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The Mean Sum of Squared Linking Numbers of
Random Piecewise-Linear Embeddings of Kn

By Yasmin Aguillon, Xingyu Cheng, Spencer Eddins, and Pedro Morales

Abstract. DNA and other polymer chains in confined spaces behave like closed loops. Arsuaga et al.

[2] introduced the uniform random polygon model in order to better understand such loops in confined

spaces using probabilistic and knot theoretical techniques, giving some classification on the mean squared

linking number of such loops. Flapan and Kozai [6] extended these techniques to find the mean sum of

squared linking numbers for random linear embeddings of complete graphs Kn and found it to have order

Θ(n(n!)). We further these ideas by inspecting random piecewise-linear embeddings of complete graphs

and give introductory-level summaries of the ideas throughout. In particular, we give a model of random

piecewise-linear embeddings of complete graphs where the number of line segments between vertices is

given by a random variable. We find further that in our model of the random piecewise-linear embeddings,

the order of the expected sum of squared linking numbers is still Θ(n(n!)).

1 Introduction

A motivation behind the study of knot theory stems from the discipline’s many applica-
tions to molecular biology, especially in the study of DNA. Long polymer strands (such
as DNA) are packed tightly within the nucleus of a cell such that if the nucleus of a cell is
the size of a basketball, the DNA inside it is equivalent to 3 km of fishing line [9]. One can
easily imagine how these large DNA molecules might inevitably become entangled when
they are all compressed within the relatively small confined space of the nucleus. There
are theorems by Diao, Pippenger, Sumners and Whittington which state that in different
models as the length of a chain approaches infinity, the knotting probability goes to
1 [10][8][7][5]. This supports the idea that the likelihood of DNA becoming entangled
within the nucleus is extremely high.

This entanglement can lead to problems, as it makes essential processes like DNA
replication and transcription more difficult for the cell to perform. However, nature
solves this dilemma using enzymes, called topoisomerases, to cut through knots in the
DNA and then to reconnect these DNA strands in a more orderly fashion. This process
topologically alters the knots in the DNA [3][1, pg. 182].

Mathematics Subject Classification. 11A41
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Piecewise-Linear Embeddings of Kn

An important question many biochemists and molecular biologists have sought to
answer is, “How do enzymes act upon DNA?" To study this, biochemists and molecular
biologists have been studying circular DNA in particular. There are two reasons for this.
First, knots on circular DNA will not slip off the ends as they could within a regular,
unclosed DNA strand. Thus, circular DNA helps researchers more easily and accurately
quantify and analyze knots in DNA. Secondly, with circular DNA, researchers are now
working with closed curves. Thus, this allows researchers to apply tools from knot theory
and topology to analyze DNA.

Knot theory and topology have become invaluable tools for scientists and researchers
by providing scientists with a quantitative way to measure the properties of knots in
DNA. A good example of such a tool from knot theory is the linking number, which is a
link invariant that describes how two closed curves are “linked" or “tangled" in 3-space.
A link in knot theory is defined as a set of closed curves or hoops. Biochemists have used
this invariant to quantitatively study and analyze the entanglement of DNA.

To model long polymer chains in confined spaces, Arsuaga et al. introduced the
Uniform Random Polygon (URP) model in [2]. This model represents polymer chains as
random polygons, which are constructed from points generated uniformly and indepen-
dently in a confined convex space. They prove that the mean squared linking number of
two uniform random polygons in a cube (or in any other symmetric convex space) grows
with order O(n2), where n is the number of segments which make up the two uniform
random polygons. In this paper, we extend the results of Arsuaga et al. to links of random
chain lengths, and provide applications to the complete graph K6.

Furthermore, Flapan and Kozai [6] proved that the mean sum of squared linking
numbers of linear embeddings (i.e. every edge of the graph gets mapped to a line seg-
ment in R3) of the complete graph Kn is of order Θ(n(n!)), and we use similar techniques
to show in Corollary 4.9 that this result can be expanded to piecewise-linear embeddings
of Kn , generated under the URP model [2] as well.

2 Background

We begin our discussion with the definition of the fundamental object of our study: links.
Links are essentially a set of closed loops or curves in 3-space.

Definition 2.1 (Links). A link of m components is a subset of R3 that consists of m
disjoint, simple closed curves. A link of one component is called a knot. Further, if all
components of a link L are oriented, then we say that L is an oriented link.

We will sometimes call the components of a link cycles to emphasize the closed
nature of the curve (note the connection to graph theory). We will do this especially
when discussing K6 since all cycles of interest in K6 will be ‘defined’ by three points. In
the case when these cycles are defined by three points, we will refer to them as 3-cycles.
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As with other topological spaces, it is natural to ask in what sense are links equivalent.
That is, we wish to ask for bijective maps between links such that the main properties of
links are preserved. This leads us to the notion of ambient isotopy.

Definition 2.2 (Ambient isotopy). Let f :R3 × [0,1] →R3 be a homotopy. We say that f
is an ambient isotopy if f (x,0) = i dM(x) and each ft (x) = f (x, t) is a homeomorphism.
Two links L and L′ are said to be ambient isotopic if there is a homeomorphism h such
that i dM and h are ambient isotopic and h(L) = L′.

In words, this means that the links can continuously be deformed and moved around
the space, so long as no two strands pass through each other in 3-D space. Ambient
isotopies define an equivalence relation on links, and this notion allows us to make
precise exactly what it means for two knots or two links to be the same.

We can picture knots and links by representing them in R2 as diagrams. These
diagrams are formed by projecting the links to 2 dimensions. However, sometimes these
projections may be pathological. For example, three strands may cross at the same point
rather than having three individual crossings, one for each pair of strands. To avoid these
pathologies, we have the notion of a regular projection. To define a regular projection,
we need to first characterize the various pathologies which we wish to remove.

