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Abstract
In this paper, we first summarize the existing algorithms for computing all the generalized
asymptotes of a plane algebraic curve implicitly or parametrically defined. From these pre-
vious results, we derive a method that allows to easily compute the whole branch and all the
generalized asymptotes of a “special” curve defined in n-dimensional space by a parametriza-
tion that is not necessarily rational. So, some new concepts and methods are established for
this type of curves. The approach is based on the notion of perfect curves introduced from
the concepts and results presented in previous papers.

Keywords Parametrization · Curves · Branches at infinity · Asymptotes · Perfect curves ·
Approaching curves
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1 Introduction

An asymptote of a curve is a line to which the curve converges. In other words, the curve
and its asymptote get infinitely close. Asymptotes have a variety of applications: they are
used in big O notation, they are simple approximations to complex equations, they are useful
for graphing curves, etc. Graphic means of displaying information are used in all areas of
society. They have a complete image, are characterized by symbolism, compactness, relative
ease of reading. It is these qualities of graphic images that determine their expanded use. In
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the near future, more than half of the information presented will have a graphical presentation
form. The development of the theoretical foundations of descriptive geometry, engineering
graphics, and other related sciences has expanded the methods for obtaining graphic images.
Along with manual methods of forming graphic images, compiling project documentation,
computer methods are finding wider application. The use of new information technologies
provides the creation, editing, storage, replication of graphic images using various software
tools.

In this sense the computation of branches and asymptotes as a mathematical tool is very
important since curves are essential for engineering, industry, computer aided design (CAD),
etc.

For instance there are many applications of engineering curves in industry. The hyperbolic
shape for example, finds application in design of cooling towers. Even Mirrors used in long
telescopes are hyperbolic in shape. Another type of engineering curve called the archimedean
spiral (type of curve in which the moving point is traced out in such a way that movement
towards or away from the pole is uniform with vectorial angle from the starting line) has its
application in designing and manufacturing of teeth profile of helical gears and profile of
cams. Another curve is the cycloid which is used by engineers and designers for designing
roller coasters. Even worm gears have cycloidal profile (the ones used in outdoor gears). The
head of the tooth of such worm gear is an epicycloid (another engineering curve) and the
tooth foot is hypocycloid. While designing objects various types of curves are used.

Mechanical engineers also need mathematical curves. For example, a satellite dish is a
basic parabola, a gear has the involute of a circle as its base. These kind of curves are usually
not directly supported in CAD systems. They must therefore be drawn using its branches.

There are numerous methods for analysis and synthesis of mechanisms based on geo-
metrical constructions and it is necessary a deepen study of the curves described by a point
and the relationship between the geometry of different parts. Many engineering studies are
devoted to the study of curves of the tooth profile of gears as well as the coupler path of mech-
anisms. Then, Geometry plays an important role in many engineering applications, such as
engines and mechanisms. The study of curves dates from Ancient Greece, because the first
mathematicians of History became interested in them. The Greeks were the first who stud-
ied the paths that describe planets in motion but they restricted their mathematics mainly to
geometry, and theywere primarily concernedwith figures which could be obtained from lines
and circles (geometric locus). Conics were treated as plane sections of cones (solid locus)
and other planar curves like cycloids and spirals were included in their studies although they
could not be drawn from lines and circles. Indeed they were known as mechanical curves
rather than geometrical curves. In this paper, we have focus the attention in drawing the
mechanical curves most used in engineering by using dynamic geometry software; the dif-
ferent cycloid, hypocycloid, epicycloids have been drawn by using the Geogebra software.
Some engineering applications of these mechanical curves, planetary gear trains, and the
kinematic requirements have been also studied. For some bibliography see for instance [1,
2, 8–11, 14–16], etc.

The asymptotes of an infinity branch (a branch at infinity), B, of a real plane algebraic
curve, C, reflect the behavior of B at the points with sufficiently large coordinates. In analytic
geometry, an asymptote of a curve is a line such that the distance between the curve and the
line approaches zero as they tend to infinity. In some contexts, such as algebraic geometry,
an asymptote is defined as a line which is tangent to a curve at infinity.

If B can be defined by some explicit equation of the form y = f (x) (or x = g(y)),
where f (or g) is a continuous function on an infinite interval, it is straightforward to decide
whether C has an asymptote at B by analyzing the existence of the limits of certain functions
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when x tends to ∞ (or y tends to ∞). Moreover, if these limits can be computed, we may
obtain the equation of the asymptote of C at B. However, if this branch B is implicitly
defined and its equation cannot be converted into an explicit form, both the decision and
the computation of the asymptote of C at B require some other tools. More precisely, an
algebraic curve may have more general curves than lines describing the behavior of a branch
at the points with sufficiently large coordinates. Intuitively speaking, we say that a curve ˜C
is a generalized asymptote (or g-asymptote) of another curve C if the distance between ˜C and
C tends to zero as they tend to infinity, and C can not be approached by a new curve of lower
degree (see [3–5, 7]). This motivates our interest in efficiently computing these generalized
asymptotes for a wider variety of varieties such as the curves defined by a not necessarily
rational parameterization.

In this paper, we deal with the problem of efficiently computing the asymptotes of mero-
morphic functions from an open subset of the complex plane onto C

n, n ≥ 1. We remind
that meromorphic functions are functions on an open subset D of C that are holomorphic
on all D except for a set of isolated points, which are poles of the functions. By abuse of
notation, and in order to make the article easier for the reader to understand, we will denote
by P(t) := (p1(t), . . . , pn(t)) these meromorphic functions and we say that the image of P
is a special curve C parametrically defined in n-dimensional space.

Theproblemof the computation of asymptotes is dealt in previous papers of the third author
(see [3–7]) and solved for algebraic rational curves parametrically and implicitly defined. For
this purpose, some previous notions as infinity branches (or branches at infinity), approaching
curves and perfect curves are introduced. The new goal we solve in this paper consists in
working with curves parametrically defined but not necessarily rational. This question is very
important in the study of these type of curves because there is no result or concept in this
regard.

We have intended the paper to be self-contained. For this reason, we have included Sect. 2,
where we review the theory of infinity branches and introduce the notions of convergent
branches (that is, branches that get closer as they tend to infinity) and approaching curves
(see [3]), and Sect. 3, where we lay down fundamental concepts like perfect curve (a curve
of degree d that cannot be approached by any curve of degree less than d) and g-asymptote
(a perfect curve that approaches another curve at an infinity branch). In addition, we present
the methods that allow to compute the infinity branches of a given curve implicitly and
parametrically defined, and a g-asymptote for each of them (see Sects. 3.1, 3.2, 3.2.1).

The main result of the paper is presented in Sect. 4. Here, we develop a method that allows
to easily compute all the generalized asymptotes of a curve defined by a parametrization by
only determining some simple limits of functions constructed from the given parametrization.
The results presented are concernedwith plane curves but, as we remark in the paper, they can
trivially be adapted for dealing with algebraic curves in n-dimensional space (see Example
6).

Finally, some conclusions, and future work is presented in Sect. 5.

2 Notation and previous results

In this section, we introduce the notion of infinity branch or branch at infinity, convergent
branches and approaching curves, andwe present some properties which allow us to compare
the behavior of two implicit algebraic plane curves at infinity. For more details on these
concepts and results, we refer to [4] (see Sects. 3and 4).
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We consider an irreducible algebraic affine plane curve C overC defined by the irreducible
polynomial f (x, y) ∈ R[x, y]. We work over the field of complex numbers C, but C has
infinitely many points in the affine plane over R (see Chapter 7 [13]). The assumption of
reality is included because of the nature of the problem, but the theory can be similarly
developed for the case of complex non-real curves.

Let C∗ be its corresponding projective curve, defined by the homogeneous polynomial

F(x, y, z) = fd(x, y) + z fd−1(x, y) + z2 fd−2(x, y) + · · · + zd f0 ∈ R[x, y, z],
where d := deg(C) and fi (x, y), i = 0, . . . , d the homogeneous form of degree i . We
assume that (0 : 1 : 0) is not a point at infinity of C∗ (otherwise, we may consider a projective
linear change of coordinates).

