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ABSTRACT: This paper presents a method for fault tolerant control of quadrotor UAVs in case of inversion of the torque direction, a situation that 

might occur due to structural, hardware or software issues. The proposed design is based on multiple-model ℒ1 adaptive control. The controller is 

composed of a nominal reference model and a set of degraded reference models. The nominal model is that with desired dynamics that are optimal 

regarding some specific criteria. In a degraded model, the performance criteria are reduced. It is designed to ensure system robustness in the presence 

of critical failures. The controller is tested in simulations and it is shown that the multiple model ℒ1 adaptive controller stabilizes the system in case of 

inversion of the control input, while the ℒ1 adaptive controller with a single nominal model fails. 
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1. Introduction 

Quadrotor Unmanned Aerial Vehicles (UAVs) have gained enormous interest because of their low cost, high maneuverability and 
simple maintenance. They are used for a wide range of military and civilian tasks. The primary reason for this seems to be the mechanical 
simplicity of the aircraft compared to traditional rotorcraft, resulting in significantly lower costs. Although lacking inherent stability, 
the simplicity also means that the aircraft is relatively easy to control using automatic feedback, particularly for non-aggressive 
maneuvers in calm conditions. For example, [1] demonstrated satisfactory results with a Proportional Integral Derivative (PID) 
controller, while authors in [2] were able to control the attitude using just Proportional Derivative (PD) control, employing a quaternion 
description. Simulation results have shown that even high-upset angles can be controlled effectively using PD control [3]. Linear 
Quadratic Regulator (LQR) control [4,5] can be used to achieve satisfactory trajectory tracking and attitude control. 

The operation of quadrotors, especially in urban environments, needs a high degree of safety and reliability. However, quadrotors are 
generally built with low-cost components and materials, which increases the probability of occurrence of faults and failures. Hence, the 
design of fault-tolerant control systems is required. Fault-tolerant control is defined as a system that possesses the ability to accommodate 
failures automatically [6]. A recent review of fault-tolerant control of quadrotors can be found in [7,8] and references therein. 

Fault-tolerant control systems are divided into two categories, passive and active [9,10]. Passive fault-tolerant control uses robust 
control techniques that assume worst-case conditions [11–15], resulting in conservative controllers with limited performance [16]. In 
contrast, active fault-tolerant controllers incorporate a fault detection scheme and a supervision module that can reconfigure the 
controller based on the detected fault [10,11,17]. However, implementing active fault-tolerant control systems on small UAVs is 
challenging due to their limited computing resources. 

Adaptive control provides a compromise between passive and active fault-tolerant control by allowing the reconfiguration of 
controller parameters without an explicit fault detection module [18–23]. However, ensuring a transient response guarantee is critical 
for adaptive control in fault-tolerant systems, as poor tracking performance may occur before ideal asymptotic convergence if such a 
guarantee is absent [24]. Additionally, high-gain feedback cannot be used to achieve transient performance improvement, as it can 
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compromise the robustness of the closed-loop system. However, most adaptive control methods focus on the asymptotic performance, 
and do not provide transient performance guarantees without using high-gain feedback [25]. 

One solution to this issue is based on ℒଵ adaptive control [26]. The ℒଵ adaptive control architecture decouples the estimation loop 
from the control loop through the introduction of a low-pass filter. As a result, arbitrarily fast adaptation can be used without sacrificing 
system robustness. These characteristics make it suitable for systems with unknown dynamics and subject to possible faults and external 
disturbances, such as quadrotors. Successful applications of ℒଵ adaptive control to rotorcraft UAVs have been presented [27–37]. 

A critical situation in rotorcraft control systems is that in case of structural damage of the rotorcraft, the direction of the torque 
produced by the propellers can be inverted. For instance, if an axis of a motor is twisted, the torque signs will go in the opposite direction. 
Another situation is the inversion of the rotor pitch angle that is directly proportional to the torque. The inversion of the sign of the 
torque direction can also result from the inversion of the sign of the rotation due to actuator failures or software faults. This situation 
cannot be handled by the standard ℒଵ adaptive controller with a single model. Actually, a conservative condition in adaptive control is 
that the sign of control effectiveness must be known and should not change [38]. 

The proposed solution is based on the application of the multiple model ℒଵ adaptive controller [39]. The key idea is to design an 
ℒଵ adaptive controller with a nominal reference model and a set of degraded reference models. The nominal model is the model with 
desired dynamics that are optimal regarding some specific criteria. A degraded model does not necessarily meet these specifications. It 
is designed to ensure system robustness in the presence of large uncertainties. 

This multiple-model ℒଵ  adaptive control design is capable of expanding the performance of the ℒଵ  adaptive control schemes to 
effectively deal with plant hard failures such as the inversion of the control direction (a long-standing issue that is difficult for a single-model 
adaptive controller to deal with) which may be caused by uncertain system structural damage and component (actuator or sensor) failures. 

The main contributions of this paper are: 

 Analysis of hard failures effect on quadrotor dynamics that leads to the inversion of the torque. 
 The application of the multiple model ℒଵ adaptive controller, which involves designing an ℒଵ adaptive controller with a nominal 

reference model and a set of degraded reference models to handle situations where the direction of the torque produced by the 
propellers can be inverted. 

Simulation results show that the multiple model ℒଵ adaptive controller outperforms the classical controller with a single nominal 
model in case of inversion of the propeller torque direction. 

2. ℒ1 Adaptive Control of Quadrotors 

In this section the main results of ℒଵ adaptive control of quadrotors are recalled. The objective is to elaborate the mathematical 
framework for quadrotor hard failure analysis. 

2.1. Quadrotor Mathematical Model 

First is recalled the mathematical model of the quadrotor from [35]. It is based on the Newton-Euler approach with standard 
assumptions: 

 Rigid and symmetric body structure, 
 rigid propeller blades, 
 parallel rotor axis in vertical direction. 

The basic vehicle configuration, Earth frame, 𝐸, and body frame, 𝐵, are shown in Figure 1 The body frame has the axes originating 
at the center of mass of the vehicle. An inertial coordinate frame is fixed to the Earth and has axes in the conventional North-East-Down 
arrangement. It is assumed that the Earth is flat and stationary. Each rotor provides a thrust force, 𝑓௜ , and torque, 𝜏௜. These combine to 
a vector of moments about the body axis, 𝐌 = [𝐿, 𝑀, 𝑁] and a thrust force in the negative 𝑧-direction, −𝑇. 

The orthogonal rotation matrix 𝐒௕ to transform from body frame to Earth frame is 

𝐒௕ = ൥

𝑐ఏ𝑐ట 𝑐ఏ𝑠ట −𝑠ఏ

𝑠థ𝑠ఏ𝑐ట − 𝑐థ𝑠ట 𝑐థ𝑐ట + 𝑠థ𝑠ఏ𝑠ట 𝑐ఏ𝑠థ

𝑐థ𝑠ఏ𝑐ట + 𝑠థ𝑠ట 𝑐థ𝑠ఏ𝑠ట − 𝑠థ𝑐ట 𝑐ఏ𝑐థ

൩, (1)

where 𝑐ఏ denotes cos 𝜃 , 𝑠ఏ denotes sin 𝜃, etc., and (𝜙, 𝜃, 𝜓) is the standard Euler angle roll-pitch-yaw triplet. 
The gravitational force vector, 𝐅௚, in the body axis is 

𝐅௚ = 𝑚𝐒௕ ൥
0
0
𝑔

൩ = 𝑚𝑔 ൥

−𝑠ఏ

𝑐ఏ𝑠థ

𝑐ఏ𝑐థ

൩, (2)
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where 𝑔 is gravitational field constant which is taken as 𝑔 = 9.81 N kgିଵ. 
The Newton-Euler equations of motion of the body axes frame are 

𝐅  = 𝑚𝐕̇ + 𝜔 × 𝑚𝐕,
𝐌  = 𝐈𝜔̇ + 𝜔 × 𝐈𝜔

 (3)

where 𝐕 = [𝑈, 𝑉, 𝑊]் is the vector of velocities in the body frame, 𝜔 = [𝑃, 𝑄, 𝑅]் is the vector of angular rates in the body frame, 𝐈 =

diag൫𝐼௫ , 𝐼௬, 𝐼௭൯ is the moments of inertia matrix, 𝑚 is the mass of the vehicle, 𝐅 = 𝐅௚ + [0,0, −𝑇]் is the vector of the forces acting on 

the center of mass, and 𝐌 = [𝐿, 𝑀, 𝑁]்  is the vector of moments acting about the center of mass. 
A general state space model is obtained from [35] with state variables given by 

𝐱 = [𝑈 𝑉 𝑊 𝑃 𝑄 𝑅 𝑋 𝑌 𝑍 𝜙 𝜃 𝜓]் . (4)

The resulting model is 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑈̇
𝑉̇
𝑊̇
𝑃̇
𝑄̇

