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ABSTRACT
To illustrate and document the tenuous connection between the Wilcoxon–Mann–Whitney (WMW) pro-
cedure and medians, its relationship to mean ranks is first contrasted with the relationship of a t-test to
means. The quantity actually tested: P̂r(X1 < X2) + P̂r(X1 = X2)/2 is then described and recommended as
the basis for an alternative summary statistic that can be employed instead of medians. In order to graph-
ically represent an estimate of the quantity: Pr(X1 < X2) + Pr(X1 = X2)/2, use of a bubble plot, an ROC curve
and a dominance diagramare illustrated. Several counter-examples (real and constructed) are presented, all
demonstrating that theWMWprocedure fails to be a test ofmedians. The discussion also addresses another,
less commonandperhaps less clear cut, but potentially evenmore importantmisconception: that theWMW
procedure requires continuous data in order to be valid. Discussion of other issues surrounding the ques-
tion of the WMW procedure and medians is presented, along with the authors’ teaching experience with
the topic. SAS code used for the examples is included as supplementary material.

1. Introduction

The perception that the Wilcoxon–Mann–Whitney (WMW)
procedure tests equality of medians is pervasive and frequently
encountered. Unfortunately, this perception is mostly wrong.
O’Brien and Castelloe (2006) note that “Even worthy statistics
books (and knowledgeable statisticians!) state that the WMW
test compares the two medians, but this is only true in the rarest
of cases in which the population distributions of the two groups
are merely shifted versions of each other (i.e., differing only in
location, and not shape or scale).” Since theWMW test is part of
the basic toolbox for practicing statisticians, improving how the
method is taught is desirable. To that end, we will review the
mathematical considerations underlying the relationship (and
lack thereof) between medians and theWMW test. We will also
present some real and constructed examples illustrating that the
WMW procedure clearly does not test medians.

Uncertainty about whether or not WMW testing is valid for
tied data may also be found in some textbooks that have long
pedigrees. The basis for such uncertainty may have some com-
monality with themisconception about the connection between
medians and the WMW test, in that both rest upon a conserva-
tive view of the most common (but not the only), formulation
of the WMW null and alternative hypotheses.

To address consideration of the WMW test and medians
we will start by comparing and contrasting the WMW pro-
cedure to a t-test. We will note that the WMW test statistic
can be formulated as a direct one-to-one function of
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P̂r(X1 < X2) + P̂r(X1 = X2)/2 represents the sample estimate. (For instance U/nn, for the Mann–Whitney formulation.) For the underlying population quantity:
p′ ′ = Pr(X < X)+ Pr(X = X)/, the evaluation is over all possible values of X and X. (For continuous distributions Pr(X = X)/ is equal to .)

p̂′′ = P̂r(X1 < X2) + P̂r(X1 = X2)/2,
1 where X1 and X2 are

random observations from the two groups being compared,
and that under the null hypothesis, p′′ = 0.5. We also present
some of the graphical options for representing p̂′′. Finally, we
will note that either p̂′′, or p̂′′/(1 − p̂′′) [the “WMWodds”], can
be good summary statistics to accompany WMW test results.

2. The Two Sample t-Test and the
Wilcoxon–MANN–Whitney Test

2.1. Comparison and Contrast Between theWMW
Procedure and a t-Test

A fundamental concept in data analysis is the difference between
a sample and a population. In general, we analyze a data sample
(or samples), in order to try and reach conclusions about the
population (or populations) fromwhich the sample is presumed
to have been drawn. Routine reports of analysis results are often
not explicit about which (the sample or underlying population)
is being referenced. However, when addressing the relationship
of the WMW test to medians, this distinction is crucial. We will
illustrate this by reviewing what t-tests do and whatWMW tests
do, and comparing them.

2.2. What Does a t-Test Do?

A t-test is a parametric procedure. In generating the t-test
statistic and p-value, it explicitly makes use of the presumed
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parametric (normal) distribution for the two groups being
compared. A normal distribution is defined by two parame-
ters: the mean (μ) and the standard deviation (σ ). When two
sets of normally distributed observations are being compared,
they each are assumed to have their own underlying defining
parameters:μ1 and σ 1, andμ2 and σ 2, (generally with σ 1 = σ 2).

