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Experimental Evaluation of a Machine
Learning-Based RSS Localization Method Using
Gaussian Processes and a Quadrant Photodiode

Elena Aparicio-Esteve, Willem Raes, Nobby Stevens, Jesús Ureña, Álvaro Hernández

Abstract—The research interest on indoor Location-Based
Services (LBS) has increased during the last years, especially
using LED lighting, since they can deal with the dual functionality
of lighting and localization with centimetric accuracy. There
are several positioning approaches using lateration and angular
methods. These methods typically rely on the physical model
to deal with the multipath effect, environmental fluctuations,
calibration of the optical setup, etc. A recent approach is
the use of Machine Learning (ML) techniques. ML techniques
provide accurate location estimates based on observed data
without requiring the underlying physical model to be described.
This work proposes an optical indoor local positioning system
based on multiple LEDs and a quadrant photodiode plus an
aperture. Different frequencies are used to allow the simultaneous
emission of all transmitted signals and their processing at the
receiver. For that purpose, two algorithms are developed. First,
a triangulation algorithm based on Angle of Arrival (AoA)
measurements, which uses the Received Signal Strength (RSS)
values from every LED on each quadrant to determine the image
points projected from each emitter on the receiver and, then,
implements a Least Squares Estimator (LSE) and trigonometric
considerations to estimate the receiver’s position. Secondly, the
performance of a data-driven approach using Gaussian Processes
is evaluated. The proposals have been experimentally validated
in an area of 3 × 3 m2 and a height of 1.3 m (distance from
transmitters to receiver). The experimental tests achieve p50 and
p95 2D absolute errors below 9.38 cm and 21.94 cm for the AoA-
based triangulation algorithm, and 3.62 cm and 16.65 cm for the
Gaussian Processes.

Index Terms—Quadrant Photodiode, Visible Light Positioning,
Gaussian Processes.

I. INTRODUCTION

The demand for accurate and affordable positioning systems
has increased significantly with the development of various
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and Álvaro Hernández are with the Electronics Department, University
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Location-Based Services (LBS), where users are offered a
range of applications based on their position in a specific area
[1]. These services introduce a new challenge in determining
the precise location of people, robots, or any other device,
not only outdoors, where Global Navigation Satellite Systems
(GNSS) offer a viable solution, but also indoors, where
there is a lack of GNSS coverage and, therefore, accuracy
in indoor environments, particularly within buildings with
numerous floors, thick walls, and locations far from windows
[2]. Multiple indoor localization technologies have been
developed to overcome those weaknesses, based on acoustic
[3], mechanical [4], radio-frequency [5], and optical [6]
signals, among others.

In particular, the use of optical positioning systems (visible
light, VLP [7] or infrared light, IRLP [8]) is a feasible
option that has begun to expand as a result of their low
cost, long lifetime and broad distribution in the majority
of buildings, homes and indoor spaces [9]. Both VLP
and IRLP typically employ multiple Light Emitting Diodes
(LEDs) as transmitters, and a camera, a single photodiode
or an array of photodiodes as receiver. Previous works
that use arrays of photodiodes can be classified into three
broad categories [10]: aperture-based, lens-based, and tilted
photodiode-based designs. Those based on tilted photodiodes
or prisms [11] [12] are larger in size and number of
photodiodes, and typically offer limited resolution in AoA
measurement (sometimes quantified ranges of angles). Higher
resolution in AoA estimation is possible with aperture-based
designs using quadrant photodiodes, but with Field of View
(FoV) limitations [13]. The use of a Quadrant Photodiode
Angular Diversity Aperture (QADA) is highlighted due to
its better angular diversity [14]. Finally, Position Sensitive
Detectors (PSD) are frequently used in lens-based systems
(e.g., with a hemispherical lens) to provide higher FoV,
achieving higher refresh rates than cameras, but they have
smaller bandwidths than QADA photodiodes [15]. They must
also take into account how the lens affects the photodiode to
achieve a high accuracy [16].

