

COPIOR-HORAF CONFERENCE ON OPERATIONS/AL RESEARCH TOOLS FOR THE AFTERMATH OF A DISASTER:

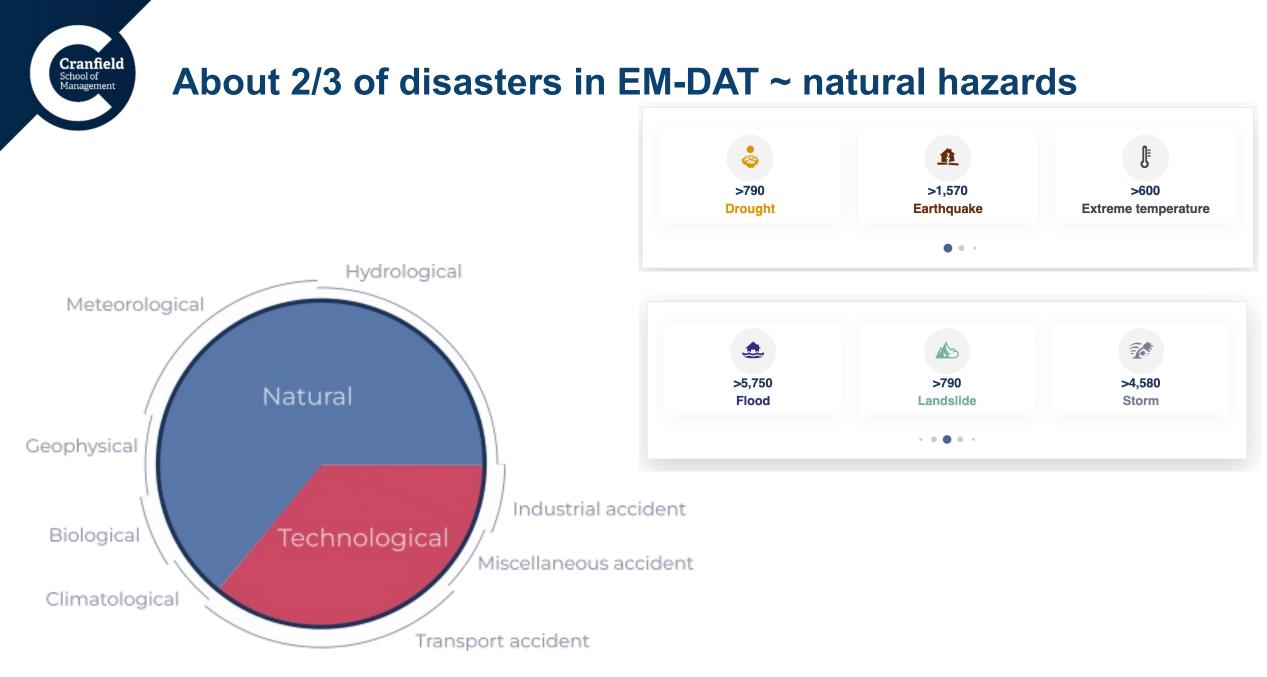
THE MAJOR EARTHQUAKE IN TURKEY-SYRIA

Committee of Professors in Operational Research

Search Algorithms in the Aftermath of a Disaster

Emel Aktas, Cranfield University, UK 9 September 2023

www.cranfield.ac.uk/som



Why we need search algorithms?

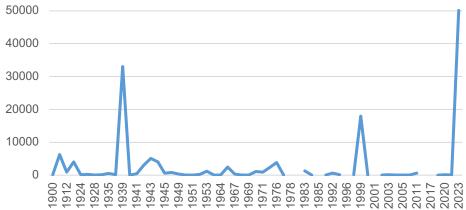
 $_{\odot}$ It costs to find what we are searching for.

 Lives are at risk if we do not find people in time.

Image credit: https://www.mountain.rescue.org.uk/

Earthquakes in Turkey

Sum of Total Deaths



967 1978 1978 1983 1983 1983 1992 1996 1996 1996 945 949 951 953 964 \sim

Source: EM-DAT

Sum of Total Affected

https://www.theguardian.com/world/2023/mar/06/turkey-earthquake-victims-families-still-search

https://apnews.com/article/disaster-planning-and-response-2023-turkey-syria-earthquake-earthquakesa7ae0cf86757d238dc0dd5f6a5dd96ce

https://www.bbc.co.uk/news/world-64569943

Optimal Search and Stop Problem

JOURNAL ARTICLE

A Periodic Optimal Search

<u>David Matula</u>

The American Mathematical Monthly, Vol. 71, No. 1 (Jan., 1964), pp. 15-21 (7 pages)

https://doi.org/10.2307/2311296 · https://www.jstor.org/stable/2311296

Home > Operations Research > Vol. 17, No. 6 >

A Problem in Optimal Search and Stop

Sheldon M. Ross

Published Online: 1 Dec 1969 https://doi.org/10.1287/opre.17.6.984



A finite set of possible locations, I

p_i: probability that the object is in one of these locations

c_i: cost of searching each location

a_i: probability of finding the object during the search when it is in i

Minimise the expected cost of finding the object

A strategy: when to search, and, if so, which box?

Multi-Armed Bandit Problem

A decision-maker ("gambler") chooses one of

n actions ("arms") in each time step.

