
  

Plant Science Today, ISSN 2348-1900 (online) 

OPEN ACCESS 

 

ARTICLE HISTORY 

Received: 31 March 2023 
Accepted: 07 August 2023 

Available online 
Version 1.0 : 27 September 2023 

 

 

 

Additional information 
Peer review: Publisher  thanks Sectional Editor and the 
other anonymous reviewers for their contribution to 
the peer review of this work. 
 
Reprints & permissions information is available at 
https://horizonepublishing.com/journals/
index.php/PST/open_access_policy 
 
Publisher’s Note: Horizon e-Publishing Group 
remains neutral with regard to jurisdictional claims 
in published maps and institutional affiliations. 
 
Indexing: Plant Science Today, published by 
Horizon e-Publishing Group, is covered by Scopus, 
Web of Science, BIOSIS Previews, Clarivate 
Analytics, NAAS,UGC Care etc.  
See https://horizonepublishing.com/journals/
index.php/PST/indexing_abstracting 
 
Copyright: © The Author(s). This is an open-access 
article distributed under the terms of the Creative 
Commons Attribution License, which permits 
unrestricted use, distribution and reproduction in 
any medium, provided the original author and 
source are credited (https://creativecommons.org/
licenses/by/4.0/) 

 
CITE THIS ARTICLE  
Sazali S A, Shamsudin N A A,Rafii M Y,  Ab Razak M 
S F, Yunus M F,  Che Yah F N, Ahmad F, Salleh M S. 
Genetics, Physiological Mechanism and Breeding 
for Tolerance against Submergence, Salinity, and 
Saline-Submergence Stress in Rice (Oryza sativa 
L.). Plant Science Today (Early Access). 
https://doi.org/10.14719/pst.2536 
     
     

Abstract 

Rice is a staple food and one of the most crucial crops globally, providing 

sustenance for more than half of the world's population. Climate change has 

a crucial impact on the agricultural sector, particularly rice cultivation, due 

to the increase in abiotic stress incidences. Salinity is one of the most severe 

abiotic stresses on rice production globally. Salt stress significantly reduces 

growth performance, affecting various metabolic and physiological 

processes in rice. Submergence is another type of abiotic stress affecting rice 

growth and yield. Recently, a newly emerged abiotic stress called saline 

submergence may also jeopardize rice production. Seawater intrusion into 

rice fields located nearby coastal areas may cause saline flash floods, 

especially during monsoon season. Rice cultivated in coastal areas is prone 

to saline-submergence stress, leading to a significantly lower yield. Although 

Sub1 and Saltol QTLs are widely used in developing rice cultivars with 

submergence and salinity tolerance, there is a lack of studies conducted to 

explore the potential performance of breeding lines with Sub1 and Saltol 

QTLs under saline-submergence stress. It has been hypothesized that the 

introgression of Sub1 and Saltol QTLs into elite rice cultivars might result in 

potentially tolerant breeding lines to saline-submergence stress. Further 

breeding projects, however, need to be conducted to prove this postulation. 

The present mini-review deals with genetics, physiological mechanisms, and 

breeding achievements for submergence and salinity-tolerant rice while at 

the same time highlighting saline-submergence as an emerging type of 

abiotic stress in rice cultivation. 
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Introduction 

Climate change is becoming a global concern, especially in the agricultural 

sector, affecting food security. The latest report by the Intergovernmental 

Panel on Climate Change (IPCC) revealed that climate change has reduced 

food security, affected water security, increased global temperature, glacier 

melting, and global sea rice, hampering efforts to meet Sustainable 

Development Goals (1). Indeed, global warming is causing glaciers and ice 
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sheets around the planet to melt leading to the raising of 

sea levels (2). This is corroborated by the latest report by 

IPCC which predicts that global temperature was to be 1.1°

C warmer in the years 2011-2020 as compared to 1850-

1900 (1).  

