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Abstract
Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making
some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the
manner clinicians make the interpretation of the ECG, in contrast to assess noise from a quantitative standpoint. So clinical
noise refers to a scale of different levels of qualitative severity of noise which aims at elucidating which ECG fragments
are valid to achieve diagnosis from a clinical point of view, unlike the traditional approach, which assesses noise in terms
of quantitative severity. This work proposes the use of machine learning (ML) techniques to categorize different qualitative
noise severity using a database annotated according to a clinical noise taxonomy as gold standard. A comparative study is
carried out using five representative ML methods, namely, K neareast neighbors, decision trees, support vector machine,
single-layer perceptron, and random forest. The models are fed by signal quality indexes characterizing the waveform in time
and frequency domains, as well as from a statistical viewpoint, to distinguish between clinically valid ECG segments from
invalid ones. A solid methodology to prevent overfitting to both the dataset and the patient is developed, taking into account
balance of classes, patient separation, and patient rotation in the test set. All the proposed learning systems have demonstrated
good classification performance, attaining a recall, precision, and F1 score up to 0.78, 0.80, and 0.77, respectively, in the test
set by a single-layer perceptron approach. These systems provide a classification solution for assessing the clinical quality
of the ECG taken from LTM recordings.

Keywords Clinical noise severity · Electrocardiogram (ECG) · Long-term monitoring (LTM) · Machine learning (ML) ·
Signal quality

1 Introduction

The electrocardiogram (ECG) has proven to be reliable and
effective for studying the electrical activity of the heart [1].
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Standard 12–leads ECG is collected for seconds or min-
utes by attaching electrodes to the patient’s skin [2], while
24–48-h Holter ECG provides longer recordings to track
events that are not found in short-term ECG, such as several
types of arrhythmias [3, 4]. Under the suspicion of inter-
mittent pathologies, manifested as occasional transients,
monitoring the heart activity for extended periods of several
days is becoming apparent [5]. Such ECGs are called long-
term monitoring (LTM) recordings, they are acquired for 7,
15, or even 21 days during daily routine activity, and they
have been found to be very useful to detect atrial fibrillation
in patients with cryptogenic stroke [6] and atrial or ven-
tricular subclinical arrhythmias [7]. Due to the ambulatory
registering of LTM recordings and their long duration, some
parts of the ECG are severely contaminated by white or col-
ored noise, narrow-band interference (from powerline and
other sources impinging the sensor) [8], patient movements,
baseline oscillation, electromyographic electrical activity,
electrode movement, and many other equipment problems,
thus resulting close to impractical for diagnosis. So the iden-
tification of useless segments from a clinical standpoint
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would be beneficial not only to improve the performance
of signal processing systems, but also to reduce the time
required to analyze recordings by human operators. Notice
that traditional ECG signal processing methods and clinical
analysis are not adapted to deal with the huge amount of data
gathered by LTMs, demanding the design of appropriate
protocols and techniques to provide robust results.

From an engineering point of view, the impact of noise
in the ECG is assessed in terms of a figure of merit, e.g.,
the signal-to-noise ratio (SNR), which indicates how severe
is the noise which contaminates the ECG. Nonetheless, the
quantitative severity of noise not necessarily informs about
the validity of an ECG to provide a diagnosis. This is
because the interest of cardiologists relies on the readability
of the P, Q, R, S, T subwaves of a heartbeat. Thus, it
may occur that an ECG beat with high SNR, i.e., with
small quantitative noise severity, lacks some subwaves,
been considered in such case as non-valid or very limited
from a clinical viewpoint, despite the small quantitative
severity informs that the impact of noise is minimal. So,
this is an example where an ECG excerpt with very low
quantitative noise severity is, conversely, defined as with
high severity from a clinical standpoint. In other words,
one of the main drawback of the quantitative approach
is that current metrics have no clinical meaning, so they
are not useful for physicians because they cannot interpret
them. On the other hand, modeling noise from a clinical
viewpoint is an extremely difficult issue, which has not
yet been fruitfully addressed. However, if the cardiologists’
knowledge is successfully transferred to a database, any
machine learning (ML) method will be able to mimic the
clinical expert behavior. So, the problem of noise in this
work is faced by adopting the clinical point of view.

The clinical severity of noise is defined as the impact
that noise causes in the clinical interpretation of ECG
segments to establish a diagnosis. This severity is not
assessed by quantitative means, but by a set of rules that a
cardiologist follows to make the interpretation of the ECG.
We refer noise in this context as clinical noise. An ECG
fragment is said to be of good clinical quality (noiseless
from clinical noise viewpoint) when the clinical patterns
to make a diagnosis are visible in the wave shape. Thus,
clinical noise severity is assessed in a qualitative scale.
In [9, 10], a 5-level scale scoring the effect of clinical noise
on the ECG was designed based on the recommendations
given by a team of cardiologists. A methodology, based
on noise maps, to evaluate how well qualitative severity
correlates with quantitative severity was also developed.
A manually annotated database of actual LTM recordings
according to the scale was used as gold standard. The
work concluded that qualitative and quantitative severity
are not correlated, showing that quantitative noise indices
may not be appropriate to determine clinical quality in
electrocardiography and LTM recordings.

