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k-Distinct Lattice Paths

By Marcus Engstrom and Eric Yager

Abstract. Lattice paths can be used to model scheduling and routing problems, and,
therefore, identifying maximum sets of k-distinct paths contributes to optimizing so-
lutions to these problems. We extend the work previously done by Gillman et. al. to
determine the order of a maximum set of k-distinct lattice paths. In particular, we dis-
prove a conjecture by Gillman that a greedy algorithm gives this maximum order and
also refine an upper bound given by Brewer et. al. We illustrate that brute force is an
inefficient method to determine the maximum order, as it has time complexity O(nk ).

1 Introduction

Imagine driving home from work. You’re tired of taking the same route home every
day, so you want to see some new scenery (without taking extra time to drive around).
How many different ways are there to drive home, so you see at most four of the same
landmarks each day? How about five? Can you go a whole week where you never see
more than the same three landmarks on the way home? We can model a simplified
version of this situation by examining paths on an m ×n lattice.

Imagine that each edge has a unique landmark, and we wish to count paths that
share at most some number, k −1, of edges. Generally, on an m ×n lattice, there are a
total of m +n edges in each path, and two paths are k-distinct if they share fewer than
k edges. Otherwise, they are k-equivalent. A set of k-distinct paths, P, contains paths
p1, p2, . . . , pP for a total of P paths. These paths may be ordered alphabetically. We want
to determine the maximum number, P(m,n,k), of k-distinct paths on the m ×n lattice.
We know that the set of all possible paths, C, has order C = (m+n

n

)
[2].

On the 4×2 lattice shown in Figure 1, we can move along the edges to travel from
the lower left corner to the upper right corner as shown. Then the blue line is the path
EENNEE, the green path is NEENEE, and the red path is NEEEEN. Now suppose that
k = 3. The blue path is 3-equivalent to the green path, which is 3-equivalent to the red
path, but the blue and red paths are not 3-equivalent to each other.

It is this lack of transitivity that makes the problem interesting.
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2 Lattice Paths

Figure 1: Lattice path from school to home. There are three different possible paths
shown.

Earlier work by Gillman [5] obtained the following results for some extreme values of
m,n, and k.

Theorem 1.1. For the appropriate values of m, n, and k, the following are true.

1. For all m,n > 0, P(m,n,1) = 2.

2. For all m,n ≥ 3 or m = n = 2, P(m,n,2) = 4.

3. If m ≥ 3 and n = 2 or m = 3 and n = 1, then P(m,n,2) = 3.

4. For all m,n, P(m,n,m +n) = C.

5. For all m,n, P(m,n,m +n −1) = C.

6. If m ≥ 3, then for any k = 2,3, . . . ,m, P(m,1,k) = 1+bm/(m −k)c.

Gillman conjectured that the greedy algorithm finds the maximum set of k-distinct
paths. We show this conjecture false in Section 2. He also obtained the following result
which we will improve on in Section 3 by relaxing the conditions of the hypothesis.

Theorem 1.2. If n ≤ k ≤ m−1
n+1 , then P(m,n,k) = n +1.

As an aside, finding a maximal set of k-distinct paths is equivalent to finding the
independence number on a particular family of graphs. These graphs have the set of
all paths in the m ×n lattice as their vertices, with edges connecting k-equivalent paths.
They were explored in some detail by Brewer, et. al. [1] and Gillman [6] .

2 Computational Results

Given an m×n lattice, the greedy algorithm generates a set, G, of k-distinct paths through
the following steps:

1. Generate an alphabetical list of all possible paths.
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2. Add the first path to G.

3. While path is not the last path,

• Select the next alphabetical path.

• If the path is k-distinct from all paths in G, add the path to G.

4. After checking all of the paths, return G and its order, G.

The greedy algorithm executes in O(n2) time[3]. The greedy algorithm first constructs
a list of all paths on the given lattice in alphabetical order. Then, it iterates through the list
and greedily adds paths to a set of k-distinct paths. Thus, the first path is not compared
to any other paths, the second path is compared to at most one path, the third path is

compared to at most two paths, and so on. Because there are
n∑

i=0
i

n(n +1)

2
comparisons,

the time complexity is O(n2).
To test the results from the greedy algorithm, we constructed all possible path sets

of order G+1 and determined whether each was a set of k-distinct paths. If none were,
the the greedy algorithm had yielded a maximal result. If one or more were sets of k-
distinct paths, we repeated this process for path sets of order G+2, and so forth, until no
k-distinct path sets were found. The code we used to run these calculations is available
on Github.com [7].