 As a result of global warming and glaciers melting, 

the frequency of floods increases leading to submergence 

stress on rice fields, particularly in the rainfed lowlands of 

the South and Southeast Asia region (3). Taking Malaysia 

as an example, the rainfall record for 40 years, from 1978 

until 2017, indicated an uptrend in the average annual 

rainfall every decade, with the East Coast of Malaysia 

receiving a high amount of rainfall during the northeast 

monsoon season (4). The previous report indicated that 

about 40,828.28 hectares of rice fields in Malaysia were 

destroyed by flood with a total loss of 128.80 million 

ringgits, referring to data recorded between 2017 and 2021 

by the Ministry of Agriculture and Food Industry (MAFI), 

Malaysia (4). On a global view, it was projected that the rice 

bowl of the world mainly in the Indian subcontinent and 

parts of China might experience increased precipitation 

and flooding by the year 2030 (5). Kurniasih et al. (6) also 

reported that rice production in Indonesia was affected by 

climate change such as flooding and salinity.  

 In addition, coastal erosion is recently becoming 

one of the rising problems (7). Azid et al. (8) defined coastal 

erosion as the physical wearing of surface materials by 

currents, wave action, and tidal currents. Heavy storms 

would create high tides and strong waves, damaging the 

beach and reducing the sea bank (9). Once the sea bank is 

degraded, the seawater may overflow into low-lying areas, 

leading to saline water flooding (10). According to Kumar 

et al. (11), saline water is projected to penetrate further 

inland, drastically altering the topography of the deltas 

and coastal plains by the year 2050, affecting around 50 

percent of global arable lands. Rice, however, is 

susceptible to abiotic stresses such as drought, flood, 

salinity, and saline submergence among others (12,13). For 

instance, once the salty water gets into the rice field, salt 

may ruin the land when the flood subsides. Prolonged 

exposure to saline water floods might cause adverse 

effects on soil and rice productivity (9). Seawater intrusion 

into rice fields near coastal areas during the monsoon 

season may create a new type of abiotic stress known as 

saline submergence (10). This mini-review will emphasize 

the genetics, physiological mechanism, and breeding 

achievement for submergence and salinity-tolerant rice 

whilst simultaneously highlighting saline submergence as 

an emerging type of abiotic stress in rice cultivation.  

 

Methodology  

In finding the related articles and journals, several 

academic database platforms were used such as Scopus 

(https://www.scopus.com/search/form.uri?display=basic), 

Google Scholar (https://scholar.google.com/), and Science 

Direct (https://www.sciencedirect.com/). The process 

started with the identification of related terms derived 

from the manuscript title. The list of search terms used for 

this review was rice breeding, rice and salinity, saline water 

and submergence in rice, Saltol, rice and submergence, 

Sub1, and rice abiotic stress. For this manuscript, there is 

no specific inclusion of the publications searched while the 

publications before 2005 were excluded unless for an 

important rice submergence tolerance manuscript 

published in 1996. The process continued with the 

classification of the journals and articles into specific 

objectives. Then, the summarization of the journals and 

articles was performed before the write-up of the review 

article started. Finally, Canva online software and Microsoft 

PowerPoint from Microsoft 365 were used for figure 

production. 

Effects of Submergence Stress on Rice 

In Southeast Asia, flash floods might be the most common 

flood during the monsoon season (10). Such an event may 

cause submergence stress to newly planted rice. 

Iftekharuddaula et al. (14) stated that plants' survival 

during submergence depended on the depth, duration, 

and water quality vis-à-vis the flood water's salinity level. 

Septiningsih et al. (15) reiterated that the survival rate of 

rice under complete submergence will depend on 

environmental conditions such as temperature, water 

turbidity, solar radiation, and soil fertility. Nonetheless, 

Oladosu et al. (16) mentioned that rice might escape 

submergence stress by lengthening its internode under 

complete submergence conditions. However, the affected 

plant tends to be lodged after the flood and eventually dies 

due to carbohydrate shortage, limited nutrient supply, and 

disrupted biochemical processes (9). 

 Nonetheless, other parts of Asia may suffer a 

prolonged flood ranging between two weeks or more with 

the flood water remaining in the rice field causing 

prolonged submergence of rice (17) The affected rice will 

generally end with poor tillering leading to low-yield 

production. According to Oladosu et al. (16), the affected 

submerged plants recorded a lower panicle number, 

number of grains per panicle, grain-filling percentage, and 

delays in flowering and maturity, causing a reduction in 

yield production. During submergence, limited light 

interception and absorption significantly reduced the 

photosynthetic rate of the plant (18). In addition, restricted 

gas diffusion due to stomatal closure would affect rice 

metabolism, biochemical processes, and survival under 

prolonged submergence with the older leaves incurred 

damage, and no new leaves emerged (19) Complete 

submergence also induces the production of reactive 

oxygen species (ROS) such as hydrogen peroxide, hydroxyl 

radical, and superoxide anion that, if not moderated, 

would disrupt normal cellular processes such as mitosis 

and meiosis leading to plant death (16).  

