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Abstract. The bivalves' morphometric analysis of the freshwater shell characteristics is 
based on the shell size, shape, tooth, scars, and texture. We experimented and compared the 
accuracies of the following popular convolutional neural network architectures: ResNeSt, 
MobileNet, VGG16, Transfer Learning, and EfficientNet, whose model trainings are based 
on the bivalve image dataset obtained from a biology laboratory. The MobileNet model that 
gives the highest accuracy rate by 72% is selected to be a classification model of our 
framework named MorphoNet. We also applied the YOLO4 object detection in the 
MorphoNet to detect the teeth and scars on the bivalve image. The framework can identify 
the bivalve class labels and detect the interesting features on the bivalve images automatically. 
It is an alternative tool to help the biologists in a preliminary class label identification and 
support the land-marking creation and morphometric analysis instead of doing it by hand.  
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1. Introduction 
 
Morphological variations observed in the study of 

bivalves arise from the combined influences of genetic 
inheritance, the environment, and natural selection. 
Biologists must validate the morphological variability of 
freshwater bivalves collected within river basins to 
ascertain the correlation between genetics and 
morphological forms. Typically, biologists employ 
morphological analysis tools for measuring aspects such 
as size, shape, and the relationship between shape, a 
methodology known as geometric morphometric analysis 
[1].   

Molecular data is increasingly employed to assess the 
taxonomic status of bivalves. Similar to numerous other 
bivalves, Ensidens species exhibit remarkable 
morphological similarity, with their differentiation 
primarily dependent on genetic patterns. This analysis is 
conducted by biologists who meticulously identify and 
mark specific features by hand. Subsequently, analysis 
tools quantify and categorize morphological variations in 
these bivalve images based on the marked features and 
associated class labels. These procedures are labor-
intensive and time-consuming due to the precise manual 
marking required on all images. Consequently, the genus 
Ensidens is an ideal candidate for evaluating the potential 
of convolutional neural networks in image classification 
applications. 

Deep Convolutional Neural Networks (DCNNs) [2, 3] 
have evolved as pivotal tools in image classification, 
proficient at extracting multi-scale textural information 
from a wide array of image sources. They have seen 
substantial advancements in terms of performance and 
accuracy, finding applications across diverse domains. An 
intriguing DCNN is the Residual Attention Network, or 
ResNet [4], which incorporates a mixed attention 
mechanism encompassing bottom-up/top-down feed-
forward convolutional structures. Additionally, the Split 
Attention Network architecture, referred to as ResNeSt 
[5], has emerged, enhancing multi-attention channels 
within a unified split-attention block. ResNeSt has 
exhibited promise in improving learned feature 
representations, thereby elevating image classification 
performance. We believe that ResNeSt offers potential for 
effective bivalve image classification. However, the 
suitability of specific DCNNs for the morphometric 
analysis of Ensidens species remains an open question. 

In this paper, we present experimental results obtained 
by comparing the accuracy of various network models, 
including ResNeSt, MobileNet, VGG16, Transfer 
learning, and EfficientNet.  Among these models, we 
selected the one that achieved the highest accuracy for the 
implementation of a morphometric analysis framework 
for bivalve image classification.  The implemented 
framework not only enhances performance in learned 
feature representations but also serves as a means of 
representing geometric morphometrics. Consequently, the 
time- consuming processes of feature marking and 
morphological analysis are significantly reduced when 

employing this framework due to its streamlined 
procedures. 

The structure of this paper is as follows: In Section 2, 
we describe background of bivalve features and the 
associated morphometric procedures, including 
convolutional neural network techniques. Section 3 
presents an overview of related works encompassing 
image classification and detection networks. Section 4 
elaborates on our methodology, experimental results, and 
the framework implementation. Lastly, Section 5 
comprises the discussion and the conclusion of this study. 
 