In contrast to the greedy algorithm, this algorithm is very computationally complex.
Generating all combinations of a set of a given size requires O(nk ) time according to
Canonne [4].

Using this algorithm, we constructed k-distinct sets for small values of m, n, and k.
For m = 4, n = 3, and k = 3, the greedy algorithm produces the set

EEENNN, EENENNE, ENENEEN, ENNENEE, NEEEENN, NNEEENE

and the brute force algorithm shows that this is one of three sets of k-distinct paths of
order six. When tested against sets of order seven, we found the following maximal sets
of 3-distinct paths. (Each row is a different set of seven, 3-distinct, paths.)

EEEENNN, EENENNE, ENENNEE, ENNEEEN, NEEEENN, NENNEEE, NNEEENE

EEEENNN, EENENNE, ENENNEE, ENNEEEN, NEEENEN, NENNEEE, NNEEENE

EEEENNN, EENNNEE, ENEENNE, ENNEEEN, NEEEENN, NENNEEE, NNEEENE

EEENENN, EENENNE, ENENNEE, ENNEEEN, NEEENEN, NENNEEE, NNEEENE

EEENNEN, EENNENE, ENEEENN, ENNENEE, NEEENNE, NENEEEN, NNENEEE

EEENNEN, EENNENE, ENEEENN, ENNENEE, NEEENNE, NENEEEN, NNNEEEE

EEENNEN, EENNENE, ENEEENN, ENNENEE, NEEENNE, NNEEEEN, NNNEEEE
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4 Lattice Paths

EEENNEN, EENNENE, ENEEENN, ENNNEEE, NEEENNE, NENEEEN, NNEENEE

EEENNEN, EENNNEE, ENEEENN, ENNEENE, NEEENNE, NNEEEEN, NNNEEEE

EEENNNE, EENEENN, ENENNEE, ENNEEEN, NEEENEN, NENNEEE, NNEEENE

There were no sets of 3-distinct paths of order eight, so we not only found that the
greedy algorithm does not always produce a maximal set of k-distinct paths, but also
found the maximum order in this case. However, the following table, constructed using
the greedy algorithm, suggests that it may not be wrong often, or by much; the brute
force algorithm was used to completed testing through the m = 5 row before it began
using months of computing time.

m\k 1 2 3 4 5 6 7 8 9 10 11 12 13
3 2 4 8 10 20
4 2 4 �6 7 13 19 35
5 2 4 6 �9 10 20 28 56
6 2 4 5 8 13 30 44 84
7 2 4 5 7 11 18 42 60 120
8 2 4 5 6 10 16 25 57 85 165
9 2 4 4 5 8 12 20 33 76 110 220

10 2 4 4 4 6 10 16 24 41 98 146 286
11 2 4 4 4 6 8 13 18 31 50 124 182 364

Table 1: Table of P(m,3,k) values generated by the Greedy Algorithm. Terms with a slash
through them are terms where the greedy algorithm does not give an optimal value, as
found by the brute force algorithm.

3 Theoretical Results

We begin this section with a theorem which establishes conditions for when n +1 is a
lower bound on P(m,n,k) and then establish when this bound is obtained, improving
on Theorem 1.2 above.

Theorem 3.1. If k ≥ n, then P(m,n,k) ≥ n +1.

Proof. Assuming without loss of generality that m ≥ n, if m = 1, then n = 1 and we have
two paths, so 2 ≥ 1+1 and the conclusion holds. Consider an m ×n lattice, where m ≥ 1.
Let P be the set of paths where pl = Nl EmNn−l for 0 ≤ l ≤ n, so that the order of P is
P = n +1. Now consider two distinct elements pi , p j ∈ P such that pi = Nli EmNn−li and
p j = Nl j EmNn−l j , and li < l j . Then pi and p j share li + (n − l j ) = n + (li − l j ) < n edges,
since their east edges are distinct. We then have, for k ≥ n, all of the paths in P distinct
and as a consequence P(m,n,n) ≥ n +1 for all m ≥ 1.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Engstrom and Yager 5

We now study when n +1 is an upper bound on P(m,n,k) and show that this occurs
for large m. This result depends on the following lemma about a very specific type of
sequence.

