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Abstract: Glioblastoma (GBM) is the most common and aggressive primary brain tumor. GBM
contains a small subpopulation of glioma stem cells (GSCs) that are implicated in treatment resistance,
tumor infiltration, and recurrence, and are thereby considered important therapeutic targets. Recent
clinical studies have suggested that the choice of general anesthetic (GA), particularly propofol,
during tumor resection, affects subsequent tumor response to treatments and patient prognosis. In
this study, we investigated the molecular mechanisms underlying propofol’s anti-tumor effects on
GSCs and their interaction with microglia cells. Propofol exerted a dose-dependent inhibitory effect
on the self-renewal, expression of mesenchymal markers, and migration of GSCs and sensitized
them to both temozolomide (TMZ) and radiation. At higher concentrations, propofol induced a
large degree of cell death, as demonstrated using microfluid chip technology. Propofol increased
the expression of the lncRNA BDNF-AS, which acts as a tumor suppressor in GBM, and silencing of
this lncRNA partially abrogated propofol’s effects. Propofol also inhibited the pro-tumorigenic GSC-
microglia crosstalk via extracellular vesicles (EVs) and delivery of BDNF-AS. In conclusion, propofol
exerted anti-tumor effects on GSCs, sensitized these cells to radiation and TMZ, and inhibited their
pro-tumorigenic interactions with microglia via transfer of BDNF-AS by EVs.

Keywords: glioblastoma; glioma stem cells; propofol; BDNF-AS; extracellular vesicles; microglia

1. Introduction

Glioblastoma (GBM), the most common and aggressive primary brain tumor is charac-
terized by a high rate of proliferation, invasion into the surrounding normal tissue, robust
angiogenesis, and resistance to conventional therapies [1]. The current standard of care
for patients with GBM consists of tumor resection followed by a combined treatment with
radiation and TMZ [2]. However, complete tumor resection is not always possible due to
the infiltrative characteristics of GBM, and recurrence almost always occurs at the primary
location of the tumor. Despite advances in imaging, surgical approaches, molecular tumor
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classification, and numerous clinical trials, the prognosis of GBM patients remains poor,
with a median survival of 14–16 months, which has not significantly improved in recent
decades [3].

GBM contains a small population of cancer stem cell (GSCs) that has been implicated in
tumor recurrence. GSCs are characterized by their ability to self-renew, potential for multi-
lineage differentiation, and high degree of invasion [4]. GSCs are resistant to conventional
therapy compared with differentiated tumor cells, and recent studies indicate that both
radiation and TMZ, the standard of care treatments for GBM, primarily target differentiated
glioma cells [5,6]. Therefore, developing novel therapeutic approaches to target GSCs is of
great importance for the treatment of GBM and for the improvement of patient prognosis.

The interaction of glioma cells and GSCs with the brain microenvironment is critical for
tumor growth and treatment resistance [7]. Indeed, neural cells, such as astrocytes, neurons,
and microglia, in addition to infiltrating immune cells, regulate this crosstalk [8,9]. Mi-
croglia and infiltrating macrophages represent the most prevalent GBM-associated cells [10].
These cells have been reported to undergo differentiation to an anti-inflammatory/pro-
tumorigenic state in response to factors secreted by tumor cells, which further supports
tumor growth [11].

One of the main components that mediate this bidirectional crosstalk are extracellular
vesicles (EVs) [12]. These small nano-size vesicles play important roles in inter-cellular
communication and carry diverse cargo, including proteins, lipids, and RNA molecules
that mediate their effects [13,14].

The choice of general anesthetic for tumor surgical resection has been recently reported
to impact tumor growth, metastasis, and recurrence, as well as prognosis of patients with
solid tumors [15–17]. Propofol, one of the most commonly used anesthetics during surgery,
has been mainly linked with anti-tumor effects [18,19]. Propofol can be used for deep
general anesthesia but also in reduced dosages as a sedative, such as during awake brain
surgery. It can also be used as a sedative for prolonged (days) duration for intubated
patients in the intensive care unit. Retrospective epidemiological studies demonstrate that
the use of propofol during resection is associated with a better prognosis than other general
anesthetics [20]; however, these clinical studies are not always consistent. Anti-tumor effects
of propofol in a variety of tumors, including breast, lung, and prostate were reported in a
large number of in vitro and animal studies, further supporting these observations [21,22].

Here, we demonstrate that propofol exerts anti-tumor effects in GSCs and differ-
entiated tumor cells and inhibits the tumorigenic promoting effects of microglia by the
induction of BDNS-AS and its delivery via EVs.

2. Materials and Methods
2.1. Materials

Human BDNF ELISA kit was obtained from Creative Diagnostics (Shirley, NY, USA).
Human TGF-β (ab178014) and IL-10 (ab185986) ELISA kits and caspase 3 activity kit
(ab39401) were obtained from Abcam (Cambridge, MA, USA).

2.2. Experimental Protocols

Cultures were randomly viewed microscopically and assigned to the different experi-
mental groups. All data collection and analyses were performed blinded to the treatment
group. Sample sizes were determined from previous experience using these cell cultures.
All data are representative of 3–6 independent experiments.

Propofol concentrations of 10 µM and 20 µM (1.8 µg/mL and 3.6 µg/mL) were
employed in most studies. This is a clinically relevant concentration range, within the
effect-site (loss of consciousness) concentration of 2.0–3.0 µg/mL seen in a study of human
volunteers [23], and a plasma concentration of 3.6–5.7 µg/mL corresponded to a brain
concentration of 2.1 to 3.2 µg/mL reported in rats [24].
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All experiments were performed in medium containing EV-depleted serum, which was
prepared by ultracentrifugation (100,000× g, 4 ◦C) followed by filtration of the supernatant
in a 0.22 µm filter.

2.3. GSC and Microglia Cultures

All human materials were used in accordance with the policies of the Henry Ford
Hospital Institutional Review Board.

GSCs were generated from fresh resected tumors. Pathology was graded according to
the WHO criteria and IDH status. The cells were extracted, cultured as neurospheres, and
characterized as previously described [25–27]. The GSCs were maintained in neurosphere
medium (DMEM-F12 1:1, glutamine 10 mM, HEPES buffer 10 mM, and sodium bicarbonate
0.025%) supplemented with basic fibroblast growth factor and epidermal growth factor
(20 ng/mL). GSCs exhibited self-renewal ability, expressed stem cell markers (Sox2, OCT4,
CD133, nestin, and CD44), and generated glioma xenografts in nude mice upon trans-
plantation [26]. The full information of the GSCs employed in this study is described in
Table S1.

