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Abstract
This work describes an end-to-end approach for real-time human action recognition from
raw depth image-sequences. The proposal is based on a 3D fully convolutional neural net-
work, named 3DFCNN, which automatically encodes spatio-temporal patterns from raw
depth sequences. The described 3D-CNN allows actions classification from the spatial and
temporal encoded information of depth sequences. The use of depth data ensures that action
recognition is carried out protecting people’s privacy, since their identities can not be rec-
ognized from these data. The proposed 3DFCNN has been optimized to reach a good
performance in terms of accuracy while working in real-time. Then, it has been evalu-
ated and compared with other state-of-the-art systems in three widely used public datasets
with different characteristics, demonstrating that 3DFCNN outperforms all the non-DNN-
based state-of-the-art methods with a maximum accuracy of 83.6% and obtains results that
are comparable to the DNN-based approaches, while maintaining a much lower compu-
tational cost of 1.09 seconds, what significantly increases its applicability in real-world
environments.

Keywords 3D-CNN · Action Recognition · Depth Maps · Real-time · Video-surveillance

1 Introduction

In the computer vision field, human action recognition (HAR) has gained a great importance
in recent years, mainly due to its multiple applications in the study of human behavior,
safety or video surveillance, which has attracted the attention of many researchers [5, 31,
52, 75, 86].
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There are several works in the literature whose aim is recognizing human actions. The
first proposals were based on the analysis of RGB sequences [55, 69, 72, 96], using different
datasets [4]. The release of RGB-D cameras [16, 58], that in addition to a color image
provide a depth map (in which each pixel represents the distance from the corresponding
point to the camera), has allowed the appearance of numerous works that address HAR
using RGB-D information [1, 2, 12, 27, 39], 3D skeleton data [27, 35, 87, 91], or both [70]
with acceptable results. In addition, several new datasets including RGB-D information for
action recognition have been made available to the scientific community [97].

Most of the previously cited proposals provide good results in controlled conditions,
however, they present problems in scenarios with a high degree of occlusions. Besides, the
use of color information (RGB or RGB-D) implies the existence of data that allows the
users’ identification, so problems related to privacy may appear. The use of depth cam-
eras [34], that obtain just information about the distance from each point of the scene to
the camera by indirectly measuring the time of flight of a modulated infrared signal, allows
to preserve people privacy, since it is not possible to know their identity from those data.
Another advantage to consider is that depth cameras do not require additional lighting
sources, as they include an infrared lighting source. Thus, depth maps are also widely used
in different works for action recognition [79–81, 88].

In recent years, the improvements in technology and the appearance of large-scale
datasets [42, 53, 59] have led to an increase in the number of works that use deep learning
for different computer vision applications, such as semantic segmentation [22, 48, 93], or
HAR from RGB sequences [13, 24, 56, 76], RGB-D data [9, 21, 84], depth maps [38, 46, 78,
89] or 3D skeletons [26, 27, 29, 36]. Most of these works are based on using Recurrent Neu-
ral Networks (RNNs), or Long Short Term Memory (LSTM). Besides, more recent works
combine these networks with Generative Adversarial Networks (GAN) [66], that have
demonstrated their efficacy in different computer vision tasks, such as face alignment [49]
or face editing [50].

All these works provide good accuracy but with a high computational cost, which mostly
prevents its operation in real-time applications.

Despite the numerous works dealing with the recognition of actions, HAR still remains
an open issue in real scenarios, with open problems such as the different viewpoints in
videos, changing lighting conditions, occlusions, etc.

The present paper describes 3DFCNN, an approach for real-time action recognition
which performs the feature extraction and action classification steps in a single stage, see
Fig. 1.

Fig. 1 General scheme of the proposed 3DFCNN for real-time action recognition
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3DFCNN is based on a 3D fully convolutional neural network (3D-CNNs), which only
uses the raw depth information provided by a depth or RGB-D camera to recognize the
actions. It is an end-to-end trainable model, composed by a first phase to extract the main
spatial and temporal features, using 3D convolutions and pooling layers, and a final softmax
layer for obtaining the detected action. As Section 5 details, 3DFCNN outperforms state-
of-the-art methods with a much shorter computational cost due to its reduced architecture
optimised to reach the real-time operation. Furthermore, the use of depth data that not allows
recognizing people preserves their privacy.

Both training and testing stages have been carried out with the widely used “NTU
RGB+D Action Recognition Dataset” [42, 59], made available to the scientific community
by the ROSE Lab of the Nanyang Technological University of Singapore. This dataset has
been chosen because it provides a large number of videos, both with RGB and depth infor-
mation, and it allows to compare, through the experimental results, different works of the
state-of-the-art. Furthermore, to test the robustness of the 3DFCNN and compare it to that
of other previous works, it has also been evaluated using two multiview 3D action datasets:
NorthWest-UCLA Multiview Action 3D [73] and UWA3D Multiview Activity II [53].

We want to remark the main contributions of the present work in the following points:

1. Our 3DFCNN approach has been optimized to reach a very good performance in terms
of accuracy working in real-time. As we will see in the Experimental Section, 3DFCNN
obtains accuracy rates close to the best state-of-the-art methods whose implementa-
tions require lots of computations which slow-down the classification. Our 3DFCNN
surpasses all of them in terms of speed being the first real-time approach for action
detection with these accuracy rates.

