
Rose-Hulman Undergraduate Mathematics Journal Rose-Hulman Undergraduate Mathematics Journal 

Volume 24 
Issue 2 Article 5 

Utilizing graph thickness heuristics on the Earth-moon Problem Utilizing graph thickness heuristics on the Earth-moon Problem 

Robert C. Weaver 
York College of Pennsylvania, rweaver11@ycp.edu 

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj 

 Part of the Discrete Mathematics and Combinatorics Commons, and the Numerical Analysis and 

Scientific Computing Commons 

Recommended Citation Recommended Citation 
Weaver, Robert C. (2023) "Utilizing graph thickness heuristics on the Earth-moon Problem," Rose-Hulman 
Undergraduate Mathematics Journal: Vol. 24: Iss. 2, Article 5. 
Available at: https://scholar.rose-hulman.edu/rhumj/vol24/iss2/5 

https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol24
https://scholar.rose-hulman.edu/rhumj/vol24/iss2
https://scholar.rose-hulman.edu/rhumj/vol24/iss2/5
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol24%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol24%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol24%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol24%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol24/iss2/5?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol24%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages


Utilizing graph thickness heuristics on the Earth-moon Problem Utilizing graph thickness heuristics on the Earth-moon Problem 

Cover Page Footnote Cover Page Footnote 
N/a 

This article is available in Rose-Hulman Undergraduate Mathematics Journal: https://scholar.rose-hulman.edu/rhumj/
vol24/iss2/5 

https://scholar.rose-hulman.edu/rhumj/vol24/iss2/5
https://scholar.rose-hulman.edu/rhumj/vol24/iss2/5


Rose-Hulman Undergraduate Mathematics Journal
VOLUME 24, ISSUE 2, 2023

Utilizing graph thickness heuristics on the
Earth-moon Problem

By Robert Weaver

Abstract. This paper utilizes heuristic algorithms for determining graph thickness in order to attempt

to find a 10-chromatic thickness-2 graph. Doing so would eliminate 9 colors as a potential solution

to the Earth-moon Problem. An empirical analysis of the algorithms made by the author are provided.

Additionally, the paper lists various graphs that may or nearly have a thickness of 2, which may be solutions

if one can find two planar subgraphs that partition all of the graph’s edges.

1 Introduction

One of the most well-known theorems in graph theory is the Four Color Theorem. This
theorem proves that for any planar graph, the maximum number of colors needed for a
proper vertex coloring is four. Despite this problem being conjectured in 1852, along with
four as a proposed solution, it wasn’t until 1976 that the first correct proof was published
[6, p. 116]. Consequently, it is a fact that any ordinary two-dimensional map can have
the represented territories shaded in only four or less colors with no border-sharing
territories having the same color.

However, there is a slight flaw with the Four Color Theorem in regards to real-world
mapping. Maps containing countries in which a country’s territories are split, such as
the United States and Alaska or how Pakistan once was, cannot always be colored with
four or less colors due to this separation [6, p. 117]. To address this issue, Heawood
proposed the M-pire Problem [6, p. 117]. In such a map, each country has at most M
territories. Naturally, Heawood sought the maximum chromatic number of such M-pire
maps.

Heawood was able to completely solve the M = 2 case and the general case, which
was that 6M colors would suffice for any M-pire map [6, p. 117]. However, in 1959,
Gerhard Ringel proposed a simplification to this problem known as the Earth-moon
Problem [6, p. 118]. Say that each country on Earth has a colony on the moon. How
many colors are needed in order to properly color these maps such that no territories
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2 Graph thickness heuristics on Earth-moon Problem

sharing borders are the same color and each country’s territory is the same color on both
Earth and the moon?

However, the answer to this simplified problem remains unknown. While it is known
that 12 colors will suffice due to Heawood’s solution for the M-pire Problem, it is not
known if there exists an Earth-moon graph where 12 colors is necessary. Ringel had
proposed that 8 colors would suffice in his Earth-Mars map problem in 1959 [5, p. 21].
Yet, Thom Sulanke would provide an example needing 9 colors in 1974, pictured below
[5, p. 21]. Therefore, it is not known for certain whether the maximum number of colors
needed is 9, 10, 11, or 12.