𝑅̇
𝑋̇
𝑌̇
𝑍̇
𝜙̇

𝜃̇
𝜓̇ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑔 𝑠ఏ − (𝑄𝑊 − 𝑅𝑉)

𝑔 𝑐ఏ𝑠థ − (𝑅𝑈 − 𝑃𝑊)

−
𝑇

𝑚
+ 𝑔𝑐ఏ𝑐థ − (𝑃𝑉 − 𝑄𝑈)

𝐿

𝐼௫

− ൬
𝐼௭ − 𝐼௬

𝐼௫
൰ 𝑄𝑅

𝑀

𝐼௬

− ቆ
𝐼௫ − 𝐼௭

𝐼௬

ቇ 𝑅𝑃

𝑁

𝐼௭

− ൬
𝐼௬ − 𝐼௫

𝐼௭
൰ 𝑃𝑄

൫𝑐ట𝑐ఏ൯𝑈 + ൫𝑐ట𝑠ఏ𝑠థ − 𝑠ట𝑐థ൯𝑉 + ൫𝑐ట𝑠ఏ𝑐థ + 𝑠ట𝑠థ൯𝑊

൫𝑠ట𝑐ఏ൯𝑈 + ൫𝑠ట𝑠ఏ𝑠థ + 𝑐ట𝑐థ൯𝑉 + ൫𝑠ట𝑠ఏ𝑐థ − 𝑐ట𝑠థ൯𝑊

−𝑠ఏ𝑈 + ൫𝑐ఏ𝑠థ൯𝑉 + ൫𝑐ఏ𝑐థ൯𝑊

𝑃 + ൫𝑡ఏ𝑠థ൯𝑄 + ൫𝑡ఏ𝑐థ൯𝑅

𝑐థ𝑄 − 𝑠థ𝑅

൬
𝑠థ

𝑐ఏ
൰ 𝑄 + ൬

𝑐థ

𝑐ఏ
൰ 𝑅

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (5)

The moments acting on the quadrotor 𝐿, 𝑀 and 𝑁 and the total force 𝑇 are given by 

൦

𝑇
𝐿
𝑀
𝑁

൪ = ൦

1 1 1 1
0 −ℓ 0 ℓ
ℓ 0 −ℓ 0

−𝑑 𝑑 −𝑑 𝑑

൪ ൦

𝑇ଵ

𝑇ଶ

𝑇ଷ

𝑇ସ

൪ (6)

with ℓ is the arm length 𝑑 is the rotor diameter. 
The general state space formulation can be written as follows 

𝐱̇ = 𝑓(𝐱, 𝐔),  (7)

with 

𝐔 = [𝑇ଵ 𝑇ଶ 𝑇ଷ 𝑇ସ]் . 

The objective is to compute the control input vector U(t) to force the system outputs to track their desired trajectories using ℒଵ 
adaptive control. 
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Figure 1. Quadrotor Frames. 

2.2. ℒ1 Adaptive Control Design 

A common procedure in adaptive control design is to linearize the nonlinear model at a given equilibrium or operating point, in 
order to develop a linear controller based on the linearized system model, and to augment the linear controller with the adaptive 
controller. This allows for better robustness of the system. Actually, it permits for a less “burden” of the adaptive controller through the 
use of the prior knowledge of the system [40]. 

Linearizing about the hover equilibrium state, 𝐱௘௤ and control, 𝐮௘௤  gives 

𝛿𝐱̇ = 𝐀𝛿𝐱 + 𝐁𝛿𝐮 (8)

where 𝛿𝐱 and 𝛿𝐮 represents the small perturbations of the state and control about 𝐱௘௤ and 𝐮௘௤  respectively, where 

𝐀 = ൦

0ଵ×଺ 0ଵ×ଷ 0ଵ×ଵ −𝑔 0ଵ×ଵ

0ଵ×଺ 0ଵ×ଷ 𝑔 0ଵ×ଵ 0ଵ×ଵ

0ସ×଺ 0ସ×ଷ 0ସ×ଵ 0ସ×ଵ 0ସ×ଵ

𝕀଺ 0଺×ଷ 0଺×ଵ 0଺×ଵ 0଺×ଵ

൪ 

and 

𝐁 =

⎣
⎢
⎢
⎢
⎡
0ହ×ଵ 0ହ×ଷ

−
1

𝑚
0ଵ×ଷ

0ଷ×ଵ 0ଷ×ଷ

0ଷ×ଵ 𝐈ିଵ ⎦
⎥
⎥
⎥
⎤

൦

1 1 1 1
0 −ℓ 0 ℓ
ℓ 0 −ℓ 0

−𝑑 𝑑 −𝑑 𝑑

൪ . 

Consequently, the non-linear model of the quadrotor in equation (7) can be formulated as the following class of MIMO uncertain 
systems 

𝐱̇(𝑡)  = 𝐀௣𝐱(𝑡) + 𝐁௣𝐮௣(𝑡) + 𝐡(𝑡, 𝐱),  𝐱(0) = 𝐱଴,

𝐲(𝑡)  = 𝐂𝐱(𝑡),
 (9)

where 𝐀௣ = 𝐀 + Δ𝐀 ∈ ℝ௡×௡  is an unknown matrix, 𝐀 ∈ ℝ௡×௡  is a known matrix, Δ𝐀 ∈ ℝ௡×௡  an unknown matrix of the system 
dynamics, 𝐁௣ = 𝐁(𝕀௠ + Δ𝐁) ∈ ℝ௡×௠ is an unknown matrix, 𝐁 ∈ ℝ௡×௠ is a known matrix, Δ𝐁 ∈ ℝ௠×௠ is an unknown matrix of the 

control input uncertainties, 𝐂 ∈ ℝ௠×௡  is a known matrix, 𝐱(𝑡) ∈ ℝ௡  is the state vector which is assumed to be available through 
measurement, 𝐮௣(𝑡) ∈ ℝ௠ is the control input vector and 𝐡(𝑡, 𝑥) ∈ ℝ௡ is a vector of unknown nonlinear functions. 

This formulation is a general case of MIMO systems, and it is quite understood that for a quadrotor 𝑛 = 12 and 𝑚 = 4. 
Now consider the control law 

𝐮௣(𝑡) = 𝐮(𝑡) + 𝐊௟𝐱(𝑡), (10)

where 𝐊௟ ∈ ℝ௠×௡  is a gain matrix that defines 𝐀௠ = 𝐀 + 𝐁𝐊௟ , where 𝐀௠ ∈ ℝ௡×௡  is a Hurwitz matrix that defines the desired 
dynamics of the system. The resulting system to be controlled by the adaptive control is: 
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𝐱̇(𝑡) = 𝐀௠𝐱(𝑡) + 𝐁𝜔𝐮(𝑡) + 𝐡̃(𝑡, 𝐱), (11)

where 𝜔 = 𝕀௠ + Δ𝐁 and 𝐡̃(𝑡, 𝐱) = Δ𝐀𝐱(𝑡) + (𝜔 − 𝕀௠)𝐊௟𝐱(𝑡) + 𝐡(𝑡, 𝐱). 
For control design, 𝐡̃(𝑡, 𝐱) can be modelled as follows 

𝐡̃(𝑡, 𝐱) = 𝐁൫𝜽𝐱(𝑡) + 𝜎௠(𝑡)൯ + 𝐁௨𝜎௨(𝑡). (12)

Hence, the system in (11) can be parametrized as follows 

𝐱̇(𝑡) = 𝐀௠𝐱(𝑡) + 𝐁൫𝜔𝐮(𝑡) + 𝜽𝐱(𝑡) + 𝜽௠(𝑡)൯ + 𝐁௨𝜎௨(𝑡),   (13)

where 𝜃 ∈ ℝ௠×௡ is a matrix of constant unknown parameters representing model uncertainties, 𝜎௠(𝑡) ∈ ℝ௠ is an unknown matched 
disturbance, 𝜎௨(𝑡) ∈ ℝ௡  is an unknown unmatched disturbance, and 𝐁௨ ∈ ℝ௡×(௡ି௠)  is a constant matrix such that 𝐁்𝐁௨ = 0 and 
[𝐁𝐁௨௠] has rank 𝑛. 

Assumption 1. The unknown model parameters are bounded, i.e., 𝜽 ∈ Θ, where Θ is a known compact convex set. The system input 
gain matrix 𝜔 is assumed to be an unknown (non-singular) strictly row-diagonally dominant matrix with sgn(𝜔௜௜) known. Furthermore, 
it is assumed that there exists a known compact convex set Ω such that 𝜔 ∈ Ω ⊂ ℝ௠×௠. The disturbances 𝜎௠(𝑡) and 𝜎௨(𝑡) are bounded, 
i.e., 𝜎௠ ∈ Δ௠ and 𝜎௨ ∈ Δ௨, where Δ௠  and Δ௨ are known compact sets. Finally 𝜎௠(𝑡) and 𝜎௨(𝑡) are assumed to be differentiable with 
bounded derivatives, i.e. there exist finite real 𝑑ఙ೘

 and 𝑑ఙೠ
 such that 

∥∥𝝈̇௠(𝑡)∥∥ଶ
≤ 𝝈௠,  ∥∥𝝈̇௨(𝑡)∥∥ଶ

≤ 𝝈௨ ∀𝑡 ≥ 0. 