2. A careful design of the 3DFCNN architecture has been done for fulfilling the speed
requirements. Fully connected layers have been replaced by convolutional layers which
has considerably reduced the computation time and number of parameters allowing real
time speed rates, while maintaining good accuracy rates.

3. Our 3DFCNN is an end-to-end approach, which means that it does not need any pre-
processing or initialization step to detect actions. It receives a depth video as input
and provides the classified action. Many of the action detection methods that use only
depth information work with a preprocessed data such as those based on precomputed
3D-Skeleton [26, 43, 61] or Depth Dynamic Images (DDI) [78, 89].

4. The present work makes a thorough review and comparison with the best state-of-the-
art method. 3DFCNN is closed in accuracy to [78, 89] which are the most comparable
methods of the state-of-the-art which work also with raw depth data. It obtains around
a 7% under the rates obtained by both methods. However, it is much faster, 1.09s of
computation time, compared to the previous one which need around 1 minute of compu-
tation time to obtain their results. We also show a comparison with 3D-Skeleton-based
action detection methods, which appeared before.

The rest of this paper is organized as follows: in Section 2 the main related works
are presented and analyzed, next, in Section 3 the architecture of the neural network pro-
posed is described. Then, in Section 4, the training method used is explained. Subsequently,
Section 5, includes the main experimental results obtained, and finally, Section 6 includes
the main conclusions of the work, as well as some possible lines of future work.
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2 Related works

As stated in the introduction, multiple proposals for HAR have been developed during the
last decade, based on different visual technologies. In this section, we analyze the most
interesting in order to be compared with the proposal hereby described. The main HAR
works can be classified into three groups depending on the technology used: RGB, RGB-D
or depth images [65, 95]. Below, it is presented a brief analysis of the RGB and RGB-D-
based works, and a more in-depth study of those one which only use depth data for HAR.
Figure 2 summarizes the state-of-the-art in HAR using Deep Neural Networks (DNN), with
which the proposed method is compared.

2.1 Color basedmethods (RGB and RGB-D)

The first works in HAR were based on the use of RGB sequences [3, 8, 52, 55]. These
works require a feature extraction system followed by a classification process for action
recognition. More recently, the improvements in technology and the availability of large-
scale datasets have led to an increase in the number of related works that use RGB data
and are based on deep learning techniques, including both, supervised [13, 62, 76, 77], and
more recently, unsupervised approaches [56].

When combining the RGB channels of an image with its depth information, RGB-D
images are obtained. In recent times, analysis of these images or videos are sought due to
the availability of real-time inexpensive depth sensors that provide rich 3D structural data.
Thus, this has motivated the proposal of numerous works based on combining RGB and
depth data for HAR [12, 14, 19, 20, 39, 40, 45, 100].

Also, the promising results achieved by deep learning methods in computer vision appli-
cations have encouraged their utilization on RGB-D images and videos for HAR [9, 21,
28, 32, 41, 74, 84], mostly based on the use of CNNs [1] and Recurrent Neural Networks
(RNNs).

2.2 Depth-basedmethods

Besides, regarding to HAR proposals that rely on just depth information, also several modal-
ities of depth data have been used in the related literature. Some studies use raw depth
maps [46, 78–81, 88, 89], whereas others extract specific 3D information from them, as a
preprocessing task, like joint positions of human body (skeleton data) [26, 37, 43, 61, 68, 92,
98]. In both cases, deep learning methods have replaced conventional methods to process
this data, especially when a large scale dataset is available.

2.2.1 HAR using skeletons

The main contributions to action recognition using 3D skeletons have been focused on input
data representations and improvements of deep learning methods. Although there have been
some research proposals for action recognition based on CNN using 3D skeleton data with
good results [26, 29, 36], most recent studies use RNNs and, in particular, variations of the
long short-term memory (LSTM) unit, which solves the gradient vanishing and exploding
problems [15, 25]. In addition, LSTM networks are able to learn long-term dependencies,
which is essential in action recognition problems. Song et al. proposed in [68] a modi-
fied LSTM with a joint selection gate for creating an spatio-temporal attention model. In a
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Fig. 2 Summary of the state-of-the-art in DNN-based HAR. a) (image from [59]) refers to the RGB-based
methods detailed in Section 2.1. The rest of the methods are depth-based, see Section 2.2. b) ([26]) and
c) ([61]) are 3D-skeleton-based methods explained in Section 2.2.1. The first category uses CNNs and the
second one RNNs. d) ([81]), e) ([78]) and f) ([59]) are depth map-based methods, deeply explained in
Section 2.2.2

similar way, in [43] it was introduced a trust gate for the LSTM and a 3D skeleton data rep-
resentation in a tree-like graph was proposed, whereas other proposals built a view adaptive
LSTM scheme [98] to solve the problem of sensitive viewpoint variations in human action
videos.

Li et al. in [37] presented a new type of RNN: the independently RNN (IndRNN), that
improved previous results in 3D skeleton-based action recognition. In IndRNN, neurons
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inside a layer are independent among each other but connected across layers, favouring the
stacked-layers scheme.

Recent approaches use an extension of the graph convolutional networks (GCN) in order
to allow the network learning spatio-temporal features more efficiently. Yan et al. in [92]
proposed a spatio-temporal graph convolutional network (ST-GCN) which automatically
learns both the spatial and temporal patterns from 3D skeleton data by, firstly, transforming
it into a graph.

Similarly, Si et al., in [61], achieved state of the art results by using an attention enhanced
graph convolutional LSTM network (AGC-LSTM). This model presents also a tempo-
ral hierarchical architecture and takes into account the co-ocurrence relationship between
spatial and temporal domains.