Conceptually, we wish to be able to say whether or not the
two population means, μ1 and μ2, are different. However, com-
putationally, we observe two samplemeans: x1 and x2, and based
upon their difference, we reach a conclusion about a difference
between μ1 and μ2. The t-statistic is the difference in sample
means divided by the difference’s standard error (se):

t = x̄1 − x̄2
se(x̄1 − x̄2)

. (1)

Thus, the t-test is a test of means, both conceptually (for the
populationmeansμ1 andμ2) and computationally (in using the
sample means x1 and x2).

2.3. What Does theWMWTest Do?

The WMW test is a nonparametric test. One interpretation of
the term “nonparametric” is that the test is not about parame-
ter values. However, since this article is about how the test is not
about the medians as parameters, it might be best to only assert
here that the WMW test is distribution free. That is, it gener-
ally does not depend upon any particular distributional form (or
parameters) in order to generate the test statistic and p-value.
In fact, it is the whole distributions that are being compared,
rather than any sample-specific summary statistic(s). However,
the procedure does depend upon some assumptions about those
distributions. For instance, one important assumption is that
the variances of the two distributions should be the same (Pratt
1964).

A conceptual foundation for the WMW test may be under-
stood by examining statements for its null and alternative
hypotheses. Very commonly the null hypothesis is stated as: Ho:
Distribution F = Distribution G. The alternative hypothesis is
stated as: Ha: G(x)= F(x+�), where� �= 0. This is a pure “shift
alternative,” with everything the same—the same variances, the
same skewnesses, etc. The only potential difference is in the
location.

The WMW test p-value can be computed by an exact (per-
mutation) approach, or by use of an asymptotic chi-square test
statistic. Both versions require the same basic limited set of
assumptions to be met, but the asymptotic formulation may be
inaccurate if the sample size is small. However, for purposes of
comparing and contrasting to a t-test, the asymptotic version is
most relevant.

If all the observations in the two groups being compared are
ranked together, and R1 is the sum of the ranks of the observa-
tions from group 1, and R2 is the sum of rank of the observations
from group 2, the usual form of the WMW chi-square statistic
is:

X2 =
[
R1 − E(R1)

se(R1)

]2

. (2)

However, assuming equal sample sizes for the two groups,
and noting R1 – R2 = 2[R1 − E(R1)], an equivalent form would

be:

X2 =
[
R1 − R2

2se(R1)

]2

. (3)

If we then divide the sums by the sample size for each group
(n), we get:

X2 =
[

R̄1 − R̄2

2se(R1)/n

]2

=
[

R̄1 − R̄2

se(R̄1 − R̄2)

]2

. (4)

Taking the square root, we get a z-statistic form of theWMW
test:

z = R̄1 − R̄2

se(R̄1 − R̄2)
, (5)

which is very similar to the standard t-test formula

t = x̄1 − x̄2
se(x̄1 − x̄2)

. (6)

However, while x1 and x2 are estimates of the underlying
population means μ1 and μ2, R1 and R2, the observed mean
ranks, are not, by themselves, particularly useful. To illustrate
this point, it need only be noted that doubling the sample size
will not change an underlying measure of location such as the
mean or median, yet doubling the sample size will roughly dou-
ble the expected values of R1 and R2.

At this point we are left with noting that under the shift
alternative formulation of the hypotheses, a significant WMW
test result will imply the alternative hypothesis holds and (even
though � is unknown) to an extent that is a function of the size
of the shift “�.” In this case, the quantity � will be equal to the
difference in the population medians. This fact is the true, but
limited basis for regarding the WMW as a test of medians.

The import of this fact may be reduced, however, by noting
that under the shift hypothesis formulation, � is also equal to
the difference in the means, or to the difference in the 40th per-
centiles, or to the difference in the modes, or to the difference in
the 5th percentiles, or to the difference in any measure whatso-
ever of central tendency or location for the two distributions.

2.4. What theWMWProcedure Actually Tests:
̂Pr(X1 < X2) + ̂Pr(X1 = X2)/2

The Mann–Whitney U formulation is based upon a U statistic
instead of a rank sum, but those two quantities differ only by a
constant, and thus, they have the same standard error), that is

U1 = n1n2 + n1(n1 + 1)
2

− R1, (7)

and the WMW chi-square test statistic may be expressed as:

X2 =
[
U1 − E(U1)

se(U1)

]2

. (8)

However, given the sample sizes and the rank sum, mean
rank, or U statistic, these can be used to provide an estimate of
p′′ = Pr(X1< X2) + Pr(X1 = X2)/2, for instance

U1

n1n2
= p̂′′. (9)
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(To preserve symmetry with respect to subscripts, we can
denote p̂′′ = U1/n1n2 = p1, and 1 − p̂′′ = U2/n1n2 = p2.)