2. Background 
 
2.1. Bivalve Features and Morphometric Analysis 

Processes 
 
Unionoida represents a monophyletic order within 

the class of bivalves primarily inhabiting freshwater 
environments. Freshwater serves as their primary habitat 
type, and they play a significant role as natural food 
sources in nature. However, it's important to note that not 
all freshwater bivalves are edible. Some bivalves act as 
intermediate hosts for diseases, including Opisthorchis 
viverrini, Cestoda, and Nematoda, underscoring their 
relevance in disease ecology. Additionally, bivalves are 
utilized as monitoring indicators in environmental impact 
assessments (EIA) [6] for development projects.  
Taxonomic status of bivalves plays a crucial role in 
facilitating the planning and execution of missions carried 
out by the Department of Fisheries and Public Health. 

Typically, the classification of bivalves is undertaken 
through a three-fold approach:  
1) DNA analysis, which involves identifying 

deoxyribonucleic acid (DNA) information by 
inferring phylogenetic relationships. 

2) Morphology analysis, Fig. 1 provides an example of a 
bivalve image with marked points, where a truss 
network comprising twenty-six markers is established 
and measured using the MorPhoJ software [7].  

3) Subsequently, a comparative discussion is carried out 
to establish correlations between the results of DNA 
analysis and morphometric analysis, shedding light on 
the relationship between bivalve DNA and its 
monophyletic classification. 
Morphometric analysis heavily relies on the 

characteristics of the inner texture of a calcareous valve 
structure in bivalves. Specifically, attention is drawn to the 
anatomical structure located at the connection point 
between the left and right valves, referred to as a “tooth”. 
Of particular interest in bivalve morphometric analysis are 
the pseudocardinal tooth and lateral tooth, which are 
separated by a “beak”. These distinctive features are 
pivotal in the analysis. 
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Furthermore, it is essential to consider a combination 
of factors, including adductor muscle scars, umbo, shape, 
periphery, texture, and stripes. This comprehensive 
approach is necessary because certain bivalve classes may 
exhibit unclear or overlapping tooth structures. While the 
pseudocardinal and lateral teeth, along with the beak, serve 
as the primary landmarks for analysis, the remaining 
features are used to a lesser extent in morphometric 
analysis. 

Scientists categorize bivalve classes primarily based on 
the length of the pseudocardinal tooth and lateral tooth. 
However, analysis using factors such as the adductor scar 
position, calcareous texture, and periphery can yield 
varying accuracy rates. This variability arises from the 
dependence of these dimensions on the bivalve's habitat 
and age, which are influenced by the physiological 
processes of growth and development. Some biologists 
consider muscle scars as an optional feature, often 
assessed in conjunction with tooth length. 

In Fig. 2, the features on the inner right-valve image 
are illustrated. The teeth, represented by the red block 
(pseudocardinal tooth) and the green block (lateral tooth), 
serve as the connection point to the left valve. The 

dashed-line circles denote muscle scars, where the point 
of attachment of the muscle is integral to the bivalve’s 
main muscular system responsible for opening and closing 
the valves. These features on the bivalve images are 
examined using a morphometric analysis tool, involving a 
series of four key steps: 
1) Landmark determination: landmarks are generated on 

all bivalve images using the MakeFan program.  
2) Dataset creation: the training and test datasets are 

formed through the random selection and conversion 
of instance images, facilitated by the TpsUtil program 
[9]. 

3) Digitized landmarks spotting: Biologists manually 
mark the input images within the TpsDig program 
[10], making these markings a crucial resource for 
subsequent morphometric analysis [11, 12].  

4) Morphometric analysis: the TPS files are imported 
into the MorphoJ program for conducting 
morphometric analysis and subsequently comparing 
the results with those obtained from DNA analysis. 

 
As illustrated in Fig. 1, the marked bivalve image serves 

as input data for truss network measurement [13] 
performed using the MakeFan program. Marking numbers 
1, 8, and 26 correspond to specific landmarks of 
interesting features. Number 1 represents the starting 
point of the pseudocardinal tooth, number 2 signifies the 
endpoint of the lateral tooth, and it also denotes the 
division point between the pseudocardinal tooth and the 
lateral tooth. These landmarks are critical identity features 
essential for bivalve classification. 

It is evident that many of the landmarks marked in 
each image are mandatory and necessitate careful attention. 
The process involves the utilization of multiple tools. 
Biologists not only invest additional time in marking 
images but also engage with various tools throughout the 
morphometric analysis. 
 
