
Universidad de Alcalá
Escuela Politécnica Superior

Máster Universitario en Ingeniería Industrial

Trabajo Fin de Máster

Deep Learning based 3D Object Detection for Automotive

Radar and Camera Fusion

Author: Santiago Montiel Marín

Advisor: Ángel Llamazares Llamazares

Co-advisor: Luis Miguel Bergasa Pascual

2023





UNIVERSIDAD DE ALCALÁ
ESCUELA POLITÉCNICA SUPERIOR

Máster Universitario en Ingeniería Industrial

Trabajo Fin de Máster

Deep Learning based 3D Object Detection for Automotive Radar and

Camera Fusion

Author: Santiago Montiel Marín

Advisor: Ángel Llamazares Llamazares

Co-advisor: Luis Miguel Bergasa Pascual

Tribunal:

President: Noelia Hernández Parra

1st Vocal: Cristina Losada Gutiérrez

2nd Vocal: Ángel Llamazares Llamazares

Deposit date: September 20th, 2023





To my beloved parents, those who believe in me when I don’t even believe in myself. . .

“And those who were seen dancing were thought to be insane

by those who could not hear the music.”

Friedrich Nietzsche





Acknowledgements

“Veni, vidi, vici.” Es lo que dĳo el general y cónsul romano Julio César tras su contundente

victoria sobre los Ejércitos del Ponto en la batalla de Zela. Esta gran figura, con quien tengo

el placer de compartir día de nacimiento, dio una frase para la posteridad que se utiliza para

destacar la rapidez con la que alguien consigue sus éxitos. Una frase de la Roma clásica que

encaja perfectamente con la fugacidad, instantaneidad y ansia de éxitos que vivimos en nuestros

contemporáneos días. Sin embargo, querido Julio César, quiero decirte que no estoy de acuerdo

contigo.

Quiero decirte que el éxito o la consecución de las metas de uno mismo viene tras recorrer

un camino lento y pedregoso, de esfuerzo, lleno de dudas y altibajos. Porque como dĳo Séneca:

“Per aspera ad astra”, no hay camino fácil de la Tierra a las estrellas. Y como este camino no

es fácil, es recomendable hacerlo acompañados. Acompañados y rodeados de personas que

aportan en diferentes aspectos de nuestra vida y que hacen que seas la persona que eres en el

día a día. Así que ahora es mi turno de mostrar el agradecimiento que merecidamente les debo

a las personas de mi vida.

A mis tutores, Ángel Llamazares y Luis Miguel Bergasa. Gracias por la oportunidad que

se me brindó hace tres años de formar parte del grupo de investigación RobeSafe. Día a día

hacéis una inversión a fondo perdido en mí (así como la investigación misma), tanto en el plano

profesional como en el personal, que me permite ser mejor que el día anterior en ambas facetas.

Gracias por confiar en mí y espero poder devolvéroslo de vuelta.

A mi profesor del instituto, Manuel Gálvez, y a mi mentor en el equipo de robótica de la

Universidad, Ángel Álvarez. El primero tuvo la culpa de que me iniciase en la robótica y el

segundo de que la descubriese con profundidad. Gracias a vuestras influencias he encontrado

el campo donde deseo desarrollarme profesionalmente.

A mis amigos de la Universidad, en orden alfabético, Navil Abdeselam, Ana Belén Bar-

tolomé, Andrés Chavarrias, Guillermo Madariaga, César Murciego, Javier Ortiz, Javier Quinta-

nar y Fabio Sánchez. Sois auténticos apoyos incondicionales e indispensables, motores de ideas

y proyectos. Os admiro mucho y de mayor quiero ser un poco más como vosotros. También

a mis amigos de la infancia, Javier Arenas, Diego Hidalgo, Alejandro Martínez, María Perea

y Laura Suárez. Gracias porque aunque nos veamos tan poco, la amistad se mantiene como

siempre.

A mis compañeros de laboratorio, a los más veteranos: Felipe Arango, Carlos Gómez, Javier

Araluce, Rodrigo Gutiérrez y Alejandro Díaz; y a los más jóvenes: Miguel Antunes, Pablo



viii Acknowledgements

Pardo, Navil y Fabio (otra vez vosotros dos, sí, gracias por dos). Espero haber aprendido lo

máximo de los primeros para poder trasladárselo a los segundos. Gracias por hacer del sitio

de trabajo un sitio agradable y divertido, donde todos aprendemos de todos y nos podemos

desarrollar personalmente.

A mi familia: a mis abuelos, a mis tíos y primos. Siento admiración por todos vosotros y

sois parte de mis éxitos. Porque me cuidáis y confíais en mí, y de todos vosotros aprendo algo

que me ayuda a afrontar mis retos.

A mis padres, Santiago Montiel y María Dolores Marín. Las personas que soportan mi

mundo cuando este se tambalea. Un auténtico motor de fuerza y esperanza cuando el viento

sopla en contra. Porque han creado un ecosistema en el que puedo desarrollarme personalmente

y ser totalmente sincero emocionalmente con ellos. El sitio al que acudo cuando las dudas

surgen. Ya lo dĳo la dedicatoria de mi Trabajo Fin de Grado: “a mis amados padres, porque sin ellos

hubiera sido imposible”. La dedicatoria de este Trabajo Fin de Máster insiste: “a mis amados padres,

aquellos que confían en mí aún cuando ni yo mismo lo hago”. Podría dedicarles infinitas frases, pero

no serían suficientes para agradecérselo.

Por último, a ti, lector de este libro. Porque espero que el fruto de horas de trabajo que ha

sido plasmado aquí te sirva para avanzar en tu carrera profesional o académica. He tratado

este texto con las mejores formas que tengo y espero que te enriquezcas personalmente con esta

lectura.

No estoy seguro de que haya conseguido el éxito con la terminación de este libro, porque

solo es un paso más en el largo camino que queda por delante. De lo que sí estoy seguro, es

de que gracias a todas las personas que he mencionado es por lo que sigo teniendo fuerzas y

ganas de seguir caminando. Además, qué mejores pies para caminar que los pies de un hobbit.

Gracias de corazón.



Resumen

La percepción en el dominio de los vehículos autónomos es una disciplina clave para lograr

la automatización de los Sistemas Inteligentes de Transporte. Por ello, este Trabajo Fin de Máster

tiene como objetivo el desarrollo de una técnica de fusión sensorial para RADAR y cámara que

permita crear una representación del entorno enriquecida para la Detección de Objetos 3D

mediante algoritmos Deep Learning. Para ello, se parte de la idea de PointPainting [1] y se

adapta a un sensor en auge, el RADAR 3+1D, donde nube de puntos RADAR e información

semántica de la cámara son agregadas para generar una representación enriquecida del entorno.

Palabras clave: Conducción autónoma, fusión sensorial, RADAR, detección de objetos,

PointPainting.





Abstract

Perception in the domain of autonomous vehicles is a key discipline to achieve the au-

tomation of Intelligent Transport Systems. Therefore, this Master Thesis aims to develop a

sensor fusion technique for RADAR and camera to create an enriched representation of the

environment for 3D Object Detection using Deep Learning algorithms. To this end, the idea

of PointPainting [1] is used as a starting point and is adapted to a growing sensor, the 3+1D

RADAR, in which the radar point cloud is aggregated with the semantic information from the

camera.

Keywords: Autonomous Driving, Sensor Fusion, RADAR, Object Detection, PointPainting.





Contents

Acknowledgements vii

Resumen ix

Abstract xi

Contents xiii

List of Figures xvii

List of Tables xix

List of Acronyms xxiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A brief introduction to Autonomous Driving . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The Autonomous Driving Software Architecture . . . . . . . . . . . . . . . 4

1.2.1.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1.3 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 The Autonomous Driving Sensor Platform . . . . . . . . . . . . . . . . . . 7

1.2.3 Levels of Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Objectives of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Overview of the document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Theoretical Background 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The Machine Learning Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Data acquisition and exploration . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Training of Machine Learning algorithms . . . . . . . . . . . . . . . . . . . 20

2.2.4 Evaluation of the algorithm performance . . . . . . . . . . . . . . . . . . . 21

2.2.5 Improvement through experimentation . . . . . . . . . . . . . . . . . . . . 22

2.2.6 Model deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Working Principles of RADAR and Camera . . . . . . . . . . . . . . . . . . . . . . 22



xiv CONTENTS

2.3.1 RADAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1.1 RADAR Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1.2 RADAR Processing Pipeline . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2.1 Pin-hole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2.2 Image Formation Geometry . . . . . . . . . . . . . . . . . . . . . 32

2.3.2.3 Stereo Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 State of the Art 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 2D Object Detection and Instance Segmentation . . . . . . . . . . . . . . . . . . . 37

3.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1.1 Two-stage detectors: from R-CNN to Mask R-CNN. . . . . . . . . 38

3.2.1.2 Single-stage detectors: the YOLO family. . . . . . . . . . . . . . . 41

3.2.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 3D Object Detection in Point Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1.1 Projection-based methods . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1.2 Voxel-based methods . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1.3 Point-based methods . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1.4 Object Detection in Sparse RADAR Point Clouds . . . . . . . . . 52

3.3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 RADAR-Camera Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Key Questions on Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Work Development 59

4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 YOLOv8 for Instance Segmentation . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 PointPainting for Geometrical Fusion of Images and Point Clouds . . . . . 67

4.2.2.1 Sensor Coordinate Transforms . . . . . . . . . . . . . . . . . . . . 67

4.2.2.2 PointPainting Algorithm . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Rule-based Cluster Refinement Algorithm . . . . . . . . . . . . . . . . . . 69

4.2.4 PointPillars for 3D Object Detection . . . . . . . . . . . . . . . . . . . . . . 70

4.2.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Experiments and Results 79

5.1 Training of PointPillars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Quantitative results on View of Delft dataset . . . . . . . . . . . . . . . . . . . . . 80



CONTENTS xv

5.3 Qualitative results on View of Delft dataset . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Inference time analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusions and Future Works 91

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 95

Appendix A Tools and Resources 101

A.1 Hardware Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2 Software Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix B Budget 103

B.1 Costs related to material resources: hardware and software . . . . . . . . . . . . . 103

B.2 Costs related to personnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.3 Total costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104





List of Figures

1.1 Camera, RADAR and LiDAR for an automotive scene of View of Delft dataset. . . 10

2.1 Rule-based and Machine Leaning programming approaches. . . . . . . . . . . . . 16

2.2 Interrelation between Artificial Intelligence, Machine Learning and Deep Learn-

ing in a Venn diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Radar data formats and processing techniques. . . . . . . . . . . . . . . . . . . . . 28

2.4 Thin lens model geometrical model. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Diagram of the transform tree to project a point in the 3D world to the 2D image

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Triangulation process between a pair of images of a stereo vision system. . . . . . 35

2.7 Computing depth value from a disparity map in a stereo vision system. . . . . . 36

3.1 The evolution of R-CNN family: from R-CNN to Mask R-CNN. . . . . . . . . . . 39

3.2 Evolution of mAP with respect to time for 2D Object Detection on COCO test-dev

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 How YOLO works: simultaneous regression of bounding boxes and semantic

classes per grid cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Evolution of mAP with respect to time for 2D Instance Segmentation on COCO

test-dev dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 An example of confusion matrices for binary and multi-class classification tasks. 45

3.6 Original precision-recall curve vs. 11-point interpolation curve. . . . . . . . . . . 47

3.7 Radar-only detection framework based on PointNets for feature extraction, pillar

rendering and per-pixel 2D oriented object detector. . . . . . . . . . . . . . . . . . 52

3.8 CenterFusion network architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 The View of Delft dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Label distribution in View of Delft dataset. . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Radar depth histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Full framework overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 YOLOv8 for Object Detection network overview. . . . . . . . . . . . . . . . . . . . 66

4.6 YOLOv8-seg for Instance Segmentation network overview. . . . . . . . . . . . . . 66

4.7 Image and segmentation mask for frame 03456. . . . . . . . . . . . . . . . . . . . 67

4.8 Transform Tree: How to navigate between coordinate reference frames. . . . . . . 68

4.9 Example of cluster refinement algorithm in frame 00125. . . . . . . . . . . . . . . 71

4.10 PointPillars network overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



xviii LIST OF FIGURES

4.11 KITTI-like dataset folder structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Comparison on Mean Average Precision (40 points) between PointPillars-R and

Painted PointPillars-R over the View of Delft dataset validation set. . . . . . . . . 83

5.2 Qualititative results for object detection at frame 00170. . . . . . . . . . . . . . . 85

5.3 Qualititative results for object detection at frame 00392. . . . . . . . . . . . . . . 86

5.4 Qualititative results for object detection at frame 01391. . . . . . . . . . . . . . . 87

5.5 Qualititative results for object detection at frame 03970. . . . . . . . . . . . . . . 88

5.6 Qualititative results for object detection at frame 04362. . . . . . . . . . . . . . . 89



List of Tables

1.1 SAE J3016 Levels of Automation framework . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Estimation and resolution equations for main radar parameters: range, Doppler

velocity and angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Comparison among State of the Art methods presented. . . . . . . . . . . . . . . . 53

5.1 Quantitative results of PointPillars-R with IoU thresholds (0.5, 0.25, 0.25) over

the validation set of View of Delft dataset. . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Mean Average Precision results of PointPillars-R for 3D modality and Medium

difficulty over the validation set of View of Delft dataset. . . . . . . . . . . . . . . 81

5.3 Quantitative results of Painted PointPillars-R with IoU thresholds (0.5, 0.25, 0.25)

over the validation set of View of Delft dataset. . . . . . . . . . . . . . . . . . . . . 82

5.4 Mean Average Precision results of Painted PointPillars-R for 3D modality and

Medium difficulty over the validation set of View of Delft dataset. . . . . . . . . . 82

5.5 Inference time for YOLOv8-seg series. . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Inference time for PointPillars-R and Painted PointPillars-R models. . . . . . . . . 90

B.1 Breakdown of costs related to material resources: hardware and software . . . . 104

B.2 Breakdown of costs related to personnel and human resources . . . . . . . . . . . 104

B.3 Total costs of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104





List of Acronyms

ACC Adaptive Cruise Control.

AD Autonomous Driving.

ADAS Advanced Driver Assistance System.

ADS Autonomous Driving Stack.

AEB Assistance for Emergency Braking.

AI Artificial Intelligence.

AOS Average Orientation Similarity.

AP Average Precision.

AUC Area Under the Curve.

AV Autonomous Vehicle.

BEV Bird’s Eye View.

CFAR Constant False Alarm Rate.

CM Confusion Matrix.

CNN Convolutional Neural Networks.

CSP Cross Spatial Partial connections.

CV Computer Vision.

DBSCAN Density-based Spatial Clustering for Applications with Noise.

DL Deep Learning.

DNN Deep Neural Networks.

DPM Deformable Part-based Model.

DS Driving Score.

EDA Exploratory Data Analysis.

EKF Extended Kalman Filter.

FCN Fully Convolutional Networks.

FCOS Fully Convolutional One-Stage.

FFT Fast Fourier Transform.

FMCW Frequency Modulated Continous Wave.



xxii List of Acronyms

FN False Negative.

FP False Positive.

FPN Feature Pyramid Networks.

GNN Graph Neural Networks.

GNSS Global Navigation Satellite System.

GPS Global Positioning System.

HD Map High-Definition Map.

HOG Histogram of Oriented Gradients.

IMU Inertial Measurement Unit.

IoU Intersection over Union.

ITS Intelligent Transportation System.

KPConv Kernel Point-based Convolution.

LiDAR Light Detection and Ranging.

LLM Large Language Models.

MAE Mean Absolute Error.

mAP Mean Average Precision.

ML Machine Learning.

MLP Multi Layer Perceptron.

MPC Model Predictive Controllers.

NDS nuScenes Detection Score.

NLP Natural Language Processing.

NMS Non Maximum Suppression.

NN Neural Networks.

PCA Principal Component Analysis.

PCD Point Cloud.

PFE Pillar Feature Extractor.

R-CNN Region Based Convolutional Neural Networks.

RADAR Radio Detection and Ranging.

RCS Radar Cross Section.

RPN Region Proposal Networks.

SAE Society of Automotive Engineers.



List of Acronyms xxiii

SGD Stochastic Gradient Descent.

SOTA State of the Art.

SPP Spatial Pyramid Pooling.

SSD Single-Shot Detector.

STFT Short Time Fourier Transform.

SVD Singular Value Decomposition.

SVM Support Vector Machine.

TN True Negative.

TOF Time of Flight.

TP True Positive.

VRU Vulnerable Road Users.

YOLO You Only Look Once.





Chapter 1

Introduction

There is no easy way from Earth to the stars.

Lucius Annaeus Seneca, the Younger

1.1. Motivation

The advent of Deep Learning (DL) techniques during the last decade has meant a tech-

nological revolution. The disciplines that have embraced DL as their main tool to evolve are

advancing exponentially, fulfilling achievements that looked years away, in a matter of months.

Faced with this situation, makers, researchers, and companies from all over the world have put

their effort and resources into these topics. In the days we are living, a maker can publish an

open-source project that achieves 50,000 stars on GitHub in days; academic conferences and

journals are receiving thousands of research proposals per call; and, there is no technological

company without a research and development team that produces papers or novel products

based on DL. Even industry is carrying out some of the most important advances in the field

such as the case of Large Language Models (LLM), whose foundational models and baselines

are being developed by companies such as OpenAI or Meta. This phenomenon is known as the

”industrialization of research“.

Out of the disciplines that have benefited from these advances, Robotics, and Autonomous

Driving (AD) are noteworthy and this work will be framed into these two fields, and more

specifically, within the perception and scene understanding of the environment using the on-

board sensors. In fact, the state of AD has evolved from being a futuristic and technically

unachievable dream to a new reality that may come within this or the next decade. Driven

by the innovative capacity of automakers, technological companies, and academic researchers,

Artificial Intelligence (AI) has pushed the boundaries of sensor technologies and fusion, Com-

puter Vision (CV), and computing platforms. The introduction of these technologies in the

automotive sector has led to an authentical revolution of the Intelligent Transportation System

(ITS) as we know them.
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1.2. A brief introduction to Autonomous Driving

A self-driving car or Autonomous Vehicle (AV) is an ITS that is capable of navigating through

the road system with little or no human intervention. To achieve autonomous navigation in a

safe and efficient way, it is necessary to perceive the environment, localize our AV with respect

to an environment or a map, carry out cognitive processes to make a decision and interact with

the physical devices to take action. All these tasks constitute the Autonomous Driving Stack

(ADS) and will be further explained later. Continuous closed-loop execution is required to

perform autonomous navigation since the environment that surrounds a vehicle is populated

with multiple and dynamic road users (such as other vehicles, pedestrians, and cyclists) and

different signs and traffic lights that regulate how to circulate in each specific scenario. As

the environment is constantly changing, the system must reevaluate its scene understanding to

ensure or abort the decision that was taken in previous cycles by the cognitive stage, and lastly,

perform the corresponding actions.

The development of this technology is supported by a series of arguments with which we

can conclude that its final output is highly beneficial for our society. Most of the key advantages

of Autonomous Driving (AD) come from the elimination of the human factor in the driving task.

Although traffic accidents in Spain have fallen over the last decade to historically low levels,

which indicates that drivers are becoming more responsible, human factors are still behind

80-90% of the accidents. Driving patterns will be improved and consumption will be reduced

in terms of energy and time.

Elaborating on these arguments, the following main points can be highlighted:

Elimination of the human factor: as previously mentioned, non-desired human be-

haviours are the cause of the majority of traffic accidents. In fact, due to the development

of smartphones and mobile technologies during the last decade, accidents caused by being

distracted because of using an electronic device have become the top cause of accidents.

Other distractions are caused by talking to the occupants of the vehicle or consuming food

and drink while driving. In addition, the consumption of alcohol or narcotic substances

reduces the driver’s cognitive abilities. Lastly, adapting driving to the rules of the road

is a decision that the driver must make consciously. When this is not done and they are

driving at high speeds or in an aggressive style, the possibility of having an accident is in-

creased. All these scenarios will be completely forgotten in a scenario of full self-driving,

so there will be a major reduction in the number of accidents.

Optimized patterns of driving: it could be said that AD is committed to the environment

as the development of newer planning algorithms allows the adoption of optimal driving

patterns in terms of gas emissions and energy consumption. Therefore, these patterns

would avoid energy-consuming manoeuvres such as sudden acceleration, excessive brak-

ing or excessive speed. Also, the ITS revolution is accompanied by the advent of new

energy sources to power vehicles, such as the electrization or hydrogenation of these

systems.



1.2 A brief introduction to Autonomous Driving 3

Increase in traffic efficiency: the ability to plan and adapt optimally according to traffic

rules and the environment will enable the vehicle to choose the optimal decision in terms

of speed and time. For example, traffic jams appear in conditions of high-volume traffic

and anomalous events, such as an accident or lane closures. This provokes the drivers to

perform small stops in chains, which end up in stops, trying to keep a safe distance from

the next vehicle. If we could handle traffic jams in an optimal way, we could choose the

optimal braking that maximizes our speed while keeping a safe distance, minimizing the

number of stop-and-go events. Also, we could avoid replanning the route in real-time.

Even nowadays we can plan our routes depending on the traffic information available and

replan it in real-time with constant updates if the conditions of the traffic flow vary.

Inclusive model of mobility: the existence of AVs will increase the possibilities of trans-

portation for certain sectors of the population who are not able to drive. Potentially, this

set includes people with disabilities such as blindness people, with reduced mobility or

ageing people, being the latter a sector in constant growth in the most developed coun-

tries. All these people will have access to unrestricted transportation without needing

any external support.

However, it is still necessary to beat technical challenges to adopt self-driving technologies

in a mass-wide spread:

Critical safety requirements: unfortunately, the consequences of a failure in an AD

system can result in fatal events, such as the death of occupants or other road users. As a

result, these systems need to be further developed to ensure their capability to navigate

complex, high-dynamic and out-of-distribution traffic scenarios while effectively avoiding

accidents.

Cost reductions: at the time being, the solutions proposed by companies are vehicles

that include a wide range of high-technology sensors, such as LiDARs, RADARs and

cameras. The inclusion of these sensors among vehicle components greatly increases the

manufacturing cost and, consequently, the sale price in the market. If Fully AD is to be

achieved as a transportation model, it must be accessible to the public in economic terms.

Also, other non-technical challenges are required to be beaten. These additional, but not

least important, challenges offer a new field of study in which multi-disciplinary teams are

required to solve these new issues:

Legal regulations: as this technology is improved and enters the road, there will be new

situations that are not addressed in the actual regulatory frameworks. Moreover, in the

transition time between manual vehicles and AVs, there will be a period of time when

both will coexist and we will need new traffic laws to accommodate our driving to these

new paradigms.
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Ethical issues: an AV is endowed with cognitive capacities (in the artificial meaning of

the word) and automatic planning capabilities, analogously to what human drivers do.

This fact exposes them to encountering road scenes in which all the possible decisions

outcome in a harmful way.

Public acceptance: as it happens in the incorporation of any disruptive innovation, society

shows a feeling of initial rejection. Giving control to an intelligent machine where a failure

can cost your life is not an idea that a non-negligible part of society accepts easily.

The advantages and challenges highlighted before offer multiple opportunities to perform

research or work on topics related to this field and contribute to the ultimate goal: the imple-

mentation of a technology that will reframe the concept of transportation.

1.2.1. The Autonomous Driving Software Architecture

Once the reader has been contextualized into a high-level view of the AD problem, it is time

to present the software components that enable autonomous navigation with vehicles, given the

fact that this work is framed within the development of a software DL solution for perceiving

the environment on automotive scenarios. It is worth remarking that there is no closed answer

to the definition of all the modules that form an Autonomous Driving Software Architecture

and the reader can find multiple proposals in the literature.

In this work, we will divide the ADS into four big modules: perception, localization,

planning and control, which can be also subdivided into multiple sub-modules; in order to

maintain coherence with the introduction in Section 1. In order to illustrate this architecture,

we will take a look at Autoware’s architecture, a well-established open-source solution for AD

architecture that can serve as a baseline for this study.