Effects of Salinity Stress on Rice 

Rice is categorized as a salt-sensitive plant and the yield of 

rice in a saline environment was substantially less than in a 

non-saline environment (20). Salinity could be regarded as 

a second to drought as significant stress decreasing rice 

production worldwide (21). Rice has a salt stress threshold 

of about 4 dS/m, and every dS/m beyond this results in a 

12% yield decrease, making rice a salt-sensitive crop (22). 

Rice's salt susceptibility varies based on its developmental 
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phase. Rice is much more tolerant to salinity during 

germination than in later phases of development (21). It 

becomes sensitive during the seedling stage, recovers a 

degree of resistance during vegetative growth, and 

becomes highly vulnerable during the reproductive stage 

(21). Salinity influences panicle length and spikelet 

quantity per panicle, delaying panicle emergence, 

flowering, and rice grain production (23). Furthermore, as 

pollen viability is reduced, salinity will affect the 

proportion of egg cells fertilized and, consequently, rice 

yield (24). 

 In addition, an excessive Na+ and Cl– ion in rice 

leaves damage the chlorophyll concentration, inhibiting 

PSII primary electron transport (25). Increased salt levels 

restrict plant development by reducing CO2 absorption, 

resulting in stomatal closure and a lower intracellular CO2 

partial pressure, which leads to a lower photosynthetic 

rate (26). During salt stress, the build-up of intracellular 

sodium ions alters the Na+/K+ ratio, affecting 

photosynthetic bioenergetic systems (25). According to 

Pattanagul and Thitisaksakul (27), the salinity will cause 

plants to suffer from osmotic inhibition and ionic toxicity. 

The osmotic inhibition and ionic toxicity occurred when 

there was a high salt concentration in water. Besides that, 

the excessive salt in the soil will allow plants to lose more 

water by transpiration, thus, the excess Na+ ion in the 

ground will be absorbed by the plant and eventually cause 

osmotic stress to the cell (25).   

Effects of Saline-Submergence Stress on Rice  

As compared to submergence and salinity stresses, the 

effects of saline water submergence stress on rice are still 

poorly documented (Table 1). However, as shown in Fig. 1., 

rice plants that were immersed in salt water may 

experience ionic and osmotic stress (i.e., high Na+ and Cl- 

concentration, low K+ concentration, imbalance Na+/K+ 

ratio, etc.) due to salinity, in addition to oxidative stress 

(i.e., limited light interception, gas diffusion, rate of 

photosynthesis, etc.) due to complete submergence. As 

reported by Sazali et al. (10) seedling growth attributes of 

rice were significantly affected under saline-submergence 

at 4, 8, and 12 dS/m. The study was carried out using 

selected rice cultivars from Malaysia mainly MR297, 

MR284, and MR253, along with a universal salinity tolerant 

check, Pokkali, and submergence tolerant check, IR64-

Sub1. The IR64-Sub1 recorded a significantly higher 

survival rate at 83% under freshwater submergence (0 dS/

m) as compared to other genotypes. However, both 

tolerant checks, IR64-Sub1 and Pokkali along with other 

genotypes were not survived under saline-submergence at 

4, 8, and 12 dS/m indicating susceptibility to saline-

submergence stress (10). In the future, additional research 

could be performed to comprehend the impact of saline 

water submergence on rice growth and development. 