In order to get the infinity branches (or branches at infinity) of C, we consider the curve
defined by the polynomial g(y, z) = F(1 : y : z) and we compute the series expansion for
the solutions of g(y, z) = 0 around z = 0. We denote by C � z � e the field of formal
Puiseux series. Thus, there exist exactly degy(g) solutions given by different Puiseux series
that can be grouped into conjugacy classes. More precisely, if

ϕ(z) = m + a1z
N1/N + a2z

N2/N + a3z
N3/N + · · · ∈ C〈〈z〉〉, ai 
= 0, ∀i ∈ N,

where N ∈ N, Ni ∈ N, i ∈ N, and 0 < N1 < N2 < · · · , gcd(N , N1, N2, . . .) = 1, is a
Puiseux series such that g(ϕ(z), z) = 0, and ν(ϕ) = N (i.e., N is the ramification index of
ϕ), the series

ϕ j (z) = m + a1c
N1
j zN1/N + a2c

N2
j zN2/N + a3c

N3
j zN3/N + · · ·

where cNj = 1, j ∈ {1, . . . , N }, are called the conjugates of ϕ (that is, c j , j ∈ {1, . . . , N }
are the Nth roots of unity). The set {ϕ1, . . . , ϕN } all the conjugates ofϕ is called the conjugacy
class of ϕ. It contains N = ν(ϕ) distinct series which satisfy g(ϕ j (z), z) = 0, j = 1, . . . , N .

Since g(ϕ(z), z) = 0 in some neighborhood of z = 0 where ϕ(z) converges, there exists
M ∈ R

+ such that F(1 : ϕ(t) : t) = g(ϕ(t), t) = 0 for t ∈ C and |t | < M , which implies
that F(t−1 : t−1ϕ(t) : 1) = f (t−1, t−1ϕ(t)) = 0, for t ∈ C and 0 < |t | < M . We set
t−1 = z, and we obtain that f (z, r(z)) = 0 for z ∈ C and |z| > M−1 where

r(z) = zϕ(z−1) = mz + a1z
1−N1/N + a2z

1−N2/N + a3z
1−N3/N + · · · , ai 
= 0, ∀i ∈ N

N , Ni ∈ N, i ∈ N, and 0 < N1 < N2 < · · · , gcd(N , N1, N2, . . .) = 1.
Reasoning similarly with the N different series in the conjugacy class, ϕ1, . . . , ϕN , we

get

ri (z) = zϕi (z
−1) = mz + a1c

N1
i z1−N1/N + a2c

N2
i z1−N2/N + a3c

N3
i z1−N3/N + · · · .

Definition 1 An infinity branch (or branch at infinity) of an affine plane curve C associated
to the infinity point (or point at infinity) P = (1 : m : 0), m ∈ C, is a set B = ⋃N

j=1 L j ,

where L j = {(z, r j (z)) ∈ C
2 : z ∈ C, |z| > M}, M ∈ R

+, and

r j (z) = zϕ j (z
−1) = mz + a1c

N1
j z1−N1/N + a2c

N2
j z1−N2/N + a3c

N3
j z1−N3/N + · · ·

(2.1)

where N , Ni ∈ N, i ∈ N, 0 < N1 < N2 < · · · , and cNj = 1, j ∈ {1, . . . , N }. The subsets
L1, . . . , LN are called the leaves of the infinity branch B.
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Remark 1 An infinity branch is uniquely determined from one leaf, up to conjugation.

By abuse of notation, in the following we write B = {(z, r(z)) ∈ C
2 : z ∈ C, |z| > M}

(where M := max{M1, . . . , MN }). We recall that N is the ramification index of the branch
B and we will write N = ν(B) (the branch B has ν(B) leaves).

Remark 2 Each infinity branch is associated to a unique infinity point. More precisely, as we
stated above, there exists M ∈ R

+ such that F(1 : ϕ(t) : t) = g(ϕ(t), t) = 0 for |t | < M ,
where

ϕ(z) = m + a1z
N1/N + a2z

N2/N + a3z
N3/N + · · · ∈ C〈〈z〉〉.

Thus, for t = 0 we get the infinity point P = (1 : ϕ(0) : 0) = (1 : m : 0) ∈ C∗.
Conversely, given an infinity point P = (1 : m : 0), there must be, at least, one Puiseux

solution ϕ such that ϕ(0) = m; this solution provides an infinity branch associated to P . In
particular, we conclude that every algebraic plane curve has, at least, one infinity branch.

The procedure introduced above allows us to obtain the infinity branches of a curve C,
under the assumption that (0 : 1 : 0) /∈ C∗. However, a curve may have infinity branches,
associated to the infinity point (0 : 1 : 0), which can not be constructed in this way. These
infinity branches have the form {(r(z), z) ∈ C

2 : z ∈ C, |z| > M} and may be obtained by
interchanging the variables x and y. See [4] (Definition 3.3) for further details.

In the following, we introduce the notions of convergent branches and approaching curves.
Intuitively speaking, two infinity branches converge if they get closer as they tend to infinity.
This concept will allow us to analyze whether two curves approach each other.

Definition 2 Two infinity branches, B and B, are convergent if there exist two leaves L =
{(z, r(z)) ∈ C

2 : z ∈ C, |z| > M} ⊂ B and L = {(z, r(z)) ∈ C
2 : z ∈ C, |z| > M} ⊂ B

such that limz→∞(r(z) − r(z)) = 0. In this case, we say that the leaves L and L converge.

The following theorem provides a characterization for the convergence of two infinity
branches (see [4]).

Theorem 1 The following statements hold:

1. Two leaves L = {(z, r(z)) ∈ C
2 : z ∈ C, |z| > M} and L = {(z, r(z)) ∈ C

2 : z ∈
C, |z| > M} are convergent if and only if the terms with non negative exponent in the
series r(z) and r(z) are the same.

2. Two infinity branches B and B are convergent if and only if for each leaf L ⊂ B there
exists a leaf L ⊂ B convergent with L, and conversely.

3. Two convergent infinity branches must be associated to the same infinity point.

This paper is concerned with the study of the asymptotes of a curve. The classical concept
of asymptote stands for a line that approaches a given curve when it tends to the infinity.
In the following we generalize this idea by claiming that two curves approach each other if
they, respectively, have two infinity branches that converge.

Definition 3 Let C be an algebraic plane curve with an infinity branch B. We say that a
curve C approaches C at its infinity branch B if there exists one leaf L = {(z, r(z)) ∈ C

2 :
z ∈ C, |z| > M} ⊂ B such that limz→∞ d((z, r(z)), C) = 0, where d(·, ·) represents the
euclidean distance.

The following theorem characterize the convergence of two curves at an infinity branch
(see [4]).

123



109 Page 6 of 24 M. F. de Sevilla et al.

Theorem 2 Let C be a plane algebraic curve with an infinity branch B. A plane algebraic
curve C approaches C at B if and only if C has an infinity branch, B, such that B and B are
convergent.

Obviously, “approaching” is a symmetric concept, that is, C1 approaches C2 if and only
if C2 approaches C1. When it happens we say that C1 and C2 are approaching curves or that
they approach each other. In the next section, we use this concept to generalize the classical
notion of asymptote of a curve.

3 Asymptotes of an algebraic curve

Given an algebraic plane curve C and an infinity branch B, in Sect. 2, we have described how
C can be approached at B by a second curve C. Now, suppose that deg(C) < deg(C). Then
one may say that C degenerates, since it behaves at infinity as a curve of smaller degree. For
instance, a hyperbola is a curve of degree 2 that has two real asymptotes, which implies that
the hyperbola degenerates, at infinity, to two lines. Similarly, one can check that every ellipse
has two asymptotes, although they are complex lines in this case. However, the asymptotic
behavior of a parabola is different, since it cannot be approached at infinity by any line. This
motivates the following definition:

Definition 4 An algebraic curve of degree d is a perfect curve if it cannot be approached by
any curve of degree less than d .

More properties on perfect curves can be found in [3]. In particular, one has that if a given
curve of degree d has an only branch of degree d , then the input curve is perfect. For instance,
a curve C defined by a proper parametrization of the form (tn, antn +an−1tn−1 +· · ·+a0) is
always perfect since it has an only branch B given by (z, r(z)) = (z, anz + an−1z(n−1)/n +
· · · + a0) and deg(C) = deg(B) = n (see Definition 6 for the degree of a branch).

A curve that is not perfect can be approached by other curves of smaller degree. If these
curves are perfect, we call them g-asymptotes. More precisely, we have the following defi-
nition.

Definition 5 Let C be a curve with an infinity branch B. A g-asymptote (generalized asymp-
tote) of C at B is a perfect curve that approaches C at B.

The notion of g-asymptote is similar to the classical concept of asymptote. The difference is
that a g-asymptote is not necessarily a line, but a perfect curve. Actually, it is a generalization,
since every line is a perfect curve (this fact follows from Definition 4). Throughout the paper
we refer sometimes to g-asymptote simply as asymptote.

Remark 3 The degree of a g-asymptote is less than or equal to the degree of the curve it
approaches. In fact, a g-asymptote of a curve C at a branch B has minimal degree among all
the curves that approach C at B.