We consider the architecture of the ℒଵ adaptive controller [26] which is composed of the state predictor, the adaptation law and 
the control law (Figure 2). 

 

Figure 2. Block diagram of the ℒଵ adaptive controller. 

The state predictor is defined by 

𝐱̇̂(𝑡) = 𝐀௠𝐱̂(𝑡) + 𝐁 ቀ𝜔̂(𝑡)𝐮(𝑡) + 𝜽̂(𝑡)𝐱(𝑡) + 𝝈̂௠(𝑡)ቁ + 𝐁௨𝝈̂𝐮(𝑡), (14)

where 𝝎̂(𝑡), 𝜽̂௠(𝑡), 𝝈̂௠(𝑡), and 𝝈̂௨(𝑡) are the estimates of the unknown system parameters and 𝐱̂(𝑡) is the estimate of the state vector 
𝐱(𝑡). 

The adaptation laws are given by 

𝝎̇̂ = Γ Proj(𝝎̂, −(𝐱̃ୃ𝐏𝐁)ୃ𝐮ୃ) ,

𝜽̇̂௠ = Γ Proj൫𝜽̂௠, −(𝐱̃ୃ𝐏𝐁)ୃ𝑥ୃ൯ ,

𝝈̇̂௠(𝑡) = Γ Proj(𝝈̂௠, −(𝐱̃ୃ𝐏𝐁)ୃ) ,

𝝈̇̂௨(𝑡) = Γ Proj(𝝈̂௨, −(𝐱̃ୃ𝐏𝐁𝐵௨
ୃ),

 (15)

where 𝐱̃ = 𝐱̂ − 𝐱 is the prediction errors, Γ > 0 are the adaptation gains, and 𝐏 is the solution of the algebraic Lyapunov equation 
𝐀௠

ୃ 𝐏 + 𝐏𝐀௠ = −𝐐, 𝐐 > 0, while Proj(⋅,⋅) denotes the projection operator defined over the sets Θ, Ω, Δ௠  and Δ௨. 
To define the control law, we need to introduce some notations. Let 
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൤
𝐇௫௠(𝑠)

𝐇௫௨௠(𝑠)
൨ = (𝑠𝕀 − 𝐀௠)ିଵ ൤

𝐁௠

𝐁௨
൨

൤
𝐇௠(𝑠)

𝐇௨௠(𝑠)
൨ = 𝐂 ൤

𝐇௫௠(𝑠)

𝐇௫௨௠(𝑠)
൨

 

The control law is given by 

𝐮(𝑠) = 𝐊𝐅(𝑠) ቀ𝐊௚𝐫(𝑠) − 𝒗̂(𝑠)ቁ, (16)

where 𝒗̂(𝑠) = 𝒗̂ଵ(𝑠) + 𝒗̂ଶ(𝑠), 𝒗̂ଵ(𝑠)  is the Laplace transformation of 𝒗̂ଵ(𝑡) = 𝝎̂(𝑡)𝐮(𝑡) + 𝝈̂௠(𝑡), 𝒗̂ଶ(𝑠) = 𝐻௠
ିଵ(𝑠)𝐻௨௠(𝑠)𝝈̂௨(𝑠) , 

𝐊௚ = −(𝐂𝐀௠
ିଵ𝐁)ିଵ is the pre-filter of the MIMO control law, 𝐅(𝑠) is a 𝑚 × 𝑚 strictly proper transfer function matrix and 𝐊 ∈ ℝ௠×௠. 

For analysis purposes, without loss of generality, 𝐅(𝑠) is chosen as 𝐅(𝑠) =
𝐃(௦)

௦
, where 𝐃(𝑠) is a proper stable transfer function. 

Hence, the control law can be written: 

𝐮(𝑠) = 𝐾
𝐃(𝑠)

𝑠
ቀ𝐊௚𝑟(𝑠) − 𝑣̂(𝑠)ቁ, (17)

which leads, for all 𝜔 ∈ Ω, to a strictly proper stable 

𝐆(𝑠) ≜ 𝜔𝐊𝐃(𝑠)൫𝑠𝕀௠ + 𝜔𝐊𝐃(𝑠)൯
ିଵ

, 

with DC gain 𝐆(0) = 𝕀௠. 
The ℒଵ adaptive controller is subject to the ℒଵ norm condition [19] 

𝐿  = max
𝜽∈஀

  ∥ 𝜽 ∥ℒభ
= max

௜
 ൫∑  ௝   ห𝜽௜௝ห൯,

𝐆ഥ(𝑠)  = (𝑠𝕀 − 𝑣𝐴௠)ିଵ𝐁൫𝕀 − 𝐆(𝑠)൯.
   (18)

where ∥⋅∥ℒభ
. denotes for the ℒଵ norm. 

Moreover, the choice of 𝐃(𝑠) also needs to ensure that 𝐂(𝑠)𝐇௠
ିଵ(𝑠) is a proper stable transfer matrix. 

In the next section is presented the analysis of hard failures effect on quadrotor dynamics that leads to the inversion of the torque. 

3. Quadrotor Hard Failures Analysis 

If a fault or failure occurs on the system, the unknown parameters may go outside the predefined sets. As a consequence, the 
stability condition [26] may become not satisfied. More particularly, in case of a structural, hardware or software failure, the direction 
of the force vector of a propeller might be inverted. This is a very critical situation for pitch and roll angles, because the torques 𝑁 and 
𝑀 will act in the opposite direction to the desired commands 𝑁௖ and 𝑀௖, and the system will become unstable.  

3.1. Case Study: Quadrotor Modeling in Case of Structural Damage or Payload Shift 

Quadrotor UAVs are increasingly being used for package delivery. Because the content or the package itself might shift during 
the flight, centre of gravity (COG) variation occurs. As the centre of gravity affects the flight dynamics of the quadrotor, the performance 
of the UAV is degraded, if the centre of gravity does not coincide with the geometric centre of the quadrotor. The shift of the centre of 
gravity might occur also in case of structural damage. 

It is straightforward to show that in the case of shift of the centre the expression of the forces and moments acting on the UAV 
formulated in (6) will be reformulated as follows 

൦

𝑇
𝐿
𝑀
𝑁

൪ = ൦

1 1 1 1
0 −ℓ + 𝛿௬ 0 ℓ + 𝛿௬

ℓ − 𝛿௫ 0 −ℓ − 𝛿௫ 0
−𝑑 𝑑 −𝑑 𝑑

൪ ൦

𝑇ଵ

𝑇ଶ

𝑇ଷ

𝑇ସ

൪ ,  (19)

where 𝛿௫ and 𝛿௬ are the distances of shift of the COG that are assumed to be unknown. 

It is clear that the sign of the diagonal of the control input depends on the amplitude of the shift of the centre of gravity and on the 
sign of −𝑙 − 𝛿௫ and −𝑙 + 𝛿௫, consequently. If the centre of gravity shift goes beyond limits, the sign of the diagonals of the input matrix 
𝐵 can be reverted and leads to the instability of the control system. 

3.2. Case Study: Rotor Aerodynamic Modelling in Case of Blades Damage 

The thrust 𝑇 produced by the rotation of the blades can be expressed [41,42] by 
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T = 𝐶்𝜌𝐴(𝜁𝑅)ଶ,   (20)

where 𝜌 is the density of air, 𝐴 is the area captured by rotor, 𝑅 is the rotor radius, 𝜁 is the angular speed of the rotor and 𝐶் the thrust 
coefficient. 

When a rotorcraft rolls and pitches, the rotors experience a vertical velocity, leading to a change in the inflow angle. In this case the 
thrust coefficient 𝐶୘ can be related to the vertical velocity 𝑉௖ as [43]  

஼౐

ఙ
=

௔(ఈ)

ସ
ቂ𝜃୲୧୮ −

௩೔ା௏೎

఍ோ
ቃ,  (21)

where 𝑎 is the airfoil polar lift slope, 𝜃tip is the geometric blade angle at the tip of the rotor, 𝑣௜ is the induced velocity through the rotor, 

and 𝜎 is the solidity of the disc-the ratio of the surface area of the blades and the rotor disc area. The added lift due to increased flow 
velocity magnitude at the blade is small relative to the effect of changing inflow angle, and is ignored [43]. 

It is possible that blade damage or icing can induce a change in the sign of the thrust coefficient. This could be a consequence of: 

 A reduction of the geometric blade angle 𝜃tip. 