Relatedly, although it would be quite inconvenient to use
as a computing formula, the chi-square statistic might also be
expressed as:

X2 =
[
p̂′′ − E( p̂′′)
se(U1)/n1n2

]2

=
[
p̂′′ − 0.5
se( p̂′′)

]2

, (10)

which directly illustrates that the WMW procedure is a test of
p′′ = Pr(X1 < X2) + Pr(X1 = X2)/2 = 0.5.

3. TheWMWODDS (WMWodds)

O’Brien and Castelloe (2006) suggest that p̂′′/(1 − p̂′′) [the
“WMWodds”], is an ideal summary statistic for theWMWpro-
cedure. They relate it to Agresti’s (1980) generalized odds ratio
and use the log of theWMWodds as the basis for sample size cal-
culations (which have been used for the SAS procedure PROC
POWER). Although that sample size formulation gives better
performance in some circumstances (Divine et al. 2010), a gen-
eral benefit of theWMWodds is that its null value of 1.0, may be
a bit more intuitive than the null probability of 0.5 for p′′.

4. TheWMWTest With Ties

When the distributions being analyzed include ties, some
straightforward modification of the WMW test statistic is
required. Starting with the rank formulation, ties receive their
average rank, and as a consequence, under a more general
null hypothesis than the shift alternative: p′′ = Pr(X1<X2) +
Pr(X1 = X2)/2 = 0.5. Since ties will reduce the variance, the
estimator for the variance is reduced by an amount that is a
function of the proportions of the observations that are tied
at each tie point.2 Although the most common formulation
of the underpinnings of the WMW assumes that continuous
distributions are being compared, Section 4 of the Appendix
of Lehmann’s text (Lehmann 1975), establishes the asymptotic
normality of the WMW test statistic(s) under the null hypoth-
esis both for continuous data and for tied data. (With ties, a
mild condition must be met: that no single point come close to
accounting for all of the probability.3)

It is important to note that despite Lehmann’s proof, some
textbooks misinform their readers by suggesting that continu-
ous data are required, or that there may be some doubt about
validity of the WMWwith ties (see Section 8.2).

5. TheWMWTest and the Behrens-Fisher Problem

Just as is the case with a t-test, if the variances are unequal,
the Behrens–Fisher problem can be addressed by use of esti-
mators for the variance and degrees of freedom that take the

 The computing formula is different, but to a close approximation, if D is the num-
ber of different levels observed andPc is the proportion of observations tied at the
cth level, the ties adjusted variance is equal to (1 − ∑D

c=1 Pc
3) times the variance

without ties.
 More formally, Lehmann states the condition as the “max (di/N) is bounded away
from  as N tends to infinity.”Or that there exists a positive number ε < , such that
for all i, di/N<=  - ε, where the di are the numbers of observations tied at each
possible value. (The sum d + · · · + de = N.)

variance inequality into account. Fligner and Policello assume
continuous data (and that a comparison of medians is of inter-
est), in deriving a variation of theWMW test that performs well
in their simulations (Fligner and Policello 1981). The Fligner–
Policello test is now available as an option in the SAS/STAT
procedure PROC NPAR1WAY, as of version 9.3. Brunner and
Munzel (2000), present a derivation of a WMW test variation
addressing the Behrens-Fisher problem, that explicitly allows for
the presence of ties. Their only restriction is that one-point dis-
tributions are not allowed.

In simulations reported by Delaney and Vargha (2002) and
Reiczigel, Zakariá, and Rózsa (2005), the Brunner-Munzel ver-
sion of the WMW performed well as long as the sample size for
the smaller sample being comparedwas at least 20 or 30. In some
instances, however, the Fligner–Policello version failed to pre-
serve the Type I error rate (Delaney and Vargha 2002).

5.1. A Recommendation

Although the basic WMW test may be invalid with unequal
variances (especially with unequal sample sizes), the Brunner–
Munzel variation should work if the minimum sample size is at
least 30 and the variance discordance is not too extreme. For a
sample size (or sizes) below 30 and/or when one or more large
clumps of ties are present, an exact/permutation WMW test
(available in SAS and R) should be considered.

6. Counterexamples to theWMWProcedure as a Test
of Medians

[All of the counterexamples presented below compare discrete,
ordinal distributions. However, Section 1 of the online supple-
ment describes some counterexamples with distributions that
are continuous.]