In Sect. 3.1, we show that every infinity branch of a given algebraic plane curve implicitly
defined has, at least, one asymptote and we show how to compute it. For this purpose, we
rewrite Eq. (2.1) defining a branch B (see Definition 1) as

r(z) = mz + a1z
1−n1/n + · · · + akz

1−nk/n + ak+1z
1−Nk+1/N + · · · (3.1)
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where 0 < N1 < · · · < Nk ≤ N < Nk+1 < · · · and gcd(N , N1, . . . , Nk) = b, N = n · b,
N j = n j · b, j ∈ {1, . . . , k}. That is, we have simplified the non negative exponents such
that gcd(n, n1, . . . , nk) = 1. Note that 0 < n1 < n2 < · · · , and nk ≤ n, and N < Nk+1,
i.e. the terms a j z1−N j /N with j ≥ k + 1 are those which have negative exponent. We denote
these terms as A(z) := ∑∞

�=k+1 a�z−q� , where q� = 1 − N�/N ∈ Q
+, � ≥ k + 1.

Under these conditions, we introduce the definition of degree of a branch B:

Definition 6 Let B = {(z, r(z)) ∈ C
2 : z ∈ C, |z| > M} (r(z) is defined in (3.1)) be an

infinity branch associated to an infinity point P = (1 : m : 0),m ∈ C. We say that n is the
degree of B, and we denote it by deg(B).

3.1 Construction of a g-asymptote of a curve implicitly defined

Taking into account Theorems 1 and 2, we have that any curve C approaching C at B should
have an infinity branch B = {(z, r(z)) ∈ C

2 : z ∈ C, |z| > M} such that the terms with non
negative exponent in r(z) and r(z) are the same.

In the simplest case, if A = 0 in the branch B (i.e. there are no terms with negative
exponent; see equality (3.1)), we could consider the branch

r̃(z) = mz + a1z
1−n1/n + a2z

1−n2/n + · · · + akz
1−nk/n, (3.2)

where a1, a2, . . . ∈ C\{0},m ∈ C, n, n1, n2 . . . ∈ N, gcd(n, n1, . . . , nk) = 1, and 0 < n1 <

n2 < · · · . Note that r̃ has the same terms with non negative exponent as r , and r̃ does not
have terms with negative exponent.

Let ˜C be the irreducible plane curve containing the branch ˜B = {(z, r̃(z)) ∈ C
2 : z ∈

C, |z| > ˜M} (note that ˜C is unique since two different algebraic curves have finitely many
common points). Observe that

˜Q(t) = (tn,mtn + a1t
n−n1 + · · · + akt

n−nk ) ∈ C[t]2

is a polynomial parametrization of ˜C, and it is proper (see Lemma 3 in [3]). In Theorem 2 in
[3], we prove that ˜C is a g-asymptote of C at B.

From these results, we obtain the method presented in [4, 5], that computes g-asymptotes
and that is independent of the leaf chosen to define the infinity branch.We assume thatwe have
prepared the input curve C, by means of a suitable projective linear change of coordinates,
such that (0 : 1 : 0) is not an infinity point of C.

In the following, we illustrate the method with an example.

Example 1 Let C be the curve of degree d = 6 defined by the irreducible polynomial

f (x, y) = 8y2x3 + 16y5x − 42y4x + 164y3x2 − 71670yx

−34853x2 + 20428x + 15075y2x − 2213y3x + 196x3 − 2530y2x2

+13946yx2 − 56yx3 − 4978y3 − 15321y2 + 175y4 − 197y5 + 8y6 ∈ R[x, y].
First, we have that f6(x, y) = y5(y + 2x). Hence, the infinity points are P1 = (1 : 0 : 0)

and P2 = (1 : −2 : 0).
We start by analyzing the point P1: there are three infinity branches associated to P1,

B1 j = {(z, r1 j (z)) ∈ C
2 : z ∈ C, |z| > M1}, j = 1, 2, 3, where

r11(z) = 7/2 + 7/2I + (−127/8 − 15/8I )z−1 + (2161/16 + 1189/32I )z−2

+(−6553/4 − 84517/128I )z−3 + · · · ,
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r12(z) = 7/2 − 7/2I + (−127/8 + 15/8I )z−1 + (2161/16 − 1189/32I )z−2

+(−6553/4 + 84517/128I )z−3 + · · ·
r13(z) = 5/24 + 10/3z1/321/3 − z2/32−1/3 + 97/3z−1 + 1289/162z−1/32−4/3 + · · ·

(we compute r1 j , j = 1, 2, 3 using the algcurves package included in the computer algebra
system Maple; in particular we use the command puiseux).

We compute r̃1 j (z), j = 1, 2, 3, and we have that

r̃11(z) = 7/2 + 7/2I , r̃12(z) = 7/2 − 7/2I ,

r̃13(z) = 5/24 + 10/3 · 21/3z1/3 − 2−1/3z2/3.

The parametrizations of the asymptotes ˜C j , j = 1, 2, 3, are given by

˜Q1(t) = (t, 7/2 + 7/2I ), ˜Q2(t) = (t, 7/2 − 7/2I ),
˜Q3(t) = (t3, 5/24 + 10/3 · 21/3t − 2−1/3t2)

which define two complex lines and the curve defined by the implicit polynomial

f̃3(x, y) = −6912x2 − 138240yx + 1052800x + 8640y2

−1800y + 125 − 13824y3 ∈ R[x, y]
(one may compute the polynomial defining implicitly ˜C3 using for instance the results in
[13]; see Chapter 4).

Now, we focus on the point P2: there one infinity branch associated to P2, B2 =
{(z, r2(z)) ∈ C

2 : z ∈ C, |z| > M2}, where
r2(z) = 17 − 2z − 261/4z−1 − 2241/8z−2 + · · · .

We compute r̃2(z), and we have that

r̃2(z) = −2z + 17.

The parametrization of the asymptote ˜C4 is given by

˜Q4(t) = (t, −2t + 17)

that defines a line implicitly defined by the polynomial

f̃4(x, y) = −2x + 17 − y ∈ R[x, y].
In Fig. 1, we plot the curve C, and the asymptotes ˜C3 and ˜C4 (the asymptotes ˜C1 and ˜C2 are

complex lines).

3.2 Construction of a g-asymptote of a curve rationally parametrized

Throughout this paper so far, we have dealt with algebraic plane curves implicitly defined.
In this subsection, we present a method to compute infinity branches and g-asymptotes of
a plane curve from their parametric (rational) representation (without implicitizing). This
method is included in [5] (see Section 5) and it involves the computation of Puiseux series
and infinity branches. In Sect. 3.2.1, we develop a new method presented in [7] that allows to
easily compute the generalized asymptotes (g-asymptotes) by only determining some simple
limits of rational functions constructed from the given parametrization.
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Fig. 1 Curve C (left) and curve and asymptotes (right).

Let C be a plane curve defined by the rational parametrization

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi (s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1, 2.

If C∗ represents the projective curve associated to C, we have that a parametrization of C∗ is
given by P∗(s) = (p1(s) : p2(s) : 1) or, equivalently,

P∗(s) =
(

1 : p2(s)

p1(s)
: 1

p1(s)

)

.

We assume that we have prepared the input curve C, by means of a suitable projective linear
change of coordinates (if necessary) such that (0 : 1 : 0) is not a point at infinity of C∗.

In order to compute the g-asymptotes of C, first we need to determine the infinity branches
of C. That is, the sets

B = {(z, r(z)) ∈ C
2 : z ∈ C, |z| > M}, where r(z) = zϕ(z−1).

For this purpose, taking into account Definition 1, we have that f (z, r(z)) = F(1 :
ϕ(z−1) : z−1) = F(1 : ϕ(t) : t) = 0 around t = 0, where t = z−1 and F is the polynomial
defining implicitly C∗. Observe that in this section, we are given the parametrization P∗ of
C∗ and then, F(P∗(s)) = F (1 : p2(s)/p1(s) : 1/p1(s)) = 0. Thus, intuitively speaking, in
order to compute the infinity branches of C, and in particular the series ϕ, one needs to rewrite
the parametrization P∗(s) in the form (1 : ϕ(t) : t) around t = 0. For this purpose, the idea
is to look for a value of the parameter s, say �(t) ∈ C〈〈t〉〉, such thatP∗(�(t)) = (1 : ϕ(t) : t)
around t = 0.

Hence, from the above reasoning, we deduce that first, we have to consider the equation
1/p1(s) = t (or equivalently, p12(s)− tp11(s) = 0), and we solve it in the variable s around
t = 0. From Puiseux’s Theorem, there exist solutions �1(t), �2(t), . . . , �k(t) ∈ C〈〈t〉〉 such
that, p12(�i (t)) − tp11(�i (t)) = 0, i ∈ {1, . . . , k}, in a neighborhood of t = 0.