1.2.1.1. Perception

The first competence of the ADS is perception, which is in charge of interpreting the infor-

mation from the sensors in order to understand the environment in which the vehicle is moving.

This is done in three steps: obtaining the information from onboard sensors, processing it, and

interpreting the environment around the AV. Due to the importance of sensors within this work,

they will be further explained in Section 1.2.2, but we can mention the sensors that are typically

involved within this task, which are: LiDAR, RADAR, cameras, and ultrasonic sensors. The

information gathered by the sensors is presented in the form of point clouds, images or spectral

signals. The processing stage transforms this raw data into more sophisticated information,

such as the location, dimensions, and speed of the rest of the road users (pedestrians, cyclists,

and other vehicles) or a semantic definition of the world in which every piece of information

is assigned to an inanimated category (drivable road, vegetation or road obstacles). This is

normally done with learning-based algorithms like the ones we treat within this book. Once

this elaboration is finished, it is possible to interpret the scene adding a temporal and spatial

coherence between the processed information in a timestamp, and the processed information

https://autowarefoundation.github.io/autoware-documentation/main/design/autoware-architecture/node-diagram/
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of past timestamps. This temporal-spatial association of information allows the system to pre-

dict which possible scenarios are likely to happen within the successive timestamps. The final

output of the perception processing pipeline is used as the input of the planning stages, and it

could be possible to use it within the localization stage.

The traditional approach to the perception of the dynamic road users that coexist within the

environment with the AV involves the concatenation of three independent modules: detection,

tracking, and prediction.

Object Detection: is a task that involves identifying and localizing the road users within

the space surrounding the vehicle. These algorithms are fully based on DL and can

be applied over camera images or LiDAR or RADAR PCDs. Its objective is to predict

bounding boxes (either in 2D or 3D space) around the objects of interest and assign a class

label to each of them. Bounding boxes delimit the position and dimensions of the object

of interest. Also, Instance Segmentation is an extension to these methods which also

predicts a binary mask within the pixels or points inside the bounding box that indicates

if every specific piece pixel/point belongs to the object of interest.

Object Tracking: is a task that involves the temporal re-identification of the objects

detected in the previous frames or timestamps. Therefore, its main objective is to maintain

a consistent association between the previously tracked objects and the new detections.

They are also in charge of predicting the position of previously tracked objects which do

not have any new detection associated. This kind of problem is mainly approached from

the probabilistic robotics and Bayesian filters point of view. Learning-based algorithms are

not the main components of tracking and they are constrained to certain sub-tasks, such

as re-identification. It is worth mentioning that we can distinguish between trackers-by-

detection or detection-free trackers. While the first ones depend on the output of a detection

algorithm, the latter ones treat joint detection and tracking as a single problem.

Motion Prediction: is a task that involves the regression of the future trajectories of the

objects that have been previously tracked. Taking as input the past positions of tracked

objects and their motion patterns, the main objective is to forecast the future positions

of these adversarial agents. The information obtained from this stage allows a complete

understanding of the scene in which the vehicle is moving and the planning stage will be

able to make decisions and handle the driving in a safe correct manner. In an analogous

way to tracking algorithms, it is possible to distinguish between modular and end-to-end

approaches. While the first ones depend on the output of the tracking stage (normally

prediction algorithms also receive as additional inputs an High-Definition Map (HD Map)

or raw LiDAR scans), the latter ones need the raw data and perform a unified detection,

tracking, and prediction.

For example, in Autoware’s architecture, the detection of dynamic road users is faced as

follows. There are three different inputs: a filtered and accumulated LiDAR point cloud, an

RGB camera image and an HD Map. There are also three different processing branches that
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will end up merged in the tracking stage. The first branch is a detection-free tracker based on

CenterPoint [2], whose input is a LiDAR point cloud. The second branch applies Euclidean

clustering detection over LiDAR data. The third branch applies YOLO [3] over the RBG image

to perform object detection. After several validations, filters based on the map information and

fusions, the three branches are merged into the tracker of the first branch. Then, this tracker

is also fed-backed by the tracks of previous timestamps. The tracker is based on an Extended

Kalman Filter (EKF). Lastly, the predictions are performed over these tracks and are based on

the available map and road network information, such as the possible lanes to follow.

Another important task tackled by the perception layer is the detection of road lanes, traffic

lights and signals, in order to understand the road network and navigate accordingly to it. The

interpretation of the road network can be supported by an HD Map or fully done by sensors. In

our exemplary architecture, this task is supported by an HD Map (in which the road structure

and the position of traffic lights and signals are available) and Autoware proposes a module to

only detect the state of traffic lights based on a Single-Shot Detector (SSD) [4] network with

prior information of its location.

1.2.1.2. Localization

The second competence of the ADS is localization, which is in charge of positioning the

vehicle with respect to the environment or the map with the highest possible accuracy, that is

in the order of centimetres or decimetres. This stage is approached with methods that come

from the probabilistic robotics field and Neural Networks (NN) do not have a great impact.

Localization offers a wide range of possibilities in terms of inputs to the system. Raw LiDAR

scans, GNSS, IMU, HD Maps and odometry sensors are suitable inputs for a localization system.

As the state of the vehicle is defined as the position of the vehicle and its derivatives (velocity,

acceleration, jerk, and so on), this problem is often approached with Bayesian filters such as

Kalman Filters or Monte Carlo methods.

In Autoware’s architecture, the localization pipeline involves GNSS, IMU, odometry, vehicle

speed and LiDAR scans. The pipeline has two main branches: firstly, one branch consumes

LiDAR point clouds and the tracked localization in previous stages and performs an NDT Scan

Matching whose output is the motion transform between two consecutive LiDAR point clouds.

The second branch integrates the information coming from the odometer, IMU, and vehicle

estimated velocity. Lastly, these two branches are combined within an EKF and the final output

is the state of the vehicle.

1.2.1.3. Planning

Planning is the third competence in the ADS. The main responsibility of planning is to

decide how to achieve the objective of autonomous navigation. How to reach point B from

point A in a coherent and safe manner. Therefore, from the scene understanding performed by

perception and localization modules, the planning module has to propose a series of routes of

paths with which the mission or goal can be reached.
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From an automotive point of view, planning can be divided into three sub-modules (from

higher to lower levels of abstraction): global or path planning, behavioural planning and local

planning.

Autoware’s planning modules follow the aforementioned three-level structure. Firstly, a

mission planner acts as a global planner and calculates a route from the ego vehicle position

to the goal position given a sequence of lanes on the input HD Map. Then, there are two

behavioural planners: lane driving mode and parking mode. In lane driving mode, a high-level

behaviour is chosen, such as lane following, lane change or pull-over. According to this, a veloc-

ity planner acts as a local planner, which decides which velocity profile performs depending on

the surrounding environment (waiting for a traffic light, near a pedestrian crossing). Lastly, this

local planner is supported by an obstacle avoidance algorithm and a motion smoother, which

adapts the velocity profile.

1.2.1.4. Control

The fourth component of the ADS is control. Control is the module in charge of translating

the missions to commands understandable by the physical devices of the vehicle that make

autonomous navigation possible. This means that it is responsible for the guidance of the

vehicle when operating in autonomous mode. The decision taken in the planning stage is

translated into commands in terms of linear and radial velocity applied over the wheels of the

vehicle.

Normally, the input of this module is the velocity profile proportioned by the planning

module. In fact, this is how Autoware does. Starting from this list of velocities and the actual

vehicle state (measured velocity), controllers are applied over the lateral and longitudinal axis.

Both controllers are Model Predictive Controllers (MPC) and control the process needed to

reach an objective given a series of velocities while satisfying a set of physical constraints.

The combined effort of these four modules in a cyclical way and in real-time allows the

completion of the autonomous navigation task. At present, the area of perception is where

algorithms based on learning have been most strongly implemented, and, although in the State

of the Art (SOTA) there are proposals based on learning for all layers, commercial solutions still

opt for probabilistic or control theory algorithms in many cases.

1.2.2. The Autonomous Driving Sensor Platform

A sensor is defined as an electronic device that is in direct contact with a physical magnitude

and has the capability of transforming it into an electrical magnitude (voltage, current or power).

It is possible to categorize sensors according to two criteria: the origin of the information and

its role with respect to the emission of energy.

Origin of the information: it is said that sensors that inform about the state of the vehicle

are proprioceptive (battery state, velocity of the vehicle), while the sensors that inform
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about the state of the external environment are exteroceptive (distance measurement,

semantic information of the environment).

Emission of energy: it is said that a sensor is passive when it receives energy from the

environment (cameras) and a sensor is active if it emits energy and checks its influence

over the environment (RADAR, ultrasounds).

As we have seen during Section 1.2.1, the scene understanding and the success of au-

tonomous navigation depends directly on the usage of a varied suite of sensors that act in

a cooperative or complementary way, applying sensor fusion techniques. In fact, not all the

sensors participate directly in all the ADS modules or tasks.

The composition of a sensor suite does not have a closed solution and, in fact, is one of the

most controversial topics when talking about autonomous vehicles in the mainstream. Each

sensor has its key strengths and weaknesses which make them more or less suitable for each

automotive task. For example, within the domain of perception, academia has made a strong

bet on LiDAR and camera fusion, while other commercial solutions bet only on camera-based

perception and other sectors highlight the potential of developing new generation RADARs for

this task. Also within the perception domain, there is a debate around the usage of HD Maps

due to their difficulties in terms of maintainability and scalability. It is a design decision to

embrace the whole spectrum of strengths that each sensor offers and apply them in the domain

in which they are most reliable.

Let us engage with the sensors that are mounted onboard a standard automotive platform

and conduct a concise overview of their functionalities.

Camera: RGB cameras are passive and exteroceptive sensors that provide a very dense

representation of the environment, a pixel-level density image I ϵ R
C × H × W , where C = 3

is the number of channels in an RGB image, H, and W are the height and width of the

image, respectively. Also, it is possible to transform this information into a semantic

representation of the environment with DL methods. These two main strengths and the

development of learning and camera-based techniques make them the most used sensors

within the domain of perception in the automotive field. One inherent weakness of the

camera is the loss of depth information since all the visualized points are projected into

a 2D image plane via a pinhole camera model. This can be partially addressed using

stereo systems, in which two cameras are able to reconstruct the depth dimension within

a limited range. Other remarkable weaknesses are poor performance against adverse

weather conditions (fog, rain, or snow) or poor illumination conditions.

Radio Detection and Ranging (RADAR): it is an active and exteroceptive sensor whose

functioning is based on the Time of Flight (TOF), the Doppler effect and the Frequency

Modulated Continous Wave (FMCW). RADAR emits energy in the form of electromagnetic

radio waves (in the automotive domain, its frequency is approximately 80 GHz) and

receives their echoes reflected off objects. By measuring the time taken and the frequency

shift between the emitted signals and their echoes, RADARs are able to determine range,
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velocity and angular position (3D radars: azimuth; 4D radars: azimuth and elevation).

Historically, RADAR has played a major role within the automotive sector, since assistance

systems that cope with collision avoidance and adaptive cruise control tasks rely on

RADAR since the 1990s. The advance of RADAR-based perception has evolved thanks to

the development of antenna design and signal processing algorithms. RADAR data can

be consumed by the perception module in two forms: point cloud, RPC, or RADAR cube,

RC. RADAR point clouds are in the form RPC ϵ ℜ N × 5, where N is the number of targets

in the point cloud, and every target is defined by its spatial dimensions: range r, azimuth

α, and elevation γ; its radial velocity captured by Doppler effect vr; and its power of

reflection, which use to be expressed by the Radar Cross Section (RCS). The RADAR cube

RC is a representation of the power received for every bin through the spatial, angular and

velocity resolution of the sensor. In the recent literature, it has been used in 3D RADARs

and therefore, it has the form ℜ rres × αres × vr res . For these reasons, the main strengths

of RADAR are the extraction of velocity information and its good performance against

adverse weather conditions. On the other side, its main weakness is its poor spatial

resolution, which leads to worse performance when comparing LiDAR-based learning

algorithms versus RADAR-based learning algorithms.

Light Detection and Ranging (LiDAR): it is an active and exteroceptive sensor whose

main operating principle is TOF. LiDAR emits energy in the form of non-visible light waves

which proportionate a large number of distance measurements with high precision, range

and spatial resolution in the 3D domain. Typically, LiDAR information is consumed by

the perception module in the form of a 4-dimensional point cloud LPC ϵ ℜ 4 × N , where N

is the number of points, which encodes the three spatial dimensions and the intensity of

the reflection. LiDAR performs well against poor illumination conditions as it emits its

own energy, but it does not perform well against adverse weather conditions. This is due

to the fact of the transported energy and the frequency of the light waves. When these

waves interact with water (in the form of fog or rain) its energy is mostly absorbed and

a scattering process occurs, which leads to false positive distance detections. Moreover,

the second big weakness of LiDAR is its heavy computational cost, since it offers a very

detailed representation of the environment that then has to be processed by learning-

based methods. An example of an automotive scene with camera (1.1a), RADAR (1.1b),

and LiDAR (1.1c) data can be seen in Figure 1.1.

Ultrasonic sensors: ultrasonic sensors are active and exteroceptive sensors that propor-

tionate distance measurements within a very short range, whose working principle is TOF.

They are widely used within the domain of robotics and in parking or blind spot detection

use cases within the automotive field due to their cheapness and ease of interpretation.

Their main advantage is that they are precise enough to allow parking manoeuvres within

a limited working range.

Odometry: is a process that allows obtaining an estimated displacement by the vehicle

thanks to the measurements that come from an encoder. The odometry process is inac-
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(a) Monocular camera image.

(b) RADAR Point Cloud projected to the image plane.

(c) LiDAR Point Cloud projected to the image plane.

Figure 1.1: Camera, RADAR and LiDAR for an automotive scene of View of Delft dataset.
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curate since it is prone to accumulative errors and does not take into account non-ideal

displacements.

Inertial Measurement Unit (IMU): it is a set of proprioceptive and exteroceptive sensors

such as compass, gyroscopes and accelerometers whose main purpose is to characterize

the velocity, orientation and accelerational forces that the vehicle is experimenting.

Global Navigation Satellite System (GNSS): it is a positioning system comprised of 24

satellites that orbit the Earth. Each satellite emits its position and timestamp continuously.

Using the trilateration principle, a sensor can determine its position in outdoor environ-

ments if it is able to reach the information of at least 4 satellites. Positioning through

GNSS has limited accuracy in the order of meters, so, in order to improve this value, there

are variants such as differential Global Positioning System (GPS) (DGPS) or real-time

kinematic GPS (RTK-GPS), which with centimetre accuracy can be reached. Odometry

systems, IMU and GNSS can work collaboratively to characterize the state of the vehicle:

position, velocities and acceleration. Therefore, these sensors are mainly used within the

localization domain.

Additionally, there is a dichotomy in the automotive domain about driving with a priori

detailed information or not. In this context, maps are an additional source of information that

can be considered as a pseudo-sensor:

High-Definition Map (HD Map): a map is an abstract representation of the environment

that only considers the features that are useful to navigate. In the case of HD Maps, they

are a digital representation of the road network and its main elements, such as traffic

lights, signals and drivable surfaces. As previously mentioned, the presence of an HD

Map in an ADS can redefine how to process the information of the environment. When a

map-based architecture is proposed, it can be integrated into the perception, localization,

and planning modules.

1.2.3. Levels of Automation

The achievement and worldwide implementation of autonomous driving is a gradual pro-

cess, which might take several years to come to an end. The concept of an Advanced Driver

Assistance System (ADAS) appears in this context, due to the fact that research and companies

introduce partial systems that automate a certain part of the ADS.

Vehicle manufacturers started introducing safety or convenience features such as seat belts

or anti-lock brakes 1950s. However, the transition from fully manual to complete autonomous

driving is a process that began in the decade of 1980 when the advent of probabilistic robotics

made researchers put their eyes on autonomous navigation with vehicles. It was in the late

1990s when Toyota put into commercial production the first ADAS. Nowadays, we live in a

time in which partially automated vehicles coexist with manual vehicles and the vast majority

of new vehicles that are manufactured include multiple ADAS. Maybe, the following decades

will witness the achievement of a fully AV.
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Given the diversity of proposed and existing systems, there emerged a necessity to establish

a formal measure of a vehicle’s degree of partial autonomy. It was necessary to propose

a simple yet effective rule set that enables the reconciliation of a technological reality with

the economic and legal frameworks that rule our society. The Society of Automotive Engineers

(SAE) proposed in 2014 a classification protocol known as SAE J3016 in its document ”Taxonomy

and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems“ [5].

There are 6 different levels of automation which are explained in Table 1.1.

1.3. Objectives of this work

The main objective of this work is the study, implementation, and evaluation of a system

of DL with multiple neural networks (multi-stage) for the detection of 3D objects in three-

dimensional space from commercial 3+1D RADAR point cloud data and images from a monoc-

ular camera. This approach aligns with trends in recent literature, which seek to design methods

for the sensor fusion of automotive radar and monocular cameras that have a performance sim-

ilar to that of the LiDAR-based methods. Therefore, the final purpose of the system is the

detection and classification of static and dynamic objects that surround the vehicle through DL

with these two sensors following a geometrical-sequential sensor fusion scheme.

Moreover, this work is framed within the context of the AIVATAR project, carried out

by RobeSafe Research Group (led by Prof. Luis Miguel Bergasa and Prof. Rafael Barea) at

Universidad de Alcalá. The global objective of the project is to implement an AD stack with

DL-based modules. This work is focused on the perception layer of the stack, in which efforts

are made to include RADAR to an established perception baseline based on LiDAR and cameras.

In greater detail, we proceed with the formulation of the specific objectives of the project:

Perform a theoretical study on the recent literature about RADAR and camera fusion in

the context of Autonomous Driving.

Perform a comparison on Instance Segmentation models for monocular cameras as the first

stage of the sensor fusion pipeline, from which RADAR point clouds will be augmented

and enriched with novel features coming from semantics.

Adapt a DL training framework for LiDAR 3D Object Detection methods in order to accept

modified and enriched point clouds as inputs, such as radar point clouds or augmented

radar-camera point clouds.

Evaluate the models in a dataset that include automotive RADAR point clouds and monoc-

ular image cameras.

Improve the solution through experimentation, performing a comparison between avail-

able models, loss functions, and optimizers.

Develop an inference pipeline that receives RADAR point clouds and images as inputs

and performs new inferences using the final trained pipeline.
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Level of Automation Characteristics and examples

Level 0
Momentary Driver Assistance

At this stage, the human driver is in full charge of the
steering and braking tasks. It must be completely engaged
and attentive to the driving situation until Level 3. At this
level, warning technologies are included. Mechanisms
alert the driver of any non-desired condition, but he must
solve them without any automatic help.
Examples:

Forward Collision Warning (FCW)
Lane Departure Warning (LDW)

Level 1
Driver Assistance

Although the driver keeps on fully engaged and attentive,
some functionalities are automated and they are enabled
manually or automatically when the vehicle’s perception
recognize a non-desired situation. At Level 1, these
mechanisms act on the steering wheel or accelerator-
brake assembly, but not on both simultaneously.
Examples:

Adaptive Cruise Control (ACC)
Emergency Breaking System (ABS)
Lane Keeping Assistance (LKA)

Level 2
Additional Assistance

At Level 2, assistance systems can take control over both
steering wheel and accelerator-brake at the same time. It
is possible to say that this is the first level in which the
human driver is not in charge of navigation.
However, the driver must be fully engaged and with his
hands over the steering wheel, as he is monitoring the
scene, not the vehicle.
Example:

Highway autopilot

Level 3
Conditional Automation

Level 3 transforms assistance into automation. The first
level in which the system drives autonomously through
a wide range of road situations. In this scenario, the driver
can relax but he must be available to take the control
upon request of the system, as it identifies a situation that
can not handle correctly.
The only commercial solution until today is Mercedes-
Benz’s S Class but its operating range is limited to the
German Autobahn and the state of Nevada.

Level 4
High Automation

The only difference between L3 and L4 is that the range
of driving situations operated autonomously is much
wider than the ones that require human intervention.
Also when engaged, the driver takes only partial control
of the vehicle.

Level 5
Full Automation

At Level 5, fully autonomous navigation is universally
fulfilled by the system and the occupants only act as
passengers. In fact, a vehicle would not require the
existence of a steering wheel, accelerator, or brake.

Table 1.1: SAE J3016 Levels of Automation framework
Source: nhtsa.gov. The Evolution of Automated Safety Technologies.

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
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1.4. Overview of the document

This Section aims to explain the contents of the different Chapters that the reader will

encounter during this book.

Chapter 1. Introduction: The main purpose of this first chapter has been to introduce

the reader to the problem of AD, providing a brief review of it. From its definition and

a historical point of view, going through its main components such as the software stack

and its sensor platform, to its most representative legal framework.

Chapter 2. Theoretical Background: This Chapter will introduce theoretical concepts

that are required to perform this work: from the Machine Learning (ML) process to

definitions in the area of DL.

Chapter 3. State of the Art: A comprehensive review of the recent literature about Deep

Learning applied to RADAR and camera, and the fusion of both sensors that will serve to

build intuitions about this project.

Chapter 4. Development of the work: The core practical implementation of this work

will be explained in this Chapter. From exploring the dataset to the implementation of

all the modules within the detection framework, going through detailed explanations of

each of them.

Chapter 5. Experiments and Results: The training and experiments procedure will be

introduced in this Chapter, along with all the results and comparison between the baseline

and the proposed solution. Quantitative, qualitative and a time analysis compose this

Chapter.

Chapter 6. Conclusions and Future Works: This Chapter concludes this dissertation and

includes an analysis of the most relevant findings and conclusions and the future lines of

work that have been identified.



Chapter 2

Theoretical Background

I know of no better life purpose than to perish in

attempting the great and the impossible.

Friedrich Wilhelm Nietzsche

2.1. Introduction

As aforementioned in Chapter 1, the algorithms used in the domain of perception in auto-

motive environments are mainly learning-based approaches. Taking as input the information

captured by onboard sensors, these algorithms must extract and process the most relevant fea-

tures of the environment in order to build a higher level of abstraction knowledge, the scene

understanding. That is, from raw sensor signals to bounding boxes and identifiers that create

a representation of the surrounding environment, easily understandable by a human user.

The shift from traditional or rule-based approaches to data or learning-based methods has

changed how algorithms are done. A high-level comparison of both can be seen in Figure 2.1.

Moreover, data has become one of the key components of the pipeline. Therefore, it is important

to know how the onboard sensors that provide information work and how can a programmer

get the most out of the data they proportionate. Within the scope of this book, RADAR and

cameras are of particular interest.

Throughout this Chapter, we will go across the Machine Learning Workflow, an end-to-

end vision of how a complex problem should be addressed with a learning-based approach.

Going through all the stages of the development process will create the foundations needed to

cope with the practical project developed in Chapter 4. Then, we will delve into the working

principles of RADAR and cameras, explaining their theoretical models and how they offer

representations of the environment.
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(a) Traditional or rule-based programming approach.

(b) Learning or data-based programming approach.

Figure 2.1: Rule-based and Machine Leaning programming approaches.
Source: Hands on Machine Learning with Scikit-Learn, Keras & Tensorflow, 2.ed. Aurélien Géron

2.2. The Machine Learning Workflow

As said in Chapter 1, recent progress within the Machine Learning (ML) field has allowed

the incorporation of new technologies and solutions into our domains of interest: Robotics

and Autonomous Vehicles. During this Section, we will deep dive into the process of building

a project or solution using ML. This will also allow us to present the main components: the

data, the model, the optimizer, its main parameters, etc. It is essential to clarify that the terms

Machine Learning, Deep Learning and Artificial Intelligence are used interchangeably since

they are interrelated areas of knowledge. In any case, there are subtle differences when it comes

to defining the three disciplines. AI is a sub-discipline of Computer Science that aims to build

autonomous machines that imitate human behaviour in order to complete tasks. Then, ML is

a sub-discipline of AI comprised of a set of algorithms whose performance is increased with

experience. In other words, they learn through finding patterns in the data they are shown.

