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Abstract— The common objective of techniques employed to 
identify the use of household appliances is related to energy 
efficiency and the reduction of energy consumption. In addition, 
through load monitoring it is possible to assess the degree of 
independence of tenants with minimal invasion of privacy and 
thus develop sustainable health systems capable of providing the 
required services remotely. Both approaches should initially 
deal with the load identification stage. For that purpose, this 
work presents three different solutions that take the events of 
the electrical current signal acquired at high frequency and 
process them for classification by using two different topologies 
of Artificial Neural Networks (ANN). The data of interest used 
as input for the ANN in the proposals are the normalized signal 
captured around the events, the images created by dividing that 
signal into sections and organizing them in a matrix, and the 
images coming from the Short Time Fourier Transform (STFT) 
of the signal around the event. The dataset BLUED is used to 
carry out the validation of the proposal, where some of the 
proposed architectures obtain an F1 score above 90% for more 
than fifteen devices under classification. 

Keywords— Ambient Intelligence for Independent Living 
(AIIL), Non-Intrusive Load Monitoring (NILM), Recurrent 
Neural Networks (RNN), Convolutional Neural Networks (CNN). 

I. INTRODUCTION 

Non-Intrusive Load Monitoring (NILM) techniques [1] 
analyse changes in the electrical measurements to derive 
which specific household appliances are used at each instance. 
It is common that these aggregate consumption signals are 
acquired at a single point at the entrance of the house. 
Currently, Smart Meters (SM) are used for this issue. 
Therefore, since the installation of individual monitors on 
each appliance is no longer required, NILM might be 
considered a low-cost alternative. Previous works [2] have 
already shown that sampling frequencies in the range of kHz 
or even more are more suitable for this disaggregation. The 
main reason is that these rates allow the extraction of more 
significant features from the signals, which can be used to 
distinguish the loads connected to the mains that have lower 
power consumption. 

Utility companies use these techniques to study energy 
consumption in different homes and, in addition, they are 
often used by their tenants to reduce that consumption or to 
improve energy efficiency [3]. However, from the information 
obtained, it is also possible to infer the behaviour patterns of 
people who live there, establishing a relationship between the 
loads and their main routines [4]. Some of these actions are 
called Activities of Daily Life (ADL) [5] and may be used to 
evaluate the quality of living. Basic ADLs are those skills 
required to handle basic physical needs, including ambulating, 
feeding, or personal hygiene, among others. Those activities 
that involve the use of electrical devices might be monitored 
in order to know if the person is able to stay in charge of their 

own live for as long as possible, contributing to the active 
ageing promotion [6]. Consequently, NILM has become an 
additional tool in the context of the so-called Ambient 
Intelligence for Independent Living (AIIL) [7]. These systems 
support the development of remote health systems to improve 
the independent living of elderly or even people with mild 
cognitive impairments. In addition to the low cost of NILM, a 
negligible intrusiveness is a determining aspect that makes 
these techniques more interesting for users. 

To identify the appliances, the changes that their own 
operation generates in the electrical signals (events) should be 
recognized and classified. This is known as an event-based 
approach, and it may be based on different methods, such as 
Artificial Neural Networks (ANN) [8], probabilistic methods 
[9], or Principal Component Analysis (PCA) [10], among 
others. ANN-based approaches have already been 
successfully implemented for this purpose. For example, 
recurrent neural networks (RNN) are commonly used in 
energy disaggregation, especially with sequential data, due to 
their ability to obtain the relationship over time [11]. On the 
other hand, Convolutional Neural Networks (CNNs) are able 
to extract the most relevant features from an image by 
applying different filters [12] [13]. Furthermore, the methods 
applied to this process might use two learning alternatives, 
supervised or unsupervised, whether or not the ground-truth 
data is available [14]. 