 An augmentation of the induced velocity 𝑣௜ and/or the vertical velocity 𝑉௖. 
 A change of the direction of the polar lift slope 𝑎(𝛼), that is a highly nonlinear for some airfoils [43]. 

Remark 1. Based on the previous analysis, it is necessary to maintain system stability and a minimum of good performance, this is 
done through the design of a set of degraded models which become effective when large uncertainties appear on the plant. 

4. Multiple Model ℒ1 Adaptive Control of MIMO Systems 

In this section, the multiple model ℒଵ adaptive controller first presented in [39] is extended to MIMO systems. 
Considering probable faults scenario, a set of plant parameterizations, based on multiple models, is arranged, and the objective is 

that the satisfactory controller is selected automatically to deal with every situation. This means that the model which is the best match 
of the plant is selected. 

The desired performance of each model is made through the design of the pair ൫𝐀௠(௜), 𝐁௜൯, for 𝑖 = 0 … 𝑀ௗ, where 𝑀ௗ is the number 

of degraded models. 
The system in (9) can consequently be parameterized as follows 

𝐱̇(𝑡)  = 𝐀௠(௜)𝐱(𝑡) + 𝐁௜ ቀ𝜔௜𝐮(𝑡) + 𝜽௜𝐱(𝑡) + 𝜎௠(௜)(𝑡)ቁ + 𝐁௨(௜)𝜎௨(௜)(𝑡),

𝐲(𝑡)  = 𝐂𝐱(𝑡),
 (22)

where 𝐀௠(௜) ∈ ℝ௡×௡ are known Hurwitz matrices that define the desired dynamics of the system 𝐁௜ ∈ ℝ௡×௠  are the desired input 
matrices, 𝜔௜ ∈ ℝ௠×௠  are unknown constant matrices representing the system input gain, 𝐁௨(௜) ∈ ℝ௡×௡ି௠  are the unmatched 
disturbances matrices, 𝜽௜ ∈ ℝ௠×௡ are matrices of unknown parameters, 𝝈௠(௜)(𝑡) ∈ ℝ௠ are unknown matched disturbances, 𝜎௨(௜)(𝑡) ∈

ℝ௡ି௠ are unknown unmatched disturbances. 𝐂 ∈ ℝ௠×௡ is the output matrix and 𝐲(𝑡) ∈ ℝ௠ is the output vector. 

Assumption 2. The system input gain matrices 𝜔௜  are assumed to be unknown (non-singular) strictly row-diagonally dominant matrices 
with known signs of diagonals. 

4.1. Controller Design 

The multiple model ℒଵ adaptive controller, as shown in Figure 3, is composed of a set of state predictors, a set of adaptation laws, 
a set of control laws and a control input selector (switching system). 

The state predictors are defined by 

𝐱̇̂௜(𝑡) = 𝐀௠(௜)𝐱̂௜(𝑡) + 𝐁௜ ቀ𝝎̂௜(𝑡)𝐮(𝑡) + 𝜽̂௜𝐱(𝑡) + 𝝈̂௠(௜)(𝑡)ቁ + 𝐁௨(௜)𝝈̂௨(௜)(𝑡), (23)

where 𝐱̂௜(𝑡) are the predicted states and, 𝜽̂௜(𝑡), 𝝎̂௜(𝑡), 𝜽̂௠(௜)(𝑡), 𝝈̂௠(௜)(𝑡) , and 𝝈̂௨(௜)(𝑡)ቁ are the estimates of the unknown system 

parameters and external disturbances. The initial state of the state predictor is equal to the plant state at switching time 𝑡௞ : 

𝐱̂(𝑡௞) = 𝐱(𝑡௞). 

The adaptation laws are given by 
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𝝎̇̂௜ = Γ Proj(𝝎̂௜, −(𝐱̃௜
ୃ𝐏𝐁𝐢)

ୃ𝐮ୃ) ,

𝜽̇̂௠(௜) = Γ Proj൫𝜽̂௠(௜), −(𝐱̃௜
ୃ𝐏𝐁𝐢)

ୃ𝐱ୃ൯ ,

𝝈̇̂௠(௜)(𝑡) = Γ Proj൫𝝈̂௠(௜), −(𝑥̃௜
ୃ𝐏𝐁)௜൯

ୃ
ቁ ,

𝝈̇̂௨(௜)(𝑡) = Γ Proj ቀ𝝈̂𝐮(௜), −൫𝐱̃௜
ୃ𝐏𝐁𝐁௨(௜)൯

ୃ
ቁ ,

  (24)

where 𝐱̃௜ = 𝐱̂௜ − 𝐱 are the prediction errors, Γ௜ > 0 are the adaptation gains and 𝐏 is the solution of the algebraic Lyapunov equation 
𝐀௠(௜)

ୃ 𝐏 + 𝐏𝐀௠(௜) = −𝐐, 𝐐 > 0.  

To define the control law, let: 

ቈ
𝐇௫௠(௜)(𝑠)

𝐇௫௨௠(௜)(𝑠)
቉ = ൫𝑠𝕀 − 𝐀௠(௜)൯

ିଵ
൤

𝐁(௜)

𝐁௨(௜)
൨

ቈ
𝐇௠(௜)(𝑠)

𝐇௨௠(௜)(𝑠)
቉ = 𝐂 ቈ

𝐇௫௠(௜)(𝑠)

𝐇௫௨௠(௜)(𝑠)
቉

 

The control laws are given by 

𝐮௜(𝑠) = 𝐊௜𝐅௜(𝑠) ቀ𝐊௚(௜)𝐫(𝑠) − 𝑣̂௜(𝑠)ቁ,   (25)

where 𝑣̂௜(𝑠) = 𝑣̂ଵ(௜)(𝑠) + 𝑣̂ଶ(௜)(𝑠), 𝑣̂ଵ(௜)(𝑠)  are the Laplace transformations of 𝑣̂ଵ(௜)(𝑡) = 𝜔̂(𝑡)𝐮(𝑡) + 𝝈̂௠(௜)(𝑡), 𝑣̂ଶ(௜)(𝑠) = 

𝐇௠(௜)
ିଵ (𝑠)𝐇௨௠(௜)(𝑠)𝝈̂௨(௜)(𝑠), 𝐊௚(௜) = −൫𝐂𝐀௠(௜)

ିଵ 𝐁௜൯
ିଵ

 are the pre-filters of the MIMO control laws, 𝐅௜(𝑠)  are 𝑚 × 𝑚  strictly proper 

transfer function matrices and 𝐊 ∈ ℝ௠×௠. 

Similarly to ℒଵ  adaptive control with one model, 𝐅௜(𝑠)  are chosen as 𝐅௜(𝑠) =
𝐃೔(௦)

௦
, where 𝐃௜(𝑠)  are proper stable transfer 

functions. Hence, the control laws can be written as 

𝐮௜(𝑠) = 𝐊௜
𝐃೔(௦)

௦
ቀ𝐊௚(௜)𝑟(𝑠) − 𝑣̂௜(𝑠)ቁ,  (26)

which leads, for all 𝜔 ∈ Ω, to a strictly proper stable 

𝐆௜(𝑠) ≜ 𝜔௜𝐊௜𝐃௜(𝑠)൫𝑠𝕀௠ + 𝝎௜𝐊௜𝐃௜(𝑠)൯
ିଵ

, 

with DC gain 𝐺௜(0) = 𝕀௠. 
The switching logic is defined by 

min
௜ୀ଴..ெ೏

 ቄ𝐽௜ = 𝑐ଵ∥∥𝐱̃௜∥∥
ଶ + 𝑐ଶ ∫  

௧

଴
 𝑒ି௖య(௧ିఛ)∥∥𝐱̃௜(𝜏)∥∥

ଶ
𝑑𝜏ቅ,  (27)

where 𝑐ଵ, 𝑐ଶ and 𝑐ଷ are arbitrary positive reals. The model that minimizes the criterion becomes the selected model. 

 

Figure 3. Block diagram of the multiple model ℒଵ adaptive controller. 
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4.2. Controller Analysis 

In this section, the performance of the ℒଵ adaptive controller is analysed. More specifically it is shown that: 

 The reference models resulting from perfect knowledge of the uncertainties and a corresponding non-adaptive controller are 
stable, subject to some conditions involving the filters 𝐅௜(𝑠). 

 The prediction errors, i.e., the errors between the states of the plant and those of the state predictors, are bounded.  
 The differences between the states/input of the system and those of the reference systems are proportional to the prediction error 

4.2.1. Reference Models Analysis 

For a switching system, it is not straightforward to compute the ℒଵ norm condition in [17]. Actually, for LTI systems, the ℒଵ norm 
is readily computed from the impulse response. However, for a switched system, the impulse response is time dependent (switching 
signal-dependent), and computing the ℒଵ norm is not as straightforward as in the LTI case. In consequence, the approach proposed in 
[44] is extended here to the case of systems with unmatched disturbances. 