Lastly, DL is a sub-task of ML which is defined by the kind of algorithms that are used to learn

these patterns, Deep Neural Networks (DNN). The interrelation between these disciplines can

be graphically observed in Figure 2.2.

When dealing with a ML problem, the first step consists of formulating the problem in a

correct manner, following the concept of task. This applies to any supervised learning problem

(a problem with a target label available). Every task can be broken down into a composition of

the two essential tasks in Machine Learning: classification and regression. Classification is the

task of predicting a discrete class label, such as cat or dog in image classification. Regression

is the task of predicting a continuous value, such as an energy value for a specific daytime in a

time series.

Exemplifying this concept of defining tasks as a composition of classifications and regres-

sions, we can talk about instance segmentation on images, which is a task we deal with in this
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Figure 2.2: Interrelation between Artificial Intelligence, Machine Learning and Deep Learning
in a Venn diagram.

project. In the literature, instance segmentation architectures are mainly designed in two ways:

the first one is to inherit the main structure of a detector and add a segmentation head part [6];

the second one is to inherit a semantic segmentation network structure and add a watershed

transform to identify different instances within a mask of the same class [7]. From a high level

and following the first approach, this task can be seen as predicting segmentation masks over

the object of interest in an image. Predicting a segmentation binary mask over a detected object

can be decomposed into a pixel-wise binary classification problem. Then, localizing an object

in an image can be formulated as a composition of four regressions that define a bounding box

(top-left corner (x, y coordinates), height and width) and a classification, that assigns a discrete

label to the object. With this formulation, we have decomposed a complex abstract problem into

single classifications and regressions. Once we proceed to analyze a new model or framework,

we will expect to encounter metrics and loss functions that evaluate the performance of the

goodness of a model within these smaller sub-tasks; and after we proceed to approach a new

problem with different data, we can take advantage of this analysis to use some components as

reusable parts.

Before starting the work, it is also important to define the objectives of the project: Where

do we want to take it? Previous planning must be approached from a triple point of view: pro-

gramming skills, statistical and machine learning knowledge, and domain-specific knowledge.

Therefore, the influence of these three components will make the planning different depending

on whether the solution should be executed in a web service, a real-time embedded system or a

simulator with asynchronous execution; if it is going to be executed once a day or thousands of

times per hour; if we prioritise not failing instead of predicting incorrectly; and so on. You can

even encounter a situation in which you have to decide if the project is even possible to execute

due to the computing power available. Being able to design the process from a high level and

in all its stages is a good method to anticipate problems and increase the chances of its success.

It is worth mentioning that these criteria are not fully closed and can vary during the design

process due to changes in the requirements or technical impossibilities that may appear during

the development phase.
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In summary, a supervised problem in the domain of Machine Learning has six main com-

ponents:

A data set, composed of samples and features X = (x0, x1, . . . , xN).

A set of ground-truth labels Y = (y0, y1, . . . , yN).

An algorithm ŷ = f
(

x; w∗
j

)

, with a set of trainable parameters wj which aim to perform

optimally w∗
j at a determined task and returns a prediction ŷ when an inference is made.

A loss function L (ŷ, y), also referred to as cost or error function, which assesses the

goodness of the algorithm in a algorithm-understandable manner.

A set of metrics M (ŷ, y), which assesses the goodness of the algorithm in a human-

understandable manner.

An optimizer O, which is in charge of adjusting the model parameter set wj.

These components will be involved in the different stages that appear within the context of

a Machine Learning workflow. From getting the data to deploying a final solution, and going

through the training of a model.

2.2.1. Data acquisition and exploration

The first step in a ML project consists of getting a dataset and exploring its potential features.

Depending on the nature of the problem, the data can come from various sources of information.

When dealing with an automotive problem, it is necessary to install a sensor suite within a test

vehicle and drive for long hours in different environments to collect data. Once the data is

collected, it is necessary to generate the labels that indicate where the objects of interest are

located, to which semantic class they belong or any target information that we want to infer in

an automated manner.

Labelling is a time and effort-consuming task since it requires human supervision and

datasets are comprised of thousands or even millions of samples. Due to this and to the fact of

creating a common framework to perform a fair comparison, researchers decided to work with

publicly available datasets gathered by universities or technological companies that can record

data at a mass scale. Within the automotive domain, we can remark on the role of KITTI [8],

nuScenes [9] and Waymo [10] datasets. Unfortunately, due to the recency of the introduction

of High-Resolution 3+1D RADAR, none of the previous ones include this sensor. More recent

datasets such as View-of-Delft [11] and TJ4DRadSet [12] include this specific sensor and open

a new path for future research within perception based on camera and RADAR algorithms.

Before getting into algorithms, data is analyzed via Exploratory Data Analysis (EDA). EDA is

a process in which a dataset is investigated and its main characteristics are summarized. During

EDA, the focus is on data visualization and statistical distributions and relationships, univariable

or multivariable. The main objectives of EDA are: finding relationships within variables in data,
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suggesting hypotheses and developing domain-specific knowledge, supporting the selection of

algorithms and techniques, and even, applying a first model to provide a baseline for further

experimentation. Some of the most common tools used in EDA are: scatter plots, box plots,

histograms, correlation matrices and dimensionality reduction techniques, such as Principal

Component Analysis (PCA).

The realization of a good EDA allows us to obtain relevant reasoning about the data and can

anticipate the appearance of certain errors related to them during later stages of development,

such as:

Insufficient quantity of training data.

Non-representative training data.

Poor quality data.

Irrelevant data features

Overfitting or underfitting the training data

2.2.2. Preprocessing

At a glance, the goal of this stage is to turn data into tensors that can be consumed by

learning-based algorithms. In a typical ML workflow, the preprocessing stage involves three

main parts: cleaning data, selecting features and transforming the data. Data cleaning is a

process that aims to find outliers or noisy samples that do not incorporate relevant information

about the task we are dealing with. Among samples that should be cleaned, we can find

samples with missing features or non-valid values or samples with a large deviation in certain

features. In the context of CV, distorted images, non-correctly labelled samples or samples

with failures coming from the acquisition stage are wished to be removed. Data transformation

involves the normalization or standardization of data. Ranging numerical features from 0 to

1, or normalizing the color range of the images of a dataset can help to stabilize the training

process. Also, encoding categorical features into vector or embeddings permit the adaptation

of a categorical concept into a mathematical one that can be handled by a ML algorithm.

Once our data has been correctly preprocessed, it is important to split the dataset into

various parts. This process is known as data splitting. The number of splits and the amount of

data dedicated to it can vary depending on the amount of data available and the nature of the

problem, but a normal procedure will involve the creation of three splits: training, validation

and testing.

Training set (70%): the data shown to the model during the training stage.

Validation set (20%): the data used to assess the performance of the model during the

training stage. Feedback can be provided to the training stage. For example, the learning

rate hyperparameter can be reduced depending on the performance of a network in this

set.



20 Chapter 2. Theoretical Background

Testing set (10%): the data used to assess the performance and capabilities of the model

once it has been trained. The model can not learn or have feedback from this set. The

labels of the test set are not provided to the researcher in public competitions. The model

must predict over the samples and the predictions are sent to a remote server (via a text

file) that is in charge of the evaluation procedure.

It is important to keep these splits with different data to avoid over-fitting. For example, if a

dataset is composed of a set of images extracted from a series of video sequences, these splits

must be made taking into account that all the images that belong to the same video sequence

must be stored in the same data split.

Lastly, data augmentation is a technique applied in the preprocessing stage that aims to

obtain variants of a sample to increase the generalization capabilities of a model. This means

that the network should be able to predict the same value or label independently of small

variations that are produced within a sample.

2.2.3. Training of Machine Learning algorithms

The process in which an ML algorithm, f
(

x; w∗
j

)

, is fed with data, Y, and readjusts its

parameters wj, in an iterative way through an optimizer O is called model training. The

training of a learning-based algorithm is enabled by two algorithms: gradient descent and

backpropagation. This process consists of making predictions Ŷ over the training set of data

(also known as forward pass) and producing an output response for every sample, ŷ. Then,

these predicted outputs are compared with the set of expected outputs or ground-truth labels,

Y, by means of a loss function L
(

Ŷ, Y
)

that indicates the accuracy of the model. Then, the

objective of a neural network is to minimise the value of L
(

Ŷ, Y
)

and this is done via gradient

descent, an algorithm that tries to find a minimal value within a differential function. After the

forward pass, the feedback provided by L must be propagated from the output to the input

through every weight and bias of the neural network, in a process known as backward pass.

This algorithm uses the Chain Rule of Calculus and traces paths from previous layers to the

output using a chain of derivatives. Then, the gradient descent updates each weight wj in the

negative direction of the gradient (−∇ f ) with the purpose of achieving the optimal weight w∗
j

that makes L → 0. This process is repeated several times (epochs) until it converges (∆L → 0):

forward pass, backward pass (both passes make up backpropagation) and weight updating via

gradient descent.

Loss functions L must be differentiable, so we can apply these training algorithms. There-

fore, they must represent the objective that a human is pursuing to solve with the model, a

very high-level abstraction concept. Here, the formulation of supervised tasks as heirs of fun-

damental classifications and regressions plays a vital role. For example, we can define a depth

estimation task as a pixel-wise regression in which every pixel represents a single depth. Then,

a regression-like loss function can be formulated to train a neural network that solves it. A

pixel-wise Mean Absolute Error (MAE) can be useful for this purpose. It is worth mentioning
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that loss functions are another interesting topic of research, since not only does the model enable

the application of DL to a certain task.

Optimizers O are the algorithms with which the gradient descent is computed. Some of

the most common optimization algorithms used in DL are: Stochastic Gradient Descent (SGD),

RMSProp, Adadelta and ADAM. The learning rate α is the most important hyperparameter that

affects the training of a NN. It weights the step size on each iteration of the optimization progress

while it is moving towards the minimum. There is some research about finding the optimal

learning rate procedurally [13], but commonly, α ends up being tuned via experimentation.

An important concept to learn within the training stage is the bias/variance trade-off. It

states that the total generalization error of a model is comprised of three main components:

bias, variance and irreducibility.

Bias: is the error made due to wrong assumptions or hypotheses during the design stage,

i.e. choosing an algorithm that has not been designed to approach a specific problem.

The consequence of these errors leads to underfitting.

Variance: is the error produced when a model shows excessive sensitivity when small

variations at the input occur, i.e. a big model is applied over a small dataset with much

less complexity, and the model itself is able to memorize the training data (find the weight

combination that solves the full training set). This phenomenon leads to overfitting.

Irreducible error: is part of the error associated with the noisiness of the data. If this kind

of error is detected, the designer should revisit the preprocessing stage and obtain more

relevant features or detect and remove non-representative data (outliers).

Being able to identify these sources of error during the training or evaluation stages can lead

to changes in the model, either its implementation or the decision about which model to use.

As ML is an experimental science in which experiments guide intuition, a designer could tackle

bias by increasing a model complexity or could tackle variance by decreasing it. This balance

game is what makes this phenomenon be called trade-off.

2.2.4. Evaluation of the algorithm performance

As we have presented in Section 2.2.3, while loss functions are made to be algorithm-

understandable (continuous and differentiable), metric functions are made to be human-

understandable. In other words, they are made to advise the DL practitioner about the per-

formance of the model. A loss function can perform as a metric but a metric may not be able to

perform as a loss function. Metrics related to the project will be defined in Chapter 3.

In addition, metrics are not the only way to assess the goodness of a model. Depending

on the objective of the project, there can be other indicators which reflect other aspects of the

model. For example, if we are looking for a real-time application, the inference time or amount

of computation in TFLOPS can be a good indicator. If we are looking towards embedding a

model in an edge device, energy consumption or occupied disk memory can be other good

indicators of performance.
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2.2.5. Improvement through experimentation

ML and DL are experimental disciplines. The development and creation of new models

can be related to playing with LEGO blocks. From a set of essential blocks, the DL practitioner

can propose several block combinations that lead to a more complex structure. These complex

structures can also be combined to conform the whole architecture of a model. Therefore,

one typical stage in the ML workflow is to build a baseline model from which differential

improvements are made: introducing novel blocks, optimizing previous ones, etc. This is a

process that requires certain intuition and deep knowledge of each building block. Once a

modification is introduced, the new version model is trained and its performance is evaluated.

A procedure to optimize architecture is hyperparameter tuning. Gathering all the possible

hyperparameters, a model with the same architecture is trained varying these numbers, until

the optimal combination (the one that leads to better performance) is found. Two common

hyperparameter tuning strategies are random search in which the hyperparameters are sampled

randomly, and grid search in which the range of hyperparameters is sampled in equidistant

intervals.

2.2.6. Model deployment

The last stage in the ML workflow is the model deployment. Depending on the context,

this stage can be known as inference mode or model exploitation. During this stage, the

model weights are frozen, meaning that they would not be updated in a training procedure. At

deployment, models will only be fed with new data and return their predictions. It is important

to monitor the deployed solution and trigger alert events when there is a drift in performance.

This can be dealt with through online training, and retraining the model with new samples

received during the deployment. Deploying a model can mean:

Integrate the model into an embedded system for real-time operation in a robot or AD.

Automate the model inference process within a simulator.

Incorporate the model into a mobile or web application to perform predictions on demand.

Once the model is deployed and working correctly, the ML workflow is concluded succesfully.

2.3. Working Principles of RADAR and Camera

During this Section, we will cover the foundational concepts behind the two sensors that

are used within the scope of this project: RADAR and camera. Beginning with a brief historical

motivation, we will deep dive into the working principles and main components of these two

technologies, and why they are suitable for perceiving the environment within the automotive

domain.
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2.3.1. RADAR

RADAR is a technology that was greatly developed during World War II with the purpose

of detecting moving targets within the air domain. This development was driven by the early

projects of Nikola Tesla, who performed the very first applications of electromagnetic waves

to the detection of moving objects in the early 1900s. At the expense of the beginning of

the War, the British industry made a significant investment in terms of effort and resources

during the decade of 1930. From this point on, naval battleships and the British coastline were

equipped with multiple radar systems that performed air surveillance tasks. Enemy aircrafts

could be detected within kilometres away, allowing the possibility of getting ready for combat

and eliminating the surprise factor on the enemy side. Due to the potential shown within

this particular domain, all the participants in the War rapidly showed interest in introducing

RADAR equipment into their armies. During the following decades, RADAR played a major

role in the control of maritime and air traffic and navigation.

Then, when ADAS arose in the decade of 1990, RADAR became a suitable sensor to be

mounted onboard ground vehicles and it has historically completed tasks that require a precise

velocity estimation, such as Adaptive Cruise Control (ACC) or Assistance for Emergency Brak-

ing (AEB) technologies. Nevertheless, during the decade of 2010, academia started a major bet

on LiDAR and camera for AV. Then, on the industry side, Tesla decided to remove RADAR from

their L2+ solution, since the output data it provided was not rich enough to complement the

scene understanding and decided to rely only on vision. RADAR stepped back into a secondary

role. Taking into account the weaknesses observed, such as poor spatial and angular resolu-

tion, High-Resolution 3+1D RADARs appear. The industry is developing radars that are able

to output denser point clouds with resolution in both, azimuthal and elevation angles. Even

Tesla knows that an electromagnetic wave-based distance and velocity measurer is needed to

reach fully AD technologies, and they have ensured that once Hi-Res 3+1D RADAR establishes

itself in the industry, it will be incorporated again into their sensor suite. The advent of 3+1D

RADARs also enables the application of DL methods, as most of the issues that were related to

data (presented in Section 2.2) may be avoided.

Due to their lower costs (compared to LiDAR technologies), estimation of velocity and the

advent of High-Resolution 3+1D RADARs (enabling a high spatial resolution in denser point

clouds) show great potential for deployment of ADAS and AD technologies at mass-scale,

working cooperatively with camera sensors.

During this section, we will review the fundamentals and basics of RADAR operation, as

well as their signal processing pipeline and the output formats of radar data, that can be later

used by the perception module of an AV.

2.3.1.1. RADAR Physics

A RADAR is a sensor whose functioning is based on TOF principle for range estimation and

the Doppler Effect for velocity estimation. In the case of TOF, the sensor can calculate the range

from the reflection given the time difference between an emitted and a received echo. In the
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case of the Doppler Effect, when there is a relative movement between the emitted signal and

the detected target or object. The frequency difference appears between the transmitted and

received signal, and from this difference, the relative speed is estimated.

Specific domain knowledge about the fundamentals of radar physics and signal processing

is essential for proper decision-making in the development of radar techniques based on DL.

RADARs in the automotive domain operate in the 76-81 GHz frequency band. Therefore, radar

waves have wavelengths of approximately 4 mm, which gives them the ability to propagate over

water drops and dust particles. This wavelength reduces the amount of scattering and leads to

one of the strengths of radar: it performs well against adverse weather conditions.

The general working principle of a RADAR is described in the mathematical formulation

of the radar equation, formulated in 2.1, which represents the physical dependencies between

the transmitted signals and its returning echoes. The equation assumes ideal conditions for the

propagation of electromagnetic waves, such as no scattering, and isotropic radiators which will

propagate the energy in all directions forming an ideal sphere.

Pr =
Pt · Gt · Ae · σ

(4π)2 · R4
=

Pt

4π · R2
· Gt ·

σ

4π · R2
· Ae (2.1)

The relationship between transmitted and received signals is formulated in terms of power,

Pt and Pr, respectively. The equation states that: the received power Pr is directly proportional

to four different terms: the power density at a distance R from an ideal isotropic antenna, the

antenna gain of the transmission antennas Gt, the reflectivity or amount of energy that a target

reflects back (characterised by RCS or σ), and a term related to the reception antenna gain,

which is characterised by the effective area of the antenna Ae.

From the first term, it can be observed that the transmitted power decays with the distance

R to the sensor in a quadratic factor, since the propagation of waves occurs in a spherical

shape. The numerator Pt is expressed in W. Then, the antenna gain Gt is an adimensional

value that addresses how well an input power is converted in radio waves. These two terms are

related to the capabilities of the emitter and its product is the power density that is converted to

radio waves that will be processed in a further stage. Subsequently, the third term expresses the

amount of power that is reflected back to the sensor. As it is another isotropic wave propagation,

it also decays with a quadratic factor with respect to distance R. Nevertheless, in this case, the

reflecting capabilities of a target are expressed by means of the RCS, σ. RCS is a measure

of how detectable is a target by a RADAR. In the automotive domain, the reader might be

familiarised with the concept of intensity, which is the analogous term in LiDAR terminology.

RCS is influenced by various factors such as the material with which the target is made, the size

of the target, the incident and reflected angles, and more. This value used to be characterised

experimentally in RCS diagram for a wide range of targets. As a curiosity, when stealth aircraft

are produced in the aviation industry, one of the main objectives during the design process is

to minimize the RCS profile. RCS is expressed in m2, which leads to an adimensional third

term. Lastly, the fourth term is related to the geometry of the reception antenna, as it expresses

its surface in m2. This term can be weighted by an efficiency factor K, which addresses the
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imperfections of the antenna and the losses that are produced during the reception. As a rule,

is a value that oscillates between 0.6 and 0.7. The product of all terms results in a received

power expressed in W.

Radar equation is also used to determine the maximum range or distance at which a target

can be detected. Solving the equation for R:

Rmax = 4

√

Pt

Pr
·

Gt · Ae · σ

4π
(2.2)

From the equation, three main conclusions can be extracted:

The relationship between the reflected and transmitted power, Pr and Pt, decays with a

factor of fourth power. Given this fact, it is expected that an output point cloud density

will also decay with distances. While closer areas to the sensor are denser, the far field

will be less populated.

The reflecting capabilities of a target, expressed by means of RCS is independent with

respect to distance. On the other side, this parameter is related to the shape and materials

of the reflected targets and it shows certain potential for target classification. However, the

statistics of certain datasets show that RCS increases with range. This is a phenomenon

directly related to the previous conclusions. In the far field, targets are more difficult to

solve and only the stronger targets will remain, while in the close field, there will be a

higher diversity of targets with different RCS (even if they belong to the same semantic

class).

The capabilities on the radar are tightly coupled with the quality and design choices with

respect to the antennas. Even without bearing with powers, the transmission antenna

gain Gt and receptor effective area Ae are directly proportional to the reflected power Pr

and the maximum range of detection Rmax.

As anticipated within this section, a set of electronic components are needed for a RADAR

to work properly. Due to the maturity of the technology, several designs can be found in

the literature. However, there are some common and foundational components that must be

present in every RADAR: a wave generator, a transmitter with a set of transmission antennas,

a receiver circuit with a set of multiple reception antennas, a duplexer, and a mixer to make

comparisons between the transmitted and the received signal.

The transmission antennas (Tx) emit signals using linear frequency modulation (FMCW

is what allows for measuring position and velocity simultaneously), commonly referred to as

chirp, and the reception antennas (Rx) receive the signals that bounce back from nearby objects.

The received Rx signal is combined with the Tx signal, resulting in a lower intermediate

frequency signal. This signal is then captured by an analogue-to-digital converter (ADC) to

provide the raw time domain data. The intermediate frequency corresponds to the distance of

the reflected object from the radar. Multiple chirps are transmitted to enable the calculation of

radial velocity, achieved by comparing phase shifts among received chirps.
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The term fast-time denotes the dimension within a single chirp, as determined by the ADC

sampling frequency. Conversely, the slow time refers to the dimension spanning across all

chirps, governed by the chirp repetition time. To facilitate the estimation of the azimuth angle,

indicating the direction of arrival, the Rx-antennas are horizontally spaced from one another.

This arrangement ensures that the phase progression across different Rx elements is indicative

of the angle at which the signal is received.

In summary, the raw time domain data comprises three dimensions: fast-time, slow-time,

and Rx-element dimension, collectively capturing the radar’s comprehensive information, form-

ing a three-dimensional tensor that is sent to the next stage: the signal processing pipeline.

2.3.1.2. RADAR Processing Pipeline

Taking as input the raw time domain data, the main objective of the signal processing

pipeline [14] is to extract information about the ranges, angles and velocities of the relevant

targets. Then, this information is represented in diverse and compact forms, because they will

be the source of data for the algorithms in the perception pipeline. A diagram of the complete

processing pipeline is depicted in Figure 2.3, and we will walk through it during this Section.

Firstly, a Fast Fourier Transform (FFT) is applied over the chirp index or fast-time dimension.

This converts fast-time from the time domain to the frequency domain. This will lead to a

frequency spectrum representation in which higher frequencies will indicate higher reflections,

and therefore, possible targets. Nearby targets can be close up in the frequency spectrum and

will be represented by a single peak. Here, it is where the concept of resolution comes in. The

equations for range estimation and resolution are shown in Table 2.1. As seen, the resolution

can be increased by increasing the bandwidth B, as they are inversely proportional and we are

working on a centimetre scale.

Applying a Short Time Fourier Transform (STFT) over the result of the Range FFT it is

possible to obtain a Micro-Doppler Spectrogram. This is a representation that does not provide

spatial information but captures fine-grained detail about the temporal evolution or motion

pattern of a moving target, which provides valuable insights for target classification tasks.

Then, a second FFT is applied over the range bins in the Range FFT output. It solves velocity

for each range bin. As previously mentioned, the key to solving velocity is measuring the phase

difference between emitted and received chirps within the mixer, so equations show different

relationships with phase difference ∆ϕ. Range-Doppler map or spectrogram is the output of

Doppler FFT. It represents the world within both axes, range and velocity. Two objects that are

at the same distance, with the same relative velocity and different angles will be shown in the

same bins within this representation.