Definition 2.3. A polygonal link is a set of connected line segments such that the topo-
logical space formed by the set of line segments is a link. We call a line segment of a
polygonal link L in R3 an edge of L and an end point of the line a vertex.

Definition 2.4. Let L be a link and π : R3 → R2 be an orthogonal projection. We call a
point c ∈π(L) a multiple point if π−1(c)∩L contains more than one point. The cardinality
of π−1(c)∩L is called the order of c and c is called an n-multiple point if the order of c is
n. A two-multiple point is called a double point.

Being a multiple point means that in a knot or link diagram, we would have multiple
strands crossing at the point in the knot projection. If the order of these multiple points
are greater than two, then that means we have three or more strands crossing in the
same place. However, our calculations rely on at most two strands ever crossing a single
point, since we care about the notions of over- and under-crossings in a projection. Over-
and under-crossings do not make sense for multiple strands crossing at the same point,
so higher order multiple points are pathological. To rectify this, there is a notion of a
regular projection.

Definition 2.5. Let π : R3 → R2 be an orthogonal projection. We say π is a regular
projection for a polygonal link L if the following conditions hold:

1. The set of multiple points of the image π(L) consists of finitely many double points.

2. No point in the preimage π−1(c)∩L of any double-point c ∈π(L) is a vertex of L.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023
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Essentially, this definition means that we only have finitely many intersections in the
projection, and that those intersections are only between two strands. It turns out that
we can always get a regular projection of a link since links can be continuously deformed
to one that has a regular projection. Now that we have the necessary definitions for links,
we can provide some examples of links along with their projections below.

Example 2.6 (The trivial link). We have a picture of a projection of the trivial link in
Figure 1. This is the simplest link of two components; it is also called the unlink.

Figure 1: Unlink or Trivial Link

Example 2.7 (The Hopf link). A projection of the Hopf link is pictured in Figure 2. It
is two hoops intertwined with each other once, and is the second simplest link of two
components after the unlink.

Figure 2: Hopf Link

Next, we define the linking number of two cycles C1 and C2. The linking number is a
convenient link invariant which will allow us to quantify the complexity of links. The
linking number is called a link invariant because any two (ambient) isotopic links share
the same linking number.

Definition 2.8. Suppose L = {C1,C2} is an oriented link with two components. We then
take a regular projection of L, and we look at the crossing points between these two cycles.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023
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That is, we look at the crossings in the diagram of the regular projection where the two
strands come from different components of the link (i.e. one from C1 and the other from
C2), and we do not consider crossings that come from the same component intersecting
itself. For each of these crossings, there will be an overstrand and understrand. We look
at each crossing from the perspective of the overstrand, and we define the sign of each
crossing as

1. If the understrand is moving left relative to the perspective of the overstrand, we
assign this crossing the value +1.

2. If the understrand is moving right relative to the perspective of the overstrand, we
assign this crossing the value −1.

The values of the crossings are illustrated in Figure 3. The crossing pictured on the left
of that figure is assigned +1, while the crossing pictured on the right of that figure is
assigned −1. We say that a crossing is positive if it is assigned the value +1 and that a
crossing is negative if it is assigned the value −1.

Figure 3: Positive and negative crossings

The linking number is defined as the sum of all the positive and negative crossings
divided by 2; it is denoted as lk(C1,C2), and it is given in equation form by

lk(C1,C2) := (# of positive crossings)− (# of negative crossings)

2
.

It is worth noting that the linking number will always be an integer, since

(# of positive crossings)− (# of negative crossings)

will always be even.

Now for general two-component links (which may or may not be oriented), we
note that for all four possible orientations that we can give such links, we will get the
same linking number up to sign. This is because if we flip the orientation of any single
component in the link, we will change the sign of every single crossing in the link, which
means that the linking number of the new link will be the negative of the original link.
This means that the linking number is invariant up to sign under changes in orientation.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023
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3 Uniform random polygon model

The uniform random polygon (URP) model introduced by Arsuaga et al. in [2] generates
two random polygons in a confined convex space. Because these two polygons are two
closed curves, they form a link in the confined space. Therefore we can study their nature
as links. A precise description of the model is given in the following definition.

Definition 3.1 (The uniform random polygon model [2]). A set of points R1 = {v1, . . . , vn}
are picked uniformly and independently in a bounded convex space K ⊂R3. The points
are connected by line segments so that v1 is connected to v2, v2 to v3, . . . , and vn−1 is
connected to vn ; vn is further connected to v1 so that the points v1, ..., vn form a polygon
in R3. Another set of points R2 = {v ′

1, . . . v ′
n} are also picked randomly and uniformly and

connected similarly to the points of R1 such that the points of R2 forms a second polygon.
We will use R1 and R2 to denote both the set of points defining the polygon as well as
(slight abuse of notation) the polygon itself.

Note that since R1 and R2 form two closed curves, this means that L = {R1,R2} forms
a link. We will consider the projection diagram of L = {R1,R2} as a regular projection
(since every link projection is isotopic to a regular projection with probability one).

Consider the projection of two disjoint edges, `1 and `2. Since the end points of these
edges are independent and uniformly distributed, the probability that they intersect
within the projection diagram is a positive value, which is defined in [2] as 2p.

Let the orientation of an edge be determined by the order in which its vertices are
chosen. That is, the edge containing vi and vi+1 is directed from vi to vi+1. Arsuaga et.
al defined a random variable ε in the following ways: ε= 0 if the projection of `1 and `2

do not cross, ε= 1 if the projection of the crossing is a positive crossing and ε=−1 if the
projection has a negative crossing. We have defined positive and negative crossings as in
Figure 3. This means that ε represents the crossing number of two random edges from
the two uniform random polygons.