There are several approaches to obtain the indoor coordi-
nates based on VLP, such as Times of Flight (ToF), Received
Signal Strength (RSS), and Angles of Arrival (AoA). These
techniques rely on lateration and angulation methods to finally
estimate the position of the mobile node. Positioning using
RSS measurements implies taking into account the reflections
of light on surfaces and the consequent multipath effect, as
well as the transmitter radiation pattern and the transmitter tilt
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angles, which increase the complexity of the positioning algo-
rithm [17]. It is worth noting that ToF measurements require
to deal with the velocity of light and, consequently, small time
estimation errors in the range of 1 ns can lead to a 30 cm error
in position [18]. Finally, the AoA-based positioning algorithms
are robust against source and environmental fluctuations (dust,
fumes, etc.), it is not necessary to have a synchronisation
between transmitters, although an accurate calibration of the
optical setup (i.e. intrinsic parameters of the optical receiver)
may be required [19].

A recent approach to further improve the performance
of VLP schemes is the use of Machine Learning (ML)
techniques [20] [21] [22]. The main advantage of these data-
driven methods is that they can provide reliable location
estimates based on observed data, without having to accurately
describe the underlying physical model. In general, there is no
need to have prior information on the physical model since it
is embedded in the training set; however, including domain-
specific knowledge can improve and simplify the model
selection and training process. Apart from the straightforward
position estimation, ML methods have been successfully
applied in the context of localization using both supervised
and unsupervised approaches for many other problems e.g.,
Non-Line-of-Sight (NLOS) detection and mitigation [23] [24].
In addition, ML methods also offer the ability to easily fuse
input data from multiple types of sensors and other available
information sources.

Table I provides a comparison between previous VLP
works. The parameters to be compared in the literature are:
the number of LEDs required in the implementation; the type
of receiver, including any additional non-optical hardware;
the coverage area at which the proposed system can operate
and the position accuracy achieved inside it; and, finally,
the implemented positioning technique. It is worth noting
that a large variety of experimental situations can be found,
based on a low number of LEDs. Some works operate in
a few centimetres [12], [25], [26], whereas others provide
solutions for several meters [27], [28], [29] (although these
last ones are simulations). Regarding the type of receiver, all
the works require at least four photodiodes (PDs) to achieve
positioning accuracies below 10 cm. Finally, the implemented
positioning techniques are mainly related to ML techniques
[27], [25], [26], although some of them use fingerprinting (FP)
[28] or Cramer-Rao Bound (CRB) and Gauss-Newton (GN)
approximations [29].

This work focuses on the design and experimental validation
of a VLP system based on a set of four transmitting LEDs
(beacons) placed at known positions. A quadrant photodiode
(QP) with a square aperture is used as receiver. The VLP
system relies on the reception and further processing of
different simultaneously emitted and modulated signals by the
aforementioned LEDs, in order to provide position estimates.
The system processes the received signals to estimate the RSS
value from each LED at the receiver. Based on these values,
two algorithms are evaluated in this work. Firstly, an AoA-
based triangulation approach is presented, where, after the
estimation of the RSS values, the 2D projections from the
beacons on the QP are estimated, and, then, the pose of the

receiver is derived. Secondly, a data-driven approach using
Gaussian Process (GP) regression [30] is evaluated. For this
strategy, the intensities received from the four quadrants of
the QP are fed into an autoencoder model for dimensionality
reduction and feature extraction, and the resulting features are
employed as inputs for the GP model, which finally delivers
positioning outputs. A real prototype has been assembled to
successfully validate both approaches in an experimental setup
with a 1.3m distance between the beacons’ and receiver’s
planes.

The rest of the manuscript is organized as follows: Section
II provides an overview of the proposed system; Section III
describes the applied AoA-based triangulation and Gaussian
Process algorithms; Section IV shows some experimental
results obtained in the proposed setup; and, finally, conclusions
are discussed in Section V.