O’Brien and Castelloe (2006) constructed data from a hypo-
thetical study performed by a “Dr. Uri Ologist”, which had equal
medians for the two samples being compared, yet theWMWtest
result was significant. Two real data counterexamples illustrating
the same thing are shown in Figure 1 and Figure 2, respectively,
and described below.

Figure . Emergency department visits in  months for the Puff City study.
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Figure . Changes in postoperative nausea after aromatherapy.

Counterexample 1: Comparison of two distributions, each
with over half their observations equal to 0.

The number of emergency department (ED) visits in the first
12 months postintervention for the two study groups from the
Puff City (Joseph et al. 2007) randomized trial of a tailored
asthma management program for urban African–American
high school students are shown in Figure 1. The majority of stu-
dents in both groups had no ED visits, resulting in a median
of 0 for both groups. However, the proportion with ED visits
is only 17.6% for the intervention group versus 26.4% for the
control group. The value of p̂′′ = P̂r(XIntervention < XControl) +
P̂r(XIntervention = XControl)/2 is 0.55 and the WMWodds is 1.21.
The Wilcoxon p-value is 0.066, suggesting that there may be a
reduction in ED visits with the intervention. The majority of
observations, [and hence the sample median(s)] being zero can
be quite common when a count variable is analyzed.

Counterexample 2: Comparison of two distributions with
equal sample medians, but a very significant WMW test.
Figure 2 shows changes in post-operative nausea (PON) scores
from two of the groups in a trial of aromatherapy for PON (Hunt
et al. 2013). As a brief consideration of the two distributions can
show, the WMW significance test result is not a function of the
observed medians for the groups being compared. The median
PON scores for the alcohol and blend groups are both equal
to−1, yet themoderate sample size togetherwith theWMWtest
p-value of<0.001 implies that there is a large difference between
the groups.

Counterexamples 3, 4, and 5 use made up data, but further
illustrate the disconnect betweenmedians andWMWtests. (For
convenience, the first and second groups will be designated as
“A” and “B,” etc., in these examples.)

Counterexample 3: No difference byWMWtest, but very dif-
ferent medians

Sample A {1, 1, 2, 2, 2, 3, 3, 9, 105, 105, 106, 106, 106, 107,
107}

Sample B {5, 5, 6, 6, 6, 7, 7, 99, 101, 101, 102, 102, 102, 103,
103}

In this example (Figure 3), the medians are quite different: 9
vs. 99, but otherwise, overall the observations from sample A are
no higher or lower than those from sample B. The value of p̂′′ =
P̂r(XA < XB) + P̂r(XA = XB)/2 = 0.502, is virtually identical

Figure . No difference in WMW test, but very different medians.

to the null hypothesis value of 0.5, and the WMWodds value
is 1.01 despite the very large difference between the medians.
Hence, we can have median A << median B, despite a non-
significant WMW test result (p-value � 1.0).

Counterexample 4: A significant difference by WMW test,
and very different medians (but in the wrong direction!)

Sample A {1, 1, 2, 2, 2, 3, 3, 99, 101, 101, 102, 102, 102, 103,
103}

Sample B {5, 5, 6, 6, 6, 7, 7, 9, 105, 105, 106, 106, 106, 107,
107}

In this example (Figure 4), the medians are quite different,
with the sample A median of 99 being much higher than the
sample B median of 9. However, this time, overall the observa-
tions from sample A tend to be lower than those from sample B.
We have p̂′′ = 0.716 and p= 0.046. This example illustrates that
we can have median A >> median B, despite a very significant
WMW test result that says P̂r(XA < XB) + P̂r(XA = XB)/2 =
0.72 is significantly (p= 0.046) greater than the null value of 0.5,
and the WMWodds of 2.59 is much greater than the null value
of 1.0. Thus, a large median difference can go in the direction
opposite of what the WMW test result shows is going on with
most of the observations.

Figure . A difference by WMW test, but very different medians. But in wrong
direction!
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Figure . A global inconsistency.

Counterexample 5: A global inconsistency for comparisons
among several groups

For a final counterexample, we will assume that Dr. Ologist
has a colleague, Professor Chase M. Itail, who works with an
assistant whose initials are M.C.E. Together, Dr. Itail and his
assistant have run a series of experiments comparing four treat-
ment conditions (A, B, C, and D) and they have observed the
results shown in Figure 5. Figure 5 (top panel) shows that the

distribution of values observed with treatment A are signifi-
cantly lower than those observed with treatment B. Figure 5
(middle panel) shows that the distribution of values observed
with treatment B are significantly lower than those observed
with treatment C. Finally, Figure 5 (bottom panel) shows that
the distribution of values observed with treatment C are sig-
nificantly lower than those observed with treatment D. As was
shown with the earlier counterexamples, for the A vs. B and
B vs. C comparisons, the differences between medians go in a
direction opposite that measured and were found significant by
the WMW tests. However, this is not the most notable feature
of this example.