This work presents three architectures focused on 
identifying the loads by using the temporal windows around 
an event detected on the incoming electrical signals. All of 
them have a first stage, where the input samples are adapted 
to the following processing. Afterwards, a second stage 
particularly deals with the load classification by means of 
ANNs. The first architecture is based on RNN, and the other 
two on CNN, but using different types of features from the 
samples: either time domain or frequency domain. These 
architectures have been verified using real data obtained from 
the public Building-Level fUlly labelled Electricity 
Disaggregation (BLUED) database [15]. This database 
contains electrical energy measurements at both low and high 
sampling rates, as well as the ground-truth labels for the on/off 
events. The experimental classification results show an F1-
score around 90% for sixteen or seventeen appliances (or 
groups of appliances). The main contribution of this work is 
the comparative evaluation of the household load 
disaggregation by these three ANN-based architectures, 
considering the high-frequency electric current as signal of 
interest. The outline of the manuscript is as follows: Section II 
describes the two main stages of the proposed recurrent 
architecture and presents its performance, whereas Section III 
deals with the CNN architectures; Section IV compares the 
results from the three approaches, as well as their 



computational complexity; and, finally, conclusions and 
future works are discussed in Section V. 

II. PROPOSED RECURRENT ARCHITECTURE 

The first proposed architecture is based on the one 
presented for a low sampling frequency in [16], but, in this 
case, the analysis will be carried out at a high sampling 
frequency. It consists of a first pre-processing stage, in which 
the input samples of the electric current are prepared, and a 
second stage for load classification, where these samples are 
processed by an RNN. The details for each part are presented 
below. 

A. Pre-Processing Stage 

Information about the effects produced by the usage of the 
different household appliances is extracted from the electrical 
current obtained from the BLUED database [15]. The 
electrical signal has been sampled at a frequency of 12 kHz; 
however, in order to reduce the amount of data to be processed 
and adapt to the operation of commercial Analog Front-Ends 
(AFE), this frequency is reduced to 4 kHz by taking one out 
of every three samples. Afterwards, the signal is normalized 
by adjusting the values with respect to a common scale. The 
range is between -1 and +1 since the cells of the architecture 
use activation functions that saturate at those limits. 
Consequently, unless they are avoided, vanishing gradient 
problems might appear. 

The inputs of the classification stage are temporal 
windows of the normalized signal captured around on/off 
events from the different electrical appliances. The location of 
the events is carried out by using the ground-truth provided by 
the database. The length of these temporal windows is 4096 
samples. An illustrative example is provided in Fig. 1.  

The classification algorithms require large amounts of data 
for a proper training. As there may not be enough samples for 
certain devices, some techniques involving the introduction of 
noise have been used to increase the size of the dataset. This 

 

step will only affect those classes that have a lower number of 
detected events. The total set of samples has been divided into 
three independent subsets (training, testing and validation) to 
address the learning process. The 50% of the available data 
corresponds to the training subset and the rest is divided 
equally into testing and validation, each one with 25%. 

B. Load Classification Stage 

To classify the load profile, a recurrent topology based on 
Long Short-Term Memory (LSTM) cells is proposed. The 
structure, shown in Fig. 2, is similar to the first version defined 
in [16]. The configuration of the network is described below: 

 Input Layer: The input size coincides with the 
dimension of the temporal windows. 

 LSTM 1 Layer: The number of hidden units 
corresponds to 1/20 the input sequence length. The 
activation function is the hyperbolic tangent function 
(tanh). 

 LSTM 2 Layer: With respect to the previous LSTM 
layer, the number of hidden units is halved to reduce 
the treated information.  

 Dense Layer: The number of units corresponds to the 
number of devices involved in the classification 
process. The activation function is the SoftMax 
(normalized exponential function) [17]. 

Firstly, the inputs are processed by two stacked LSTM 
layers. The stacked LSTMs were introduced by Graves, et al. 
in their application of LSTMs for speech recognition [18]. 
These layers extract information by computing the hyperbolic 
tangent function. Additionally, they must be defined so that 
the first LSTM layer provides a sequence output rather than a 
single-value output to the LSTM layer below. For the 
multiclass classification it is used a SoftMax activation 
function in the last dense layer. 

C. Experimental Results 

The evaluation of the classification performance has been 
done by using the electricity consumption data from the 
BLUED database [15]. In this assessment, not only the 
appliances that may be of interest to estimate or predict 
routines within a home have been considered, but also the rest 

 

 
Fig. 1. Temporal window of: a) a fridge on event; and b) a garage door 
on event from the BLUED database. 