Figure 1: The Sulanke Graph

Often, Earth-moon graphs are described as having a thickness of 2. In general, we
define the thickness of a graph G as the minimum number of planar subgraphs necessary
to partition all of the edges in G, denoted Θ(G). Due to the Earth-moon Problem dealing
with the union of two planar graphs on the same vertex set, the thickness of any Earth-
moon graph will always be 1 or 2 [12, p. 88]. This is because the set of edges for any
Earth-moon graph can always be separated into two subsets which form planar graphs
on the vertex set, i.e. the Earth graph and the moon graph. In short, thickness-2 graphs
are always Earth-moon graphs.

This paper discusses two attempts to find a 10-chromatic thickness-2 graph using
heuristic algorithms made by the author. Heuristic algorithms are algorithms which
generally sacrifice completeness or accuracy for speed. This is necessary because deter-
mining the thickness of a graph is an NP-Complete problem in the general case [10, p. 77].
As such, it takes a great deal of time for a proper algorithm to determine the thickness of
a graph. These attempts aim to solve two of the open problems given by Sulanke and
Gethner, which would prove the existence of thickness-2 graphs [7, p. 215]. Finding such
a graph would eliminate 9 colors as a potential solution to the Earth-moon problem. A
more detailed background on the author’s approach and various useful theorems will
be provided in Section 2. Section 3 will detail the algorithms created, as well as the
reasoning and results of these strategies. Section 4 will provide a run-time analysis of the
four thickness heuristics made by the author. An empirical analysis of these algorithms
will also be shown to display the speed and accuracy of these algorithms against one
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Weaver 3

another. Section 5 will list various graphs on 19 vertices which are nearly thickness-2
graphs on 19 vertices. Section 6 will conclude this paper and discuss next steps regarding
this approach and the Earth-moon Problem.

2 Background

This section will begin with key definitions. A graph G = (V,E) consists of a set of vertices,
denoted V(G), and a set of edges, denoted E(G) [8]. An edge (u, v) is an ordered pair of
vertices where u and v are contained in V and (u, v) is contained in E [8]. Vertices u
and v are adjacent if they share an edge [8]. A subgraph H = (V′,E′) of G is a graph such
that V′ is a subset of V and E′ is a subset of E [8]. A graph is planar if it can be drawn
on the two-dimensional plane such that none of its edges cross [8]. The thickness of a
graph G is the minimum number of planar subgraphs necessary to partition all of the
edges in G, denoted Θ(G). Namely, an Earth-moon graph will always have a thickness
of 1 or 2. Graphs which have a thickness of 1 or 2 are described as biplanar, as they are
the union of two graphs. A proper vertex coloring of a graph G is a designation of colors
to each vertex in G such that no adjacent vertices are assigned the same color [8]. The
chromatic number of G is the minimum number of colors needed to complete a proper
vertex coloring of G, denoted χ(G) [2, p. 2]. In short, the Earth-moon problem asks what
the maximum chromatic number of thickness-2 graphs is.

There are various applications for graph thickness. As a concept related to out-
erthickness and arboricity, these three concepts all have applications regarding “graph
drawing, information visualization, VLSI design, and resource location optimization”
[10, p. 76]. According to Robert Cimikowski, graph thickness is relevant in “automatic
graph drawing systems such as those used by CASE tools in laying out E-R diagrams of
database schema” [4, p. 1]. In addition, there are applications to circuit layout as well as
facility layout [4, p. 1]. The reason that graph thickness is relevant to VLSI design is that
chip-designers need to avoid wire crossings [11, p. 59]. Unfortunately, wire crossings can
lead to unwanted signals [11, p. 59]. Crossings can be accommodated through contact
cuts, but “too many contact cuts leads to an increase in area and consequently to a higher
probability of faulty chips” [11, p. 59]. Knowing the thickness can help to minimize the
number of crossings. Similarly, it is desired that the representation of circuit and facility
layouts can be represented with fewer crossings or layers that lack crossings, as such
diagrams are easier to understand.

Various theorems are particularly useful in determining if a given graph potentially
has a thickness of 2. These properties are helpful to know because they can be calculated
in polynomial time and serve as bounds to the thickness of a graph. If the bounds suggest
that a graph has a thickness greater than 2, then the graph is not an Earth-moon graph
and would not be worth inspecting further.