 
 

 

 
 
  

 
 

Fig. 1. Example of the determined features with 

multiple markings on the bivalve image [8]. 

 

 
 

Fig. 2. An example of interesting features and a locality label on the inner right valve. 
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2.2. Convolutional Neural Network for the Object 
Detection and Image Classification   

 
Convolutional neural networks or CNNs are mainly 

used for applications in image classification. Currently, 
there are many convolutional neural networks trained on 
millions of images to classify thousands of different 
categories: MobileNet, VGG16, ResNet, ResNeSt, 
EfficientNet. To achieve results in image classification, 
advanced image classification techniques have been 
enhanced by using training feed-forward convolutional 
neural networks called very deep structure [14, 15, 16]. A 
convolutional neural network is tuned by using attention 
mechanisms, and the subjunctive attention modules were 
built to work intimately with feed-forward network 
architecture to create attention-aware features. There are 
popularly effective attention mechanisms in deep neural 
networks such as ResNet [4] and ResNeSt. The 
convolutional neural network using attention mechanisms 
can be implemented, and the attention mechanism 
structure may be top-down, bottom-up, or bottom-
up/top-down. Residual learning [16] with an attention 
mechanism is used to increase the depth of the feed-
forward neuron network to benefit from residual learning. 
An architecture of the CNN that consists of three parts is 
shown in Fig. 3. 
1) Convolutional layer: A rectangular neuron grid of the 

convolutional layer grid takes the rectangular neuron 
grid inputs from the previous layer. The convolutional 
layer acts as an image convolution, where the weights 
specify the convolution filter. As in equations (1) and 
2, an N*N rectangular neuron layer is followed by a 

convolutional layer. If an m*m filter (𝜔) is determined, 
a size of ((N-m) +1) * ((N-m) + 1) is the convolutional 
layer output. The processing of the pre-nonlinearity 

input in some unit (𝑥𝑙𝑖𝑗) of convolutional layer is to 
sum up the contributions from the previous layer cells. 

 

x𝑖𝑗
𝑙 = ∑ ∑ ω𝑖𝑗

𝑙 𝑦(𝑖+𝑎)(𝑗+𝑏)
𝑙−1𝑚−1

𝑏=0
𝑚−1
𝑎=0  (1) 

 

Then, the convolutional layer applies its non-linearity: 

 

𝑦𝑖𝑗
𝑙 =  𝜎(𝑥𝑖𝑗

𝑙 )   (2) 

 
2) Pooling layer:  There may be a pooling layer that is 

imposed after for each convolutional layer.  It takes 
rectangular blocks and produces a single output from 
that block, where rectangular blocks are obtained 
from the convolutional layer.  Pooling layers may be 
implemented a learned linear combination of neurons 
in the block or constituted the average or the 
maximum.  In the case of max- pooling layers 
implementation, they are simple and are without 
learning themselves.  The maximum is a single value 
output of the region K*K. For instance, if their input 
layer is a N*N layer, they will then output a Nk*Nk 
layer, as each k*k block is reduced to a single value via 
the max function.  

3) Fully connected layer:  connected layers are fully 
connected to all neurons in pooling or convolutional 
layers, which are the high- level reasoning in the 
network architecture. 

 

3. Related Work 
 
The taxonomic revision of the genus Pilsbryoconcha, a 

group of freshwater mussels in the Class Bivalvia in 
Indochina was studied in [17]. Through a comprehensive 
analysis encompassing shell morphology, biogeography, 
and molecular data, eight species within the genus were 
identified, including both previously recognized and newly 
described species.  The research also illuminates the 
evolutionary history of Pilsbryoconcha, tracing its origins to 
the Khorat Plateau during the middle of the Eocene, with 
subsequent range expansion and diversification across 
Indochina.  Next, a novel genus of freshwater mussels, 
Namkongnaia, is introduced from the Mekong River Basin 
in the work of [18].  The genus is distinguished by its 
unique conchological features, absence of hinge dentition, 
and elongated shells.  Molecular analysis places it within 
the Pseudodontini tribe, closely related to Monodontina, but 
with conchological similarities to Pilsbryoconcha. 
 