Thus, for each i ∈ {1, . . . , k}, there exists Mi ∈ R
+ such that the points (1 : ϕi (t) : t) or

equivalently, the points (t−1 : t−1ϕi (t) : 1), where ϕi (t) = p2(�i (t))
p1(�i (t))

, are in C∗ for |t | < Mi

(note that P∗(�(t)) ∈ C∗ since P∗ is a parametrization of C∗). Observe that ϕi (t) is a Puiseux
series, since p2(�i (t)) and p1(�i (t)) can be written as Puiseux series and C〈〈t〉〉 is a field.
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Finally, we set z = t−1. Then, we have that the points (z, ri (z)), where ri (z) = zϕi (z−1),
are in C for |z| > M−1

i . Hence, the infinity branches of C are the sets Bi = {(z, ri (z)) ∈ C
2 :

z ∈ C, |z| > M−1
i }, i ∈ {1, . . . , k}.

Note that the series �i (t) satisfies that p1(�i (t))t = 1, for i ∈ {1, . . . , k}. Then, we have
that

ϕi (t) = p2(�i (t))

p1(�i (t))
= p2(�i (t))t, ri (z) = zϕi (z

−1) = p2(�i (z
−1)).

Once we have the infinity branches, we can compute a g-asymptote for each of them by
simply removing the terms with negative exponent from ri .

Additionally we note, that some of the solutions �1(t), �2(t), . . . , �k(t) ∈ C〈〈t〉〉 might
belong to the same conjugacy class. Thus, we only consider one solution for each of these
classes. The output asymptote ˜C is independent of the solutions �1(t), �2(t), . . . , �k(t) ∈
C〈〈t〉〉 chosen in step 1, and of the leaf chosen to define the branch B.

In the following example, we consider a parametric plane curve with two real infinity
branches. We obtain these branches and compute a g-asymptote for each of them.

Example 2 The plane curve C introduced in Example 1 turns out to be rational, parametrized
by

P(s) =
(

3s4 − s − 4 + 5s3

(s − 1)s3(s2 + 1)
,
2s2 − 7s + 2

(s − 1)s2

)

∈ R(s)2.

We compute the asymptotes of C. For this purpose, we determine the solutions of the equation
p12(s)− tp11(s) = 0 around t = 0. For this purpose, we may use, for instance, the command
puiseux included in the package algcurves of the computer algebra systemMaple. There are
four solutions (up to conjugation) that are given by the Puiseux series

�1(t) = 1 + 411/16t3 + 21/2t2 + 3/2 + · · · ,

�2(t) = −315/32t3 + 11279/64I t3 + 13/4t2 − 243/16I t2 − 5/4t + 7/4I t + I + · · ·
�3(t) = −315/32t3 − 11279/64I t3 + 13/4t2 + 243/16I t2 − 5/4t − 7/4I t − I + · · · ,

�4(t) = −17/3t2 − 42179/777621/3t5/3 − 2105/129622/3t4/3 + 1/3t

+5/621/3t2/3 + 22/3t1/3 + · · · .

Now, we compute

r1(z) = p2(�1(z
−1)) = −2z + 17 − 261/4z−1 + · · ·

r2(z) = p2(�2(z
−1)) = 7/2 − 7/2I − 127/8z−1 + 15/8I z−1 + · · ·

r3(z) = p2(�2(z
−1)) = 7/2 + 7/2I − 127/8z−1 − 15/8I z−1 + · · ·

r4(z) = p2(�2(z
−1)) = 5/24 − 2−1/3z2/3 + 10/3 · 21/3z1/3

+1289/648 · 22/3z−1/3 + 173813/15552 · 21/3z−2/3 + · · ·
(we may use, for instance, the command series included in the computer algebra system
Maple). The curve has four infinity branches given by Bi = {(z, ri (z)) ∈ C

2 : z ∈ C, |z| >

M} for some M ∈ R
+ (note that B4 has three leaves).

We obtain r̃i (z) by removing the terms with negative exponent in ri (z) for i = 1, 2, 3, 4.
We get

r̃1(z) = −2z + 17 and r̃2(z) = 7/2 − 7/2I

r̃3(z) = 7/2 + 7/2I and r̃4(z) = 5/24 − 2−1/3z2/3 + 10/3 · 21/3z1/3.
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The input curveC has two complex asymptotes˜Ci at Bi for i = 1, 2 and two real asymptotes
˜Ci at Bi for i = 3, 4 that can be polynomially parametrized by (see Fig. 1):

˜Q1(t) = (t, −2t + 17), ˜Q2(t) = (t, 7/2 − 7/2I ), ˜Q3(t) = (t, 7/2 + 7/2I )
˜Q4(t) = (t3, 5/24 + 10/3 · 21/3t − 2−1/3t2).

Compare the output with the output obtained in Example 1.

Remark 4 1. When we compute the series �i , we cannot handle its infinite terms so it must
be truncated, which may distort the computation of the series ri . However, this distortion
may not affect to all the terms in ri . In fact, the number of affected terms depends on the
number of terms considered in �i . Nevertheless, note that we do not need to know the
full expression of ri but only the terms with non negative exponent. In [5] (Proposition
2), it is proved that one can get the terms with non negative exponent in ri by considering
just 2deg(p1) + 1 terms of �i .

2. We remind that before to apply the method, the input curve must be prepared such that
(0 : 1 : 0) is not a point at infinity. As an alternative, one could apply the algorithm first
forP and then forP := (p2(s), p1(s)) ∈ R(s)2. In this last case, if we get the asymptote
(h1, h2), we have to undo the necessary change of coordinates and we finally get the
asymptote ˜Q(t) = (h2, h1). Some of the asymptotes obtained fromP may coincide with
others obtained fromP but someother newasymptotes could appear (those corresponding
to vertical asymptotes; see Corollary 1.

3.2.1 Newmethod for the parametric (rational) case

In this subsection, we present an improvement of the method described above, which avoids
the computation of infinity branches and Puiseux series (see [7]). We develop this method for
the plane case but it can be trivially adapted for dealing with rational curves in n-dimensional
space.
In the following we consider a rational plane curve C defined by the rational parametrization

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi (s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1, 2.

We assume that deg(pi1) ≤ deg(pi2) = di , i = 1, 2 (otherwise, we apply a suitable
linear change on the variable t). Thus, we have that lims→∞ pi (s) 
= ∞, i = 1, 2 and
the infinity branches of C will be traced when s moves around the different roots of the
denominators p12(s) and p22(s). In fact, each of these roots yields an infinity branch. The
following theorem shows how to obtain a g-asymptote for each of these branches, by just
computing some simple limits of rational functions constructed from P(s) (see [7]).

Theorem 3 Let C be a curve defined by a parametrization

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi (s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1, 2,

where deg(pi1) ≤ deg(pi2) = di , i = 1, 2. Let τ ∈ C be such that pi2(t) = (t − τ)ni pi2(t)
(that is, τ ∈ C is a root of multiplicity ni of pi2) where pi2(τ ) 
= 0, i = 1, 2 (that is, τ ∈ C is
not a root of pi2), and n1 ≥ 1, and let B be the corresponding infinity branch. A g-asymptote
of B is defined by the parametrization

˜Q(t) = (tn1 , an2 t
n2 + an2−1t

n2−1 + . . . + a0),
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where

an2 = limt→τ

p2(t)

p1(t)n2/n1

an2−1 = limt→τ p1(t)1/n1 f1(t), f1(t) := p2(t)

p1(t)n2/n1
− an2

an2−2 = limt→τ p1(t)1/n1 f2(t), f2(t) := p1(t)1/n1 f1(t) − an2−1

...
...

an2−i = limt→τ p1(t)1/n1 fi (t), fi (t) := p1(t)1/n1 fi−1(t) − an2−(i−1), i ∈ {2, . . . , n2}.
Remark 5 From the above construction, each root τ of p12(t) yields an infinity branch
and, hence, an infinity point P∗ (see Remark 2). Note that the parametrization P(t)

can be expressed as P(t) =
(

q11(t)
q(t) ,

q12(t)
q(t)

)

, where q(t) = lcm(p12(t), p22(t)) and

q1i (t) = pi (t)q(t). Now, the corresponding projective curve is parametrized by P∗(t) =
(q11(t), q12(t), q(t)) and the infinity point associated to τ is P∗ = (q11(τ ) : q12(τ ) : 0).