Differentiated cells (DGSCs) were generated by plating the GSCs in medium consisting
of DMEM+10% FCS for a week. The cells lost their ability to grow as spheroids and
exhibited a marked decrease in the expression of Sox2 and OCT4.

hTERT-immortalized human microglia were obtained from Applied Biological Mate-
rial (Richmond, BC, Canada). The cells were maintained in growth media and conditions
recommended by the manufacturer [28]. All cells were routinely tested for mycoplasma
contamination (Mycoplasma PCR Detection Kit) and found negative.

2.4. Neurosphere Formation/Self-Renewal Assay

The ability of GSCs to form secondary neurospheres was analyzed as recently re-
ported [25,29,30]. GSCs were dispersed into single cells and seeded at a density of
100 cells/well through limiting dilution. The number of neurospheres/well was deter-
mined following 14 days for 10 different wells. Spheres that contained more than 20 cells
were scored. The results are presented as neurosphere number or percentages of maximal
neurospheres formed in treated compared to control cultures.

2.5. In Vitro Limiting Dilution Assay

GSCs were plated in 96-well plates in decreasing numbers of cells (50, 20, 10, 5, 2,
and 1) per well. After 14 days, the number of spheres was determined for each well, and
extreme limiting dilution was analyzed as recently reported [30], http://bioinf.wehi.edu.
au/software/elda.

2.6. Cell Proliferation

Cell proliferation was determined using the XTT assay according to the manufacturer’s
instructions. Briefly, cells were seeded in 96-well plates (3 × 103 cells/well). Following
treatments, the medium was replaced with 20 µL of XTT solution, and plates were incubated
for 2–4 h at 37 ◦C and 5% CO2, followed by the addition of extraction buffer. The absorbance
at 590 nm was measured. Analyses were determined in quintuplets for each treatment and
repeated at least 3 times.

Cell proliferation was also determined using trypan blue exclusion assay. For this
assay, 3 × 103 cells were plated in a 12-well culture plate and allowed to differentiate prior
to propofol treatment. Control and propofol-treated cells were stained with trypan blue
and total viable cells were counted using a hemocytometer. Each experiment was per-
formed in triplicates, and the total number of viable cells and percentage of untreated cells
are presented.

http://bioinf.wehi.edu.au/software/elda
http://bioinf.wehi.edu.au/software/elda
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2.7. Cell Death Assays

Caspase 3 activity was analyzed using a fluorometric assay according to the manufac-
turer’s instructions (Abcam, ab 39383). The data were calculated as fluorescence units/mg
protein and presented as fold increase over the control level.

Cell death was also analyzed using the LDH assay kit (Abcam, ab 102526) by analyzing
lactate dehydrogenase (LDH) levels in culture supernatants according to the manufacturer’s
instructions.

2.8. siRNA Transfection

GSCs in 6-well plates were transfected with control and BDNF-AS siRNA duplexes (Si-
lencer Select, ThermoFisher Scientific, Lafayette, CO, USA) using siIMPORTER (Millipore,
Billerica, MA, USA) according to the manufacturer’s instructions. Cells were collected for
analysis 48 h after transfection and qRT-PCR was used to confirm BDNF-AS knockdown.

2.9. Lentivirus Transduction of YKL-40 Reporter

Lentivirus vectors (System Biosciences, Mountain View, CA, USA) expressing control
and GFP/fLuc YKL-40 reporters were packaged and used to transduce GSCs according to
the manufacturer’s protocol and as previously reported [31]. Briefly, HEK293 cells were
plated at 60–70% confluency. Following 24 h, cells were transfected with a total of 15 mg/mL
DNA consisting of the control and reporter plasmids and packaging plasmids pCMV-
DR8.2 and the envelope plasmid VSV-G. After 18 h, the transfection mix was removed
and replaced with fresh medium. Medium was collected after 48 h and centrifuged at
100,000× g for 90 min. Lentivirus was frozen in aliquots at −80 ◦C until used. GSCs were
transduced with the YKL-40 or control lentivirus vectors twice with a 3 day interval, and
transduction efficiency was determined by confocal microscopy and luciferase activity.

2.10. Luciferase Activity

The firefly luciferase activity of YKL-40 and the control Renilla luciferase were ana-
lyzed using the Dual-Luciferase® Reporter Assay System (Promega Corporation, Madison,
WI, USA).

2.11. Quantitative Real-Time PCR

qRT-PCR was performed as previously described [26–28]. Briefly, RNA was extracted
from GSCs and microglia using miRNeasy total RNA isolation kit according to the manu-
facturer’s instructions (Kit #217004, Qiagen, Frederick, MD, USA). Reverse transcription
reaction of 1 mg/mL was performed using superscript IV RT kit (ThermoFisher #18090010),
and quantitative PCR was performed with green I dye (PowerUp™ SYBR™ Green Master
Mix, Applied Biosystems) on an ABI VIIA7 Sequence Detection System (Applied Biosys-
tems, Foster City, CA, USA). Cycle threshold (Ct) values were obtained from the ABI
QuantStudio software and data were generated by comparative CT(∆∆CT) method. House-
keeping control genes (beta-2 microglobulin or ribosomal S12) were selected based on their
stable expression across the relevant conditions and treatments employed in these studies.

Relative mRNA expression to S12 was calculated and data normalized to a control
group. Experiments were performed in triplicates at least 3 times, and average relative
expression are presented. Primer sequences are listed in Table S2.

2.12. EV Isolation and Characterization

EVs were isolated from culture supernatants using the ExoQuick-TC Ultra kit (SBI,
Palo Alto, CA, USA) according to the manufacturer’s instructions. The protein content of
the isolated EVs was determined using the Micro BCA assay kit (ThermoFisher Scientific,
Oregon City, OR, USA), and their quantification was analyzed using the CD63, CD9, and
CD81 ExoELISA-Ultra kits (SBI, Palo Alto, CA, USA), as recently described [27,32]. For the
treatment of cultured cells, 2 × 108 EVs were employed.
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2.13. Quantification of Cytokine Secretion and EV Subpopulations

TGF-β1, IL-10, and BDNF levels were quantified in culture supernatants using enzyme-
linked immunosorbent assays (ELISA) according to the manufacturer’s instructions. The
concentrations of the specific cytokines were calculated using a standard curve and were
expressed as picograms per milliliter.

2.14. Transwell Migration Assay

Cell migration was analyzed using transwell chambers with an 8 µm filter (BD Bio-
sciences, San Jose, CA, USA), as recently reported [31,33]. Briefly, GSCs were plated in
transwell chambers (25,000 cells per well) and the chambers were then incubated for 12 h
in culture medium with 0.5% FBS in the bottom chambers. Cells on the upper surface were
scraped, and the migrated cells on the lower surface were fixed and stained with 0.05%
crystal violet for 5 min. Stained cells were counted under a microscope, and the migrating
cell number was calculated.