II. GLOBAL PROPOSED SYSTEM

The proposed visible light positioning system is based on
four visible light LED emitters located at known positions in
the ceiling, covering a volume large enough for the receiver
to detect all transmissions and determine its own position. If
a larger system is needed, the proposed system can be simply
extended by increasing the number of LEDs deployed in the
environment. Note that in order to estimate the position of the
receiver using a triangulation algorithm, the coverage from at
least 3 LEDs is needed. A more robust system can be achieved
by increasing the number of LEDs. A general diagram of
the VLP system is presented in Fig. 1. In this proposal, two
independent coordinate systems are considered: the Cartesian
coordinates in the global coordinate system are denoted as x,
y, z, with the origin at the corner of the room, and the local
2D coordinates of the quadrant photoreceiver are represented
as xr, yr, with the origin at the centre of the receiver. The
receiver’s pose is denoted as (x, y, z, γ), where γ is the
receiver’s rotation angle around the Z axis. No rotation around
the X or Y axes is considered.

Note that, since the positioning algorithm relies on the
receiver identifying the different transmissions coming from
the four LEDs, a medium access scheme has to be employed.
In this case Frequency Division Multiple Access (FDMA)
technique is used, where each LED i transmits a power-
switched waveform at an unambiguous fundamental frequency
fi. The receiver can recognise these frequencies by applying
the Fast Fourier Transform (FFT).

In Fig. 2, the Position Dilution of Precision (PDOP) [31]
details the behaviour of the proposed VLP system at plane
z = 0 m in the analysed scenario. The projections of the
transmitters in the XY plane are denoted with black crosses.
The positions of the transmitters (xt,i, yt,i, zt,i) are provided
in Table II. It can be observed that the PDOP significantly
increases at the corners of the test area in comparison with
the centre of the room.

III. PROPOSED ALGORITHMS

As can be observed in Figs. 1 and 3, the light passes through
the aperture and illuminates the quadrant photoreceiver,
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TABLE I
COMPARISON OF PREVIOUS VLPS SCHEMES.

Ref. No. of LEDs Test area (W L H) (m) Type of receiver Position accuracy (rMSE) (cm) Positioning technique Results

[12] 1 0,2 x 0,2 x 0,45 4 tilted PDs 2 AoA Experimental
[25] 1 0,4 x 0,4 x 1 4 Si-PVC with barriers 3,08 AoA + Ridge Regresssion Experimental
[26] 1 0,4 x 0,4 x 1 4 Si-PVC with barriers 2.99 AoA + 2 layer Neural Network Experimental
[27] 4 5 x 5 x 2 8 PDs with apertures 10 AoA + Iterative ML estimator Simulations
[28] 1 5 x 5 x 3 4 PDs 5 RSS + FP Simulations
[29] 10-100 8 x 6 x 3 6 PDs 100-10 CRB + GN Simulations

Silicon Photovoltaic Cells (Si-PVC)

Fig. 1. Global overview of the proposed VLP system. Four LEDs placed in
the ceiling of the room transmit a modulated signal (each LED at a different
frequency) so that the receiver can distinguish their corresponding signal
strength.

TABLE II
LEDS’ COORDINATES CONSIDERED IN FIG. 2.

LED bi Coordinates (xt,i, yt,i, zt,i)

LED 1 (2.40m, 0.60m, 1.35m)
LED 2 (1.05m, 0.60m, 1.35m)
LED 3 (1.05m, 2.40m, 1.35m)
LED 4 (2.40m, 2.40m, 1.35m)

thus generating four currents ij(t), one for each quadrant
j = {1, 2, 3, 4}. These four signals are acquired and processed
to obtain the RSS values from each LED. In order to identify
the RSS value of each transmitter, the system performs the
FFT of the received signal from each quadrant and, then,
selects the corresponding value of the FFT output for each
frequency of interest, while rejecting other undesired signals
(ambient light, incoming sunlight and noise, etc.), and ensuring
that the receiver circuit is not saturated. Note that these RSS-
values are assumed to be proportional to the illuminated areas,
as well as to the output voltage from each quadrant [14], [32].
In addition, in order to have a more robust system, the FFT
is conducted over 5 periods of the signal to reduce spectral
leakage.

