
 

 
 
Article 

 

Potato Leaves Blight Disease Recognition and 
Categorization Using Deep Learning 
 
Jesmin Akther1,a, Al-Akhir Nayan2,b,*, and Muhammad Harun-Or-Roshid3,c 
 

1 Department of Computer Science and Engineering (CSE), European University of Bangladesh (EUB), 
Dhaka, Bangladesh 
2 Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 
10330, Thailand 
3 Softrobotics Bangladesh Limited, Dhaka, Bangladesh 
E-mail: ajesminnipu1@gmail.com, b,*asquiren@gmail.com (Corresponding author), 
cmd.parvez28@gmail.com 

 
Abstract. Potato cultivation is vital in numerous countries, contributing to food security and 

economic value. However, crop diseases, particularly early and late blight, pose significant 
challenges to potato production. The accurate diagnosis of these diseases remains unclear to many 
individuals. This study leverages the increasing penetration of smartphones and recent 
advancements in deep learning to develop a Convolutional Neural Network (CNN) model for real-
time detection of early and late blight in potatoes. The dataset was pre-processed by normalizing, 
dividing, and extracting images using the Python data processing library. The approach incorporates 
slight variations in the network layers to optimize the model's performance. The method was 
evaluated using classification optimizers, metrics, and loss functions and further refined using layer-
by-layer TensorBoard analysis. Hyperparameters such as features, labels, validation split, batch size, 
and training epochs were carefully selected. The final model demonstrated promising results, 
achieving an accuracy of 96.09% on the survey dataset. Experimental findings highlight the 
approach's potential for automatically detecting both early, late blight and healthy, thereby 

significantly improving the accuracy of disease diagnosis. 
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1. Introduction 
 
Potatoes are a significant agricultural commodity in 

Bangladesh, with a high export volume of over 27,811.6 
tons in 2013-14, making it the world's fourth-largest food 
crop [1]. However, the potato industry faces challenges 
due to the prevalence of destructive diseases such as 
brown rot, potato tuber moth, and blight disease. Among 
these, late blight is the most common and devastating 
fungal disease, causing substantial losses ranging from 25% 

to 57% in crop yield within Bangladesh. On the other 
hand, early blight manifests as small, circular, or irregular 
dark brown to black spots on older leaves, gradually 
enlarging up to 3/8 inch in diameter and assuming 
angular shapes [2]. Late blight causes the leaves and 
tubers of potatoes to decay and turn brown or black 
quickly (Fig. 1). It affects both the health and appearance 
of the potato plants. Flour-like spots on the undersides 
of leaves can identify infections. If left unchecked, 
infected plants can perish within days [2].  

      

 
a) Early 

blight potato 

 
(b) Early 

blight leaf 

 
(c) Late 

blight 
potatoes 

 
(d) Late 

blight leaf 
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Fig. 1. Affected Potatoes and Leaves. 
 
Computer vision has witnessed significant progress 

recently, as demonstrated by benchmarks like the 
PASCAL VOC Challenge and ILSVRC. One particularly 
advanced area is deep convolutional neural networks 
(CNNs). These networks have achieved remarkable 
results, reducing classification error rates from 16.4% to 
3.57%. The availability of large-scale annotated datasets 
has played a crucial role in enabling the accurate 
identification and classification of plant diseases using 
CNNs. Furthermore, transfer learning has proven 
effective using pre-trained CNN models such as 
VGGNet, ResNet, and InceptionNet, trained initially on 
ImageNet. By fine-tuning these models for plant leaf 
disease datasets, we can enhance performance while 
reducing the training requirements. These advancements 
have opened new possibilities for accurate and efficient 
plant disease detection and classification. 