2.2.2 HAR using raw depth maps

Besides, other researchers used raw depth maps, avoiding some known problems related
to 3D skeleton position extraction as spatial information loss in images, extraction failures
and sensitivity to pose variations. Moreover, by using raw depth maps, the entire 3D struc-
ture information of a scene can be used for recognition. The similarity of depth images with
RGB ones allows to transfer all the knowledge from RGB-based action recognition propos-
als to the depth modality. Thus, the success of CNN methods in RGB-based recognition
methods makes reasonable to transfer these studied techniques to the depth domain, and
that is what most recent studies have done. For instance, most works [78–81] have used a
pseudocoloring technique by which a depth sequence is encoded into several RGB images
(depth motion maps and dynamic images), transforming spatio-temporal patterns to colored
properties like textures, as it is explained next.

In addition, some approaches as the ones described in [79–81] apply 3D rotations to
point clouds from depth images, to use 3 orthogonal projections, leveraging the 3D struc-
ture of depth data and, concurrently, augmenting samples of the training dataset. In these
approaches, depth motion maps are generated from these projected sequences using differ-
ent temporal pooling methods, referred to as rank pooling. Alternatively, Luo et al. in [46]
proposed an encoder-decoder framework using an unsupervised LSTM network through 3D
flows for motion description.

Similar to depth motion maps, three sets of dynamic images (DI) were proposed in [78,
83] for encoding depth sequences: dynamic depth image (DDI), dynamic depth normal
image (DDNI) and dynamic depth motion normal image (DDMNI). These images are
constructed using hierarchical and bidirectional rank pooling to capture spatio-temporal fea-
tures. Therefore, for each video sample, it is used an ensemble of 6 images as input of 6
independent CNNs through a VGG-16 architecture [63].

Also, spatially structured dynamic depth images have been proposed for selecting
attributes to be used for action recognition [85]. In this approach, rank pooling has been
employed to extract three pairs of structured dynamic images, one at each body part, and
with joint level granularity. This aids in retaining the spatio-temporal details as well as
in improving the structural particulars at different granularity at various temporal scales.
Further, spatially and temporally structured dynamic depth images have been highlighted
through hierarchical and bidirectional rank pooling methods in order to derive spatial,
temporal and structural characteristics from the depth channel of the image [18].

In a similar way, Wu et al. in [88] proposed using depth projected difference images as
a dynamic image with a hierarchical rank pooling with 3 pre-trained CNNs, one for each
orthogonal projection.



Multimedia Tools and Applications

Finally, a multi-view imaging framework (MVDI) was proposed in [89] for action recog-
nition with depth sequences. First, it is employed a human detection network to reduce
the action region. A total of 11 different viewpoints are used then for generating projected
images at several temporal scales, making thus data augmentation. Also, they propose a
novel CNN model where dynamic images with different viewpoints share convolutional lay-
ers but have different fully connected layers for each view. The final action classification is
made with support vector machines (SVM) with principal component analysis (PCA). All
this process results in a method that achieves state of the art on action recognition accuracy
on several datasets but with a high computational cost.

3 Network architecture

We propose an end-to-end trainable Deep Neural Network-based (DNN) model for solving
the HAR problem with depth maps, named as 3DFCNN. Our proposal is represented by
a 3D fully convolutional action recognition architecture, that is very efficient for action
recognition tasks. This type of networks, in comparison with the classical convolutional
feature extractor followed by fully connected layers, are more efficient, specially in terms of
parameters, and avoiding overffiting, which is a well-known problem with fully connected
layers. In addition to this, we adapted the network specially for the action recognition task
by being very fast in processing the 3D tensors, which are the big flow of information that
represents the videos and significantly slows down the network processing. This type of
architecture has proven to be very efficient for action recognition tasks in RGB videos [11].
Next, it is described in detail the complete architecture of the used neural network, whose
general structure is shown in Fig. 3.

The 3DFCNN network is fed by a sequence of consecutive depth images with size 64×64
pixels, which constitutes its single input. Each sequence has a fixed number of frames,
specifically, 30 frames of a video fragment, corresponding to 1 second of a video record
(30 fps) showing the execution of a single action. This number of frames has been chosen

Fig. 3 Simplified architecture summary of the proposed 3DFCNN
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to achieve a balance between accuracy and computation time. The use of sequences with a
reduced number of frames allows decreasing the computational cost and enables real-time
performance. Besides, in some works such as in [57] 7-10 frames are enough for recognizing
simple actions. However, in the case of NTU RGB+D dataset [59] that includes complex
and very long actions (the maximum video length is 300 frames), this sequence length may
not be enough to fully cover them. In contrast, the use of longer sequences increases the
computational cost, reducing the processing speed. Moreover, in this situation, overlapping
may occur between different actions in continuous action videos.

In this paper, there has been made an experimental adjustment of the number of frames,
with the aim of achieving a balance between the computational cost and the accuracy of the
algorithm. The optimal length has been determined to be 1 second (30 frames) for the input
sequences of our deep learning model. It is enough for including significant information for
most of the detected actions, without increasing the computation cost. Besides, it reduces
the possibility of several actions overlapping in the same video-segment in real sequences,
which can include more than one action throughout the video. Since the NTU RGB+D
dataset includes videos with very different length, there has been proposed a method for
selecting 30 frames for each complete video that is detailed later, in Section 4.