In the following corollary, we analyze the special case of the vertical and horizontal
g-asymptotes, i.e. lines of the form x − a or y − b, where a, b ∈ C (observe that these
asymptotes correspond to branches associated to the infinity points (0 : 1 : 0) and (1 : 0 : 0),
respectively). More precisely, we prove that these asymptotes are obtained from the non–
common roots of the denominators of the given parametrization. Note that in the practical
design of engineering and modeling applications, the rational curves are usually presented
by numerical coefficients and P(s) mostly satisfies that gcd(p12, p22) = 1.

Corollary 1 Let C be a curve defined by a parametrization

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi (s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1, 2,

where deg(pi1) ≤ deg(pi2), i = 1, 2.

1. Let τ ∈ C be such that p12(t) = (t − τ)n1 p12(t) where p22(τ )p12(τ ) 
= 0, and n1 ≥ 1.
It holds that a g-asymptote of C corresponding to the infinity point (1 : 0 : 0) is the
horizontal line y − p2(τ ) = 0, defined by the parametrization ˜Q(t) = (t, p2(τ )).

2. Let τ ∈ C be such that p22(t) = (t − τ)n2 p22(t) where p12(τ )p22(τ ) 
= 0, and n2 ≥ 1.
It holds that a g-asymptote of C corresponding to the infinity point (0 : 1 : 0) is the
vertical line x − p1(τ ) = 0, defined by the parametrization ˜Q(t) = (p1(τ ), t).

Remark 6 The previous theorem outputs the parametrization ˜Q(t) = (tn1 , an2 t
n2 +

an2−1tn2−1 + . . . + a0), and n1 ≥ n2 (otherwise (0 : 1 : 0) is an infinity point of the
input curve). Note that the degree of the defined curve is not necessary n1 since Q could be
improperwhich is equivalent to gcd(n1, n2, . . . , n2− j) 
= 0 for every j = 0, . . . , n2−1 such
that an2− j 
= 0. Let us assume that gcd(n1, n2, . . . , n2 − j) = β for every j = 0, . . . , n2 −1
such that an2− j 
= 0. Then, let n = n1/β and

M(t) = P(t1/β) = (tn, an2 t
n2/β + an2−1t

(n2−1)/β + . . . + a0) ∈ K[t]2
is a proper reparametrization ofQ. Then we get that the theorem outputs an asymptote since
the output curve is perfect (it has an only branch and the degree of the curve which is n is
equal to the degree of the branch).

By applying the above results, we can easily obtain all the g-asymptotes of any rational
plane curve, as the following example shows.
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Example 3 Let C be the plane curve introduced in Examples 1 and 2 defined by the
parametrization

P(s) =
(

3s4 − s − 4 + 5s3

(s − 1)s3(s2 + 1)
,
2s2 − 7s + 2

(s − 1)s2

)

∈ R(s)2.

We compute the asymptotes of C using the new method just presented. For this purpose, we
first observe that p12(s) has the roots τ1 = 1, τ2 = 0, τ3 = I , τ4 = −I , with multiplicities
n11 = 1, n12 = 3 and n13 = n14 = 1. The multiplicities of these roots in p22(s) are n21 = 1,
n22 = 2 and n23 = n24 = 0.
For τ1 = 1, we compute

a1 = lim
t→1

p2(t)

p1(t)
= −2, a0 = lim

t→1
p1(t) f1(t) = 17, f1(t) := p2(t)

p1(t)
− a1.

Then, we obtain the asymptote ˜C1, defined by the proper parametrization

˜Q1(t) = (t, −2t + 17).

For τ2 = 0, we compute

a2 = limt→2
p2(t)
p1(t)2

= 2−4/3 + I · 2−4/3 31/2

a1 = limt→2 p1(t) f1(t) = −5/3 · 21/3 + 5/3 · I · 21/3 31/2, f1(t) := p2(t)
p1(t)2

− a2
a0 = limt→2 p1(t) f2(t) = 5

24 , f2(t) := p1(t) f1(t) − a1.

Then, we obtain the asymptote ˜C2, defined by the proper parametrization

˜Q2(t) = (

t3, 5/24 + (−5/3 · 21/3 + 5/3 · I · 21/3 31/2)t + (2−4/3 + I · 2−4/3 31/2)t2
)

.

Finally for τ3 = I , and τ = −I we get the asymptotes ˜Ci , i = 3, 4,, defined by the proper
parametrizations

˜Q3(t) = (t, p2(I )) = (t, 7/2 − 7/2I ) , ˜Q4(t) = (t, p2(−I )) = (t, 7/2 + 7/2I ) .

See Fig. 1 and compare the output with the output obtained in Example 2. We may check that
˜Q2(t) is a reparametrización of the proper parametrization ˜Q4(t) obtained in Example 2. In
fact, note that ˜Q2(t) = ˜Q4(ξ t), with ξ = 1/2 + I

√
3/2 satisfies that ξ3 = 1.

Remark 7 The above method allows us to easily obtain all the generalized asymptotes of a
rational curve. However, we should compute the roots of the denominators of the parametriza-
tion, which may entail certain difficulties if algebraic numbers are involved. This problem is
solved using the notion of conjugate points (see Definition 12 in [12]), which help us to over-
come this problem. The idea is to collect the points whose coordinates depend algebraically
on all the conjugate roots of a same irreducible polynomial (for more details see [12]).

4 The non-rational case: computing branches and asymptotes

Throughout this paper so far, we have dealt with algebraic plane curves implicitly and rational
parametrically defined. In this section, we present all the previous concepts introduced before
for the case of meromorphic functions. In addition, we present a method to compute infinity
branches and g-asymptotes for these type of functions. This method is based on the idea
presented in Sect. 3.2.1, where we show how one easily compute the generalized asymptotes
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by only determining some simple limits of rational functions constructed from the rational
functions defining the input parametrization.

We remind that the g-asymptotes of an input curve, C, are perfect curves computed from
the infinity branches of C. That is, once one has the branch

B = {(z, r(z)) ∈ C
2 : z ∈ C, |z| > M},

where (see equality 3.1)

r(z) = mz + a1z
1−n1/n + · · · + akz

1−nk/n + ak+1z
1−Nk+1/N + · · · ,

and 0 < N1 < · · · < Nk ≤ N < Nk+1 < · · · , gcd(N , N1, . . . , Nk) = b, N = n · b,
N j = n j · b, j ∈ {1, . . . , k}, the asymptote is obtained by considering the terms with
non negative exponent in the series r(z). We note that we have simplified the non negative
exponents such that gcd(n, n1, . . . , nk) = 1, 0 < n1 < n2 < · · · , and nk ≤ n. We say that
n is the degree of B (deg(B)) and N is the ramification index of the branch B (ν(B)).

Additionally, we say that the infinity branch B is associated to the infinity point P = (1 :
m : 0), m ∈ C and it holds that f (z, r(z)) = 0 for z ∈ C, |z| > M when the curve is
implicitly defined. If the curve is defined by the rational parametrization, it holds that

lim
t→τ

P(t) = lim
z→∞(z, r(z)),

where τ is a value of t for which P is not defined and P∗(τ ) = (1 : m : 0). In the case
we are dealing in this section, we do not have an implicit equation so we would use this last
characterization.

We also remind that a g-asymptote of C at B is a perfect curve that approaches C at B.
So, we need to compute a perfect curve approaching the input curve C, then we will get the
g-asymptote. For this purpose, we recall that a curve defined by a proper parametrization of
the form (tn, antn + an−1tn−1 + · · · + a0) is always perfect (see Sect. 3). So, our purpose
is to compute a curve of this form approaching the input curve C. That is, we impose the
condition that

lim
t→τ

P(t) = lim
z→∞(zn, anz

n + an−1z
n−1 + · · · + a0),

where τ is a value of t for which P is not defined.
Using this idea in fact we see how to determine the infinity branches

B = {(z, r(z)) ∈ C
2 : z ∈ C, |z| > M},

where

r(z) = mz + a1z
1−n1/n + · · · + akz

1−nk/n + ak+1z
1−Nk+1/N + · · · ,

and 0 < N1 < · · · < Nk ≤ N < Nk+1 < · · · . Since we can not compute ϕ(t), in order to
compute B, we use the idea presented in Sect. 3.2.1 and we impose the condition

lim
t→τ

P(t) = lim
z→∞(z, r(z)).

In the following, we deal with meromorphic functions from an open subset of the complex
plane onto C

n, n ≥ 1. We remind that meromorphic functions are functions on an open
subset D of C that are holomorphic on all D except for a set of isolated points, which are
poles of the functions. By abuse of notation, we denote by P(t) := (p1(t), . . . , pn(t)) these
meromorphic functions and we say that the image of P is a special curve C parametrically
defined in n-dimensional space.
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We develop the method for n = 2 but it can be straightforward adapted for dealing with
curves in n-dimensional space. Thus, in this section we have a curve C that is the image of
the parametrization

P(s) = (p1(s), p2(s)), pi (s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1, 2,

where the functions pi (s), i ∈ {1, 2} are meromorphic on the complex plane.
The different roots of the denominators pi2, ı = 1, 2 (the poles of the meromorphic

functions pi (s), i = 1, 2) yield the infinity branches associated to the infinity points P =
(1 : m : 0), m ∈ C. The following theorem shows how to compute the branches, by just
computing some simple limits of some functions constructed from P(s). Afterwards, from
each of these branches we can easily obtain the g-asymptote.

