimension (u, v) is initialised to zero. Me

is calculated by measuring pixel value variations of each EI:

∆p = pmax − pmin (2)

where ∆p is the difference between maximum pixel (p)
value and minimum pixel value. A predetermined threshold t
is compared to the difference value:

EI(u(i,j),v(i,j)) =

{
1;∆p ⩽ t
0; else (3)

The condition is met if the difference is less than or equal
to the threshold. True is assigned to the EI at (u(i,j), v(i,j))
position in Me, where (i, j) is the EIs coordinates in the uv
space. Mt is computed by taking a negation of the Me.

Inaccurate, texture-less EIs are usually found in groups or
segments. To group neighbouring coordinates together, a list
of the texture-less EI coordinates is stored, and neighbour-
ing coordinates are selected to divide the list into multiple
segments. The problem of grouping neighbouring coordinates
in a two-dimensional plane can be solved by repeatedly
checking if each pair of coordinates is adjacent. Given a
list of coordinates C = c1, c2, . . . , cn, we define the set of
neighbouring coordinates N(ci) of a coordinate ci in a two-
dimensional plane as:

N (ci) =
{
cj | j ̸= i and d (ci, cj) ≤

√
2
}

(4)

where d(ci, cj) is the Euclidean distance between the
coordinates ci and cj . If d(ci, cj) ≤

√
2, then ci

and cj are considered neighbours. We define a function
getneighboringlists(C) that groups the input coordinates C
based on their neighbours.

To create a mask for background regions in foreground
EIs (bgrfg), the mean and standard deviation of each RGB
channel is calculated. If its value is less than one standard
deviation from the mean across all three RGB channels, an
EI’s foreground pixel is considered background. This assumes
that most foreground image pixels are background pixels, and
the average pixel value should be within 1 standard deviation
of the background pixel intensity. Calculate the disparity mode
for bgrfg . Finally, all background EI disparity values (in D)
are replaced by the mode (mean or median) of bgrfg disparity
values.

A list stores the texture-less EI coordinates. By selecting
neighbouring coordinates, this list is divided into multiple
texture-less segments. Given a list of coordinates in a two-
dimensional plane, the objective is to group neighbouring
coordinates together. Two adjacent coordinates are considered
neighbours. The problem can be solved by repeatedly checking
if each pair of coordinates is adjacent. For each pair of
coordinates that are not neighbours, a new group is formed,
and the remaining neighbours are added. The input list is C
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and the output is G. Assume ci is C’s i− th coordinate. For
simplicity, we’ll call ci’s neighbours N(ci). We can define
the set of neighbouring coordinates N(ci) of a coordinate
ci in a two-dimensional plane given a list of coordinates
C = c1, c2, . . . , cn:

N (ci) =
{
cj | j ̸= i and d (ci, cj) ≤

√
2
}

(5)

where d(ci, cj) is the Euclidean distance between the co-
ordinates ci and cj . If d(ci, cj) ≤

√
2, then ci and cj

are considered neighbours. We can then define a function
getneighboringlists(C) that groups the input coordinates C
based on their neighbours. This function is defined as follows:

Algorithm 2 Neighbour list extraction

1: function GET NEIGHBOURED LISTS(C)
2: G← []
3: for ci in C do
4: found← False
5: for each group in G do
6: if exists cj ∈ group such that ci ∈ N(cj)

then
7: group← group ∪ ci
8: found← True
9: break

10: end if
11: end for
12: if not found then
13: G← G ∪ ci
14: end if
15: end for
16: return G
17: end function

The output G is a list of lists with each inner list represent-
ing a group of neighbouring coordinates. The coordinates in
each group are sorted by their addition to G.

Each segment is labelled to an object by checking the labels
of the EIs in that segment (use the most presented label).
Disparity values are assigned to each segment. Each segment’s
disparity value is chosen from adjacent EIs. Background EI
disparity values are corrected using the correct background
disparity values in the foreground EIs using colour descriptors
[14, 15]. To create a mask for background regions in fore-
ground EIs (bgrfg), the mean and standard deviation of each
RGB channel is calculated. If its value is less than one standard
deviation from the mean across all three RGB channels, an
EI’s foreground pixel is considered background. This assumes
that most foreground image pixels are background pixels.
This implies that the average pixel value should be within 1
standard deviation of the background pixel intensity. Calculate
the disparity mode for bgrfg . Finally, all background EI
disparity values (in D) are replaced by the mode (mean or
median) of bgrfg disparity values.