In contrast to 2D CNNs, in which the operations are carried out only on the spatial
dimension of input images, in a 3D-CNN, features are extracted by applying 3D convolu-
tional filters on the spatial and temporal dimensions of input videos. This is necessary for
the neural network to take into account the context and temporal changes of actions for a
better recognition.

Input sequences are processed by first applying two 3D convolutional layers with 32
filters each, padding with zeroes in order to conserve tensor dimensions, and then a dimen-
sionality reduction through a Max Pooling layer. Second, another convolutional block of
two layers with 64 filters each one, without any padding. Next, the temporal dimensional-
ity is removed with an additional Conv3D layer with 128 non-squared filters. After that, a
Conv2D layer with 128 filters precedes a final Conv2D layer with a number of filters that
matches classes number in the dataset (60 in case of NTU RGB+D dataset).

Finally, an activation layer softmax, noted as S, is used to compress the output vector to
real values between 0 and 1, in order to obtain a normalized likelihood distribution, see (1):

S : R60 → [0, 1]60

a = (a1, · · · , a60) �→ S(a) = (S1, · · · , S60) (1)

The (2) shows the formula applied to obtain the probabilities for each action.

Sj = eaj

∑60
k=1 eak

1 ≤ j ≤ 60 (2)

Besides, at the output of each convolutional layer (except for Conv3D 5 and Conv2D 2), a
Batch Normalization [23] layer and a LeakyReLU (Leaky Rectified Linear Unit [47]) activa-
tion function are included. Batch Normalization helps training the neural network reducing
the internal covariate shift. The Leaky ReLU activation function follows the expression
f (x) = x if x ≥ 0 and f (x) = αx if x < 0, with α = 0.3. This type of function has
been chosen instead of the conventional ReLU due to its proven greater efficiency [90],
and because it provides the necessary non-linearity to solve the action recognition problem
avoiding gradient vanishing problems [33].

In addition, it is also applied a slight dropout regularization technique for helping the
model to generalize more and reduce over-fitting problems during training.
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Table 1 Network architecture parameters and output tensor sizes for each layer

Layer Output shape Parameters

Input 64 × 64 × 30 × 1 –

Conv3D 1 64 × 64 × 30 × 32 kernel=(3, 3, 3) / strides=(1, 1, 1)

Batch Normalization –

Activation LeakyReLU

Conv3D 2 64 × 64 × 30 × 32 kernel=(3, 3, 3) / strides=(1, 1, 1)

Batch Normalization –

Activation LeakyReLU

MaxPooling 22 × 22 × 10 × 32 size=(3, 3, 3)

Dropout 0.25

Conv3D 3 20 × 20 × 8 × 64 kernel=(3, 3, 3) / strides=(1, 1, 1)

Batch Normalization –

Conv3D 4 18 × 18 × 6 × 64 kernel=(3, 3, 3) / strides=(1, 1, 1)

Batch Normalization –

Activation LeakyReLU

Dropout 0.25

Conv3D 5 18 × 18 × 1 × 128 kernel=(1, 1, 6) / strides=(1, 1, 1)

Reshape 18 × 18 × 128 –

Conv2D 1 8 × 8 × 128 kernel=(3, 3) / strides=(2, 2)

Batch Normalization –

Activation LeakyReLU

Conv2D 2 8 × 8 × 60 kernel=(1, 1) / strides=(1, 1)

Average Pooling 2D 60 –

Activation softmax

A more detailed description of the different layers that form the proposed neural network
is shown in Table 1, as well as their output sizes and fundamental parameters.

The efficient network architecture and the input data generation system make possible to
reduce the overall computational complexity of the model, allowing a quite fast performance
unlike most other action recognition works in the literature. Thus, the number of parameters
(400.476) of our proposal is much lower compared to some well-known classification base-
lines such as VGG16 [64] with a total of 138 million parameters and Resnet50 [17] with a
total of 234.355.586 parameters, giving us a briefly idea of how efficient our network is in
terms of parameters. It opens the door to the capability of real-time performance [6, 10, 44,
94] and its important applications in video-based health care service, video surveillance or
human-computing interaction.

4 Network training

The large-scale NTU RGB+D dataset [59] has been used for training and testing the
3DFCNN. This dataset contains 56 880 video sequences for 60 different human actions.
These sequences were recorded using Microsoft Kinect II sensors [99] obtaining RGB
images, depth maps, 3D skeleton positions and infrared data. In this paper, only depth map
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Fig. 4 Examples of masked depth images from different video sequences in NTU RGB+D dataset. As shown,
it includes several subjects performing different actions from varying viewpoints

videos are used, which are composed of frames with an original resolution of 512×424 pix-
els. However, authors of this dataset suggest to use the masked depth maps, which are the
foreground masked version of the full depth mask and, therefore, have a much better com-
pression ratio, which facilitates the download and file managing. Some examples of masked
frames are shown in Fig. 4.

Furthermore, in order to be able to focus on the HAR issue (without previously detecting
people) and reduce the number of pixels without useful information, all images have been
cropped to the region of interest in which the action is happening, decreasing the weight
of files at the same time. Figure 5 is an illustrative example of this image cropping. This
process is performed by a simple code that removes the outermost rows and columns with
all elements equal to zero. Finally, the cropped image is re-scaled to fit the 64 × 64 input
size. A bilinear interpolation is applied for adapting the original frame size of the dataset to
the input size of our 3DFCNN network.

