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launch of a billiard ball

Sangheon Choi
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Introduction

This thesis is an exploration of Quantum Computing applied to Pell’s equation
in an attempt to find solutions to the Billiard Ball Problem. Pell’s equation is
a Diophantine equation in the form of x2 −ny2 = 1, where n is a given positive
nonsquare integer, and integer solutions are sought for x and y. We will be
applying Hallgren’s algorithm for finding irrational periods in functions, in the
context of billiard balls and their movement on a friction-less unit square billiard
table. Our central research question has been the following:

Given the cutting sequence of the billiard ball’s movement, can
you find the irrational slope value in which the billiard ball was put
in motion?

Given a function that provides the cutting sequence, we theorize it can be
input into Hallgren’s algorithm and find the slope (the irrational period). Here,
the cutting sequence is the sequence of 0s or 1s that track the walls of the billiard
table the ball has had contact with.

For example: Figure 1 contains a billiard with cutting sequence 0101 . . .. We
can observe the trajectory that some billiard ball would take, if it started at the
bottom left corner of the table. As the first wall it touches is the top horizontal
wall, we record a 0. The next wall it touches is the right-side vertical wall so
we record a 1. This continues as the ball moves forward.

We rigorously study Pell’s equation due to the parallels it can provide to
solving the billiard ball problem. Pell’s equation provides us with a function
f(x) that we can input into Hallgren’s algorithm that produces a value known
as the regulator that can be used to find solutions for some d value. Similiarly,
we expect to find some function f(x) that produces the cutting sequence, that
we can then input into Hallgren’s algorithm to produce the pseudo-period and
find an irrational slope value that the billiard ball is launched at.
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Figure 1: Example billiard table

1 Motivation

Because many questions in theoretical mathematics are the complete opposite
of applied, a question often asked is, why should the reader care? This is an
attempt to provide context to the reader of why this work is interesting.

Pell’s equation

This is Pell’s equation:
x2 − dy2 = 1

Pell’s equation is the simplest non-linear equation and it has a long history of
study [7, p. 76], dating back to the times of ancient Greeks and Indians. The
ancient Greeks (Archimedes and Diophantus) and Indians (Brahmagupta and
Baudhayana) found solutions to specific examples of Pell’s equation, such as
examples when n = 2. Later Indian mathematicians found general solutions
to Pell’s equation, as Bhaskara II built on Brahmagupta’s work to develop the
chakravala method [4, pp. 247–250].

The Greeks had an associated word problem that Pell’s equation was meant
to solve, known as Archimedes’s Cattle Problem [9]. The solution consisted of
solving simultaneous Diophantine equations. Diophantine equations are equa-
tions of the form ax + by + cz + . . . = d, where a, b, c . . . d are all integers, and
x, y, z are integers that are solutions to the equation. These equations can be
used to model Archimedes’s Cattle Problem with various relations between dif-
ferent types of cows and their ratios between one another as the coefficients
for the equations. Such natural occurrences of Pell’s equation indicate serious
studies will yield results in many unforseen ways (including that 7.76× 10206544

cattle is the smallest number necessary to solve all simultaneous equations of
conditions set out by the Cattle Problem’s parameters).

Pell’s equation also has applications to cryptography. Pell’s equation can be
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used to generate public-key cryptographic systems, in the form of the Buchmann-
Williams cryptosystem. [1].

Billiard Balls

Billiard balls and theoretical mathematics, on the surface, do not share a clear
link. Our key text on this subject, Geometry and Billiards [8, p. 7], cites that
the 1,400 different articles on Billiards alone (in 2005) is proof that this field
is of great interest. Billiards provide a framework in which to study dynamical
systems, with connections to geometry and physics. Billiards and billiard ta-
bles have been described as not a field of mathematics, but a mathematician’s
playground in which to play with and test various methods [3]. Russian mathe-
matics has always veered on the side of study for study’s sake, and the pursuit
of knowledge alone is often justification for study.

2 Literature Review

2.1 Explorations in Quantum Computing

A text referenced for this project was the textbook Explorations in Quantum
Computing by Colin P. Williams [9]. This text explores fundamental concepts in
Quantum Computing, and has a dedicated section on Hallgren’s algorithm and
its relation to Pell’s equation. This text also introduces the Cattle Problem of
Archimedes and the regulator. The Cattle Problem of Archimedes is an interest-
ing application of Pell’s equation, and the regulator, R = lnx1 +

√
dy1, where

(x1, y1) is used to uniquely identify least positive solutions to Pell’s equation for
some non-square coefficient value d.

To discuss Hallgren’s algorithm, we must first learn about Shor’s algorithm.
Shor’s algorithm is arguably one of the most famous algorithms discovered under
the umbrella of quantum computing. Shor’s algorithm is a quantum algorithm
for integer factorization, which means that it can find the prime factors of a
given integer exponentially faster than any known classical algorithm. One of
the key steps in Shor’s algorithm is period-finding, which is used to find the
period of a certain function. The period-finding step of Shor’s algorithm works
as follows: Given an integer N and an integer a that is relatively prime to N , we
want to find the smallest positive integer r such that ar is congruent to 1 modulo
N . In other words, we want to find the period of the function f(x) = ax modulo
N . The computation is performed on a quantum computer using the quantum
Fourier transform, and is followed by classical post-processing to obtain the
period.

Hallgren’s algorithm, also known as the “irrational period-finding algorithm”,
builds on the period-finding step of Shor’s algorithm, but instead of finding
the period of a periodic function, it finds the irrational period of a certain
non-periodic function. It uses the same basic structure of applying the quan-
tum Fourier transform, with classical post-processing. However, the irrational
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period-finding is a unique contribution, as no matter how much you apply Shor’s
algorithm to estimate an irrational period value with rational intervals, there are
far too many rounding errors that occur when using that estimation in future
calculations. Further sections elaborate on the details of Hallgren’s algorithm,
and how we plan to apply it to the billiard ball problem.