2.15. Chip Manufacturing

Polydimethylsiloxane (PDMS, SYLGARD 184, Dow Corning, Midland, MI, USA)
devices were manufactured using standard methods as recently described [34,35]. Briefly,
the flow (cell culture) and control (valves) layers were prepared separately on silicone
molds casting silicone elastomer PDMS. For the control layer, PDMS and curing agent
were mixed at a 5:1 ratio, followed by degassing for 15 min, baking for an hour, and
access-hole-piercing steps. The flow layer was prepared similarly, except for the application
of a 20:1 ratio of PDMS to curing agent. The layers were then aligned using a home-built
semi-automatic alignment system. The chip was then placed in an oven at 80 ◦C for full
curing. Holes were punched to allow the connection of tubes via pins and the flowing of
air or fluids into the chip during the experiment.

2.16. Chip Operation

The flow of medium/cells was regulated using a pneumatic system (regulated semi-
automatically). Working pressure for cell flow was 3–5 PSI. Input and output control valves
were operated with 20 PSI. The temperature, humidity, and CO2 were controlled by the
fluorescent microscope incubator built-in system (Bold Line, Okolab, Italy).

2.17. Cell Viability Assays

GSCs were introduced into the main channel and the incubation chambers by hori-
zontal flow, and cells were subjected to media flow alone or with propofol concentrations
at a low pressure (3–5 PSI). The cells were stained with propidium iodide (PI) for 30 min
at 37 ◦C.

Imaging was acquired by Nikon Eclipse Ti using NIS Elements software (ver. 4.20.01
Nikon, Melville, NY, USA) and processed with NIS Elements Analysis software
(ver. 40.20.01 Nikon, USA).

2.18. Radiation Exposure

The radiation source used in this study was a Cesium (Cs-137) irradiator (Mark I
Model 68, J.L. Shepherd and Associates, San Fernando, CA, USA; serial number: 1048).
The source’s activity was 5000 Ci (J.L. Shepherd and Associates Type 6810; serial number:
87CS-S-30) at the time of installation, 24 June 1988, and approximately half that during the
study duration. The radiation dose was mapped by Shepherd and Associates in 1988 and
confirmed in 2006 (Model 2025 X-ray monitor with a 0.18 cc chamber, MDH Industries Inc.,
Monrovia, CA, USA). Independent measurements of radiation dose were made prior to
the study using a small-sized cylindrical ion chamber (PTW PinPoint Ion Chamber Type
31014, Freiburg, Germany), which was 2 mm in diameter and had a sensitive volume of
0.015 cm3, and radiographic film (EBT3 Gafchromic film, Ashland, Bridgewater, NJ, USA).
The electrometer measurements were used to confirm that the radiation doses provided
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by the manufacturer, JL Shepherd, were within ±3%. The radiation dose rate during the
course of the experiments was approximately 1 Gy/min. The radiographic x-ray film
measurements were used to demonstrate uniformity of radiation field. Film placed under
the cells confirmed that exposures were uniform (±3%) following an exposure with a
rotating platform.

2.19. TCGA Data Analysis

Gene expression data for adult LGG and GBM patients were downloaded from the
GDC Data Portal (Release Date 2022-03-29: https://portal.gdc.cancer.gov/). Sequencing
was performed using Illumina technology, and alignment was carried out using the “STAR
2-Pass Genome” workflow. Expression levels of BDNF and BDNF-AS normalized by TPM
(Transcripts Per Million) were extracted from these files. The corresponding patient clinical
data were taken from a study of molecular profiling of glioma subtypes [36].

BDNF-AS and BDNF levels were analyzed in different subtypes of LGG and GBM
and in relation to tumor recurrence and patient survival. Expression data are presented
graphically with median and interquartile range noted. Comparison of mean expression
between groups was performed by one-way ANOVA followed by Tukey’s corrected two-
sample tests, which adjust for multiple comparisons to maintain the family-wise error rate.
Kaplan–Meier estimates of the survival time from diagnosis until death or last follow-up
were used for outcome analysis. Differences in survival curves between groups were
assessed by the log-rank test. Cox regression was used to construct multivariable models
of survival, including mRNA expression, age at diagnosis, IDH mutation status, and grade.
Graphs were generated using R (v.4.2.3).

2.20. Statistical Analysis

All experiments were repeated at least 3 times. Statistical significance was determined
using two-tailed unpaired Student’s t-test for the comparison of two groups or with one-
way ANOVA with Tukey’s test for experiments with more than two groups. Data were
analyzed using ANOVA or a Student’s t-test with correction for data sets with unequal
variances. A two-way ANOVA was conducted to examine the interaction between two
treatments. Error bars represent mean ± SD unless otherwise stated. p-value of < 0.05 was
considered statistically significant.

3. Results
3.1. Propofol Inhibits the Self-Renewal and Stemness of GSCs and Proliferation of Differentiated
Glioma Cells

Propofol has been reported to exert anti-tumor effects on various established glioma
cell lines [37–39]; however, its effects on GBM-tumor-patient-derived primary cultures are
not reported. We chose to employ patient-tumor-derived glioma stem cells (GSCs) in this
study, since they play key roles in glioma initiation, progression, and resistance to existing
therapies. Studying these cells allows analysis of both cancer stem cells and their differen-
tiated glioma-cell (DGSCs) progeny. Importantly, GSCs have been also demonstrated to
generate reliable GBM models that recapitulate the characteristics of the parental tumors
in vitro and in vivo [39].

Using tumor-derived GSCs (Table S1), we first analyzed the effects of propofol on the
self-renewal of these cells. GSCs were treated with different concentrations of propofol,
and the generation of secondary neurospheres was determined 14 days thereafter. Propo-
fol exerted a dose-response inhibitory effect on the self-renewal of GSC-10 and GSC-2
(Figure 1A,B), starting at a concentration of 10 µM. Similar results were obtained using
extreme limiting dilution assay (Figure 1C). In addition, propofol also decreased the ex-
pression of the stemness markers SOX2, OCT4, and Nanog in both GSC-10 and GSC-2
(Figure 1D), further indicating that propofol inhibited the stemness potential of these cells.

Propofol effects were also observed in two additional GSC lines (Figure S1A,B). The
inhibitory effects of propofol on the self-renewal of GSCs at concentrations of 10–20 µM

https://portal.gdc.cancer.gov/
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were not attributed to increased cell death, since propofol induced cell death in GSCs only
at higher concentrations of 50–100 µM (Figures 1E and S1C–E).

GSCs represent a small percentage of the cellular components of GBM, whereas most
of the tumor is comprised of differentiated tumor cells. We therefore also analyzed the
anti-tumorigenic effects of propofol in GSC-derived differentiated tumor cell progeny
(DGSCs). Propofol inhibited cell proliferation in a dose-dependent manner, starting at a
concentration of 10 µM, as indicated by cell counting (Figure 1F), XTT analysis (Figure 1G),
and images of cell confluency (Figure 1H). Propofol also induced apoptotic cell death in
the DGSCs, starting at a concentration of 20 µM (Figure 1I).
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chip and treated with different propofol concentrations, and cell death was monitored over 36 h using
propidium iodide staining. The graphs present the survival rates of the treated cells by subtracting
the normalized survival rate (100%) at 0 h time point from the survival rate at each treatment time
point. Images demonstrate survival rate using PI staining of propofol-treated cells (20 µM) at different
time points. p < 0.001 (J). The results are presented as the means ± SD of four different experiments.
* p < 0.05, ** p < 0.01, *** p < 0.001. Significance was determined by two-tailed unpaired
Student’s t-test.