As it has been explained before, the input of the neural network is composed of 30 frames
sequences, so the full input size is 30 × 64 × 64 pixels. Experiments have confirmed the
importance of how these 30 frames are selected. Consequently, there is set a data arrange-
ment strategy for training, so as to take into account the dataset properties used. NTU
RGB+D dataset contains videos with lengths between 26 to 300 frames. The data generator
is specifically modified to optimally select the 30 frames for each sample as follows. When
videos are shorter than 30 frames, last frames are repeated backwards until completion.
When greater than 30 but shorter than 60 frames, the starting frame is randomly selected
inside suitable limits. Finally, when videos are greater or equal to 60 frames the generator
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Fig. 5 Example of a full depth map (up) and the process of cropping a masked depth map into a smaller
image (down)

randomly selects a suitable starting frame with one-frame-skipping, i.e. taking only odd or
even frames. This has two advantages: first, processing the double video length with only
30 frames in case of long actions and second, making data augmentation thanks to ran-
dom starting point. This strategy has proved to be adequate to successfully extract relevant
information from both short and longer videos for a good performance of the classification.

Batch size has been experimentally set to 12, being a reasonable value that makes a good
balance between hardware-memory and model generalization. Once the batch size is set,
a learning rate range test is performed in order to find which are the best values for this
hyperparameter. This test consists in modifying the learning rate value along a wide range
and analyzing the loss function behaviour.

A cyclical learning rate schedule is chosen due to its benefits [67], like a faster con-
vergence and a reduced over-fitting. The training procedure consists of a fixed number of
epochs in which the network is fed by the batch-structured random training dataset. Once
the whole set of batches are used to train the network, an epoch is finished. Then, a new
epoch starts again by randomly permuting the training dataset initiating the process. The
number of times that this process is repeated is called the number of epochs, which has
been empirically optimized as we explains below. Taking into account the range test results,
the learning rate is made to oscillate first between 5 × 10−4 and 9.8 × 10−4, then between
1 × 10−4 and 4 × 10−4 and finally fixed to 4 × 10−5 in the last 5 epochs. The specific
curves of learning rate along the training can be seen in Fig. 6a and b, where accuracy
and loss functions for training and validation are shown, respectively. For the optimization
process, the algorithm Adam [30] has been used due to its proven adaptive properties and
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Fig. 6 Training (in blue) and validation (in orange) categorical accuracy and loss function curves. The
learning rate schedule is superposed in red

computational efficiency. The training of the neural network has been carried out on a PC
with a NVIDIA GeForce GTX 1080 with 8 GB.

Figure 6a and b show the process of training the neural network along 50 epochs.
This number of epochs have demonstrated to be enough for the model to reach con-
vergence. It can be seen that, thanks to the applied deep learning techniques (dropout,
fully-convolutional and cyclical learning rate), although a large dataset as NTU RGB+D
is used, validation and training curves are significantly close to each other, i.e. there does
no appears over-fitting. Furthermore, it can be observed that the validation loss slightly
diverges (or analogously, the validation accuracy falls) when the learning rate takes the
higher values of the cycle. This is a desired effect because it prevents the solution to stay
stuck at saddle points and helps reaching better minima.

5 Experimental results and discussion

5.1 Experimental setup

The proposed 3DFCNN has been trained and tested using NTU dataset [59]. This dataset is
used in most of the deep learning based approaches for action recognition due to the large
number of available videos, which allows training deep neural networks. Furthermore, the
use of this dataset facilitates comparison to other state-of-the-art approaches, mainly based
on DNNs. To evaluate the robustness of the 3DFCNN, it has also been tested in other two
multiview publicy available datasets, with different actions and camera characteristics, as
well as a lower number of sequences for training and testing. These three datasets have been
selected to ease comparison with other methods, since there are ones of the most used in

Table 2 Characteristics of the three datasets used for testing the proposed 3DFCNN

Dataset Samples Classes Subjects Sensor Modalities

NWUCLA 1494 10 10 Kinect v1 RGB+D, 3DJoints

UWA3DII 1070 30

NTU RGB+D 56880 60 40 Kinect v2 RGB+D, 3DJoints, IR
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Fig. 7 Northwestern-UCLA dataset sample images

the HAR related scientific literature. The main characteristics of each dataset are briefly
described below. Besides, Table 2 shows a summary of these characteristics for allowing
comparison.

Northwesternt-UCLA Multiview Action3D dataset (NWUCLA) contains multiview RGB,
Depth and 3D joints data acquired using three Kinect v1 cameras in a variety of viewpoints,
see Fig. 7.

It includes 10 different actions performed by 10 subjects, with a total of 1494 sequences
(518 for view 1, 509 for view 2 and 467 for view 3) with different lengths. In the cross-view
setting, the authors propose using two views for training and one view for testing. Figure 7
shows three views of a sample image belonging to this dataset.

UWA3D Multiview Activity II dataset (UWA3DII) [53] was collected using a Kinect v1
sensor, and it includes RGB, Depth and 3D joints, see Fig. 8.