2.2 Geometry and Billiards

A crucial text for understanding the problem was the text Geometry and Bil-
liards by Serge Tabachnikov. This book is meant for undergraduate and gradu-
ate students to use to explore mathematical billiards. Our focus was on under-
standing the concepts in Chapter 2, where the cutting sequence, billiard table
and trajectory of the ball are introduced.

2.2.1 Billiard Table

The fundamental object we are working with is the unit square billiard table.
Figure 1 is a drawing of the components of the unit billiard table. The billiard

Figure 2: Unit square billiard table

table is friction-less, meaning that the billiard ball, once launched, will move
around forever, continuously bouncing off walls. The slope m is the value of the
slope of the ball’s movement. Whenever the ball hits a vertical wall, we record
a 1, and whenever it hits a horizontal wall, we record a 0. This sequence of 1s
and 0s is known as the cutting sequence. We are interested in the slope value,
m. While m ∈ R is a real number, we are interested when m ∈ R \ Q. This
is because when m ∈ Q, the ball will have a set pattern of movement that it
will follow forever. It will have a cutting sequence that eventually repeats itself.
However, when m ∈ R\Q, the cutting sequence never repeats itself. The cutting
sequence is an important representation within the billiard ball problem, and
we will be exploring its properties often.
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2.2.2 The expanded billiard table

To observe the movement of the billiard ball in a wider plane, we expand the
billiard table to an infinite grid of unit squares. From this point on, any reference
to billiard tables is strictly about the expanded billiard table model.

Figure 3: Expanded Billiard Table

Figure 2 provides a perspective on what an expanded billiard table looks like.
Instead of visualizing the billiards’ movements on a cramped 1×1 square, we can
instead track its movements in a straight line over an infinite Cartesian grid. The
grid can be discretely divided and indexed, similarly to the Cartesian coordinate
system. The index of an individual table is determined by the coordinate of
the bottom-left corner point. The origin, where the ball is launched, is at
(0, 0). As a billiard ball moves across the grid, it comes in contact with places
where the original walls of the billiard table were. However, the direction of
the movement of the ball is flipped around the x or y-axis, from the movement
the ball would have made in the original table, depending on where on the
coordinate system the billiard table is present in. Two neighboring squares
share the same properties but are mirrored on the sides they share. The cutting
sequence remains consistent with the single unit-square billiard table, where if
the ball makes contact with a horizontal wall, a 0 is logged, and if the ball
makes contact with a vertical wall, a 1 is logged. However, in the expanded
table, the ball would go through the wall into the adjacent billiard table instead
of bouncing back into the original table. The billiard thus follows a path that
resembles a linear equation on an expanded billiard table that resembles the
Cartesian coordinate system. From this point on, the text assumes the expanded
billiard table is the default, and will refer to it as the billiard table.

2.3 Polynomial-time quantum algorithms for Pell’s equa-
tion and the principal ideal problem

Much of the technical prior work is set up with Hallgren’s paper [2] outlining
his algorithm. This article provides a polynomial-time quantum algorithm for
three problems from computational algebraic number theory, and we focus on

5



its solutions for Pell’s equation. Hallgren’s paper introduces the idea of pseudo-
periodicity. Pseudo-periodic functions exhibit some of the characteristics of
periodic functions, but have some irregularities or noise values that make it
more loosely defined than strictly periodic. Both Shor’s period-finding algorithm
and Hallgren’s irrational-period finding algorithm use the Fourier transform to
compute the period of functions and construct rational approximations.

Hallgren’s algorithm requires a pseudo-periodic function f(x) as its input.
Hallgren’s algorithm broadly follows 3 steps for solving Pell’s equation: i) Using
Pell’s equation, find some f(x) that models the equation with coefficient d ii)
Input into Hallgren’s algorithm and run on a Quantum Computer iii) Produce
a regulator R that can uniquely identify the least positive solution for d. We
mirror this approach, with our main contribution identifying candidate func-
tions f(x) that produce a cutting sequence for the ball. Inputting this value to
Hallgren’s algorithm should provide us with a pseudo-period that we hope to
use to find the slope value.

3 Technical Details

3.1 Cutting Sequences and their properties

In the right image in figure 3, the cutting sequence of the irrational slope m is
0101 · · · . As the billiard ball continues to move, the cutting sequence grows in
length.

3.1.1 The Golden Ratio

Tabachnikov suggests [8] an interesting irrational number value to explore is

when m = ϕ, also known as the Golden Ratio, ϕ = 1+
√
5

2 . ϕ can also be
expressed in continued fraction form,

ϕ = 1 +
1

1 +
1

1 +
1

1 + · · ·
The cutting sequence for when a ball is launched at slope m = ϕ is w =

· · · 0100101001001 · · · . An interesting observation made is that w is invariant
over substitution σ : 0 7→ 01, 1 7→ 0. We explored this work and discovered this
is true using linear algebra.

Proof. We define the trajectory of the ball to be

C =

{
y =

2

1 +
√
5
x

}
=

{
(x,

2

1 +
√
5
x)

}
We must also introduce the grid that the trajectory is passing through:

Gold =

{
x

[
1
0

]
+ y

[
0
1

]
|x ∈ Z+or y ∈ Z+

}
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If x ∈ Z or 2
1+

√
5
x ∈ Z then we know that there is an intersection between the

trajectory of the ball and the grid, so we must add another character to the
cutting sequence. We define the set of points as P ,

P =

{
⟨x, 2

1 +
√
5
x⟩ | x ∈ Z+ or

2

1 +
√
5
x ∈ Z+

}
where all p ∈ P are intersections between the trajectory and the grid.