Previous transfer learning-based studies on potato 
blight disease classification have shown unsatisfactory 
performance due to several factors, such as limited 
training data, annotation errors, lack of interpretability, 
generalization issues with unseen variations, and a 
dependency on image quality. These drawbacks have 
hindered the accurate detection and classification of 
potato blight diseases. We employed a convolutional 
neural network (CNN) approach to address the 
challenges encountered in previous studies. Our dataset 
comprised 4,000 images representing various potato crop 
species, including diseased and healthy plants. We 
experimented with different layer sizes and utilized 
TensorBoard visualization to fine-tune the model 
parameters and improve accuracy in predicting the 
correct potato-disease pair. After a thorough evaluation, 
our best-performing model achieved an impressive 
accuracy of 0.9609 (96.09% overall accuracy). These 
results highlight the technical feasibility of our approach 

and lay the foundation for developing a smartphone-
assisted plant disease diagnosis system. 

The subsequent sections of this paper are organized 
as follows: section 2 provides a comprehensive literature 
review, highlighting the limitations and challenges 
associated with disease classification methods. In section 
3, we present the experimental setup for potato disease 
detection. Section 4 focuses on disease classification and 
the development of the proposed model. Finally, in 
section 5, we summarize the conclusions drawn from this 
research and outline potential future directions in the 
field. 

 

2. Related Works 
 
Several studies were conducted to classify plant leaf 

diseases using CNN and deep learning. One study 
explored the application of deep CNNs and pooling 
techniques for identifying rice diseases, achieving an 
impressive accuracy of 95.48% [3]. The experiment 
evaluated different pooling methods, such as max 
pooling, mean pooling, and stochastic pooling. Results 
indicated that stochastic pooling outperformed the other 
ways in terms of accuracy. However, the study did not 
address the optimal number of layers and neurons 
required for optimal performance, highlighting a 
limitation in the research. Additionally, the availability of 
high-quality disease samples and the need for faster and 
more efficient algorithms were identified as areas for 
improvement. 

Jihen Amara et al. [4] proposed a deep learning-
based approach for classifying banana leaf diseases, 
specifically targeting Banana Sigatoka and Banana speckle. 
Their system effectively handled challenging conditions, 
including variations in illumination, complex 
backgrounds, and various image resolutions, sizes, and 
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orientations. Although the approach demonstrated high 
accuracy, the study did not provide precise accuracy 
percentages or timing efforts, which is a limitation that 
needs to be addressed. 

Hughes et al. [5] demonstrated the technical 
feasibility of using deep learning approaches to identify 
diseases in 14 crop species with 26 diseases or health 
conditions. They employed a deep learning model on a 
large dataset comprising 54,306 images. However, the 
complexity of extracting relevant features from the 
pictures was acknowledged as a limitation in the research. 

Usama Mokhtar et al. [6] proposed a method for 
identifying healthy and infected rice leaves, achieving an 
impressive accuracy of 99.83%. Their approach involved 
preprocessing the input image by removing the 
background and eliminating noise using erosion 
techniques. Texture feature extraction was performed 
using the Gray Level Co-occurrence Matrix (GLCM) and 
classification using a Support Vector Machine (SVM). 
However, the study did not focus on distinguishing 
between different types of diseases or providing detailed 
information about the identified condition. 

Zhang et al. [9] studied Multi-Task Learning for 
Food Identification and Analysis using deep CNN 
networks. While the study demonstrated the potential of 
deep CNNs for disease recognition, using Support 
Vector Machine (SVM) classifiers raised concerns about 
the process's time-consuming and less automated nature. 
Additionally, issues related to data security arose when 
user-provided data was used. 

Most of the studies showed data and method issues 
and achieved unsatisfactory results. In this study, we have 
tried to overcome those issues by incorporating max 
pooling, experimenting with various architectures, and 
adjusting layers and neurons. Adding convolutional layers 
of varying sizes solved the feature extraction complexity 
issue. Data augmentation techniques increased data 
diversity, leveraging learned feature representations from 
our dataset, reduced complexity, and explored different 
architectures. 
 