A comparison of the top panel in Figure 5 (top panel, Group
A) and the bottom panel in Figure 5 (bottom panel, Group
D) will reveal that they are identical. Thus the comparison
of C to D is the same as a comparison of C to A. However,
this means that taken as a whole, the WMW test results for
this example suggest that Dr. Itail and M.C.E. should arrive at
the very counter-intuitive conclusion that A < B < C < A!
(Although these results are extremely unintuitive, it is reported
thatM.C.E. generated an illustration reflecting his interpretation
of what the analysis shows. [see http://en.wikipedia.org/wiki/
Ascending_and_Descending])

The fundamental feature of the WMW test at play in coun-
terexample 5 is that it measures and reflects an attribute of two
sets of observations that is a function of how they are distributed
relative to each other, and not of any absolute features of either
distribution alone.

Taken together, the above counterexamples clearly illustrate
that WMW test results need not correspond to a difference in
sample medians. Furthermore, the WMW test results for com-
parison among several groups need not even be transitive with
respect to each other. This is a feature that further reinforces
the fact that the test cannot be a direct function of any measure
of a sample’s central tendency or location. The next section will
describe additional circumstances under which the WMW test
cannot be assumed to test population medians.

7. Failure (Implausibility and Even Impossibility!) of
the Shift Alternative

The assumption of identical distributions that can vary only by
a shift in one direction or the other is mathematically conve-
nient, but it can be implausible or even absurd in some of the
very situations where theWMWtest is most commonly applied.
For instance, for a Likert scale outcome where a control popu-
lation is expected to include some observations that take on the
minimum and maximum possible values, a shift of any kind is
impossible, since by definition a shift cannot go below the min-
imum, nor is it able to go above the maximum. Similarly, for
an outcome variable, which represents counts of an unfavorable
outcome (for instance the number of times pain medication is
used), if some subjects with zero instances are expected in the
control population, it would be impossible4 to improve the dis-
tribution by a shift toward lower values in a treated group, since
this would imply going below zero.

 Reiczige et al. () called such a shift “simply nonsense” for their example of
parasite infection counts.

http://en.wikipedia.org/wiki/Ascending_and_Descending
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Even if an ordinal or count outcome distribution had room at
either end for an increase or decrease, a shift alternative would
require at least one full unit change along the entire distribu-
tion. This would often imply a huge and implausible difference
between the groups would have to be assumed. Finally, a contin-
uous outcome variable, but onewhich only takes on positive val-
ues cannot be shifted below zero, and a shift of� toward higher
values would implausibly imply that no values between 0 and �

will ever be observed for the group shifted higher.
In the next section, we discuss some facts and some conjec-

tures about the persistence of the perception that the WMW
procedure tests medians.

8. Why is WMWTestingMisunderstood?

It appears that the origins of misunderstandings about (1) the
WMW procedure’s relationship to medians, and (2) its validity
when applied to data with ties, may be a mixture of both sound
and unsound application of historical, pedagogical, mathemati-
cal rigor, definitional, practical, and logical considerations.

8.1. Why is theWMWProcedure Commonly Regarded as a
Test of Medians?

A simple answer to this question is that it is, in fact a test ofmedi-
ans, if it is assumed that the two populations being compared
have identical shapes and that they differ only by a shift alterna-
tive. Inmany cases this assumption of identical shapes and a shift
alternative is at least almost true, and therefore the assertion that
theWMWprocedure tests medians is likely not that far off. Fur-
thermore, when the shift alternative assumption is not almost
true, the idea that the WMW procedure tests medians may still
have some utility (or at least apparent utility).

We conjecture that since for normally distributed data,means
and t-tests are recommended to be reported, and for skewed
data, medians and WMW tests are recommended, it is incor-
rectly assumed that medians and WMW testing go together
organically. Also, it may be that since the median is defined as
the middlemost of the ranked observations, and the WMW test
is a function of ranks, this appears to connect the medians to
theWilcoxon test. (Of course, the ranking within a single group
which defines the group’s median is different and distinct from
the ranking of the combination of two groups that is required to
compute the WMW test.)