We further analyzed propofol’s effects, also using a microfluidic platform that allowed
the monitoring of cell survival in living cells. The GSC spheroids were dissociated, cultured
in chip chambers, treated with various concentrations of propofol, and continuously imaged
by fluorescent microscopy. As presented in Figure 1J, under these conditions, propofol
induced a large degree of cell death, and cell survival decreased to 20–30% at 36 h in both
GSC-10 and GSC-2, as demonstrated both graphically and by fluorescence imaging of PI
labelled cells.

Different anesthetics have been reported to exert short and long-term neural cytotoxic
effects [40]. We therefore analyzed the effects of propofol on human neural cells. Impor-
tantly, propofol at a concentration of 100 µM did not induce a significant degree of cell
apoptosis in human neurons, microglia, or oligodendrocytes (Figure S2A), or cytotoxic
effects in neurons, astrocytes, microglia, and oligodendrocytes (Figure S2B). These results
indicate that propofol effects on tumor cells are selective and are not accompanied by neural
cell toxicity.
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3.2. Propofol Inhibits the Migration of GSCs and Their Mesenchymal Transit

Glioma cells exhibit a high degree of migration, which is usually associated with
mesenchymal phenotypes [41]. We found that propofol decreased the migration of GSCs
(Figure 2A) and DGSC-10 (Figure S3A). In addition, propofol also inhibited the mesenchy-
mal transit of GSCs, as demonstrated by the decreased expression of the mesenchymal
markers CD44 and vimentin (Figure 2B) and that of CTGF, TWIST1, and YKL-40 (Figure 2C).
We further analyzed propofol’s effect on the mesenchymal transit of GSCs using a YKL-40
reporter. GSCs were transduced with lentivirus vectors expressing YKL-40 promoter tagged
to GFP/fLuc or a control GFP/fLuc empty vector, treated with propofol and analyzed for
GFP fluorescence and luciferase activity. As with the RT-PCR analysis results, we found
that propofol decreased YKL-40 expression in the GSCs, as indicated by the decreased
fluorescence (Figure 2D) and luciferase activity (Figure 2E) of the treated cells. Altogether,
these results demonstrate that propofol acts as a negative regulator of the mesenchymal
phenotype and migration of GSCs.
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Figure 2. Propofol inhibits GSC migration and mesenchymal transit. GSCs were treated with propofol
(20 µM) for 24 h. Cell migration was analyzed using transwell migration assay. Experiments were
performed in triplicates and repeated three times. Five fields were analyzed for each well (A).
The expression of mesenchymal markers CD44 and vimentin (B) and that of YKL40, CTGF, and
TTWIST1(C) was analyzed using qRT-PCR. GSCs were transduced with lentivirus vectors expressing
a control and GFP/fLuc-YKL-40 reporter and treated with propofol (20 µM) for 48 h. Cell fluorescence
was imaged using fluorescent microscopy (D), and luciferase activity was determined (E). The results
represent the means ± SD of three different experiments analyzed in quadruplets. *** p < 0.001.
Significance was determined by two-tailed unpaired Student’s t-test.

3.3. Combined Effects of Propofol, TMZ, and Radiation in GSCs and DGSCs

TMZ and radiation are the standard treatments of care for GBM patients following
surgery [42]. We therefore examined the effects of propofol on the response of GSCs to
TMZ and radiation. We found that propofol enhanced the inhibitory effect of TMZ (25 µM)
on the self-renewal of GSC-10 (Figure 3A) in an additive manner, whereas a synergistic
effect was observed on cell proliferation of DGSC-2 (Figure S3B).

Similar results were obtained for combined treatments of propofol and radiation. We
employed a dose of 1 Gy radiation, since the aim of this experiment was to analyze the
ability of propofol to sensitize GSCs to radiation, and this dose induced a small number
of cytotoxic effects in these cells. Irradiation of the cells exerted a small inhibitory effect
on the self-renewal of GSC-10 and GSC-2. Combined treatment of GSCs with radiation
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and propofol (10 µM and 20 µM) exerted synergistic effects on the self-renewal of GSCs
(Figure 3B,C) and apoptosis of DGSCs (Figure 3D).
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Figure 3. Combined effects of propofol, TMZ, and radiation. GSCs were treated with propofol alone
(10 µM) or in the presence of TMZ (25 µM) or radiation (1 Gy). Self-renewal results of GSC-10 treated
with TMZ and propofol are represented by the total number of spheres. The combined treatment
exerted an additive effect. Interaction analysis using two-way ANOVA demonstrated that there was
no significant interaction between propofol and TMZ, indicating an additive effect; F(1, 16) = 2.076,
p = 0.169 (A). GSC-10 (B) and GSC-2 (C) were treated with propofol and radiation and the generation
of secondary spheroids was analyzed after 14 days. Results are presented as the means ± SD of four
different experiments (B,C). Cell death of GSC-10 treated with propofol and radiation (1 Gy) was
determined after 24 h by analyzing caspase 3 activity (D). The results represent the means ± SD of
five different experiments, and the significance between the different treatments was determined
using one-way ANOVA with Tukey’s multiple comparison test * p < 0.05, *** p < 0.001. Interaction
between the different treatments was analyzed by two-way ANOVA. Other than the combined effects
of TMZ and propofol on the self-renewal of GSCs (A), all other combined treatments resulted in
statistically significant interactions, indicating a synergistic effect p < 0.008.

3.4. Propofol Increases the Expression of the lncRNA BDNF-AS in GSCs

Propofol exerts anti-tumor effects via diverse mechanisms, including changes in the
expression of specific non-coding RNAs [43]. We analyzed the effects of propofol on the
expression of the lncRNA BDNF-AS. This lncRNA is transcribed from the opposite strand
of BDNF and therefore acts as a negative regulator of BDNF expression [44]. BDNF has
been reported to play a role in the tumorigenesis of glioma and oncogenic potential of
GSCs [45], whereas recent studies have reported that BDNF-AS acts as a tumor suppressor
in glioma [46].

Treatment of GSCs with propofol increased the expression of the lncRNA BDNF-AS
(Figure 4A). In contrast, this treatment decreased the expression (Figure 4B) and secretion
of BDNF (Figure 4C).