3. Methodology 
 

3.1. Dataset Collection and Processing 
 

The dataset consists of approximately 3,500 images, 
with 2,940 pictures allocated for training purposes, while 
the remaining photos are reserved for testing. The data 
collection process focused on two villages between two 
districts, namely Shimulia and Kajir Pagla Louhajong, 
located in Noakhali, Sonaimuri-3827 and Dhaka, 
Munshigang-1530. The images in the dataset were 
captured manually using smartphones, including devices 
such as iPhone 6, iPhone 7, Alcatel, and Redmi Note 10s, 
representing both Android and iOS platforms. The 
images encompass both healthy potato leaves and those 
affected by potato blight disease. Figure 2 showcases the 
survey datasets containing images of potato blight disease 
and healthy leaves, visually representing the dataset 
composition. 

    

    
Fig. 2. Field Survey of Potato Leaves. 

 
The images were captured in the RGB color space 

and saved in JPG format. For compatibility with CNN, 
image size, color, features, and capacity [11] were 
standardized. The images were modified using online 
web applications such as BulkreSize and the default 
editor in Windows, resulting in a size of 224 x 224 pixels 
and a noise-free JPG format. To preprocess the data, 
cloud storage and GPU support were utilized. The 
dataset was divided into three classes for training and 
testing: Early Blight, Late Blight, and Healthy. The test 
class data was used to evaluate the performance of the 
model. The training class contained 980 images each for 
early blight, late blight, and healthy categories. 

The image data was processed using Python 
programming in Google Colab. The images were plotted 
and checked for a resolution of 224 x 224 pixels using 

libraries such as OpenCV and Matplotlib. They were 
then converted into image arrays of size 70 x 70 pixels 
and read in single-channel format. Care was taken to 
ensure all images were unique and not duplicates of other 
classes. The data were indexed and converted into 
categorical directories to facilitate training. The training 
data was shuffled using the random library [13]. The 
shuffle library was imported to mix the training data. 
Indexing provided validation results represented as 0 or 1. 

Before deploying CNN, each image's features and 
labels were saved in the cloud. The image arrays were 
reshaped using a Python function: Data = image array * 
(-1, 70, 70, 1). The last number, 1, indicates that the 
images are grayscale. After reshaping the features, both 
the features and labels were normalized. Each pixel value 
was divided by 255. 
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3.2. Proposed Model 
 

This study employed a sequential model [14] with 
two convolutional layers and an Adam optimizer, 
utilizing features and labels stored in the cloud. The 
model was trained with a batch size of 32, and validation 

data was consistently used throughout the training 
process. TensorBoard and GPU support were leveraged 
to optimize the model. The final model was then 
employed to predict the selected data. Figure 3 illustrates 
the proposed architecture of the CNN model. 

 
Fig. 3. Proposed CNN Model Architecture. 

 
The CNN model comprises a sequential model with 

two hidden layers, incorporating Conv2D and Pooling 
layers. The first hidden layer performs convolution on 
the input data using 256 filters, applying padding with 
strides and a kernel of size 3x3. It is followed by a Leaky 
ReLU activation function and max pooling with a 
window size 2x2. This architecture aims to extract 
relevant features from the input data, address the dying 
ReLU problem, and reduce spatial dimensions through 
max-pooling before applying the ReLU activation 
function. 

The second hidden layer mirrors the structure of the 
first hidden layer, conducting convolutional operations to 
extract features further. The data is then flattened into a 
one-dimensional format before passing through a fully 
connected dense layer with 512 neurons. Finally, it goes 
through another thick layer with a single neuron utilizing 
sigmoid activation, generating a probability score 
between 0 and 1. This score represents the model's 
prediction. The model is compiled with Categorical 
cross-entropy loss and the Adam optimizer, while 
performance evaluation is based on accuracy. 

During training, the model was trained on the input 
data (trained features) and target labels (trained labels) for 

twenty epochs, utilizing a batch size of 32. A validation 
split of 30% was employed to monitor generalization and 
assist in detecting overfitting. The validation data is also 
instrumental in tuning hyperparameters through 
TensorBoard evaluation before selecting the final model. 
 