Genetics, Physiological Mechanism and Breeding for 

Submergence Tolerant Rice  

During the 1970s, the International Rice Research 

Institution (IRRI) launched systematic research to identify 

submergence-tolerant germplasm with thousands of 

accessions from the international germplasm collection 

screened under complete submergence in a water tank 

(28). The screening revealed two germplasm, FR13A, and 

FR43B, originated from Odisha, Eastern India, with 

remarkable submergence tolerance (28). Xu and Mackill 

(29) also reported a sizable QTL for submergence tolerance 

in rice (known as Sub1) on chromosome 9 using the 

Random Amplified Polymorphic (RAPD) and Restriction 

Fragment Length Polymorphism (RFLP) markers from 

FR13A. In the F2–F3 population, Sub1 was found to be 

responsible for almost 70% of the phenotypic variance for 

a higher survival rate under complete submergence for 14 

consecutive days (29). Sub1 was later fine-mapped to a 

sufficiently narrow gap of chromosome 9 from RZ698 to 

C1232 to allow marker-assisted selection (MAS) using 

tightly linked markers (29). Three Sub1 clusters were then 

Abiotic Stress Key Response Trait Tolerance Reference 

Submergence 

Oxidative and 
respiration stress with 

limited gaseous 
exchange 

Survival rate, shoot elongation, leaf 
gas exchange, starch, sugar and 
chlorophyll content, grain yield, 

plant height, dry mass, number of 
tillers, and ethylene concentration 

Quiescence (14), (52) (26), (53) 

  Poor growth 
performance 

Plant height, number of tillers Escape (16) 

Salinity Low ionic homeostasis 
and delayed flowering 

Plant height, biomass, number of 
panicles, panicle length, days to 

flowering, Na+ and K+ 
concentration, grain yield, and 

- (54) 

  Low rate of 
photosynthesis 

Photosynthesis and transpiration 
rate, 

intercellular CO2 concentration, 
stomatal conductance, and number 

of filled grains 

- (55) (56) 

  
Poor growth and 

agronomic 
performance 

Plant height, survival rate, days to 
50% flowering, total biomass, 

number of effective tillers per plant, 
panicle length, spikelet fertility, 

grain yield, and Na+/K+ ratio 

- (42) (57), (58) 

Saline water 
submergence 

Poor growth 
performance 

Plant height, and survival rate Quiescence and 
escape mechanism 

(10) 

  Poor seed germination 
Plant height, number of leaves, 

chlorophyll content, root length, 
and plant biomass 

- (6) 

Table 1. Rice response to submergence, salinity, and saline water submergence stress 



 4   SALLEH  ET AL. 

https://plantsciencetoday.online 

identified as Sub1A, Sub1B, and Sub1C (3). Among those 

three clusters, Sub1A was the most significant due to its 

major role in tolerance against submergence stress (3). 

The FR31A was widely used as a donor parent in breeding 

for submergence tolerance, QTL association mapping, and 

cloning of the Sub1 gene (16).  

 In general, Sub1 would be up-regulated during 

exposure to complete submergence and subsequently 

down-regulated once the flood subsides. Sub1 is 

associated with an Ethylene Responsive Factor (ERF) like 

mechanism, a plant protein widely known as a regulator 

for abiotic and biotic stress responses (3). A previous study 

on ERFs found that Sub1A was responsible for 

submergence tolerance (30,31). The Sub1A locus identified 

two important alleles called Sub1A-1 as the tolerant allele 

and Sub1A-2 as the intolerant allele (30,31). Sub1A-1 allele 

has been a major determinant of submergence as the gene 

was present in the Sub1 donor variety, FR13A (29). Sub1A-1 

tolerant mechanism works by applying the quiescence 

strategy where the elongation of shoots was suppressed 

during submergence stress (32). The quiescence strategy 

allows the plant to preserve the energy for survival during 

complete submergence and after the flood subsides. 

Submergence tolerant genotype with the Sub1A-1 allele 

recorded a shorter plant height under submergence stress 

than the susceptible genotype (30,31). Apart from the 

quiescence strategy, plants under complete submergence 

may activate the escape strategy (32). In the process of 

escaping complete submergence, plants with an escape 

strategy would elongate their shoot thus consequently 

having higher plant height (16). Moreover, plants with an 

escape strategy secret ethylene which leads to an 

increment of gibberellic acid (GA) production, a hormone 

that is responsible for shoot elongation (32). Hence, the 

plant tends to elongate its shoot to escape submergence 

stress. However, the elongated plants might suffer from 

lodging stress after the flood subsided, making the escape 

strategy less effective than the quiescence strategy (16).  

