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1. Introduction

An algebraic curve may have more general curves than lines describing the status of a branch at the points with
sufficiently large coordinates. Intuitively speaking, we say that a curve C is a generalized asymptote (or g-asymptote) of
another curve C if the distance between C and ¢ tends to zero as they tend to infinity, and ¢ cannot be approached
by a new curve of lower degree. This notion, introduced and studied by S. Pérez-Diaz in some previous papers [1-3],
generalizes the classical concept of an asymptote of a curve C defined as a line such that the distance between C and the
line approaches zero as they tend to infinity (see e.g. [4-6]).

Generalized asymptotes contain much of the information about the behavior of the curves in the large and additionally
they are an important tool for instance, for sketching its graph. This motivates our interest in efficiently computing these
entities and some important and efficient algorithms for the case of curves parametrically defined are presented in [7,8].
Additionally, some important properties concerning generalized asymptotes for implicit algebraic curves are obtained
in [9] and a initial generalization for surfaces of these new concepts are presented in [10].

However, although the implicit case for algebraic curves is studied in [2,3] no efficient methods of computation are
provided. More precisely, the algorithm presented in [2] is based on the computation of all the infinity branches by means
of Puiseux series which turns to be very expensive and inefficient. For this purpose, the great contribution of this paper
is a new and efficient method that allows to easily compute all the generalized asymptotes of an algebraic curve implicitly
defined by just solving a triangular system of equations constructed from the polynomials defining the input curve.

In Section 2, we recall the theory of infinity branches and introduce the notions of convergent branches (branches that
get closer as they tend to infinity) and approaching curves (see [1]). Section 3 provides the fundamental concepts of perfect
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curve (a curve of degree d that cannot be approached by any curve of degree less than d) and g-asymptote (a perfect curve
that approaches another curve at an infinity branch), and we present an algorithm which is developed in [1,3], which
is based on the computation of Puiseux series, that returns all the asymptotes of a given curve implicitly defined (see
Section 3.1).

In Section 4, we develop a new and very efficient method that allows to easily compute all the generalized asymptotes
of an implicitly defined algebraic curve by only determining the solutions of a triangular system of equations constructed
from the implicit polynomial. The results presented are concerned with algebraic plane curves but, as we remark in
the paper, they can trivially be adapted for dealing with algebraic curves in n-dimensional space (see Example 4). The
method proposed implies the computation of roots of some univariate polynomials, which sometimes may require the
use of algebraic numbers. For this reason, we have included an example that shows how to overcome this problem by
using conjugate points and polynomial remainders (see Example 5). In Section 4.1, we show the advantage of the new
algorithm and we report running times for the algorithm presented and the previous algorithm presented in Section 3.1.
For this purpose, we consider ten input curves defined implicitly. Finally, a section of conclusions and future work is
presented (see Section 5).

2. Notation and previous results

In this section, we introduce the notion of infinity branch, convergent branches and approaching curves, and we present
some properties which allow us to compare the behavior of two implicit algebraic plane curves at infinity. For more details
on these concepts and results, we refer to [2] (Sections 3 and 4).

Let C be an irreducible algebraic affine plane curve over C defined by the irreducible polynomial f(x, y) € R[x, y]. C*
denotes its corresponding projective curve defined by the homogeneous polynomial

F(x,¥,2) = faX, y) + Zfa_1(x, ¥) + Z2faa(X, ¥) + - - - + 2%y € Rx, y, Z],

where d := deg(C) and fj(x, y) are the homogeneous forms of degree j, for j =0, ..., d. Throughout the paper, we assume
that (0:1:0) is not an infinity point of C* (otherwise, we may consider a linear change of coordinates).

In order to get the infinity branches of C, we consider the curve defined by the polynomial g(y,z) = F(1:y : z) and
we compute the series expansion for the solutions of g(y,z) = 0 around z = 0. There exist exactly deg,(g) solutions
given by different Puiseux series that can be grouped into conjugacy classes. More precisely, if ¢(z) = m + a;zM/N +
azM2N oazzZM/N ..o e C(z)), a # 0,Vi € N,where N e NNN; e N, i e NNand0 < N; < Ny < -, is
a Puiseux series such that g(¢(z),z) = 0, and v(¢) = N (N is the called ramification index of ¢), the series ¢j(z) =
m+ alcjmle/N + azchzzNZ/N + a3ch3zN3/N +---, where ¢’ =1, je({1,...,N}, are called the conjugates of ¢. The set of
all the conjugates of ¢ is called the conjugacy class of ¢ and it contains v(¢) different series.