4. Result and Discussion 
 
4.1. Training Environment Setup 

 
The proposed techniques and algorithms were 

employed to train the model, enabling it to learn patterns 
and features associated with different classes of potato 
blight disease. The training process involved optimizing 
the model's parameters for accuracy and performance. 
The training was conducted on a dataset, utilizing a GPU 
with a training speed of 1.86 IT/S for the early blight 
image class and 2.66 IT/S for the late blight image and 
healthy leaves classes. The GPU efficiently utilized its 
memory for accelerated image generation, stored in a 
frame buffer designed for display output. In this case, the 
training was performed on a laptop as the display device, 
as illustrated in Fig. 4. 

 
100%|██████████| 980/980 [00:02<00:00, 

468.06it/s] 
100%|██████████| 980/980 [00:02<00:00, 

456.08it/s] 
100%|██████████| 980/980 [00:10<00:00, 

89.51it/s] 
Fig. 4. Speed During Training. 
 

The dataset was divided into training and validation 
sets, comprising 2940 samples. The division of samples 
between the two sets was not specified. The dataset 
underwent processing in three stages, each denoted by a 
progress bar. The processing speeds for the first, second, 
and third bars were approximately 468.06, 456.08, and 
89.51 samples per second, respectively. Of the 2940 

samples, 2,940 were utilized for training, and the Shuffle 
library was imported to randomize the training data. The 
randomized training data list was then fed into the CNN 
model to ensure the reliability and accuracy of the 
training process. 
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4.2. CNN Deployment 
 

Following three epochs of training, we achieved a 
validation accuracy of 78% on the dataset. To further 
enhance the validation accuracy, we decided to rerun the 
CNN deployment and train the model on 2,100 samples 
while validating it on 900 samples. The dataset was 

divided such that 30% was allocated for validation and 
70% for accuracy testing, enabling us to conduct a more 
comprehensive analysis. It is important to note that the 
model presented at this stage is not the final version. 
This phase aimed to evaluate the training and testing data 
splitting results, illustrated in the Accuracy and Loss 
graphs depicted in Fig. 5. 

 
(a) Accuracy Graph 

 
(b) Loss graph 

Fig. 5. Data Accuracy and Loss graph. 
 
Figure 5 comprises two subplots: (a) Accuracy 

Graph and (b) Loss Graph. In Graph 5 (a), the validation 
accuracy closely aligns with the training accuracy, 
indicating that the model achieved an accuracy of over 80% 
after three epochs of training. Conversely, Graph 5 (b) 
represents the epochs on the horizontal axis and the loss 
percentage on the vertical axis. The training loss is 
depicted in blue, while the validation loss is shown in red, 
peaking at approximately 75%. A lower loss value 
indicates better validation of the data. After three epochs, 
the training loss is around 40%, while the validation loss 
is approximately 50%. 
 
4.3. Analyze and Optimize Model 

 
Various metrics such as accuracy, precision, recall, 

and F1 score were calculated to assess the model's 
performance in classifying potato blight disease samples. 

Visualizations and graphs were employed to gain insights 
into the model's decision-making process. Furthermore, 
the model underwent optimization by fine-tuning its 
hyperparameters. Techniques like grid or random search 
were utilized to find the optimal combination of 
hyperparameters that improved the model's performance. 
The optimization process aimed to enhance the model's 
accuracy and robustness. This study evaluated the 
model's accuracy using the TensorBoard callback. The 
top 10 layers were analyzed using TensorBoard to 
determine the best layers for the model. Based on this 
evaluation, three layers were selected for further analysis, 
and their corresponding validation accuracy is presented  
in Table 1. Among these layers, the "1-conv-64-nodes-0-
dense-1583741819" layer achieved an accuracy of 90% 
and a validation accuracy of 88%. The optimization 
efforts were primarily focused on adjusting the layers and 
parameters to finalize the model. 

 
Table 1. Three best layers table. 