 Breeding for submergence-tolerant rice was started 

simultaneously with identifying the Sub1A-1 allele in FR13A 

with the FR13A-derived breeding line IR49830-7-1-2-2 

having Sub1A-1 allele and other favourable agronomic 

traits was successfully developed in the mid-1990s (28). 

Since then, efforts have been made to introgressed Sub1A-

1 alleles into rice mega- and elite-cultivars such as Samba 

Mahsuri, Swarna, and IR64 (33, 34). As an outcome, near-

isogenic lines (NILs) of those cultivars with Sub1A and good 

agronomic traits were successfully generated and released 

for commercial cultivation as Samba Mahsuri-Sub1, 

Swarna-Sub1, and IR64-Sub1 (34). Those NILs were 

developed using marker-assisted backcrossing (MABC) 

strategy with an FR13A-derived breeding line as a tolerant 

donor and Samba Mahsuri, Swarna, and IR64 as recurrent 

parents (33, 34). Later, a MABC procedure was developed 

to introduce Sub1 into any rice mega variety (35). The 

introgression of Sub1 into any cultivar could be achieved 

within a 2-3 year timeframe, using a tightly linked cleaved 

amplified polymorphic sequence (CAPS) marker such as 

GNS2, and a microsatellite marker like AEX1 (35). Other 

than MABC, an advanced method such as genotyping by 

sequencing (GBS) may also be used to speed up the 

breeding process (14). Another promising avenue is the 

development of high-yielding hybrid rice cultivars with 

submergence-tolerant Sub1A to improve yield potential in 

Fig. 1. Hypothetical effects of saline-submergence stress and tolerance strategies 

https://plantsciencetoday.online


5 

Plant Science Today, ISSN 2348-1900 (online) 

flood-prone areas. 

Genetics, Physiological Mechanism and Breeding for 

Salinity Tolerant Rice 

According to Waziri et al. (36), Pokkali is a traditional 

cultivar that is naturally resistant to salt stress due to 

generations of adaptation to thrive on salt-affected soil, 

making it a high-potential salt-tolerant donor.  A major 

QTL, called Saltol contributed to this desirable adaptation 

(36). Saltol was discovered on chromosome 1 in an F8 

recombinant inbred lines (RILs) of the Pokkali (salt 

tolerant) x IR29 (salt-sensitive) population developed at 

IRRI in their salt stress tolerance breeding program (37). A 

set of 78 putative RILs was generated and employed to 

map Saltol through the utilization of amplified fragment 

length polymorphism (AFLP) markers (37). The Saltol 

region was then fine-mapped in between 10.7-12.2 Mb of 

chromosome 1 using RFLP and microsatellite markers in a 

population of 54 RILs (38). In addition, RILs FL478 was 

found to have a region in between 10.6-11.5 Mb of 

chromosome 1 originating from Pokkali and was flanked 

by IR29 alleles (39). The subsequent studies managed to re

-map several QTLs for salinity tolerance on different 

chromosomes in rice (36). Moreover, the expression of 

Saltol was to be localized between 10.8-16.4 Mb in 

chromosome 1 (40). According to Waziri et al. (36), about 

783 loci were detected within Saltol, which encoded 

unknown proteins suggesting that salinity tolerance in rice 

is polygenic with various genes activating different 

tolerant metabolism. 

 In general, Saltol was associated with the Na+/K+ 

ratio and seedling stage salinity tolerance (41). It was 

found to be responsible for low Na+ absorption, high K+ 

absorption, and a low Na+-to-K+ ratio in salinity-stressed 

rice shoots (42). The increase in K+ absorption will inhibit 

Na+ uptake, hence, the toxicity effect of Na+ could be 

reduced (42). Previously, Bonilla et al. (38) reported that 

43% of the phenotypic variation for shoot Na+/K+ ratio in a 

population of 54 RILs Pokkali x IR29 was associated with 

Saltol. A subsequent study by Thomson et al. (41) 

confirmed that Saltol contributes to Na+/K+ homeostasis 

and 64.3-80.2% variation of Na+/K+ ratio at rice shoot. 