One of these properties is arboricity. Graphs which are acyclic are called forests [8].

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



4 Graph thickness heuristics on Earth-moon Problem

Arboricity is defined as the minimum number of spanning forests needed to partition
all of the edges in a graph and is denoted as Υ(G). This is a concept very similar to
thickness, except that the edges are partitioned into forests instead of planar graphs.
Various algorithms can find the arboricity of a graph in polynomial time [3, p. 51]. As
noted by Mutzel et al, the arboricity must be less than or equal to the thickness of a graph
multiplied by three [11, p. 64]. This is because “a maximal planar subgraph is at most
three times as large as a spanning tree” [11, p. 64]. Therefore, the arboricity of a graph
can be used to find an upper bound on its thickness. For example, if the arboricity of a
graph was 7, then the thickness would need to be at least 3.

Lemma 2.1. Υ(G) ≤ 3×Θ(G) [10, p. 64]

Another key property is girth. For a graph G, the girth is the size of the smallest cycle
in G [8]. In addition, the number of vertices and the number of edges in a graph both
help to determine a thickness bound. Beineke presents a theorem in his paper that
provides two inequalities that hold for all graphs with a thickness of 1 or 2 [1, p. 2]. These
are as follows:

Theorem 2.2 (Beineke). Let G be a biplanar graph with p vertices and q edges. Then

(i) q ≤ 6p −12

(ii) q ≤ 2g × p−2
g−2 if the girth of G is at least g. [9]

The foundation of this strategy to utilize a thickness heuristic algorithm arose from
an open problem proposed by Gethner and Sulanke. Gethner and Sulanke note that the
following graphs would prove the existence of a 10-chromatic thickness-2 graph:

1. A thickness-2 graph on 19 vertices with a triangle-free complement.

2. A thickness-2 graph on 28 vertices with a K4-free complement. [7, p. 215]

Alas, determining the thickness of a graph is an NP-Complete problem in the general
case [10, p. 77]. As such, a heuristic algorithm would be needed to determine the
thickness of a given graph in a reasonable amount of time. However, before determining
the thickness of a graph, a graph with the given characteristics from Gethner and Sulanke
would need to be found first. That is, the program will need to start by generating either
a graph on 19 vertices with a triangle-free complement or a graph on 28 vertices with a
K4-free complement.

In the case of the 19 vertex graph, this program starts by generating a complete
graph on 19 vertices. Edges are removed randomly from this graph so long as the graph’s
complement remains triangle-free. Edges are removed at random so that it is unlikely
for the same graph to be produced on subsequent iterations of the program. Once the
program fails to remove random edges for a set number of attempts, the graph is tested
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to see if it could possibly have a thickness of 2. This includes ensuring that the number of
vertices and number of edges fulfills the inequality in Theorem 2.2. In addition, the girth
inequality in Theorem 2.2 and arboricity inequality in Lemma 2.1 are also checked. If the
graph satisfies these inequalities, the program attempts to partition the edges into two
planar subgraphs for a set number of attempts. Hence, the program generates two empty
graphs to be used as subgraphs. At random, an edge from the generated graph is selected
and placed into one of the subgraphs so long as doing so does not cause the graph to
lose planarity. This process repeats until either an edge cannot be placed into one of
the subgraphs or all edges are partitioned. In the case that all edges are partitioned, it is
proven that the graph has a thickness of 2. Variations in this process are discussed in
Section 3.

The 28 vertex case is a very similar process. The complete graph on 28 vertices
is generated and edges are removed at random. However, instead of checking if the
complement graph is triangle-free after each edge removal, it is instead ensured that the
complement is K4-free. Otherwise, the process is exactly the same. However, the paper
will not explore the 28 vertex case. Due to the number of edges in graphs of this size, the
heuristic algorithm proves to be much less effective.

3 Developing a Thickness Heuristic for the Earth-moon Problem

As noted by Gethner and Sulanke, finding a thickness-2 graph on 19 vertices with a
triangle-free complement proves the existence of a 10-chromatic thickness-2 graph
[7, p. 215]. This would eliminate 9 colors as a potential solution to the Earth-moon
problem. The process of attempting to generate such a graph is described in detail in this
section. Four variations of a thickness heuristic algorithm are presented in this section.
The pseudocode for each variation will be provided, as will the worst-case asymptotic
run-time of each algorithm.