This dataset is focused on cross-view action recognition, and includes 10 subjects per-
forming 30 different human activities, recorded from 4 different viewpoints (frontal, left,
right and top view). Each subject performs the same action four times in a continuous man-
ner, and each time the camera is moved to record the action from a different viewpoint. As

Fig. 8 UWA3DII dataset sample images
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a result, there are 1070 sequences. It is a challenging dataset because of varying viewpoints,
self-occlusion and similarity between different actions (such as walking and irregular walk-
ing or drinking and phone answering). The authors propose cross-view action recognition,
using the samples from two views for training, and the two remaining views for testing. The
complete evaluation includes six different combinations of the 4 views for training and test-
ing, as it can be seen in Table 6. Specifically, the first row of Table 6 indicates the views
used for training during the experiments. The second row shows the results testing over the
other views. Vertical lines separate the different experiments. Some sample images of this
dataset are shown in Fig. 8.

The large-scale NTU RGB+D dataset contains 56880 video samples for 60 different
actions performed by several subjects. The dataset has been acquired using three Kinect V2
cameras concurrently. For each sample, there are RGB videos, depth maps, IR (Infrared)
data and 3D joints.The actions in NTU RGB+D dataset can be organized in three major
categories: daily actions, mutual actions, and medical conditions. It is worth highlighting
that mutual actions (such as pushing other person, hugging other person, giving something,
etc.) involve more than one people. Some sample images from this dataset can be seen
in Fig. 4. The authors of NTU RGB+D dataset propose two different evaluations [59] for
separating data between training and testing:

1. Cross-Subject (CS) evaluation in which there are 40 320 training samples with 20
subjects and 16 560 with other 20 different subjects for testing.

2. Cross-View (CV) evaluation, with 37 920 sequences from 2 different viewpoints for
training and 18 960 from a third camera for testing.

As it can be seen in Table 2, the first two datasets (NWUCLA and UWA3DII) include
a reduced number of samples, which makes it difficult training DNNs without overfitting.
These two datasets also have a lower number of classes than the NTU RGB-D dataset.
Besides, the used sensor and the viewpoints are different. Furthermore, it is worth highlight-
ing that the Kinect v1 used in UWA3DII dataset provides images with a higher amount of
noise and measurement errors than Kinect v2, as it can be seen in Fig. 8

Due to the small number of available training samples for UWA3DII and NWUCLA
datasets, instead of training the network from scratch for each of them, we have started
with the model trained using NTU RGB+D dataset. Then, the three last layers in the net-
work have been fine-tuned using a cyclical learning rate with the same schedule that for the
NTU dataset. Besides, since the images provided in the NTU RGB+D dataset are masked,
there has been necessary to remove the background for the images belonging to these two
datasets.

For the proposal evaluation, there have been used the evaluation protocols proposed for
the authors of each dataset. Furthermore, the obtained results are compared to other works
evaluated in these datasets. It is worth highlighting that most of the works that are based on
DNNs use the large scale NTU RGB+D dataset because of the number of available samples,
whereas the works based on non-DNN-based methods are usually evaluated in NWUCLA
or UWA3DII.

5.2 Experiments on NTU RGB+D dataset

For the experimental test of the proposal, there has been used the two proposed evaluations
in [59] for separating data between training and test for the NTU RBG+D dataset. Before
going further in the comparison, Fig. 9 shows the performance of our 3DFCNN method in
several action recognition examples of the NTU dataset.
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Fig. 9 Three examples of the action recognition by 3DFCNN

Specifically, the actions are “take of a hat/cap”, “walking apart” and “point to some-
thing”. 3DFCNN achieves to clasify the first two actions with high probability 98.8% and
88.9% respectively. However, the action “point to something” was misunderstood by our
method which has been relegated to a second position with a probability of 42.4%. Our
method chooses the action “taking a selfie” instead with a 57.5% of probability. This action
is clearly closed to the true action “point to something”. Both are hardly indistinguishable
in the depth domain, even for humans. Notice the extremely small amount of time that our
method takes to elaborate the predictions in each case, below 1 second which makes it useful
for real-time applications.

The method proposed in this paper has achieved an accuracy on NTU RGB+D dataset
of 78.13% (CS) and 80.31% (CV) maintaining a very low computational cost, as detailed
below, where an analysis of the different per-classes recognition accuracies, as well as
a comparison with previous methods in terms of accuracy and computational cost are
presented.

The confusion matrix obtained for the NTU RGB+D dataset is shown in Fig. 10. It gives
a general view of the model performance (for the CV evaluation), showing that it provides
a good classification performance for the 60 different classes.

Table 3 shows the 10 best recognized actions and the 10 most confused action pairs.
As it can be seen, the proposed model can not totally recognize very similar actions

like reading (mostly confused with writing), writing (with type on a keyboard) or play with
phone/tablet (with type on a keyboard). It is noteworthy that, in general, the proposed model
performs really well with actions where small objects are not involved. Nevertheless, where
there are small objects which are discriminatory for the action recognition, e.g. phone/tablet,
shoes, meals, toothbrush, etc., the model tends to missclassify towards a similar action. The
reason for this may be the small input image size that is fed to the neural network (64×64),
along with the absence of color and texture of objects.
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Fig. 10 Confusion matrix of test results for the 3DFCNN on NTU RGB+D with 60 human actions (CV
evaluation). Action indexes in figure correspond to the indexes used in author’s webpage [60]

Table 3 Top 10 accurate actions and confused pairs for the proposed model, including accuracy recognition
per action

Top 10 recognized actions Top 10 confused actions∗

1) Stand up (97.47%) 1) Reading → Writing (39.56%)

2) Jump up (97.15%) 2) Writing → Type on a keyboard (40.82%)

3) Hopping (96.84%) 3) Play with phone/tablet → Type on a keyboard (44.62%)