From this point, two algorithms are evaluated. On one hand,
we present an AoA-based triangulation algorithm that first uses
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Fig. 2. PDOP of the proposed VLP system in the coverage area when the
receiver is placed at plane z = 0 m. The projections of the transmitters at
plane z = 0 m are represented with black crosses.

Fig. 3. Global overview of the quadrant photoreceiver with a square aperture.
The incident light passes through the square aperture and illuminates the
quadrant photoreceiver. The central point of incidence of the light (image
point) is denoted as (xr , yr). The calibration parameters of the receiver’s
aperture are: height hap, length l, centre (xc, yc) and rotation δ.

the acquired RSS values to estimate the image points (xr, yr)i
for each LED i and, then, estimates the receiver’s position
(x, y, z) and the rotation γ of the receiver in the Z axis,
by using a Least Squares Estimator (LSE) and trigonometric
considerations. In the second strategy we adopt two machine
learning models, where one performs the feature extraction
and the other estimates the receiver’s 2D position (x, y). As the
photoreceiver consists of four distinct quadrants, each quadrant
generates an RSS-vector of four intensities linked to the power
contributions of each transmitter on that quadrant. This results
in an input dimensionality of 16 for the ML-models. In the first
step of the data-driven strategy, an autoencoder [33] neural
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network is used to lower the input dimensionality and to
generate features that will be used as inputs for a GP, which
in turn provides (x, y) location estimates.

A. AoA-based Triangulation Algorithm

We refer to the energy received at each frequency (the RSS
values) as QDj , one for each quadrant j = {1, 2, 3, 4}. These
values can be combined to obtain the ratios (px, py) as:

px =
QD1 +QD4

QD2 +QD3
=

{
l/2+xr

l/2 , −l/2 < xr ≤ 0
l/2

l/2−xr
, 0 < xr ≤ l/2

(1)

py =
QD1 +QD2

QD3 +QD4
=

{
l/2+yr

l/2 , −l/2 < yr ≤ 0
l/2

l/2−yr
, 0 < yr ≤ l/2

(2)

The ratios px and py are used to estimate the image point
(xr, yr) for each transmitter in the quadrant photodiode, as
detailed in Eqs. (3) and (4).

xr =


l
2 · λ · (δ · (py − 1) + (px − 1)) + xc,∀px < 1;∀py < 1
l
2 · λ · (δ · (py − 1) + (1− 1

px
)) + xc,∀px ≥ 1;∀py < 1

l
2 · λ · (δ · (1− 1

py
) + (px − 1)) + xc,∀px < 1; ∀py ≥ 1

l
2 · λ · (δ · (1− 1

py
) + (1− 1

px
)) + xc,∀px ≥ 1;∀py ≥ 1

(3)

yr =


l
2 · λ · (−δ · (px − 1) + (py − 1)) + yc,∀px < 1;∀py < 1
l
2 · λ · (−δ · (1− 1

px
) + (py − 1)) + yc,∀px ≥ 1;∀py < 1

l
2 · λ · (−δ · (px − 1) + (1− 1

py
)) + yc,∀px < 1; ∀py ≥ 1

l
2 · λ · (−δ · (1− 1

px
) + (1− 1

py
)) + yc,∀px ≥ 1;∀py ≥ 1

(4)
where the central point (xc, yc) has also been considered, as

well as the aperture misalignment δ, the aperture length l and
the ratio between the actual focal length h′

ap and the expected

focal length hap, where λ =
h′
ap

hap
[34] (see Fig. 3).