A major impetus to reporting medians with WMW test
results is likely the major utility of reporting a summary statistic
that reflects the same scale as the data being analyzed. Of course
such utility should not come at the expense of using a summary
measure that might lead to misleading inferences.

Finally, the WMW test is commonly regarded as a test of
medians because, as O’Brien and Castelloe (2006) note, it is
commonly asserted to be so in a number of textbooks. For
instance, the following (Newbold and Carlson 2003; LeBlanc
2004; Triola 2006) statements about theWilcoxon rank sum test
were found in a convenient sample of textbooks:

“The null hypothesis is that the two populations have the same
median.”

“The two samples come from populations with equal medians.”
“Assuming the null hypothesis that the central locations of the two
populations are the same, …”

Another source of instruction about what a WMW test does
is data analysis software. Minitab’s online support states that
the Mann–Whitney test “Determine(s) whether the median of
two groups differ when the data for both groups have similarly
shaped distributions.” Minitab elsewhere says that “If sampling
from nonnormal populations with the same shape and variance,
use theMann–Whitney test,” which implies that Minitab’s inter-
pretation for the WMW is relying upon the shift alternative
assumption.

It should be noted that while common, the above quotes
do not reflect what many others say. Many include much
more accurate descriptions of what the WMW test does. One
example is Forthofer, Lee, and Hernandez (2007), who stated:
“This test is used to determine whether or not the proba-
bility that a randomly selected observation from one popu-
lation is greater than a randomly selected observation from
another population is equal to 0.5” (Forthofer, Lee, and Her-
nandez 2007). Another is the documentation for GraphPad
Prism, whose online documentation has a section heading that
reads: “The Mann–Whitney test doesn’t really compare medi-
ans” (see http://www.graphpad.com/guides/prism/5/user-guide/
prism5help.html?stat_nonparametric_tests_dont_compa.htm).

8.2. WhyMight theWMWTest be Thought to Require
Continuous Data?

The answer to this question may come in two parts. The first
part is almost certainly historical. That is, before the availability
of inexpensive and powerful computing hardware and software,
the presence of ties in a dataset could mean that valid WMW
testing could be difficult, if not impossible. For small sample
sizes (i.e., for which the asymptotic form of the test would be
inappropriate), the test had to be performed by calculating a test
statistic that was compared to tabled values that were generated
assuming continuous data. Since the large number of possible
patterns of ties could each require different critical values, gen-
erating comprehensive tables for use inWMW testing would be
practically impossible.

Pedagogically, if WMW testing is taught starting with a clas-
sic table lookup used for smaller sample sizes, and the WMW’s
asymptotic form for large sample sizes, the former implies that
ties will invalidate the tabled critical values, and to an extent
that is a function of the number and size of the clumps of ties.
Although this problem is obviated by using readily available
computer software to compute exact critical values and p-values,
it may be that instructors (and some textbook authors)maywish
to present only the basic precomputer version of the test. This
must become a concern, however, if it is never made clear that
theWMW can be valid when implemented using modern com-
puting tools, instead of a manual calculation and table lookup
approach. That is, modern computer software can perform an
exact WMW test, the equivalent to a table look up, but for any
pattern of ties, as long as the sample size is small enough to allow
the calculations to be completed in a reasonable amount of time.

http://www.graphpad.com/guides/prism/5/user-guide/prism5help.html?stat_nonparametric_tests_dont_compa.htm
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(If the sample size is large enough to preclude an exact test, it is
likely large enough that the asymptotic WMW test may be reli-
ably used.)

The second part of the confusion about the WMW would
appear to be conceptual. That is, since the shift alternative for-
mulation of the null and alternative hypotheses for theWMW is
inconsistent with ties, a conservative viewpoint based upon the
shift alternativemight hold that validity of the test with ties is left
in doubt. A well-qualified version of this perspective appears to
be reflected byRosner (2016)who stated that “a necessary condi-
tion for strict validity of the rank-sum test is that the underlying
distributions being compared must be continuous.” Other
authors express less qualified uncertainty. For instance, Rem-
ington and Schork said “The rank sum should probably not be
applied to data with a great many ties, since the derivation of its
distributional properties makes no explicit allowance for them”
(2000). Even less helpful might be statements in a pair of closely
related textbooks, which both give as one of the assumptions
underlying the WMW test that “The probability distributions
from which the samples are drawn are continuous”, and go on
to say: “The (WMW) test is not recommended to compare dis-
crete distributions, for which many ties are expected.” (McClave
and Sincich 2013 and McClave et al. 20145.) Finally, it would
appear that instead of addressing the issue of ties, onemajor text
(despite containing dozens of pages of detailed and rigorous
consideration of the properties of theWMWprocedure), simply
avoids discussion of ties (Hettmasperger and Mckean 2011).