To delineate the role of BDNF-AS in propofol’s effects, we silenced the expression of
BDNF-AS in the GSCs and analyzed their self-renewal, stemness, and mesenchymal marker
expression as well as BDNF-secretion. Transfection of GSC-10 with two BDNF-AS siRNA
decreased the expression of this lncRNA by around 80% (Figure S4). BDNF-AS silencing
increased BDNF secretion in GSCs (Figure 4D) and partially abrogated the inhibitory effect
of propofol on GSC self-renewal (Figure 4E) and TWIST1 expression (Figure 4F).
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Figure 4. Expression and role of BDNF-AS in propofol’s effects. The effects of propofol (20 µM) on
BDNF-AS (A) and BDNF (B) expression was determined in GSC-10 and GSC-2 cells after 24 h of
treatment using RT-PCR. BDNF secretion in propofol-treated GSCs was determined by ELISA (C).
The role of BDNF-AS in propofol effects was analyzed in GSCs that were silenced for the expression
of BDNF-AS. GSCs were transfected with a BDNF-AS siRNA for 24 h, followed by treatment with
propofol for additional 24 h. The secretion of BDNF was analyzed using ELISA (D) and propofol
effects on GSC-10 self-renewal after 14 days (E), and TWIST1 expression in GSC-2 after 48 h (F)
was determined. The results represent mean values ± SD of four different experiments. ** p < 0.01,
*** p < 0.001. Significance was determined by two-tailed unpaired Student’s t-test.

We then performed a bioinformatic analysis of BDNF-AS expression in glioma using
a TCGA dataset. A total of 162 cases of GBM and 461 cases of LGG were analyzed. The
expression of BDNF-AS was decreased in GBM (G4) compared to LGG (G2, G3) tumors
(p < 0.0001, Figure 5A). Similarly, we found that the expression of BDNF-AS was signifi-
cantly downregulated in IDHwt compared with IDHmutant tumors (p < 0.001, Figure 5B)
and in mesenchymal compared with proneural subtypes (p < 0.0001, Figure 5C), indicating
that aggressive tumors with poor prognosis are associated with lower levels of BDNF-AS.
Analyzing the expression of BDNF-AS in primary and recurrent LGG (Figure 5D) and GBM
(Figure 5E) tumors demonstrated a significant decrease in both types of recurrent tumors
(p < 0.01 for GBM and p < 0.001 for LGG). BDNF-AS expression was also increased
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in MGMT methylated compared with unmethylated glioma tumors (GBM and LGG)
(Figure 5F), and this increased expression was observed in both primary (Figure S5A) and
recurrent tumors (Figure S5B). No significant differences in BDNF-AS expression were
observed when GBM (Figure S5C) and LGG (Figure S5D) were analyzed separately. Finally,
we also found that higher levels of BDNF-AS are associated with increased overall survival
in LGG patients (Figure 5G), whereas no significant association was observed in patients
with GBM (Figure S5E).

The expression of BDNF displayed an opposite pattern and was higher in GBM com-
pared with LGG (Figure S5F), in IDHwt compared with IDH mutant tumors (Figure S5G),
and in mesenchymal compared with proneural tumors (Figure S5H). BDNF expression was
significantly increased in recurrent GBM (Figure S5J, p < 0.05) but not in recurrent LGG
tumors (Figure S5I). BDNF expression was not associated with changes in patient overall
survival in either GBM (Figure S5K) or LGG (Figure S5L) patients, suggesting that BDNF
may not be the only target of BDNF-AS.

3.5. Treatment of GSCs with Propofol Decreases the Anti-Inflammatory/Pro-Tumorigenic State of
Co-Cultured Microglia via the Transfer of EVs

We then examined whether propofol also affected the interaction of GSCs with mi-
croglia cells in addition to its direct effect on the tumor cells.

Recent studies have demonstrated a bidirectional crosstalk of glioma cells and mi-
croglia, which promotes tumor growth [46]. We analyzed the effects of propofol on mi-
croglia state and GSCs functions in transwell co-culture plates with 1 µm filters that allowed
only the transfer of soluble factors. As we recently reported [26], co-culturing of GSCs with
microglia cells (CC) increased the self-renewal of the GSCs (Figure 6A). Under these culture
conditions, the relative expression of the anti-inflammatory/pro-tumorigenic cytokines,
TGF-β1, and IL-10 was increased in the co-cultured microglia cells [47] (Figure 6B). Treat-
ment of the co-cultured GSCs with propofol (10 and 20 µM) decreased the self-renewal of
these cells (Figure 6A) and the expression of M2-like microglia cytokines in the co-cultured
microglia cells (Figure 6B).

Cells 2023, 12, x FOR PEER REVIEW 12 of 22 
 

 

significantly downregulated in IDHwt compared with IDHmutant tumors (p < 0.001, Fig-
ure 5B) and in mesenchymal compared with proneural subtypes (p < 0.0001, Figure 5C), 
indicating that aggressive tumors with poor prognosis are associated with lower levels of 
BDNF-AS. Analyzing the expression of BDNF-AS in primary and recurrent LGG (Figure 
5D) and GBM (Figure 5E) tumors demonstrated a significant decrease in both types of 
recurrent tumors (p < 0.01 for GBM and p < 0.001 for LGG). BDNF-AS expression was also 
increased in MGMT methylated compared with unmethylated glioma tumors (GBM and 
LGG) (Figure 5F), and this increased expression was observed in both primary (Figure 
S5A) and recurrent tumors (Figure S5B). No significant differences in BDNF-AS expres-
sion were observed when GBM (Figure S5C) and LGG (Figure S5D) were analyzed sepa-
rately. Finally, we also found that higher levels of BDNF-AS are associated with increased 
overall survival in LGG patients (Figure 5G), whereas no significant association was ob-
served in patients with GBM (Figure S5E). 

 

Figure 5. Cont.



Cells 2023, 12, 1921 13 of 21
Cells 2023, 12, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 5. Expression of BDNF-AS in glial tumors. Relative expression of BDNF-AS in LGG (G2, n = 
220; G3. n = 241) and GBM (G4, n = 162) was determined according to The Cancer Genome Atlas 
(TCGA data portal, Wilcoxon t-test p < 0.0001) (A). BDNF-AS expression was also determined in 
glioma tumors (GBM and LGG) by IDH status (IDH WT, n = 232; IDHmut-codel n = 171; IDHmut-
non-codel, n = 268, Wilcoxon t-test p < 0.0001) (B), and molecular subtypes (PN, n = 250; NE, n = 109; 
CL, n = 88l; ME, n = 102, Wilcoxon t-test p < 0.001) (C). The expression of BDNF-AS was analyzed in 
primary (n = 444) and recurrent (n = 14) LGG tumors, p < 0.0001 (D), primary (n = 140) and recurrent 
(n = 13) GBM tumors (E), and in MGMT methylated (n = 489) and unmethylated (n = 160) tumors 
(LGG+GBM), p < 0.01 (F). Overall survival of LGG patients was determined using a Kaplan–Meier 
survival model, and the p-value was calculated using log-rank test, p = 0.009 (G). ** p < 0.01, *** p < 
0.001, **** p < 0.0001. 