Lastly, a third (or even fourth if there are two angles) FFT is applied over the Range-

Doppler maps which allow us to distinguish between angles. The RADAR will need to be

equipped with multiple reception antennas with a known physical distance among them and

a frame of multiple chirps spatiated in time to discern the direction of arrival of the target. As

shown in equations (Table 2.1) the resolution on angle estimation depends on the number of



2.3 Working Principles of RADAR and Camera 27

reception antennas, Rx. The result of the Angle FFT is the radar cube, RC. It is a 3-dimensional

representation in which two dimensions (range and angle) encode the spatial disposition of

the environment in polar coordinates, and the third dimension indicates the velocity of a target

detected within that range-angle bin. Recent works try to exploit this representation in order

to detect and classify road users. [15]

The FFT-processed radar cube may be composed of more than 32 million cells: 1024 range

bins, 1024 velocity bins, and 32 angle bins, for 3D RADARs. In 4D RADARs, it is necessary to

add an additional set of bins for the elevation angle. Assuming a 16-bit value precision, the data

transmission rate to transfer radar cubes in real-time will reach 2.5 Gbps or 10 Gbps. Nowadays,

ingesting this amount of data seems impractical for real-time DL algorithms (or even traditional

ones). Also, not all the cells within the cube contribute relevant information since the cube

describes the whole space: targets, empty space and noise reflections.

Parameter Estimation Resolution

Range R =
c · fB

2 · S
Rres =

c

2 · B

Doppler velocity V =
λ · ∆ϕ

4π · TC
Vres =

λ

2 · Tf

Angle θ = arcsin
λ · ∆ϕ

2π · l
θres =

λ

NRx · l · cos ϕ

Table 2.1: Estimation and resolution equations for main radar parameters: range, Doppler
velocity and angle.

Source: Towards Deep Radar Perception for Autonomous Driving: Datasets, Methods, and
Challenges [16]

Therefore, methods to extract relevant information from the cube are applied. The pur-

pose of these methods is to identify relevant peaks of energy that describe real objects in a

process known as target extraction. Constant False Alarm Rate (CFAR) algorithms follow auto-

describing criteria: try to maintain a constant rate of false alarms, meaning that there is a

constant rate of outliers (noisy reflections that are considered real targets). A whole family of

algorithms are created as variants of the original CFAR and all of them differ on performance,

computational cost, and the manner to approach the constant false alarm rate criteria. Some of

the most common methods are Cell Averaging CFAR (CA-CFAR) [17], Statistical Ordered CFAR

(SO-CFAR) [18] or Trimmer Mean CFAR [19]. The result of applying CFAR over a radar cube is

a point cloud RPC ϵ R
N×5, a collection of N radar targets that belong to real objects, and each of

them is described by the following characteristics: distance r, radial velocity vr, azimuth α and

elevation γ angles and RCS (also denoted as σ).

While most of the learning-based approaches consume point clouds as inputs, in a traditional

pipeline there are two main ways to accumulate the information obtained over time and create

a spatiotemporal representation of the environment. On the one hand, RADAR point cloud

is consumed by a DBSCAN algorithm [20], which performs clustering over the points. At a

glance, DBSCAN is a clustering algorithm that allows grouping sets of points that are close

in a dimensional space and allows the presence of outliers (points that do not belong to any
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Figure 2.3: A diagram of radar data formats its processing pipeline. From the left-top part of
the figure, the radar takes as input raw-data from the signals received by ADC and Rx antennas.
Low-level processing techniques lead to intermediate representations of the radar data. Lastly,
focusing on the radar point cloud, some classical perception techniques for radar are shown,
such as grid mapping, clustering and tracking.

cluster) if they are located in non-dense zones, i.e. in the case of RADAR: space, velocity

and RCS. The input to the clustering algorithm does not only take advantage of the spatial

information. The velocity input takes a major role in separating stationary and dynamic objects

that are close in the spatial dimensions. Once these clusters are separated, feature extraction is

performed, i.e. extracting the dimensions, averaging velocity values and eliminating outliers.

Then, clusters feed a tracking system, which is normally operated by Kalman Filters for state

estimation and Hungarian algorithms for data association. On the other hand, the radar targets

can feed a dynamic grid map that probabilistically accumulates the detections in spatial cells

and updates this grid with new point clouds and the movement of the ego-vehicle. With any of

both representations, the main objective is fulfilled: to create a spatiotemporal representation

of the static and dynamic objects that surround the vehicle under test.

2.3.2. Camera

Cameras have played an important role during the development of ADAS and AD technolo-

gies since the beginning of the early experiments of the matter. The inclusion of camera sensors

within the robotics and autonomous driving domains is driven by the fact that as humans we

navigate the environment guided by our visual observations of the world. As previously men-

tioned, cameras are passive and exteroceptive sensors that provide a very dense representation

of the surrounding environment, in a pixel-level density. Therefore, an image I is a data format
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in the form Z
N × H × W , in which every pixel i ∈ Z, 0 ≤ I ≤ 255. N is the number of channels

in an image, which stands for N = 3 for coloured RGB images and N = 1 for black-and-white

grayscale images. H and W are the height and width of the image, respectively, expressed in

the number of pixels.

However, the main weakness of cameras is the loss of depth information since all the

information is projected over an image plane giving place to a projective representation of the

3D world. This makes single images ambiguous since there are multiple solutions for a 3D point

in the space without additional previous information. The combination of a pair of cameras

within a stereo vision system permits establishing correlations between the 2D information of

two cameras and projecting it to the three-dimensional world following the epipolar geometry

principles, knowing a series of parameters a priori, such as the baseline B (or distance between

cameras in the pair). It is worth mentioning that not all cameras are passive sensors since

there are cameras that emit structured visible light patterns to estimate 3D information of the

environment within a limited range of non-visible infrared light to work in night conditions.

Nevertheless, a further explanation of these types of cameras is beyond the scope of this work.

As cameras are passive sensors, they also perform weakly in scenes with poor light and

adverse weather conditions. Fully AD technologies are required to solve any driving situation

event, and driving at night or through tunnels are some examples of common driving situations

in which a system based only on cameras leads to poor performance of the perception pipeline.

Even with these two main weaknesses, the advantages of cameras are so powerful that they

can not be ignored to achieve autonomous navigation. It is the only sensor that can provide a

denser representation of the environment in their field of view. Then, they also describe the

environment in colour. Colour and the incidence of light over relevant objects provide valuable

information about their geometries, and the type of material which leads to the potential to

reveal the semantics of the scene.

The agents (pedestrians, vehicles and rest of road users) that surround a vehicle and their

main characteristics, the drivable road surface, the traffic regulation (via understanding traffic

lights and signals), and the capability to discern a temporal correlation of all these elements

are achievable by processing only camera information. This processing is tackled by Computer

Vision (CV): the science that studies the processes of acquisition, processing, analysis and

interpretation of 2D images from a 3D world.

A typical processing pipeline in a CV system involves the sequential application of these

tasks:

Imaging and acquisition: Imaging is the process of forming an image when a sensor

detects the radiation (in the form of visible light) that interacts with a physical object in

the 3D world. The acquisition of images involves the adaptation of the lighting conditions

of the environment and the selection of the camera sensor to take images. For example,

in the automotive domain, the front lights of the vehicle allow acclimatization of the en-

vironment’s lightning for data collection in night conditions. In industrial environments,

lighting is easily controllable and can contribute significantly to the performance of an

application.
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Pre-processing: It consists of applying transformations to an acquired image before it

is used. It allows us to perform corrections against known camera distortions, make

changes in the colour space, crop an image over a region of interest or perform any other

manipulation that will increase the accuracy of the vision system in any task. For example,

a normalization and standardization within the colour space will make the CV system

more robust against colour variations, while rotating an image (90, 180 or 270◦) that feeds

a DL-based algorithm, will give it of the condition of rotate-invariant.

Feature extraction: Then, there is a process to transform the raw preprocessed images

into information-relevant features that can be consumed by an algorithm, in an analogous

way we explained in Section 2.2. In the image domain, extracting features can involve the

detection of relevant zones, such as lines, corners or contours for a single image; for a pair

of images, it could involve the extraction of the optical flow, which describes the motion

patterns of the objects and surfaces within both images.

Description and recognition: Lastly, features are the input to algorithms that describe,

recognize or localize regions or objects of interest within the image. With the advent of DL

techniques, the stages of feature extraction and description and recognition are performed

simultaneously within a neural network. Even though Convolutional Neural Networks

(CNN) have not been explained within the scope of this work, it has been shown that

there is an inner hierarchy within the learning patterns of these networks. Within [21], it

was shown that early stages of a CNN extract low-level features, such as borders, corners

or regions. Later stages combine these features to process higher-level features lead to the

description and recognition of objects. Therefore, modern CV systems perform these two

stages jointly in learning-based approaches.

Some of the most common learning tasks that are applied to images have been previously

mentioned in Chapter 1 and will be further explained in Chapter 3. After this brief introduction

to cameras, we will delve into their fundamentals and theoretical models.

2.3.2.1. Pin-hole Camera Model

It is necessary to review some foundational concepts about optics to understand the under-

lying principles of cameras. Since the main objective of this work is to develop a sequential

geometric sensor fusion mechanism, it is important to know how to establish relationships

between a point in the 3D world and its projection in a 2D image plane.

A camera model is responsible for determining the relationship between the 3D coordinates

of a point within a scene and its corresponding 2D coordinates projected to an image. The

modelling of a camera is influenced by parameters that are related to the optics (lens type, focal

length and distortion), illumination conditions (intensity of the illumination, reflectance of the

objects) and geometric conditions (type of projection, position and orientation of the camera).

A lens is a transparent object, which is usually made of glass, limited by two surfaces. At

least one of them is curved. The curvature of a lens provokes the refraction of light rays that

come from outside and form an image in the sensor.
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The focal length, f , is the distance between the optical centre of a lens and the focal point

when focusing to infinity. It is expressed in millimetres (mm) and it is positive for converging

lenses and negative for diverging lenses.

Assuming that camera lenses are thin biconvex lenses, whose thickness is approximately

null, a mathematical model is formulated. This model relates the distance from the lens to

the object and the distance from the image to the object. This is known as the fundamental

equation of thin lenses:

n

s′
−

n

s
=
(

n′ − n
)

·

(

1

R1

−
1

R2

)

(2.3)

Where:

n, n′ are the refraction indices of the lenses within a specific environment. It is an

adimensional magnitude.

s, s′ are the distances to the object and to the image, respectively. Expressed in meters (m).

R1, R2 are the curvature radii of the surfaces of the lenses. Expressed in meters (m).

Once the concept of focal distance is introduced within the model, two mathematical as-

sumptions are made. The first one is that the rays coming from an object in a distance s = f

are projected parallel to the optical axis s′ = ∞. The second one is that a ray coming from an

infinite distance s = −∞ converges in the focal point of the image at a distance s′ = f ′. Solving

the system of equations that if formed when considering these two situations, the fundamental

equation can be reformulated in its Gaussian form:

1

s′
−

1

s
=

1

f ′
=

−1

f
(2.4)

This allows drawing a similarity of triangles that relates the height of an object, H, in the 3D

world with its projected height, h, on the image plane.

Figure 2.4: Thin lens model geometrical model.
Source: Teaching materials of Sistemas de Percepción. Universidad de Alcalá.
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Figure 2.5: Diagram of the transform tree to project a point in the 3D world to the 2D image
plane. To fulfil this objective, several geometrical transforms must be applied. A point in the
3D world is located in the World Coordinate System (WCS) and must be translated and rotated
to the Camera Coordinate System (CCS). Then, a second transformation transforms the point
to the 2D world in the Image Coordinate System in the centre (ICSC). Lastly, a third transform
displaces the point to the Image Coordinate System at the Origin (ICSO). Overall, the whole
pipeline is: 1. WCS/CCS → 2. CCS/ICSC → 3. ICSC/ICSO.

h

H
=

s′

s
(2.5)

This model implies that a scene projected in a 2D image is going to be inverted and its size

is going to be reduced.

The pin-hole camera model is a simplification with respect to the thin lenses Gaussian

equation. Two additional assumptions are made: the aperture of the lenses shrinks to zero and

the image plane is always placed at a distance equal to the focal length, f . Any displacement

of the plane image will be considered part of the distortion and will be corrected within other

mechanisms. This camera model leads to the perspective projection geometry.

2.3.2.2. Image Formation Geometry

Formally, the projection of a 3D point P = (XW , YW , ZW) in the image plane is the intersec-

tion between the line that joins the optical centre OC with the point P and the own image plane.

The projection is fulfilled after making three reference changes that involve four coordinate

systems.

1. World Coordinate System (WCS): defined in an arbitrary point in the 3D world. It is

characterised by its origin OW and it is where the point P is originally referenced to.

2. Camera Coordinate System (CCS): a coordinate system defined within the 3D world whose

origin OC is placed within the physical location of the optical centre of the camera. In

the automotive domain, CCS has its X component pointing to the right, its Y component

pointing downwards, and its Z component pointing frontwards.
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3. Image Coordinate System in the centre (ICSC): a coordinate system which is defined

within the 2D image plane. Its origin is located in the centre of the image Oic. The

relationship between CCS and ICSC is determined by the focal length, f .

4. Image Coordinate System at the Origin (ICSO): a coplanar reference frame with ICSC.

They differ in their origin point, since ICSO defines its origin within the top-left corner of

the image.

The first step involves a reference frame transformation between WCS and CCS frames.

To represent a transformation as a matrix product it is necessary to represent the points in

homogeneous coordinates. A point in a 3D space becomes a four-component vector in the

homogeneous space Ph = (x, y, z, w), where w represents a scale factor and is typically fixed

to w = 1.

In the homogeneous space, a point is composed of a position component and an orientation

component. Every transformation between two points in this space can be described by a

rotation R3×3 and a translation T3×1. Moreover, every rotation in the 3D space can be described

by three fundamental rotations over a 1D space, its main components: X, Y and Z.

Then, the translation component T from WCS to CCS is:

T =













1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1













(2.6)

Expressing the rotation R as three fundamental rotations, α radians for X axis, β for Y axis and

γ for Z axis.

RX (α) =













1 0 0 0

0 cos α − sin α 0

0 sin α cos α 0

0 0 0 1













(2.7)

RY (β) =













cos β 0 sin β 0

0 1 0 0

− sin β 0 cos β 0

0 0 0 1













(2.8)

RZ (γ) =













cos γ − sin γ 0 0

sin γ cos γ 0 0

0 0 1 0

0 0 0 1













(2.9)

The total transformation is described as M = RX (α) · RY (β) · RZ (γ) · T. The resulting matrix

M is:
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M =

(

R3×3 T3×1

01×3 11×1

)

(2.10)

Where Mext =
(

R3×3 T3×1
)

is known as the extrinsic parameters matrix.

The second step involves a transformation between CCS and ICSC which is also known

as the perspective projection equations. Applying the similarity of triangles, a 3D point P =

(XC, YC ZC) referenced to the optical centre OC can be projected into the image plane. In this

step is where the loss of depth information occurs, since this model assumes that all points are

at a distance z = f . The triangles obtained for both axes are:

y

f
=

YC

ZC
→ y = f ·

YC

ZC
(2.11)

x

f
=

XC

ZC
→ x = f ·

XC

ZC
(2.12)

Alternatively, this can be expressed in its matricial form:
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(2.13)

The third and last step involves the reference frame change between ICSC and ICSO in a

conversion from a metrical world to a pixel world, and an offset that moves the origin point

from the centre of the image to its top-left corner.

While a point in ICSC was in a metrical form p = (x, y), a point in ICSO is in a pixel form

p = (u, v). In ICSO, (u0, v0) represents the pixel coordinates of the intersection between the

optical centre and the image plane, and (dx, dy) represents the dimensions in millimetres of a

unitary pixel. Applying the similarity of triangles:

u =
x

dx
+ u0 (2.14)

v =
y

dy
+ v0 (2.15)

And expressed in matrix way:
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The set of parameters (u0, v0, f , dx, dy) is known as intrinsic parameters and describes

the internal behaviour of the camera sensor. These parameters can be also expressed in matrix

form via the intrinsic parameters matrix, Mint.

Mint =













f

dx
0 u0

0
f

dy
v0

0 0 1













(2.17)

Finally, to tie up all the loose ends explained in this section, the whole projection M is the

product of the intrinsic and extrinsic parameters matrices, resulting in:
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(2.18)

2.3.2.3. Stereo Camera Model

To end up with the introduction to camera and images, it is necessary to briefly explain

some concepts about stereo vision, since the calibration models in real automotive datasets

are a hybrid between a typical monocular calibration and a stereo one. A stereo vision system

consists of a pair of cameras and their development is motivated by the fact that correspondences

between images (a point p for an image and its correspondent partner p′ in another image) can

lead to reconstructing the scene geometry: to find the 3D coordinates of a point from multiple

projections on different images.

Figure 2.6: Triangulation process between a pair of images of a stereo vision system.
Source: Teaching materials of Sistemas de Percepción. Universidad de Alcalá.

Correspondences between points are found via triangulation, which is shown in 2.6. Epipo-

lar geometry sets a series of geometrical relations that enable the correspondence finding. The

most important concepts of epipolar geometry are:

Baseline (B): is the distance between the optical centres of the cameras.
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Epipoles (e1, e2): are the points in which the baseline intersects with the image planes.

Epipolar plane: is the plane in the 3D space which contains the baseline and the 3D point

for which correspondences are been searched. This plane allows to establish a geometrical

relation between the two cameras and the point.

Epipolar line: is the line that is generated between the two projections over their corre-

sponding image plane of a point in the 3D space.

The development of this geometry allows to recover the 3D information of a point that was

lost using a single camera. Some other important concepts are the Essential E and Fundamental

F matrices. Since this discipline involves heavy matrices computation, it is helpful to use

techniques such as Singular Value Decomposition (SVD). Both of these matrices allow the

mapping of correspondences from one image plane to another. While the first one performs the

correspondence in the pixel world, the second one is thought for the metric world. Computing

all correspondences among possible points leads to the calculation of a disparity map (D),

which represents the variation in pixel coordinates of all points present in both images from

one plane to another.

In order to compute depth values from a stereo vision system, the image planes of both

lenses must be aligned within both u and v axes. Therefore, they must be parallel, as shown in

Fig. 2.7. Then, knowing the baseline (B), the focal length (f) from the optical centres (O, O’) to

the image planes and the disparity map (D), the depth values (Z) can be computed as follows:

Z (u, v) =
fx · B

D (u, v)
(2.19)

Figure 2.7: Computing depth value from a disparity map in a stereo vision system.
Source: Teaching materials of Sistemas de Percepción. Universidad de Alcalá.



Chapter 3

State of the Art

Don’t count the days, make the days count.

Muhammad Ali

3.1. Introduction

The purpose of this Chapter is to perform a systematic review of the most influential DL

architectures that appeared during the last years and tackle the two main tasks involved in this

project: 2D Object Detection/Instance Segmentation for images and 3D Object Detection for

point clouds, the so-called State of the Art (SOTA). This will serve to introduce the reader to the

inner workings of these architectures.

3.2. 2D Object Detection and Instance Segmentation

Understanding the fundamental concepts behind the tasks we are dealing with in a su-

pervised learning problem has allowed us to characterize how the inputs and outputs of the

networks will be. Delving within the nature of the task will also allow us to characterize the

anatomy of an architecture, which is shared by most of the SOTA methods. Then, the aim of

recent methods is to improve these components in order to obtain a better overall performance.

Remembering, an Object Detection problem expects as input an RGB image and returns as its

output this data structure for each of D detections:

A probability class vector that indicates to which semantic class the object belongs. Its

form is N × 1, being N the number of classes in a dataset. All probabilities must sum

up to 1. With this vector, two outputs are computed: the object class (applying argmax

operation) and the confidence score (applying max operation) which is a measure of the

likelihood of the detection.

A bounding box that indicates the localization of the object of interest. Its form is 4 × 1,

being these 4 values the top-left corner of the box (x and y), its width and height.
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The extension of an object detection problem to an instance segmentation one involves the

prediction of a mask that encircles the object of interest, so the final output will have another

component.

A black-and-white image in which white pixels indicate the presence of the mask, whose

form is H × W.

Given the input RGB image and the structure of outputs desired, and taking into account

that the objective is to localize objects (which are smaller regions of the image), the anatomy of

a DL architecture for both of these tasks will be composed of:

1. A backbone, which will be in charge of extracting features to comprehend the context of

the image.

2. A neck, which will be focused on proposing particular regions of interest given the

extracted features and obtaining multi-scale representations of the image.

3. A head, which will compute the output data structure recently explained: class, confi-

dence, bounding box and mask.

Provided with all the fundamental concepts, the intuitions behind the problems and all the

necessary building blocks to compose an architecture, we will delve into a brief historical and

SOTA review of the most relevant methods.

3.2.1. Methods

The history of Object Detection methods [22] starts in the pre-neural era (around 2000). These

algorithms relied on traditional image processing techniques and the three most relevant were:

the Viola-Jones detector [23], the Histogram of Oriented Gradients (HOG) detector [24] and the

Deformable Part-based Model (DPM) [25]. A common characteristic among them is that they

are specialized in detecting certain parts: faces or persons. They are able to introduce domain-

specific knowledge and rules to perform well in a little niche task, but they lack generalization

or capabilities to detect other types of objects, a reflection made in Chapter 2.

Then, the success of DL architectures applied to image classification at the ImageNet 2012

challenge made the research community put their hands on creating architectures for other

tasks, such as Object Detection. This led to two research directions: single-stage detectors and

two-stage detectors.

3.2.1.1. Two-stage detectors: from R-CNN to Mask R-CNN.

The Deep Learning era of Object Detection started in 2014 when Region Based Convolutional

Neural Networks (R-CNN) [26] rise. An overview of R-CNN architecture can be seen in Figure

3.1a. Girschik et al. propose to extract a set of regions that might contain an object, called region
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(a) General overview of R-CNN.

(b) General overview of Fast R-CNN.

(c) General overview of Faster R-CNN.

(d) General overview of Mask R-CNN.

Figure 3.1: The evolution of R-CNN family: from R-CNN to Mask R-CNN.
Source: mathworks.com. Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN (a, b,

c) and Getting Started with Mask R-CNN for Instance Segmentation (d).

https://es.mathworks.com/help/vision/ug/getting-started-with-r-cnn-fast-r-cnn-and-faster-r-cnn.html
https://es.mathworks.com/help/vision/ug/getting-started-with-r-cnn-fast-r-cnn-and-faster-r-cnn.html
https://es.mathworks.com/help/vision/ug/getting-started-with-mask-r-cnn-for-instance-segmentation.html
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proposals, using a Selective Search [27] or an Edge Boxes algorithm [28]. Then, these regions are

cropped and resized and they feed a CNN that acts as backbone and extract features. Features

feed a set of class-specific linear Support Vector Machine (SVM) classifiers and they predict a

bunch of bounding boxes that are filtered by a Non Maximum Suppression (NMS) algorithm.

The paper reported that during test-time evaluation, 2000 region proposals were extracted,

which led to an extremely low implementation with an inference time of approximately 14

seconds per image using GPU. Moreover, the proposed method reported an increment of 16%

in mAP (a metric which will be explained in detail later) in the reference dataset of that time,

PASCAL VOC 2007 [29].

In 2015, Girschik [30] proposed an evolution of its preliminary architecture, directly dealing

with the main disadvantages shown. There are two main novelties in Fast R-CNN. Firstly, the

introduction of a modern head based on NN layers. The SVM-based mechanism is substituted

by a bounding box regressor, which follows up the modern output data structure explained

before. Secondly, the backbone extracts features of the whole image instead of the region

proposals separately. Therefore, a region of interest pooling mechanism is introduced to align

the features with the region proposals. The two novel mechanisms led to an inference time 200

times faster and an improvement of 15.5% mAP in PASCAL VOC 2007, reaching a total score of

70.0% mAP.

Later that year, Ren et al. [31] addressed the question: Can we generate region proposals with a

CNN model?. This is where Region Proposal Networks (RPN) are proposed. This led to another

improvement in both run-time (17 fps) and metrics (mAP = 73.2% in PASCAL VOC 2007).