Moreover, Singh et al. (43) found that the Na+/K+ 

homeostasis mechanism was activated under salinity 

stress during an introgression of Saltol into Pusa Basmati 1 

via MAS. They also observed the movement of Na+ and K+ 

through intrusive apoplastic transport in the salinity-

susceptible lines where cation was highly accumulated in 

the shoot compared with the root (43). They then 

concluded that Saltol contributes to salinity tolerance by 

restricting the accumulation of Na+ in the shoot, 

suggesting that Na+ plays a significant role in regulating 

salinity tolerance in rice (43).                                                                                                                                                                                                                             

 Massive genetic resources have provided 

information to develop molecular markers of specific 

target gene(s) or QTL(s) regarding improving varieties with 

desirable traits. In this way, the breeding program could 

be accelerated as the screening phase could be shortened. 

Through MAS, a faster selection and identification of Saltol 

introgressed lines has been achieved. The discovery of the 

Saltol region in RILs FL478 accelerated rice breeding for 

salinity tolerance (41). Since then, many countries such as 

India, Bangladesh, Philippines, Thailand, South Korea, 

Japan, and the United States have been developing salt-

tolerance rice by introgressing Saltol into their elite rice 

cultivars (44). For instance, Saltol was successfully 

introgressed into popular rice cultivars such as Pusa 

Basmati, BRRI dhan 28, IR64, BR11, and Swarna via MAS 

using three SSR tightly linked markers mainly RM8094, 

RM3412, and RM493 for foreground selection (45). 

Saline-Submergence as an Emerging Type of Abiotic 

Stress in Rice Cultivation 

Climate change contributed to about 11–16 cm rise in 

global mean sea level (MSL) in the twentieth century (46). 

An increase in MSL will push high tide lines around the 

earth, covering a significant portion of the current land 

area causing nations such as China, India, Vietnam, 

Thailand, and others to likely experience annual coastal 

flooding problems by 2050 (47). Rice cultivation in coastal 

areas is also affected due to increased cyclonic storm 

frequency and seawater intrusion further inland (48). 

Indeed, rice yield in coastal areas is declining due to 

seawater intrusion (9). 

 On the other notes, as far as rice breeding is 

concerned, although there were several studies conducted 

in an attempt to combine Saltol and Sub1 QTLs into a 

single plant using the MAS approach, those studies 

focused on producing new rice variety with the tolerant 

ability to salinity and submergence stresses, but not 

specifically for saline water submergence stress (Fig. 2.). 

For instance, Das et al. (49) successfully pyramided 10 

QTLs and genes, mainly bacterial blight-resistant genes 

(i.e. Xa4, Xa5, Xa13, and Xa21), the blast-resistant genes 

(i.e. Pi2, and Pi9), the gall midge resistance genes (i.e. Gm1, 

and Gm4), the submergence tolerant (i.e. Sub1) and 

salinity tolerant (i.e. Saltol) into Tapaswini variety to 

develop an elite cultivar with broader biotic and abiotic 

tolerance/resistance. Muthu et al. (50) on the other hand, 

pyramided three QTLs vis-à-vis Sub1, Saltol, and drought 

grain yield QTL (qDTYs) into a popular South India rice 

variety, Improved White Ponni (IWP).  More recently, Nair 

and Shylaraj (51) introgressed Sub1 and Saltol QTLs into 

Aiswarya, a mega rice cultivar in South Asia. However, the 

developed breeding lines were tested under salinity and 

submergence but not under saline-submergence stress. 

Hence, further breeding projects could be conducted to 

determine the performance of rice pyramided lines with 

both Sub1 and Saltol QTLs under a saline-submergence 

environment, as shown in Fig. 2.    

 

Conclusion  

This review highlighted the genetics, physiological 

mechanisms, and breeding achievements for 

submergence and salinity tolerance in rice while opening 

up a new avenue for saline-submergence as an emerging 

type of abiotic stress in rice cultivation. Currently, there is 

a lack of studies exploring the genetics and physiological 

mechanism of rice under saline-submergence stress. 

Pyramiding Sub1 and Saltol QTLs into an elite rice cultivar 
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might result in tolerant breeding lines against saline 

submergence. Further breeding projects, however, need to 

be conducted to prove this postulation. Germplasm 

screening to identify genotypes tolerant  to saline-

submergence stress may also be conducted. The identified 

tolerant germplasm could be later used as a donor in a 

breeding project for saline-submergence tolerant rice.  
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