Regarding earlier works, many of them drive their atten-
tion to ECG enhancement [11–14], though they rely on
quantitative metrics, and the result may not be neces-
sarily useful for clinical purposes due to ECG pattern
degradation [10]. Another alternative approach is estimat-
ing the quality of the ECG employing quantitative quality
indexes, such as the rate of change of the spectral compo-
nents [15] or the number of R–peaks [16]. Several works
use a binary scale assessed by means of signal processing
techniques to detect possible disturbances [17], and time-
frequency analysis [18], or heuristic-based approaches [19].
Others rest on ML algorithms fed with features derived
from the signal autocorrelation [20, 21], the eigenvalues of
the covariance matrix between leads [22], or signal quality
indexes derived from statistics [23], and ECG morphologi-
cal aspects [24, 25]. Meanwhile, multi-level quality scales
are found as well [26, 27]. For most methods, the validation
methodology relies on the annotation of short-term ECG
segments during few seconds and the addition of noise of
different levels for varying the SNR.

Regarding databases, most of the contributions deal
with datasets consisting of isolated ECG segments with
artificially added noise as an intention to replicate real
working conditions. Realistic recordings taken from public
databases are used in combination with synthetically
generated noise such as in [28, 29]. In [24, 26] authors
bootstrap the unrepresented class by adding noise to the
clean data to balance the dataset, while [15] uses also ECGs
containing real noise. Synthetic noise is employed in [25]
in a single-patient noisy database, and similarly, synthetic
and real noise ECG are used in [27]. In clinical noise, the
qualitative assessment of its impact impairs the development
of synthetic databases.

The present work seeks to find out whether clean
and noisy ECG segments defined in a qualitative scale
can be distinguished by ML. We rely on the fact that
learning-based methods have proven to perform very
well in tasks that are easily executed by human opera-
tors, but that are very difficult to model mathematically.
To achieve this, we rely on cardiologists’s experience,
which has been transferred to a database according to
the set rules defining a taxonomy of clinical noise. Thus,
distinction between classes defined on a qualitative sever-
ity scale is the main novelty of this research, and the
contribution is the development of systems to provide
a classification solution for assessing clinical quality of
ECGs taken from LTM recordings. An ML-based method-
ology is carried out, where a set of features describing the
waveform and the information content of the ECG are used
as predictors. A comparison study of several systems is
addressed into a continuously running labelled database
defined to be our gold standard for clinical noise. The results
obtained show that the identification of clinically clean sig-
nal frames is possible, and that these ML methods can learn
from this data to attribute a scale of clinical noise severity.
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This paper is organized as follows. Section 2 introduces
the database, its segmentation, and the ML methods applied
to classification. Feature engineering and the experimental
setting are reported in Section 3. The results are presented in
Section 4, and the discussion and conclusions of this work
are finally addressed in Sections 5 and 6, respectively.

2Materials andmethods

2.1 Data gathering and annotation

It has been shown in previous studies that there exist appar-
ent differences on how the impact of noise affects to the
interpretation of the ECG when it is assessed by quantitative
means than when the interpretation is made by cardiolo-
gist [9, 10], i.e., qualitatively. The former approach relies
on quantitative noise severity, based on figures of merit.
The latter one relies on the knowledge of cardiologist about
the requirement of the ECG waveform to contain sufficient
information for a complete interpretation. Any factor pre-
venting the right ECG interpretation can be considered as
noise, and because the latter perspective is only based on
cardiologists’ knowledge, we refer it to as clinical noise.
The measure of the impact of clinical noise into the ECG
interpretation is qualitative, which we refer to as clinical
noise severity. In the current work we deal with the inter-
pretation of the ECG as understood by cardiologist, so with
clinical noise. In [9, 10], a noise taxonomy in terms of clini-
cal noise was proposed in a scale of 5 categories as follows:

– Noise-free or type 0 (T0): segment without noise.
– Low noise or type 1 (T1): some noise is present

in the segment, but P and T waves (corresponding
to atrial depolarization and ventricular repolarization,
respectively) and the QRS complexes are readable and
their morphology can be identified.

– Moderate noise or type 2 (T2): a noisy segment in
which only the QRS complexes are reliably identified,
in at least three consecutive beats.

– Hard noise or type 3 (T3): noisy segment with hardly
recognizable or unrecognizable QRS complexes.

– Other noise or type 4 (T4): segments are calibration
pulses or straight lines because of the complete absence
of signal or amplifier saturation.