For simplicity, in this paper we use a uniform distribution for the independent
random points that form the uniform random polygons. We also assume that we are
choosing points from the unit cube C3 = [0,1]3. It is worth saying that even if the
distribution is changed, every argument in this section still holds, only the hypothesis of
independence and identical distribution needs to hold.

Arsuaga et. al proved that if R1 and R2 are two random polygons generated by n
points each, the mean squared linking number between these two polygons is given by

E

((
1

2

n∑
i j
εi j

)2)
= 1

2
n2q,

where q > 0, and εi j is the crossing sign between edges `i of R1 and `′j of R2 after labeling

the edges of R1 as `1, . . . ,`n and respectively the edges of R2 as `′1, . . . ,`′n . This is the main
result we wish to generalize for our paper.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023
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To prove the above theorem, we need the following lemma, which gives us sufficient
conditions to cancel out terms in the expected value. Although the proof is given in [2],
we give an expanded proof with additional details as this is helpful for the rest of our
discussion.

Lemma 3.2. (Modified version of Lemma 1 in [2]) Consider 4 edges: `1,`2,`′1, and `′2 with
randomly and independently chosen end points. Some of these edges may be identical or
share a common end point. Define ε1 as the number ε between `1 and `′1, and let ε2 be the
number ε between edges `2 and `′2, where ε is defined above as the crossing between two
disjoint edges.

1. If the end points of `1, `2, `′1 and `′2 are distinct, then E(ε1ε2) = 0 (This is the case
when there are 8 random points involved);

2. If `1 = `2, and the end points of `′1 and `′2 are distinct (this is the case when there are
6 independent points involved with 3 distinct edges), then E(ε1ε2) = 0.

3. If `1 and `2 are adjacent and `′1 and `′2 are distinct (7 independent random points)
then E(ε1ε2) = 0.

4. In the case that `1 = `2 and `′1 and `2 are distinct (so there are only 5 independent
random points involved), let u = E(ε1ε2). In the case where `1 and `2 share a
common point and where `′1 and `′2 also share a common point (so there are 4
edges with 6 independent points involved in this case), let E(ε1ε2) = v. Lastly, let
p = P(ε= 1) for ε being the crossing sign of any two edges without restriction. Define
q := p +2(u + v), then we have that q > 0.

Proof. 1. Since the vertices in ε1 and ε2 are chosen without dependence on each
other, we know ε1 and ε2 must be independent variables satisfying E(ε1ε2) =
E(ε1)E(ε2). For any crossing ε we have that E(ε) = 0, since the probability P(ε =
1) = P(ε=−1). Then E(ε1ε2) = E(ε1)E(ε2) = 0.

2. For each configuration where both `′1 and `′2 cross and `1 = `2, i.e. the configu-
rations where ε1ε2 6= 0, there are a total of 8 different ways of assigning orienta-
tions via permuting the points (See Figure 4 below). For 4 of these 8 orientations,
ε1ε2 = 1, and for the other 4, ε1ε2 =−1. These permutations are equally likely, so
E(ε1ε2) = 0 ·P(ε1ε2 = 0)+P(ε1ε2 6= 0) · (1( 4

8 )−1( 4
8 )) = 0.

3. For the scenario when `1,`2 are adjacent and `′1,`′2 are distinct, we notice that it
is equally probable that edge `′1 has reverse order by symmetry. Notice that this
changes the sign of ε1 and thus the sign of ε1ε2 too. Then ε1ε2 is equally likely to
be positive or negative. That is, E(ε1ε2) is also 0.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023
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Figure 4: For each configuration described in Lemma 3.2 part 2 where ε1ε2 6= 0, there are
8 symmetric ways of assigning the orientations ([2]).

4. Let us consider two random triangles. The first triangle will consist of sides `1,`2,`3

while the second triangle will consist of sides `′1,`′2,`′3. Let εi j be the number ε
between edges `i and `′j . Let us consider the variance of the summation

3∑
i , j=1

εi j = (ε1,1 +ε1,2 +ε1,3 +ε2,1 +ε2,2 +ε2,3 +ε3,1 +ε3,2 +ε3,3).

Notice that Var(ε) = E(ε2)− [E(ε)]2. However, given that P(ε= 1) = P(ε=−1) = p, it
follows that E(ε) = 0. Therefore, we get that Var(ε) = E(ε2).
Now, by considering the variance of the summation

∑3
i , j=1 εi j , we have

Var

(
3∑

i , j=1
εi j

)
= E

((
3∑

i , j=1
εi j

)2)
.

This equation can be simplified into the 3 following sums:

Var

(
3∑

i , j=1
εi j

)
=E

((
3∑

i , j=1
εi j

)2)

=
3∑

i , j=1
E(ε2

i j )+2
3∑

i , j=1

[
E(εi jεi ( j−1))+E(εi jεi ( j+1))

]
+2

3∑
i , j=1

[
E(εi jεi+1, j+1)+E(εi jεi−1, j+1)

]
,

where the indices in this sum are all taken modulo 3. Note that since

3∑
i , j=1

E(εi jεi ( j−1)) =
3∑

i , j=1
E(εi jε(i−1) j ),

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Aguillon, Cheng, Eddins, and Morales

we can omit one of these terms (for us we omitted
∑3

i , j=1 E(εi jε(i+1) j )) to get the
term

2
3∑

i , j=1
E(εi jεi ( j−1)),

and similarly for the 2
∑3

i . j=1 E(εi jεi ( j+1)) term.