We assume that we have prepared the input curve C, by means of a suitable projective
change of coordinates (if necessary) such that (0 : 1 : 0) is not a point at infinity.
Theorem 4 Let C be a curve defined by a parametrization

P(s) = (p1(s), p2(s)), pi (s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1, 2.

Let τ ∈ C be such that pi2(t) = (t − τ)ni /mi pi2(t) where pi2(τ ) 
= 0, i = 1, 2, and
n1/m1 ≥ 1. Let us assume that pi1(t) = (t−τ)ui /vi pi1(t), i = 1, 2 and 0 ≤ u1/v1 < n1/m1

and 0 ≤ u2/v2 ≤ n2/m2. Let γ := lcm(m1,m2, v1, v2) and

M(s) = P(sγ ) = (℘1(s), ℘2(s)), ℘i (s) = ℘i1(s)/℘i2(s), i = 1, 2.

Let n̄i := niγ /mi − uiγ /vi , i = 1, 2. An infinity branch associated to an infinity point
P = (1 : m : 0),m ∈ C is given as

B = {(z, r(z)) ∈ C
2 : z ∈ C, |z| > M},

where

r(z) = an̄2 z
n̄2/n̄1 + an̄2−1z

(n̄2−1)/n̄1 + . . . + a0 + a−1z
−1/n̄1 + a−2z

−2/n̄1 + · · ·
(m = a1), and

an̄2 = lim
t→τ

℘2(t)

℘1(t)n̄2/n̄1

an̄2−1 = lim
t→τ

℘1(t)1/n̄1 f1(t), f1(t) := ℘2(t)

℘1(t)n̄2/n̄1
− an̄2

an̄2−2 = lim
t→τ

℘1(t)1/n̄1 f2(t), f2(t) := ℘1(t)1/n̄1 f1(t) − an̄2−1

...
...

an̄2−i = lim
t→τ

℘1(t)1/n̄1 fi (t), fi (t) := ℘1(t)1/n̄1 fi−1(t) − an̄2−(i−1),

for i ∈ {2, . . . , n̄2, n̄2 + 1, n̄2 + 2, · · · }.
Proof We use the equality

lim
t→τ

P(t) = lim
z→∞(z, r(z)) = lim

z→∞(zn̄1 , r(zn̄1))

for easily obtaining the coefficients, an2−i for i ∈ {2, . . . , n̄2, n̄2 + 1, n̄2 + 2, · · · }. Indeed,
we have that

lim
t→τ

℘2(t)

℘1(t)n̄2/n̄1
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= lim
z→∞

an̄2 z
n̄2/n̄1 + an̄2−1z(n̄2−1)/n̄1 + . . . + a0 + a−1z−1/n̄1 + a−2z−2/n̄1 + · · ·

(zn̄1)n̄2/n̄1
= an̄2 ,

lim
t→τ

℘2(t) − an̄2℘1(t)n̄2/n̄1

℘1(t)(n̄2−1)/n̄1

= lim
t→∞

an̄2−1z(n̄2−1)/n̄1 + . . . + a0 + a−1z−1/n̄1 + a−2z−2/n̄1 + · · ·
(zn̄1)(n̄2−1)/n̄1

= an̄2−1,

lim
t→τ

℘2(t) − an̄2℘1(t)n̄2/n̄1 − an̄2−1℘1(t)(n̄2−1)/n̄1

℘1(t)(n̄2−2)/n̄1

= lim
z→∞

an̄2−2z(n̄2−2)/n̄1 + . . . + a0 + a−1z−1/n̄1 + a−2z−2/n̄1 + · · ·
(zn̄1)(n̄2−2)/n1

= an̄2−2

and, reasoning similarly,

lim
t→τ

(℘2(t) − an̄2℘1(t)
n2/n1 − an̄2−1℘1(t)

(n̄2−1)/n̄1 − · · · − a1℘1(t)
1/n̄1)

= lim
z→∞(a0 + a−1z

−1/n̄1 + a−2z
−2/n̄1 + · · · ) = a0.

Additionally, we have that

lim
t→τ

℘2(t) − an̄2℘1(t)n2/n1 − an̄2−1℘1(t)(n̄2−1)/n̄1 − · · · − a0
℘1(t)−1/n1

= lim
z→∞

a−1z−1/n̄1 + a−2z−2/n̄1 + · · ·
(zn1)−1/n1

= a−1,

lim
t→τ

℘2(t) − an̄2℘1(t)n2/n1 − an̄2−1℘1(t)(n̄2−1)/n̄1 − · · · − a0 − a−1z−1/n̄1

℘1(t)−2/n1

= lim
z→∞

a−2z−2/n̄1 + · · ·
(zn̄1)−2/n̄1

= a−2,

and, reasoning similarly for i ≥ 3

lim
t→τ

℘2(t) − an̄2℘1(t)
n2/n1 − an̄2−1℘1(t)

(n̄2−1)/n̄1 − · · · − a0 − a−1z
−1/n̄1 − · · · − a−(i−1)z

−(i−1)/n̄1

℘1(t)−i/n̄1

= lim
z→∞

a−i z
−i/n̄1 + · · ·

(zn1 )−i/n1
= a−i .

Finally, we observe that we may write

℘2(t) − an̄2℘1(t)n̄2/n̄1

℘1(t)(n̄2−1)/n̄1
= ℘1(t)

1/n̄1 f1(t),

f1(t) := ℘2(t)

℘1(t)n̄2/n̄1
− an̄2

℘2(t) − an̄2 p1(t)
n̄2/n̄1 − an̄2−1 p1(t)(n̄2−1)/n̄1

℘1(t)(n̄2−2)/n̄1
= ℘1(t)

1/n̄1 f2(t),

f2(t) := ℘1(t)
1/n̄1 f1(t) − an̄2−1

and in general,
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℘2(t) − an̄2℘1(t)n2/n1 − an̄2−1℘1(t)(n̄2−1)/n̄1 − · · · − a0 − a−1z−1/n̄1 − · · · − a(n̄2−i+1)z(n̄2−i+1)/n̄1

℘1(t)(n̄2−i)/n̄1

= ℘1(t)
1/n̄1 fi (t), fi (t) := ℘1(t)

1/n̄1 fi−1(t) − an̄2−i+1

for i ∈ {2, . . . , n̄2, n̄2 + 1, n̄2 + 2, · · · }. ��
Remark 8 Note that n̄1 is not the degree of B but its ramification index. In addition, we
observe that since (0 : 1 : 0) is not a point at infinity then n̄1 ≥ n̄2.

Remark 9 From the above construction, each root τ of p12(t) yields an infinity branch and,
hence, an infinity point P = (1 : m : 0) (see Remark 2). Note that the parametrizationM(t)

constructed in the previous theorem can be expressed as M(t) =
(

℘11(t)
℘ (t) ,

℘12(t)
℘ (t)

)

, where

℘(t) = lcm(℘12(t), ℘22(t)) and ℘1i (t) = ℘i (t)℘ (t). Now, the corresponding projective
curve is parametrized by M∗(t) = (℘11(t), ℘12(t), ℘ (t)) and the infinity point associated
to τ is P = (℘11(τ ) : ℘12(τ ) : 0). Note that P = (1 : ℘12(τ )/℘11(τ ) : 0) if ℘11(τ ) 
= 0.

From Theorem 4, we easily get the following theorem that allows us to compute the
g-asymptote.

Theorem 5 Let C be a curve defined by a parametrization

P(s) = (p1(s), p2(s)), pi (s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1, 2.

Let τ ∈ C be such that pi2(t) = (t − τ)ni /mi pi2(t) where pi2(τ ) 
= 0, i = 1, 2, and
n1/m1 ≥ 1, and let B be the corresponding infinity branch. Let us assume that pi1(t) =
(t − τ)ui /vi pi1(t), i = 1, 2 and 0 ≤ u1/v1 < n1/m1 and 0 ≤ u2/v2 ≤ n2/m2. Let
γ := lcm(m1,m2, v1, v2) and

M(s) = P(sγ ) = (℘1(s), ℘2(s)), ℘i (s) = ℘i1(s)/℘i2(s), i = 1, 2.