This set of rules expresses the characteristics that an ECG
must carry to be valid for a clinical analysis. After jointly
analyzing this 5-level scale from a clinical view, we infer
that at least the QRS complex plus another additional sub-
wave (P or T) must be present to be considered as type 0
or type 1. The difference is that although the same pattern
must be identifiable, type 1 tolerates any sort of artifacts,
no matter the size, as long as the heartbeat morphology can

be read. Conversely, types 2 and 3 are categories describing
ECGs with limited diagnostic capacities. This can be caused
by numbers of reasons: absence of QRS complex, absence
of both P and T waves, or because there is no trace of read-
able ECG in the signal. Cardiac rhythm can be identified in
type 2, because QRS complex continuity is required in at
least 3 beats, but type 3 represents a worthless signal from
a clinical viewpoint. Beyond these four categories, there is
an additional one representing non signal presence.

According to these criteria, a set of data acquired (fs =
200 Hz) with an External Event Recorded (EER) was
continuously labeled throughout its entire duration. More
than 6.5 h of recording from 10 patients distributed in 250
recordings of about 30 to 300 s, 2 leads per recording
were annotated (see [9, 10] for more details). Figure 1
illustrates one of these recordings as an example of the the
manner the signals are labeled and the how the ECG signals
in each category look like. The ECG excerpt lasts 60 s
approximately, and contains three clinical noise categories:
transition between classes T1 to T3 is around t = 25 s,
and from T3 to T2 is around t = 52 s. A closer look at
the waveform exhibits how the hard noise class (T3), in
the middle panel, has lost the regular ECG beat pattern,
and can scarcely be used to extract clinical information.
Since clinical noise relies on qualitative noise assessment,
we only account on this material to define the experimental
framework, where training systems on real ECG, manually
annotated, is among the main challenges.

2.2 Materials

Although clinical noise is split in several groups, the
proposed learning approach is faced as a binary problem
to distinguish from only 2 classes: clean and noisy. We
consider as noisy the classes which convey less clinical
information: for this work we have chosen moderate noise
(T2) and hard noise (T3). Thus, noise–free (T0) and low
noise (T1) are enclosed into the clean class. We have chosen
to include T2 in the noisy class since the lack of P and
T waves prevents important information related to atrial
depolarization and ventricular repolarization. Finally, T4
(other noise) has not been taken into account because this is
a category which explains recording excerpts with no signal,
which can easily be identified by simple signal processing
techniques (see Table 1 for class distribution).

To obtain instances of the same length to train and test
learning models, the entire EER database is segmented,
resulting in signal blocks of the same duration s(t), 0 ≤
t ≤ tb, and of one single category. They can be regarded as
a bunch of L discrete samples enclosed into the vector

s(i) =
[
s
(i)
0 , s

(i)
1 · · · , s

(i)
L−1

]T

, i = 1, · · · , m (1)
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Fig. 1 Labelling recording
example from the original
clinical noise database taken
from an EER. The signal goes
through 3 categories highlighted
in each graph (from top to
bottom): low noise (T1), hard
noise (T3), and moderate noise
(T2). The yellow triangle
indicates the segment onset and
the purple circle the offset

where i stands for the ith example or instance, and m is
the size of the dataset. To ensure consistent and correct
methodology, the following conditions have been hold in the
segmentation process: (a) independence among segments
s(i) by choosing non-overlapped blocks; (b) maximal
difference among instances by leaving a time gap between
consecutive blocks.

The block length tb is a critical parameter since all the
classes must be represented into each instance. Although the
categories are defined in a heartbeat dimension, moderate
noise (T2) definition accounts for at least 3 consecutive
beats. So, a block length from 3 up to 6 s is reasonable to
ensure 3 beats in a segment. In this work, we have taken
tb = 5 s.

A total of 6748 examples as shown in Table 1 are
obtained, with reasonable balance between clean and noisy
classes. However, there is strong imbalance when regarded
by patients, as can be seen in Fig. 2. Patients 1, 3, 5, and 8
may be unsuitable because the models can have difficulty to
learn from them. For this reason, we have decided to discard
patients presenting less than 25% of instances in any class,

Table 1 Database size and distribution per classes (clean or noisy) and
noise type (noise-free as T0, low noise as T1, moderate noise as T2
and hard noise as T3) for 5-s length ECG excerpts

Class # Instances Noise type # Instances

Clean 3.867 (57.31%) T0 2.236 (33.14%)

T1 1.631 (24.17%)

Noisy 2.881 (42.69%) T2 2.204 (32.66%)

T3 677 (10.03%)

which reduces the set to only 6 patients for the classifier
design, namely, patients 2, 4, 6, 7, 9, and 10. Operating in
this manner reduces the set of instances to m = 2818 (47%
clean and 53% noisy).