These 3 sums can be simplified even further. Each term in the first summation,∑3
i , j=1 E(ε2

i j ), yields 2p. When we distribute the terms in the sum we know that
each term will be multiplied by itself once resulting in the terms of the first sum
(so, this sum will have 9 terms). Since ε in this scenario can only equal ±1 or 0, we
know ε2

i , j will always equal 1 or 0. That is, ε2 equals 1 if the two edges intersect and
0 otherwise. Since we previously defined the probability of two edges intersecting
within the projection diagram as 2p, for each term in the sum E(εi j )2 = 1 ·2p = 2p.
So, the first sum

3∑
i , j=1

E(εi j )2 = 9 ·2p.

Each term of the second sum, 2
∑3

i , j=1 E(εi jεi ( j−1))+E(εi jεi ( j+1)), yields u, where

u = E(ε1ε2) in the case that the edges `1 = `2 and the edges `′1 and `′2 and share a
common point (so, there are five independent random points and 3 distinct edges).
Visually, each term of the sum can be seen in terms of two triangles as shown in
Figure 5.

j

j+1

j-1
j

j-1

j+1

l l1 2=

l l1 2=

Figure 5: Let the disjoint edge be `1 = `2. In the left triangle, edge j and j −1 are the
adjacent edges that share a point i.e. `′1 and `′2. For the right triangle edge j and j +1 are
the adjacent edges that share a point i.e. `′1 and `′2.

Thus, each term in the sum will yield u. The sum is multiplied by 2 to account
for the other set of terms that results when the order of ε’s is switched. This is
analogous to expanding the expression (a +b)2 in that we get ab +ba = 2ab. We

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023
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multiply the sum by 2 to account for both of these terms. The sum will yield a total
of 18 terms. Thus,

2
3∑

i , j=1

[
E(εi jεi ( j−1))+E(εi jεi ( j+1))

]= 2 ·18u.

Each term of the third sum, 2
∑3

i , j=1(E(εi jε(i+1)( j+1))+E(εi jε(i−1)( j+1)), yields v ,

where v = E(ε1ε2) in the case where `1 and `2 share a common point and `′1 and `′2
also share a common point (thus, there are 4 distinct edges and six independent
points in this case). Visually, each term of the sum can be seen as parts of two
triangles as shown in Figure 6.

l 

l

l

1

1

l
2

2

'

'

i+1

i

j+1

j

Figure 6: Illustration of the v case.

Thus, each term in the sum will yield v . Like the second sum, this sum is also
multiplied by 2 to account for the other set of terms that results when the order of
each ε is switched and also results in a total of 18 different terms. So,

2
3∑

i , j=1

[
(E(εi jε(i+1)( j+1))+E(εi jε(i−1)( j+1))

]= 2 ·18v.

Thus,

Var

(
3∑

i , j=1
εi j

)
= E

((
3∑

i , j=1
εi j

)2)
= 18[p +2(u + v)].

Since Var
(∑3

i , j=1 εi j

)
> 0, this implies that q = p +2(u + v) > 0. Thus, the claim of

Arsuaga et al. holds.
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As observed in the proof of the above lemma, when the difference of indices i − i ′

mod n and j − j ′ mod n are greater than 1, then E(εi jεi ′, j ′) = 0. Using this idea, Arsuaga
et al. proved the following theorem about mean squared linking numbers.

Theorem 3.3. (Theorem 1 of [2]) The mean squared linking number between two uniform
random polygons R1 and R2 of n edges each (in the confined space C3) is 1

2 n2q where
q = p +2(u + v) as defined in Lemma 3.2.

The main argument for this theorem relies on Lemma 3.2. In that lemma, we reduced
all the possible crossing configurations into four cases, and we noted that when pass-
ing to the expected value, only the fourth case of the above lemma becomes nonzero.
Simplifying the summation will then yield the expression 1

2 n2q .

3.1 Generalizations of the results from the uniform random polygon model

We extend the uniform random polygon model of Arsuaga et al. [2] in the following
manner. Let R1 = {v ′

1, . . . , v ′
N} and R2 = {v ′

1, . . . , v ′
M}, where N and M are two random

variables and each vi and v ′
j are in Ω, where Ω⊂R3 is a bounded convex set. We prove

that the mean squared linking number of such uniform random polygons is of the form
1
2 E(M)E(N)q when N and M are independent. In the case of N ≡ M (that is, N = M in all
instances), we have that the mean squared linking number is of form 1

2 E(N2)q .
Before we begin the proofs of the above formulas, we will require a couple of standard

results from probability theory.

Theorem 3.4 (Law of total expectation). Let X, Y be random variables. Then

E(X) = E(E(X|Y))

where X|Y is the conditional probability distribution of X given Y.

If Y takes the outcomes A1, A2,. . . , An , then the above result can be rewritten as

E(X) =
n∑

i=1
E(X|Ai )P(Ai ).

Theorem 3.5. Let X be a random variable with probability mass function fX, and g be a
function of the random variable X. Then we have that

E(g (X)) =∑
x

g (x) fX(x).

This result is sometimes referred to as the law of the unconscious statistician and will
be helpful to prove results about mean squared linking numbers for a novel modification
of the uniform random polygon model.

In addition to some standard results from probability theory, we will also need the
following theorem on uniform random polygons of different chain lengths. This result
was proved in [6] as an application of results proven in [2].
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Theorem 3.6 ([6]). Let C1 and C2 be two randomly chosen polygons formed by uniformly
and independently chosen vertices in a convex space and connected by straight edges. If
C1 and C2 have length m and n respectively, then the mean of the squared linking number
between these two random polygons is given by

E

((
1

2

m∑
i

n∑
j
εi , j

)2)
= 1

2
mnq

where q is as defined in [2].