In order to generate a graph on 19 vertices with a triangle-free complement, the
program begins by generating the complete graph on 19 vertices. The program initializes
variables to track the number of failed attempts to remove an edge from the graph and
the number of edges removed. Until the program fails to remove an edge from the graph
a given number of times, the program will continue to remove a random edge from the
graph so long as the graph’s complement remains triangle-free.

Once a triangle-free graph on 19 vertices has been generated, the program proceeds
to check if the graph could have a thickness of 2. By Theorem 2.2, we know that the
number of edges in this graph must be less than or equal to 102 if it has a thickness of 2.
We know that the complete graph on 19 vertices has 171 edges. Therefore, the program
must remove at least 69 edges from the graph. Hence, it is ensured that the variable
tracking the number of removed edges is greater than or equal to 69.

If this is the case, the arboricity of the graph is calculated. By Lemma 2.1, the arboric-
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6 Graph thickness heuristics on Earth-moon Problem

ity of the graph must be less than 7 if it has a thickness of 2. If this is the case, the girth of
the graph is checked next. By Theorem 2.2, we know that Inequality ii must hold if the
graph has a thickness of 2. If the girth equation also holds, this graph is then tested by
one of the four thickness heuristics.

3.1 RER (Random Edge Removal)

The first thickness heuristic is named Random Edge Removal (RER) and is the simplest of
the four. This heuristic takes an input graph and attempts to partition the edges for a set
number of attempts. To do this, two empty graphs on 19 vertices are created and a copy
of the input graph is made. These empty graphs will be used as the planar subgraphs in
which the edges will be partitioned. The program then selects edges at random and adds
the edge to the first subgraph. If this results in the subgraph losing planarity, the edge
is removed from this subgraph and inserted into the second subgraph. If this results
in the second subgraph losing planarity, then the attempt has failed and the process
restarts. However, if the edge can be added to either graph without losing planarity, the
edge is deleted from the copy of the input graph. This process continues until all edges
have been removed from the copy of the input graph or the program fails to partition the
edges after a given number of attempts. If all edges are removed, which means that a a
suitable graph has been found, the program will print out the images and Graph6 strings
that represent the two planar subgraphs as well as the input graph.

Graph6 allows us to write a graph’s data to a string. That is, Graph6 can transform the
Graph object in Sage to a string of text. You can then use this Graph6 string to construct
the Graph object again in Sage. This makes Graph6 strings one of the ideal way of sharing
a graph once it is discovered, as anyone with Sage can use a Graph6 string to recreate a
graph and test its properties.

Algorithm 1 Random Edge Removal

Input: G, at tempt s
Output: sub1, sub2, G or FALSE

for i ← 1 to at tempt s do
r emoval s ← 0
// Initialize two empty graphs on 19 vertices called sub1 and sub2
// Create a copy of the input graph G called copy
for j ← 1 to |G.E| do

// Select a random edge u,v from copy
// Add u,v to sub1
if sub1 is not planar then

// Delete u,v from sub1
// Add u,v to sub2

end if
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if sub2 is not planar then
break

end if
r emoval s ← r emoval s +1

end for
if r emoval s == |G.E| then

return sub1, sub2,G
end if

end for
return FALSE

We can see that the run-time varies depending on the given number of attempts. Let
n be the number of vertices in G and m be the number of edges in G. Initialization takes
O(n +m) time for an arbitrary graph G. The run-time of determining if a graph is planar
is dependent on the algorithm used for this process, but a state-of-the-art algorithm
can do this task in O(n) time. Since the outer loop takes O(1) time, as the number
of attempts is a constant, and the inner loop takes O(m) time, the overall run-time is
O((m +n)+ (m × (m +n))) = O(m2 +mn).

3.2 RER-TT (Triangle Tactic)

The other three variations also use the Random Edge Removal tactic to try and partition
all of the edges. The second variation introduces the Triangle Tactic, labeled RER-TT
for short. In this version, the algorithm adds a removed edge as normal. After the edge
has been successfully added, it checks to see if the edge forms a triangle with any of its
adjacent edges. If it does, it adds these two edges to the current subgraph and determines
if it is still planar. If it is still planar, the edges are removed from the copy graph and
kept in the subgraph. The inner for loop was changed to a while loop for this tactic, as
multiple edges can be removed per iteration of the inner loop. In addition, a boolean
keeps track of if a triangle was added to subgraph 1 as to prevent adding the triangle to
subgraph 2.