2.3 Methods

In this study, ML methods are used to identify valid ECG
frames to extract useful clinical information. Support vector
machines (SVM), multi-layer perceptron (MLP) and deci-
sion tree (DT) have been used in noise classification [22, 24,
26]. So, we are going to implement these models also in this
work. In addition and for comparison purposes, K-nearest

Fig. 2 Distribution of clean and noisy classes per patient. Patients with
any class below 25% are discarded for the train and validation process
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neighbors (KNN) and random forest (RF) are also consid-
ered. This choice is a good representation of ML models to
perform an experiment on a lower to a higher scale of flex-
ibility. Hyperparameter tuning is performed with bayesian
optimization, except for neural networks, which employ
grid search [30, 31]. This section introduces a brief review
of these methods.

The first algorithm, which is based on a similarity
measure, is KNN. K is the number of neighbors. A test
observation x is classified by the vote of its neighbors (K in
the training set that are closest to x), being assigned with the
most common class among all its neighbors [32, 33]. With
the Euclidean metric as distance metric, the hyperparameter
that is optimized in this work is K .

A second approach involves the DT, which is an
algorithm that assigns the output variable using the decision
rules learned from training datapoints [33–35]. To control
the depth of the tree and to avoid overfitting to the DT, the
hyperparameter to be optimized is the minimum number of
samples at each leaf node.

Moving on to more complex models, we find SVM,
which is an algorithm whose classification strategy is based
on optimally separating a set of data by a hyperplane or set
of hyperplanes. In this case, linear SVM is employed and
the hyperparameters to be optimized are a scaling parameter
and a regularization parameter.

With respect to artificial neural network (ANN), a
simple architecture is applied, the single-layer perceptron
(SLP). It is the most straightforward feedforward neural
network architecture employing only one hidden layer of
neurons [32, 33]. Gradient descent backpropagation is the
training technique and L2-regularization [36] is applied to
avoid overfitting. The hyperparameter that is optimized is
the number of neurons in the hidden layer.

Finally, the RF algorithm is an algorithm that employs
an ensemble of different decision trees. The trees are built
independently using a small subset of the dataset randomly
drawn. The features for the trees are selected randomly
as well. Each tree in the RF makes a classification and
the final decision is made by majority vote [33, 34]. The
hyperparameters to be optimized are the minimum number
of samples at each leaf node, the number of features
employed in the tree branches and the number of trees in the
ensemble.

3 Experimental framework

3.1 Feature engineering

After database segmentation described in Section 2, the
dataset consists of a bunch of ECG blocks referred to as s(i),
all of the same length (5-s long), as described in Eq. 1, where

i = 1, · · · , m, stands for the ith example (m = 2818).
All blocks are preprocessed as follows. Baseline wander
removal is accomplished using cubic splines interpolation:
A non-overlapped sliding window of 1.2-s length is used to
determine the knots (median of the window) from which the
drift component is estimated; baseline wander is cancelled
by subtracting the estimated drift. Powerline interference
reduction is addressed by linear notch filtering (50 Hz).
Bandpass filtering is applied from 0.5 up to 40 Hz to
preserve the ECG spectral band (cascading two 5th order
Butterworth highpass and lowpass filters). Finally, each
block s(i) is normalized:

s(i) := s(i) − μ
(i)
s

σ
(i)
s

(2)

where symbol “:=” stands for assignment; and μ
(i)
s and σ

(i)
s

stand for the mean and standard deviation of the ith signal
block, respectively.

This work is faced as a multidimensional classification
problem where the hypothesis function is fed by multiple
variables x = [x1, x2, · · · , xn]T ∈ R

n. Sixteen features
(n = 16) were selected to represent the structure of
each signal block. The variables xj are listed on Table 2
and they correspond to features informing about: critical
points location and distribution (j = 1, 2); time domain
characteristics (j = 3, 4); statistical properties (j =
5, · · · , 11); and spectral characteristics (j = 12, . . . , 16).
Some of them were inspired by [26]. Others, such as x5

up to x8, and x11, are well known statistics. The Spectral
Purity Index (x10) is a measure of how well a signal is

Table 2 Feature list and description

Feature Notation
elsewhere

Description

x1 AR
cc R-wave Detection Accuracy [26]

x2 ρ Correlation-based Periodicity

x3 sbw BW check [26]

x4 shf Relative amplitude of HF noise [26]

x5 μs Mean

x6 σs Standard Deviation (STD)

x7 β1 Skewness

x8 β2 Kurtosis

x9 σqrs Relative STD of QRS [26]

x10 SP I Spectral Purity Index [37]

x11 H(s) Sample Entropy

x12 pbw(s) Relative Power of the BW [26]

x13 pqrs(s) Relative Power of the QRS [26]

x14 eqrs (s) Relative energy of QRS [26]

x15 f c(s) Central Frequency

x16 MS–QI ECG Quality Index [15]
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approximated by a pure frequency; details can be found
in [37]. Feature x2 characterizes the periodic pattern of
the ECG segment s(t), providing a measure of periodicity
assessed as the correlation coefficient between s(t) and a
shifted rotated s̃(t) = s {((t − Δtrr ))L} of itself, where
((·))L stands for modulo operation. The time lag Δtrr
corresponds to an RR time interval value. So, variable x2 is
obtained as:

ρ = sT · s̃
||s|| · ||s̃|| (3)

where s̃ is the vector notation for s̃(t). Feature x15 is the
central frequency or spectral centroid:

f s =
∫ fs

2
0 f Pss(f )df

∫ fs
2

0 Pss(f )df

, (4)

where Pss(f ) is the power spectral density of s(t). Finally,
feature x16 is the MS-QI. The MS-QI was conceived as
a means to assess the changes of the ECG components,
assuming that the changes rates differ between clean and
noisy segments (see [15] for details).

A close analysis of the feature distributions over the
classes reveals severe inter-class overlap, which, on the one
hand, makes impossible straight separation, and, on the
other hand, can even impair classification from learning
systems. As representative examples of that, Fig. 3a and
b show the boxplots for the two features which better
separate classes, whereas Fig. 3c and d are two examples
of strong overlap. So, to shed some light on the feasibility
of these features for class separation, hypothesis testing
is used to analyze differences between the series coming
from the two classes [38]. First, a χ2-Goodness-of-Fit test
is used to determine whether variables are likely to come
from a normal distribution, so in those variables resulting
significant to the test (all except x3 and x5), the alternative
hypothesis that their distribution is non–normal is accepted
and a Wilcoxon–Mann–Whitney (WMW) U-Test test is
applied to see whether they have different median. All
variables are significant to the WMW test (α = 0.05 and
p < 0.05), except SPI (p = 0.31). Alternatively, a t–
test is applied to x3 and x5, where only the former results
significant, accepting thus the alternative hypothesis that
classes have different mean. So, from the hypothesis testing,
we can conclude that despite huge inter-class overlap,

Fig. 3 Examples of features
distribution. The features in (a)
and (b) exhibit some inter-class
separation, while the ones in (c)
and (d) are severely overlapped
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features are distributed differently within each class in the
majority of cases.

In summary, features x(i) =
[
x

(i)
1 , x

(i)
2 , · · · , x

(i)
n

]T

are

extracted from each ECG block s(i), arranging a dataset for
the classification task consisting of a matrix X ∈ R

m×n,
where m = 2818 and n = 16. Each entry of the matrix
(row-wise) corresponds to one example associated to one
of the two clinical noise categories (clean or noisy) in the

target vector y = [
y(1), y(2), · · · y(m)

]T
. So, the ith instance

is given by the pair:
(
x(i), y(i)

)
. Feature scaling is carried

out through z-score normalization:

z
(i)
j = x

(i)
j − μj

σj

, j = 1, · · · , n (5)

where μj and σj stand for the mean and the standard
deviation of feature xj from the train set.

3.2 Experimental setting

Any trained model learns the ECG characteristics of patients
inside the train set, so if they are are shared in the
test set, the performance model can be overestimated.
This phenomenon, referred to as intra–patient overfitting
hereafter, will be prevented by never allocating instances
from patients of the train set in the test set.

To compensate the low availability of patients, 6 different
models are designed by letting one patient out in the test
set to estimate their performance, as shown in Fig. 4.
This procedure also minimizes intra-patient overfitting. The
patients not allocated in the test set are used to design
the model by performing 5-fold cross-validation (CV) on
80% of the randomized instances in the training set, and
the remaining 20% in the validation set for hyperparameter
tuning. Thus, one optimal model per each patient in the test
set is designed, and their hyperparameter values are shown
in Table 3. The overall estimated performance is calculated
as the mean of all combinations, and the standard deviation
is used as an indicator of consistency.

The performance evaluation is assessed in terms of
detection in the clean class, so a true positive (T P ) is

Fig. 4 Validation scheme, where all the instances of one single patient
are included in test set. The remaining instances are used to perform 5-
fold CV and hyperparameter tuning. The split is random, 80% and 20
% to train and validation, respectively. In total, six models are tested

referred to as the correct classification of a clean segment,
and a false negative (FN) to its misclassification. Regarding
the noisy class, a true negative (T N) stands for the correct
identification of a noisy segment, whereas a false positive
(FP ) occurs when it is classified as clean. Five standard
metrics are employed to estimate the performance. The
probability of correctly classifying any signal block is
measured by means of the accuracy:

Acc = T P + T N

T P + FN + T N + FP
(6)

Recall is used to assess the probability of correct
classifications in the clean class

Re = T P

T P + FN
(7)

The probability of a signal segment classified as clean being
correct is evaluated through the precision:

Pr = T P

T P + FP
(8)

As a balance measure between precision and recall, F1 score
is assessed:

F1 = 2 · Re · Pr

Re + Pr
(9)

At last, we also employ the Matthew Correlation Coefficient
(MCC):

MCC = T P · T N − FP · FN√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

(10)

The MCC eases evaluating and comparing the performance
of binary classifiers when the classes are unbalanced [39].
When comparing classifiers, the MCC is the only score that
improves only if the prediction improves simultaneously for
the positive and the negative class instances. In this work,
the normalized version of the MCC is used nMCC =
MCC+1

2 , such that nMCC ∈ [0, 1].