Let n̄i := niγ /mi − uiγ /vi , i = 1, 2. A g-asymptote of an infinity branch B associated to
an infinity point P = (1 : m : 0),m ∈ C is defined by a proper reparametrization of

˜Q(t) = (t n̄1 , an̄2 t
n̄2 + an̄2−1t

n̄2−1 + . . . + a0),

(m = a1), where

an̄2 = lim
t→τ

℘2(t)

℘1(t)n̄2/n̄1

an̄2−1 = lim
t→τ

℘1(t)1/n̄1 f1(t), f1(t) := ℘2(t)

℘1(t)n̄2/n̄1
− an̄2

an̄2−2 = lim
t→τ

℘1(t)1/n̄1 f2(t), f2(t) := ℘1(t)1/n̄1 f1(t) − an̄2−1

...
...

an̄2−i = lim
t→τ

℘1(t)1/n̄1 fi (t), fi (t) := ℘1(t)1/n̄1 fi−1(t) − an̄2−(i−1), i ∈ {2, . . . , n̄2}.

Proof We first note that a curve ˜C approaching the infinity branch B is given by

˜Q(t) = (t n̄1 , r̃(t n̄1)) = (t n̄1 , an̄2 t
n̄2 + an̄2−1t

n̄2−1 + . . . + a0),

where n̄1 ≥ n̄2 (see Remark 8), and r̃(z) can be computed from r(z) by removing the
terms with negative exponent (see Theorem 4 and Sect. 3.1). In order to prove that ˜C is
a g-asymptote, we need to prove that it is a perfect curve. For this purpose, we observe
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that the degree of ˜C is not necessary n̄1 since ˜Q could be improper which is equivalent to
gcd(n̄1, n̄2, . . . , n̄2 − j) 
= 1 for every j = 0, . . . , n̄2 − 1 such that an̄2− j 
= 0 (see Remark
8). Let us assume that gcd(n̄1, n̄2, . . . , n̄2 − j) = β for every j = 0, . . . , n̄2 − 1 such that
an̄2− j 
= 0. Then, let we consider the reparametrizatin

M(t) = P(t1/β) = (t n̄1/β, an̄2 t
n̄2/β + an̄2−1t

(n̄2−1)/β + . . . + a0)

is a proper reparametrization of ˜Q (note that the exponents are natural integers since
gcd(n̄1, n̄2, . . . , n̄2 − j) = β for every j = 0, . . . , n̄2 − 1 such that an̄2− j 
= 0). Then
we get that the theorem outputs an asymptote since ˜C is perfect (it has an only branch and the
degree of the curve ˜C which is n̄1/β, see Remark 8, is equal to the degree of the branch). ��

In the following corollaries, we analyze the special case of the vertical and horizontal
g-asymptotes, i.e. lines of the form x − a or y − b, where a, b ∈ C (observe that these
asymptotes correspond to branches associated to the infinity points (0 : 1 : 0) and (1 :
0 : 0), respectively). More precisely, we prove that these asymptotes are obtained from
the non–common roots of the denominators of the given parametrization. Note that in the
practical design of engineering and modeling applications, the curves are usually presented
by numerical coefficients and P(s) mostly satisfies that gcd(p12, p22) = 1.

Corollary 2 Let C be a curve defined by a parametrization

P(s) = (p1(s), p2(s), pi (s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1, 2.

Let τ ∈ C be such that pi2(t) = (t − τ)ni /mi pi2(t) where pi2(τ ) 
= 0, i = 1, 2, and
n1/m1 ≥ 1, and let B be the corresponding infinity branch. Let us assume that pi1(t) =
(t − τ)ui /vi pi1(t), i = 1, 2 and 0 ≤ u1/v1 < n1/m1 and 0 ≤ u2/v2 = n2/m2. Let
γ := lcm(m1,m2, v1, v2) and

M(s) = P(sγ ) = (℘1(s), ℘2(s)), ℘i (s) = ℘i1(s)/℘i2(s), i = 1, 2.

Let n̄i := niγ /mi − uiγ /vi , i = 1, 2. It holds that a g-asymptote of C corresponding to the
infinity point (1 : 0 : 0) is the horizontal line y − ℘2(τ ) = 0, defined by the parametrization
˜Q(t) = (t, ℘2(τ )).

Proof We apply Theorem 3 with n̄2 = 0. ��
Corollary 3 Let C be a curve defined by a parametrization

P(s) = (p1(s), p2(s), pi (s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1, 2.

Let τ ∈ C be such that pi2(t) = (t − τ)ni /mi pi2(t) where pi2(τ ) 
= 0, i = 1, 2, and
n2/m2 ≥ 1, and let B be the corresponding infinity branch. Let us assume that pi1(t) =
(t − τ)ui /vi pi1(t), i = 1, 2 and 0 ≤ u2/v2 < n2/m2 and 0 ≤ u1/v1 = n1/m1. Let
γ := lcm(m1,m2, v1, v2) and

M(s) = P(sγ ) = (℘1(s), ℘2(s)), ℘i (s) = ℘i1(s)/℘i2(s), i = 1, 2.

Let n̄i := niγ /mi − uiγ /vi , i = 1, 2. It holds that a g-asymptote of C corresponding to the
infinity point (0 : 1 : 0) is the vertical line x − p1(τ ) = 0, defined by the parametrization
˜Q(t) = (℘1(τ ), t).

Proof We apply Corollary 2 to the parametrization (p2(s), p1(s)) and we get the asymptote
defined by the parametrization (t, p1(τ )). Afterwards, we undo the change of coordinates
(see statement 2 in Remark 4). ��
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In the following we introduce the Algorithm Asymptotes Construction-Parametric Non-
Rational Case, which uses the above results for computing the g-asymptotes of a plane curve.

Algorithm Asymptotes Construction-Parametric Non-Rational Case.

Given a curve C defined by P(s) = (p1(s), p2(s)), pi (s) =
pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1, 2, where pi (s), i ∈ {1, 2} are
meromorphic functions on the complex plane, the algorithm outputs one asymp-
tote for each of its infinity branches.

1. Let τ1, . . . , τk ∈ C be the roots of p12 that is, the poles of p1.
2. For each τi , i ∈ {1, . . . , k}, do:

2.1 Write pi2(t) = (t − τ)ni /mi pi2(t) where pi2(τ ) 
= 0, i = 1, 2, and
n1/m1 ≥ 1, and pi1(t) = (t − τ)ui /vi pi1(t), i = 1, 2. Check whether
0 ≤ u1/v1 < n1/m1 and 0 ≤ u2/v2 ≤ n2/m2 and in the affirmative case
consider γ := lcm(m1,m2, v1, v2) and

M(s) = P(sγ ) = (℘1(s), ℘2(s)), ℘i (s) = ℘i1(s)/℘i2(s), i = 1, 2.

Let n̄i := niγ /mi − uiγ /vi , i = 1, 2.
2.2. Compute

an̄2i = limt→τi
℘2(t)

p1(t)n̄2i /n̄1i

an̄2i−1 = limt→τi ℘1(t)1/n1i f1(t), f1(t) := ℘2(t)
℘1(t)n̄2i /n̄1i

− an̄2i
an̄2i−2 = limt→τi ℘1(t)1/n1i f2(t), f2(t) := ℘1(t)1/n̄1i f1(t) − an̄2i−1

...
...

an̄2i− j = limt→τi ℘1(t)1/n1i f j (t), f j (t) := ℘1(t)1/n̄1i f j−1(t) − an̄2i−( j−1),

for j ∈ {2, . . . , n̄2i }.
2.3. Let ˜Ci be the asymptote defined by the proper parametrization

˜Qi (t) = (t n̄1i , an̄2i t
n̄2i + an̄2i−1t

n̄2i−1 + . . . + a0) ∈ C[t]2.
3. If there exist s1, . . . , sl ∈ C roots of p22(s) (that is, the poles of p2) such that

p12(s j ) 
= 0 for j ∈ {1, . . . , l} then let ˜Di be the vertical asymptote defined by
the proper parametrization

˜Qi (t) = (℘1(si ), t) ∈ C[t]2, i ∈ {1, . . . , l}.
4. Return the asymptotes ˜C1, . . . , ˜Ck and ˜D1, . . . , ˜Dl .

By applying Algorithm Asymptotes Construction-Parametric Non-Rational Case, we
can easily obtain all the g-asymptotes of any plane curve, as the following examples show.

Example 4 We consider the curve C defined by the parametrization

P(s) = (p1(s), p2(s)) =
(

s1/2 + 1

s1/2 sin(s)
,
s2 + s + 5

sin(s)

)

.

We apply the algorithm Asymptotes Construction-Parametric Non-Rational Case.