Pold = P and Pnew = AP are the old and new cutting sequences of a ball
moving at slope m. Cold = C and Cnew = AC are the old and new trajectories
of the ball.

Let matrix A =

[
1 1
1 0

]
and an eigenvector for A is x⃗ =

[
ϕ
1

]
. A represents

the linear transformation that the grid will make. Applying A to Gold, we get
Gnew where,

Gnew = AGold =

{
A

(
x

[
1
0

]
+ y

[
0
1

])
|x ∈ Z+or y ∈ Z+

}
The new trajectory becomes AC,

AC =

{[
ϕx
x

]}
=

{
ϕ

[
x

ϕ−1x

]}
Therefore, AC = {ϕy = x} = {y = ϕ−1x} = C, so the trajectory of the ball

does not change as the linear transformation occurs.
Similarly, we must apply the linear transformation to all p ∈ P .

AP =

{
Ax

[
x
2

1+
√
5
x

]
|x ∈ Z+or

2

1 +
√
5
x ∈ Z+

}
=

{[
ϕx
x

]
|x ∈ Z+orϕ−1x ∈ Z+

}
We can observe that AP is just the points of P with a ϕ multiplied in front.

We must establish C ∩ Gold = P and AC ∩ Gnew = AP to determine that
there is no change of the cutting sequence between linear transformations A.
To establish an intersection between Gold and C, the elements must satisfy
conditionals of both sets.

Let Hold = {(x, y)|y ∈ Z+} mapped to 1 and Vold = {(x, y)|x ∈ Z+} mapped
to 0 be the horizontal and vertical lines and Hold ∪ Vold = Gold.

Gold ∩ C =

{
x

[
1
0

]
+ y

[
0
1

]
|x ∈ Z+ or y ∈ Z+ and y = ϕ−1x

}
⇔ Gold ∩ C =

{
x

[
1
0

]
+ ϕ−1x

[
0
1

]
|x ∈ Z+ or y ∈ Z+ and y = ϕ−1x

}
= P

Similarly, we find an intersection Gnew ∩ C = AP .

Gnew ∩ C =

{
xA

[
1
0

]
+ yA

[
0
1

]
|x ∈ Z+ or y ∈ Z+andy = ϕ−1x

}
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=

{[
x+ ϕ−1x

x

]
|x ∈ Z+ or ϕ−1x ∈ Z+ and y = ϕ−1x

}
= AP

Using the above definitions, we make the following claims:

1. Every 0 ∈ Pnew corresponds to 1 ∈ Pold

2. Every 0 ∈ Pnew corresponds to a 0 ∈ Pold to its left of distance less than
1 unit.

3. Every 1 ∈ Pnew corresponds to 0 ∈ Pold to its left of distance less than 1
unit.

Let Hnew = A · Vold = {(x, y)|y ∈ Z+} map to 0 and Vnew = A · Hold =
{(x, y)|x− y ∈ Z+} map to 1. Using these definitions, we will prove the above
statements in the next sections.

Proof of Claim 1. We want to prove that every 0 ∈ Pnew corresponds to 1 ∈
Pold. 0 ∈ Pnew means that there exists some point (x, y) ∈ Cnew ∩ Hnew,
which implies (x, y) ∈ Cnew s.t. x ∈ R+, y ∈ Z+. Since Cnew = Cold ,
(x, y) ∈ Cold, x ∈ R+, y ∈ Z+, which implies (x, y) ∈ Hold ∩ Cold which implies
1 ∈ Pold.

Proof of Claim 2. We want to prove that every 0 ∈ Pnew corresponds to a 0 to
the left of distance less than 1 unit. By way of contradiction, assume that the
next point in Pold to the left is in Hold, so that there exists point (x′, y′) ∈ Pold

s.t. y′ ∈ Z+ and x > x′ > x− 1. Since we know y = ϕ−1x and y′ = ϕ−1x′, we
know y = ϕ−1x > ϕ−1x′ = y′. Because (x, y) ∈ Hnew, so y ∈ Z, y − 1 ≥ y′

implies
y

ϕ−1
− 1

ϕ−1
≥ y′

ϕ−1

implies x− 1

ϕ−1
≥ x′ > x− 1

implies 1 > ϕ

Hence, there is a contradiction. Therefore, every 0 ∈ Pnew corresponds to a 0
to the left of distance less than 1 unit.

Proof of Claim 3. We want to prove that every 1 ∈ Pnew corresponds to 0 ∈ Pold

to its left of distance less than 1 unit. With the assumption that the next point
in Pold to the left is in Hold, si that there exists point (x

′, y′) ∈ Pold s.t. y′ ∈ Z+

and x > x′ > ⌊x⌋. We know that y = ϕ−1x and y′ = ϕ−1x′. From the definition
in Vnew, x− y ∈ Z+, ⌊x⌋ − y′ ∈ Z+.

x− ⌊x⌋ < 1

y′ − y = ϕ−1(x′ − x) < 0
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x− ⌊x⌋+ y′ − y < 1

x(1− ϕ−1) + ϕ−1x− ⌊x⌋ < 1

x(1− ϕ−1) + ϕ−1x− x′ < x(1− ϕ−1) + ϕ−1x− ⌊x⌋

0 < (1− ϕ−1)x− (1− ϕ−1)x′

0 < x− ⌊x⌋+ y′ − y < 1

This is a contradiction, as an integer does not exist between 0 and 1.