4 Results

4.1 Performance of themodels

Each graph of Fig. 5 shows the performance for each
metric. Each bar triplet corresponds to the results on the
three sets (from left to right: train, validation, and test,
respectively). Each bar stands for the mean value, and the
standard deviation is represented as whiskers around the
mean. In general, the performance is similar, as can be seen
in the very close values attained by nMCC (bottom graph).
The classification performance in the train and validation
sets always outperforms that of the test set in all the cases,
which confirms the overestimated performance when the
same patients are used for testing. There are two models
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Table 3 Hyperparameters
value of the optimal ML models KNN DT SVM SLP RF

Patient test K mSL S C neurons mSL nFeats nT rees

2 11 11 21.92 990.51 55 51 5 100

4 15 77 16.06 994.56 40 50 13 150

6 11 23 3.34 39.83 50 50 12 50

7 13 79 0.14 0.13 55 50 15 250

9 11 22 0.81 3.73 60 50 15 100

10 37 20 1.80 12.26 55 50 13 150

K is the number of neighbors, mSL is the minimum samples at each leaf node, S is a scaling factor, C is
the regularization parameter, neurons is the number of neurons in the hidden layer, nFeats is the number
of features and nT rees is the number of trees

where differences between validation and test are smaller,
namely, SLP and SVM (third and fourth columns of each
graph).

Regarding the variability, standard deviation is signifi-
cantly greater in the test set than in the other sets for all
the cases. Reasons are twofold. First, the limited extent of
the database, which fails to learn all the inter-subject vari-
ability, resulting in poorer performance when the model is
applied to unknown data. Second, the particular character-
istics of one single individual in the test set may not be
necessarily well represented in the training set, inducing
higher variability when changing the patient.

The best method is chosen according to the next
considerations: small performance differences among the
three sets, indicative of less overfitting to the train set; small
variability in the test set, indicative of robustness, since
lower standard deviation suggests similar behavior for the
different patients in the test set; and good trade-off between
recall an precision. The smallest deviations in the test set
are obtained by KNN, DT, and SLP (first, second, and
fourth columns), but the best deal among all the previous
considerations is given by the SLP, as it yields better recall
and precision in the test set. The detailed performance of the
SLP is shown in Table 4 (rows 2 to 3).

Fig. 5 Classification performance with different ML methods. Results
are shown in terms of mean and standard deviation. Each graph cor-
responds to one metric, namely (from top to bottom), accuracy, recall,

precision F1, and nMCC. Each bunch of three bars corresponds, from
left to right, to the train, validation, and test sets
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Table 4 Classification
performance using the SLP Acc Re P r F1 nMCC

Train 0.84±0.02 0.83±0.02 0.82±0.03 0.83±0.02 0.84±0.02

Validation 0.84±0.03 0.83±0.04 0.82±0.02 0.83±0.03 0.83±0.03

Test 0.75±0.17 0.78±0.16 0.80±0.20 0.77±0.14 0.76±0.16

Test with 9 features 0.75±0.16 0.79±0.15 0.77±0.18 0.77±0.12 0.75±0.14

Test with 8 features 0.73±0.17 0.73±0.21 0.78±0.19 0.73±0.14 0.74±0.15

Table 5 shows the SLP performance for each patient
in the test set, reporting the confussion matrix (letters c

and n refer to clean and noisy classes, respectively). The
minimum and maximum F1-score values are attained for
the models tested on patient 6 (0.54) and patient 4 (0.95),
respectively. The low performance of patient 6 indicates that
the characteristics are not learned from the other five.

4.2 Feature selection

The impact of each individual feature is evaluated by
applying permutation feature importance [33, 40], which
consists of analyzing the decrease in performance when a
feature xj is randomly shuffled. Therefore, the decrease
in performance becomes an indication of how dependent
the model is on that feature because the relationship
between that feature and the categories is broken. Figure 6
shows the results of sorted features from highest to the
lowest importance for SLP model. The first three are
the most significant, though the decrease in performance
is not significant. Table 4 shows the results of the SLP
with 9 and 8 features (rows 4 and 5). As can be seen,

the performance with 9 features is quite similar to the
performance with all features. Not only can the complexity
of the model be reduced by using fewer features without
losing classification capability, but also it is possible to
eliminate redundant or useless information for the model.