The expression of BDNF displayed an opposite pattern and was higher in GBM com-
pared with LGG (Figure S5F), in IDHwt compared with IDH mutant tumors (Figure S5G), 
and in mesenchymal compared with proneural tumors (Figure S5H). BDNF expression 
was significantly increased in recurrent GBM (Figure S5J, p < 0.05) but not in recurrent 
LGG tumors (Figure S5I). BDNF expression was not associated with changes in patient 
overall survival in either GBM (Figure S5K) or LGG (Figure S5L) patients, suggesting that 
BDNF may not be the only target of BDNF-AS. 

3.5. Treatment of GSCs with Propofol Decreases the Anti-Inflammatory/Pro-Tumorigenic State 
of Co-Cultured Microglia via the Transfer of EVs 

We then examined whether propofol also affected the interaction of GSCs with mi-
croglia cells in addition to its direct effect on the tumor cells. 

Recent studies have demonstrated a bidirectional crosstalk of glioma cells and micro-
glia, which promotes tumor growth [46]. We analyzed the effects of propofol on microglia 
state and GSCs functions in transwell co-culture plates with 1 µm filters that allowed only 
the transfer of soluble factors. As we recently reported [26], co-culturing of GSCs with 

Figure 5. Expression of BDNF-AS in glial tumors. Relative expression of BDNF-AS in LGG (G2,
n = 220; G3. n = 241) and GBM (G4, n = 162) was determined according to The Cancer Genome Atlas
(TCGA data portal, Wilcoxon t-test p < 0.0001) (A). BDNF-AS expression was also determined in
glioma tumors (GBM and LGG) by IDH status (IDH WT, n = 232; IDHmut-codel n = 171; IDHmut-non-
codel, n = 268, Wilcoxon t-test p < 0.0001) (B), and molecular subtypes (PN, n = 250; NE, n = 109; CL,
n = 88l; ME, n = 102, Wilcoxon t-test p < 0.001) (C). The expression of BDNF-AS was analyzed in
primary (n = 444) and recurrent (n = 14) LGG tumors, p < 0.0001 (D), primary (n = 140) and recurrent
(n = 13) GBM tumors (E), and in MGMT methylated (n = 489) and unmethylated (n = 160) tumors
(LGG+GBM), p < 0.01 (F). Overall survival of LGG patients was determined using a Kaplan–Meier sur-
vival model, and the p-value was calculated using log-rank test, p = 0.009 (G). ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

We and others recently reported that EVs play an important role in the crosstalk
of glioma cells and microglia [26]. We therefore analyzed the role of EVs in propofol
effects on this intercellular interaction. To analyze the roles of EVs in propofol’s effects on
GSC-microglia interactions, we first employed the membrane neutral sphingomyelinase
(nSMase) inhibitor, GW4869, which reduces the secretion of EVs by blocking the ceramide-
dependent budding of intraluminal vesicles (ILV) into the lumen of multivesicular bodies
(MVBs) [48]. GSC-10 were treated with GW4869 (20 µM) prior to propofol treatment and
their co-culture with microglia. GW4869 treatment decreased EV secretion in GSC-10, as
demonstrated by CD63 ELISA (Figure S6A), and partially abrogated the inhibitory effect of
propofol on the microglial expression of TGF-β1 Figure 6C.

To further analyze the role of EVs in propofol’s effect, we isolated EVs from control and
propofol-treated GSCs and examined their effects on microglia, as previously reported [26].
We analyzed the EVs isolated from both control and propofol-treated GSCs for CD63-,
CD81-, and CD9-positive EV subpopulations by ELISA. We found that treatment of GSCs
with propofol did not induce a significant change in the amount of the CD81+ and CD63+
EVs, whereas a small decrease was observed in the amount of CD9+ EVs (Figure S6B).

We then examined the effects of EVs isolated from control and propofol-treated GSCs
on microglia cells. EVs isolated from control GSC-10 and GSC-2 increased the expression of
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TGF-β1 (Figure 6D) and IL-10 (Figure 6E) in microglia cells, as recently reported [26]. In
contrast, EVs isolated from propofol-treated GSCs abrogated these effects, and the levels of
TGF-β1 and IL-10 were significantly lower and similar to that of untreated microglia cells
(Figure 6D,E).
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Figure 6. Propofol induces pro-inflammatory/anti-tumorigenic phenotypes of co-cultured human
microglia via EVs. GSCs and microglial cells were cultured alone or in co-cultures in transwell
plates with 1-µm filters (CC). Self-renewal of co-cultured GSCs (CC) was analyzed after 14 days, as
described in Figure 1A (A). The expression of IL-10 and TGF-β1 (anti-inflammatory M2-like markers)
in microglia plated alone and in co-culture (CC) was determined by RT-PCR (B). GSC-10 were treated
with GW4869 for 20 h followed by propofol treatment for additional 24 h. The cells were then
co-cultured with microglia in transwell plates for 24 h. The expression of TGF-β1 in the microglia
cells was determined by RT-PCR (C). GSCs were treated with propofol (20 µM) for 24 h and EVs
were isolated using ExoQuick TC Ultra kit. Microglia were treated with EVs (2 × 108/mL) isolated
from untreated (Medium) or propofol-treated cells (20 µM) for 24 h, and the secretion of TGF-β1 (D)
and IL-10 (E) was determined by ELISA. The results represent mean values ± SD of four different
experiments. Significance was determined using one-way ANOVA with Tukey’s multiple comparison
test ** p < 0.01, *** p < 0.001.

Altogether, these results indicate that EVs secreted from propofol-treated GSCs play
at least a partial inhibitory role in the interaction of GSCs with microglia cells.

3.6. Propofol Effects on Co-Cultured Microglia State Are Mediated by Transfer of
EV-Associated BDNF-AS

We recently demonstrated that BDNF-AS is expressed in EVs and can modulate
microglia polarization state [28]. We therefore analyzed the expression of BDNF-AS in
secreted EVs and its role in abrogating the induction of anti-inflammatory/pro-tumorigenic
microglia induced by co-cultured GSCs. Propofol increased the expression of BDNF-AS in
EVs isolated from treated GSCs compared with untreated cells (Figure 7A). We also found
that microglia co-cultured with propofol-treated GSCs exhibited an increased expression
of BDNF-AS (Figure 7B) and decreased BDNF expression (Figure 7C) compared with
microglia cultured with untreated cells.