The reasoning behind the Triangle Tactic is that dense planar graphs tend to contain
lots of triangles. Keeping adjacent edges in the same subgraph can help to reduce the
number of edge crossings, as these edges are already meeting at shared vertices.

Algorithm 2 RER: Triangle Tactic

Input: G, at tempt s
Output: sub1, sub2, G or FALSE

for i ← 1 to at tempt s do
r emoval s ← 0
// Initialize two empty graphs on 19 vertices called sub1 and sub2
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8 Graph thickness heuristics on Earth-moon Problem

// Create a copy of the input graph G called copy
while |copy.E > 0 do

tr i Not Added = TRUE
// Select a random edge u,v from copy
// Add u,v to sub1
if sub1 is not planar then

// Delete u,v from sub1
// Add u,v to sub2

else
for each o in u.nei g hbor s do

if copy has an edge o,v then
// Make a copy of sub1 called sub1Copy
// Add edges o,v and o,u to sub1Copy
if sub1Copy is planar then

// Add edges o,v and o,u to sub1
// Delete o,v and o,u from copy
r emoval s = r emoval s +2
tr i Not Added = FALSE
break

end if
end if

end for
end if
if sub2 is not planar then

break
else

if tr i Not Added then
for each o in u.nei g hbor s do

if copy has an edge o,v then
// Make a copy of sub2 called sub2Copy
// Add edges o,v and o,u to sub2Copy
if sub2Copy is planar then

// Add edges o,v and o,u to sub2
// Delete o,v and o,u from copy
r emoval s = r emoval s +2
tr i Not Added = FALSE
break

end if
end if

end for
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end if
end if
r emoval s ← r emoval s +1

end while
if r emoval s == |G.E| then

return sub1, sub2,G
end if

end for
return FALSE

RER-TT is identical to RER, except that the edge partitioning is held within a while
loop and it attempts to add edges forming a triangle with the most recently added edge.
The for-each loop executes at most n−1 times for a vertex connected to all other vertices.
The process of copying sub1 or sub2 is bounded by the number of vertices and edges in
the original graph, which means this process has a bound of O(n +m). The rest of the
operations for finding a triangle takes constant time. Therefore, since RER takes O(m2)
time, it follows that RER-TT takes O(m3 +nm) time.

3.3 RER-SES (Subgraph Edge Shift)

The third variation uses the Subgraph Edge Shift, RER-SES for short. This version again
mirrors RER. However, when the second subgraph first fails to be planar and a given
threshold for the number of removals is met, the algorithm removes the recently added
edge from subgraph 2 and moves any edge from subgraph 1 to subgraph 2 that can be
added without subgraph 2 losing its planarity. This is done by generating and testing the
planarity of a copy of subgraph 2. The routine then continues as in RER until completion
or failure. Since edges are always added to subgraph 1 first, it is possible that shifting
some edges into subgraph 2 may then allow some of the remaining edges to now be
added to subgraph 1. The edges previously in subgraph 1 may have been preventing the
remaining edges in the copy of the input graph from being added to subgraph 1.

Algorithm 3 RER: Subgraph Edge Shift

Input: G, at tempt s
Output: sub1, sub2, G or FALSE

for i ← 1 to at tempt s do
r emoval s ← 0
at temptedMove = FALSE
// Initialize two empty graphs on 19 vertices called sub1 and sub2
// Create a copy of the input graph G called copy
while |copy.E > 0 do

// Select a random edge u,v from copy
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10 Graph thickness heuristics on Earth-moon Problem

// Add u,v to sub1
if sub1 is not planar then

// Delete u,v from sub1
// Add u,v to sub2

end if
if sub2 is not planar then

if at temptedMove == FALSE then
// Delete u,v from sub2
// Make a copy of sub2 called sub2Copy
for q,r in sub1.E do