Given an integer n ≥ 0, let S = {s1, s2, . . . , sS} be a set of non-decreasing integer se-
quences of length x on the interval [0,n], in which any two sequences share at most k−1
elements. That is, for any two sequences si and s j , si z = s j z at most k −1 times.

Example Let n = 1, x = 5,k = 3. We find the set

S = {s1, s2} = {{0,0,0,1,1}, {1,1,1,1,1}},

since s1, s2 are non-decreasing integer sequences of length five on the interval [0, 1] in
which the two sequences share two elements (elements 4 and 5 of both sequences are 1).

Lemma 3.2. Let the sequences in S have length x = n(k −1)+k + c for integers c ≥ 0 and
k ≥ 1. Then the order of S is S ≤ n +1.

Proof. Assume the sequences in S have length n(k −1)+k + c for some fixed integers
c ≥ 0,k ≥ 1. We proceed by induction on n ≥ 0.

If n = 0, we have sequences of length k +c with a single element 0. There is only one
such sequence, and 1 ≤ n +1.

Now let the sequences in SN have length xN = N(k −1)+k + c on the interval [0,N]
and assume that SN ≤ N+1. Now consider the sequences in SN+1 with length xN+1 =
(N+1)(k −1)+k +c on the interval [0,N+1]. We will show that SN+1 ≤ (N+1)+1 = N+2.

Without loss of generality, we may assume sequences in SN+1 are sorted alphabeti-
cally (or more precisely, lexicographically) and label the first sequence s1. Since N+1 ≥ 1
and k ≥ 1, a maximal set must have at least two sequences, as {0, . . . ,0} and {1, . . . ,1} share
no elements. Thus we consider sets of order SN+1 ≥ 2.

Assume that the k-th element of the second sequence of the set, s2, is 0. Since
the sequences are non-decreasing, the first k elements of s2 must also be 0. Since the
sequences are ordered alphabetically, the first k elements of s1 must also be 0, leading
to a contradiction of the fact that the two sequences only share k −1 elements. Hence
the k-th element of s2 is at least 1. It follows from the alphabetical ordering that the k-th
element of each of s2, . . . , sS is least 1.

Remove the first k −1 elements of the sequences s2, . . . , sS , and call this new set of
truncated sequences SA. Then SA = S −N+1−1. Each sequence in this set has length

[(N+1)(k −1)+k + c]− (k −1) = N(k −1)+k + c = xN

elements. Further, since each sequence is comprised of integers on the interval [1,N+
1], we can subtract 1 from every element. This gives an equivalent set of sequences,
comprised of integers on the interval [0,N]. Let us consider a maximal set of sequences
of this form, S′

A. By the inductive assumption, S′
A ≤ N+1, so SA ≤ S′

A ≤ N+1.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



6 Lattice Paths

If two sequences share (at least) k elements in SA, then they must share (at least)
k elements in SN+1, since the sequences in SA are constructed as the latter part of
sequences in SN+1. Then SA ≤ S′

A ≤ N+1 implies SN+1 −1 ≤ N+1, so SN+1 ≤ N+2.

Example. Continuing the previous example, let n = 1,k = 3,c = 0, so that x = 1(3−1)+
3+0 = 5. Then S is a set of non-decreasing integer sequences of length 5 on the interval
[0, 1]. By Lemma 1, there are at most n+1 = 2 sequences in S. We can manually check all
possible sets of three sequences from among the six sequences available (00000, 00001,
00011, 00111, 01111, 11111) and verify there is no valid set of three sequences. We can
verify that {{0,0,0,0,0}, {1,1,1,1,1}} is a valid set, so the maximal order of S is exactly 2.

Theorem 3.3. If m ≥ n(k −1)+k, then P(m,n,k) ≤ n +1.

Proof. If k = 1, then P(m,n,k) = 2 ≤ n +1. Now we can assume k ≥ 2. If two paths share
at least k east moves, then they are k-equivalent. So consider the maximal set of paths
that share fewer than k east edges, PH. Then any set of at least PH +1 paths will have
two paths that share at least k east moves and thus share at least k total moves. Thus
P(m,n,k) ≤ PH. With this in mind, let us label the m ×n lattice from (0,0) to (m,n). Let
m = n(k−1)+c for some non-negative integer c . Then we have a total of n(k−1)+c east
moves, and north coordinates 0,1,2, . . .n. Let L be a set of sequences of n(k −1)+k +c
non-decreasing integers from 0 to n = n+0, where the integers are the north coordinates
and the elements are the east moves (from left to right). Then the maximal number of
sequences where no two sequences share k or more elements, L, is L = PH. By Lemma
3.2, PH ≤ n +1.