The above theorems are sufficient for us to describe the average linking behavior of
our random uniform random polygons. And we will state our result below.

Theorem 3.7. Let M and N be two random variables and let R1 and R2 be two uniform
random polygons with vertices picked in Ω with M and N vertices respectively, where Ω is
some convex region in R3. Further, let q = p +2(u + v) be as in Lemma 3.3.

1. In the case that M ≡ N, the mean squared linking number is

E

((
1

2

N∑
i , j
εi j

)2)
= 1

2
qE(N2).

2. In the case that M and N are independent, the mean squared linking number is

E

((
1

2

M∑
i

N∑
j
εi j

)2)
= 1

2
E(N)E(M) q.

Proof. 1. This is a result of a straightforward calculation involving conditional expec-
tation. Note that by Theorem 3.5 we have that

E

((
1

2

N∑
i , j
εi j

)2)
= ∑

k≥3
E

((
1

2

N∑
i , j
εi j

)2 ∣∣∣N = k

)
P(N = k)

= ∑
k≥3

1

2
k2qP(N = k)

= 1

2
q

∑
k≥3

k2P(N = k)

= 1

2
qE(N2).

The last equality comes from the fact that E(g (X)) =∑
x g (x)P(X = x) as per Theo-

rem 3.5.
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2. This result is achieved by a continuous application of conditional expectation.
First note that we can take the expectation of N to get

E

((
1

2

N∑
i

M∑
j
εi j

)2)
= E

(
E

((
1

2

M∑
i

N∑
j
εi j

)2 ∣∣∣N))

= E

(
E

(
E

((
1

2

M∑
i

N∑
j
εi j

)2 ∣∣∣N)∣∣∣M))
.

We now use Theorem 3.4 on M to get the expression to equal

∑
m≥3

E

(
E

((
1

2

M∑
i

N∑
j
εi j

)2 ∣∣∣N)∣∣∣M = m

)
P(M = m).

Applying the substitution to M = m to sum inside the expected value, we get that
the sum becomes

∑
m≥3

E

(
E

((
1

2

m∑
i

N∑
j
εi j

)2 ∣∣∣N))
P(M = m).

From here, we can apply the inner expected value to get the sum to equal

∑
m≥3

[ ∑
n≥3

E

((
1

2

m∑
i

N∑
j
εi j

)2 ∣∣∣N = n

)
P(N = n)

]
P(M = m).

Applying the substitution N = n yields

∑
m≥3

[ ∑
n≥3

E

((
1

2

m∑
i

n∑
j
εi j

)2)
P(N = n)

]
P(M = m).

After applying Theorem 3.6 to the above sum we get that the sum becomes∑
n

∑
m

1

2
mnqP(N = n)P(M = m).

Factoring out constants, we get the following simplifications

1

2
q

∑
n

[
nP(N = n)

∑
m

mP(M = m)

]
= 1

2
q

∑
n

nP(N = n)E(M)

= 1

2
E(M)E(N) q.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Piecewise-Linear Embeddings of Kn

The motivation for the above theorem and models comes from a desire to model
curved embeddings of K6. While the uniform random polygon model of [2] only deals
with the case of straight line embeddings, this case allows us to join each vertex of K6

by a random polygonal curve in space. Since these polygonal curves can approximate
arbitrary tame (e.g. differentiable) curves in space, we can intuitively take this to be at
least a crude approximation of curved embeddings of K6.

4 Spatial embeddings of Kn

We now turn our attention to spatial embeddings of complete graphs in space. We begin
our discussion with some preliminary notions from graph theory.

Definition 4.1. A spatial embedding of a graph G is an embedding of the vertices of G in
R3 along with the edges which connect these vertices such that no two edges intersect
and no two vertices map to the same point.

Definition 4.2. We say that a graph of n vertices is a complete graph if each vertex of
the graph is connected to every other vertex of the same graph by exactly one edge. We
denote this graph as Kn .

Figure 7: The complete graph K6

For the simplest case consider an arbitrary spatial embedding of K6. An important
fact about K6 is that if we choose any three vertices from this embedding then the edges
connecting these three points would form what we call a cycle.

Since we have six vertices in K6, the other three vertices also form a cycle. This means
that there are always pairs of disjoint three-cycles in our embedding, so it is a natural
question to ask if there are always cycles which represent nontrivial links, i.e. they are
not (ambient) isotopic to the unlink.

Conway and Gordon [4] studied this case and a similar one for K7. In doing so,
they proved that every spatial embedding of K6 has a nontrivial link and every spatial
embedding of K7 has a nontrivial knot. Our interest is in the former result.

Theorem 4.3 ([4]). Every spatial embedding of K6 has a nontrivial link.
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4.1 Applications of random polygon model methods to K6 and Kn

With tools from the uniform random polygon model, and our extensions thereof, we will
now be able to apply these models to spatial embeddings of K6. Conway and Gordon
[4] proved that any spatial embedding of K6 must have at least one nontrivial link,
particularly with an odd linking number, and further that the sum of linking numbers
over all pairs of cycles in spatial embeddings of K6 must be odd. However, Conway
and Gordon’s proof does not give further information about the explicit values of such
linking numbers. The linking number provides information about the complexity of a
link or a set of links, and therefore it is important to see, given a random embedding,
how complex the embedding is in the sense of the linking number. The uniform random
polygon model and our extensions provide one such tool to analyze this complexity.

We begin our discussion on applications of random polygon methods to K6 with a
definition of random piecewise-linear embeddings.

Definition 4.4. A random piecewise-linear embedding of a graph G is an embedding of
G into space where the vertices of G are placed randomly into a confined space Ω⊂R3

and the edges are represented by non-intersecting, piecewise-linear curves.