After the coordinates of the image points (xr, yr)i for each
emitter i are estimated, the algorithm continues to determine
the rotation γ of the receiver around the Z axis by means of
trigonometric equations, based on the fact that the illuminated
area on the surface of the sensor is always squared [35].
The rotation angle γ is used to rotate the image points −γ
degrees to obtain the non-rotated image points (x′

r, y′r)i. This
is a necessary step since the positioning algorithm requires
the receiver to be aligned with the reference frame. Then,
the positioning method proceeds to estimate the receiver’s
coordinates (x, y, z) by using a Least Squares Estimator
(LSE) and trigonometric considerations, detailed in Eqs. (5)
and (6) [34]. Note that coordinate z is obtained as the weighted
average considering the distances di between the estimated
receiver’ position (x, y) and the projection of each transmitter
i in the plane where the receiver is placed.

(x, y) = (AT · A)−1 · AT · b (5)

Where A =


−y′r,1 x′

r,1

−y′r,2 x′
r,2

−y′r,3 x′
r,3

−y′r,4 x′
r,4

 and b =


yt,1 · x′

r,1 − xt,1 · y′r,1
yt,2 · x′

r,2 − xt,2 · y′r,2
yt,3 · x′

r,3 − xt,3 · y′r,3
yt,4 · x′

r,4 − xt,4 · y′r,4

.

zi = zt,i − hap ·

(
1 +

√
(xt,i − x)2 + (yt,i − y)2

x
′2
r,i + y

′2
r,i

)

z =
1∑i

i=1 d
2
i

·
i∑

i=1

(
d2i · zi

)
(6)

B. Adopted Machine Learning Algorithms

The energy received at each frequency QDj , for each
quadrant j = {1, 2, 3, 4}, leads to an input dimensionality
of 16 RSS values. However the individual RSS values are
not all uncorrelated and a more efficient representation can
be found by using an autoencoder [33]. An autoencoder is a
type of artificial neural network that is trained to attempt to
copy its input to its output. However it consists of a hidden
layer which describes a code that represents the input. The
network can be viewed as consisting of two parts: an encoder
function and a decoder function. Due to the fact that the
hidden layer has a lower dimensionality than the input layer,
the network learns to prioritize certain aspects of the training
data and, thus, often learns the useful properties of data.
Once trained, the encoder step of the network generates an
efficient and lower dimensional representation of the original
input data and these features can be then used in the GP
model. In this work an encoder using only feed forward
network functions and with a single hidden layer is selected
for dimensionality reduction. The input dimensionality of the
encoder is 16 and the dimensionality of the hidden layer is
4. The hyperbolic tangent function is added as non-linear
activation to the hidden layer. A schematic representation of
the implemented autoencoder is presented in Fig. 4.

Encoder

Encoded features

Decoder

RSS 14

RSS 2

RSS 3

RSS 1

RSS 15

RSS 16

Fig. 4. A schematic representation of an autoencoder neural network.

In this context, the positioning problem is considered to
be a supervised regression problem. There are many exist-
ing types of models for regression [36]–[39], however GPs
feature being very data-efficient [40] and allow automatic
hyperparameter optimization and regularization. A summary
of the GP model and its parameters is detailed in Table III.
A GP is a generalization of the Gaussian probability distri-
bution [30], where a probability distribution describes random
variables and a stochastic process governs the properties of
functions [30]. More formally [30], GPs are powerful non-
parametric Bayesian models defined by a kernel function
k(x,x′) and a mean function ρ(x), such that the probability of
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any finite set of input-output pairs {(xi, fi)}Ni=1 is distributed
according to a Gaussian distribution with a mean [ρ(xi)]

N
i=1

and a covariance K. In this work, xi are vectors containing the
RSS input features and fi are the Euclidean coordinates. Each
entry of the covariance matrix is defined by Kij = k(xi,xj).
The mean function is considered to be zero.