4) Shake head (96.84%) 4)Sneeze/cough → Nausea/vomiting (53.80%)

5) Falling down (96.84%) 5) Phone call → Eat meal (54.43%)

6) Sit down (96.52%) 6) Take off a shoe → Put on a shoe (56.96%)

7) Take off a hat/cap (95.87%) 7) Headache → Brush teeth (61.39%)

8) Walking apart (95.57%) 8) Point to something → Taking a selfie (61.71%)

9) Hugging (95.25%) 9) Eat meal → Phone call (62.66%)

10) Cheer up (94.94%) 10) Brush teeth → Drink water (64.87%)

Average accuracy = 96.33% Average accuracy = 54.08%

*Numbers between parenthesis are the recognition accuracy of true action (before the arrow)
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Fig. 11 Confusion matrix of test results for the 3DFCNN on NWUCLA and UWA3DII datasets

The confusion matrices have also been obtained for NWUCLA and UWA3DII datasets
which, as it has been explained, include a lower number of actions. The results are shown
in Fig. 11.

As it can be seen, 3DFCNN is able to recognize action with a high accuracy for both
datasets.

5.3 Comparison with state-of-the-art methods

The three datasets described above have also been used to compare the method proposed in
this work with other alternatives in the state of the art. Firstly, the 3DFCNN has been trained
and evaluated with the large scale NTU RGB+D dataset, widely used by deep learning
based methods due to the high number of samples available. The obtained results and the
comparison against other state-of-the-art proposals is exposed in Section 5.3.1.

To test the generalization capacity of the network, as well as its ability to adapt to other
environments, it has been evaluated in two other image datasets that include depth infor-
mation: NWUCLA and UWA3DII. These are two datasets with a much lower number of
samples, which makes the training of DNNs difficult (so they are mainly used for the evalua-
tion of proposals based on non-DNN-based techniques). Furthermore, the used sensor is the
Kinect V1, whose measurements contain more noise than the Kinect V2 camera, due to its
different depth acquisition technology. The results obtained with NWUCLA and UWA3DII
are shown in Section 5.3.2. Since the number of samples is too small for most of the deep
learning based approaches, the results in this section are compared to several state-of-the-art
methods based on non-DNN-based techniques.

5.3.1 Comparison with NTU RGB+D dataset

Table 4 presents some results obtained by different proposals in the literature for the NTU
RGB+D dataset.

The results are divided into two different sections according to the modality used: first,
results obtained by methods that use 3D skeletons, and second, approaches that only use
depth data (like the proposal in this paper). It is worth highlighting that all the methods
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Table 4 Total average accuracy (%) from different methods on NTU RGB+D dataset

Method CS CV Preprocessing

Modality: 3D Skeleton

ST-LSTM + Trust Gate (2016) [43] 69.2 77.7 Tree-like graph

Clips + CNN + MTLN (2017) [26] 79.57 84.83 Encoding clips

AGC-LSTM (2019) [61] 89.2 95.0 Feature processing

Modality: Depth

DDI+DDNI+DDMNI (2018) [78] 87.08 84.22 Dynamic images

HDDPDI (2019) [88] 82.43 87.56 Dynamic images

MVDI+CNN (2019) [89] 84.6 87.3 Dynamic images

Proposed method (3DFCNN) 78.13 80.37 –

included in Table 4 are based on DNNs. It also includes a column with a brief descrip-
tion of the preprocessing that is used by each method. The proposed method, 3DFCNN,
achieves an accuracy of 78.13% (CS) and 80.37% (CV) on NTU RGB+D dataset. As shown
in Table 4, although the 3DFCNN model does not overcome the state-of-the-art methods
like, for instance, the one proposed in [89], it gets a remarkable and competitive recognition
accuracy considering the challenging dataset, NTU RGB+D.

Moreover, the performance of the proposed method gets more valuable when it is taken
into account its simplicity and the absence of a costly preprocessing, as shown in the last
column of Table 4, being the only work that does not make a big conversion of the input (for
example, turning the video sequence into dynamic images like the rest of depth-based works
do). This allows the method to be considerably fast, which is a great advantage when it is
compared with the complex methods from the state-of-the-art. Table 5 shows an estimation
of the computational cost in terms of average time consumption per video in test phase as
reported by some previous methods.

The first four computational cost results are taken from [78], and, although they were
computed with a different hardware than the present work, they give an idea of the reduced
computational cost of our method when it is compared, for instance, with the method that
uses three sets of dynamic images (DDI+DDNI+DDMNI [78]), which achieves some of the
highest recognition rate on NTU RGB+D dataset, see Table 4. For the sake of clarity, these
four results were computed on a gesture RGB-D dataset, and only the last one was also used

Table 5 Time consumption comparison of some action recognition methods with available data. The time
values are the average of several time consumption values from different video samples of the dataset. See
the text for more details

Method Time (s) Dataset

MSFK+DeepID [71] 41.00 CGD, CAD-60, MSR Daily Activity 3D

SFAM [82] 6.33 ChaLearn LAP IsoGD, M2I

WHDMM [81] 1.04 MSR-Action3DExt, UTKinect-Action

DDI+DDNI+DDMNI [78] 62.03 NTU RGB+D, ChaLearn LAP IsoGD

MVDI+CNN [89] 51.02 NTU RGB+D, UWA3DII, NWUCLA

Proposed method (3DFCNN) 1.09 NTU RGB+D, UWA3DII, NWUCLA
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Table 6 Recognition accuracy (%) for different depth maps-based methods (CCD [7], HON4D [51],
HOPC [53] and MVDI [89]) on the UWA3DII dataset. The evaluation criteria for this dataset consists of
using two camera views for training and the other two for testing