 

 
 

 
 

Fig. 3. Convolutional neural network architecture. 
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The existing species-level taxonomy of bivalves relies 
primarily on morphological characteristics, specifically 
shell shape, and size. Nevertheless, bivalve shell 
morphology exhibits significant resemblance and often 
overlaps across various populations and species [19, 20]. 
As a result, molecular data has become increasingly 
essential for evaluating the taxonomic classification of 
bivalves. This similarity is particularly notable among 
Ensidens species, where distinctions are primarily based on 
genetic patterns.  

 While image processing combined with 
morphometric analysis is becoming more prevalent, there 
is still relatively little research that applies CNNs to analyze 
biological forms in images. Sarma et al. [21] introduces a 
method, incorporating a KNN classifier, to detect optical 
distortions, or bubbles, in pork images. By effectively 
identifying and filtering out images containing these 
unwanted artifacts, it significantly enhances the accuracy 
of pork image classification. The proposed bubble 
detection method combines image pre-processing 
techniques with morphological and region segmentation 
operations, aiming to achieve the highest accuracy in 
detecting distorted images.  

Object recognition with deep learning is the field of 
computer vision used to recognize and detect objects in 
images to determine what is in an image. The basis of 
detection with a mark point or mark area can be done in 
several ways. The area markings are popular techniques, 
which involve drawing a box around the object (called a 
“bounding box”) or filling in every pixel of that object 
(called a “segmentation”). The YOLOv4 framework [22] 
is one of the best architectures to use to train a custom 
object detector for predicting objects, has been used in 
many works [23, 24]. 

Recent advances in image classification training 
feedforward convolutional neural networks using “very 
deep” structure are proposed. There are many works using 
traditional CNN models and enhancing the neural 
networks for image classification and object detection. 
The VGG model [25] was proposed by Simonyan et al., 
and its structure is like that of the AlexNet model [26]. The 
layer structures of the VGG model have variety, and the 
VGG-16 which contains 16 weight levels, is used for our 
experiment. In 2017, Google proposed MobileNet [27] 
focusing on mobile or embedded devices. The advantages 
of MobileNet are lower calculation costs and parameters 
than those of other networks. Google also proposed 
MobileNetV2 [28] to solve the problem by using inverted 
residuals and linear bottlenecks. Next, a squeeze and 
excitation (SE) block [29] is used to build channel-wise 
attention and neural architecture search (NAS) for 
MobileNetV3 [30]. They are used for enhancing efficiency 
and accuracy in MobileNetV3, released in 2019. 
EfficientNetV1 [31] requires manual tuning to arbitrarily 
increase the network model’s depth or width. It supports 
higher input image resolution and improves accuracy. 
Next, the memory usage problem of the EfficientNetV1 
in large image size results is resolved, and the network 

model is proposed as EfficientNetV2 [32] that conveys a 
smaller model and a faster training method.  

Transferred learning technique [33, 34] is a network 
that is trained on a large general dataset, and its weights 
are then used to initialize other models. This technique is 
suitable for limited time and data. For instance, 
GoogLeNet [35] and ResNet contribute to image 
classification purposes, and the model’s weights are 
derived from training on a large general dataset named 
ImageNet. The ResNet is invented by Wang et al. in 2017, 
is a residual attention network mixed with an attention 
mechanism using an encoder-decoder style attention 
module. The attention-aware features are generated by the 
attention mechanism, which changes adaptively as layers 
deepen. The authors reported that their network not only 
increases performance in terms of consistency but is also 
robust to noisy inputs. He et al. [36] proposed a pre-
activation structure to further improve the performance 
of the network in which the layout BN and ReLU carry 
out experiments, and the successful ResNet is trained with 
the network structure of more than 1000 layers. Whereas 
Veit et al. [37] customized a trained ResNet by dropping 
some of the layers in the model and compared its 
performance with other networks. 

Over-fitting caused by insufficient data is the main 
issue at CNN. Data augmentation [38] such as cropping, 
flipping, rotation, color space, and translation, including 
noise injection, can be applied to improve the size of the 
training dataset and increase its dimensions. The CNN 
training with learned data augmentation can be performed 
by using an automated data enhancement [39, 40]. Data 
augmentation can not only improve accuracy, model 
robustness, performance, and misidentification but also 
increase the model’s ability to be robust and make the 
model more stable during training. 