Step 1: We observe that p12(s) and p22(s) have the root τ = 0, and pi (s) =
pi1/pi2, i ∈ {1, 2} are meromorphic functions on the complex plane.
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Fig. 2 Curve C (left) and curve and asymptotes (right)

Step 2: For τ = 0 :
Step 2.1: We write

p11(s) = s1/2 + 1, p12(s) = s3/2(1 − 1/6s2 + 1/120s4 − 1/5040s6 + · · · )
p21(s) = s2 + s + 5, p22(s) = s − 1/6s3 + 1/120s5 − 1/5040s7 + · · · .

Observe that pi1(0) 
= 0 for i = 1, 2 and thus, we consider

M(s) = P(s2) = (℘1(s), ℘2(s)) =
(

s + 1

s sin(s2)
,
s4 + s2 + 5

sin(s2)

)

,

℘i (s) = ℘i1(s)/℘i2(s), i = 1, 2.

We get that n̄1 := 3 and n̄2 := 2.
Step 2.2: We have that

a2 = limt→2
p2(t)
p1(t)2

= 5

a1 = limt→2 p1(t) f1(t) − 10/3, f1(t) := p2(t)
p1(t)2

− a2
a0 = limt→2 p1(t) f2(t) = 8/3, f2(t) := p1(t) f1(t) − a1.

Step 2.3: We obtain the asymptote ˜C, defined by the proper parametrization

˜Q(t) = (t3, 5t2 − 10/3t + 8/3).

Step 3: We observe that all the roots of p12(s) are also roots of p22(s) (that is, the
poles of p1 are the poles of p2), so there are no vertical asymptotes.

Step 4: The algorithm returns the asymptote ˜C of the input curve, C (see Fig. 2).

Example 5 We consider the curve C defined by the parametrization

P(s) = (p1(s), p2(s)) =
(

cos(s) − 1

s3/2 sin(s)
,

sin(sπ)

s1/2 sin(s)

)

.

We apply the algorithm Asymptotes Construction-Parametric Non-Rational Case.

Step 1: We observe that p12(s) and p22(s) have the root τ = 0, and pi (s) = pi1/pi2, i ∈
{1, 2} are meromorphic functions on the complex plane.
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Fig. 3 Curve C (left) and curve and asymptotes (right)

Step 2: For τ = 0 :
Step 2.1: We write

p12(s) = s5/2(1 − 1/6s2 + 1/120s4 − 1/5040s6 + · · · )
p22(s) = s3/2(1 − 1/6s2 + 1/120s4 − 1/5040s6 + · · · )
p11(s)s

2(−1/2 + 1/24s2 − 1/720s4 + 1/40320s6 + · · · )
p21(s) = πs(1 − 1/6s2π2 + 1/120s4π4 − 1/5040s5π6 + · · · ).

Thus, we consider

M(s) = P(s2) = (℘1(s), ℘2(s)) =
(

cos(s2) − 1

s3 sin(s2)
,
sin(s2π)

s sin(s2)

)

,

℘i (s) = ℘i1(s)/℘i2(s), i = 1, 2.

We get that n̄1 := 1 and n̄2 := 1.
Step 2.2: We have that

a1 = lim
t→2

p2(t)

p1(t)
= −2π,

a0 = lim
t→2

p1(t) f1(t) = 0, f1(t) := p2(t)

p1(t)
− a1.

Step 2.3: We obtain the asymptote ˜C, defined by the proper parametrization

˜Q(t) = (t, −2π t).

Step 3: We observe that all the roots of p12(s) are also roots of p22(s) (that is, the the poles
of p1 are the poles of p2), so there are no vertical asymptotes.

Step 4: The algorithm returns the asymptote ˜C of the input curve, C (see Fig. 3).

Remark 10 The method above described may be straightforward adapted for dealing with
algebraic curves in the n−dimensional space. For instance, if n = 3, we have a parametriza-
tion P(s) = (p1(s), p2(s), p3(s)) with pi (s) = pi1(s)/pi2(s), i = 1, 2, 3 meromorphic
functions and gcd(pi1, pi2) = 1, i = 1, 2, 3. Then, the asymptotes are
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˜Q = (tn1 , an2 t
n2 + an2−1t

n2−1 + . . . + a0, bm2 t
m2 + bm2−1t

m2−1 + . . . + b0).

These asymptotes can be computed by successively applying the algorithm to each component
of P . Note that as in the planar case, roots τ ∈ C such that p22(τ ) = p32(τ ) = 0 
= p12(τ )

could appear (see Step 3 of the algorithm). In this case we must look for asymptotes of the
form ˜M = (m1(t), tn,m3(t)) or ˜M = (m1(t),m2(t), tn). Example 6 illustrates these ideas.

Example 6 Let C be the space curve defined by the parametrization

P(s) = (p1(s), p2(s)) =
(

(
√
s + 1 + 2)1/4

s(1 + (
√
s + 1 + 2)3/4)

,

√√
s + 1 + 2

1 + (
√
s + 1 + 2)3/4

,
s + 3

sin(s)

)

.

Weapply the algorithmAsymptotesConstruction-ParametricNon-RationalCase for obtain-
ing the different g-asymptotes.

Step1:Weobserve that p12(s) and p32(s)have the root τ1 = 0 and p12(s) and p22(s)have
the root τ2 = α where 1+( (α+1)1/2+2)3/4 = 0. Note that pi (s) = pi1/pi2, i ∈ {1, 2}
are meromorphic functions on the complex plane.
Step 2:

• For τ1 = 0 :
Step 2.1: We have that n̄11 = 1 and n̄13 = 1 and n̄12 = 0. Note that p32(s) =
s(1 − 1/6s2 + 1/120s4 − 1/5040s6 + · · · ) and pi1(0) 
= 0 for i = 1, 2, 3.
Step 2.2: We have that

a1 = limt→2
p3(t)
p1(t)

= 33/4 + 33/2

a0 = limt→2 p1(t) f1(t) = 10·33/4+7
8(1+33/4)

, f1(t) := p3(t)
p1(t)2

− a1.

Step 2.3: We obtain the asymptote ˜C1, defined by the proper parametrization

˜Q1(t) =
(

t, p2(0), (33/4 + 33/2)t + 10 · 33/4 + 7

8(1 + 33/4)

)

=
(

t,
31/2

1 + 33/4
, (33/4 + 33/2)t + 10 · 33/4 + 7

8(1 + 33/4)

)

.

• For τ2 = α where 1 + ( (α + 1)1/2 + 2)3/4 = 0 :
Step 2.1: We have that n̄11 = 1 and n̄12 = 1 and n̄13 = 0.
Step 2.2: We have that

a1 = limt→2
p2(t)
p1(t)

= ( (α + 1)1/2 + 2)1/4α

a0 = limt→2 p1(t) f1(t) = 0, f1(t) := p2(t)
p1(t)2

− a1.

Step 2.3: We obtain the asymptote ˜C2, defined by the proper parametrization

˜Q2(t) = (

t, (( (α + 1)1/2 + 2)1/4α)t, p3(α)
)

=
(

t, (( (α + 1)1/2 + 2)1/4α)t,
α + 3

sin(α)

)

,

where 1 + ( (α + 1)1/2 + 2)3/4 = 0.

Step 3: We observe that all the roots of p12(s) are also roots of p22(s) and p23(s) (that
is, the poles of p1 are the poles of p2 and p3), so there are no more asymptotes.
Step 4: The algorithm returns the asymptotes ˜Ci , i = 1, 2 of the input curve, C
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5 Conclusion

The main results of this paper, Theorems 4 and 5, provides a way to determine the branches
and the generalized asymptotes of a curve parametrized not necessarily by two rational
functions by only computing some simple limits of functions constructed from the given
parametrization defined by two meromorphic functions on the complex plane. We remind
that ameromorphic function on the complex plane is a function that is holomorphic on all ofC
except for a set of isolated points, which are poles of the function. We prove this theorem and
we develop an efficient algorithmwhich determines all the branches and all the g-asymptotes
which are obtained from the poles of the functions. As a complement, some corollaries are
derived that allow us to obtain the horizontal and vertical asymptotes in an extremely simple
way. This technique is proved to work on several illustrative examples.

It is important to stress that this procedure can be trivially applied for dealing with
parametrizations of curves in n-dimensional space. Thus, the present paper yields a remark-
able improvement of the methodology developed in [5, 7].

As a futurework, we aim to extend the notion of g-asymptote to the study of the asymptotic
behavior of algebraic surfaces. We look for surfaces which approach a given one of higher
degree, when “moving to infinity”, that is, when some of the coordinates take infinitely large
values. The ideas introduced in this paper might provide the foundations for efficient methods
that allow us to compute those “asymptotic surfaces”.
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