Train V1+V2 V1+V3 V1+V4 V2+V3 V2+V4 V3+V4 Mean

Test V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2

CCD 10.5 13.6 10.3 12.8 11.1 8.3 10.0 7.7 13.1 13.0 12.9 10.8 11.2

HON4D 31.1 23.0 21.9 10.0 36.6 32.6 47.0 22.7 36.6 16.5 41.4 26.8 28.9

HOPC 52.7 51.8 59.0 57.5 42.8 44.2 58.1 38.4 63.2 43.8 66.3 48.0 52.2

MVDI 77.0 59.5 68.3 57.2 57.8 72.9 80.3 51.3 76.6 69.5 78.8 67.9 68.1

3DFCNN 68.3 54.6 66.7 51.5 68.2 67.2 74.3 49.7 75.1 61.9 73.5 88.3 66.6

on the action recognition dataset used in this paper, as it can be seen in the last column of
Table 5.

The 3DFCNN model presented in this paper achieves therefore the lowest time con-
sumption among the works on NTU RGB+D dataset, with an average time per 30-frames
video sequence of 1.09 s, in which around the 90% is due to the preprocessing steps of
background removal and image cropping. This value has been computed using a NVIDIA
GeForce GTX 1080 with 8 GB and an Intel(R) Core(R) i7-7700 CPU at 3.60 GHz, through
a set of 10 000 randomly-chosen depth video samples from the NTU RGB+D dataset. The
same GPU is used in [89], where multi-view dynamic images (MVDI) were used, together
with an Intel(R) Xeon(R) E5-2630 V3 CPU running at 2.4 GHz. It can be considered a
similar workstation than the one used for this paper, thus allowing a fair comparison of
computational costs. In that paper, they used the CPU to generate the multi-view dynamic
images, which was the main source of computational cost, yielding a total average time con-
sumption of 51.02 s per video. Therefore, this high computational cost prevent this method
to be used in real time applications like, e.g., video surveillance and health care. However,
the 3DFCNN method gets, at least, an average time consumption that is one order of mag-
nitude lower. In summary, the method proposed in the present paper attains both a sufficient
high action recognition accuracy and yet a very low computational cost.

5.3.2 Comparison with UWA3DII and NWUCLA datasets

Tables 6 and 7 show the results obtained with UWA3DII and NWUCLA datasets, respec-
tively.

The results with both datasets are shown in the same section because of the similarities
between their characteristics (type of sensor, number of people, number of samples, etc.).
There is also presented the comparison to other three different proposals. It should be noted

Table 7 Recognition accuracy
(%) for different depth
maps-based methods on the
Northwestern-UCLA dataset.
The evaluation criteria for this
dataset consists of using the first
two camera views for training and
the remaining view for testing

Method Acc.

CCD [7] 34.4

HON4D [51] 39.9

HOPC [53] 80.0

MVDI [89] 84.2

Proposed method (3DFCNN) 83.6
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that most of the previous works that use these datasets are based in non-DNN-based meth-
ods, since the reduced number of samples make it difficult training a DNN. On one hand,
the first three works propose different new descriptors for action recognition: the Compara-
tive Coding Descriptor (CCD) [7], the histogram of the surface normal orientation in the 4D
space (HON4D) [51], and the Histogram of Oriented Principal Components (HOPC) [54].
On the other hand, the proposal in [89] is based on a CNN combined to dynamic images,
but it requires a costly preprocessing to obtain the dynamic images.

As it can be seen in Tables 6 and 7, despite the small number of samples for fine-
tuning in these datasets, the results of the 3DFCNN proposed in this paper outperforms
the approaches based on non-DNN-based methods. Besides, the results are close to those
obtained using the proposal in [89], surpassing them in some cases. These results are even
more significant considering the reduced computational cost of the proposal compared
to [89].

6 Conclusions

This paper proposes the 3DFCNN, an end-to-end trainable deep learning approach for
HAR from depth videos. The model is a 3D fully convolutional neural network, which
automatically encodes spatial and temporal patterns of depth sequences without a costly
preprocessing. Furthermore, an efficient data generation system and a particular training
strategy were proposed. Newly appeared deep learning techniques like learning rate range
test, cyclical learning rate schedule and fully convolutional architecture were used in order
to improve the model performance. An exhaustive experimental evaluation of the pro-
posal has been carried out, using three different publicly available datasets. Experimental
results on the large-scale NTU RGB+D dataset show the proposed method achieves action
recognition accuracy close to state-of-the-art deep learning based methods, while drasti-
cally reducing the computational cost because of its relatively simple structure and scarce
preprocessing. This property would allow the proposed 3DFCNN model to run on real
time applications, like video surveillance, health care services, video analysis and human-
computer interaction. Besides, results within smaller NWUCLA and UWA3DII datasets
show that the proposal reliability overtakes that of different methods based on non-DNN-
based computer vision techniques, and obtains results comparable to those from other
state-of-the-art methods based on deep learning.

As most of the action recognition methods, the 3DFCNN model tends to confuse similar
actions in which there are just small discriminatory objects or short motions, like within
actions writing and reading. Improving recognition accuracy of such actions is still an open
problem and constitutes a line of future work for the proposal here presented.
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