3.2 Fibonacci

Recall σ is the operation that takes in strings to do the following substitution:
σ : 0 7→ 01, 1 7→ 0 on the cutting sequence w In the text Geometry and
Billiards by Serge Tabachnikov, it outlines an exercise for the reader to prove
that starting with the string 0, if σ gets repeatedly applied, the string lengths
of each iteration follow the Fibonacci sequence. The following is an inductive
proof for the exercise. We will work with the Fibonacci sequence such that
F1 = 1 and F2 = 2.

Theorem 1. Let wn = σn(0). The lengths of wn are the Fibonacci numbers.

Proof. Base case (n = 1)
With the string w1 = 0 since this has length 1, we know this is the first Fi-
bonacci sequence number. Therefore, the base case n = 1 is true.

Base case (n = 2)
Let us start with the string:

w1 7→ 0

w1 has length 1.
therefore |w1| = f1 = 1

To get w2, we need to apply σ to string w1. Applying σ to w1,

σ(w1) = 01

This new string is w2, where
w2 = 01

The length of this string is 2, since Therefore,

|w2| = f2 = 2

Therefore, this satisfies the second number of the Fibonacci sequence. There-
fore, the base case n = 2 is true.
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Inductive Step: Assume n = k, n = k−1 holds. For the case where n = k−1,
let us assume that the symbol wk−1 is the case where σ has been applied k − 1
times.

wk−1 = σk−1(0)

Given this, the magnitude of wk−1 can be computed as the Fibonacci number
fk−1.

|wk−1| = fk−1

Let us also assume the same about the case where n = k

wk = σk(0)

|wk| = fk

For case (n = k + 1)

wk+1 = σk+1(0)

σk+1(0) = σ(σk(0))

Because all characters in σk(0) are converted to 0 when σ is applied, σk+1(0)
has |σk(0)| 0 characters in it.

Because all 0 characters in σk(0) have an extra 1 attached, and the number
of 0s in σk(0) is equal to |wk−1|. Therefore, σk+1(0) has |σk−1(0)| 1 characters
in it.

Therefore, the number of characters in σk+1(0) becomes |σk−1(0)|+|σk(0)| =
|wk−1|+ |wk| = |wk+1| = |σk+1(0)|

3.3 Properties of cutting sequences where slope m < 1

A characteristic we have uncovered about cutting sequences is the combination
of intervals between 0 characters. Conceptually, if a line is more perpendicular
to the x-axis than the y-axis, it will intersect with more horizontal walls than
vertical walls. On the other hand, if it is more perpendicular to the y-axis than
the x-axis, it will intersect more with horizontal walls than vertical walls. We
study this by observing different runs of a cutting sequence. The nth run is
defined as the sequence of 1s that come between the nth and the n+ 1th 0s in
the cutting sequence.

Theorem 2. If slope m < 1, then the cutting sequence can only have one 0 in
a row.

Proof. We use a proof by contradiction. Assume it is possible to have two 0s
in a row in the cutting sequence when m < 1. For any cutting sequence to
have two 0 characters in a row, it must go through the two horizontal lines that
form the top and bottom of the table. Let the point of intersection between
the trajectory and the bottom of the table be P1 = (a1, b1) and the top be
P2 = (a2, b2), as seen in figure 4. For two 0s to happen sequentially, a2−a1 < 1
and b2−b1 ≥ 1. Subsequently, b2−b1

a2−a1
> 1. However, this contradicts our original
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statement that two 0s can occur in a row when m < 1. Therefore, this proves
that if m < 1, then the cutting sequence can only have one 0.

Figure 4: Example of when ‘0’ is recorded in the sequence

A follow up question is: How are subsequent runs between 0s determined?
That is, given some sequence w, what makes the subsequent number of char-
acters, denoted by the integer l, 1’s? In figure 5, the first run between zeroes
would be the 111 value before the red bar, and the second run would be the 111
before hitting another 0 after the red bar.

3.3.1 The first run

The first run denotes the first continuous sequence of 1s that occur between the
starting point (0, 0) and the first time the sequence cuts through a horizontal
wall, denoted by (1,m). The number of 1s in the first run is determined by

⌊ 1
m⌋, since 1

m =
1

y

x

= x
y . Since the number of columns intersected is discrete, we

must apply the floor function to the value.

3.3.2 Subsequent runs

The number of 1s in the second run is more complicated. As seen in figure 1,
there is a small amount of displacement in the x-axis visible, that the second
run must start with. We will call this extra displacement C. We express the
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Figure 5: The Cutting Sequence

ball’s displacement with 1
m = ⌊ 1

m⌋ + C. C is the extra displacement that the
3rd run will start with. Subsequent runs use a similar process, where extra
displacement continues to increase until C ≥ 1 at some nth run. Then, the nth
run will encounter an extra 1, and C has a 1 subtracted from it to account for
the extra 1 in the run, is the excess displacement for runs beyond n.

Figure 6: Extra Displacement

Figure 6 demonstrates a close-up visualization of the extra displacement
from the first run.

Theorem 3. For the nth run of a sequence w, if the starting slope m < 1, there
are ⌊ n

m⌋ − ⌊n−1
m ⌋ number of 1 characters in that run.

Proof. Let l be the number of 0s encountered. hence the number of runs that
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has happened so far. l and n are equal values. m is the slope value, and some
y coordinate, the corresponding ⌊x⌋ provides the number of 1s encountered so
far. Thus, since n is a y coordinate value, ⌊ n

m⌋ is the number of 1s drawn in the
entire sequence so far. The number of 1s encountered up to the n− 1th run is
⌊n−1

m ⌋. Subtracting ⌊ n
m⌋ − ⌊n−1

m ⌋ gives us the number of 1s between the nth 0
and the n− 1th 0.