 

4. Methodology 
 
The experiments consist of two parts: 1) the finding 

and development of a suitable network, and 2) the 
framework's implementation. The network development 
part describes the dataset preparation, network 
architecture selection, and model training results. Whereas 
the framework implementation portrays the MorphorNet 
architecture. The details of each part are as follows: 
 
4.1. Finding Suitable Network 

 
An original bivalve image dataset is the heterogeneous 

species data obtained from the biologists, which contains 
the six classes based on molecular phylogeny representing 
Ensidens species: E. ingallsianus, E. telus, E. jaculus, E. spiculus, 

E. dugasti, and E. sagittarius [20], respectively (the class 
labels A to F) as shown in Table 1. It comprises 419 
images taken in a closed environment in a biology 
laboratory by using a high-resolution camera, on which the 
ruler tool used to position the image and the locality label 
are marked before the image is taken. However, the 
dataset only includes the images taken on the inner right 
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valve texture, while the inner left valve images and outer 
texture were not collected. As the dataset listed in Table 1, 
there are unbalanced classes, and Classes C and D have a 
limited number of images due to their rarity. Thus, we 
neglected the class labels C and D. We also added 75 
images for the classes E and F, counterbalancing each 
class up to 100 test images of the classes A, B, E, and F. 
The additional images were taken on the right valve inner 

texture of the raw bivalve specimens that are collected 
from the same freshwater location. Although certain 
specimens have never passed the DNA analysis processes 
to classify their class, the class label of each image was 
manually re-checked and identified by an expert based on 
the interesting features and the biologist’s experiences 
once again. 
 

 

 
Table 1. Bivalve image information and dataset preparation. 
 

Label: Ensidens species Origin Added Train Test Remark 

A: E. ingallsianus 146 0 100 46 - 
B: E. telus 140 0 100 40 - 
C: E. jaculus 8 0 0 0 Neglected 
D: E. spiculus 3 0 0 0 Neglected 

E: E. dugasti 50 75 100 25 - 
F: E. sagittarius 72 75 100 47 - 
Total 419 150 400 158 - 

 

 
Table 2. Training model comparison. 
 

Network models  Params (M)  Accuracy  Precision  Recall F1-score  Training time (s) 

EfficientNetB0 5.3 0.6734 0.6622 0.6797 0.6681 185.82 

EfficientNetB5 25.0 0.6512 0.6753 0.6719 0.6974 1,042.51 

EfficientNetB7 30.0 0.6479 0.6513 0.6562 0.6431 1,602.01 

MobileNet 5.4 0.7254 0.7183 0.7195 0.7074 221.35 

RestNet 25.0 0.6911 0.6921 0.6816 0.6808 7,622.20 

ResNeSt 27.5 0.6447 0.6645 0.6705 0.6811 9,912.73 

VGG16 134.2 0.6514 0.6422 0.6598 0.6552 8,686.74 

VGG16 Transfer 
learning 

10.6 0.68.9 0.6719 0.6682 0.6421 4,952.21 

 

 
Table 3. Image data augmentation parameters. 
 

Parameters Values 

Image rotation 25 

Image ship width 0.2 

Image ship height 0.1 

Image shear 0.2 

Image zoom 0.2 

Horizontal flip True 
Vertical flip True 
image fill Nearest 

Color -20 

Contrast 
AllChannelsHistogramEquali
zation 
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 Due to computational constraints, we downscaled the 
image scale from 6000×4000 to a fixed resolution of 224 
x 224 pixels. We also used the Python data augmentation 
module to enhance the training dataset because of the 
insufficient dataset issue. For making the adequate training 
dataset, image cropping by removing the ruler tool from 
the image, vertical and horizontal flipping, noise and blur 
reduction, affine modifications, and contrast and 
brightness controlling were performed. Image data 
augmentation parameters are shown in Table 3 however, 
the test dataset was still unaugmented. The prepared 
datasets were used for the network training and testing, 
with eight network models shown in Table 2. The 
experimental results show that the MobileNet gives 
predominant accuracy higher than that of the other 
network models.  