The chosen kernel function is the Radial Basis Func-
tion [30]:

k(x,x′) = σ2
k exp

(
∥x− x′∥2

2ℓ2p

)
. (7)

The hyperparameters ζ = {σk, ℓp} are optimized by
maximizing the log likelihood of the data [30]:

ζ̂ = argmax
ζ

log p(f |ζ) (8)

= argmax
ζ

−1

2

(
log |2πK|+ fTK−1f

)
(9)

A prediction for a new input x⋆ is obtained by computing the
conditional distribution, resulting in a Gaussian distribution
with mean kT⋆ K

−1f and covariance k⋆⋆ − kT⋆ K
−1kT⋆ , where:

(k⋆)i = k(x⋆,xi), (10)
k⋆⋆ = k(x⋆,x⋆). (11)

TABLE III
SUMMARY OF THE GP MODEL AND ITS PARAMETERS

.
System parameters Parameter value
Mean function ρ(x) Chosen to be zero

Kernel function k(x,x′) Radial Basis Function
Training set sizes N {40, 50, 75}

Training method 20-fold cross validation
Number of inputs 4

Complexity O(N3)

Kernel Hyperparameters
Characteristic length-scale ℓp Optimized during training phase

Signal variance σk Optimized during training phase

IV. EXPERIMENTAL RESULTS

The experimental tests have been carried out in an area of
3×3 m2 with a height of 1.3m, under normal light conditions.
Four visible light LEDs have been placed in the ceiling of the
test area, at the four corners of a rectangle of 1.35m × 1.9m,
as depicted in Fig. 5. The deployed LEDs are an individual
Chip On Board (COB) LED Bridgelux BXRE-C3001-D24.
Each LED i = {1, 2, 3, 4} has its unique central frequency
f = {500, 1000, 2000, 4000} Hz, respectively. Note that since
the aperture height is set at hap = 2.5mm, and the length
of the quadrant photodiode is l = 10mm, the FoV of the
receiver is FoV = tan−1

(
l/2
hap

)
· 2 = tan−1

(
5
2.5

)
· 2 =

63.43 · 2 = 126.87◦. That means that, with a transmitters’
height of H = 1.3m, the receiver can move, in plane XY ,
up to d = H · tan(FOV/2) = 1.3 · tan(63.43◦) = 2.60m far
away from the projection of a LED and still receives signal
from it. Taking that into account, all the experimental tests are
within the coverage of the four transmitters.

Fig. 5. View of the experimental setup in the proposed scenario with the
four transmitting LEDs. A close-up of the quadrant photodiode receiver and
Marvelmind ground-truth mobile node is detailed in the bottom-left corner.

The reception system consists of: 1) a quadrant photore-
ceptor Hamamatsu S5981 plus a 10mm long square aperture
placed over it in such a way that the incident signal passes
through the aperture and illuminates part of its surface (see
Fig. 6); 2) an external crystal oscillator; and 3) a National
Instruments USB-6215 acquisition system connected to a
computer via USB, where the detected signals are processed.
The acquisition frequency is set at 128 kHz.

In addition, a highly accurate ultrasound localization system
Super-NIA-3D Marvelmind Robotics has been used to obtain
the ground-truth (real positions) of the receiver and the
transmitting beacons. The Marvelmind ultrasound system and
the VLP receiver provide synchronized measurement updates.

(a) (b)

Fig. 6. Quadrant photodiode a) without aperture, b) with aperture.

To evaluate the VLP’s performance, multiple experimental
points were collected by randomly moving the receiver in the
test area, both inside and outside the rectangle formed by the
LED projections in the XY plane. Fig. 7 shows a top view of
the acquired dataset, consisting of 110 non-overlapping data
points with an interdistance of at least 5 cm.