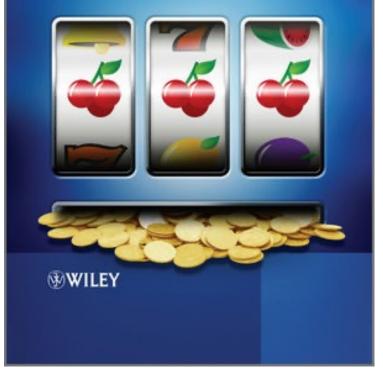
Chosen arm produces random payoff from

unknown distribution.

Goal: Maximize expected total payoff.

SECOND EDITION

John Gittins, Kevin Glazebrook and Richard Weber



Where else do we see MAB applications?

• Crowdsourcing

Cranfiel

- assigning the right tasks to right users (Lin et al., 2022)
- Sequential clinical trials in medicine (Aziz et al., 2021)
 - finding the optimal dosage in early stage clinical trials

 \circ Ad placement

 allocating the budget of an advertiser across multiple surfaces optimally when both the demand and the value are unknown (Avadhanula et al., 2021)

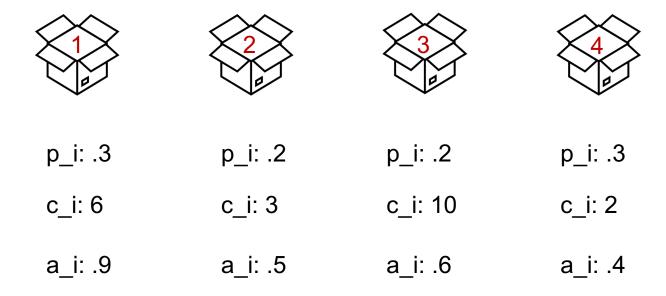
• Price experimentation

 deciding on real-time prices for a large number of products with incomplete demand information (Misra et al., 2019)

 \circ Search

- Fast and slow (Clarkson et al., 2020)
- With multiple sensors (Song and Teneketzis, 2004)

Cranfield School of Management An example



A search policy is an ordered list of locations to search

Find the policy that minimises the expected search time

Search the location that maximises p_i * a_i (1 – a_i)^m / c_i

Gittins Index from Multi-Armed Bandit

[0.045, 0.033, 0.012, 0.060] [0.045, 0.033, 0.012, 0.036] m=1

4, 1, 4, 2, 4, 2, 4, 3, 2, ...

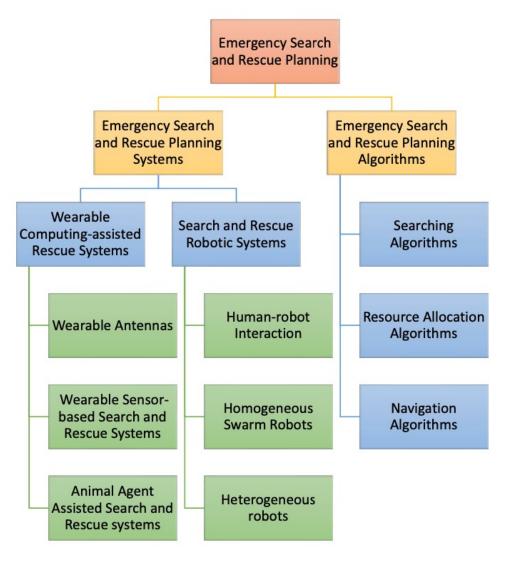
 $_{\odot}$ Search and rescue missions: Find an object before a crucial deadline

- Lost at sea: hypothermia
- After an earthquake: survivors underneath collapsed buildings
- A bomb squad: find a time bomb before it explodes

 $_{\odot}$ In many cases, the crucial deadline is not known to the search team.

Lin and Singham (2016) propose a randomized search strategy that simultaneously maximizes the probability of finding the object by any deadline.

Concluding Thoughts



Dr Emel Aktas Professor of Supply Chain Analytics Centre for Logistics, Procurement and Supply Chain Management Cranfield School of Management Cranfield University College Road, Cranfield, MK43 0AL

+44 (0) 1234 75 11 22

emel.aktas@cranfield.ac.uk

https://uk.linkedin.com/in/emelaktas

Subscribe to our Centre

https://www.linkedin.com/company/cranfield-logistics-procurement-supply-chain-management-centre/

- Avadhanula, V., Baldeschi, R.C., Leonardi, S., Sankararaman, K.A., & Schrijvers, O. (2021) Auto-placement of ad campaigns using multi-armed bandits. Meta Research
- Bi, H., & Gelenbe, E. (2022). Searching and Rescuing Victims in Emergency: A Comprehensive Survey.
- Clarkson, J., Glazebrook, K. D., & Lin, K. Y. (2020). Fast or slow: Search in discrete locations with two search modes. *Operations Research*, 68(2), 552-571.
- Lin, S., Yao, Y., Zhang, P., Noh, H. Y., & Joe-Wong, C. (2022, March). A neural-based bandit approach to mobile crowdsourcing. In *Proceedings of the 23rd Annual International Workshop on Mobile Computing Systems and Applications* (pp. 15-21).
- Matula, D. (1964). A periodic optimal search. *The American Mathematical Monthly*, 71(1), 15-21.
- Misra, K., Schwartz, E. M., & Abernethy, J. (2019). Dynamic online pricing with incomplete information using multiarmed bandit experiments. *Marketing Science*, 38(2), 226-252.
- Ross, S. M. (1969). A problem in optimal search and stop. *Operations Research*, *17*(6), 984-992.
- Song, N. O., & Teneketzis, D. (2004). Discrete search with multiple sensors. *Mathematical Methods of Operations Research*, 60, 1-13.