4.3 Performance on ECG inline

An example of actual working conditions is carried out with
the SLP on the whole original EER database introduced
in Section 2.1. Signals are processed with a 5-s length
sliding window and 4-s overlap. The 250 signals were split
in two bunches: Bunch 1 (B1) gathers the 6 patients used
to train the system as previously described; and bunch 2
(B2) with the excluded patients. Although it was expected a
better performance in B1, results are similar (see Table 6),
because most of the parts of the ECGs from B1 were
not selected for the training dataset. A visual example is
shown in Fig. 7, which depicts an excerpt of 50 s taken
from one ECG of B2 with a transition from clean to
noisy classes at, approximately, t = 28 s. The result of
the tracking experiment, in the bottom graph, shows one

Table 5 Detailed classification
results for each SLP Test Real Acc Re P r F1 nMCC

c n

Predicted

2 c 174 52 0.81 0.72 0.77 0.75 0.79

n 67 320

4 c 124 10 0.97 0.97 0.93 0.95 0.96

n 4 371

6 c 180 243 0.45 0.73 0.43 0.54 0.48

n 66 76

7 c 211 79 0.75 0.99 0.73 0.84 0.72

n 3 36

9 c 92 4 0.76 0.59 0.96 0.73 0.80

n 64 128

10 c 223 12 0.76 0.67 0.95 0.79 0.79

n 109 170

Letters c and n refer to clean and noisy classes, respectively
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Fig. 6 Permutation feature importance. The broken red line separates
the most important individual features for the SLP models

segment misclassified as noisy in the first 24 s of the excerpt.
The result around t = 28 s reveals that a running and
continuous tracking application may have some difficulty in
finding the exact point where classes change.

5 Discussion

There are several works which address the problem of noise
in ECG using ML techniques to assess different scales of
severity such as the one proposed in this project. Most
of the approaches based on realistic ECG recordings of
short duration [24–26] extract signal quality indexes to
feed different ML classifiers. Others focus on exploiting
the structure of the cross-covariance matrix [22] or the
autocorrelation [21] among short ECG segments to compute
the features. The addition of synthetic noise at different
scales of severity to the ECG blocks is the technique most
commonly used to assess the performance of the algorithms.
These previous works make a characterization of the noise
in ECG in terms of quantitative severity, except [26],
which uses a 5-level scale of clinical severity, but it also
performs the validation on a database of ECG segments
with additive noise. Alternately, an approach with actual
LTM recordings is addressed in [20], though the quality
scale is not defined. So, to the best of our knowledge,
none of the previous works have developed a gold standard
relying on qualitative severity. Conversely, in this paper we

Table 6 Performance results of the SLP operating in running
conditions on actual signals with class transitions

Re P r nMCC

lead1 lead2 lead1 lead2 lead1 lead2

B1 (2h, 50’ 41”) 0.85 0.76 0.85 0.69 0.81 0.77

B2 (3h, 36’ 43”) 0.88 0.92 0.65 0.74 0.77 0.83

B1 stands for the set of ECGs from the 6 training patients and B2 for
the bunch with the remaining 4 patients with class imbalance

Fig. 7 Example of noise tracking. The top graph shows an original
labelled excerpt that corresponds to 50 s taken from an LTM signal. It
presents a transition from clean to noisy class, at approximately t = 28
s. The bottom graph shows the classification result obtained by the ML
system

propose the characterization of noise according to a clinical
noise severity [10], using for this purpose a manually
annotated database. The main difference of this work with
regard to the previous ones is that we deal with LTM data
acquired in real conditions and continuously labeled from a
clinical perspective. Besides, the data is labeled according
to clinical noise criteria ensuring that the ECG waveform
fulfills the conditions to contain interpretable information
for diagnostic.

The size of the database is a limitation of this work
because it only covers a time duration of approximately
6.5 h of only 10 patients. This restriction is further
affected by the segmentation process carried out to design
a suitable dataset to validate learning systems along with
the necessity of making class balancing. This process leads
to a reduction of both the database size and the number
of patients. However, the major value of the database
lies in its annotations, a continuous running labelling of
all the ECG records set to be a gold standard to assess
qualitative noise severity. So, with this powerful tool at
hand, and despite the available reduced information, the
application of a solid methodology supports the hypothesis
that clinical noise classes can be distinguished using ML
techniques. The soundness of the procedure relies on the
following considerations: selection of independent ECG
segments to design the dataset, patient withdrawal in favor
of data balance, patient separation to test, and design of
different optimized models to be evaluated on different test
sets. Despite this solid experimental framework setting, the
limitation of the database constrains the performance to
a moderate-to-high values of 0.78 and 0.80 in recall and
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precision, respectively, though this is also a proof that there
is room for the improvement.