Both linear and piecewise-linear embeddings are in some sense very simple, and we
can view cycles from such embeddings in a confined space as uniform random polygons.
For linear embeddings, each closed loop of K6 will be composed of three vertices, and
hence these polygons will be triangles. There are 10 = 1

2

(6
3

)
unordered pairs of disjoint

triangles from this set. This leads us to the following result from [6].

Theorem 4.5. Let six points {v1, . . . , v6} be chosen independently and uniformly in the
cube C3 = [0,1]3. We then connect each point vi , 1 ≤ i ≤ 6 to each point in {v1, . . . , v6} \ {vi }
with straight line segments. This represents a linear embedding of K6, and the mean sum
of squared linking numbers of such an embedding is given by

E

( ∑
C1,C2

lk(C1,C2)2

)
= E

( ∑
C1,C2

(
1

2

3∑
i , j
εi j

)2)
= 45q,

where q > 0 is the constant defined in Lemma 3.2, and we are summing over the ten pairs
of triangles C1 and C2.

Now that we have a good idea of the random linear embeddings of K6, we can
consider random piecewise-linear embeddings of K6. This will provide an intuition for
the general case of Kn .

Theorem 4.6. Let C1 and C2 be two uniform random cycles in K6. Define Xi j as the
random variable for the number of line segments in our linear embedding over the edge
{vi , v j }, and further suppose for all i , j that E(Xi j ) = U for some U, such as the case when
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the variables are identically distributed. Also, let the Xi j ’s be pairwise independent. Then,
the mean sum of squared linking numbers is given by

E

( ∑
C1,C2

(
1

2

M(C1)∑
r

M(C2)∑
s

εr s

)2)
= 45 q U2,

where
M(Cι) := ∑

{vi ,v j }⊂Cι

i 6= j

Xi j .

Proof. We begin by iterating a sum over the M(C1) and M(C2) line segments in C1 and C2

respectively. Because these are just two cycles with a random number of line segments
(i.e. two uniform random polygons), we can apply Theorem 3.7.

E

( ∑
C1,C2

(
1

2

M(C1)∑
r

M(C2)∑
s

εr s

)2)
= ∑

C1,C2

(
E

((
1

2

M(C1)∑
r

M(C2)∑
s

εr s

)2))

= ∑
C1,C2

(
1

2
q E(M(C1))E(M(C2))

)
.

Since each cycle has three edges, there will be three random variables for each selection
of C1 and C2. Without loss of generality, consider the case when C1 is the cycle containing
{v1, v2, v3} and C2 is the cycle containing {v4, v5, v6}. Then M(C1) = X12 +X13 +X23 and
M(C2) = X45 +X46 +X56. We know by properties of the expected value that the expected
value of a sum of random variables is equal to the sum of the expected values of the same
random variables, so we have that

E(M(C1)) = E(X12 +X13 +X23) = E(X12)+E(X13)+E(X23).

A similar decomposition gives E(M(C2)) = E(X45)+E(X46)+E(X56). By hypothesis, we also
have that E(Xi j ) = U for all i , j , so E(M(C1)) = 3U and similarly E(M(C2)) = 3U. Hence,
we can rewrite our summation as

E

( ∑
C1,C2

(
1

2

M(C1)∑
r

M(C2)∑
s

εr s

)2)
= ∑

C1,C2

1

2
q(3U)(3U)

= ∑
C1,C2

(
9

2
q U2

)
=10

(
9

2
q U2

)
=45 q U2,

where we are summing over the 10 different pairs of cycles {C1,C2} in a random piecewise-
linear embedding of K6, hence the coefficient 10.
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It would be desirable to generalize the above theorem to Kn and without the restric-
tion of having the same expected number of line segments per edge. For n > 6, cycles
may have more than 3 vertices, meaning the number of vertices in a cycle is no longer
constant. Moreover, there is now more than one cycle containing the same set of 4 or
more vertices due to the different orders they can be arranged in. Surprisingly, this only
results in a small change in structure and a multiplicative factor we call D(n).

Our following result characterizes the average linking behavior of random piecewise-
linear embeddings of Kn . Here we build on the work of [6] and [2].

Theorem 4.7. Define Xi j as the independent random variable for the number of segments
in the edge from vi to v j in Kn . Then the mean sum of squared linking numbers is given
by

E

( ∑
C1,C2

(
lk(C1,C2)2

))
= D(n)

4
q

∑
{i , j }
i 6= j

E(Xi j )
∑
k 6=l

k,l 6∈{i , j }

E(Xkl ),

where D(n) is some positive integer depending on n.

Proof. Let Cι be a closed loop in Kn , and define M(Cι) to be the number of segments
in Cι, given by

∑
vi ,v j∈Cι

i 6= j

Xi j . Index the line segments in each Cι and denote εr s as the

crossing between line segments r in C1 and s in C2. By Theorem 3.7, we have

E

( ∑
C1,C2

(
1

2

M(C1)∑
r

M(C2)∑
s

εr s

)2)
= ∑

C1,C2

(
E

((
1

2

M(C1)∑
r

M(C2)∑
s

εr s

)2))

= ∑
C1,C2

(
1

2
q E(M(C1))E(M(C2))

)

= ∑
C1,C2

1

2
q E

 ∑
vi ,v j∈C1

i 6= j

Xi j

 E

 ∑
vk ,vl∈C2

k 6=l

Xkl




= 1

2
q

∑
C1,C2

 ∑
vi ,v j∈C1

i 6= j

E(Xi j )


 ∑

vk ,vl∈C2
k 6=l

E(Xkl )

 .