 
Fig. 2. Structure of the proposed recurrent neural network. 



of the electrical devices included in the dataset. The total 
number of electronic devices that have been considered is 
seventeen. Regarding the devices that can be observed in 
Table I, it is worth mentioning that labels 00 and 01, which are 
the total number of lights in the house and the distribution 
circuits that the house contains, respectively, involve the 
events of different electrical appliances. Although there are 
some appliances that have better characteristics to recognise 
daily routines, being able to identify all of them allows to 
discard the less informative ones. Concretely, the main 
characteristics that make a device a good candidate are that it 
must be operated manually and used frequently. For instance, 
the usage of the TV (label 11) provides a good indicator of 
anomalies in the behaviour such as sleep disorder [6].  

Before presenting the obtained results, the training of the 
model is carried out by using the Adam algorithm [19], with 
an initial learning rate of 0.0001, which will be varied during 
the process using a decay rate of 10-6. The duration of the 
learning process is set by the maximum number of epochs. 
This maximum number defined for this process is 200, 
however, this time may be shortened if the performance 
obtained in the validation does not improve. Furthermore, the 
number of batches is 100; since the division of samples per 
batch may not be exact, the samples are shuffled avoiding 
discarding the same samples at each iteration. 

In order to consider the possible limitations of the model, 
some variations have been made. Firstly, it must be considered 
that there is an imbalance in the number of samples for each 
device, since not all of them are used with the same frequency. 
To avoid that this disproportion could affect the algorithm’s 
performance, the model will provide different weights during 
the learning process, in such a way that a higher value is 
established for the minority classes, whereas the weight is 
reduced for the majority ones. The other variation implies 
discarding the samples from label 01. The main reason is that 
this class includes the events of the housing distribution 
circuits that may contain events from other classes already 
present in the classification. This could mislead the 
classification results. 

Table II compares the results of the performed tests. It is 
necessary to mention that, although there are more metrics, the 
accuracy and F1-score will be used to measure the 
classification performance. In this way, whereas accuracy 
corresponds to the ratio of correct predictions, the F1 Score is 
formed by the combination of precision and recall values, 
giving them equal importance. In addition, the F1-score is 
often more useful than accuracy, especially when there is an 
uneven class distribution [20]. As can be observed, the 
different variations made from the main structure present a 
similar result, although, on one hand, discarding the circuits 
seems to improve the metrics except for accuracy. 
Furthermore, adding class weights behaves the other way 
around. 

III. PROPOSED CONVOLUTIONAL ARCHITECTURES 

As in the previous section, the proposed convolutional 
architectures consist of two stages: first, input samples are 
prepared and then, through their processing, the devices 
corresponding to these samples are identified. Hereinafter, the 
differences and similarities with respect to the previous 
architecture are discussed. 

 

TABLE I.  SELECTED DEVICES FOR THE PROPOSAL EVALUATION. 

Label Devices 
00 Lamps and lights 
01 Circuits 
02 Garage door 
03 Kitchen aid chopper 
04 Fridge 
05 A/V Living room 
06 Computer 1 
07 Laptop 1 
08 DVD player basement 
09 Air compressor 
10 LCD Monitor 1 
11 TV basement 
12 Printer 
13 Hair Dryer 
14 Iron 
15 Empty living room socket 
16 Monitor 2 

 

TABLE II.  EXPERIMENTAL RESULTS FOR THE PROPOSED RECURRENT 
ARCHITECTURE. 

Configuration Accuracy Precision Recall F1-score 

Baseline 99.75 % 95.24 % 97.41 % 96.11 % 

Adding class weights 99.76 % 94.97 % 97.54 % 95.97 % 

Discarding label 01 99.67 % 96.29 % 97.67 % 96.93 % 

 

A. Pre-Processing Stage 

The topology used in this case is convolutional. This type 
of neural network usually works with images, therefore, 
temporal windows used by the LSTM neural network should 
be transformed into images. Regarding the creation of images, 
two different approaches have been considered. The first one 
consists of splitting the temporal window into 64 sections with 
a length of 64 samples, with the purpose of obtaining images 
with 64×64 square dimensions. The sections were entered into 
the rows of a matrix, which will be finally transformed into a 
grayscale image. This procedure was presented in [21] and 
Fig. 3 shows an example of the resulting images. 