For each parametrization, the reference model with the nominal parameters of the system is defined by 

𝐱̇௥(𝑡) = 𝐀(௜)𝐱௥(𝑡) + 𝐵௜ ቀ𝜔௜𝐮௥(𝑡) + 𝜎௠(௜)(𝑡)ቁ + 𝜎௨(௜)(𝑡). (28)

The reference (nominal) control law is given by 

𝐮௥(௜)(𝑠) = 𝐾௜
஽೔(௦)

௦
ቀ𝐊௚(௜)𝐫௜(𝑠) − 𝒗(௜)(𝑠)ቁ,   (29)

where 𝒗(௜)(𝑠) = 𝒗ଵ(௜)(𝑠) + 𝒗ଶ(௜)(𝑠)𝝈௨(௜)(𝑠), 𝒗ଵ(௜)(𝑠)  are the Laplace transformations of 𝒗ଵ(௜)(𝑠) = 𝜔௜(𝑡)𝐮௜(𝑡) + 𝝈௠(௜)(𝑡) , 𝒗ଶ =

𝐇௠(௜)
ିଵ (𝑠)𝐇଴(௜)(𝑠)𝝈௨(௜)(𝑠), 𝐊௚(௜) = −൫𝐂௜𝐀(௜)

ିଵ𝐁௜൯
ିଵ

 are the pre-filters of the MIMO control laws, 𝐃௜(𝑠)  are 𝑚 × 𝑚  strictly proper 

transfer matrices and 𝐊௜ ∈ ℝ௠×௠ . 
Letting ( 𝐀௙(௜), 𝐁௙(௜), 𝐂௙(௜), 𝐃௙(௜)൯ be a minimal realization of 𝐃௜(𝑠) with 𝑛௙(௜) states, the reference system dynamics can be written 

in state-space form as follows 

቎

𝐱̇௥(𝑡)

𝐱̇௙೔
(𝑡)

𝐱̇ூ೔
(𝑡)

቏

ᇣᇧᇤᇧᇥ
𝐱̇̇

= ൦

𝐀௠(௜) + 𝐁௜𝜽௜
ୃ 0 −𝐁௜𝜔௜

𝐁௙(௜)𝜽௜
ୃ 𝐀௙(௜) 𝐁௙(௜)𝝎௜

𝐃௙(௜)𝜽௜
ୃ 𝐂௙(௜) 𝐃௙(௜)𝜔௜

൪

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
஺‾೔

቎

𝐱௥(𝑡)

𝐱௙೔
(𝑡)

𝐱ூ೔
(𝑡)

቏

ᇣᇧᇤᇧᇥ
𝐱ത

− ቎

𝐁௜

𝐁௙(௜)

𝐃௙(௜)

቏

ᇣᇤᇥ
𝐁ഥ೔

𝒗(௜)(𝑡) + ቎

0
𝐁௙(௜)

𝐃௙(௜)

቏

ᇣᇤᇥ
𝐄ത೔

𝐊௚(௜)𝐫(𝑡),  
(30)

where 𝐱௙೔
, 𝐱ூ೔

 are the states of the filters and the integrators, respectively, and 𝐱ത(0) = [𝐱଴
ୃ, 0,0]ୃ. The reference control law can be 

written as follows 

𝐮௥(௜)(𝑡) = [0 0 −𝕀]ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
஼‾

቎

𝐱௥(𝑡)

𝐱௙೔
(𝑡)

𝐱ூ೔
(𝑡)

቏.   (31)

The system in (30) and (31) is equivalent to: 

𝐱ത̇ = 𝐀ഥ௜𝐱ത + 𝐁ഥ௜𝒗(௜) + 𝐄ത௜𝐊௚(௜)𝐫(𝑡),

𝐮௥(௜) = 𝐂ത𝐱ത.
  (32)

Remark 2. In this work it is assumed that the switching is arbitrary, i.e., not dwell time or average dwell time. The switching signal has 
a dwell time 𝜏 > 0, if the switching times satisfy 𝑡௞ାଵ − 𝑡௞ ≥ 𝜏, ∀𝑘 > 0 [45]. 

Lemma 1. Give an arbitrary matrix 𝐐 = 𝐐ୃ > 0, if there exists a constant symmetric matrix 𝐏 > 0 verifying 

𝐀ഥ௜
ୃ𝐏 + 𝐏 𝐀ഥ௜ ≤ −𝐐, ∀𝜽௜ ∈ Θ௜ and ∀𝜔௜ ∈ Ω௜ , 

then the Lyapunov function 𝑉 = 𝐱തୃ𝐏ഥ𝐱ത guarantees the stability of the switching reference systems in (30) and (31). 
This fact is straightforward from the converse Lyapunov theorem for LTI systems. 

4.2.2. Transient Performance and Steady-State Performance 

In the following Lemma, it is stated that the prediction errors 𝐱̃௜(𝑡) and the estimation errors of the unknown parameters are 
bounded for 𝑖 = 0 … 𝑀ௗ. 
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Lemma 2. The prediction error of each state predictor, 𝐱̃௜(𝑡) is bounded with respect to initial conditions and its bound is given by 

∥∥𝐱̃௜∥∥ℒಮ
≤ 𝜌௜ ,    (33)

where 

𝜌௜ = ඨ
𝜽௠೔

(𝜆୫୧୬(𝐏௜)Γ)
 

and 

𝜽௠೔
≜ 4

𝜆୫ୟ୶(𝐏௜)

𝜆୫୧୬(𝐐௜)
൬𝑑ఙ೘

max
ఙ೘(೔)∈୼೘

 ∥∥𝝈௠(௜)∥∥
ଶ

൰

 +4
𝜆୫ୟ୶(𝐏௜)

𝜆୫୧୬(𝐐௜)
൬𝑑ఙೠ

max
ఙೠ(೔)∈୼ೠ

 ∥∥𝝈௨(௜)∥∥
ଶ

൰

 +4 ൬max
𝜽೔∈஀೔

  tr(𝜽௜
ୃ𝜽௜) + max

ఠ೔∈ஐ೔

  tr(𝜔௜
ୃ𝝎௜)൰

 +4 ൭ max
𝝈೘(೔)∈୼೘

൫𝝈௠(௜)𝝈௠(௜)൯ + max
𝝈ೠ(೔)∈୼ೠ

 ൫𝝈௨(௜)𝝈௨(௜)൯൱

 

Proof 
Let 𝜽̃௜ = 𝜽̂௜ − 𝜽௜ , 𝝈̃௠(௜) = 𝝈̂௠(௜) − 𝜎௠(௜), 𝝈̃௨(௜) = 𝝈̂௨(௜) − 𝜎௨(௜), 𝝎̃௜ = 𝝎̂௜ − 𝜔௜, the following error dynamics can be derived from 

(12) and (22) 

𝐱̃௜ = 𝐀௠(௜)𝐱̃௜ + 𝐁௜൫𝝎̃௜𝐮 + 𝜽̃௜𝐱 + 𝝈̃௠(௜)൯ + 𝝈̃௨(௜),  (34)

with 𝐱̃௜(0) = 0 
Consider the following Lyapunov functions 

𝑉௜ = 𝐱̃௜
ୃ𝐏௜𝐱̃௜ + Γିଵ tr൫𝜽̃௜ୃ𝜽̃௜൯ + Γିଵ tr(𝝎̃௜ୃ𝝎̃௜) + Γିଵ൫𝝈̃௠(௜)

ୃ 𝝈̃௠(௜)൯ + Γିଵ൫𝝈̃௨(௜)
ୃ 𝝈̃௨(௜)൯ (35)

Using the adaptation laws from (23), the derivatives of the Lyapunov functions are bounded as follows 

𝑉̇௜ ≤ −𝐱̃௜
ୃ𝐐௜𝐱̃௜ + 2Γିଵ tr൫𝝈̃௠(௜)

ୃ 𝝈̃௠(௜) + 𝝈̃௨(௜)
ୃ 𝝈̃௨(௜)൯. (36)

The projection algorithm ensures that 𝜽̂௜ ∈ Θ, Ω̂௜ ∈ 𝜔, 𝜎̂௠(௜) ∈ Δ௠  and 𝜎̂௨(௜) ∈ Δ௨. 