 

Layers Validation Accuracy Accuracy 

1-conv-64-nodes-0-dense-1583741819 88% 90% 

2-conv-256-nodes-0-dense-1583741819 83% 86% 

3-conv-64-nodes-0-dense-1583741819 78% 81% 

 
In this study, TensorBoard was incorporated into 

Keras using a Keras callback. The TensorBoard callback 
was employed to analyze the model's accuracy hierarchy, 
including adding an activation function to the dense layer. 
The log_dir argument was utilized to specify the 

directory path where the log files were saved for 
subsequent parsing in TensorBoard. Table 2 summarizes 
the model implementation using Keras with 64 
convolutional layers. The provided information reflects 
the summary of a small neural network model trained 
using Keras, as evident from the callback history. 
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Table 2. Model Summary. 
 

Model: Sequential   

Layer(type) Output Shape Param # 

Conv2d(Conv2D) (None,68,68,64) 2560 

Leaky_re_lu(LeakyReLU) (None,68,68,64) 0 

Max_pooling2d(MaxPooling2D) (None,34,34,64) 0 

Conv2d(Conv2D) (None,32,32,64) 590080 

Leaky_re_lu(LeakyReLU) (None,32,32,64) 0 

Max_pooling2d(MaxPooling2D) (None,16,16,64) 0 

flatten (Flatten) (None, 65536) 0 

dense (Dense) (None, 64) 4194368 

dense (Dense) (None, 1) 65 

activation(Activation) (None, 1) 0 

 
Table 3. Model Validation Accuracy. 
 

Total params: 4,787,073 

Trainable params: 4,787,073 

Non-trainable params: 0 

Epoch 1/3 
65/65 - 6s - loss: 0.3477 - accuracy: 0.6667 - val_loss:  0.0297 - val_accuracy: 0.7879 - 6s/epoch - 54ms/step 

Epoch 2/3 
65/65 - 3s - loss: 0.3337 - accuracy: 0.6223 - val_loss:  0.0207 - val_accuracy: 0.7879 - 3s/epoch - 31ms/step 

Epoch 3/3 
65/65 - 2s - loss: 0.3007 - accuracy: 0.6223 - val_loss:  0.0199 - val_accuracy: 0.7879 - 2s/epoch - 30ms/step 

<keras.callbacks.History at 0x7fdfb015a4d0> 

 
The training process involved three epochs, each 

representing a complete iteration through the training 
dataset. Throughout the training, the model's loss and 
accuracy were continuously monitored. The loss value 
indicates the model's performance, with lower values 
suggesting better performance. Accuracy, however, 
measures the proportion of correctly classified samples 
during training. 

For each epoch, the model underwent training on 
the training dataset and evaluation on the validation 
dataset. Table 3 showcases the training and validation 
metrics for selected epochs, offering insights into the 
model's performance progression. The model's accuracy 
remains steady at 0.6223 throughout the training process, 

while the loss slightly decreased from epoch 1 to epoch 3. 
However, the validation accuracy remained constant at 
0.7879, indicating a 78% validation split. 

To optimize the model, various parameters were 
adjusted, such as layer size and node count. Different 
configurations were evaluated, and the validation 
accuracy was employed as the benchmark for 
comparison. Increasing the layer size to 128 improved 
performances, achieving an 80% validation accuracy. 
Further experimentation with a layer size of 256 yielded 
even better results, reaching approximately 95% 
validation accuracy. Table 4 presents the parameters used 
during practical use, including loss, optimizer, metrics, 
batch size, epoch, and validation split. These parameters 
were fine-tuned to optimize the model's performance. 
 

Table 4. Parameter table. 
 

Function Name Keyword Params Measure Value 

Compile Loss  
Optimizer  
metrics 

Percentages  
Adam  
Percentages 

Cov2D Leaky ReLU alpha 
Strides 
Padding 

0.2 
1 
valid 

Model Fit Feature 
label 
Batch Size 
Epoch 
Validation Split 

Horizontal Pixel values 
Vertical Pixel values 
32 
20 
0.3% 
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During the training process, the model's 
performance was assessed using essential metrics such as 
loss, accuracy, validation loss, and validation accuracy. 
The results for the top five layers are displayed in Table 5, 

and a corresponding bar graph in Figure 6 illustrates the 
model's performance across different epochs. 

 

 
Table 5. Five best layer result. 