Since g(¢(z),z) = 0 in some neighborhood of z = 0 where ¢(z) converges, there exists M € R* such that
F(1:¢(t):t)=g(p(t),t) =0fort € C and |t| < M, which implies that F(t~' : t71p(t) : 1) = f(t~!, t~1g(t)) = 0, for
t e Cand0 < |t] < M. We set t~! = z, and we obtain that f(z, r(z)) = 0 for z € C and |z| > M~ where

1) =zp(z VY=mz+ a1z NN 4 a2 NN pagZ NN Lo g £0,VieN
N,N;ieN, ieNand0<N; <N, <---
One may reason similarly with the N different series in the conjugacy class, ¢1, ..., ¢y. Since in [2], we prove that all

the results hold independently on the chosen series in the conjugacy class in the following, we consider any representant
in the conjugacy class and we introduce the following definition.

Definition 1. An infinity branch of a plane curve C associated to the infinity point P = (1 : m : 0), m € C, is a set
B={(z,r(z)) e C*: z € C, |z| > M}, M € RY,

1(z) = zop(z™") = mz 4+ a1z NN a2 NN gz TNN (2.1)
where N,N; €N, ieN,and0 <Ny <Np < ---.

Now, we introduce the notions of convergent branches and approaching curves. Intuitively speaking, two infinity
branches converge if they get closer as they tend to infinity. This concept will allow us to analyze whether two curves
approach each other.

Definition 2. Two infinity branches, B = {(z,7(z)) € C>: z € C, |z| > M} C Band B = {(z,7(z)) € C* : z € C, |z| >
M} C B, are convergent if lim,_, ,,(7(z) — r(z)) = 0.

Theorem 1 provides a characterization for the convergence of two infinity branches.
Theorem 1. Two branches B = {(z,1(z)) € C*: z € C, |z| > M} and B = {(z,7(z)) € C?>: z € C, |z| > M} are convergent

if and only if the terms with non negative exponent in the series r(z) and 7(z) are the same. Hence, two convergent infinity
branches are associated to the same infinity point.
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This paper is concerned with the study of the asymptotes of an implicit algebraic curve. The classical concept of
asymptote has to be with a line that approaches a given curve at the infinity. In the following we generalize this idea
in the sense that two curves approach each other if they have two infinity branches that converge (see Definition 3 and
Theorem 2 below).

Definition 3. Let C be an algebraic plane curve with an infinity branch B. We say that a curve C approaches C at B if
lim, .« d((z, r(z)), C) = 0.

Theorem 2. Let C be a plane algebraic curve with an infinity branch B. A plane algebraic curve C approaches C at B if and
only if C has an infinity branch, B, such that B and B are convergent.

It is clear that C; approaches C; if and only if C, approaches C;. When it happens, we say that C; and C, are approaching
curves or that they approach each other. In the next section we use this concept to generalize the classical notion of
asymptote of a curve.

3. Asymptotes of an algebraic curve

Let C be an algebraic plane curve and B an infinity branch of C. In Section 2, we have described how C can be approached
at B by a second curve C. Let us assume that deg(C) < deg(C). Then, one may say that C degenerates since it behaves at
infinity as a curve of smaller degree. For instance, a hyperbola is a curve of degree two that has two real asymptotes,
which implies that the hyperbola degenerates, at infinity, to two lines. Similarly, an ellipse has two asymptotes that, in
this case, are complex lines. However, the asymptotic behavior of a parabola is different since it cannot be approached at
infinity by any line. This motivates the definition of perfect curve.

Definition 4. An algebraic curve of degree d is a perfect curve if it cannot be approached by any curve of degree less
than d.

A curve that is not perfect can be approached by other curves of smaller degree. If these curves are perfect, we call
them g-asymptotes.

Definition 5. Let C be a curve with an infinity branch B. A g-asymptote (generalized asymptote) of C at B is a perfect
curve that approaches C at B.