Consequently, it can be written 

 max
௧ஹ଴

 ൫tr൫𝜽̃௜
ୃ𝜽̃௜൯ + tr(𝝎̃௜

ୃ𝝎̃௜) + 𝝈̃௠(௜)
ୃ 𝝈̃௠(௜) + 𝝈̃௨(௜)

ୃ 𝝈̃௨(௜)൯ ≤

4 ൬max
𝜽೔∈஀

  tr(𝜽௜
ୃ𝜽௜) + max

ఠ೔∈ஐ
  tr(𝝎௜

ୃ𝝎௜)൰ + 4 ൭ max
𝝈೘(೔)∈୼೘

 ൫𝝈௠(௜)
ୃ 𝝈௠(௜)൯ + max

ఙೠ(೔)∈୼ೠ

 ൫𝝈௨(௜)
ୃ 𝝈௨(௜)൯൱

 (37)

If 𝑉௜ ≥ 𝜽௠(௜)Γ at some time 𝑡, then it follows that 

𝐱̃௜
ୃ𝐐௜𝐱̃௜ ≥

ఒౣ౟౤(𝐐೔)𝐱̃೔
఻௉𝐱̃೔

ఒౣ౗౮(𝐐೔)
≥ 4Γିଵ ൬𝑑ఙ೘(೔)

max
ఙ೘(೔)∈୼೘

 ∥∥𝜎௠(௜)∥∥
ଶ

+ 𝑑ఙೠ(೔)
max

ఙೠ(೔)∈୼ೠ

 ∥∥𝜎௨(௜)∥∥
ଶ

൰. (38)

Using the bounds in assumption 1, it can be written 

𝝈̃௠(௜)
ୃ 𝝈̇௠(௜) + 𝝈̃௠(௜)

ୃ 𝝈̇௠(௜) ≤ 𝑑ఙ೘(೔)
max

ఙ೘(೔)∈୼೘

 ∥∥𝝈௠(௜)∥∥
ଶ

+ 𝑑ఙೠ(೔)
max

ఙೠ(೔)∈୼ೠ

 ∥∥𝜎௨(௜)∥∥
ଶ

.  (39)

Consequently, if 𝑉௜ ≥
ఏ೘(೔)

୻೔
, then it follows that 

𝑉̇௜ ≤ 0.   (40)

Given that 𝐱̃௜(0) = 0, we have 



Drones and Autonomous Vehicles 2023, 1, 10004 11 of 20 

𝑉௜(0) ≤ 4
୫ୟ୶
𝜽೔∈౸

  ୲୰൫𝜽೔
఻𝜽೔൯ା ୫ୟ୶

ഘ೔∈ಈ
  ୲୰൫𝝎೔

఻𝝎೔൯

୻

 +4
୫ୟ୶

഑೘(೔)∈౴೘
 ቀఙ೘(೔)

఻ ఙ೘(೔)ቁା ୫ୟ୶
഑ೠ(೔)∈౴ೠ

 ቀఙೠ(೔)
఻ ఙೠ(೔)ቁ

୻

 <
𝜽೘(೔)

୻
.

   (41)

Recalling that 

𝜆୫୧୬(𝐏௜)∥∥𝐱̃௜∥∥
ଶ ≤ 𝐱̃𝐢

ୃ𝐏௜𝐱ത௜ ≤ 𝑉௜ ,   (42)

which implies that 

∥∥𝐱ത௜∥∥ଶ
ଶ ≤

𝜽೘(೔)

ఒౣ౟౤(𝐏೔)୻
,   (43)

and consequently 

∥∥𝐱ത௜∥∥ଶ
≤ 𝜌௜ .   (44)

The proof is complete. 

The following theorem shows that the states of the adaptive system follow those of the reference system with a bound proportional 
to ∥ 𝐱̃ ∥ℒಮ

. The approach is similar to [44], for the case of arbitrary switching. 

Theorem. If the reference system is exponentially stable then 

∥∥𝐱௥ − 𝐱∥∥ℒಮ
≤ 𝜅ଶ ∥ 𝐱̃ ∥ℒಮ

,  ∥∥𝐮௥ − 𝐮∥∥ℒಮ
≤ 𝜅ଷ ∥ 𝐱̃ ∥ℒಮ

 

where 𝜅ଶ and 𝜅ଷ are positive constants defined in (57) and (60), respectively. 

Proof. The control laws in (26) can be written as 

𝐮(𝑠) = −
𝐷଴(𝑠)

𝑠
൫𝜔௜𝐮(𝑠) + 𝑣௜(𝑠) + 𝑣̃௜(𝑠) − 𝐊𝑔௜𝐫(𝑠)൯, (45)

where 𝒗̃(௜)(𝑠) = 𝒗̃ଵ(௜)(𝑠) + 𝒗̃ଶ(௜)(𝑠), 𝒗̃ଵ(௜)(𝑠)  are the Laplace transformations of 𝒗̃ଵ(௜) = 𝜽̃௜
ୃ𝐱(𝑡) + 𝝎̃௜(𝑡)𝐮(𝑡)  and 𝒗̃ଶ(௜)(𝑠) =

𝝈̃𝐮(௜)(𝑠) + 𝐇௠(௜)
ିଵ (𝑠)𝐇଴(௜)(𝑠)𝝈̃௨(௜)(𝑠). Consequently, the closed-loop systems (22) and (45) can be written as follows 

቎

𝐱̇
𝐱̇௙భ

𝐱̇ூభ

቏ = ൦

𝐀௠(௜) + 𝐁௜𝜽௜
ୃ 0 −𝐁௜𝜔௜

𝐁௙𝜽௜
ୃ 𝐀௙ 𝐁௙𝜔௜

𝐃௙𝜽௜
ୃ 𝐂௙ 𝐃௙𝜔௜

൪ ൥

𝐱
𝐱௙భ

𝐱ூభ

൩ + ቎

𝐁௜

𝐁௙

𝐃௙

቏ 𝒗ଶ(௜) + ቎

0
𝐁௙

𝐃௙

቏ 𝒗̃௜ − ቎

0
𝐁௙𝐊௚೔

𝐃௙𝐊𝑔௜

቏ 𝐫  (46)

The error between the state of the reference system and the actual plant, 𝐞 = 𝐱௥ − 𝐱, can be expressed as 

቎

𝐞̇
𝐱̇௙భ

𝐱̇ூభ

቏ = ൦

𝐀(௜) + 𝐁௜𝜽௜
ୃ 0 −𝐁௜𝜔௜

𝐁௙𝜽௜
ୃ 𝐀௙ 𝐁௙𝜔௜

𝐃௙𝜽௜
ୃ 𝐂௙ 𝐃௙𝝎௜

൪ ൥

𝐞
𝐱௙భ

𝐱ூభ

൩ + ቎

𝐁௜

𝐁௙

𝐃௙

቏ 𝒗̃௜   (47)

The control error can also be formulated as follows 

𝐞௨ = 𝐮௥ − 𝐮 = [0 0 −𝕀] ൥

𝐞
𝐱௙భ

𝐱ூభ

൩   (48)

The prediction error dynamics in (34) can be written as 

𝐯̃௜ = 𝐁௜
ற൫𝐱̇̃ − 𝐀௠(௜)𝐱̃൯.   (49)

Passing 𝐁௜
ற𝐱̇̃ through the filter (𝑠𝕀 + 𝐷଴(𝑠)𝜔௜)ିଵ𝐷଴(𝑠), we can write 

൤
𝐱̇௙మ

𝐱̇ூమ

൨ = ൤
𝐀௙ 𝐁௙𝜔௜

𝐂௙ 𝐃௙𝜔௜
൨ ൤

𝐱௙మ

𝐱ூమ
൨ + ൤

𝐁௙

𝐃௙
൨ 𝐁௜

ற𝐱̃   (50)

Applying this to the error dynamics in 46 we have 
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⎣
⎢
⎢
⎢
⎢
⎡

𝐞̇
𝐱̇௙భ

𝐱̇ூభ

𝐱̇௙మ

𝐱̇ூమ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐀௠(௜) + 𝐁௜𝜽௜

ୃ 0 −𝐁௜𝜔௜ −𝐁௜𝐂௙ −𝐁௜𝐃௙𝜔௜

𝐁௙𝜽௜
ୃ 𝐀௙ 𝐁௙𝜔௜ 0 0

𝐃௙𝜽௜
ୃ 𝐂௙ 𝐃௙𝜔௜ 0 0

0 0 0 𝐀௙ 𝐁௙𝜔௜

0 0 0 𝐂௙ 𝐃௙𝝎௜ ⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡

𝐞
𝐱௙భ

𝐱ூభ

𝐱௙మ

𝐱ூమ⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −𝐃௙𝐁௜

ற

−𝐁௙𝐁௜
ற𝐀௠(௜)

−𝐃௙𝐁௜
ற𝐀௠(௜)

−𝐁௙𝐁௜
ற

−𝐃௙𝐁௜
ற

⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝐱̃,    (51)

and 

𝐞௨ = [0 0 −𝕀 −𝐂௙ −𝐃௙𝜔௜]

⎣
⎢
⎢
⎢
⎡

𝐞
𝐱௙ଵ

𝐱ூభ

𝐱௙మ

𝐱ூమ ⎦
⎥
⎥
⎥
⎤

+ ൣ−𝐃௙𝐁௜
ற൧𝐱̃.   (52)