Instead of creating a new CNN network, we 
customized the existing network models listed in 3. As the 
comparison information in Table 2, we select the 
MobileNet network model to be the classifier of the 
MorphoNet framework and use YOLO4 [41] in the 
objects detection process to identify the teeth and scars 
positions. The MobileNet network architecture is 
illustrated in Table 4. Input of the network is normalized 
bivalve image patch with unit variance and zero mean. The 
first layer is a convolutional layer with a kernel size of 3 × 
3 pixels and 32 output channels. The network model 
provides F1 scores greater than 70% in almost all 
categories. Few remarks regarding the results (stopped 
after the 40th epoch): the loss dropped from 7.3 to 3.1, 
the accuracy is around 71%, the val_loss is around 5.9 with 
an accuracy of around 70.5%. However, the accuracies of 
classes E and F are less than those of classes A and B 
because the images in classes E and F have overlapped and 
unclear tooth structure as the example shown in Fig. 4. 
From the experimental results of all the explored network 
models, we found two factors that directly affect accuracy 
as follows: 
1) Biologists have drawn the locality labels on certain 

instances. These instances may be marked with the 
same label if they are collected from the same river 
basins. Thus, most of the varieties of the instances in 

the same habitat are not different. We experimented 
by removing the locality label from the instances, 
taking a photo, and training the network models once 
again. We found that accuracy is decreasing by 
approximately 2.75% for all the networks. It indicates 
that the locality label on the images is an information 
bias. 

2) The varieties of the input image resolution and the 
image positioning directly affect accuracy. Due to the 
imbalance in the dataset for classes E and F, we had 
to add 75 images for each class, so the dataset for 
classes E and F contains two groups of images taken 
in different environments. The original high-
resolution images are taken in the biology laboratory, 
where the position of the instance and the camera is 
inflexible. The added images are arbitrarily taken by a 
photographer with a different camera, positioning, 
and background. Thus, the accuracy of the class labels 
A and B is higher than that of the classes E and F. 

 
4.2. Framework Implementation 

 
A web-based application, the MorphoNet framework 

has been implemented by using the MobileNet network 
obtained from Subsection 4.1 which is a web application 
that acts as the bivalve classifier and collects bivalve 
images into a bivalve instance repository. The MorphoNet 
architecture is shown in Table 4, which MobileNet and 
YOLO4 are the core networks mandated by using a web 
server and database. Biologists can access the system via 
an Internet browser. There are two steps in the framework 
providing for the biologists and the anonymous user. First, 
the bivalve images are uploaded and resized, and then the 
system generates a classification report with a predicted 
class label, whereas their teeth and scars are determined 
with colored circles and rectangles. The classification and 
detection are based on the base-line network models that 
are deployed by the model creators. Second, the users 
answer three questions and donate their bivalve image if 
they need it. The questions are as follows: 
 
 

 

 

 
Fig 4. Example of a bivalve tooth: (a) a clearly partitioned tooth with a single delimiter; (b), (c), and (d) an unclearly 
partitioned tooth containing multiple delimiters. 
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Table 4.  Layers of MobileNet architecture.  
 