Notice that this expands into a sum of products of pairs of expected values of random
variables times some integer. That is, a sum of terms of the form ai j kl E(Xi j )E(Xkl )
where ai j kl is the number of times the term E(Xi j )E(Xkl ) appears in the expanded sum.
Because each pair of vertices comes from disjoint pairs of cycles, we have vk , vl 6∈ {vi , v j },
or, in other words, i , j ,k, l are distinct. Therefore ai j kl = 0 if i , j ,k, l are not distinct, and
if they are distinct, then ai j kl counts the number of unordered pairs of disjoint cycles
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{C1,C2} such that {i , j } and {k, l } are edges of C1 and C2 respectively. We now rewrite this
as a sum over each nonzero ai j kl term in a few ways:

1

2
q

∑
C1,C2

 ∑
vi ,v j∈C1

i 6= j

E(Xi j )


 ∑

vk ,vl∈C2
k 6=l

E(Xkl )

= 1

2
q

∑{
{i , j },{k,l }

}ai j kl E(Xi j )E(Xkl )

= 1

16
q

∑
i , j ,k,l

distinct

ai j kl E(Xi j )E(Xkl )

= 1

4
q

∑
{i , j }
i 6= j

E(Xi j )
∑

{k,l }
k 6=l

k,l 6∈{i , j }

ai j kl E(Xkl )


Note that the second-line summation iterates over the unordered pair of edges

{
{i , j }, {k, l }

}
8 times due to the double counting from swapping the edges, swapping the vertices in
the first edge, and swapping the vertices in the second edge. Meanwhile the last-line
only double counts by a factor of 2 by swapping the two edges. For the remainder of this
paper we will use the last expression. Since ai j kl satisfies the hypothesis of Lemma 4.8,
and since we are only iterating over ai j kl with distinct i , j ,k, l , we have by 4.8 that each
ai j kl term is equal to some positive integer dependent only on n which we will call D(n).
That is ai j kl = D(n). Then

1

4
q

∑
{i , j }
i 6= j

E(Xi j )
∑

{k,l }
k 6=l

k,l 6∈{i , j }

ai j kl E(Xkl )

= 1

4
q

∑
{i , j }
i 6= j

E(Xi j )
∑

{k,l }
k 6=l

k,l 6∈{i , j }

D(n)E(Xkl )



= D(n)

4
q

∑
{i , j }
i 6= j

E(Xi j )
∑

{k,l }
k 6=l

k,l 6∈{i , j }

E(Xkl )

 .

We then derive the formula for D(n).

Lemma 4.8. Let ai j kl be the number of unordered pairs of cycles in Kn such that the edge
{vi , v j } and {vk , vl } appear in opposite cycles. If i , j ,k, l are distinct then ai j kl = D(n)
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where

D(n) =
n−3∑
a=3

n−a∑
b=3

(n −4)!

(n −a −b)!
=

n∑
i=6

(n −4)!(i −5)

(n − i )!
.

Proof. Let f (s,m) be the number of ways to make a cycle with a given edge and s
additional vertices chosen from a set of m vertices. Then f (s,m) is the number of ways
to choose s vertices from the m vertices, given by

(m
s

)
, times the number of ways the s+2

vertices can be arranged in a cycle that includes the given edge.

To find the number of arrangements, note that every cycle can be identified with an
ordered list of the vertices along any path around that cycle. One has to be careful since
both the starting vertex and direction admits a different ordered list despite coming
from the same cycle. In our case, however, we know our cycle contains a fixed edge, say,
{vi , v j }. Then we can write each cycle uniquely as an ordered list of the s +2 vertices
starting with vi , v j , ... so that there are exactly s! arrangements. Thus, f (s,m) = s!

(m
s

)
.

Since ai j kl equals the number of unordered pairs of cycles where the edges {vi , v j }
and {vk , vl } show up in opposite cycles, we can then write ai j kl as the sum over all
possible a and b of the number of ways {vi , v j } shows up in a cycle with a vertices and
{vk , vl } shows up in an disjoint cycle with b vertices. This gives f (a −2,n −4) f (b −2,n −
2−a) such pairs of unordered cycles for each a and b. Note that not all vertices have to
be used, so a +b ≤ n. As well, every cycle must have at least 3 vertices, so we may write
that 3 ≤ a ≤ n −3 and 3 ≤ b ≤ n −a are the ranges of our sum. Therefore we obtain the
sum

ai j kl =
n−3∑
a=3

n−a∑
b=3

f (a −2,n −4) f (b −2,n −2−a)

=
n−3∑
a=3

n−a∑
b=3

(a −2)! (b −2)!

(
n −4

a −2

)(
n −2−a

b −2

)

=
n−3∑
a=3

n−a∑
b=3

(n −4)!

(n −a −b)!
.

Since ai j kl depends only on n and not i , j ,k, l , we have that ai j kl = ai ′ j ′k ′l ′ whenever
both i , j ,k, l are distinct and i ′, j ′,k ′, l ′ are distinct. To reflect this, we define D(n) := ai j kl

for any four distinct vertices vi , v j , vk , vl .

Lastly, in the proof of Theorem 2.4 in [6], Flapan and Kozai show that

n−3∑
k=3

n−k∑
l=3

n!

(n −k − l )!
=

n∑
i=6

n!(i −5)

(n − i )!
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which implies

n−3∑
k=3

n−k∑
l=3

1

(n −k − l )!
=

n∑
i=6

(i −5)

(n − i )!

and thus

D(n) =
n−3∑
a=3

n−a∑
b=3

(n −4)!

(n −a −b)!
=

n∑
i=6

(n −4)!(i −5)

(n − i )!
.