The notion of g-asymptote is similar (in fact it is a generalization) to the classical concept of asymptote. The difference
is that a g-asymptote is not necessarily a line, but a perfect curve (see Definition 4). Throughout the paper we refer
sometimes to g-asymptote simply as asymptote.

We remark that the degree of an g-asymptote is less than or equal to the degree of the curve it approaches. In fact, a
g-asymptote of a curve C at a branch B has minimal degree among all the curves that approach C at B.

In Section 3.1, we show that every infinity branch of a given algebraic plane curve implicitly defined has, at least, one
asymptote and we show how to compute it. For this purpose, we rewrite Eq. (2.1) defining a branch B (see Definition 1)
as

r(z) =mz 4+ a2 7" 4o @z gy gz Net/N (3.1)

where 0 < Ny < -+ < Ny <N < Ngy1 < --- and gcd(N, Ny, ...,Ny) =b,N=n-b,Ny=n;-b, je{1,...,k}. That
is, we simplify the non negative exponents such that gcd(n, nq,...,ny) = 1. Note that 0 < ny < ny < ---, and ny < n,
and N < Ni41, i.e. the terms ajzl‘NJ'/N with j > k + 1 are those which have negative exponent. We denote these terms as
Az) =02 1027 %, where g = 1—N,/N € Q", £ > k+ 1.

Under these conditions, we say that n is the degree of B, and we denote it by deg(B).

3.1. Construction of a g-asymptote

_ Taking into account Theorems 1 and 2, we have that any curve C approaching C at B should have an infinity branch
B = {(z,7(z)) € C*: z € C, |z| > M} such that the terms with non negative exponent in r(z) and 7(z) are the same. In
the simplest case, if A = 0 (there are no terms with negative exponent, see Eq. (3.1)), we get

f(z) =mz 4+ a;z"™™/" 4 apz" "M 4 g T, (3.2)

where aq,a3,... € C\ {0}, me C,n,ny,ny... € N, ged(n,ny,...,m) = 1,and 0 < n; < ny < ---. Note that 7 has the
same terms with non negative exponent as r, and I does not have terms with negative exponent.

Let C be the plane curve containing the branch B = {(z, 7(z)) € C? : z € C, |z| > M} (note that € is unique since two
different irreducible algebraic curves have finitely many common points). Observe that

At) = (t", mt" + @i t"™M 4 - @ t"*) € C[t]?,
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where n, ny,...,ng € N, ged(n, ny, ..., m) = 1,and 0 < ny < --- < ny, is a polynomial parametrization of C, and it is
proper (see Lemma 3 in [1]). In Theorem 2 in [1], we prove that C is a g-asymptote of C at B.

From this construction, we obtain the following algorithm that computes an asymptote for each infinity branch of a
given plane curve. We illustrate it with an example. We assume that we have prepared the input curve C, by means of a
suitable linear change of coordinates, such that (0:1:0) is not an infinity point of C.

Algorithm Asymptotes Construction-Implicit Case.
Given a plane curve C implicitly defined by an irreducible polynomial f(x,y) € R[x, y], the algorithm computes one
asymptote for each of its infinity branches.
1. Compute the infinity points of C. Let Py, ..., P, be these points.
2. For each P; := (1 : m; : 0) do:

2.1. Compute the infinity branches of C associated to P;. Let B = {(z, rj(2)) € C?:zeC, |z > My}, j e {1,...,s}, be
these branches, where rj; is written as in Eq. (3.1). That is,

1_ P 0 ]7n’“.-y-/n,.
r(2) = miz 4 @y iz TN g gz Y 4 A(2),

o0
Aj(z) = Z agijz" %4, quij=1—Ngij/Nj € Q", €>ky+1,

{=kjj+1
(11'1,]‘,(12,,',]‘, ... € C \ {0}, nij, 111,,',]', ... € N, 0 < TI]J'J < nz‘j‘j < eeey, nkij < Tl,'j, N,’j < nkij+1’ and
ged(n, naij, ..o Ny i) = 1.

2.2. For each branch By, j € {1, ..., s;} do:
2.2.1. Consider 7 as in Eq. (3.2). That is,

~ —ng i ng T—ny.. i i/Njj
Fi(z) = miz + @y iz gz

Note that 7;; has the same terms with non negative exponent as r;, and r;; does not have terms with negative
exponent.
2.2.2. Return the asymptote C; defined by the proper parametrization Q;(t) = (t"i, 7(t")) € C[t]?.