# Type/Stride Filter shape Input size 

1 Conv/s2  3 x 3 x 3 x 32 224 x 224 x 3 

2 Conv dw/s1  3 x 3 x 32 dw 112 x 112 x32 

3 Conv/s1  3 x 3 x 32 x 64 112 x 112 x32 

4 Conv dw/s2  3 x 3 x 64 dw 112 x 112 x 64 

5 Conv/s1  1 x 1 x 64 x 128 56 x 56 x 64 

6 Conv dw/s1  3 x 3 x 128 dw 56 x 56 x 128 

7 Conv/s1  1 x 1 x 128 x 128 56 x 56 x 128 

8 Conv dw /s2  3 x 3 x 128 dw 56 x 56 x 128 

9 Conv/s1  1 x 1 x 128 x 256 28 x 28 x 128 

10 Conv dw/s1  3 x 3 x 256 dw 28 x 28 x 256 

11 Conv/s1  1 x 1 x 256 x 256 28 x 28 x 256 

12 Conv dw /s2  3 x 3 x 256 dw 28 x 28 x 256 

13 Conv/s1  1 x 1 x 256 x 512 14 x 14 x 256 

14 5 x Conv dw/s1  3 x 3 x 512 dw 14 x 14 x 512 

 Conv/s1  1 x 1 x 512 x 512 14 x 14 x 512 

15 Conv dw/s2  3 x 3 x 512 dw 14 x 14 x 512 

16 Conv/s1  1 x 1 x 512 x 1024 7 x 7 x 512 

17 Conv dw/s2  3 x 3 x 1024 dw 7 x 7 x 1024 

18 Conv/s1  1 x 1 x 1024 x 1024 7 x 7 x 1024 

19 AVG Pool/s1  Pool 7 x 7 7 x 7 x 1024 

20 FC/s1  1024 x 1000 1 x 1 x 1024 

21 Softmax/s1 Classifier 1 x 1 x 1000 

 

 
 
Fig. 5. The bivalve classification system architecture.   
 
 
1) Do the class labels conform to your expectations 

(Yes/No)? 
2) Please specify the expected class label and give the 

reasons (if it does not conform to your expectation). 
3) Would you like to donate the uploaded image for 

further experiments? 
 

All the donated bivalve images are collected in the 
bivalve image repository [42]. They will be manually 
rechecked on the class label by the biologists once again 
and taken for training the network model. The 
deployment of the new-weight network models will be 
performed in the future by the model creators, and these 
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processes are executed when the number of images is 
enough. 
 

5. Discussion and Conclusion 
 
This paper introduces a novel bivalve classification 

framework based on Convolutional Neural Networks. 
The primary objective of this research is to identify an 
appropriate deep-network model for our bivalve image 
dataset. Experimental results revealed that the ResNeSt 
network is not well-suited for our dataset due to the small 
size of the bivalve population. In contrast, the MobileNet 
network yielded the highest accuracy at 72%.  

Two critical factors were found to directly influence 
accuracy: 1) localized bias in image labeling, and 2) lower-
resolution images captured by a camera at an out-of-town 
biology laboratory, as opposed to those taken in the 
biology laboratory. These challenges stem from a small 
and imbalanced dataset. To address these issues, we 
conducted data augmentation, particularly focusing on the 
analysis of teeth and scars, which are intricate due to tiny 
portions and overlapping features. 

Furthermore, our findings correlate with the 
observations made by biologists. Biologists demonstrated 
proficiency in visually classifying Ensidens species such as 
E. ingallsianus (class labeled A) and E. telus (class labeled B). 
In contrast, distinguishing between Ensidens species like  
E. dugasti (class labeled E) and E. sagittarius (class labeled 
F) proved notably challenging due to their striking 
resemblance. It is worth noting that the experiment faced 
limitations stemming from the relatively small dataset, 
which impacted the overall classification accuracy. 

The framework was implemented with MobileNet for 
the bivalve classification, and YOLO4 was applied for the 
interesting object detection. It is an alternative tool for the 
preliminary morphometric analysis of the bivalve images. 
Although the accuracy rate of the class prediction is not 
outstanding, the framework can nonetheless preliminarily 
classify the label according to the classification of the 
biologists. The object detection of the interesting features 
on the bivalve images is reasonable as well. However, the 
morphometric analysis requires more precise classification, 
for which the classifier must be trained with a large 
training dataset.  

Therefore, automated land-marking should be better 
for biologists to be able to decrease the morphometric 
analysis time. The least it could do is mark landmarks on 
bivalve images, while the classification should be the 
responsibility of the analysis tool. Our ongoing work is 
directed towards implementing the framework enabling to 
generate the land-marking with multiple spots on the 
interesting features for each bivalve image automatically 
and can export and import the land-marked images dataset 
into the morphometric analysis tools such as MorphoJ and 
GeoMorph. We will expand the input bivalve dataset so 
that it covers not only the right-valve images but also the 
left-valve and inner and outer sides. We will extend the 
MorhpoNet framework for analyzing the univalve 
freshwater snail named Pila globosa. The univalve images 

will be recorded by a video recorder, and the video taken 
increases the dataset size with multiple frames and 
heterogeneous image positions.   
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Fig. 6. Screenshot of the MorphoNet application. 
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