The three main components of a detector were based on NNs and they become an end-to-end

DL structure. Moreover, modern detectors integrated RPNs within another component: the

neck. In 2017, Lin et al. [32] proposed Feature Pyramid Networks (FPN). Object detection has

to deal with both: classification and box regression. While the deeper layers of the backbone

have considerable classification potential, the resolution is decreased and the potential for box

regression is impoverished. While previous approaches only performed detection on the final

layer of the backbone, FPNs route lateral connections from previous layers to the head. This

allows captioning details in multiple scales. The overall improvement was clear, from 42.7%

mAP@0.5 in vanilla Faster R-CNN to 59.1% in Faster R-CNN with FPN neck in the COCO

dataset. From this day on, the typical structure of a detector follows this approach: backbone,

neck and head.

Lastly, He et al. [6] introduced a mask regressor within the head of Faster R-CNN, allowing

Instance Segmentation with the same architecture, and presented Mask R-CNN. Experiments

in this paper were made with ResNet [33] and ResNeXt [34] backbones over the COCO dataset.

The method outperformed the previous approaches not only within instance segmentation but

also in human key-point estimation.

Overall, the two-stage naming comes from the combination of RPN with the region of inter-

est pooling or align mechanisms that are in charge of generating the bounding box proposals.

Nowadays, Mask R-CNN is one of the most methods used methods for instance segmentation

tasks. Some other variants are also popular, but are more focused on accuracy and have slower
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Figure 3.2: Evolution of mAP with respect to time for 2D Object Detection on COCO test-dev
dataset.

Source: paperswithcode.com. Object Detection on COCO test-dev.

inference times such as Cascade Mask R-CNN and Hybrid Task Cascade R-CNN. As mentioned

before, improvements in Mask R-CNN have been done from its release on as a consequence of

the release of more modern building blocks that are introduced as backbones or necks.

3.2.1.2. Single-stage detectors: the YOLO family.

One of the main disadvantages of two-stage detectors is that their inference time is not

enough to be deployed in real-time environments, such as embedded devices, which require

between 25 and 30 Hz at minimum. In response to this requirement, Redmon et al. [35] proposed

the first version of one of the most relevant family of architectures in DL history: YOLO. The

following approach models detection as a regression problem: the image is divided in a S × S

grid and predicts simultaneously B bounding boxes with confidences and a class probability for

each grid cell. Each bounding box encodes its coordinates and the confidence of its prediction:

B = (x, y, w, h, c) Consequently, the final predictions are encoded in a S × S × (5 · B + C).

This is exemplified with PASCAL VOC 2007 dataset, where there are 20 labelled classes C = 20

and the authors chose a square grid of 7 cells and 2 bounding boxes per cell, S = 7; B = 2, the

output tensor is 7 × 7 × 30. This behaviour is graphically represented in Figure 3.3.

These decision choices lead to a fixed number of bounding boxes equal to S2 × B. As there

is not a fixed number of objects in an image, we could consider this number as the maximum

number of possible detections, since a post-processing stage is applied to take only the relevant

detections. Due to the nature of the network, there will be multiple overlapping predictions

over the same object of interest and trash predictions in zones with no particular objects. This

stage involves the application of confidence thresholds and Non Maximum Suppression to the

set of detections and after applying both there will remain only the relevant predictions.

https://paperswithcode.com/sota/object-detection-on-coco


42 Chapter 3. State of the Art

Figure 3.3: How YOLO works: simultaneous regression of bounding boxes and semantic
classes per grid cell.

Source: You Only Look Once: Unified, Real-Time Object Detection [35].

The architecture of YOLO is a succession of 24 convolutional layers which end up with 2

dense or fully connected layers. Leaky RELU activation functions were applied to all layers

except for the last one, which is a regression, so they applied a linear activation function. It is

designed to support as input square RGB images whose height and width are 448. The use of

dense layers at the final stage of the network fixes the input size. One of the major disadvantages

of YOLO is that it had difficulties in predicting objects with different aspect ratios to the ones

seen during the training stage.

This proposal leads to a very lightweight implementation that ran at 45 Hz in its early days.

More modern versions of YOLO can reach inference frequencies of 120-160 Hz. Inference time

and accuracy are two parameters that suffer from a trade-off in these architectures. Generally,

faster methods will perform slightly worse than the best-performing methods, which will not

be able to reach real-time inference speeds.

The same author proposed YOLOv2, YOLO9000 [36] and YOLOv3 [37]. YOLO9000 was

capable of detecting 9000 different semantic classes using a hierarchical classification method,

based on the applications of multiple softmax activation functions over a tree-like structure until

a final leaf is reached. The improvements done in these two versions include the introduction of

batch normalization for regularization, the removal of the dense layers, and the introduction of

anchor boxes and prior dimension clusters. Also, YOLOv3 included a new backbone, Darknet53,

a Spatial Pyramid Pooling (SPP) block which increased the receptive field of the network, and

a new decouple head that performed multi-scale predictions.

The multi-scale prediction mechanism makes the output have three branches. Each branch

is connected to a different feature map, each one with different resolutions so their predictions

will be focused on objects of different sizes in the original images. Final predictions are merged

using NMS.
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Figure 3.4: Evolution of mAP with respect to time for 2D Instance Segmentation on COCO
test-dev dataset.

Source: paperswithcode.com. Instance Segmentation on COCO test-dev.

Discontinued by the original authors, several parallel research branches appeared. During

the rest of this review, we will focus on YOLOv5 and YOLOv8. Glenn Jocher and its com-

pany, Ultralytics, started their work rewriting YOLOv3 in modern PyTorch. The architecture

was slightly modified and the main improvements were focused on reducing memory and

computational costs: stride convolutions in a new backbone (CSPDarknet53), a fast SPP block

and some modernizations such as SiLU activation functions and batch normalization. Lots of

work was put into engineering tasks, such as including a pre-training phase with an auto-anchor

mechanism, several data augmentations and customizable parameterizations to improve the

training stage and several export tools to maximize the number of possible devices in which the

model can be deployed. YOLOv5 became easy to train, use and deploy by every DL practitioner

so it became one of the most famous architectures. It offered 5 model versions that vary in

size: nano (n), small (s), medium (m), large (l) and extra-large (l) with two pre-trained checkpoints

for each one in 640 px and 1280 px. In addition, YOLOv5 began a task expansion project and

they started supporting not only object detection but also instance segmentation and image

classification.

Lastly, YOLOv8 was released in January 2023 and offers again 5 size variants (with one only

pre-trained checkpoint for 640 px) and support for multiple vision tasks: classification, object

detection, instance segmentation, key-points pose estimation and object tracking. At the time

of writing this document, work is put on supporting more tasks such as rotated/oriented object

detection. Among the main improvements of YOLOv8, you can find:

Anchor-free detections. From 2023 on, there is a trend for real-time detectors to remove

anchor mechanisms.

Use of novel loss functions for training, such as Complete IoU (CIoU) and Dual Focal Loss

(DFL) for bounding box and classification losses. Removal of confidence loss.

https://paperswithcode.com/sota/instance-segmentation-on-coco
https://github.com/ultralytics
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YOLOv8 for segmentation includes an FCN-like decoder called Proto and a segmentation

head that receives as input the boxes filtered by NMS.

After all this review, Figures 3.2 and 3.4 reflect the evolution of SOTA with respect to time

for object detection and instance segmentation, respectively. As can be observed in both charts,

two-stage detectors such as Mask R-CNN were leading and top-performing during the early

days of DL for CV. Several variants were Top 1 leaders, delving into the idea we have seen during

this Chapter: once an architecture is established, there are incremental improvements attacking

their three main components (backbone, neck and head). In parallel, attention mechanisms [38]

were being developed within the Natural Language Processing (NLP) domain. With the advent

of Vision Transformers [39] and Swin Transformers backbones [40] all the top-performing (in

consequence, slightly slower) methods decided to go through the path of including attention-

based building blocks in their architectures. Attention mechanisms for object detection will be

the natural continuation of this review, but as we will not cope with them, we postpone it for

future works.

3.2.2. Metrics

Mean Average Precision (mAP)

Mean Average Precision (mAP) [41] is the most common metric used to assess the goodness

or performance of object detection and instance segmentation models in images. It is formed by

the combination of several different metrics: Confusion Matrix (CM), Intersection over Union

(IoU), precision, recall and precision-recall curve. In a nutshell, to compute mAP it is necessary

to follow a seven-step procedure, each of these steps is:

1. Perform an inference over all the samples in the dataset and compute the prediction scores.

2. Transform the prediction scores to class labels.

3. Build the Confusion Matrix comparing the set of predictions with the set of ground-truth

objects via Intersection over Union.

4. Compute precision and recall.

5. Compute the Area Under the Curve (AUC) for the precision-recall curve.

6. Measure the Average Precision (AP).

7. Weight the average precision for each class over the total number of classes.

We will dive through all these steps, as mAP is at the same time, it is one of the most

used metrics and whose internal workings are less known. Firstly, it is necessary to perform

an inference over all the samples within the data split that want to be evaluated. The output

of a model for an object detection task includes a uni-dimensional array with the probabilities

to belong to each class present in the dataset. All these probabilities must sum up to 1.
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Step 2 involves taking the index of the class with maximum probability (through an argmax

operation), so the prediction score is transformed into a class label.

A Confusion Matrix or Error Matrix is a graphical representation of the performance of an

algorithm dealing with a supervised classification task and applied over a determined dataset.

For a binary classification task, given a set of samples, where we have a label-prediction pair

for each, we must classify each pair into four categories: True Positive (TP) if a prediction and

labels are positive, True Negative (TN) if both are negative (which is not possible in an object

detection task since the absence of label implies the absence of a prediction for this particular

object), False Positive (FP) if a prediction is done for no label, and False Negative (FN) for a label

without matching correct prediction. These four categories are graphically arranged in a 2 × 2

matrix. From the hypothesis testing point of view, we can consider FPs as Type I errors and FNs

as Type II errors. Expanding the CM to a multi-class classification problem, the information will

be arranged in a N + 1 × N + 1 matrix, being N the number of classes in a dataset. Therefore,

with a multi-class CM is also possible to distinguish those sets of classes that are more prone

to being confused between them. An example of a binary classification matrix (3.5a) and a

multi-class classification confusion matrix (3.5b) can be seen in Figure 3.5.

(a) Binary confusion matrix (b) Multi-class confusion matrix

Figure 3.5: An example of confusion matrices for binary and multi-class classification tasks.

But, in the context of object detection, it is mandatory to define an additional criterion to

confirm that a prediction corresponds to a label. IoU is a geometrical concept that represents

the quotient between the overlapped polygon and the polygon formed by the union of a pair of

bounding boxes. The IoU for a bounding box with itself (perfect overlap) will output 1, whilst

the IoU for a pair of boxes with no overlap region will output 0.

IoU (A, B) =
|A ∩ B|

|A| ∪ |B|
(3.1)

Introducing IoU into mAP leads to new variants of the metric. For example, mAP@0.5

represents the metric with a single validation threshold at IoU = 0.5. Another example is
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mAP@ [0.5 : 0.05 : 0.95], which computes the metrics for a range of thresholds, from 0.5 to 0.95

with a step of 0.05. It is worth mentioning that the second variant is much stricter than the

first one since it takes into account a higher value of IoU, which requires the model to make

quasi-perfect overlapped predictions.

Then, precision and recall can be computed for each class separately attending to their

definitions. On the one hand, precision is the quotient between the set of correct predictions

and the set of positive labels for that class. On the other hand, recall is the quotient between

the set of correct predictions and the set of positive predictions (correct and incorrect ones).

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

From a higher-level abstraction, precision answers the question ”How often does the model

predict correctly?“, whilst recall answers ”Has the model predicted what it was supposed to predict?“.

While the first one focuses on the success rate, the second one focuses on the absence of errors.

With precision and recall values it is possible to build the precision-recall curve for each

class. The construction of the curve requires as input the list of predictions for a single class

and being classified in TP or FP (i.e. via an IoU threshold). Firstly, the predictions must be

sorted by decreasing confidence, from the maximum to the minimum. Then, the aggregated

values of precision and recall are calculated following this order. This operation will output P

pairs of precision-recall values, being P the number of predictions that a model has made over

the whole dataset. An important point is that the recall will follow a monotonical increasing

tendency. Precision will increase and decrease without any pattern, a phenomenon that will

produce sharp variations in the curve that highly increase the sensitivity of the computation.

These pairs are plotted into a two-dimensional axis in which the X-axis represents recall and the

Y-axis represents precision, forming the curve. Then, the ideal Area Under the Curve (AUC) is

computed by taking integrals from 0 to 1.

AUC =

1
∫

0

Precision (Recall) · d (Recall) (3.4)

To alleviate computational demand and to reduce the impact of sharp variations in the curve,

ideal AUC is not used in practice. Instead, Average Precision (AP) is an approximation that

interpolates the curve within 11 or 40 points. The original approach was to use 11 points from

0 to 1 in steps of 0.1. Most modern approaches divide the range from 0 to 1 in 40 equidistant

steps. The interpolated precision values are obtained by taking the maximum precision whose

recall value is greater than its current recall.

With all these elements, AP can be computed.
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Figure 3.6: Original precision-recall curve vs. 11-point interpolation curve.

AP =
1

11

k=10

∑
k=0

Precision (0.1 · k) (3.5)

And lastly, averaging through all classes, mAP is also computed as:

mAP =
1

n

k=n

∑
k=1

APk (3.6)

As a last remark, when we introduced this metric it was stated that is one of the most

commonly used among object detection and instance segmentation tasks. Nevertheless, when

mAP is applied in instance segmentation, the criterion to consider a prediction as TP varies.

Instead of using IoU among pairs of boxes, IoU is applied pixel-wise between pairs of masks.

To differ between them, modern datasets report mAP(B) for object detection and mAP(M) for

instance segmentation.

3.3. 3D Object Detection in Point Clouds

Once we have gone through an extensive review of object detection for images, it will be

relatively easier to introduce the task of object detection for 3D point clouds. These point

clouds will come from LiDAR or RADAR sensors. The research on methods for this task has

been mostly done with LiDAR data. The work with RADAR data was particularly limited due to

the low resolution of the previous generation sensors. Recently, a study has tested the methods

developed for LiDAR on a 4D RADAR dataset. Alternatively, there are lines of study that focus

on specific architectures for traditional RADAR point clouds. The gap between using LiDAR
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or RADAR data is very large, so the advent of 4D RADAR represents an opportunity for new

architectures that have a higher performance from better quality data with velocity information.

Therefore, this task starts taking an input from a point cloud, which is a tensor in the

form N × F, where N is the number of points and F is the number of features. Features

will include spatial localization in x, y, z coordinates, the intensity of the reflection or its

RADAR equivalent, RCS, radial velocity in the case of RADAR, and a time dimension which

will reflect the temporal relations between points if point clouds from consecutive time stamps

are accumulated. The output will be a set of oriented bounding boxes in the 3D space, in

the form B = (x, y, z, dx, dy, dz, θ), where (x, y, z) are the coordinates of the centroid of the

bounding box, (dx, dy, dz) are the dimensions of the box and θ is the orientation of the box

with respect to the Z, upwards, axis.

3.3.1. Methods

Once the inputs and outputs of the task have been characterised, a selection of existing

methods of the current literature will be reviewed. Methods for 3D object detection can be

categorised by the way they represent the point clouds, which will lead to a specific set of

models: projection-based, volumetric and point-based methods. Additionally, a fourth research

brand focused on 2+1D RADAR will be mentioned.

Projection-based methods: As a more complex task and appearing later in time, this

research line aims to take advantage of the developments made within 2D object detection

and projects the point cloud into an image plane via perspective, cylindrical or spherical

projections. On one hand, fast real-time computations are enabled because it is possible

to apply variants of the known 2D object detection one-stage architectures. On the other

hand, the compression of depth into an image plane difficult the estimation of shape

and orientation for the bounding boxes. Another disadvantage is that the detection of

occluded objects is difficult within a 2D image plane. Another possibility is to project the

point cloud into a Bird’s Eye View (BEV) projection and encode the height into the image

channels.

Volumetric (voxel-based) methods: The key concept behind this research line is that

an unstructured input point cloud is discretized into a volumetric 3D grid, in which

each unitary cell is known as voxel (volumetric pixel). Therefore, the whole 3D space is

discretized and each voxel is populated with the points that lie inside it. After populating

the voxels, each one will be represented by a unique vector of features, which are extracted

by manipulating the data points, and their spatial coordinates. The main advantage of

these methods is that they maintain a spatially coherent representation of the environment

with minimal information loss. However, there are two big disadvantages. Firstly, due

to the nature of LiDAR point clouds (and even more accentuated on RADAR ones), the

information is sparsely distributed through the space. This means that a high percentage

of voxels will be empty and will not contribute relevant information. Secondly, applying
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CNNs to a 3D data structure involves the usage of 3D convolutions, which are heavily

costly in terms of computation effort.

Point-based methods: Lastly, point-based detection methods consume the point cloud

in raw format, as a tensor, without any spatial information loss. They will present high

sparsity and computational cost due to the usage of 3D convolutional layers, as happened

within the voxel-based methods.

During this review, we will observe that some architectures try to combine the advantages of

various of these research lines (i.e. point-based and voxel-based), creating hybrid approaches.

Moreover, analogously to 2D detectors, we can categorise 3D detectors into one-stage or two-

stage detectors.

3.3.1.1. Projection-based methods

Complex YOLO [42] expanded the work made in YOLOv2 by adding a regression strategy

to estimate multi-class 3D bounding boxes in the Cartesian space. In this case, a LiDAR point

cloud is colourized by back-projection of the image and projected to BEV. Then, a CNN based

on YOLOv2 with a modified E-RPN to propose regions in the Euler space performs detection

in a grid-like system (as explained in previous sections). The post-processing stage performs

a regression for the angle of the oriented bounding box. The main contribution of this paper

is that they achieved the first architecture to process LiDAR point clouds in real-time, at 50

Hz. The model is trained and evaluated in KITTI [8]. Another approach based on YOLOv2 for

3D-oriented object detection is YOLO3D [43].

Beltrán et al. proposed a framework called BirdNET [44] in 2018. It consisted of the

application of a 2D object detector, Faster R-CNN with RPN, over a LiDAR point cloud projected

to BEV. The main contribution of the paper lies in the cell encoding protocol, whose purpose is to

perform a density normalization over the beams. Moreover, the head component of the detector

is modified to support a third branch that estimates the possible orientation of the bounding

boxes. Later, a preprocessing stage refines the bounding box orientation and estimates the

heights of the object, supported by a ground plane estimate. Later, Barrera et al. extended this

work in BirdNet+ [45] performing end-to-end detection relying solely on Faster R-CNN and no

post-processing stage. Both models were trained and tested on KITTI [8].

In order to take advantage of multiple projections of the LiDAR, multi-view approaches

appear. Chen et al. proposed MVLidarNet [46] in 2020 consisting of two consecutive networks

schema: a semantic segmentation of the point cloud within a spherical projection within the

image plane and a BEV projection of the segmented point cloud. The first network is an

optimized and lighter encoder-decoder based on FPN. The second network receives as input

the sampled BEV image and the semantic-coloured image in two different branches that are

fused and share the decoder. The term encoder-decoder architecture is another way to express the

anatomy of a NN. It receives that name because it receives as input an image-like tensor and

the backbone or encoder is in charge of compressing the image and extracting the most relevant
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features, as usual. The decoder varies from the neck-head concept explained before. This type

of network also outputs an image-like tensor and is in charge of decompressing or decoding the

features to create the desired representation. The output of the second network is a BEV image

with features that may represent a bounding box. Then, DBSCAN clustering is applied over

this image to extract the relevant objects and, also, the free-driving space. For this work, the

authors trained the first stage in SemanticKITTI, and the second one in KITTI, [8]. Running both

networks has an inference time of 7 ms and performs competitively alongside more expensive

architectures in KITTI.

Overall, the projection-based methods aim to obtain higher inference times at the expense

of slightly worse performance. Moreover, a research trend in which novel methods from 2D

Object Detection are imported into this task has been identified. This practice allows the fast

adoption of the spearhead of research for this particular application. Another example of this

trend can be seen in the case of Fully Convolutional One-Stage (FCOS) [47], a novel architecture

that treats object detection as a per-pixel task (similar to semantic segmentation). The same

authors released the original method in 2019 and they adapted it to 3D object detection with

LiDAR in a perspective projection view in 2022 [48].

3.3.1.2. Voxel-based methods

Object detection in point clouds is intrinsically a three-dimensional problem. Hence, it is

natural to deploy networks based on 3D convolutions for this problem. The first voxel-based

methods were also imported from the 2D vision domain. In this case, Li presented 3DFCN

[49], an adaptation of FCNs to the automotive field with LiDAR point clouds. The method

takes a discretized voxel representation of the point cloud as input and outputs two similar

representations: a binary objectness map (which indicates if the voxel belongs to a vehicle or

to the foreground) and a bounding box map (which is in charge of predicting its coordinates).

To deal with voxels, this is the first approach that applies 3D convolutions, which leads to an

increase in accuracy but at the cost of a significant inference time and computational effort. The

results of the paper were promising but the subsequent papers will try to mitigate the effect of

convolving a 3D tensor.

As a successor of this idea, Zhou and Tuzel proposed VoxelNet [50]. The voxel-based

representation samples the point cloud taking into account that the variety of density in a

LiDAR point cloud leads to an over-representation in nearer voxels. To cope with this issue,

they randomly sample the voxels that exceed a maximum number of points. This sampling

strategy reduces the computational efforts and augments the randomness during training,

which leads to a higher generalization. They propose an architecture based on three networks:

a voxel feature extractor, a set of stacked 3D convolutional layers and a 2D RPN as the last

component. The inclusion of a RPN based on 2D CNNs also alleviates the computational load.

The method is trained on KITTI [8].

Later on, SECOND [51] adopted the same structure as VoxelNet. The main contribution of

this paper was the introduction of sparse convolutions to substitute the costly 3D convolution.

This made it possible to run voxel-based architectures between 20 and 40 Hz in real-time.
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Bringing together the knowledge acquired by the two previous proposals, PointPillars [52]

is proposed in 2019 offering a novel and lightweight representation, pseudo-images. Pseudo-

images are a variant of voxel-based sampling in which all voxels have a height equal to the

total height range of the point cloud and are called pillars. Then, the architecture has three

main components, similar to VoxelNet and SECOND’s: a pillars-based feature encoder, a 2D

convolutional backbone and a detection head based on the work of SSD [4]. Therefore, the

main contribution is a Pillar Feature Extractor (PFE), which is the component that allows a 2D

backbone component and the reach of real-time performance (16.2 ms runtime in an Intel i7

CPU and NVIDIA GTX1080Ti GPU) in consequence.

3.3.1.3. Point-based methods

The review of research lines for object detection in point clouds will end up with point-based

methods. PointNet [53] and PointNet++ [54] are proposed by Qi et al. and establish a standard

for point-to-point feature extraction in point clouds. These two methods perform point cloud

classification and segmentation. Therefore, Shi et al. transfer the acquired knowledge to the task

of object detection in point clouds with PointRCNN [55]. It is a two-stage detection framework

which consists of a 3D proposal generation stage and a bounding box refinement stage. The

first stage is comprised of PointNet++ with multi-scale grouping. After obtaining point-wise

features, there are two outputs. one is in charge of doing foreground point segmentation and

the second one is in charge of doing a bin-based 3D bounding box generation. The method is

trained and evaluated on KITTI [8].

Due to the importance of the method, it is interesting to review how PointNet established a

method to extract point-wise characteristics. The methods treat point clouds as point sets in an

Euclidean space. Sets have these three properties:

1. Sets are unordered. Then, the network must be invariant to permutations within the input

tensor.

2. Interaction among points occurs. Then, a point is not isolated and can interact with its

neighbours, forming meaningful subsets.

3. Sets should be invariant under transformations. As a representation of a geometric object,

the meaning of the object must not change independently of if the points are translated

and rotated as a whole.

The feature extraction relies on three modules: a max pooling that aggregates features from

all points, a local and global information structure based on MLPs, and two joint alignment

networks that align the input point and point features based on subnetworks that predict

an affine transformation matrix. Then, PointNet++ adds a hierarchical mechanism to apply

multiple PointNets to specific subsets and capture better the relationship among neighbour

points. Most of the point-based methods are related to these two in one way or another.
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Figure 3.7: Radar-only detection framework based on PointNets for feature extraction, pillar
rendering and per-pixel 2D oriented object detector.