Letting 

𝐇ഥ ௜ = ൥
−𝐁௜𝐂௙ −𝐁௜𝐃௙𝜔௜

0 0
0 0

൩ ,  𝐉̅
௜ = ൦

−𝐃௙𝐁௜
ற

−𝐁௙𝐁௜
ற𝐀௠(௜)

−𝐃௙𝐁௜
ற𝐀௠(௜)

൪ ,

𝐆ഥ௜ = ቈ
−𝐁௙𝐁௜

ற𝐀(௜)

−𝐃௙𝐁௜
ற𝐀(௜)

቉ ,  𝐋̅௜ = [0 𝐂௙ 𝐃௙𝜔௜],

 

it follows from (51) and (52) that 

൤
𝐞ത̇

𝐱̇௙మ

൨ = ൤
𝐀ഥ௜ 𝐇ഥ ௜

0 𝐅ത௜

൨ ൤
𝐞ത

𝐱ത௙మ

൨ + ൤
𝐉̅

௜

𝐆ഥ௜

൨ 𝐱̃,   (53)

and 

𝐞௨ = [𝐂ത 𝐋̅௜] ൤
𝐞ത

𝐱ത௙మ

൨ + ൣ−𝐃௙𝐁௜
ற൧𝐱̃, (54)

where 𝐞ത = ൣ𝐞ୃ, 𝐱௙భ

ୃ , 𝐱ூభ
ୃ ൧

ୃ
 and 𝐱ത௙మ

= ൣ𝐱௙మ

ୃ , 𝐱ூమ
ୃ ൧

ୃ
. 

Note that the reference system is stable and the filter represented by 𝐅ത௜  is a subsystem of the reference system when 𝜽 = 0. 
Therefore, from Lemma 1, there exists positive definite matrices 𝐐௜(𝜔௜) > 0 such that for all 𝜔௜ ∈ Ω, 

𝐅ത௜
ୃ𝐐ഥ௜ + 𝐐ഥ ௜𝐅ത௜ ≤ −𝕀.   (55)

Let 𝑉‾௜(𝑡) = 𝐱ത௙మ

ୃ 𝐐ഥ௜𝐱ത௙మ
, where 𝑉௜(0) = 0. Differentiating along the system trajectories it follows that 

𝑉̇௜  = 𝐱ത௙మ

ୃ (𝐅ത௜
ୃ𝐐ഥ௜ + 𝐐ഥ ௜𝐅ത௜)𝐱ത௙మ

+ 2𝐱ത௙మ

ୃ 𝐐ഥ௜𝐆ഥ௜𝐱̃

 ≤ −∥∥𝐱ത௙మ∥∥
ଶ

+ 2∥∥𝐱ത௙మ∥∥𝛽ி ∥ 𝐱̃ ∥ℒಮ

 ≤ −∥∥𝐱ത௙మ∥∥
ଶ

+ 𝛽ி
ଶ ∥ 𝐱̃ ∥ℒಮ

ଶ

  (56)

where the last line follows from square completion and 𝛽ி = √𝑛max௜∈ூ  ∥∥𝐐ഥ௜𝐆ഥ௜∥∥. 
By integrating it is straightforward to show that the following bound holds for 𝐱ത௙మ

 

∥∥𝐱ത௙మ∥∥
ℒಮ

≤ 𝜅ଵ,  (57)

where 𝜅ଵ = √𝑛max௜∈ூ  ∥∥𝐐ഥ ௜𝐆ഥ௜∥∥𝛿 and 𝛿 is the upper bound of 𝐱̃௜ defined in Lemma 2. 
We now define the Lyapunov functions 𝑊‾

௜ = 𝐞തୃ𝐏ഥ௜𝐞ത. Differentiating along the system trajectories it follows that 

𝑊̇௜  = 𝐞തୃ(𝐀ഥ௜
ୃ𝐏ഥ௜ + 𝐏ഥ௜𝐀ഥ௜)𝐞ത + 2𝐞തୃ𝐏ഥ௜𝐇ഥ௜𝐱ത௙మ

+ 2𝐞തୃ𝐏ഥ௜𝐉̅
௜𝐱̃

 ≤ −∥ 𝐞ത ∥ଶ+ 2 ∥ 𝐞ത ∥ 𝛽௘‾ ∥ 𝐱̃ ∥ℒಮ

 ≤ −∥ 𝐞ത ∥ଶ+ 𝛽௘‾
ଶ ∥ 𝐱̃ ∥ℒಮ

ଶ ,

 (58)

where 𝛽௘ = ൫𝜅ଵmax௜∈ூ  ∥∥𝐏ഥ௜𝐇ഥ ௜∥∥ + √𝑛max௜∈ூ  ∥∥𝐏ഥ௜𝐉̅
௜∥∥൯. 

Therefore, the following bound holds 
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∥ 𝐞ത ∥ℒಮ
≤ 𝜅ଶ,   (59)

where 𝜅ଶ = ൫𝜅ଵmax௜∈ூ  ∥∥𝐏ഥ௜𝐇ഥ ௜∥∥ + √𝑛max௜∈ூ  ∥∥𝐏ഥ௜𝐉̅
௜∥∥൯𝛿. 

Given the definition of 𝐞௨  from (54), it follows that 

∥∥𝐞௨∥∥ℒಮ
≤  ≤∥ 𝐂ത ∥∥ 𝐞ത ∥ℒಮ

+ ∥∥𝐋̅௜∥∥∥∥𝐱ത௙మ∥∥
ℒಮ

+ ∥∥𝐃௙𝐁௜
ற

∥∥ ∥ 𝐱̃ ∥ℒಮ
,

 ≤ 𝜅ଷ,
 

where 𝜅ଷ =∥ 𝐂ത ∥ 𝜅ଶ + ൫max௜∈ூ  ∥∥𝐋̅௜∥∥ + max௜∈ூ  ∥∥𝐃௙𝐁௜
ற

∥∥൯𝛿. This completes the proof. 

5. Simulation Results for Quadrotor Control in Case of Inversion of the Torque Direction 

In this section, the simulation results for the ℒଵ adaptive controller with a single model and multiple models are presented and 
compared. 

The vehicle that is modelled for use in this work is the Draganfly X-pro quadrotor. The quadrotor arm length is 0.50 m. Each rotor 
has two blades. The radius of the rotor is 0.258 m, and the mean chord of the blade is 0.032 m. A 14.8 V lithium-ion polymer battery is 
used for supplying the electric power, this being the maximum voltage that can be supplied to a motor [35]. The mass and inertia 
parameters are [46,47]: 

𝑚 = 2.356 kg,  𝐼௫ = 0.1676 kg mଶ

𝐼௬ = 0.1676 kg mଶ,  𝐼௭ = 0.29743 kg mଶ 

The rotors are driven by voltages to four electronic motors, the thrust-voltage relationship can be expressed as follows 

𝑓௜ = 𝑘௙𝑣௜
ଶ,  𝑖 = 1,2,3,4 

where 𝑓௜ is the individual thrust from 𝑖 th rotor, 𝑣௜ is the individual voltage input and 𝑘௙ =
଴.ଵଵ ୒

୚మ . The individual torque of each rotor is 

𝜏௜ = 𝑘ఛ𝑣௜
ଶ 

where 𝜏௜ is the individual torque from 𝑖 th rotor and 𝑘ఛ =
଴.଴ହଶ୒୫

୚మ . The force and moments are not linear with voltage, but linear with 

squared voltage, therefore the squared voltages are used as the final full system model input vector, 𝑢 = [𝑣ଵ
ଶ, 𝑣ଶ

ଶ, 𝑣ଷ
ଶ, 𝑣ସ

ଶ]் 
The system of equation (9) with its nominal desired dynamics can be parameterized to become similar to the class of MIMO 

systems in (22) defined by 

𝐱̇(𝑡) = 𝐀(଴)𝐱(𝑡) + 𝐵଴ ቀ𝜔଴𝑢(𝑡) + 𝜃଴
ୃ𝐱(𝑡) + 𝜎௠(଴)(𝑡)ቁ + 𝐁௨𝜎௨(଴) 

The bounds for the unknown time-varying parameters for the implementation of the projection operator were 𝜔଴ ∈ [0.25,1.25], 
𝜃଴ ∈ [−25,25], 𝜎௠(଴) ∈ [−30,30] and 𝜎௨(଴) ∈ [−30,30]. The adaptation gain is Γ = 1000. The filter parameters were 

𝐾଴ = ൦

160 0 0 0
0 160 0 0
0 0 160 0
0 0 0 160

൪  𝐷଴(𝑠) =
1

𝑠
൦

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

൪. 