 

Loop Loss Accuracy Val_loss Val_accuracy 

16/20 0.0633 0.9786 0.1573 0.9418 

17/20 0.0672 0.9745 0.1220 0.9518 

18/20 0.0622 0.9724 0.1376 0.9590 

19/20 0.0391 0.9878 0.1305 0.9601 

20/20 0.0173 0.9949 0.1439 0.9609 

 

 
Fig. 6. Complete Model Visualization in Bar Graph. 

 
Figure 6 provides a visual representation of the 

metrics, namely loss, accuracy, validation accuracy, and 
validation loss, using distinct colors: blue for loss, orange 
for accuracy, green for validation accuracy, and red for 
validation loss. The left vertical margin depicts the values 
in percentages, while the bottom vertical axis 
corresponds to the last five epochs out of a total of 20 
epochs. Starting from epoch 16, a gradual increase in 
validation accuracy can be observed, reaching 
approximately 96%, while the accuracy remains 
consistently above 99%. The validation loss shows 
fluctuations during these five epochs, with the loss going 
to its minimum in the final epochs. 

TensorBoard evaluation output was utilized and 
visually represented in Fig. 7 to assess the model's 
predictions. This evaluation was performed on 30% of 
the available data, and the results were compared with 
TensorBoard. The progression of accuracy and loss over 
epochs is illustrated in Figs. 7(a) and 7(b), respectively. 
Furthermore, Figs. 7(c) and 7(d) showcase graphical 
representations of accuracy and loss obtained without 
employing TensorBoard. The results from the model's 
predictions and the monitoring of its performance using 
TensorBoard demonstrate the effectiveness and progress 
of the model throughout the training process. 
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(a) Epoch accuracy 
 

 
(b) Epoch loss 
 

 
(c) Accuracy Graph 
 

 
(d) Loss graph 
 

 
(e) Accuracy Graph 

 
(f) Loss graph 

 
Fig. 7. Complete Model Visualization in TensorBoard with Graphs. 
 

In Fig. 7(e), the percentage accuracy is represented 
on the vertical axis, while the horizontal axis corresponds 
to the epochs. The graph showcases a blue line indicating 
the progress of model training accuracy, which reaches 
93%. Additionally, a red line represents the validation 
accuracy, which reaches 96%. Figure 7(f) exhibits the loss 
in percentage on the vertical axis, with the epochs 
displayed on the horizontal axis. The graph features a 
blue line representing the training loss, 0.2, and a red line 
representing the validation loss, slightly above 0.24. To 
monitor the model's progress, the same TensorBoard 
backend is reused by issuing a command, enabling 
continuous tracking of the model's performance. 

 
4.4. Proposed Model's Performance on PlantVillage 

Dataset 
 
The dataset used in this study, PlantVillage, consists 

of 54,303 images of leaves that have been categorized 
into 38 groups based on species and disease. These 
categories encompass a range of both healthy and 
diseased samples. For our specific analysis, we focused 
on three classes from this dataset: potato healthy, early 
blight, and late blight. The outcomes of our model's 
performance on this dataset are presented in Table 6 and 
Fig. 8. 
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Table 6. Five Best Layer Results of Platvillage Dataset. 
 

 loss accuracy val_loss val_accuracy 

16/20 0.0428 0.9847 0.4443 0.8748 

17/20 0.0439 0.9840 0.2562 0.9285 

18/20 0.0607 0.9784 0.1690 0.9431 

19/20 0.0562 0.9819 1.0119 0.8098 

20/20 0.0434 0.9833 0.6378 0.8699 

 

 
Fig. 8. Complete Model Visualization in a Bar graph for the Plant Village Dataset. 

 
Figure 8 visually represents different metrics, such as 

loss, accuracy, validation accuracy, and validation loss, 
using distinct colors: blue for loss, orange for accuracy, 
green for validation accuracy, and red for validation loss. 
The left vertical margin represents the values in 
percentages, while the bottom vertical axis focuses on 
the last five epochs out of a total of 20 epochs. Starting 
from epoch 16, the validation accuracy exhibits 
fluctuations throughout the remaining epochs, reaching 
approximately 87%, while the accuracy remains 
consistently high at around 98%. On the other hand, the 

validation losses experience a decline from epoch 16 to 
epoch 18, followed by a sharp increase in the subsequent 
epoch, reaching nearly 99%. However, there is a sudden 
decrease in the final epochs, resulting in a value of 64% 
within the five selected epochs. The loss bar stabilizes in 
the concluding epochs, indicating a constant value. 