Source: Improved Orientation Estimation and Detection with Hybrid Object Detection
Networks for Automotive Radar [56]

3.3.1.4. Object Detection in Sparse RADAR Point Clouds

As an additional research line, we will review the progress of RADAR only point cloud-

based methods on nuScenes [9] dataset. The vehicle platform with which this dataset was

recorded was equipped with 5 Continental ARS408 radars, offering a 360º degree coverage. As

this hardware is considered old-gen and provides only 2+1D output point clouds with a very

sparse density, literature on this topic is scarce.

However, Ulrich et al. [56] proposed in 2022 two novel architectures that combined point-

and grid-based approaches to perform object detection and orientation, as shown in Fig. 3.7.

Both networks are composed of five main components: a point-based feature extractor, a grid

renderer to sample the feature among the corresponding pillars, a 2D convolutional backbone,

an FPN as neck and a per-pixel head for oriented bounding boxes. With this schema, the authors

are able to merge the advantages of different research trends (studied during this review) into a

novel application in RADAR point clouds: feature extraction with PointNets, pillar-rendering

like PointPillars, and a BEV-projected single stage object detector like FCOS. Both networks

differ in how they extract point-based features: GNNs or Kernel Point-based Convolution

(KPConv). Both models are trained on nuScenes, obtaining an mAP of 24.6% and 26.2% on the

validation set, respectively. Given these results, the KPConv-based model is submitted to the

evaluation server of nuScenes, ranking first on RADAR only category with 29.2% mAP.

The research line is followed up by Köhler et al. [57] and Lippke et al. [58]. In [57], the

authors propose an incremental improvement of [56]: the application of a multi-grid rendering

mechanism to take advantage of multiple dense feature maps. In [58], the point-based feature

extraction component is composed of two different branches: a KPConv-based branch and a

submanifold sparse convolutions branch which aims to obtain computational benefits from the

natural sparsity of RADAR point clouds.
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Model name
Performance on nuScenes

Performance on KITTI

3D, Medium difficulty

NDS mAP AP Car AP Ped. AP Cyc.

Projection

BirdNet [44] – – 37.1 35.3 31.9
BirdNet+ [45] – – 55.6 52.4 42.6
FCOS-LiDAR [48] 0.632 57.0 – – –

Voxel

VoxelNet [50] – – 65.11 33.69 48.36
SECOND [51] – – 73.66 42.56 53.85
PointPillars [52] 0.491 34.33 75.75 34.41 55.67

Point PointRCNN [55] – – 74.99 43.53 59.07

RADAR

GNNConvPillars [56] – 24.6 (Car) – – –
KPConvPillars [56] 0.139 4.9(All)/29.2(Car) – – –
Köhler et al. [57] – 26.42 (Car) – – –
Lippke et al.[58] – 25.98 (Car) – – –

Table 3.1: Comparison among State of the Art methods presented.
Results are taken from their respective publications. Italics means results are taken from

nuScenes validation set.

As can be seen in Table 3.1, the methods presented during this Chapter are compared

quantitatively. Results are taken from their respective papers within the datasets KITTI [8]

and/or nuScenes [9]. We remark the performance of PointPillars in both terms of performance

on KITTI and their belonging to the voxel-based models family, which will provide it of a faster

inference time than PointRCNN, a voxel-based method that performs on pair.

3.3.2. Metrics

In an analogous way to Section 3.2, a review of the most common metrics will be done. It is

worth mentioning that mAP is the most used metric for 3D Object Detection for Point Clouds,

as it was in 2D Object Detection for Images. In this case, the criteria to consider a detection

as positive is by means of an evaluation of IoU over the three-dimensional space. Now, IoU

thresholds depend on the category, i.e. IoU ≥ 0.5 for Cars, while IoU ≥ 0.25 for Vulnerable

Road Users (VRU) (pedestrians and cyclists).

Additionally, during this Section two more metrics will be presented: Average Orientation

Similarity (AOS) and nuScenes Detection Score (NDS).

Average Orientation Similarity (AOS)

Object detection in 3D point clouds requires oriented bounding boxes at outputs. Therefore,

a metric that jointly assesses the performance of object detection and orientation is necessary.

As detection is covered by mAP, AOS introduce the orientation component through a concept

known as cosine similarity. The orientation similarity is a variant of cosine similarity that is

ranged in [0, 1] and is defined as:

s(r) =
1

D(r)
· ∑

i

1 + cos ∆
(i)
θ

2
· δi (3.7)
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WhereD(r) is the set of detection for a certain recall value r and ∆
(i)
θ is the difference on angle

θ estimation and ground-truth for a matched detection i. Additionally, δi acts a penalization

mechanism: δi = 1 if IoUi ≥ 0.5, or δi = 0, otherwise.

Then, the calculation of AOS is performed taking orientation similarity for 11 points on the

recall curve, in an analogous way to mAP. It is expressed as:

AOS =
1

11

k=10

∑
k=0

max s (0.1 · r) (3.8)

NuScenes Detection Score (NDS)

nuScenes [9] has become the dataset of reference in the domain of DL for perception. The

spearhead of research from 2021 on has embraced this dataset arguing that KITTI [8] was not

challenging enough to discern which of the most novel methods is the better-performing one.

The dataset proposed one of the most comprehensive metrics that have been designed for AD

yet: nuScenes Detection Score. NDS is the weighted sum of six sources of error:

Average Precision (AP). Explained in Section 3.2.

Average Translation Error (ATE). Euclidean distance in x-y plane between the centroids

of the detection and its matched ground-truth.

Average Scale Error (ASE). Aligning the centres and orientation of the detection and its

matched ground-truth, it is computed as 1−IoU.

Average Orientation Error (AOE). Angle difference between the prediction and the

ground-truth.

Average Velocity Error (AVE). Absolute velocity error in m/s.

Average Attribute Error (AAE). Calculated as 1 − c, being c the confidence in the class

prediction.

All these errors are positive, except for translation and velocity, which can be put in absolute

values. Then, these errors are calculated per class and their mean versions are computed. Then,

the weighted sum assigns the following ponderations:

TPerror = 5 · mAP + mATE + mASE + mAOE + mAVE + mAAE (3.9)

Finally, NDS is the complementary version of TPerror, and it is bounded in the range [0, 1].

NDS = max (1 − TPerror, 0) (3.10)

Moreover, in a recent study published in August 2023, Schreier et al. [59] made a comparison

between perception-focused metrics and holistic-focused metrics in an offline evaluation in
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CARLA Simulator [60]. The term holistic in Autonomous Driving refers to the navigation as a

whole, as a higher-level abstraction. In this study, NDS metric was the most correlated metric

with the holistic metric of reference, Driving Score (DS), nearly followed by mAP. This means

that both metrics capture the essence of the most relevant aspects of the perception stage to

perform autonomous navigation with success.

3.4. RADAR-Camera Fusion

As previously introduced in Chapter 1, sensor fusion aims to fuse the data of different

modalities or sensors taking advantage of the synergies that can outcome from the combination

of them to fulfil a specific task. In the context of Autonomous Driving, sensor fusion improves

the robustness and reduces the uncertainty of perception systems. During previous sections of

this review, only single-sensor methods have been presented but the most common approach is

to fuse LiDAR, RADAR or cameras and any possible combination with this set of sensors have

been explored within the recent literature.

Therefore, during this Section, we will define how sensor fusion can be performed by

answering four main questions: what to fuse, where to fuse, when to fuse and how to fuse [61]. Then,

a set of selected methods based on camera and automotive RADAR will be revised.

3.4.1. Key Questions on Sensor Fusion

RADAR and camera are two sensors that excel at complementary features. While RADARs

provide depth cues, accurate velocity estimation, and are robust against adverse weather con-

ditions, cameras provide a dense, semantic representation. Coincidentally, the strong points of

the first are the weak points of the second, and vice versa. Moreover, a perception system based

on RADAR and camera is cheaper than a system based on LiDAR, thus mass-scale production

is enabled. Therefore, the two main advantages of this fusion are: that the combination of

strong points embraces the whole range of capabilities needed for autonomous navigation and

that the reduced price of the sensor suite allows mass-scale implementation. Having justified

the fusion, let’s answer the key questions for fusing correctly.

What to Fuse? RADAR provides a wide range of modalities to fuse that have been

reviewed in Section 2.3.1: from raw ADC to the point cloud representation, going through

spectrograms and radar cubes. Each one of them offers a different set of advantages and

weak points. On the side of the camera, there is less diversity of representations. Among

camera modalities, we can find: RGB or gray-scale images for visible light cameras, and

infrared or thermal representations.

Where to Fuse? Spatial coherency must exist when fusing data from various sources.

Data must be referenced to the same coordinate frame. To tackle this, there are two main

options in RADAR-camera fusion: in the perspective projection of the image plane, or in

the bird’s eye view space. Fusing in the image plane involves the projection of the radar
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tensors or point clouds via calibration matrices, forming sparse radar images. Fusing in

BEV plane involves the lifting of camera-based features inside a neural network due to

the fact that geometric projections under-perform in this task.

How to Fuse? Fusing two sensor modalities involves keeping spatial and temporal coher-

ence or alignment. Temporal misalignment can occur when the latencies are not controlled

or compensated. Spatial misalignment occurs when calibration methods are not accurate.

Fulfilling these conditions, fusion is done by means of fusion operators. Fusion oper-

ators are: transformation matrices for data-level fusions, and additions, multiplication,

concatenation and attention mechanisms for feature-level fusions.

When to Fuse? Depending on the stage of the perception pipeline we can classify fusion

schemes in these levels: object-level, data-level, feature-level and any combination of them

(hybrid-level). Object-level fusion involves two separate independent methods that return

their respective detections and a later fusion mechanism. In this case, Bayesian Theory,

Kalman Filters and matching algorithms are used to associate detections spatially. The

data-level fusion involves the creation of a new representation of the environment before

any detection network or method, i.e., projecting the radar features to the image plane

and concatenating those channels with the original RGB image, resulting in a different

tensor that will feed an NN. The feature-level fusion involves the combination of radar

features maps and camera feature maps inside an NN applying any fusion operator

(keeping spatial coherence). Then, hybrid approaches can make combinations of any of

the previous ones applying different fusion operators.

3.4.2. Methods

Having reviewed the main components of sensor fusion, let’s review some spearhead meth-

ods for RADAR-camera fusion. Although RADAR sensors have been applied to ADAS since

many decades ago, there are few studies that tackle the fusion of RADAR and camera infor-

mation. This research has remained unexplored since the advent of DL, and it has been in the

decade of 2020 when a rising interest in the topic has been detected.

As previously introduced, nuScenes [9] has become the dataset of reference for AV ap-

plications and has been the first big-scale benchmark to introduce RADAR data. One of the

first methods ranked in nuScenes at Camera and Radar Detection Track was CenterFusion

[62], whose architecture is framed in Figure 3.8. Nabati and Qi propose a feature-level fusion

scheme with two main branches. The imaging branch uses CenterNet [63] as the backbone. The

RADAR branch opts for a pillar rendering mechanism, similar to KPConv. The head is split into

two parts: primary and secondary. The primary head obtains preliminary 3D bounding boxes.

Pillar features and preliminary boxes are associated through a frustum-based mechanism and

a radar feature map is generated. Image and RADAR feature maps are concatenated and are

the input to the secondary head, that refines the preliminary proposals. They performed a

performance comparison in which the camera-only KPConv scored an NDS = 0.328 and the
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Figure 3.8: CenterFusion network architecture.
Source: CenterFusion: Center-based Radar and Camera Fusion for 3D Object Detection [62]

fusion of both sensors scored NDS = 0.453, an improvement of 0.125 due to the fact of including

radar data information.

Nobis et al. [64] proposed a method to fuse RADAR and camera information in the image

plane, extending the image with radar channels that include range, velocity and RCS infor-

mation. The method is built based on RetinaNet [65] with two branches. The camera image

follows a VGG [66] backbone and the radar branch applies max pooling operations to preserve

the maximum information possible when the dimensionality is reduced, as it is a sparse image.

Then, feature maps from radar and image branches are concatenated at multiple scales. An

FPN and a detection head end the architecture. The method introduced a novel augmentation

method called BlackIn. BlackIn shut down the neurons at the input of the camera image, so the

network must rely on the RADAR channels to obtain the information.

A remarkable network that opted for a data-level approach is RadSegNet [67]. The method

uses a 2D detector for oriented bounding boxes. In this case, a BEV grid map is generated

from the RADAR point cloud. The grid is augmented with semantic information coming from

the camera. A 2D semantic segmentation network is applied to the image. Then, a semantics-

to-radar module projects the information from the image plane to the BEV grid map. The

final grid map is composed of multiple channels: the grid map, point-based feature maps and

semantic maps, leading to a 22-dimensional tensor. The architecture for semantic segmentation

is a DeepLabV3+ with a ResNet-101 backbone trained in CityScapes [68], due to the absence

of semantic labels in RADAR-camera-based datasets. The architecture for object detection is

based on RADAR, treating detection as a per-pixel task, trained on Astyx dataset [69].





Chapter 4

Work Development

We choose to go to the Moon in this decade and do the

other things, not because they are easy, but because they

are hard.

John F. Kennedy.

The main purpose of this Chapter is to explain in detail the practical project developed within

the scope of this work. A 3D Object Detection framework based on the fusion of monocular

camera images and automotive radar point clouds is developed using multiple DL networks

for autonomous driving applications.

Therefore, the main objective of this work is to implement a sequential geometrical sensor

fusion scheme, PointPainting [1], which was proposed for fusing LiDAR and camera, but in

RADAR and camera images. The LiDAR version was evaluated on KITTI [8] and nuScenes [9]

datasets, in which the method showed a delta improvement of 2.94 and 6.3 mAP, respectively.

To the best of our knowledge, this method has not been adapted to RADAR yet and there is no

literature related to this type of fusion schemes. We aim to analyze the impact of camera colours

and semantics additional information into RADAR point clouds. Additionally, we propose a

heuristic set of rules to deal with one of the main disadvantages of the method, the smearing

effect, which will be further explained.

As for the organization of this Chapter, it will be divided into two sections. Firstly, the dataset

used to validate our methods will be explored and analysed, providing insights about the

sensors, the recording platform, the format in which the data is presented and the distribution

of some important variables. Secondly, the implementation of the aforementioned methods

will be explained in detail.

As a remark, during this Chapter, we will go through concepts and methods explained in

the previous Chapters. These Chapters served as an introduction and contextualization to the

reader to the topics that are been dealt with in this work.
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4.1. Dataset

Due to the recent advent of High-Resolution 3+1D RADAR, and been RADAR the least

explored sensor among DL-based perception techniques, there is a relatively low number of

multi-modal datasets that include this sensor1. Moreover, it is difficult for any of the available

datasets to include annotations for a wide range of tasks. In this context, the View of Delft

(VoD) [11] was released in Q2 2022, which is a collection of urban sequences recorded in the

Dutch city of Delft. An example frame of the dataset and the sensor setup of the recording

platform can be seen in Figure 4.1.

(a) Example frame at View of Delft dataset. (b) Sensor setup at View of Delft dataset.

Figure 4.1: The View of Delft dataset.

The dataset is composed of 8682 individual frames and has official training/validation/test-

ing splits with 5139/1296/2247 frames respectively. The training and validation sets are avail-

able to download to academic institutions and the testing set is accessed through a request to

the authors. Each frame is composed of a 64-beam LiDAR point cloud, a 3+1D RADAR point

cloud, a single image from a stereo vision system, the calibration matrices to transform between

reference frames, odometry and GPS information. In addition, every frame is annotated for

both tasks: 2D and 3D object detection.

Every LiDAR point cloud is a vector LPC ϵ R
N × 4, where N ≈ 180.000 is the number of points.

Each LiDAR point is composed by (x, y, z, i), spatial location and intensity of the reflection.

Every RADAR point cloud is a vector RPC ϵ R
N × 7. In this case, the RADAR data is presented in

three versions accumulated over time: single-frame and multi-frame (3 frames and 5 frames).

Therefore, N ≈ 250 for the single frame version, and 750, 1250 for the 3-frame and 5-frame

versions, respectively. Each radar point is a vector
(

x, y, z, vr, vrcomp, σ, t
)

, where (x, y, z) is

the spatial location of the reflection,
(

vr, vrcomp

)

are the radial velocity and its compensated-by-

ego-motion version, σ is RCS, and t is a time variable which indicates the number of timestamps

since that point cloud was captured. The camera information is presented as an RGB image

with size I ϵ Z
3 × 1216 × 1936.

1Awesome Radar Perception is a GitHub repository that collects the main developments on RADAR-based DL
techniques and datasets.

https://github.com/ZHOUYI1023/awesome-radar-perception
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As previously mentioned, every frame is annotated for 2D and 3D object detection tasks.

Frames are annotated in a KITTI-like format. There are 14 label types available: Pedestrian,

Car, bicycle, rider, bicycle rack, Cyclist, uncertain riders, moped scooter, other riders, motorbikes, human

depictions, trucks and other vehicles. The label distributions for training and validation sets

are shown in Figure 4.2a and 4.2b, respectively. The labels belonging to the same frame are

contained within a text file. In these files, every label is contained in one text line. Each label

has 15 values separated by a space.

Type: a text string that describes the type of the object.

Moving: an integer that describes if the object is static (0) or dynamic (1). As a remark,

this field differs from the original KITTI format.

Occluded: an integer that indicates if an object is fully visible (0), partly occluded (1),

largely occluded (2) or unknown (3).

Alpha: a float number ranged in [−π, π] that represent the observation angle of the

object.

Bounding box 2D: four integer numbers that represent the left, top, right, and bottom

pixels image coordinates of the object.

Dimensions: three float numbers in meters that indicate the dimensions of the 3D bound-

ing box that encloses the object: height, width and length.

Location: three float numbers in meters that indicate the spatial location of the centre of

the 3D bounding box in camera coordinates.

Rotation: angle of rotation around the downwards-pointing axis (Y-axis in camera coor-

dinates), ranging in [−π, π].

Additionally, detections can be expressed in the same format but with an additional score

field, which indicates the confidence of the detection, ranging in [0, 1]. The annotated zone

covers an area of (xmin, xmax, ymin, ymax) = (0, 50, −25, 25) m. Lastly, the sensor setup of the

recording platform, a Toyota Prius vehicle, and its main specification must be described.

Camera: The vision system is an IDS stereo camera that provides coloured and rectified

images of 1216×1936 pixels at 30 Hz approximately. It has a horizontal FoV of 64º (±32º)

and vertical FoV of 44º (±22º). It is located in the driver’s position behind the main glass.

RADAR: The RADAR sensor is a ZR FRGen21 3+1D, which output point clouds at ap-

proximately 13 Hz. It provides measurements up to 100 meters in this dataset, as can be

seen in Figure 4.3, covering the frontal part as its field of view. It is mounted on the front

bumper of the vehicle.

LiDAR: The LiDAR system is a Velodyne HDL-64 S3, that output measurements every 10

Hz. It is placed at the top roof of the vehicle and it covers a horizontal FoV of 360º and a

vertical FoV of approximately 26º.
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(a) Label distribution in training set (b) Label distribution in validation set

(c) Label distribution in training set mapped to
KITTI categories

(d) Label distribution in validation set mapped to
KITTI categories

Figure 4.2: Label distribution in View of Delft dataset.

Figure 4.3: Radar depth histogram.
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4.2. Methods

The proposed method aims to solve the task of 3D Object Detection on RADAR point

clouds with additional semantic information coming from a camera image. To solve the task,

a framework that combines multiple neural networks and geometrical algorithms is proposed.

The four key components that comprise the framework are:

An instance segmentation network for images using YOLOv8-seg.

A sequential geometrical fusion for point cloud colouring algorithm, known as Point-

Painting.

A rule-based cluster refinement algorithm.

A 3D object detection network for point clouds using PointPillars.

This section will perform a theoretical-practical explanation of the four main components.

Delving into the inner details of the structure of the neural networks or algorithms and explain-

ing the steps that are needed for their start-up. An overview of the full framework can be seen

in Figure 4.4.

Figure 4.4: Full framework overview.

The development environment is encapsulated in a Docker2 container. The utilization of

Docker containers to develop software applications allows the packaging of all the necessary

dependencies needed to develop, deploy and execute the application independently of the

working machine and hardware drivers. This approach is particularly useful for research

applications where reproducibility and flexibility to work with novel components and tools are

important factors. Due to this fact, NVIDIA has developed its own registry, the NGC Catalog,

where tool-specific images are stored and allows an easy startup of a project. For the realization

of this project, the base image is nvcr.io/nvidia/pytorch:23.05-py33.

2Docker official website.
3PyTorch-optimized Docker image at NVIDIA Container Registry.

https://www.docker.com/
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
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4.2.1. YOLOv8 for Instance Segmentation

The first step of the framework consists of the application of a DL architecture to the camera

image in order to obtain the semantics of the scene. For this task, we employ the novel YOLOv8-

seg architecture implemented in ultralytics4 framework.

4.2.1.1. Architecture

During Chapter 3, a review of the YOLO family algorithms was done, from the original

YOLO [35] to the last YOLOv8. In this Section, we will focus on the inner details of YOLOv8 and

how to evolve from the object detection version to the instance segmentation one. As a starting

point and due to the lack of official diagrams of the architecture, we will refer to Figures 4.5 and

4.6 through this explanation. The first one is extracted from mmyolo, an OpenMMLab package

to implement the YOLO family architectures, and the second one is extracted from FastSAM

[70], an efficient method to perform prompt universal segmentation based on the YOLOv8-seg

architecture.

As explained before, YOLO family architectures are categorised as one-stage detectors.

Among their main advantages, they offer adequate performance while preserving inference

times suitable for real-time applications. YOLOv8 architecture is divided into three main

components: backbone, neck and head. The head is divided into two sub-branches, one for

object detection and the second one for segmentation. A post-processing stage ensemble both

head outputs to provide an instance segmentation representation of the environment.

CSP-Darknet backbone. The backbone of YOLOv8 is based on Darknet and adds Cross

Spatial Partial connections (CSP) to reorganize the flow of information through the net-

work. The stem is a convolutional block composed of a convolutional layer, batch nor-

malization and SiLU activation functions. Following there are four blocks composed of

a convolutional block and a CSP block with two convolutional blocks inside. The last of

these four also includes a Spatial Pyramid Pooling (SPP) block. Spatial Pyramid Pool-

ing (SPP) block allows the network to perform inference with different image sizes. The

information flow can be seen in Figure 4.5.

PAFPN-based neck. The neck is composed of two branches: a top-down path and a

bottom-up path. The top-down path takes as input the deepest feature map and performs

upsampling operations whilst receiving the intermediate feature maps. The bottom-up

path downsamples the features taking as input the output of the top-down path and

concatenating with other feature maps. The key concept is that the top-down part is

fed back by the backbone and the bottom-up is fed back by both, the backbone and the

top-down path.

Decoupled head for detection. The concept of decoupled heads is still present in YOLOv8.

One is taken from the output of the top-down path in the neck, and the other two are

4ultralytics is a framework that contains ready-to-use versions of YOLOv3, v5 and v8 for detection, segmen-
tation and pose estimation tasks.

https://github.com/ultralytics/ultralytics
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taken from the bottom-up path intermediate feature map and its output, respectively. The

resolution for each feature map is 80, 40 and 20, enhancing the detection of objects with

a smaller area in the image with this multi-scale approach. Moreover, the detection head

is anchor-free, so no prior information is needed and it has more adaptability to predict

bounding boxes whose aspect relation has not been seen during training.

Proto head for segmentation. The output of P3, an intermediate feature map that can

be seen in Figure 4.6, acts as input of the Proto network. Proto is a fully convolutional

network that performs transposed convolutions to upsample the image. The output of

this block is a tensor whose size is equal to the image size and with a set of masks, one for

each channel, along with a mask coefficient.