Example 1. Let C be the curve of degree d = 6 defined by the irreducible polynomial f(x, y) = —9xy> + 2y — 144x3y? —
400x%y3 4 159xy* — 24y° — 360x3y 4 2872x%y* — 929xy> + 53y* — 225x3 + 9303x%y 4 2855xy?* + 114y> 4+ 6360x? + 4966xy +
508y? — 508x € R[x, y].

We apply algorithm Asymptotes Construction-Implicit Case to compute the asymptotes of C.

Step 1: The infinity points are Py =(1:0:0)and P, =(2:9:0).
We first consider P;:

Step 2.1: There are three branches associated to Py, Byj = {(z, ryj(2)) € C?:z€eC, |z| > My}, j=1,2,3, where

r1(z) = —5/4 4 207/128z~' — 19757/8192z 2 + 4386031/10485762 3 - - - |
r12(z) = —5/4 4 121/1152z~" — 6413/663552z 2 + 958441/764411904z3 + - - - |
r13(z) = 19/6 4+ 2131623 — 2231613 4+ 5/962~1/316*3 4 437/36864z=%/316°/3 + 1/2z7 1 + - ..

(we compute ryj, j = 1, 2, 3, using the algcurves package included in the computer algebra system Maple; in particular,
we use the command puiseux).

Step 2.2.1: We compute 74j(z), j = 1, 2, 3, and we have that
Fi(z) = —5/4, Fiaz) = —5/4, F13(z) = 19/6 +2'°16*° — 2°/*16'/°.

Step 2.2.2: The parametrizations of the asymptotes @7 j=1,2,3, are given by
O4(t) = (t, =5/4), Qy(t)=(t, =5/4), Os(t) = (3, 19/6 + 16*°t — 16*3t?).

Note that the curve C; is the same than the curve C,. One may compute the polynomial defining implicitly C5 (apply
e.g. Chapter 4 in [11]), and we have that

filx,y) = —216y® — 3456x* — 10368xy + 2052y° + 88128x — 6498y + 6859 € R[X, y].
Now, we analyze the point P,:

Step 2.1: We have only one infinity branch associated to P, is B, = {(z,72(z)) € C*> : z € C, |z| > M,}, where
ry(z) =54 9/2z — 29/9z7 ' 4+ 16/81z72 — 5230/7292 3 + - - -.

Step 2.2.1: We obtain that 7,(z) = 5 + 9/2z.

Step 2.2.2: The parametrizationNOf the asymptote C, is given by O4(t) = (t, 5 + 9/2t) € R[t]?. One may compute the
polynomial defining implicitly C4, and we have fy(x, y) = 9x 4+ 10 — 2y € R[x, y].

4
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Fig. 1. Curve ¢ (left), and curve and asymptotes (right).

In Fig. 1, we plot the curve ¢, and the asymptotes C;, C3 and Cj.

4. New efficient method for the implicit algebraic curves

In this section, we present an improvement of the method described above, which avoids the computation of infinity
branches and Puiseux series. Instead, we simply have to determine the solutions of a triangular system of equations

constructed from the implicit polynomial.

The results presented are concerned with algebraic plane curves but, as we remark, they can trivially be adapted for
dealing with algebraic curves in n-dimensional space (see Example 4).

We recall that we are assuming that (0:1:0) is not an infinity point; otherwise, we consider a change of coordinates.

We start with the main theorem that provides a constructive method for determining all the asymptotes associated
to the infinity points.

Theorem 3. Let C be a plane algebraic curve defined by the irreducible polynomial f(x,y) € R[x,y] of degree d. The
g-asymptotes of C are defined by the parametrizations
O(t) = (t*, bot* +byt" ' + ...+ by), 1<k<d
with b; € C, i =0, ..., k satisfying that
Ai(bg, ..., b)=0,i=0,...,k, Ailbo,....b)=0,i=k+1,...,u, u=k+1
where f(O(t)) =

v
Ag(bo)t™™ 4 Aq(bo, b))t 51 .. Ay(bg, by, ..., bt 4 Z Aj(bo, by, ..., bt
Jj=u+1
O0<si<sy<---<s,<d-k sjeN, j=1,...,v. Furthermore, by = m is a root of Ag(bo) = 0 if and only if (1 : m : 0) is
an infinity point.