With regard to the AoA algorithm, the calibration pa-
rameters in Eqs. (3)-(4) are estimated using 70% of the
acquired dataset. The parameters are set at δ = 0.1 rad,
(xc, yc) = (0.05, 0.05) mm, l = 10 mm, hap = 2.5 mm, and
λ = 0.92. In case of the data-driven approach, the acquired
dataset is preprocessed by computing the natural logarithm
of the RSS values and then applying a standard scaler to the
resulting values. These scaled RSS vectors are then used to
train the autoencoder model in order to facilitate dimension-
ality reduction and feature extraction. Next, a GP model is
trained with varying training set sizes of N = {40, 50, 75}
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Fig. 7. Top view of the dataset acquired in the experimental setup, location
of the transmitters and test scenarios. Globally, 110 non-overlapping points
were measured.
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Fig. 8. CDF of the global 2D absolute error using AoA and ML techniques
whether N = 75.

with the resulting feature vectors. Because of the limited size
(110) of the total dataset, a cross validation strategy using
20 independent train-test splits for every training set size
N is evaluated to obtain statistically relevant results. The
performance of the model is only evaluated on the test portions
of the dataset. Furthermore, the model trained with N = 75
is also evaluated on the entire dataset of 1700 data points,
which thus contains many overlapping measurements, with the
objective of evaluating the precision of the model and RSS-
based method.

The Cumulative Distribution Function (CDF) of the posi-
tioning error for the AoA and ML techniques are shown in
Fig. 8 and the p50 and p95 values are presented in Table IV.
The metric used to assess positioning accuracy is the Euclidean
distance error Ed of the estimate with respect to the ground-
truth (12), where (x, y) are the ground-truth coordinates and
(x̂, ŷ) are the estimated positions.

Ed =
√
(x̂− x)2 + (ŷ − y)2 (12)

It is worth noting that, although the AoA-based triangulation
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N
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)

Fig. 9. Error distribution of the approach using GP regression according to
the different training set sizes.

approach detects the location of the receiver and its rotation γ
on the Z axis (x, y, z, γ), for the sake of comparison with the
GP regression, in Fig. 8 and Table IV, only the 2D coordinates
are presented. In the entire area, the experimental tests achieve
p50 and p95 2D absolute errors below 9.4 cm and 21.9 cm
for the AoA-based triangulation algorithm, and 3.6 cm and
16.6 cm for the Gaussian Process in the case N = 75. The 3D
p50 absolute errors for the AoA-based triangulation approach
are below 6.7 cm, 14.6 cm and 10.1 cm for the test area 1, test
area 2 and the total area, respectively.

TABLE IV
P50 AND P95 VALUES OF THE CDF, AVERAGE AND MAXIMUM ERRORS
FOR THE 2D POSITIONING ERROR USING AOA AND ML TECHNIQUES.

Method p50 (cm) p95 (cm) Average
error (cm)

Maximum
error (cm)

Test area 1 AoA 5.97 9.49 6.44 27.28
GP 2.30 12.40 4.30 20.98

Test area 2 AoA 14.32 18.56 14.37 33.45
GP 3.36 10.35 5.23 23.57

Total area AoA 9.38 21.94 10.20 55.89
GP 3.62 16.65 5.46 47.15

In Fig. 9, the corresponding boxplots are shown of the
positioning error distribution of the GP model according to
the considered training set sizes. From this figure it can be
observed that, even for the smallest training set size, the GP
model achieves a p50 error well below 5 cm in the considered
experimental setup. The p95 error reduces as training set size
does, and it is below 18 cm for all the considered scenarios.
When the GP model trained with N = 75 points is evaluated
on the entire set of 1700 data points, a p50 error of 3.09 cm
and p95 error of 21.4 cm are found.

From Table IV it can be derived that the ML method
provides more accurate results in general, most notably in
terms of p50 error but also for the p95 errors, than the
analytical AoA method. Furthermore when focusing on the
two distinct test areas, it is possible to observe that the GP
model slightly outperforms the AoA method in the center
in terms of p50 error but reports a higher p95 error on the
considered locations there. As for the test area at the corner of
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the experimental setup, the GP model clearly outperforms the
analytical AoA method in terms of both p50 and p95 errors.