4 Applying Hallgren’s to Pell’s

Pell’s equation has interesting connections to old problems such as the Cattle
Problem. However, there are many contemporary problems that are related to
Pell’s equation as well as how to solve it. Hallgren [2] discusses several problems
related to Pells’ equation. The principal ideal problem reduces to Pell’s equa-
tion, which reduces to the problem of factoring. All these problems are special
cases of the Hidden Subgroup Problem, along with other problems such as the
Discrete Log Problem, and the unsolved Graph Isomorphism problem. There
are several algorithms that use Fourier Sampling as a core concept, including
Hallgren’s and Shor’s algorithm. Hallgren’s paper introduces several algorithms
that solves the Principal Ideal Problem and generates solutions to Pell’s equa-
tion. Shor’s algorithm solves factoring and the Discrete Log Problem. These
concepts can be used for solving several different cryptography schemes. Solv-
ing factoring breaks RSA, while solving the discrete log problem solves Diffie-
Hellman, both of which are solved by Shor’s algorithm. Buchmann-Williams is
solved by cracking the Principal Ideal Problem, which is solved by Hallgren’s
algorithm.

4.1 Pell’s equation

Pell’s equation is the following. Given a non-square integer d, the Diophantine
equation

x2 − dy2 = 1

is known as Pell’s equation.
For every value of d, we must find the least positive solution for x and y,

noted by x0, y0 values. This is a deceptively difficult problem. At first glance
from table 1, for small values of d, least positive solutions can be found with
some trial and error. However, as the value of d increases, x0, y0 can jump
erratically and it is impossible to find any correlation between dn and dn−1.

4.2 Applying Pell’s to Archimedes’ Cattle Problem

Archimedes’ cattle problem is a famous mathematical problem attributed to
the ancient Greek mathematician Archimedes. It asks for the number of white,
black, dappled and brown bulls and cows that beloing to the Sun God, Helios,
given several mathematical restrictions. We list the conditions of the problem,
adapted from Solving the Pell Equation [5]:
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d x y x2 − dy2

2 3 2 1
3 2 1 1
5 9 4 1
6 5 2 1
7 8 3 1
8 3 1 1
10 19 6 1
11 10 3 1
12 7 2 1
13 649 180 1
14 15 4 1
15 4 1 1
...

...
...

...

Table 1: Least positive solutions to Pell’s equation up to d = 15

1. Let x, y, z, t represent the white, black, brown, dappled and brown bulls,
the following are the restrictions on the number of animals.

x =

(
1

2
+

1

3

)
y + t,

y =

(
1

4
+

1

5

)
z + t,

z =

(
1

6
+

1

7

)
x+ t

2. There are also restrictions on the number of cows. They are the same
colors as the bulls, but their variables are denoted with primes to represent
cows.

x′ =

(
1

3
+

1

4

)
(y + y′)

z′ =

(
1

5
+

1

6

)
(t+ t′)

y′ =

(
1

4
+

1

5

)
(z + z′)

t′ =

(
1

6
+

1

7

)
(x+ x′)

3. The final conditions are that x + y must be a square and z + t must be
triangular.
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The general solution for the first three equations are (x, y, z, t) = m(2226, 1602, 1580, 891),
wherem is a positive integer. The general solution for the second set of equations
requires thatm = 4657k, and (x′, y′, z′, t′) = k·(7206360, 4893246, 3515820, 5439213).
We must now select a k such that x + y = 4657 · 3828 · k is a square and
z + t = 4657 · 2471 · k is triangular. By examining the prime factorization of
4657 ·3828 = 22 ·3 ·11 ·29 ·4657, it is evident that the first condition is equivalent
to k = al2, where a = 3 · 11 · 29 · 4657 and l is an integer.

We will prove that z + t is a triangular number if and only if 8(z + t) + 1 is
a square. Let’s consider the equation 8(z+ t)+ 1 = h2, where z+ t is a positive
integer. If we rearrange the equation, we get 8(z + t) = h2 − 1. Notice that
h2 − 1 is a difference of squares, which can be factored as (h + 1)(h − 1). So
the equation can be rewritten as 8(z + t) = (h + 1)(h − 1). Since z + t is a
positive integer, 8(z + t) must be divisible by 8. This means that both (h+ 1)
and (h − 1) must be even, or in other words, h must be an odd integer. Let’s
represent h as h = 2n+ 1, where n is a non-negative integer.

Substituting h = 2n+1 back into the equation 8(z+t) = (h+1)(h−1), we get
8(z+t) = (2n+2)(2n). Dividing both sides by 8, we obtain (z+t) = n(n+1)/2,
which is the equation for a triangular number.

Assume that z + t is a triangular number, i.e., z + t = n(n+1)
2 for some

positive integer n. We want to show that 8(z + t) + 1 is a perfect square, i.e.,

8(z+ t)+1 = m2 for some integer m. Substituting z+ t = n(n+1)
2 into equation

8(z + t) + 1, we get 8
(

n(n+1)
2

)
+ 1. Simplifying, we have 4n(n+ 1) + 1. Notice

that the left-hand side of the equation is of the form 4n(n + 1) + 1, which can
be rewritten as (2n+1)2. Taking the square root, we get 2n+1. Since 2n+1 is
an odd integer, we can let m = 2n+ 1, such that 8(z + t) + 1 = m2 is satisfied.
Therefore, we have shown that if z+ t is a triangular number, then 8(z+ t) + 1
is a perfect square, completing the proof in the other direction. Therefore, we
can conclude that z + t is a triangular number if and only if 8(z + t) + 1 is a
square, where z + t is a positive integer.