// Add q,r to sub2Copy
if sub2Copy is planar then

// Add q,r to sub2
// Delete q,r from sub1

else
// Delete q,r from sub2Copy

end if
end for
at temptedMove ← TRUE

else
break

end if
end if
r emoval s ← r emoval s +1

end while
if r emoval s == |G.E| then

return sub1, sub2,G
end if

end for
return FALSE

RER-SES is also identical to RER, except it tries to move edges from sub1 to sub2
after it first fails to add an edge to sub2. This might move the conflicting edges out of
sub1 and allow the edge that failed to be added to sub1 to now be inserted without sub1
losing planarity. Creating a copy of sub2 takes O(n+m) time in the worst-case. Similarly,
the added for loop executes at most m times. The operations within this for loop take
constant time except for checking its planarity, which takes O(n) time. Thus, this added
step takes O(n +m +nm) = O(nm) time. So, from the run-time of RER, RER-SES runs in
O(nm3) time.
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3.4 RER-TT-SES (Triangle Tactic and Subgraph Edge Shift)

The last variation combines the Triangle Tactic and Subgraph Edge Shift, denoted RER-
TT-SES. The reasoning for this method is the same as the previous two versions. While it
might be slower from a computational standpoint, more edges might be removed before
the algorithm fails when compared to the original version of this algorithm. As such, this
algorithm may outperform its counterparts.

Algorithm 4 RER-TT-SES

Input: G, at tempt s
Output: sub1, sub2, G or FALSE

for i ← 1 to at tempt s do
r emoval s ← 0
at temptedMove ← FALSE
// Initialize two empty graphs on 19 vertices called sub1 and sub2
// Create a copy of the input graph G called copy
while |copy.E| > 0 do

tr i Not Added = TRUE
// Select a random edge u,v from copy
// Add u,v to sub1
if sub1 is not planar then

// Delete u,v from sub1
// Add u,v to sub2

else
for each o in u.nei g hbor s do

if copy has an edge o,v then
// Make a copy of sub1 called sub1Copy
// Add edges o,v and o,u to sub1Copy
if sub1Copy is planar then

// Add edges o,v and o,u to sub1
// Delete o,v and o,u from copy
r emoval s ← r emoval s +2
tr i Not Added ← FALSE
break

end if
end if

end for
end if
if sub2 is not planar then

if at temptedMove == FALSE then
// Delete u,v from sub2
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12 Graph thickness heuristics on Earth-moon Problem

// Make a copy of sub2 called sub2Copy
for q,r in sub1.E do

// Add q,r to sub2Copy
if sub2Copy is planar then

// Add q,r to sub2
// Delete q,r from sub1

else
// Delete q,r from sub2Copy

end if
end for
at temptedMove ← TRUE
break

end if
else

if tr i Not Added then
for each o in u.nei g hbor s do

if copy has an edge o,v then
// Make a copy of sub2 called sub2Copy
// Add edges o,v and o,u to sub2Copy
if sub2Copy is planar then

// Add edges o,v and o,u to sub2
// Delete o,v and o,u from copy
r emoval s = r emoval s +2
tr i Not Added = FALSE
break

end if
end if

end for
end if

end if
r emoval s ← r emoval s +1

end while
if r emoval s == |G.E| then

return sub1, sub2,G
end if

end for
return FALSE

RER-TT-SES combines RER-TT and RER-SES. Since these operations occur indepen-
dently from one another, we can simply add together the bounds of their run-times.
Thus, RER-TT-SES runs in O((m3 +nm)+nm3) = O(nm3) time.
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3.5 Attempts to find a thickness-2 graph on 19 vertices with a triangle-free comple-
ment

In general, RER-TT-SES gets the closest to determining if a graph has a thickness of 2
or not, as it is able to remove more edges than the other variations until it fails. The
addition of the triangle tactic appears to help the most, likely because it keeps edges that
do not cross each other together. However, the edge shifting is also beneficial. Section 4
has a more in-depth analysis of how these algorithms compare to one another in terms
of efficiency and accuracy.

While this strategy has yet to produce a thickness-2 graph with a triangle-free com-
plement, it is easy to see that such a graph, in the very least, is close to having a thickness
of 2. With this strategy, various graphs have been shown to be within three edges of
having a thickness of 2. Some of these graphs have an arboricity as low as 5, too. A table
listing these “close” graphs can be found in Section 6.