The second method includes information about the 
spectral content of the signal. The process used to obtain the 
images is the Short Time Fourier Transform (STFT) of the 
temporal windows [22] [23]. The outcomes are matrices made 
up of complex numbers. In order not to lose information when 
transforming them into images, the values should be divided. 
Two different forms of division have been considered: 
distinguishing between magnitude and phase, or between the 
real and imaginary parts. The resulting values are normalized 
and expressed in grayscale to finally create the input images 
such as those shown in Fig. 4. 

 

 
Fig. 3. Time sequence imagen of: a) a fridge on event; and b) a garage 
door on event. 



 

In both cases, the total set of samples has been used, 
including those samples artificially created to compensate for 
the class imbalance. For the classification stage, the samples 
have been divided in the same way into three different subsets. 

B. Load Classification Stage 

The algorithms proposed for load disaggregation are 
CNNs. Since two different pre-processing have been defined, 
there will be two versions, although both will be related. The 
first structure, shown in Fig. 5 [21], uses the input images built 
from time-domain information. The layers that form the 
neural network are: 

 Input Layer: The input size corresponds to images size. 

 Convolutional 2D Layer: The dimensionality of the 
output space is 16, with a kernel size of 3×3. 

 Max Pooling Layer: The size of the max pooling 
window is 2×2. 

 Convolutional 2D Layer: The dimensionality of the 
output space is 32, with a kernel size of 3×3. 

 Max Pooling Layer: The size of the max pooling 
window is 2×2. 

 Flatten Layer. 

 Fully connected Layer: The number of units 
corresponds to the number of devices used in the 
classification process. The activation function is the 
ReLU (Rectified Linear Unit) [24]. 

 Dense Layer: The number of units corresponds to the 
number of devices used in the classification process. 
The activation function is the SoftMax.  

The images are introduced into the neural network to be 
processed by two Convolutional 2D layers, with which the 
main characteristics of the events are extracted. It contains 
more than one Convolutional 2D layer to increase the ability 
to extract more complex features than those that could be 
learned by using a single layer. Max Pooling layers have been 
included after convolutional layers in order to reduce the size 
of the filtered images and, consequently, those of the 
subsequent layers. In addition, these layers allow only the 
most relevant features to prevail. Once the necessary 
information is available, the Flatten layer resizes the output 
dimensions so that this information can be entered into the 
Fully Connected layer. The Fully Connected layer is 

 

responsible for obtaining the probability that each 
characteristic extracted in the previous layers may correspond 
to a specific class. The final classification is carried out by the 
last layer, defined by the SoftMax activation function. The 
dimensions of each layer are due to the image size. 

On the other hand, as can be observed in Fig. 6, the neural 
network used in the processing of spectral images is made up 
of two equal parts, whose structure is based on the previous 
algorithm. However, since the size of the input images is much 
larger than that used in the other analysis, the size of the 
structure is enlarged. The layers forming the neural network 
are: 

 Input Layer: The input size corresponds to the images 
size. 

 Convolutional 2D Layer: The dimensionality of the 
output space is 16, with a kernel size of 3×3. 

 Max Pooling Layer: The size of the max pooling 
window is 2×2. 

 Convolutional 2D Layer: The dimensionality of the 
output space is 32, with a kernel size of 3×3. 

 Max Pooling Layer: The size of the max pooling 
window is 2×2. 

 Convolutional 2D Layer: The dimensionality of the 
output space is 64, with a kernel size of 3×3. 

 Max Pooling Layer: The size of the max pooling 
window is 2×2. 

 Concatenate Layer. 

 Flatten Layer. 

 Fully connected Layer: Reduce the number of units 
with respect to the previous output layer. The 
activation function is the ReLU. 

 Dense Layer: The number of units corresponds to the 
number of devices used in the classification process. 
The activation function is the SoftMax. 

The main difference is that, after the extraction phase 
performed by three Convolutional 2D and three Max Pooling 
layers to minimize the size of the filtered images, a 
Concatenate layer is used to connect both parts so that the 
processed information of each pair of images is used jointly in 
the final classification stage. 