Proof. The idea of the proof is that given a branch, the substitution in the implicit function f(x, y) must converge at
infinity and this implies that the terms of positive exponents of this substitutions must be 0 (see equality (4.1)). We do
not use the complete branch (because in reality this branch cannot be calculated in its entirety) but the truncated branch,
and from it and its substitution in f(x, y), we obtain certain coefficients that must be zero (see equality (4.3)).

For this purpose, we first recall that B = {(z,r(z)) € C?>: z € C, |z| > M}, M € R*, and

1(z) = zp(z ') = boz 4 b1z NN 4 by NNy pog NN
5



S. Pérez-Diaz, R.M. Benedicto and M.F. de Sevilla Journal of Computational and Applied Mathematics 437 (2024) 115468

where N,N; €N, ieNO<N;<---<Ny=N<Npyp1 <---,

@(z) = bo + b1zZN/N 4 by2Me/N 4 paZMN L
Let

y(2) = @(z") = bo + b1z + bpz"? + b32"s + ...
and I'(z, w) be the homogenization of y(z). It holds that F(z",zNy(z™1), 1) =

F(2V, boz" + b1z ™M 4 b2V N 4 bpyzN N b by VTN 1) =0
which is equivalent to

F(1, I'(1, w), w™) = F(1, bg + byw™ + byw™ + - - + bw™ + ™+ +.-., w¥)=0 4.1)
where N —N;>0,j=1,...,kand N —N; <0, j > k + 1. Let us denote

&(w) = F(1, I'(1, w), w").
Now, we consider the truncated branch. More precisely, let

r*(z) = boz" 4+ b1 2NN 4 NN oL 4 by

and R*(z, w) its homogenization (note that r*(z) provides the same asymptote than considering the polynomial 7(z), see
Eq. (3.2), except that possibly the asymptote is not proper since gcd(N, Nq, ..., Ny) = b and we have not simplified the
non negative exponents; see Eq. (3.1)). Then, we consider the polynomial F(z", R*(z, w), w") (which is not identically
zero since we have truncated the branch), and let

&(w) = F(1, R*(1, w), w™) = F(1, by + byw"" 4+ byw™ + - - + bw", w"). (4.2)
Finally, we consider the previous equality in the affine chart,

&3(z) = F(2",1*(2), 1) = f(2", boz" + b1 2NN 4+ 2" M2 ... 4 by) =

Ag(bo)z ¥ + Ax(bo, b1)Z" =1 + -+ Ay(bo, by, ..., bV 4+ Y Aj(bo, b, ... b)Y (4.3)
j=u+1

O<si<s;<---<s,<N-d, sjeN,j=1,...,v.

Now, from equalities (4.1) and (4.2), we get the coefficients A; in equality (4.3) that are the numbers we are looking
for constructing the asymptote Q introduced in the statement of the theorem. More precisely, we observe that equalities
(4.1) and (4.2) can be written as

E(w) = Ag(bo) + Ai(bo, b)w' + -+ + Ay(bo, by, ..., b)w™ + - - - + Ay(bo, by, ..., bw™

0= 51(11)) = Ez(w) + Av+1(bo, b], ey bk)wS”“ +--,

where 0 < sy <s; <---, s; € N. Hence,
Ag(bg) = Aq(bo, b1) = --- = Aj(bo, b1, ..., b)) =0, j=1,...,0.
Note that we show that all Aj(bg, by,...,b)=0, j=1,...,v. However, some equations may become redundant and

that a subset of equations up to index u < v may be enough.
Finally, we observe that

0 =F(1, ¢(0),0) = F(1, I"(1,0),0) = F(1,R*(1,0), 0) = F(1, by, 0)

which is equivalent to 0 = £;(0) = &(0) = Ag(bp). From this equation, we obtain the values of by and we deduce that
by = m is a root of Ay(bg) = 0 if and only if (1: m : 0) is an infinity point. O

Remark 1. Since each root of Ag(bg) = 0 provides an infinity point then, for each root of Ag(bg) = 0, we get the infinity
branches associated to this infinity point and then, the corresponding asymptotes.