Increasing the database size may be a question to
be further addressed, as it would surely contribute to
outperform the reported results and also to employ models
based on deep learning. Unfortunately, the design of
synthetic data is significantly constrained, since the impact
of clinical noise is not assessed by quantitative means. One
possibility is to assemble new annotated data of running
and continuous labelling, but this process is extremely
cumbersome and time consuming, so it does not seem to
be the most feasible way. Furthermore, the segmentation
applied to the database, as reported in Section 2, wastes
valuable information, such as annotated segments of less
than the selected tb time length or data imbalance. Rather
than dedicating loads of human hours in manually labelling
ECG, we believe that an incremental method combining
labelling with the use of a trained model would be more
beneficial. Thus, we consider that techniques such as Active
Learning [41, 42], which allows short-term monitoring,
increasing the amount of labelled data and calibration of the
improvement at the same time, should be a better choice.

A possible approach to address an Active Learning
methodology is shown in the diagram of Fig. 8, where the
classifier trained in the present work (blue boxes) is the seed
to this technique. From this point, the main idea is to make
predictions on new unlabelled LTM data with the classifier.
Once the predictions have been made, a user reviews only
a portion of these predictions (green), e.g., those where
the classifier fails the most and, therefore, their correction
and inclusion in classifier retraining will help to further
improve its performance. Hence, the classifier learns, not
only from the initial labelled LTM database, but also from
new data in each iteration. This feedback will allow the
classifier to improve its performance and also its predictions
on large amounts of unlabelled data. As it can be seen, it
is an iterative process where the evolution of the classifier
performance is also analyzed. Thus, after several iterations,
it would be possible to obtain a fairly reliable labeling on
the initially unlabelled LTM database. This approach could
solve the current database size limitation and also would
lead to the use of deep learning-based models, such as

convolutional neural networks, for which a large amount of
labelled data is needed.

In the experimental setting, we have decided to rotate
patients in the test set to check the consistency. So,
for a particular learning technique, we expected to see
some uniformity of the models optimized with different
hyperparameter when operating on new data. The results
exhibited in Fig. 5 indicates high variability of the estimated
performance (test set). One reason for that may be due
to insufficient number of examples to train. Another one
can be given by the inter-patient variability, which is
clearly patent in Table 5, where it can be observed that
the classification results vary significantly depending on
which patients are included in the training and test set.
All these results indicate that the approach tackled in the
work to characterize clinical noise is promising, but that the
performance improvement is subject to the arrangement of a
larger database with more patients. Another important issue
to be highlighted is preventing patient-overfitting. Figure 5
exhibits a performance drop between the validation and the
test sets. The reason is due, in part, to the fact that the
validation and the training sets share patients, i.e., although
they contain different instances, they come from shared
patients. So, the validation set cannot be considered as new
data to the classifiers.

Initially, the original split of clinical noise was defined
in a five classes scale. However, the main objective in this
field is to discern which parts of an ECG record can be
used to obtain a diagnosis. Given that the original taxonomy
relies on what clinicians interpret as noise in an ECG,
the different categories can be gathered into two groups
to achieve this goal, as carried out in this work. Thus,
subsequent analysis stages can use the output of the noise
characterization system for different several purposes, e.g.,
either automatically process or manually supervise ECG
regions with diagnostic potential. According to this, we have
proposed in this work to reduce the multi-class problem to
a binary one by including noise levels T2 and T3 into the
non-valid or noisy category. The latter because it represents
a signal with no recognizable ECG patterns at all, and the
former, because it hardly provides the rhythm identification.
We are aware that this distribution is not unique, and that

Fig. 8 Active learning scheme:
iterative method for database
growth and performance
improvement
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many other possibilities are feasible. For example, class T2,
chosen as noisy in this work, can very well be used for
Heart Rate Variability studies, though we understand that
the distinction between T2 and T3 is even a simpler problem
than the one conceived in this work.

With the increasing number of e-health devices, signaling
whether the collected data has value, which is indeed linked
to the quality of the data, is of utmost importance due
to the possible overwhelming quantity of data. Even for
automated analysis and diagnosis, a first step would be
restricting the analysis to interpretable segments to save
time, energy, and other resources. This entails a binary
classification. Our contribution is a first approach targeting
this (engineering) problem evaluating its possibility, and
discussing the necessary steps in this direction.

6 Conclusions

The results of this work show that the use of learning-based
systems to solve a problem of clinical noise classification in
electrocardiography on a binary dimension scale is possible.
The procedure developed to prove the feasibility of ML
classifiers to assess clinical quality in the ECG relies on
a robust methodology which takes into account balance of
classes and inter-patient variability to conduct experiments
with five different ML classifiers. The gold standard is a
LTM database entirely annotated according to a clinical
noise taxonomy. All the models fitted into these data
have proven nice performance in classifying ECG signal
frames with diagnostic capability. Regarding the limitation
of the current work, the improvement is subject to further
explorations on advanced and semi-supervised techniques
to gather additional and reliable labelled data. Methods such
as active learning may play an important role to outperform
the detection ability of learning systems and to increase
the amount of labelled data within the framework of these
long–duration signals.
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