4 Empirical Analysis of Graph Thickness Heuristics

For the empirical analysis, a set of thickness-2 graphs were made to test each algorithm
for accuracy, the number of steps taken until reaching a solution, and the number of
attempts until reaching a solution. This will allow for the algorithms to be compared
to one another in these regards. The thickness-2 graphs were made by removing edges
from a complete graph on a given number of vertices, then adding these removed edges
to one of two planar subgraphs. The edge was added so long as the subgraph remained
planar, and this process repeated until it failed to add an edge a given number of times.
Twenty graphs were made for each number of vertices, from 16 vertices to 45 vertices.
The results of this analysis are given in the tables and graphs below.

The Success Rate Average represents the percent of graphs that an algorithm was
able to show had a thickness of 2 after a set number of attempts. This gives us a means
to compare the algorithms in terms of accuracy. Evidently, RER-TT-SES has the highest
Success Rate Average and is thus considered the most accurate of the four algorithms.
Similarly, RER is shown to be the least accurate.

The Average Attempts for a given number of vertices refers to the average number
of attempts taken for the algorithm to determine that the graph has a thickness of
2. Each algorithm has an input parameter of attempts, which is the number of times
that the outer for loop will execute the algorithm before deciding that the graph has a
thickness greater than 2. If the loop was executed 5 times and found a suitable partition
of edges on the 5th attempt, then we consider that the algorithm took 5 attempts. The
Average Attempts gives a measurement of efficiency for each algorithm. A lower average
indicates that the algorithm took less iterations of the outer loop, and thus less time to
find a solution. Across most sets of graphs, the RER-TT-SES algorithm had the lowest
Average Attempts while RER had the greatest Average Attempts.
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Similarly, Average Code Lines represents the average number of lines of code executed
before the algorithm found a solution. The process of counting the number of lines of
code executed is a very common practice in determining the efficiency of algorithms.
This is a more accurate representation of efficiency, as each attempt takes a different
number of code lines across algorithms. Even so, RER-TT-SES is still shown to be the
most efficient on average. Likewise, RER is shown to be the least efficient.

In summary, RER-TT-SES outperforms the other three algorithms in terms of accu-
racy and lines of code used. Since RER is the most random of the three approaches, it
follows that it generally takes more attempts for this algorithm to succeed. From this,
adding triangles to the planar subgraph when possible appears to be a very effective
strategy in comparison to simply picking individual edges at random.

One issue to note with this data is that the graphs generated for analysis were purpose-
fully made to be less dense. In general, dense thickness-2 graphs have fewer partitions
into two planar subgraphs due to the increased number of edges. The odds of any of
these algorithms finding one of an exponential number of partitions is fairly low. So, in
order to analyze the algorithms efficiently and allow for any algorithm to be successful,
the graphs were made to be less dense.

RER RER-TT RER-SES RER-TT-SES

96.833% 99.167% 98.833% 99.500%

Table 1: Success Rate Average
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Vertices RER RER-TT RER-SES RER-TT-SES

16 831.5 657.5 453.8 143.5
17 2699.0 976.4 1059.5 514.3
18 290.7 43.5 46.6 19.6
19 343.0 108.9 96.9 54.6
20 1213.0 912.2 1193.9 591.6
21 709.3 71.6 221.5 25.2
22 599.5 66.7 96.7 35.5
23 1276.9 295.2 580.3 35.6
24 884.4 527.3 558.5 510.1
25 1351.1 520.3 767.9 511.8
26 181.7 28.3 76.5 10.2
27 34.7 8.9 15.7 5.4
28 342.5 44.5 43.6 24.9
29 576.3 24.9 54.9 54.4
30 1239.5 641.5 916.8 251.6
31 602.3 39.1 165.5 9.9
32 172.2 12.1 37.7 6.4
33 117.7 7.5 29.8 5.3
34 210.5 27.7 14.8 7.4
35 909.0 16.6 521.4 40.5
36 517.3 11.9 78.4 4.7
37 82.8 11.6 22.2 9.7
38 83.6 8.4 24.3 7.6
39 127.1 18.3 13.1 8.6
40 59.8 8.4 9.9 2.8
41 51.0 13.9 12.7 4.2
42 80.9 7.8 14.4 4.4
43 80.1 6.9 20.9 2.9
44 55.1 5.3 16.9 4.6
45 819.6 32.1 215.0 5.4

Table 2: Average Attempts
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Vertices RER RER-TT RER-SES RER-TT-SES