Finally, it may be that an overabundance of caution might
lead some to make a basic logical error: specifically, the “fallacy
of the inverse.”6 That is, absent awareness of Lehmann’s demon-
stration of the validity of the WMW test with ties, if one is only
aware of a derivation based upon the shift alternative, one could
go beyond a conservative doubt about the validity of theWMW
test with ties, to erroneously denying that validity outright.

9. Teaching Experience

We (ECJ in 2012 and 2014, and AEB in 2013 and 2015) have also
lectured on the WMW test in the Biostatistics Methods I at the
Colorado School of Public Health, and for 2012 and 2013 con-
ducted pre- and postknowledge surveys. The classes were com-
posed of first year MS students in biostatistics, PhD students in
epidemiology, MPH students in applied biostatistics, and stu-
dents not yet enrolled in any specific program. The results from
the pre- and postsurveys are as follows: 63 out of 66 students
completed postlecture surveys, and 62 out of 63 correctly picked
Pr(X < Y) = 0.5 as the WMW null hypothesis. Forty-four stu-
dents correctly interpreted the “transitivity” issue, and 45 out of
63 said the WMW portion of the lecture was clear (2 said “not
clear”, and 15 said “Not sure”). Twenty-seven students wrote on
the postsurvey that the graphical representation of P̂r(X< Y) as
a bubble plot helped their understanding (see Figure 6).

 This edition includes a somewhat qualifying footnote, which reads:
“∗Adjustments for ties are available with the Wilcoxon rank sum test. Con-
sult the references at the end of this chapter.” (Presumably the newest ()
edition of the other McClave and Sincich, text has the same qualifier.)

 The basic form of the fallacy is given “If A then B”and not A, erroneously conclud-
ing not B. In this case Awould be “the shift alternative holds”and Bwould be “the
WMW test is valid.”

Figure . Bubble plot representing the estimate of p′′ = Pr(X<X)+ Pr(X = X)/
for toy example.

10. Graphical Representations of
p̂ = ̂Pr(X < Y ) + ̂Pr(X = Y )/2

10.1. Bubble Plot

In order to provide a graphical representation of P̂r(X < Y)
within the time constraints of single lecture, a toy example
was used as follows. Let the two sets of observations to be
compared be X: (1, 1, 1, 2) and Y: (1, 2, 3, 3). Then all the
possible 16 (X,Y) pairs may be enumerated by crossing each
value of X with all values of Y as follows. First, listing all pairs
with the first value of X (1): (1,1), (1,2), (1,3), (1,3); then the
next 2 sets of values are again (1,1), (1,2), (1,3), (1,3), and
the last set is (2,1), (2,2), (2,3), (2,3). Figure 1 illustrates these
pairs where the size of each bubble represents the number of
times that a pair appears in the list of all crossed pairs, for
example (1,1) appears three times, and (2,1) only once. To
compute P̂r(X < Y ) + P̂r(X = Y )/2, we calculate the propor-
tion of pairs on the upper part of the graph plus half of the
ones on the identity line, giving P̂r(X < Y ) + P̂r(X = Y )/2 =
[6 + 3 + 2 + (4/2)]/16 = 13/16 = 0.8125. In other words, 13
is the Mann–Whitney U statistic for this comparison, and
P̂r(X < Y ) + P̂r(X = Y )/2 is equal to the proportion of the
bubble areas above the line of identity.

Two additional options to graphically display p̂ are an ROC
curve and its area, and a “dominance diagram”(Newson 2002).

10.2. ROC Curve Area (the “c-Statistic”)7

For a potential screening measurement that is either ordinal or
continuous, an ROC curve can be used to summarize the ability
to discriminate between patients with and without a condition
of interest. The sensitivities and specificities are calculated for
all possible cut points and sensitivity is plotted on the y-axis and
1—specificity is plotted on the x-axis. The more closely the area
under the ROC curve approaches 1.0, the stronger the relation-
ship between the variable and the disease status.