Therefore, we can rewrite the equation as h2 = 8(z + t) + 1 = 8 · 4657 ·
2471 · al2 + 1, which is equivalent to the Pell’s equation x2 − dy2 = 1 for
d = 2 · 3 · 7 · 11 · 29 · 353 · (2 · 4657)2 = 410, 286, 423, 278, 424.

4.3 Pseudo-periodicity

Hallgren’s algorithm requires as input a function f(x) that is pseudo-periodic.
The definition of pseudo-periodicity is as follows:

Definition 1. A function f : Z 7→ X, where X is any set, is called pseudo-
periodic with period S, at offset k if for each i either f(k) = f(k + ⌊iS⌋) or
f(k) = f(k + ⌈iS⌉), where S ∈ R.

We have found an example of a pseudo-periodic function. Let S = 200π,

k = 0, f(x) = ⌈ 1000 sin ( x
N +π

2 )

100 ⌋. Using the function parameters, f(k) = 10. We
will prove that this function satisfies the definition of pseudo-periodic, such that
for all i, f(x) = f(⌊200πi⌋) or f(x) = f(⌈200πi⌉).
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We use algebra to reduce the above equality:

0.9995 < sin (
⌊200πi⌋
100

+
π

2
) < 1.0005 or 0.9995 < sin (

⌈200πi⌉
100

+
π

2
) < 1.0005

The square brackets [ and ] are used when we want to denote either the floor
or ceiling function. To remove the ceiling and floor functions, we established an
inequality that looks like the following:

0.9995 < sin (
[200πi]

100
+

π

2
) < 1.0005

We want to prove for all i, there exists n, y in Z such that the following
holds:

(−3.16 . . .+ 200πn < y < 3.16 . . .+ 200πn) and (200πi− 1 < y < 200πi+ 1)

Let y = ⌊200πi⌋ or ⌈200πi⌋ and let n = i. Then if we plug those values into
the equality that we want to prove, we get

−3.16 . . .+ 200πi < 200πi− 1 < y < 200πi+ 1 < 3.16 . . .+ 200πi

Since for all i, there exists an n and y such that the equality statement holds,
we know that the function f is pseudo-periodic with period 200 ∗ π and with
offset equal to 0.

4.4 How does Hallgren’s algorithm work on Pell’s equa-
tion?

Hallgren’s algorithm solves Pell’s equation in polynomial time. [2]

1. A function f(x) is outlined in Hallgren [2] in Definition 2.2 that can be
input into Hallgren’s algorithm.

2. Hallgren’s algorithm takes in f(x) to find the regulator value, which is the
pseudo-period of f(x).

3. Using the regulator, calculate the least positive solution to Pell’s equation
for some positive non-square integer d.

Following this framework, we have devised a similar plan of approaching the
billiard ball problem:

1. We must find some f(x) that describes the cutting sequence.

2. Input this function into Hallgren’s algorithm and produce a pseudo-period.

3. Use the pseudo-period to find the irrational slope value for billiard ball
launch.

The function f(x) is what we are interested in the most, and we introduce
one in section 5. In the literature review found in section 1.3 of Hallgren’s paper
Polynomial-time quantum algorithms for Pell’s equation and the principal ideal
problem, we outlined the need for f(x), the input to Hallgren’s algorithm to be
pseudo-periodic.
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4.5 The regulator

The logarithm, R = lnx1 +
√
dy1 is called the regulator. R ∈ R/Q can be

used to uniquely identify the solution (x0, y0) [9]. Since R = ln (x0 +
√
dy0), we

can remove the natural log and raise both sides to the natural number e, s.t.
eR = x0 +

√
dy0

Quadratic irrationals are numbers like the regulator that are irrational (i.e.,
not expressible as a ratio of two integers) and are the roots of quadratic equa-
tions with integer coefficients. In other words, they are solutions to quadratic
equations of the form ax2 + bx+ c = 0, where a, b, and c are integers, and x is
the unknown variable.

We define Simple Continued Fractions as the following:

Definition 2. A Simple Continued Fraction is an expression of the form

a1 +
1

a2 +
1

a3+...

where the ai are a possibly infinite sequence of integers such that a1 is non-
negative and the rest of the sequence is positive.

Theorem 4. [[6, Theorem 7.19]] Any periodic Simple Continued Fraction is a
quadratic irrational number, and conversely.

Hallgren’s algorithm returns a regulator R, which is an irrational number [2].
This number can be rewritten into a continued fraction form. Using Theorem 4,
we know this is a periodic Simple Continued Fraction, which we can use to then
create a closed form fraction, which we prove in Lemma 1. The expression can
be infinite, in which case the continued fraction represents an irrational number.
If the expression terminates, then the continued fraction represents a rational
number.

4.6 Continued fractions and the Golden Ratio

To apply and explore the idea of continued fractions, we are going to look again

at the Golden Ratio. We remind the reader that ϕ = 1+
√
5

2 = 1.618 . . .. 1+
√
5

2
is a solution to the equation ϕ2 − ϕ− 1 = 0. We can rewrite the equation to

ϕ2 = ϕ+ 1

Dividing both sides by ϕ, we get the value

ϕ = 1 +
1

ϕ

We can replace ϕ of the denominator of the equation with the right hand side.

ϕ = 1 +
1

1 +
1

1 + ϕ

17



ϕ can be replaced infinitely many times by the fraction 1
1+ϕ to construct a

beautiful continued fraction.