16 1946243.1 1747551.1 1058002.2 428454.0
17 6932390.6 2830915.2 2697007.1 1741522.8
18 822508.3 136357.0 136480.2 87356.3
19 1054733.2 369130.4 301017.2 239441.4
20 3990290.8 3356023.8 3893267.1 2290166.3
21 2494570.3 275971.6 804383.9 136753.3
22 2324129.3 283256.4 376974.1 197525.5
23 5253401.1 1346875.5 2352290.8 189481.8
24 3875497.5 2559535.5 2415102.1 2501150.3
25 6297130.7 2693690.6 3543051.7 2654665.0
26 895590.0 150792.8 385557.4 79022.1
27 184129.8 49753.0 86970.4 43502.8
28 1889273.4 265156.3 252083.4 187229.8
29 3360824.8 157102.5 325154.4 394253.7
30 7646247.7 4317753.8 5581355.5 1742799.1
31 4010111.5 280785.1 1098662.3 94569.0
32 1195564.2 87127.0 265711.0 67591.0
33 857118.7 57780.6 219427.9 56102.9
34 1605871.9 223945.1 116639.1 76188.4
35 7238911.5 141677.9 4150685.5 365367.2
36 4273401.5 103430.9 648478.4 61810.5
37 722716.4 106335.2 197706.2 117193.1
38 775083.1 79796.6 229143.7 99025.5
39 1184099.8 177375.5 123930.7 106584.4
40 590420.7 87290.9 102902.6 44374.0
41 521278.4 146871.3 134521.1 63027.4
42 866655.5 86838.4 159118.3 71832.7
43 894946.9 79721.3 241975.0 48112.9
44 631917.8 62583.1 197014.2 76211.2
45 9507958.3 392662.7 2477576.7 82646.2

Table 3: Average Code Lines
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Figure 2: Average Attempts

Figure 3: Average Code Lines

5 Nearly Thickness-2 Graphs on 19 Vertices

The table below contains graphs on 19 vertices which nearly have a thickness of 2. In
these graphs, RER-TT-SES is able to partition all but five or less edges into two planar
subgraphs. Closeness is defined as the number of times that the graph’s edges are
partitioned into two planar subgraphs with only five or less edges left to insert into the
planar subgraphs out of 100,000 attempts. The table also includes Graph6 strings with
the planar subgraphs containing the maximum number of edges removed. It is possible
that one of these graphs has a thickness of 2, but this has yet to be determined.
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Figure 4: Nearly Thickness-2 Graphs on 19 Vertices

6 Conclusion

This paper explored a programming-attack on the Earth-moon Problem using thickness
heuristics. While this approach has yet to discover the desired thickness-2 graph on
19 vertices with a triangle-free complement, RER-TT-SES has gotten within 3 edges
of partitioning all of a graph’s edges into two planar subgraphs for various graphs. In
addition, it was shown that RER-TT-SES was the most effective of the four heuristic
algorithms created by the author through an empirical analysis. Perhaps with some
more attempts, this strategy will find a suitable graph.
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Noted previously, finding a thickness-2 graph on 28 vertices with a K4-free comple-
ment would prove the existence of a 10-chromatic thickness-2 graph [7, p. 215]. However,
a major flaw in this strategy is the difficulty in removing enough edges from the complete
graph. By Theorem 2.2, a thickness-2 graph on 28 vertices can have at most 156 edges.
Since the complete graph on 28 vertices has 378 edges, at least 222 edges need to be
removed at random from the graph for it to possibly have a thickness of 2. The program
struggles to get past this step in general. Furthermore, determining if the complement is
K4-free is a more difficult task than determining if a graph is triangle-free. As such, the
inability to generate a K4-free graph with enough edges removed has stalled these at-
tempts. A more effective strategy of generating such graphs would be needed to continue
with the heuristic strategy as in Section 3.

Regarding next steps, it may be beneficial to investigate other heuristics for deter-
mining the thickness of a graph. Doing so may improve accuracy, efficiency, or perhaps
both when it comes to determining a given graph’s thickness. In addition, the K4-free
complement graph approach was halted by an inability to generate such a graph that
could possibly have a thickness of 2. Refining the generation of such graphs would allow
for this heuristic strategy to be utilized.
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