 In the rare situation (for instance due to one or more extreme outliers) when the
differences between the rawmeans and themean ranks go in different directions,
̂Pr(X< Y) will be equal to  – c, instead of being equal to c.
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Figure . ROC curve area representing the estimate of p′′ = Pr(X<X) + Pr(X =
X)/ for toy example.

The Roc curve formulation can be generalized to have a con-
nection to the WMW testing situation if the testing problem is
thought of as assessing the ability of the outcome variable to dis-
tinguish/discriminate between the two groups being compared.
The values for the toy example’s ROC curve were computed
using PROC LOGISTIC in SAS and the curve is shown in
Figure 7. An often used interpretation of the area under the
ROC curve (AUC) is the proportion of all possible disease/no
disease pairs in which themeasured variable is higher in the dis-
eased observation than in the nondiseased observation, which is
just P̂r(X< Y) (Hanley andMcNeil 1982). Correspondingly, the
WMW statistic can be used to test whether the AUC is signif-
icantly different from 0.5 (Bamber 1975). A convenient way to
generate a 95% confidence interval for the ROC curve area [and
hence Pr(X<Y)] is to use the ROCoption in PROCLOGISTIC.
For the toy example, the area under the ROC curve is 0.8125
with 95% confidence interval (0.496, 1.000). Since students in
an introductory class are often unfamiliar with ROC curves
and screening, use of the ROC curve area as a graphical illus-
tration of P̂r(X < Y ) + P̂r(X = Y )/2 might be best in a class
with students who have previously been introduced to ROC
curves.

10.3. Dominance Diagram

Newson (2002) notes that a “dominance diagram” will also
give a graphical representation of P̂r(X < Y ) + P̂r(X = Y )/2.
Figure 8 shows this for the toy example. Roughly speaking, the
dominance diagram is a grid displaying the direction for the
difference for all combinations of ordered Y and X values (to
produce the diagram, ties within the Y and X samples may be
broken arbitrarily). As can be seen from the figure, there are
11 solid squares where X < Y and 4 shaded squares where X
= Y and again [11+ (4/2)]= 13 is theMann–Whitney U statis-
tic and 13/16 = P̂r(X < Y ) + P̂r(X = Y )/2. (The dominance
diagram is probably a bit more complex than the bubble plot
shown earlier, but it does not require additional concepts as are
required for an ROC curve, so it may be a viable option for some
classes.)

Figure . Dominance diagram representing the estimate of p′′ = Pr(X<X) +
Pr(X = X)/ for toy example.

11. Discussion

It logically follows that the imperfect connection of the WMW
test tomedians will imply that use of the Hodges-Lehmann con-
fidence interval for a difference in locations (as reflected by the
medians) may also perform poorly. For instance, for the aro-
matherapy example (which has a moderate sample size), the
exact Hodges–Lehmann confidence interval computed by SAS
goes from−1 to 0, which seems inconsistent with a p-value that
is far into the rejection region.While a comprehensive presenta-
tion about theWMW test may need to cover related procedures
like Hodges–Lehmann, it is desirable to make sure students are
aware of its limitations.

To further emphasize the importance of Pr(X< Y) as central
to the WMW test, this quantity must be used if calculation of
sample size or power is required. Basic formulas for these were
shown by Zhou et al. (2008) and Divine et al. (2010) and very
reliable sample size and power computations can be made using
PROC POWER in SAS or using nQuery Advisor.

It is beyond the scope of this article,8 but it should be
noted that the Wilcoxon signed rank test has a similarly poor
connection to the sample median, despite what may be asserted
in textbooks. Again counterexamples are relatively easy to
find. [Unfortunately, the quantity that the signed rank test is a

 More discussion about the WMW andWilcoxon signed rank tests can be found in
Divine et al. ().
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function of: Pr[X1 +X2 < 0], is not as interpretable as Pr(X<Y)
is for the WMW test, and the relationship is only asymptotic.]

12. Summary

We have shown by use of both real data and constructed coun-
terexamples that the WMW test is in no way a function of the
observed sample medians. It has also been illustrated that its
intended connection to a comparison of underlying population
medians can be impossible or at least implausible in many com-
mon situations where the test is applied. Empirically, theWMW
test should be regarded as a test of the null hypothesis that
Pr(X < Y) + Pr(X = Y)/2 = 0.5, where X and Y are random
observations from the two populations being compared. Finally,
despite misleading or ambiguous statements in some textbooks,
validity of the WMW test does not require continuous data.

SupplementaryMaterials
The online supplementary materials contain the counterexamples pre-
sented in the article, and the SAS programs.
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