Post-processing stage. After getting the candidates to detection from the detection head,

NMS is applied to extract the final bounding boxes. Also, in this stage, the mask coeffi-

cients, which range from -1 to 1, are multiplied by the masks themselves and are matched

up with the boxes through cropping.

Once the architecture has been visited in depth, we approach the implementation of the instance

segmentation network.

4.2.1.2. Implementation

As previously mentioned, the YOLOv8 family is implemented within the ultralytics

package. Therefore, the first step is to install ultralytics package from the terminal using

the following command inside the Docker container.

1 pip install ultralytics

Listing 4.1: Installation of ultralytics.

A correct approach would involve the adaptation of the network to this dataset via a full

training or fine-tuning: a training phase with a reduced learning rate and iteration to close the

domain gap between the original dataset and a new one. However, it is not possible to perform

a training or fine-tuning of YOLOv8-seg in VoD dataset due to the absence of image semantic

labels. This fact also led us to choose YOLOv8-seg due to their extensive pre-training on the

COCO dataset, which will ensure adequate performance, even with this domain shift.

The next stage of the implementation is to extract an image, whose size is equal to the image

coming from the camera, in whose channels are going to be encoded the probabilities of a

pixel belonging to any of the categories present in the KITTI evaluation protocol: pedestrians,

cyclist and cars. To deal with this, we have to perform inference over an image with pre-trained

weights, yolov8x-seg.pt: the biggest version of YOLO. Then, the output categories of YOLO

are restricted to the ones of interest (mapping from COCO to KITTI): person −→ pedestrian, vehicle

−→ car and bycicle −→ cyclist. The output of the inference stage will contain the results for both

detection and segmentation.
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Figure 4.5: YOLOv8 for Object Detection network overview.
Source: mmyolo: OpenMMLab YOLO series GitHub repository.

Figure 4.6: YOLOv8-seg for Instance Segmentation network overview.
Source: Fast Segment Anything. [70]

https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov8
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The output masks from the inference stage are binary maps in which positive values rep-

resent objectness and negative values represent the absence of an object. Then, the masks are

zipped with their corresponding category and confidence of prediction. Each pixel in the mask

will add the value of their confidence to their corresponding channel, resulting in an RGB

output image. An example of this process can be seen in Figure 4.7.

(a) Camera image for frame 03456. (b) Segmentation mask for frame 03456.

Figure 4.7: Image and segmentation mask for frame 03456.

Once this process is done for all images, we can continue to the fusion step.

4.2.2. PointPainting for Geometrical Fusion of Images and Point Clouds

Once the semantic information from the camera image is available, it is necessary to prop-

agate the information from the image plane. For this, we resume the original idea from

PointPainting [1] paper. During this Section, on the one hand, we will explain the coordi-

nate transform system employed originally by the KITTI dataset and implemented by the VoD

dataset, whilst, on the other hand, we will delve into the implementation of the PointPainting

algorithm.

4.2.2.1. Sensor Coordinate Transforms

The VoD dataset provides a set of matrices to transform from one sensor coordinate reference

frame to another. For this work, we will focus on five reference frames: 2D image plane, 3D

rectified camera5, 3D camera, LiDAR and RADAR. The first refers to the image. The second

and third refer to the physical location of the camera, after eliminating distortion components

and before, respectively. The fourth and fifth ones refer to the LiDAR and RADAR physical

locations, respectively. Four matrices allow us to interchange between these reference frames.

By treating reference frames as nodes and transformation matrices as arcs, it is possible to build

a directed graph that represents all the possible transformations. Although we have defined this

graph as directed, it could be possible to reverse the direction by taking the inverse matrices for

each arc. The computation of the inverse is direct for all matrices except for the matrix P2, with

5In the VoD dataset, the rectification matrix is an identity matrix, which means that there is no rectification to
correct. We include this matrix for the completion of the explanation.
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size 3 × 4. In this case, the Moore-Penrose pseudo-inverse is applied. For a deeper theoretical

explanation, we refer the reader to Chapter 2. The matrices involved are:

P2 matrix.

P2 =







1495.47 0.0 961.27 0.0

0.0 1495.47 624.90 0.0

0.0 0.0 1.0 0.0






(4.1)

Homogeneous transformation from LiDAR to camera.

Trvelo 2 cam =













−0.008 −1.000 0.015 0.151

0.118 −0.015 −0.993 −0.461

0.993 −0.006 0.118 −0.915

0 0 0 1













(4.2)

Homogeneous transformation from RADAR to camera.

Trradar 2 cam =













−0.014 −1.000 0.018 0.053

0.109 −0.019 −0.993 0.981

0.993 −0.012 0.110 1.444

0 0 0 1













(4.3)

With all reference frames and transformation matrices presented and explained, we build a

directed graph that represents the relationships among them. This graph, which is also known

as transform tree, can be seen in Figure 4.8.

Figure 4.8: Transform Tree: How to navigate between coordinate reference frames.

We can exemplify a path through this graph with the case of transforming a point referenced

to the RADAR reference frame to the image plane:
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PUVW = P2 @ R0rect @ Trradar 2 cam @ PXYZ1 (4.4)

Where PUVW represents a point in the image plane in non-normalized homogeneous coor-

dinates, PXYZ1 is a homogeneous point in the RADAR reference frame and @ denotes the matrix

multiplication operator.

4.2.2.2. PointPainting Algorithm

The PointPainting algorithm propagates the colour and semantic information obtained

from the image to the RADAR point cloud to create a richer representation that PointPillars

will consume. Once all the transformation matrices have been explained, Equation 4.4 must

be applied to all the points in the point cloud to establish a point-pixel correspondence. With

this correspondence, the information is concatenated to the points as additional channels. The

output of this algorithm is a higher-dimensional point cloud. The whole algorithm is also

explained in Algorithm 4.1. A qualitative result of applying this algorithm can be seen in

Figure 4.9a.

Data: Radar point cloud RPC ϵ R
N,D with N points, camera image I ϵ Z

3 × 1216 × 1936,
segmentation scores I ϵ R

C × 1216 × 1936 with C classes, homogeneous
transformation matrix T ϵ R

4×4, camera matrix M ϵ R
3×4.

Result: Painted radar point cloud RPC ϵ R
N,D+C+3.

for p ϵ RPC do

pimage = Project (M, T, p);
s = S

[

pimage[0], pimage[1], :
]

;
c = I

[

pimage[0], pimage[1], :
]

;
p = VStack (p, s, c);

Algorithm 4.1: Point Painting Algorithm

4.2.3. Rule-based Cluster Refinement Algorithm

As claimed in the original PointPainting paper [1], one of the main disadvantages of the

method is the smearing effect. This effect occurs mainly due to four phenomena: the imperfection

in the segmentation quality, the temporal misalignment between the point cloud and the image,

the absence of motion compensation methods in these datasets, and the scattering effect in

RADAR point clouds.

At a glance, the smearing effect produces a trace of coloured points in the angle bin in which

the object of interest is projected. For example, when a pedestrian is segmented, some of the

points that belong to the pedestrian in the 2D image plane may not exactly fall within the points

that belong to the real pedestrian contour in the 3D world. These points may belong to an object

or stuff that is positioned meters behind the mask (Figures 4.9b and 4.9c).

It is difficult to tune the algorithm in order to obtain an exact segmentation. However,

we design a set of heuristic rules to detect the cases with the evident presence of smearing
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effect through the concept of radial dispersion. Given the segmented points, the instance to

which they belong and their categories, we analyze the dispersion in range ∆r of the segmented

points. Also, we set prior radial thresholds for each category, which corresponds to double the

maximum dimension in the anchors generated by PointPillars, i.e. the maximum dimension

for Car category is their length, 3.9 m, so we double it to obtain a threshold of 7.8 m. For

Pedestrians and Cyclists, 1.6 m and 3.52 m are chosen. Further studies could lead to determining

the optimal parameters for this threshold.

Once a smeared object is detected, we analyze the distribution of the points within that

cluster. Firstly, we determine the presence of moving points thanks to the compensated radial

velocity component. Secondly, we filter the points with RCS ≤ 40 dBsm, since these points

are prone to be noisy reflections. Then, we apply the dynamic object criteria or the static one,

depending on the result of the first condition.

Dynamic objects. If an object is dynamic, we cluster the points by means of a DBSCAN

clustering algorithm, and we choose the cluster with more points and mean velocity

different from zero.

Static objects. If an object is static, we cluster the points by means of DBSCAN in range

and we retain as surviving points the closest cluster in range.

In order to clarify the explanation of the algorithm and to remark on its qualitative perfor-

mance, Figure 4.9 shows an example of a cluster before and after the refinement.

4.2.4. PointPillars for 3D Object Detection

The final step of the framework consists of applying a 3D object detection neural network

over the painted RADAR point cloud. The modification of the point cloud implies that the

detector must have an encoder that is able to admit several features and transform them into a

different representation that is feature-agnostic and does not rely on the set properties. For this

task, we employ PointPillars implementation that is present on mmdetection3d6 framework.

4.2.4.1. Architecture

In Chapter 3, a theoretical explanation of how the 3D Object Detectors evolved until

PointPillars appeared was made. In this Section, we will delve into the main component

of the architecture and their main purpose and contribution to the main architecture follow-

ing the structure presented in the mmdetection3d package and attending to their nomen-

clature. This will allow us to deeply understand the architecture that is been dealt with

in the practice. The explanation will be an interpretation of the base configuration file

pointpillars_hv_secfpn_kitti.py7.

6mmdetection3d is a research-oriented framework that contains several implementations of SOTA 3D object
detectors.

7Base configuration file of PointPillars implementation for KITTI dataset on mmdetection3d.

https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d/blob/main/configs/_base_/models/pointpillars_hv_secfpn_kitti.py
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(a) Camera image for frame 00125.

(b) Clusters before refinement algorithm. (c) Cluster of interest after refinement algorithm.

Figure 4.9: Example of cluster refinement algorithm in frame 00125. A large set of reflections
coming from scattering reflections inside the shop are being projected into the image standing
at the door, producing a large smearing. The cluster refinement algorithm is able to detect the
radial dispersion and correct the probabilities assigned to the points in the point cloud.
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Figure 4.10: PointPillars network overview.
Source: Adapted from PointPillars: Fast Encoders for Object Detection from Point Clouds [52]

The framework divides the network into six main components: the data preprocessor, a

voxel/pillar encoder, a middle encoder, a backbone, a neck and a head. This configuration

nomenclature follows the naming conventions presented in Chapter 3. Moreover, the architec-

ture overview can be seen in Figure 4.10.

Data preprocessor. The module in charge of preprocessing the data is

Det3DDataPreprocessor. It receives a boolean flag set to True which indicates that

the point cloud must be voxelized. The voxelization takes as input the maximum number

of points per voxel, the point cloud range, the voxel size and the maximum number of

voxels.

The voxelization process follows a random sampling strategy in which if the number of

points that fall within a voxel overpasses the maximum threshold, the candidates are

chosen randomly. This strategy acts as a form of data augmentation in the training

process, since the network is forced to predict the same instance when the input voxels do

not possess the same features. In this case, there is no need to control the height because

the pillars voxelize the space in an x-y grid.

Pillar Feature Net. The PillarFeatureNet is in charge of extracting features per pillar.

In takes as input arguments the number of dimensions of the point clouds and the number

of feature channels that will output. The points in each pillar are augmented with the

arithmetic mean of all the points in the pillar and the offset of each point to the centre.

In LiDAR point clouds, it is claimed that approximately between 6k and 9k pillars will be

empty, so it is important to exploit the sparsity of the clouds by imposing a maximum

number of empty pillars. Then, a simplified version of PointNet (the original has only

one layer, but mmdetection3d uses multiple of these) is used to extract a longer feature

vector from the original dimensions and augmented geometrical properties.

Middle encoder. The middle encoder converts the learned features from a dense tensor af-

ter being processed byPillarFeatureNets to a sparse pseudo-image of size (C, H, W),

where C is the number of learned features and (H, W) are the height and width of the

x-y grid in pixel units, by means of the PointPillarsScatter.
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Backbone. The backbone is a convolutional architecture that is shared with other ar-

chitectures such as SECOND [51] or PartA2 [71]. It is a top-down network composed

of a series of convolutional blocks (convolutional layers, batch normalization and ReLU

activations) that produce features with smaller resolutions for every layer. This block in

mmdetection3d is called SECOND.

Neck. The neck is also shared with the other architectures. It is a series of convolutional

blocks whose purpose is to perform upsampling of the deepest features and concatenating

them to the earlier feature maps extracted by the backbone. These convolutional blocks

use transposed 2D convolutions in order to increase the size of the feature map. The

rest of the block is similar: batch normalization and ReLU activations. This block in

mmdetection3d is called SECONDFPN.

Head. The head in the original paper is taken from SSD [4] architecture. This component

in mmdetection3d is named as Anchor3DHead. The head is fed with a set of anchors

that incorporate prior information about the median sizes of the bounding boxes for every

category and a grid of positions in which the boxes can be spawned as a first initial guess.

The anchor sizes are: [0.8, 0.6, 1.73] m for pedestrians, [1.76, 0.6, 1.73] m for cyclists and

[3.9, 1.6, 1.56] m for cars. The anchors are generated with rotations 0 or π/2 rad. This

head treats object detection in the BEV plane as a matching problem using IoU. Once

the ground truth and the candidates are matched, height and elevation are additional

regression problems, leading to a complete 3D object detection network.

Lastly, the model is trained using a combination of three loss functions: focal loss [65] to ad-

dress the classification of the bounding boxes in an imbalanced-class scenario, a smooth L1 loss

for the regression or bounding box parameters and a cross-entropy loss for the classification of

angles (classification losses are used to resolve angle ambiguities). Once the whole architecture

has been explained in detail, both the author and reader are fully contextualized to deep dive

into the implementation process of PointPillars for RADAR point clouds.

4.2.4.2. Implementation

An introduction to OpenMMLab ecosystem.

The implementation of PointPillars used in this project relies on the mmdetection3d

package. This package is part of OpenMMLab’s research framework. OpenMMLab is an initiative

that open source project for both academic research and industrial applications. Its core is

implemented in Python and PyTorch in the packages mmengine and mmcv. On top of both,

task-specific packages cover a wide range of implementations and modules. According to them,

the research PyTorch ecosystem produces 50% of new paper implementations in plain PyTorch

and the other 50% relies on their framework. In the case of mmdetection3d, it is based on

mmcv and mmdetection and incorporates implementations of SOTA methods for 3D Object

Detection for point clouds and RGB-D images (uni-modal and multi-modal), and 3D Semantic

Segmentation.
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All the toolboxes within the OpenMMLab environment work similarly. Each toolbox is

composed of a model zoo with pre-trained weights of a selection of SOTA method of the

specific task toolbox, a set of config files written in Python that allows the customization of the

internal modules, the supported dataset files and the tools to train, test and perform inference

with all the supported models.8 Within the configuration files, it is possible to customize the

following internal modules.

The model structure.

The dataset.

Data processing pipelines.

Optimizer and learning rate schemes.

Runtime configurations.

Then, the internal modules focus on parsing the configuration files and building all

the components of the pipeline to train, test and perform inferences with the model. This

flexible scheme allows the rapid development of new differential improvements of existing

architectures or even completely novel methods and it is the main argument in favour of the

adoption by the research community. Currently, works are focused on extending the tasks

covered by the framework and creating novel lightweight inference pipelines since depending

on big frameworks to deploy a model is not a good software decision.

Adapting PointPillars for RADAR Point Clouds

The inner workings of OpenMMLab’s toolboxes can be explained by following the process

needed to adapt PointPillars to admit RADAR Point Clouds as input. Firstly, we will install

the package and its required dependencies in the Docker container running the following

commands in sequential order.

1 pip install -U openmim

2 mim install mmengine

3 mim install ’mmcv>=2.0.0rc4’

4 mim install ’mmdet>=3.0.0’

5

6 git clone https://github.com/open-mmlab/mmdetection3d.git

7

8 cd mmdetection3d/

9 pip install -e .

Listing 4.2: Installation of mmdetection3d.

This code snippet will install all the required dependencies and trigger the setup.py script

inside mmdetection3d.

8A comprehensive tutorial about the inner workings of the OpenMMLab’s ecosystem.

https://www.youtube.com/watch?v=GuEjF4G1L3w
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Figure 4.11: KITTI-like dataset folder structure.

Once the package is installed, we need to convert the format of VoD dataset to a pure KITTI

format in order to use mmdetection3d KITTI internal modules. To do this, we will code a

class Delft2Kitti that will receive as input the input path of the original VoD dataset and the

desired output path. The desired output folder must follow the structure shown in Fig. 4.11.

The main changes to the dataset are:

Colourize the RADAR point clouds using the algorithms previously explained and save

all features in .bin files.

Relocate the RADAR point clouds in the folder velodyne.

Change the codification of the Truncation field in the labels. The easiest way is to set a

zero value for all samples.9

Filter the labels by category. In the KITTI evaluation protocol, only the classes pedestrian,

car and cyclist are evaluated. The distribution of the dataset after this filter operation can

be seen in Figures 4.2c and 4.2d for training and validation sets, respectively.

The rest of the elements that do not require additional modifications are copied and pasted

into the output folder structure. Next, we must create a serialized version of the dataset

for fast loading during the training stage. Due to the large amount of data that is handled

within these datasets, the KITTI output structure must be encapsulated within Pickle files.

Pickle (.pkl) allows the serialization to disk of Python structures, such as lists, tuples

or dictionaries. In this case, OpenMMLab ecosystem makes intensive use of dictionaries to

9Multiple users claimed in a GitHub issue that pedestrians and cyclist performed poorly. This is due to the
codification of moving in the field of truncation. The data processing pipelines of OpenPCDet and mmdetection3d
removed most of the samples of these categories.

https://github.com/tudelft-iv/view-of-delft-dataset/issues/8##issuecomment-1172435763
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propagate the information between their internal modules. To do this, the following command

must be executed (at the root directory of mmdetection3d folder) and we must indicate the

number of dimensions loaded in the respective scripts.

1 python tools/create_data.py kitti

Listing 4.3: Convert data from KITTI to Pickle in mmdetection3d.

Once the data is prepared for training, it is necessary to adapt the model for training. This

will involve the modification of the configuration files related to the dataset, the model and the

training stage. To reuse the configurations given by the framework, the modifications will start

from the file pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py (located in

the config folder of the repository), which offers a configuration for training in KITTI-like

datasets with 3 classes: pedestrian, cyclist and cars. A copy of this file will be renamed

pointpillars_radar.py and the modifications will be done in this new file. Overall, the

main changes that the original PointPillars architecture suffers are:

Point cloud range. As VoD dataset only provides labels annotations inside the area

(xmin, xmax, ymin, ymax, zmin, zmax) = (0, 50, −25, 25, −3, 2) m, the point range must be

clipped inside the zone (0, 51.2, −25.6, 25.6, −3, 2) m. The original KITTI range filter

covers a wider range (0, 69.12, −39.68, 39.68, −3, 1) m.

Voxel size. As the point cloud range is taller, the voxel size must increase its height from

4 m to 5 m.

Maximum number of points per voxel. Previously, it was explained that the Pillar

Feature Encoder samples the point cloud following a random sampling strategy that adds

variability to the training process. This strategy triggers when a number of points coexist

in the same voxel/pillar. Due to the sparser nature of RADAR point clouds, this threshold

is decreased from 32 points to 10, so the sampling strategy has bigger chances to trigger

when operating with RADAR.

Elimination of data augmentations. The original PointPillars proposed to perform data

augmentation with three operations: point cloud flipping around the X-axis, point cloud

rotation in the range [−45, 45] and point cloud scaling (±5%). The inclusion of features

related to radial velocity invalidates the use of these augmentations since they are defined

as a vector with a specific modulus and direction. So, the application of augmentations

will corrupt their physical meaning.

Components related to the loading of point clouds. Most of the components that deal

with loading operations have their dimensions fixed to 4 (if working with KITTI) or 5

(nuScenes). We must change the number of dimensions to 7 for original RADAR point

clouds and 13 for coloured point clouds.

Pillar/Voxel Feature Encoder component (PFE). PFE is dependent on the number of input

dimensions of the RADAR point cloud, so it must also follow the previous change.
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Adaptation of the anchor generation ranges. As PointPillars is an architecture based on

anchors, they must be generated within the region of the new point cloud.

Additionally, two modifications related to the dataset and data processing pipelines must

be done:

Removal of filter by points threshold. In the original KITTI sampler, boxes with less than

15 points (in the case of cars) or 5 points (for pedestrians and cyclists) are filtered. Due to

the sparsity of RADAR point clouds, boxes with at least 1 point inside are kept.

Batch size incremented in the train dataloader. From the original batch size of 6, it is

augmented to 16 in order to increase the speed of the training process.

Having adapted the architecture, the following step is to execute the command to run the

training. At the mmdetection3d folder, the user must enter in the terminal the following

command:

1 python tools/train.py configs/pointpillars/pointpillars_radar_{version}.py

Listing 4.4: Train PointPillars for RADAR in mmdetection3d.

This command will trigger the training stage, and the version field corresponds to the version

of the architecture that will be trained: original or painted, single scan or multi-scan (3 and 5).

Detailed information about the training process and its evolution will be discussed in Chapter

5.





Chapter 5

Experiments and Results

No amount of experimentation can definitively prove me

right; but a single experiment can prove me wrong.

Albert Einstein

With the purpose of obtaining an overview of the performance of the implemented method,

an evaluation in quantitative and qualitative terms will be made during this Chapter. From the

set of metrics explained during Chapter 3, we will evaluate the model by means of the Mean

Average Precision (mAP) with a 40-point interpolation and 3D Intersection over Union (IoU)

criterion, split over ranges and difficulties. Following the criterion made by the authors of [11],

IoU thresholds will be 0.5 for Cars, and 0.25 for Pedestrian and Cyclist categories. The comparison

will be performed between PointPillars for RADAR, which we will refer to as PointPillars-R,

and the colourized version, which we will refer to as Painted PointPillars-R. In the second part

of this Chapter, qualitative results will be presented for the best method.

5.1. Training of PointPillars

To perform a fair comparison among models in the research community, there is a set of

standard rules to configure the training stage in KITTI.

PointPillars models and their variants are trained for 80 epochs in a KITTI-like dataset as a

convention1. The learning rate is configured using around an initial value of η = 1 × 10−3 and

is modified every epoch using a learning rate scheduler: Cosine Annealing with two stages.

The first stage covers from the beginning of the training to epoch 32 and increases from 10−2

to 10−3 in a linear trend. The second stage covers from epoch 32 to the end of the training in

epoch 80 and decreases η from 10−3 to 10−7 following Equation 5.1. The optimizer is AdamW,

an adaptive momentum optimizer with weight decay.

ηt = ηmin +
1

2
(ηmax − ηmin)

(

1 + cos

(

Tcur

Tmax
π

))

(5.1)

1Default configuration for PointPillars trained on the KITTI dataset applied to LiDAR data.

https://github.com/open-mmlab/mmdetection3d/blob/main/configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py
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5.2. Quantitative results on View of Delft dataset

Following the aforementioned training procedure, we will train PointPillars-R and Painted

PointPillars-R. The first one will serve as a baseline to compare with the latter, our approach.

Moreover, we will experiment with the temporal aggregation of RADAR point clouds among

frames and we will train for each of the versions of the VoD dataset: single frame, 3 frames and

5 frames. As a remark, the metrics will be obtained over the validation set of VoD.