Mean absolute
error (m)

Ground-truth

Transmitters' position

(a)
Mean absolute

error (m)

Ground-truth

Transmitters' position

(b)

Fig. 10. Average 2D positioning errors at each testing location using: a) AoA
method; b) GP method.

For clarity’s sake, a colour map of the obtained 2D average
positioning errors at each position is presented in Fig. 10,
using the AoA and the GP methods. Note that the AoA
method performs better in the centre of the test area compared
to the corner of the room, since, although those points are
within the coverage area of the VLPS, some LEDs may
not be clearly detected by the receiver and its RSS values
may not be accurate enough (due to frequency leaking, high
incident angles, miscalibrated parameters, etc.). A solution to
improve its performance is to implement encoding techniques
in the emission of the LEDs and increase the feasible distance
between the transmitters and the receiver [34]. The fact that
the analytical AoA approach needs accurate RSS values is a
disadvantage in comparison with the GP model.

In addition, it is worth noting that the analytical AoA
method can also provide 3D location estimates without
requiring additional training data. In order to facilitate 3D
positioning, the used GP model would require observed or
simulated data at different z-coordinates, which complicates
the training process. This is a clear disadvantage in comparison
with the analytical AoA method.

Although the initial application considered here (e.g., the
guidance of a mobile robot in the floor) only involves the
rotation γ around the vertical axis Z (i.e., getting always
α = β = 0◦), whether rotations around the X and Y axes
are considered, the following considerations apply:

• ML algorithms are not sensitive to a rotation on the Z axis
since they always consider the global received energy,
which does not depend on this rotation. In addition, if
rotations around the X and Y axes are taken into account,
ML algorithms should be trained for those situations,
what is beyond the scope of this work.

• Triangulation-based algorithms can be analysed for errors
derived from possible rotations around the X and Y axes.
By means of simulation, the errors obtained for cases with
small rotations (up to 5◦) in the X , Y and both axes have
been determined. Note that rotations around the Z axis
have already been estimated by the proposed algorithm.

Fig. 11 shows the CDF of the absolute error when the
receiver is located every 20 cm on a grid of 3.5 × 3 m2 for
small rotations in the X and Y axes. The output signals of
the quadrant photoreceiver present a 10 dB Signal-to-Noise
ratio. The LED’s coordinates are provided in Table II and 20
iterations are carried out for each location. According to the
CDF, for the 90% of cases, the 2D positioning error is below
5 cm if there is no rotation around X or Y ; below 30 cm if
there is a 5◦ rotation in any axis (X or Y ); and about 45 cm
if the rotation is 5◦ in α and β (both X and Y axes).
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Fig. 11. CDF of the absolute 2D positioning error using the AoA method
when tilting the receiver up to 5◦ in the X , Y and both axes.

V. CONCLUSIONS

In this work an experimental evaluation of the performance
achieved by Gaussian Processes for 2D visible light position-
ing is assessed when using a quadrant photodiode and an
aperture as receiver sensor. The data-driven GP method is
compared to an analytical AoA multilateration-based method,
which uses the same receiver hardware. From the conducted
experiments and results, it can be concluded that the data-
driven method delivers more robust and accurate positioning
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in the 2D case. When evaluated over the entire area, the
AoA method achieves a p50 error of 9.38 cm and a p95
error of 21.94 cm, whereas the GP model obtains a p50 error
of 3.62 cm and a p95 error of 16.65 cm. Another important
conclusion is that the GP is capable of delivering robust results
in the test area 2 (corner of the setup) with a p50 error of
3.36 cm and a p95 error of 10.35 cm, whereas the p50 and p95
errors for the analytical method are 14.32 cm and 18.56 cm,
respectively, in that area. Finally, the analytical method can
provide 3D positioning without requiring additional training
data, while the GP model would require additional observa-
tions at different z-coordinates to achieve this.
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