V. EVALUATION

A. Labelling and Grouping Evaluation

Viewpoint Images Segmentation Configuration The pro-
posed algorithm’s performance was assessed using synthetic
Holoscopic images generated a the Blender [16] add-on sim-
ulator. The accuracy of the segmentation is measured by
dividing the number of estimated EIs in a class EIest (for
example number of EIs labelled as ”dice”) by the number of
accurate EIs EIacc of that class (counted manually):

Accuracy =
EIest
EIacc

∗ 100 (6)

A single EI pixel can contain multiple objects and belong
to a different VPI. Thus, corner and central VPIs are extracted
for precision. The more VPIs used, the more precise the
segmentation around the object’s boundaries, as shown in
Table. I. The VPIs should be evenly distributed around the
object’s centre for full coverage. Naturally, the algorithm’s
execution speed decreases as the number of VPIs increases,
as shown in Table. III. However, the results did not change
between 15 and 30 VPIs because holoscopic images have
redundant data, so not all VPIs are needed.

TABLE I: Image segmentation using various numbers of VPIs
to test the effect of the number of VPIs on the accuracy

Holoscopic Image Configuration Although the segmenta-
tion method relies on EIs, the first step is VPI-based object
segmentation. The outcome is more precise with higher-
resolution VPIs. As shown in Table. III, higher-resolution VPIs
such as 397 × 265 produce a result with perfect precision.
However, a holoscopic image with an 8K sensor size and a
VPI of 397× 265 would generate a 20x20 EIs, which is very
low in resolution. Even though a higher VPI produces more
defined and distinct EIs, a higher resolution EI is still needed
for more accurate and reliable CBIR similarity matching and
disparity estimation (broader baseline, higher spatial resolu-
tion). Because of their higher resolution, larger EIs improve
CBIR correction. In conclusion, the first phase yields a more
precise result with high-resolution and roughly 9 VPIs, but at
the cost of a longer execution time and low-resolution EIs. EIs
with lower resolution VPIs are more effective for correction.

B. Disparity Evaluation

The precision of a disparity map is evaluated by comparing
it to the ground truth disparity map, which was generated in
Blender, using the Mean Relative Error (MRE) matrix.
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Holoscopic Image

Disparity Map

Input
Viewpoint Images Extraction Object Segmentation

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 1 1

111

2 2 2

222

5 5 5

555
……

…

Elemental Images Labelling by Re-mapping 

Pixels in the Segmentation Mask

Query Image from Object 0

Query Image from Object 1

Query Selection

CBIR

Enhanced Labeling
Corrected Disparity using Labeling 

information

(a)
(b) (c)

(d)

(f)

(g)

(h)

Initial Labeling

(e)

Texture-less EIs Segments

(i) (j)

Fig. 3: Methods pipeline. (a) Input Holoscopic and initial disparity images. (b) Extract corner and central VPIs. (c) Mask
VPI-segmented objects. (e) Initial labelling of EIs (yellow: elemental images with the eagle, blue: dice, red: background).
(f) Labelling creates query images. (g) CBIR labelling for enhancement. (i) Selecting and segmenting texture-less EIs. (j)
Corrected disparity in texture-less regions.

Fig. 4: The table shows five Holoscopic images. The first row shows raw Holoscopic images. After computing the disparity
map from the elemental images, the area without texture can be seen (darker pixels are farther from the scene and vice versa).
Textured elemental images correct the disparity map. Clutter and incorrect disparity values can make the correction inaccurate.
The viewpoint images and the central view-raw disparity man disparity were extracted.



TABLE II: MRE performance of the disparity estimation before and after the correction on 8 generated holoscopic images.

Method Generated Images AverageDice Brid Books Butterfly Space Cup Vehicle Greek
Before correction 12.47 20.84 18.68 14.73 16.95 14.38 16.84 13.39 16.035
After correction 8.94 20.13 16.28 12.85 13.48 13.14 15.29 11.27 13.021

TABLE III: Image segmentation using various numbers of
VPIs to test the effect of the number of VPIs on the accuracy

MRE =
1

N

n∑
i=1

|Dest −Dgt

Dgt
| (7)

where N is the number of image pixels, Dest is the disparity
estimate for each pixel, and Dgt is the corresponding ground
truth disparity value.

Instead of comparing the absolute differences between the
estimated and ground-truth values, MRE looks at the ratio
of the two. It can be computed by averaging the absolute
disparities between the estimated and ground truth values and
then normalising them by the estimated disparity values. Table
II displays individual and aggregate results of averaging 8
Holoscopic disparity maps.

VI. CONCLUSION

We introduce an innovative approach to Holoscopic segmen-
tation using EIs. This technique group EIs under specific scene
objects, with the understanding that some EIs may fall under
more than one object. First, we use VPI segmentation to assign
labels to the EIs that correspond to each object visible in the
corresponding VPI pixel. To improve the labelling of the EIs
further, CBIR is used, in which the query images are chosen
randomly from among the labelled EIs. The disparity between
texture-less EIs is fixed using the segmentation information
obtained. The algorithm was tested at various EI resolutions
and has shown promising results.
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