It is straightforward to verify that the design verifies the stability condition in (18). The performance of the ℒଵ adaptive controller 
has been compared with the indirect Multiple Model Reference Adaptive Controller (M-MRAC) presented in [48]. Our aim is not to 
compare the two designs, as it has already been shown in [49] that the tracking performance and disturbance rejection of the MRAC 
controller are better with increasing adaptation gain. However, the MRAC controller exhibits poor attenuation of high-frequency content 
in the presence of large adaptation gain. On the other hand, the ℒଵ adaptive controller shows good disturbance rejection within the 
controller bandwidth in the presence of fast adaptation. However, the performance of the ℒଵ adaptive controller is limited by the low-
pass filter. 

Simulations were first made using only the nominal controller, i.e., the ℒଵ adaptive and the MRAC controllers with only the 
nominal model. The adaptation gain of the MRAC is Γ = 50.  

The objective is to change the altitude of the quadrotor while maintain it at the same horizontal (𝑥, 𝑦) position. Two situations 
were considered in this case: 

 Loss of effectiveness in rotor 1 of 50%; 
 Loss of effectiveness in rotor 1 of 50% with the inversion of the thrust direction. 

The failures were introduced at simulation time t = 13 s. 
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Simulation results for the nominal ℒଵ adaptive controller and the MRAC, without inversion of rotor signs, are shown in Figure 4. 
As expected, the system has good performance subsequent to the fault. The loss of altitude is within acceptable limits. Displacements 
in the X and Y positions are not meaningful. As expected, the ℒଵ adaptive controller shows better performance in transient regime, 
following the occurrence of the failure, while the MRAC is better in permanent regime. The rotor commands are within acceptable 
limits as it can be observed in Figure 5. 

In the second scenario of loss of effectiveness of 50% with the inversion of the sign of the thrust, the system with only the nominal 
controller has become unstable for both ℒଵ adaptive controller and MRAC, as it can be observed in Figure 6. 

Next, the multiple model controller was applied. It was based on the nominal controller and four degraded controllers designed to 
deal with possible inversion of rotor commands. 

 

Figure 4. Closed-loop tracking performance of the nominal controller without inversion of the sign of the thrust. 

 

Figure 5. Control input to the rotors without inversion of the sign of the thrust. 
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Figure 6. Closed-loop tracking performance of the nominal controller with inversion of the sign of the thrust. 

A second model for the case of inversion of the sign of rotor 1 command is given by 

𝐱̇(𝑡) = 𝐀(ଵ)𝐱(𝑡) + 𝐁଴𝛽ଵ൫𝜔ଵ𝑢(𝑡) + 𝜽ଵ
ୃ𝐱(𝑡) + 𝜎௠(ଵ)൯ + 𝐁௨𝜎௨(ଵ) 

where 𝛽ଵ = diag(−1,1,1,1). 
A third model for the case of inversion of the sign of rotor 2 command is given by 

𝐱̇(𝑡) = 𝐀(ଶ)𝐱(𝑡) + 𝐁଴𝛽ଶ൫𝜔ଶ𝐮(𝑡) + 𝜽ଶ
ୃ𝐱(𝑡)𝜎௠(ଶ)൯ + 𝐁௨𝜎௨(ଶ), 

where 𝛽ଶ = diag(1, −1,1,1). 
A fourth model for the case of inversion of both the signs of rotor 3 command is given by 

𝐱̇(𝑡) = 𝐀(ଷ)𝐱(𝑡) + 𝐁଴𝛽ଷ൫𝜔ଷ𝐮(𝑡) + 𝜽ଷ
ୃ𝐱(𝑡) + 𝜎௠(ଷ)൯ + 𝐁௨𝜎௨(ଷ), 

where 𝛽ଷ = diag(1,1, −1,1). 
A fifth model for the case of inversion of both the signs of rotor 3 command is given by 

𝐱̇(𝑡) = 𝐀(ଷ)𝐱(𝑡) + 𝐁଴𝛽ସ൫𝜔ଷ𝑢(𝑡) + 𝜽ଷ
ୃ𝐱(𝑡) + 𝜎௠(ସ)൯ + 𝐁௨𝜎௨(ସ), 

where 𝛽ସ = diag(1,1,1, −1). 
The input matrix 𝐁଴ was taken to be the same for all models. 
The adaptation gain of the M-MRAC is Γ = 50. The filter parameters of the ℒଵ adaptive controller were the same as for the single 

model controller. Comparing with (30), the minimum realisation of 𝐃௜ is 

𝐀௙ = 0, 𝐁௙ = 0, 𝐂௙ = ൦

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

൪ , 𝐃௙ = 0. 

The tuning parameters and the desired dynamics of the degraded controller were the same as the nominal controller. By defining 
the system similarly to (30), the stability condition of the reference system in Lemma 2 was verified using a common Lyapunov function. 

The previous failure cases were reproduced for the multiple model controller. The simulation results in the case of non inversion 
of the sign of propeller 1 are shown in Figures 7 and 8. The system has same behaviour than a single model controller. Furthermore, as 
it is shown on Figure 9, the matching model is the nominal model which corresponds on the minimum cost function defined in (27). 
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Figure 7. Closed-loop tracking performance of the multiple model controller without inversion of the sign of the thrust. 

 

Figure 8. Control input of the quadrotor using the multiple model controller without inversion of the sign of the thrust. 

 

Figure 9. Switching Function without of inversion of the sign of the thrust. 

For the second case of the inversion it can be seen in Figures 10 and 11 that the system has remained stable and shows good 
tracking performance. The aileron voltage commands to the propellers are within acceptable limits. It is worth noting that, in this case, 
the M-MRAC is exhibiting relatively poor performance when compared to the ℒଵ adaptive controller. This is attributed to the slow 
transient regime, and the attempt to enhance performance by increasing adaptation gains resulted in worse performance, as high-
frequency oscillations in the control input were observed. 
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Furthermore, it is shown in Figure 12, the matching model is model 1, which corresponds to the minimum cost function defined in (27). 
These simulations demonstrate that the application of the multiple model ℒଵ adaptive controller is justified in case of structural 

damages or faults that lead to inversion of the sign of the control input of quadrotor UAVs. 

 

Figure 10. Closed-loop tracking performance of the multiple model controller in case of inversion of the sign of the thrust. 

 
Figure 11. Control input of the multiple model controller in case of inversion of the sign of the thrust. 

 

Figure 12. Switching Function in case of inversion of the sign of the thrust. 
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6. Summary 

In this paper, an approach for fault-tolerant control of quadrotor UAVs in the presence of critical failure was presented based on 
ℒଵ adaptive control. The design is based on a nominal model for the plant in the presence of soft faults and a set of degraded models 
for the plant under critical failures. The switching between the models is based on a simple quadratic criterion.  

The main advantage of this approach is that it allows a larger class of uncertainties and faults to be considered and can achieve 
better fault accommodation and preserve system integrity. Simulations have shown that the multiple model ℒଵ adaptive has stabilized 
the system in case of inversion of the control input, while the controller with a single model failed. 

Nomenclature 

𝐶௟ , 𝐶௠, 𝐶௡ = aerodynamic moment coefficients along the body axis  

𝐹஺, 𝐹େ୔, 𝐹ௗ , 𝐹ୋ୆ = vectors of forces, N 
𝐹௕ , 𝐹௚, 𝐹௪ = the body fixed frame (centered at the CV),the Earth reference frame, and the windaxis frame  

𝑓஺௜ , 𝑓େ୔௜ , 𝑓ௗ௜ , 𝑓ୋ୆௜  = forces of 𝐹஺, 𝐹େ୔, 𝐹ௗ , 𝐹ୋ୆ along 𝑖 axis (𝑖 = 𝑥௕ , 𝑦௕ , 𝑧௕), N 

𝑛஺௜, 𝑛େ୔௜ , 𝑛ௗ௜ , 𝑛ୋ୆௜ = moments resulted by 𝐹஺, 𝐹େ୔, 𝐹ௗ , 𝐹ୋ୆(𝑖 = 𝑥௕ , 𝑦௕, 𝑧௕), N ⋅ m 

𝑞‾ = dynamic pressure, Pa  
𝑇௣, 𝑇௦ = thrusts of the port side and the starboard side, N 

𝑉 = the generalized velocity in 𝐹௕ 

𝑣, 𝑣ௗ = airship practical and desired translational velocity vector [𝑢, 𝑣, 𝑤]் in 𝐹௕ , 

𝑣௖ , 𝑣௥ = commanded and reference translational velocity vector in 𝐹௚, m/s[𝑣, 𝜔]் 

𝛼, 𝛽 = angle of attack, side sliding angle, rad  

𝛿௘௅ , 𝛿௘ோ , 𝛿௥௎ , 𝛿௥஻ , 𝜇 = left and right elevator, rad upper and bottom rudder, tilt angle of the propellers, rad  

𝜂, 𝜂ௗ , 𝜂௥ = vectors of practical attitude, desired and reference attitude, rad 
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