ϕ = 1 +
1

1 +
1

1 +
1

1 +
1

1 + · · ·

It is important to notice we can also reverse this process for all numbers
represented by Simple Continued Fractions. Here, we can take the infinite
continued fraction form of ϕ back to a terminating, finite form and create a
quadratic equation. This technique works for all irrational numbers, as they
can also be converted into Simple Continued Fractions based off theorem 4 We
will use this technique in Section 4.7 to compute the regulator and eventually
find the least positive solution to Pell’s equation when d = 5.

Lemma 1. The infinite continued fraction form of a Simple Continued Fraction
for a quadratic irrational can be used to produce a quadratic equation.

Proof. Given some infinite continued fraction form for a quadratic irrational α,
we know that from Theorem 4 that the Simple Continued Fraction expansion
is ultimately periodic. We can represent the periodic portion of the SCF using
θ, where θ =< a0, a1 · · · an >, where n represents the number of values in the
period, to represent the purely periodic part of the SCF. The integers a0, a1 · · ·
are the coefficients of the continued fraction, and they are listed between angle
brackets to indicate the recursive structure of the fraction. The vinculum rep-
resents the repeating part of the continued fraction. Using this, we rewrite the
infinite continued fraction with θ, to produce a terminating fraction.

α = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·
We can replace the periodic portion of α to create a terminating continued
fraction.

α = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
· · ·
1

ab1−1 + θ
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We can isolate θ in the form :

θ = ab1 +
1

ab2 +
1

· · ·+
1

abn +
1

θ

We can use a proof by induction to rewrite θ to equal k1θ+c
k2θ+d We start with the

base case, to rewrite
1

abn +
1

θ

to the form kn−1θ+c
knθ+d , where kn−(k+1), kn−k, c, d ∈ Z.

We can get the following:

1

abn +
1

θ

· θ
θ
=

θ

θabn + 1

Since the base case satisfies the fractional form, the base case is true. We take
an inductive step to assume the kth step is true:

1

abn−k
+ · · ·

1

abn−1 +
1

abn + 1
θ

=
kn−(k+1)θ + c

kn−kθ + d

Assuming the above is true, we want to prove that for the k + 1th case,

1

abn−(k+1)
+ · · ·

1

abn−1 +
1

abn + 1
θ

=
kn−(k+2)θ + c

kn−(k+1)θ + d

Using the inductive step, we can rewrite the continued fraction in the following
way

1

abn−(k+1)
+ · · ·

1

abn−1 +
1

abn + 1
θ

=
1

abn−(k+1)
+

kn−(k+1)θ + c

kn−kθ + d

=
kn−kθ + d

(abn−(k+1)
kn−k + kn−(k+1))θ + c+ dabn−(k+1)

which satisfies the form we want. Assuming the kth step is true, we have proven
the (k + 1)th step is also true. Since we have proven the base case, an infinite
periodic continued fraction can be rewritten to a finite fraction form.

Using the equality θ = k1θ+c
k2θ+d , we can rewrite it into a quadratic equation

k2θ
2 + (d− k1)θ − c = 0.
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4.7 Example: d = 5

Let us do an example where d = 5. Given this information, we can assume
Hallgren returns a regulator R value. In the case where d = 5, R = 2.887 . . ..
To isolate x0 +

√
dy0, we can raise eR such that x0 +

√
dy0 = 17.944 . . .. Using

the continued fractions idea from subsection 4.6, we can convert this infinite
decimal into a closed fraction form.

Let ϵ = 17.944 . . ..

ϵ = 17 + 0.944 . . . = 17 +
1

1

0.944 · · ·

= 17 +
1

1.059 · · ·
= 17 +

1

1 +
1

1

.059 · · ·

= 17 +
1

1 +
1

16 + 0.949 · · ·

= 17 +
1

1 +
1

16 +
1

1

0.949 · · ·

= 17 +
1

1 +
1

16 +
1

1 + .053 · · ·

.

At this point, there is a clear pattern visible with a repetition of the fraction
1

16 +
1

· · ·

. To summarize what we have so far,

ϵ = 1 + 16 +
1

1 +
1

16 +
1

1 + · · ·

.

We can subtract a 1 from both sides. Furthermore, since this is an infinite
fraction, we can replace the denominator of the second continued fraction with
ϵ− 1, such that

ϵ− 1 = 16 +
1

1 +
1

ϵ− 1

.
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Skipping the algebra to isolate the ϵ value to the left hand side, we a quadratic
equation that ϵ2 − 18ϵ+ 1 = 0. Using the quadratic equation, we can compute
that ϵ = 9 ± 4

√
5. Thus, knowing the least positive solution pair for Pell’s is

produced in the form x0 ± d
√
y0 we can isolate x0 = 9 and y0 = 4, which is

indeed the least positive solution pair for d = 5.

4.8 Summary

Using Hallgren’s algorithm to solve Pell’s is a parallel to using Hallgren’s al-
gorithm to solve the billiard ball problem. Hallgren takes in function f(x) for
Pell’s equation, and produces the regulator value R to find a least positive so-
lution for some d. Using this similar idea, we hope to find some function f(x)
that generates the cutting sequence for some irrational slope in the billiard ball
problem. We can similarly input this value into Hallgren’s algorithm to produce
a pseudo-period value that can be used to evaluate the irrational slope value for
the launch of the billiard ball.