We then analyzed the role of EV-associated BDNF-AS in propofol’s effect in the
crosstalk of GSCs and microglia. Microglia were treated with EVs isolated from GSCs that
were silenced for BDNF-AS and were either treated or untreated with propofol. We found
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that silencing of BDNF-AS in control GSCs did not affect the ability of secreted EVs to
induce polarization of microglia to an anti-inflammatory/pro-tumorigenic state. However,
BDNF-AS silencing abrogated the inhibitory effect of EVs from propofol-treated GSCs
on the anti-inflammatory/pro-tumorigenic microglia polarization (Figure 7D). Thus, we
conclude that the increased expression of BDNF-AS mediates both the direct anti-tumor
effects of propofol on GSCs as well as the indirect effects of inhibiting the pro-tumorigenic
crosstalk of GSCs with microglia via the transfer of BDNF-AS by EVs.
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Figure 7. Propofol inhibits the GSC-induced pro-tumorigenic state of microglia by the delivery of EV-
associated BDNF-AS. The expression of BDNF-AS was determined in EVs isolated from GSCs treated
with propofol (20 µM) for 24 h as compared with control untreated cells. *** p < 0.001, Student t-test
(A) and in microglia cultured alone or co-cultured with GSC-10 (Microglia-CC) untreated or treated
with propofol (20 µM) for 24 h. *** p < 0.001. (B). The secretion of BDNF in microglia co-cultured with
control or propofol-treated GSC-10 was determined by ELISA. *** p < 0.001, Student t-test. (C). To
analyze the of role of EV-derived BDNF-AS in the effect of propofol on the GSC-microglia crosstalk,
GSC-10 were transfected with a control or BDNF-AS siRNAs using siIMPORTER. After 24 h, the
cells were treated with propofol for an additional 24 h, and EVs were isolated and administered to
microglia cultures. The expression of TGF-β was determined in microglia cells or in microglia treated
with EV-isolated from control GSC-10, GSC-10 treated with propofol, and GSC-10 transfected with
BDNF-AS siRNA untreated or treated with propofol. ** p < 0.01, *** p < 0.001 (D). (B–D) The results
represent mean values ± SD of four different experiments. Significance was determined by ANOVA
with Tukey’s test.

4. Discussion

GBM is one of the most aggressive, infiltrative and incurable tumors, with an average
patient survival of around 14–16 months [1,2]. GBM therapy resistance and recurrence
are primarily attributed to the existence of GSCs [48–50] and mesenchymal transition of
these tumors, which is associated with the acquisition of stemness characteristics and
tumor aggressiveness [51–54]. Therefore, targeting these cells and processes are an essential
component of a successful therapy.

The choice of general anesthetic for tumor surgical resection has been recently reported
to impact tumor growth, metastasis, and recurrence, as well as prognosis of patients with
solid tumors [18,19,22]. Propofol, one of the most commonly used anesthetics during
surgery, has been mainly associated with anti-tumor effects, while few studies report
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an opposite effect [19,22,55]. Retrospective epidemiological studies demonstrate that the
use of propofol during resection is associated with a better prognosis than other general
anesthetics in patients with different solid tumors [18,20]. The results of the clinical studies
are not always consistent due to the retrospective nature of most reports, the wide spectrum
of tumor presentation at surgery and the relatively brief single exposure of the patients to
propofol. Propofol can be used for deep general anesthesia, but also in reduced dosages
as a sedative, such as during awake brain surgery. It can also be used as a sedative for
prolonged (days) duration for intubated patients in the intensive care unit. Longer or
repetitive exposures to propofol at sedative dosages may be beneficial as an anti-tumor
treatment. With regards to glioma, results of clinical studies of propofol effects during
craniotomy are inconsistent [20], and there are no randomized clinical trials in neurosurgical
patients on the effects of anesthetic choice and patient outcome.

More consistent effects have been reported on in vitro and animal studies, which
demonstrated anti-tumor effects of propofol in a variety of solid tumors [21,22,55], further
supporting these observations. Similarly, anti-tumor effects of propofol were reported
on different glioma cell lines both in vitro and in vivo, mostly demonstrating changes in
cell proliferation, migration [56,57], and inhibition of tumor growth [57,58]. However, all
these studies were performed in specific established cell lines, whereas propofol effects on
tumor-derived primary cultures of glioma cells and glioma stem cells and on the interaction
of glioma cells and microglia cells are not yet reported.

Using patient-tumor-derived GSCs, we found that propofol inhibited the self-renewal
and generation of secondary spheres and decreased their migration and mesenchymal
transition, while inducing cell death at high concentrations. Propofol inhibited cell growth
and migration also in differentiated tumor cells (DGSCs) further indicating that propofol
exerts anti-tumor effects on both cell types that constitute GBM tumors. Importantly,
propofol did not affect the survival of neural cells in these concentrations, highlighting the
safety of this treatment. This last point is supported by the long safety record of propofol
in clinical anesthesia practice.

Propofol also enhanced the cytotoxic effects of TMZ and radiation in GSCs and DGSCs,
indicating that it can be combined with and may sensitize GBM to the treatments of care
of these tumors. Therefore, propofol may exert significant anti-tumor effects, not only as
the general anesthetic of choice during tumor resection, but also as an adjunct for current
GBM treatments.

Propofol induces anti-tumor effects via multiple mechanisms [27,57–59], including
changes in the expression of specific lncRNAs. We found that propofol induced the
expression of the lncRNA BDNF-AS in GSCs, and that silencing of this lncRNA abrogated
the anti-tumor effects of propofol, indicating that the increase in BDNF-AS by propofol
mediated at least some of its effects.

BDNF-AS is downregulated in a variety of tumors and acts mainly as a tumor sup-
pressor [58]. Using TCGA analysis, we demonstrated that BDNF-AS is downregulated in
GBM and in glioma subtypes that are associated with aggressive phenotypes and poor
prognosis, whereas high levels of BDNF-AS are associated with better patient prognosis. In
addition, decreased BDNF-AS expression was also observed in recurrent LGG and GBM
and in MGMT unmethylated tumors. This lncRNA is transcribed from the opposite strand
of BDNF and therefore acts as a negative regulator of BDNF expression [46,60]. Propofol
decreased the expression and secretion of BDNF from GSCs, and silencing of BDNF-AS
increased its expression. Therefore, one mechanism of the anti-tumor effect of propofol
may be mediated by decreasing BDNF levels in GSCs.

Indeed, BDNF has been reported to act as an oncogenic protein in various types of
tumors, including glioma. The oncogenic effects of BDNF are mediated by binding to TrkB
and the crosstalk of this receptor with the EGF receptor [61]. In addition, BDNF has been
implicated as an important paracrine factor in the growth of GSCs via crosstalk of these
cells with DGSCs [62].



Cells 2023, 12, 1921 17 of 21

Additional mechanisms involved in the anti-tumor effects of BDNF-AS include epige-
netic suppression of GSK-3β expression in colorectal cells [62], targeting of miR-214 and
EMT in esophageal cancer cells [63], stabilization of BDNF-AS in glioma cells by PABPC1
and STAU1-mediated decay [46], and stabilization of p53 in glioma cells via a positive
feedback loop of BDNF-AS-ADAR-p53 [64].