 
Fig. 4. STFT images of: a) the magnitude (left) and phase (right); and 
b) the real (left) and imaginary (right) parts for a fridge on event. 

 
Fig. 5. Structure of the proposed convolution neural network that uses 
time sequence images as inputs. 



 

C. Experimental Results 

For classification, the involved electrical devices are the 
same as before for the recurrent proposal; however, the 
number of appliances involved can be sixteen or seventeen, 
since the distribution circuits are excluded because of their 
negative influence on the results. In addition, the 
hyperparameters used in this topology are the same as those 
used with the recurrent architecture, also including the option 
of adding class weights. 

Table III presents the comparison between the results from 
the proposed convolutional architectures. The metrics of the 
architecture that uses the images resulting from the STFT 
process are worse than those obtained with the images 
extracted directly from the temporal windows, especially for 
the F1-score. 

IV. DISCUSSION 

After detailing the classification performance for all the 
proposals described previously, it is also worth considering 
the computational complexity for every proposal. This aspect 
is associated with the number of learning parameters, 
provided in Fig. 7, which define the internal configuration of 
the model. They depend on the number of layers, as well as on 
their dimensions. The architecture with the highest number of 
learning parameters is the one based on RNN, whereas the 
parameters of convolutional structures roughly correspond to 
1/7 of that number. The difference between each CNN is 
mainly due to the size of the input images. 

For further comparison of the classification performance, 
Fig. 8 shows the experimental metrics of the three 
architectures, including the distinction of the two ways of 
representing the information obtained from the STFT of the 
images. It shows that the recurrent method gives better results 
in all metrics, compared to the convolutional approaches, 
although the one that uses time sequence images obtains 
similar results. It can also be observed, as discussed above, 
that the worst results are those achieved by the architecture 
that uses the images resulting from the STFT process. 

 

TABLE III.  EXPERIMENTAL RESULTS FOR THE PROPOSED 
CONVOLUTIONAL ARCHITECTURES. 

Architectures Accuracy Precision Recall F1-score 

Convolutional Time 
Sequence Images 

99.70 % 92.17 % 91.78 % 91.91 % 

Convolutional STFT Images 
(Magnitude and Phase) 

97.17 % 79.93 % 66.39 % 70.34 % 

Convolutional STFT Images 
(Real and Imaginary Parts) 

96.91 % 73.03 % 67.07 % 68.45 % 

 

Finally, a comparison with other previous works is 
considered here. The use of a LSTM-RNN model in [11] 
obtains an average F1-score of 85.76 % for its application on 
the UK-DALE dataset and a 90.48 % on the REDD dataset, 
classifying up to fifteen appliances. In that work the 
information used for disaggregation is low-frequency signals. 
Alternatively, some convolutional approaches are presented in 
[12] and [13]. In [12] voltage and current changes from the V-
I trajectories are analysed and the obtained results are 78.16 % 
and 66.01 % in F1-score, respectively, for eleven appliances 
from the two subsets of data contained in the PLAID database. 
On the other hand, in [13] the spectral information of the 
signal is included to observe its influence, besides the changes 
in time domain. The combination of both sources of 
information achieves an F1-score of 99.8 %, using the same 
database as the one used in this work and distinguishing the 
on/off events of 34 different types of devices. 

 

 

 

 
Fig. 6. Structure of the proposed convolution neural network that uses 
STFT images as inputs. 

 
Fig. 7.   Number of learning parameters for the three architectures. 
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V. CONCLUSIONS 

In this work, three different architectures for the load 
classification in NILM have been proposed. Their common 
feature is that all the three are supervised event-based 
solutions, using the electrical current sampled at high 
frequency as the source of information. RNN and CNN have 
been compared, and, in the case of CNN, training data have 
been considered in the time and frequency domains. The 
experimental results obtained from the BLUED dataset 
indicates the proposed architectures achieve a suitable 
classification performance, similar to those provided by 
previous works. The computational complexity of the three 
architectures has also been taken into account, since it might 
influence the future implementation. 

Future works will deal with the design of an unsupervised 
architecture able to classify the appliances without having any 
a priori information about in the existing categories in the 
dataset. These techniques might allow the proposal to become 
closer to a real situation, where the useful life of household 
appliances is limited, and they are often replaced. 
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