5 Conjectured function

Figure 7: Pseudo-period is too small

Our conjectured function is

f(n) = ⌊ n
m
⌋ − ⌊n− 1

m
⌋

We believe this to be a good candidate for determining the runs of a sequence of
numbers as explored in section 3.3, as it can be used to determine the string of
1s between the nth 0 and the n+1th 0 of the cutting sequence. We believe the
function may be pseudo-periodic, where f(k) = f(k+⌊iS⌋) or f(k) = f(k+⌈iS⌉)
due to the mostly repetitive nature of the cutting sequence. Despite adding any
multiple i of S, where S = ⌊iS⌋ or S = ⌈iS⌉, as the slope does not change with
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displacement, the number of 1s in the string between 0s can only vary by ±1.
We must find a period S that the definition of pseudo-periodicity for f(x). f(x)
makes it a good candidate for pseudo-periodicity as the slope of the trajectory
of the ball does not change regardless of the change in n that is input into the
function. We believe a good pseudo-period to explore would be 22

π , as every 22
π

runs, there is an extra 1 found in that run in the cutting sequence.
A potential proof would follow the structure of the proof found in section

4.3. Selecting some values for some offset n, for period S, we would use function
f(n) and input these values into the function to see if for all values of i, if it
satisfies f(n) = f(n+⌊iS⌋) or f(n) = f(n+⌈iS⌉). We can establish inequalities
to remove the floor and ceiling values, before rearranging the inequality for some
multiple of i that satisfies the inequalities, demonstrating pseudo-periodicity.

However, f(n) requires further refinement. As diagram 7 shows, the green
diamonds are the number of 1s, with the index of the diamond (with index-
ing starting at 0 at the y-axis) corresponding to the index of the run. The
vertical bars indicate the potential pseudo-period values that f(n) returns. To
prove pseudo-periodicity, the lines must be close to the diamonds, with spacing
between lines and diamonds being roughly equivalent. However, in this case,
pseudo-periodicity is not meaningful as there are far too many lines between
diamonds, meaning that whether iS is rounded up or down, there will always
be a value that satisfies the definition of pseudo-periodic.

6 Conclusion

In this thesis, we studied the properties of cutting sequences of a billiard ball
that travels on an expanded billiard table. We contribute a literature review that
studies prior work on similar problems. In addition to Pell’s equation, the paper
also introduces Archimedes’ Cattle Problem, which ties together the concept of
Pell’s equation to an interesting problem. The paper then provides a step by
step proof of the cattle problem and finding that d = 410, 286, 423, 278, 424, to
provide motivation for solving the problem of finding the irrational slope value
of a billiard ball launched using quantum computing.

We provide examples for definitions of the regulatorR and pseudo-periodicity,
as these are key concepts for understanding the outputs of the algorithm to
eventually find the irrational slope value m. The regulator is the output from
Hallgren’s algorithm, and we can use non-quantum post-processing techniques
to solve Pell’s equation for some coefficient d. We use the example d = 5 to find
the regulator value, and use continued fractions to convert the infinite quadratic
irrational into a closed form quadratic equation. We have also proven that the
function f(x) = 10 sin x

N + π
2 satisfies the definition of pseudo-periodicity. Using

these definitions, we draw parallels between how Hallgren solves Pell’s equation
to how we can solve the billiard ball problem can be solved. If a function f(x)
can be defined, it can be input into Hallgren’s algorithm.

We provided an example of a cutting sequence where the slope m = ϕ. Using
linear algebra, we substituted σ, where 0 → 01 and 1 → 0. We observed that
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this substitution does not change the characters in m’s cutting sequence. We
also learned about the properties of runs when m < 1. Studying the properties
of the cutting sequence helps us find a generalized f(x) that generates cutting
sequences. We studied the properties of the first and second runs, with the
properties of the second run generalizing to all subsequent runs. We used what
we explored here to come up with a candidate f(x) to input into Hallgren’s
algorithm, and outlined a proof so that it can be used to produce a pseudo-
period value to find the irrational slope value for the launch of a mathematical
billiard ball. We have conjectured that the function f(n) = ⌊ n

m⌋−⌊n−1
m ⌋ satisfies

the definition of pseudo-periodicity in our work. This is an important property
to satisfy, as functions input into Hallgren’s algorithm must be pseudo-periodic.
We outline a potential proof, along with some interesting caveats as to why this
function needs further refining to satisfy pseudo-periodicity.

Further work must be done to verify f(n) to be pseudo-periodic. This the-
sis has explored prior work that that is accessible at the undergraduate level
to continue this line of research. Future work could also involve simulating
the function and simulating Hallgren’s algorithm on a classical computer, or
runnning it on a quantum computer to determine the output of the function.

References

[1] Johannes Buchmann and Hugh C. Williams. “A key-exchange system based
on imaginary quadratic fields”. In: Journal of Cryptology (1988), pp. 107–
118.

[2] Sean Hallgren. “Polynomial-time quantum algorithms for Pell’s equation
and the principal ideal problem”. In: Journal of the ACM (JACM) 54.1
(2007), pp. 1–19.

[3] Anatole B Katok. “Billiard table as a playground for a mathematician”. In:
Surveys in modern mathematics. Vol. 321. London Mathematical Society
Lecture Note Series. 2005, pp. 216–242.

[4] Victor J. Katz. A History of Mathematics. Addison-Wesley, 1998, pp. 247–
250.

[5] Hendrik W Lenstra Jr. “Solving the Pell equation”. In: (2002), pp. 182–192.

[6] Ivan Niven, Herbert S Zuckerman, and Hugh L Montgomery. An introduc-
tion to the theory of numbers. John Wiley & Sons, 1991.

[7] John Stillwell. The Pell equation. Springer New York, 2003.

[8] Serge Tabachnikov. Geometry and billiards. American Mathematical Soc.,
2005.

[9] Colin P Williams, Scott H Clearwater, et al. Explorations in quantum com-
puting. Springer, 2011.

23


	Applying Hallgren’s algorithm for solving Pell’s equation to finding the irrational slope of the launch of a billiard ball
	Recommended Citation

	tmp.1696275919.pdf.RvZKd