Glioma cells and GSCs interact with microglia cells, and this interaction, which is partly
mediated by EVs, results in the differentiation of microglia towards anti-inflammatory/pro-
tumorigenic states, which promotes growth and mesenchymal transition of glioma cells [41].
Indeed, we recently demonstrated that co-culture of GSCs promoted the
anti-inflammatory/pro-tumorigenic state of co-cultured microglia [26]. Using a similar
transwell of co-cultures of GSCs and human microglia, we found that propofol abrogated
this interaction, inhibiting the increased stemness of GSCs and the expression of TGF-β and
IL-10 in the co-cultured microglia cells. Indeed, TGF-β has been reported to maintain the tu-
morigenicity of GSCs [65]. In addition, we demonstrated that the effects of propofol-treated
GSCs on cultured microglia cells were mediated by EVs via the delivery of BDNF-AS.

The molecular mechanisms of the EV-derived BDNF-AS effects on microglia functions
are currently not understood; however, recent studies have demonstrated that microglia
secrete BDNF, and that this factor plays a role in microglia and macrophage activation.
Repression of GSK-3β expression by BDNF-AS can also contribute to the promotion of
microglia M1-like polarization.

In summary, our results clearly demonstrate anti-tumor effects of propofol in GSCs
and DGSCs. Propofol induced a direct anti-tumor effect on these cells by inhibiting their
self-renewal, proliferation, and migration, and by their sensitization to radiation and TMZ.
In addition, propofol also inhibited the pro-tumorigenic interaction of GSCs with microglia,
therefore impacting both the tumor cells and the tumor microenvironment. Indeed, the
interaction of glioma cells and GSCs with the tumor microenvironment plays a critical role
in tumor aggressiveness [10]. We identified BDNF-AS as a mediator of propofol effects
via decreasing the levels of BDNF, which acts as a glioma cell mitogen and a regulator
of microglia functions (Figure 8). Therefore, propofol, which is widely used in GBM
surgeries, should be further explored as a potential repurposed therapeutic agent both
during resection and as an effective adjunct to radiation and TMZ. The ability of propofol
to inhibit the crosstalk of glioma cells with the tumor microenvironment, combined with
the lack of cytotoxic effects of propofol on mature neural cells, further emphasizes its
importance as a potential anti-tumor agent.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cells12151921/s1, Figure S1. Propofol effects on GSCs
self-renewal and cell death. GSC-6 (A) and GSC-11 (B) were plated at 100 cells/well in 96-well
plates and treated with different propofol concentrations. The number of neurospheres per well was
quantified after 14 days and presented as % of normalized control (A,B). Cell death was analyzed in
GSC-10 (C) and GSC-2 (E) using LDH assay. Cell death is presented as relative average OD units.
Cell apoptosis of propofol-treated GSC-2 was analyzed using caspase 3 activity (D). The results are
presented as the means ± SD of three separate experiments. * p < 0.05, ** p < 0.01, *** p < 0.001.
Significance was determined by two-tailed unpaired Student’s t-test. Figure S2. Propofol does
not exert cell death in human neural cells. Human neurons, oligodendrocytes and microglia were
cultured with 100 µM propofol for 48 h and cell apoptosis was analyzed using caspase 3 activity (A).
Cell death of human neurons, oligodendrocytes, microglia and astrocytes was analyzed by LDH
assay (B). The results are presented as the means ± SD of three separate experiments. Significance
was determined by two-tailed unpaired Student’s t-test. Figure S3. Propofol inhibits migration
and enhances the response of DGSC-2 to TMZ. GSC-2 were differentiated in medium consisting
of DMEM+10% FCS for a week. DGSC-2 were treated with propofol (20 µM) and cell migration
was analyzed using transwell plates with 8 m filter (A). DGSC-2 were treated with propofol alone
(10 µM) or with TMZ (25 µM). Cells proliferation was determined by determining cell number via
trypan blue exclusion assay (B). Interaction analysis demonstrated a statistically significant interac-
tion between propofol and TMZ that generated a synergistic inhibitory effect on cell proliferation,
F(1, 12) = 39.452, p < 0.0005). The results represent as the means ± SD of four different experiments.
*** p < 0.001. Significance was determined by two-tailed unpaired Student’s t-test. Figure S4. Silencing
of BDNF-As in GSCs. GSC-10 were transfected with a control and two BDNF-AS siRNAs using
siMPORTER reagent. The expression of BDNF-AS was determined after 48 h using RT-PCR. The
results represent mean values ± SD of three different experiments. *** p < 0.001. Significance was
determined by two-tailed unpaired Student’s t-test. Figure S5. Expression of BDNF in glial tumors.
The expression of BDNF-AS was analyzed in primary (A) and recurrent (B) glioma (GBM+LGG)
and in primary GBM (C) and LGG (D) MGMT methylated and unmethylated tumors. Kaplan-Meier
estimates of overall survival are plotted for GBM patients according to BDNF-AS expression, log-
rank P = 0.89 (E). Relative expression of BDNF in LGG (G2, n = 214; G3. N = 225) and GBM (G4,
n = 158) was determined according to The Cancer Genome Atlas (TCGA data portal, Wilcoxon t-test
p < 0.0001) (F). BDNF expression was also determined in glioma tumors (GBM and LGG) by IDH
status (IDH WT, n = 217; IDHmut-codel n = 256; IDHmut-non-codel, n = 167, Wilcoxon t-test
p < 0.0001) (G), and molecular subtypes (PN, n = 242; NE, n = 100; CL, n = 80; ME, n = 90, Wilcoxon
t-test p < 0.001) (H). The expression of BDNF in primary (n = 144) and recurrent (n-12) LGG tumors,
p < 0.0001 (I) and primary (n = 425) and recurrent (n-14) GBM tumors (J) was also analyzed. Kaplan-
Meier estimates of overall survival are plotted for GBM patients according to BDNF expression,
log-rank P = 0.73, (K) and LGG patients according to BDNF expression, log-rank P = 0.89 (L).
Figure S6. Propofol effects on extracellular vesicle (EVs) secretion. The effect of GW4869 (20 µM)
on EV secretion was analyzed in both GSC-10 and GSC-2 after 20 h of treatment (A). GSC-10 and
GSC-2 were treated with propofol 20 µM for 24 h. EVs were isolated using ExoQuick-TC Ultra kit
and were analyzed for the relative expression of CD63, CD81 and CD9 using ELISA (B). The results
represent mean values ± SD of three different experiments. ** p < 0.01, *** p < 0.001. Significance was
determined by two-tailed unpaired Student’s t-test. Table S1. De-identified patient information of
GSCs. Table S2. Sequences of primers used for RT-PCR.
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