We compare our model’s performance on the 
surveyed samples (Table 5) with the PlantVillage dataset 
(Table 6) using loss and validation accuracy as metrics. 
Figure 9 shows the overall evaluation of our model. 

 

 
Fig. 9. Loss vs. Accuracy for plant Village Dataset. 
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Figure 9 visually illustrates the performance of 

different metrics, specifically the loss and validation 
accuracy, as presented in Tables 5 and 6. For Table 5, the 
loss metric is represented by blue, while a dull orange 
indicates the validation accuracy. For Table 6, the loss 
metric is in green; the validation accuracy is shown in 
pink. The left vertical margin of the graph represents the 
values in percentages, while the bottom vertical axis 
focuses specifically on the last five epochs out of the 
total 20 epochs. It is evident that our model, trained on 
our dataset, achieved minimal loss from epoch 16 to 
epoch 20, steadily reaching the highest validation 

accuracy above 96%. The PlantVillage dataset 
experienced an accuracy of 87% and higher loss values 
compared to our model's performance. 

 
4.5. Experiment Analysis on Related Approach 

 
During our investigation, we extensively studied the 

dataset consisting of potato leaves and employed it for 
training and testing. Additionally, we explored the 
effectiveness of various models, including VGG-16, 
Inception V3, ResNet50, and Efficient Net, by training 
them for twenty epochs. 

 
Table 7. The Surveyed Dataset with Pre-Trained Models. 

 
Pre-Trained Models Dataset Epoch Loss Accuracy Validation Loss Validation 

Accuracy 

VGG-16 Own data 20 0.2508 0.8980 0.8135 0.6939 

Inceptionv3 Own data 20 1.2156 0.7834 0.8139 0.6291 

ResNet50 Own data 20 0.1246 0.9784 0.7129 0.6480 

EfficientNet Own data 20 0.0567 0.9854 1.1020 0.5000 

 
All the models performed relatively poorly compared 

to our CNN model validation accuracy. The visual 
comparisons are shown in Figure 10. 

 
Fig. 10. Complete Model Visualization in a Bar graph for Plant Village Dataset. 

 
Figure 10 illustrates the behavior of various metrics 

using different colors, such as loss, accuracy, validation, 
and validation loss. The loss is represented in blue, 
accuracy in orange, validation loss in green, and 
validation accuracy in red. The left vertical margin 
denotes the values in percentages, while the bottom 
vertical axis focuses specifically on the last five epochs 
out of the total 20 epochs. These metrics offer valuable 
insights into the performance of the pre-trained models 
on the surveyed dataset, showcasing their loss values, 
accuracies, and generalization capabilities on a separate 
validation dataset. 
 

5. Conclusion  
 
Developing a Convolutional Neural Network (CNN) 

model for real-time detection of early and late blight in 
potatoes has shown promising results. By leveraging 
smartphones and recent advancements in deep learning, 
this study addresses the challenges of crop diseases and 
offers a potential solution to improve potato production. 
Through the dataset preprocessing and optimization of 
the network layers, the model achieved an impressive 
accuracy of 96.09% on the survey dataset. These 
experimental findings emphasize the potential of this 
approach in automatically detecting both early and late 
blight, as well as healthy potatoes, thereby significantly 
enhancing the accuracy of disease diagnosis. The 
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application of this technology can contribute to food 
security and economic value in countries where potato 
cultivation is crucial. The possibility of creating advanced 
models that can diagnose and treat plant diseases directly 
on smart devices exists in future endeavors. This 
endeavor may encompass exploring and experimenting 
with novel architectures to improve the model's 
performance when trained on specific datasets.  
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