We note that redundant equations are obtained (some A;, could be identically zero) and that is why additional
equations (A;(bg,...,by) =0,i=k+1,...,u, u > k+ 1) must be considered until all the indeterminate coefficients
can be computed. The authors have not been able to determine the exact value of u that would fix the number of
equations to consider. Although it is known that u is intimately related to the possible singular character of the infinity
point, it is left as a future work to be able to determine the exact number u and therefore, the exact equations to be
considered.
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Remark 2.

1. Note that we do not know the degree of the asymptote but a bound (1 < k < d). Therefore, in order to compute
the parametrization of the asymptote O(t), we can start with k = d and the constructive method presented in
Theorem 3 provides the proper parametrizations of the asymptotes of degree d (if they exist) and all the non-
proper parametrizations of the asymptotes of degree k* € N, where k* divides d (if they exist). In this case, a
reparametrization of the original parametrization provides a proper parametrization of these asymptotes of degree
k* € N. Afterward, one repeat the process with 2 < k <d — 1, and k ¢ {k*, d}. Also we can reason as we suggest in
the following statement.

In order to reparametrize properly a rational parametrization of an algebraic curve one may apply the method
presented in [12].

2. Let fy(x,y) = (y — mx)* ]_[le(y — m;x)%. We consider the factor (y — mx)* that provides the infinity point (1: m : 0)
(we reason similarly for the factors (y — mix)%, i = 1,...,«). It holds that £ = ny + --- + n,, where r are the
number of branches associated to (1 : m : 0), and n; is the degree of each asymptote obtained from each branch
(see [2,7]). We can know in advance the number of branches r (use, for instance, the algcurves package included in
the computer algebra system Maple) and then we have a bound for n;. More precisely, if ny < n, < --- < n,, we
have that

ny < [£/r] <n,.

Hence, in order to apply the constructive method presented in Theorem 3, one consider first asymptotes of degree
|£/r] and we determine, at least, one asymptote of degree n,. Once we have n;, we compute n, reasoning as before
and considering £ — ny = n, + - - - + n,. Observe that in this case, we obtain proper parametrizations defining the
asymptotes (see [1]).

Finally, we note thatif £ = 1thenr =1and n; = 1.

In the following, we introduce the Algorithm Improvement Asymptotes Construction-Implicit Case I, which uses the
above results for computing the g-asymptotes of a plane curve. In fact, we apply Remark 1 and statement 2 in Remark 2,
and we compute the number of branches for each infinity point.

Recall that we have assumed that (0:1:0) is not an infinity point; otherwise, we consider a change of coordinates and
afterward we undo it in the obtained parametrization of the asymptote.

Algorithm Improvement Asymptotes Construction-Implicit Case |.

Given an irreducible algebraic plane curve C defined by a polynomial f(x, y) € R[x, y] of degree d, the algorithm outputs
all the asymptotes of C.
1. Compute the homogeneous form of maximum degree of F(x, y, z). Let fs(x, y) = ]_[le(y — m;x)%. The infinity points are
PP=(1:m:0),i=1,...,k.
2. For each P; := (1 : m; : 0) do: determine the number of branches, r;, associated to P; and let £ := ¢; and r .= ;.

2.1. Consider k := |£/r] and
A(t) = (t*, mith 4+ byt* ' -+ by),

where b; € C, i = 1, ..., k are undetermined coefficients. Compute f(3(t)) =

Ag(bo)t™ + Ax(bo, b)t™ 1 4+ 4 Ay(bo, b, ..., BT 4+ Y " Ay(bo, b, .., b,
j=u+1

(Note that Ay(m;) = 0).
2.2. Solve the triangular system of equation

Ailbo, ..., b)) =0, i=0,....,k,  Aibo,....b)=0,i=k+1,...,u

and substitute the solutions in O(t). Let ég(t), j=1,..., hbe these reparametrizations and deg( @ij) =n,.
23. Ifh<riletf:=¢—ny—---—npand r :=r — h and go to Step 2.1. Otherwise, go to Step 3.
3. Return the asymptotes defined by all the proper parametrizations @U(t), j=1,...,ni=1,... k.

By applying Algorithm Improvement Asymptotes Construction-Implicit Case |, we can easily obtain all the g-asymptotes
of any plane curve, as the following example shows.