Corollary 4.9. Let Xi j be the independent random variable for the number of segments
in the edge from vi to v j in Kn , and let E(Xi j ) = U for all i , j , such as the case when each
Xi j is independent and identically distributed. Then the mean sum of squared linking
numbers is given by the expression

E

( ∑
C1,C2

(
lk(C1,C2)2

))
= 1

16
U2q

n∑
i=6

n!(i −5)

(n − i )!
.

Further, if U is constant with respect to n, this has the order Θ(n(n!)).

Proof. Since E(Xi j ) = U for all i , j , we may substitute and simplify for this case of Theo-
rem 4.7.

E

( ∑
C1,C2

(
lk(C1,C2)2

))
= D(n)

4
q

∑
{i , j }
i 6= j

E(Xi j )
∑

{k,l }
k 6=l

k,l 6∈{i , j }

E(Xkl )


= D(n)

4
U2q

∑
{i , j }
i 6= j

∑
{k,l }
k 6=l

k,l 6∈{i , j }

1

= D(n)

4
U2q

∑
{i , j }
i 6= j

(
n −2

2

)

= D(n)

4
U2q

(
n

2

)(
n −2

2

)
.

Substituting D(n) with the first formula from Lemma 4.8 gives

E

( ∑
C1,C2

(
lk(C1,C2)2

))
= 1

4
U2q

n−3∑
a=3

n−a∑
b=3

(n −4)!

(n −a −b)!

(
n

2

)(
n −2

2

)
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= 1

4
U2q

n−3∑
a=3

n−a∑
b=3

n!(n −4)!

4(n −a −b)!(n −4)!

= 1

16
U2q

n−3∑
a=3

n−a∑
b=3

n!

(n −a −b)!
.

By Flapan and Kozai [6], this is equal to

1

16
U2q

n∑
i=6

n!(i −5)

(n − i )!
.

Flapan and Kozai [6] also showed that

1

16
q

n∑
i=6

n!(i −5)

(n − i )!

has the order Θ(n(n!)). By hypothesis, the factor of U2 is constant as n increases, so the
order is the same. That is, the order of the expected value of the sum of the squared
linking numbers in a random piecewise-linear Kn is also Θ(n(n!)).

It is worth comparing our generalization with the original result that inspired it.
While Flapan and Kozai [6] showed that the expected value of the sum of squared linking
numbers for the pairs of cycles found in URP generated linear embeddings of Kn had the
order of Θ(n(n!)), our result generalizes the embeddings to be piecewise-linear with a
random variable per each edge dictating the number of line segments in the embedding
for that edge. However, the stunning result is that this does not change the order of
complexity.

5 Acknowledgments

This project was a result from the 2020 Rose-Hulman REU on spatial graph embeddings.
We would like to acknowledge the National Science Foundation and Grant No. DMS-
1852132 for funding for this REU. In particular, we would like to thank our REU supervisor
and mentor Dr. Kenji Kozai.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Piecewise-Linear Embeddings of Kn

References

[1] Colin C. Adams. The Knot Book. The American Mathematical Society, 1994.

[2] J. Arsuaga, T. Blackstone, Y. Diao, E. Karadayi, and M. Saito. Linking of uniform
random polygons in confined spaces. J. Phys. A, 40(9):1925–1936, 2007.

[3] M. Beals, L. Gross, and S. Harrell. DNA and Knot Theory. http:

//www.nimbios.org/~gross/LGrossTIEMwebsite/home/gross/public_

html/bioed/webmodules/DNAknot.html, 1999. Online; accessed: 2022-08-07.

[4] John H. Conway and C McA. Gordon. Knots and links in spatial graphs. Journal of
Graph Theory, 7(4):445–453, 1983.

[5] Yuanan Diao. The knotting of equilateral polygons in R3. Journal of Knot Theory
and its Ramifications, 4(02):189–196, 1995.

[6] Erica Flapan and Kenji Kozai. Linking number and writhe in random linear embed-
dings of graphs. Journal of Mathematical Chemistry, 54(5):1117–1133, 2016.

[7] Nicholas Pippenger. Knots in random walks. Discrete Applied Mathematics,
25(3):273–278, 1989.

[8] D. W. Sumners and S. G. Whittington. Detecting knots in self-avoiding walks. Journal
of Physics A: Mathematical and General, 23(8):1471, 1990.

[9] De Witt Sumners. Lifting the curtain: using topology to probe the hidden action of
enzymes. Match, pages 51–76, 1996.

[10] N. J. Pippenger Y. Diao and D. W. L. Sumners. On random knots. J. Knot Theory
Ramifications, 3(3):419–429, 1994.

Yasmin Aguillon

University of Notre Dame

yaguillo@nd.edu

Xingyu Cheng

University of North Carolina at Chapel Hill

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023

http://www.nimbios.org/~gross/LGrossTIEMwebsite/home/gross/public_html/bioed/webmodules/DNAknot.html
http://www.nimbios.org/~gross/LGrossTIEMwebsite/home/gross/public_html/bioed/webmodules/DNAknot.html
http://www.nimbios.org/~gross/LGrossTIEMwebsite/home/gross/public_html/bioed/webmodules/DNAknot.html


Aguillon, Cheng, Eddins, and Morales

xcheng1@unc.edu

Spencer Eddins

University of Kentucky

spencer.p.eddins@gmail.com

Pedro Morales

Purdue University

moralep@purdue.edu

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023


	The Mean Sum of Squared Linking Numbers of Random Piecewise-Linear Embeddings of $K_n$
	Recommended Citation

	The Mean Sum of Squared Linking Numbers of Random Piecewise-Linear Embeddings of $K_n$
	Cover Page Footnote

	Introduction
	Background
	Uniform random polygon model
	Generalizations of the results from the uniform random polygon model

	 PDF Bookmark Version 
	 PDF Bookmark Version 

	Acknowledgments