BEV 3D AOS

Easy Med Hard Easy Med Hard Easy Med Hard

AP40 Car (IoU @ 0.5)

1 frame 29.63 40.10 33.21 24.20 30.42 27.40 20.14 28.28 23.60

3 frames 32.78 36.62 30.41 25.33 30.52 24.95 21.52 25.94 21.47
5 frames 31.69 32.31 26.44 25.85 28.77 21.13 21.06 21.02 17.07

AP40 Pedestrian (IoU @ 0.25)

1 frame 37.46 33.36 30.61 30.45 27.37 24.18 19.22 16.88 15.25
3 frames 38.20 33.62 29.85 31.76 28.26 24.88 21.27 18.45 16.55

5 frames 36.09 33.13 29.41 30.44 27.81 24.97 20.04 17.85 15.91

AP40 Cyclist (IoU @ 0.25)

1 frame 67.53 63.79 57.81 63.25 58.29 53.42 48.28 44.61 39.74
3 frames 71.53 66.19 59.94 66.88 61.50 55.40 51.71 46.71 42.26
5 frames 76.41 70.12 63.60 73.15 66.97 60.31 58.22 53.51 47.56

Table 5.1: Quantitative results of PointPillars-R with IoU thresholds (0.5, 0.25, 0.25) over the
validation set of View of Delft dataset. Best results in bold.

Table 5.1 shows the results of training the baseline PointPillars-R over the validation set

of the VoD dataset. The table is split among three different criteria: metric, difficulty and

categories. Among metrics, from left to right: mAP in the BEV plane, mAP in the 3D space,

and AOS. Among difficulties: easy, medium and hard, depending on the size of the bounding

box in the image plane and its occlusion level2. Among categories, the three evaluated ones:

Car, Pedestrian and Cyclist.

The performance results of the network indicate that RADAR-based methods have difficul-

ties extracting bounding boxes for Car and Pedestrian categories. This supports the theoretical

study made in Chapter 2, in which it was mentioned the poor spatial resolution of RADAR point

clouds. Poor spatial resolution leads to scarce reflections in the targets of interest and difficulties

in estimating the shape of the objects. Surprisingly, the network shows an excellent performance

in the Cyclist category, ranging from 63.25 3D AP40 in easy difficulty and single-frame to 73.15

in easy difficulty and 5 accumulated frames. This is an atypical situation in automotive datasets,

where VRUs are detected with difficulty. This may be due to the appearance of radial velocity

and RCS as additional channels in the RADAR point clouds. After all, these features can be an

2Moreover, in KITTI the difficulty includes the level of truncation as an additional criterion, but this attribute is
not labelled in the View of Delft dataset.
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excellent source of information to distinguish the few reflections that fall within cyclists from

the static or different-in-terms-of-reflectivity background. Moreover, comparing single-frame

and multi-frame versions, the increment between 1 and 3 frames is more notorious than the one

between 3 and 5 scans for 3D AP40 across all categories. However, a rising trend among frame

versions is perceived. Then, the network is taking advantage of the temporal aggregation of

scans.

Then, we average the individual AP40 values to compute mAP, as it was mentioned in

Chapter 3. Table 5.2 reflects the behaviour of the baseline network in terms of BEV and 3D

mAP at medium difficulty. The main conclusion extracted from this Table is that the temporal

aggregation of frames does not show a clear improvement in the BEV space. However, there is

a slight increment in 3D mAP with respect to the accumulated number of scans. Therefore, we

can claim that the additional temporal information contributes to the refinement of the height

estimation of the objects of interest.

mAP40

BEV 3D

1 frame 45.75 38.69
3 frames 45.47 40.09
5 frames 45.18 41.18

Table 5.2: Mean Average Precision results of PointPillars-R for 3D modality and Medium
difficulty over the validation set of View of Delft dataset.

After this, we evaluate the performance of our proposal Painted PointPillars-R following

the same schema as the baseline. We train the single-frame and multi-frame versions following

the procedure in Section 5.1. At a glance, it is observed that there is a clear improvement in

both ways: comparing version-to-version with the baseline and comparing between number of

scans used for temporal aggregation. For example, in the case of 3D AP40 for Cars, the metrics

increase with respect to the baseline: 32.45 vs. 30.42 in medium difficulty; and increase with

respect to temporal aggregation within the proposed architecture: from 32.45 in single-frame

mode to 39.64 in 5-frames aggregation mode.

Both improvement trends are consistent among all categories and difficulties and for all

temporal-aggregated versions. The overall improvements are summarised in Table 5.3. In

an analogous manner to the baseline, we compute mAP for BEV and 3D spaces for medium

difficulty in Table 5.4.

It is observed that for the proposed version, mAP40 for all classes increases in both spaces,

BEV and 3D, with respect to the baseline results. This means that the semantic information

not only improves the height estimation but also contributes to the estimation of the width

and length of the objects of interest, which leads to an overall better shape estimation of the

bounding box.

Lastly, as the main objective of this pipeline is to perform 3D Object Detection, we com-

pare the results on 3D mAP (medium difficulty) for PointPillars-R (in blue dots) and Painted

PointPillars-R (in orange dots) in Figure 5.1. In the X-axis, we plot the three different versions
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BEV 3D AOS

Easy Med Hard Easy Med Hard Easy Med Hard

AP40 Car (IoU @ 0.5)

1 frame 45.27 41.03 33.85 32.95 32.45 26.00 24.65 25.79 20.80
3 frames 51.41 39.59 32.87 43.05 33.56 32.87 33.55 26.23 27.15

5 frames 62.59 51.95 43.16 47.21 39.64 32.00 33.83 30.20 24.73

AP40 Pedestrian (IoU @ 0.25)

1 frame 39.62 34.90 31.29 32.37 28.64 25.31 20.38 18.35 16.17
3 frames 44.51 40.85 36.94 40.06 35.66 31.98 28.71 25.60 23.11
5 frames 53.80 50.08 44.65 47.23 43.33 38.85 31.90 29.52 26.26

AP40 Cyclist (IoU @ 0.25)

1 frame 75.76 71.01 64.25 68.27 62.28 55.76 46.75 41.94 36.95
3 frames 79.70 75.69 69.31 77.36 73.24 66.67 65.23 60.42 54.43
5 frames 81.97 77.71 70.85 79.44 75.03 67.91 64.21 59.36 53.34

Table 5.3: Quantitative results of Painted PointPillars-R with IoU thresholds (0.5, 0.25, 0.25)
over the validation set of View of Delft dataset.

mAP40 All Classes

BEV 3D

1 frame 48.98 41.12
3 frames 52.04 47.48
5 frames 59.91 52.67

Table 5.4: Mean Average Precision results of Painted PointPillars-R for 3D modality and
Medium difficulty over the validation set of View of Delft dataset.

depending on the temporal aggregation horizon (number of frames). In the Y-axis, we plot

the metrics extracted from Tables 5.2 and 5.4. We remark on the incremental improvement be-

tween the baseline and our proposal for all temporal-aggregated versions of the dataset: ∆mAP

= (+3.23, +6.57, +14.73) for BEV space (Fig. 5.1a) and ∆mAP = (+2.43, +7.39, +11.49) for

3D space (Fig. 5.1b). Moreover, it is shown that this delta increases with respect to the temporal

aggregation of scans.

With these experiments, we can validate the research hypothesis from which this work

started. The addition of semantics from a camera image increases the performance of RADAR-

based object detectors. These semantics are introduced as high-level feature vectors and they

are proven to be effective and contribute to the improvement of network performance without

several structural changes. We show the potential of RADAR-camera fusion for 3D Object

Detection and there is still room for improvement and research opportunities to reach a LiDAR-

like performance at a much lower production cost.
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(a) Comparison for BEV Object Detection. (b) Comparison for 3D Object Detection

Figure 5.1: Comparison on Mean Average Precision (40 points) between PointPillars-R and
Painted PointPillars-R over the View of Delft dataset validation set.

5.3. Qualitative results on View of Delft dataset

During this Section, qualitative results are presented for the model Painted PointPillars-R in

the version of 5 frames accumulated of the VoD dataset. Each Figure consists of five Subfigures.

Each of them represents a) the camera from the monocular image, b) the segmentation mask

from YOLOv8x-seg, c) an overlay of the image and the mask, d) the RADAR point cloud

projected over the image plane and with semantic and colour information aggregated, e) the

result of applying Painted PointPillars-R to the enriched and temporal-aggregated RADAR

point cloud seen from BEV perspective. In e), the solid boxes represent the ground-truth boxes

and the dashed boxes, the predictions. The color code represents: red for Pedestrian category,

green for Cyclists, and blue for Cars. The point cloud points follow another colour code: whilst

blue denote points from more recent scans and light green points refer to older points. Due to

this, objects with a uniform motion pattern leave a trace behind them that goes from greneer

colour to bluer colours.

In Fig. 5.2, a use common use case within the dataset is presented. A narrow urban

street with one single direction, vehicles parked at the left hand of the ego-vehicle, pedestrians

walking at the right hand of the ego-vehicle and a moving cyclist on the drivable road. In Fig.

5.2e, a trace can be observed behind the cyclist, showing that it is moving frontwards. The

algorithm is able to perceive correctly in this case. Cars at long range are not perceived correctly

at coordinates ≈ (7, 40) m, ≈ (8, 47) m, and ≈ (20, 47) m, since there are no RADAR reflections

within their bounding boxes. A single point with the semantics of Pedestrian is enough to

propose a bounding box at coordinates ≈ (10,−3) m. This use case is also represented in Fig.

5.3 in which the network correctly perceives all the four parked vehicles aligned with the road

at coordinates x ≈ 3 m.
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Figure 5.4 represents a situation in which the camera has perceived bicycles and that in-

formation is propagated to the point cloud (refers to the COCO pre-trained weights issue

mentioned in Chapter 4). Moreover, the network does not predict a Cyclist, since it does not

have information about Persons detected in its neighbourhood. The network may have learnt

that a Cyclist contains information in the Person and Bicycle channels. Another issue to remark

on is that the network still shows difficulties in detecting Cars at long range or without aligned

orientation, as can be seen in coordinates ≈ (3, 22) m and ≈ (38, 8) m in Figure 5.4e.

Another common problem can be identified in Fig. 5.5. Cars are parked on the left side of

the street. As 5.5e shows, there are no RADAR reflections nor semantics propagated in that

part of the street. The object is occluded for RADAR since it is positioned in the front bumper

of the ego-vehicle. Positioning the sensor on the top roof may solve this issue.

Lastly, Fig. 5.6 justifies the good performance on the Cyclist category. One of the main

characteristics of the VoD dataset is that this category is well-represented and there are frames

in which is the only category present. An atypical use case in automotive datasets that takes

place due to the location in which VoD is recorded: The Netherlands.

5.4. Inference time analysis

During this Section, an analysis of the inference time of the whole framework will be

performed. We will test the inference time of all the components separately, performing cycles

of 1000 executions and time measurements for each of them. The experiments are done in a

Personal Desktop Computer equipped with an NVIDIA RTX4090 24GB GPU and an Intel Core

i9-13900KF processor. The inference of the networks occurs in GPU, then the execution time

is measured via torch.cuda.Events. The processes that occur in CPU are measured by the

Python standard library, time.

Firstly, we will test the inference time of the segmentation network, YOLOv8-seg. For this

study, we will compare all versions: from nano (n) to extra-large (x). Three processes are taken

into account: preprocessing (resize operation), inference and postprocessing (NMS). In the

final pipeline, version x is used. Table 5.5 reflects the results. Processing steps consume a fixed

amount of time, while inference time increases from 1.7 ms in the lightest version to 6.8 ms in

the heaviest one.

Model Preprocessing Inference Postprocessing Total

YOLOv8n-seg 0.8 ms 1.7 ms 0.5 ms 3.0 ms
YOLOv8s-seg 0.7 ms 2.1 ms 0.5 ms 3.3 ms
YOLOv8m-seg 0.7 ms 3.9 ms 0.5 ms 5.1 ms
YOLOv8l-seg 0.7 ms 5.5 ms 0.5 ms 6.7 ms
YOLOv8x-seg 0.8 ms 6.8 ms 0.5 ms 8.1 ms

Table 5.5: Inference time for YOLOv8-seg series.

Subsequently, the following steps in the pipeline are the PointPainting geometric fusion

and the cluster refinement algorithm. The first one contains an upsampling operation, so we
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(a) Camera image for frame 00170. (b) YOLOv8x-seg mask for frame 00170.

(c) Image and mask as overlay for frame 00170. (d) After point cloud projection for frame 00170.

(e) Object detection in BEV space for frame 00170 with Painted PointPillars-R. Bounding boxes are:
solid for ground-truth and dashed for predictions; red for Pedestrians, green for Cyclists, and blue for

Cars. Older points are greener and more recent points are bluer.

Figure 5.2: Qualititative results for object detection at frame 00170.
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(a) Camera image for frame 00392. (b) YOLOv8x-seg mask for frame 00392.

(c) Image and mask as overlay for frame 00392. (d) After point cloud projection for frame 00392.

(e) Object detection in BEV space for frame 00392 with Painted PointPillars-R. Bounding boxes are:
solid for ground-truth and dashed for predictions; red for Pedestrians, green for Cyclists, and blue for

Cars. Older points are greener and more recent points are bluer.

Figure 5.3: Qualititative results for object detection at frame 00392.
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(a) Camera image for frame 01391. (b) YOLOv8x-seg mask for frame 01391.

(c) Image and mask as overlay for frame 01391. (d) After point cloud projection for frame 01391.

(e) Object detection in BEV space for frame 01391 with Painted PointPillars-R. Bounding boxes are:
solid for ground-truth and dashed for predictions; red for Pedestrians, green for Cyclists, and blue for

Cars. Older points are greener and more recent points are bluer.

Figure 5.4: Qualititative results for object detection at frame 01391.
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(a) Camera image for frame 03970. (b) YOLOv8x-seg mask for frame 03970.

(c) Image and mask as overlay for frame 03970. (d) After point cloud projection for frame 03970.

(e) Object detection in BEV space for frame 03970 with Painted PointPillars-R. Bounding boxes are:
solid for ground-truth and dashed for predictions; red for Pedestrians, green for Cyclists, and blue for

Cars. Older points are greener and more recent points are bluer.

Figure 5.5: Qualititative results for object detection at frame 03970.
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(a) Camera image for frame 04362. (b) YOLOv8x-seg mask for frame 04362.

(c) Image and mask as overlay for frame 04362. (d) After point cloud projection for frame 04362.

(e) Object detection in BEV space for frame 04362 with Painted PointPillars-R. Bounding boxes are:
solid for ground-truth and dashed for predictions; red for Pedestrians, green for Cyclists, and blue for

Cars. Older points are greener and more recent points are bluer.

Figure 5.6: Qualititative results for object detection at frame 04362.
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measured a mean time of 7.28 ms, with a standard deviation of 0.25 ms. The latter one

contains several runs of DBSCAN clusterings. We measured a mean time of 14.3 ms and a

standard deviation of 0.36 ms. Then, we test the inference time of PointPillars-R and Painted

PointPillars-R for the three versions of the VoD dataset. The results are reported in Table 5.6.

It is observed that all models infer at an approximate time of 6 ms, and there are no variations

among the baseline and our proposal or among dataset versions.

Model Dataset version
Mean inference

time

Std. deviation

inference time

PointPillars-R

1 frame 6.15 ms 0.27 ms
3 frames 6.15 ms 0.25 ms
5 frames 6.14 ms 0.28 ms

Painted PointPillars-R

1 frame 6.27 ms 0.29 ms
3 frames 6.29 ms 0.30 ms
5 frames 6.34 ms 0.31 ms

Table 5.6: Inference time for PointPillars-R and Painted PointPillars-R models.

Finally, choosing YOLOv8x-seg and Painted PointPillars-R for 5 frames temporal-

aggregated dataset version as components of our proposed framework, the total inference

time is: 35.94 ms, or 27.82 Hz. Therefore, the solution is suitable for real-time systems, even

when there is room for further optimization in future works.



Chapter 6

Conclusions and Future Works

A scientist must take the liberty to raise any question, to

doubt any assertion, to correct errors.

J. Robert Oppenheimer

The purpose of this last Chapter is to reflect and draw conclusions from the implemented

methods and the theoretical studies that have been carried out during this Master’s Thesis

project. Moreover, the difficulties and gaps found during the development of the work offer

new possibilities and research opportunities in the domain of DL based Object Detection via

Camera-RADAR fusion, a research line that has been opened at RobeSafe Research Group1

with this Master’s thesis, either through the continuation of the author himself or of the future

students of the group.

6.1. Conclusions

To reflect on the author’s learning during the development of the full work:

As for the software tools and resources used, it has been the first research-oriented project

in which I have dealt with DL techniques. It has been an enriching experience to learn

PyTorch and frameworks such as mmdetection3d and ultralytics, which can be

useful for upcoming research projects. Moreover, the whole ML software stack in Python

has been revisited and applied to a research project: numpy, matplotlib, seaborn,

pandas and scikit-learn.

Conclusions drawn from the practical implementation, the experiment and results of the method

proposed within this Thesis:

SOTA methods across Object Detection for 2D images and 3d point clouds have been

revisited during Chapter 3. A comprehensive review of the fundamentals on both research

1Official website of RobeSafe Research Group.

https://www.robesafe.uah.es/index.php/es-es/
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lines has served the reader to be contextualized within the problem of perception in the

automotive domain.

The proposed methods have shown that RADAR-camera fusion have a great potential for

3D Object Detection, improving the performance across all classes and categories over

the original RADAR-only baseline. Projection-based fusion methods, even being naive

geometrical fusion methods, contribute to the performance of detection networks that

were not thought for this purpose without deep structural changes.

The temporal aggregation of information offers additional information to NNs and im-

proves their performance in terms of precision.

The performance of the network with respect to the Cyclist category is surprising.

Pedestrians and cyclist, as main representatives of the vulnerable road users collective, are

often underrepresented in automotive datasets. The high presence of this category is

biased due to the popularity of cycling in The Netherlands, but this study shows that

incrementing the presence of these VRUs increases the performance of networks. This

can be also given by the fact that the radial velocity and RCS features give motion and

appearance information as additional inputs to the network and cyclists can be seen as

dynamic actors, with few reflections, but enough to distinguish them from the static

background.

The elimination of data augmentation is translated into worse convergence during the

training stage. It has been claimed that data augmentation is a critical feature for ob-

taining good performance in KITTI-like datasets. The VoD dataset is smaller than the

original KITTI. As aforementioned, actual data augmentation does not take into account

the physical issues related to radial velocity. New data augmentation techniques must be

proposed in this line, as augmentation is proven to be beneficial for DL in most modalities

and domains as a general rule.

The validation set of VoD presents a great sensitivity. The selection of sequences is focused

on urban scenes in a small urban environment. Some of the sequences from which the

frames are recorded are in the same physical location and this leads to difficulties in

obtaining generalization capabilities with DL-based techniques.

6.2. Future Works

During the development of this work, additional research opportunities have been identified

and could lead to better-performing architectures based on the fusion of RADAR and camera.

The growing interest on RADAR-based DL and RADAR sensors with denser outputs could take

advantage of the following:

We would like to further prove our claims in more datasets that include High-Res 3+1D

RADARs, as some additional datasets are expected to be released in the near future. The
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validation set of the VoD dataset has presented high sensitivity during the training and

evaluation procedures, so we would like to further experiment in other data domains.

We would like to expand our study and include more 3D Object Detectors present in

SOTA and studied in Chapter 3. Revisiting existing detectors could lead to insights or

novel conclusions referring to which type of object detector fits better or extracts the most

potential from RADAR data.

We would like to test the potential of multi-frame aggregated networks that are built to

deal specifically with temporal aggregation, as the accumulation of scans has been shown

to be beneficial in the proposed architecture.

We would like to explore and propose novel architectures within this domain delving

into the way of fusing information inside NNs in a feature-level fusion. These approaches

could take advantage of attention mechanisms such as cross-attention modules, in which

features from different data modalities can interact between them.

We would like to perform additional experiments that allow us to compare an Object

Detection framework based on LiDAR or LiDAR-camera fusion versus our proposal based

on RADAR and camera. We would like to quantify the performance gap between both

modalities and analyze the status of both research trends.

We would like to further optimize our proposal with DL acceleration frameworks and

GPU implementations of the actual CPU processes. Then, we will be able to integrate and

test our algorithms in the real AD stack located in the electric AV of RobeSafe Research

Group.
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Appendix A

Tools and Resources

This appendix contains an enumeration of all the materials and resources used to carry out

the development of this project, in both terms of hardware and software.

A.1. Hardware Tools

A Desktop Personal Computer with the following components have been used:

Processor Intel i9 13th Gen 13900k.

GPU NVIDIA RTX4090 24GB.

RAM Corsair Vengeance 32GB.

Hard disk SSD Samsung 980 Pro 1TB.

Rest of components: power supply, monitors, computer case, communication interfaces...

A.2. Software Resources

Ubuntu 22.04 LTS operating system.

Visual Studio Code IDE for programming.

Python programming language.

Python ecosystem for ML:numpy, pandas, matplotlib, seaborn andscikit-learn.

DL-oriented frameworks: ultralytics and mmdetection3d.

Git control version software.

Docker containerization and virtualization software.

Overleaf online programming environment for documentation with LATEX.





Appendix B

Budget

This appendix contains an estimate of the total costs necessary to develop the project in the

form of a budget. It is composed of the following items.

Costs related to the use of hardware resources and software applications involved in the

project. Extra costs related to the Spanish tax application (21%) are included.

Costs related to human resources employed to achieve the objectives of this work.

B.1. Costs related to material resources: hardware and software

To carry out the development of this AI-focused project, it is necessary to use a Desktop

Personal Computer (PC) equipped with a Graphical Processing Unit (GPU) that allows the

training and inference procedures of the corresponding algorithms. As for the software tools,

the landscape of ML frameworks and utilities is characterised to be open source, so there is no

monetary charge for the use of any of them. All PC components are amortised over a period of

four years. Only one year is considered as expenses related to this project. However, a premium

version of Overleaf is used to write this book. A detailed budget of the material resources used

is presented in Table B.1.

B.2. Costs related to personnel

Considering that the author of this work is a graduate in Engineering, with qualifications for

the profession of Industrial Technical Engineer, this point is taken as a reference. The average

salary for an Engineer in Spain is 30, 000.00€ as of 20231, which lead to an approximately gross

hour rate of 16.00€/h.

The project started in January 2023 and ends in September 2023. During the first six months,

the author is combining his master’s studies and work projects with the completion of this thesis,

1Average salary of an Engineer in Spain in 2023. Via talent.com.

https://es.talent.com/salary?job=ingeniero
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CONCEPT PRIZE

Processor Intel i9 13th Gen 13900k 649,00€ × 0.25
GPU NVIDIA RTX4090 24GB 2.097,00€ × 0.25

Hardware RAM Corsair Vengeance 32GB 81,00€ × 0.25
Hard disk SSD Samsung 980 Pro 1TB 112,00€ × 0.25
Rest of components 1.000,00€ × 0.25

Ubuntu Operating System 0,00€

Visual Studio Code 0,00€

Software Git, Docker 0,00€

Python and tools: PyTorch... 0,00€

Overleaf Premium 33,00€

TOTAL PRIZE 1.017,75€

Table B.1: Breakdown of costs related to material resources: hardware and software

for which its dedication is counted as part-time, 3 hours per day. The months of July, August

and September (half a month) are devoted entirely to the completion of this project, so 8 hours

per day are counted. It is assumed that each month has 20 working days. Extrapolating the

time dedicated by the author to an engineering project would amount to an hour estimation of

760 working hours. These costs are detailed in Table B.2.

CONCEPT PRIZE

Gross salary of an engineer (760 h.) 12.160,00€

Employer’s contribution by the hiring company (30%) 3.648,00€

TOTAL PRIZE 15.808,00€

Table B.2: Breakdown of costs related to personnel and human resources

B.3. Total costs

The total costs of the project will be the sum of material-related and human-related costs

reflected in Table B.3.

CONCEPT PRIZE

Material costs: hardware and software 1.017,75€

Personnel costs 15.808,00€

TOTAL PRIZE 16.825,75€

Table B.3: Total costs of the project

The project amounts to the sum of SIXTEEN THOUSAND EIGHTY HUNDRED AND

TWENTY-FIVE EUROS WITH SEVENTY-FIVE CENTS (16.825,75 EUROS), which includes the

total costs of material and personnel in gross terms, including employer’s contribution and

Spanish taxes (21%), for a total duration of 8.5 months and presented in September 2023.
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