Thus P(m,n,k) ≤ PH ≤ n +1 whenever m ≥ n(k −1)+k.

Example. Consider P(5,1,3). This is a continuation of the previous example. Since
m ≥ n(k −1)+k, by Theorem 4 P(5,1,3) ≤ 2. In fact we have paths NEEEEE and EEEEEN
which share 0 edges, so P(m,n,k) = n +1 in this example.

Now we have sufficient conditions to determine when P(m,n,k) = n +1.

Corollary 3.4. If k ≥ n and m ≥ n(k −1)+k, then P(m,n,k) = n +1.

Proof. Follows directly from Theorem 3.1 and Theorem 3.3.

This result is an improvement on Theorem 1.2. Rewriting the second condition for
Theorem 1.2, we have

m ≥ k(n +1)+1 = kn +k +1+n −n = n(k −1)+k + (n +1),

while Corollary 3.4 only requires

m ≥ n(k −1)+k,

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Engstrom and Yager 7

which reduces this bound on m by n +1.
If we let k = n in Theorem 3.3, we have m = n2 The following theorem begins to

describe what happens for m < n2.

Theorem 3.5. If 1 < m < n2, then P(m,n,n) > n +1.

Proof. Let P = {Nl EmNn−l | 0 ≤ l ≤ n}. From the proof of Theorem 3.1, we know P is a set
of n +1 k-distinct paths. The north moves are either before any east moves or after all
east moves. This also means all east moves are at the same vertical position. Take any
path pi = Ni EmNn−i ∈ P and consider the following cases.
Case 1: Assume m ≤ n and consider the path pn+2 = Em−1NnE. Clearly pn+2 and pi

share no north edges and at most m −1 ≤ n −1 < n east edges. Thus pn+2 is k-distinct
from all paths pi ∈ P and the conclusion holds.
Case 2: Now assume m > n and m

n−1 ∈Z. Consider the path

pn+2 = (En−1N)
m

n−1−1Nn−( m
n−1−1)En−1.

We can verify this is a valid path since it has m east moves and n north moves, and
m

n−1 −1 ≤ n2−1
n−1 −1 = (n+1)(n−1)

n−1 −1 = n+1−1 = n ≤ n as m < n2 ⇒ m ≤ n2−1. Since m > n
we must have that m

n−1 > 1. Since m
n−1 ∈ Z, we have that m

n−1 −1 ≥ 2−1 = 1, so we start
with an east move. Since the last move is an east move, pn+2 and pi share no north edges.
Since pn+2 and pi share at most n −1 < n east edges, pn+2 is k-distinct from all paths in
P and the conclusion holds.
Case 3 Now we can assume m > n and m

n−1 ∉Z. Consider the path

pn+2 = (En−1N)b
m

n−1 cNn−b m
n−1 cEm−(n−1)b m

n−1 c.

We can verify that pn+2 has m east moves and n north moves. Since m > n, pn+2 starts
with an east move. Since m

n−1 ∉Z, b m
n−1c < m. This means pn+2 ends with an east move

and thus shares no north moves with pi . Since m − (n −1)b m
n−1c < m − (n −1)( m

n−1 +1) =
m − (m − (n −1)) = n −1 < n, we know pn+2 and pi share at most n −1 < n east edges.
Thus pn+2 is k-distinct from all paths in P and the conclusion holds.
This exhausts all cases. Thus P(m,n,n) > n +1.

4 Open Questions

The brute force algorithm described in Section 2 may be improved somewhat by more
efficient programming, but it will always require substantial computational time. It may
be that an alternate approach, such as some form of an evolutionary algorithm, may be
able to find solutions quicker than using direct computation.

While it is obvious that P(m,n,k) is a non-decreasing function in k, it may also be
true that P(m,n,k) is a non-increasing function in m, at least for non-extreme values of
m.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



8 Lattice Paths

Finally, it is possible to find more particular results such as the following conjecture:
If m = n(k −1)+k −1 and k ≥ n, then P(m,n,k) > n +1.
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