Example 2. Consider the plane curve C introduced in Example 1 and defined by the irreducible polynomial

f(x,y) = —=9xy° + 2y® — 144x3y? — 400x%y> + 159xy* — 24y — 360x3y + 2872x%y* — 929xy> + 53y* — 225x3 4+ 9303x%y +
2855xy? + 114y3 + 6360x> + 4966xy + 508y* — 508x € R[x, y].

We apply Algorithm Improvement Asymptotes Construction-Implicit Case |.

Step 1: The homogeneous form of maximum degree of F(x, y, z) is —y°(9x — 2y). Hence, the infinity points are P; = (1:
0:0)and P, =(1:9/2:0).
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Step 2: We start with the infinity point P; (which is a singular point) that has three branches, i.e. ry = 3 and ¢; = 5.

2.1. We have that k = 1, and thus we consider O(t) = (t, b;), where by is an undetermined coefficient. Compute f(3(t)).
2.2. Solve the equation obtained from the first non-zero coefficient of maximum degree of the above polynomial. We get a
double root by = —5/4 and thus, we have one (double) asymptote of degree 1 defined by the proper parametrization

On(t) = (t, —5/4).

2.3 We go to Step 2.1 with k = 3. Reasoning similarly, we get an asymptote of degree 3 defined by the proper
parametrization

Onp(t) = (£, —2-2"3¢% + 4. 223t +19/6).
We may compute the implicit polynomial defining this asymptote and we have that 6859/216 + 408x — 16x*> —
48xy — y* + 19/2y*> — 361/12y (see Chapter 4 in [11]).
Step 2: We reason with the infinity point P, which is a simple point. Thus, we have one only branch of degree one.

2.1. Consider O(t) = (t, 9/2t + by), where b; is an undetermined coefficient. Compute f(O(t)).
2.2. Solve the equation obtained from the first non-zero coefficient of maximum degree of the above polynomial. We
get

59049/16b; — 295245/16 =0 = by =5.
We substitute the solution in O(t) and we get the proper parametrization
Oo1(t) = (t,9/2t +5).

Step 3: The asymptotes of the input curve C are defined by the proper parametrizations
On(t) =(t, =5/4), QOn(t)=(?,—2-2"3t>+4.2°Pr +19/6), and Oy(t) = (t,9/2t +5).
The input curve, C, and its three asymptotes have been plotted in Fig. 1.

Additionally to the previous algorithm, we present Algorithm Improvement Asymptotes Construction-Implicit Case |,
where we do not need to compute the number of branches. That is, we apply statement 1 in Remark 2.

Algorithm Improvement Asymptotes Construction-Implicit Case II.

Given an irreducible algebraic plane curve C defined by a polynomial f(x,y) € R[x, y] of degree d and £ = {{J}, the
algorithm outputs all the asymptotes of C.
1. Set k = d and do:

1.1. Consider
é(t) = (tk, botk + bﬂki] + .+ by),

where b; € C, i =0, ..., k are undetermined coefficients and f(O(t)) =

v
Ag(bo)t™ + A1(bo, by)t™ 1 + -+ 4 Ay(bo, by, ... b+ Y Ay(bo, by, ... .
j=u+1

1.2. Solve the triangular system of equation
Ai(bo,...,b))=0, i=0,...,k, Ailbo,...,by)=0,i=k+1,...,u

and substitute the solutions in O(t).

1.3. Reparametrize properly O(t) (apply [12]). Let éu(t) be the proper reparametrizations obtained of degree k; and
associated to the infinity points (1 : m; : 0) (recall that each m; is a different root of Aq(by)).

14. Let £ = {£ U Qy(t)}.

2. Go to Step 1. and consider 2 < k < d — 1, such that k ¢ {k;, d}. Repeat this step till such a k does not exists and then,
go to Step 3.
3. Return the asymptotes defined by all the proper parametrizations given in the set L.

In the following example, we apply Algorithm Improvement Asymptotes Construction-Implicit Case Il to compute all
the g-asymptotes of the plane algebraic curve introduced in Example 1.

Example 3. We consider the curve C of degree d = 6 of Example 1 defined by the polynomial
f(x,y) = —9xy° + 2y® — 144x3y? — 400x%y> + 159xy* — 24y — 360x3y + 2872x%y* — 929xy> + 53y* — 225x3 + 9303x%y +
2855xy* + 114y° + 6360x> + 4966xy + 508y*> — 508x € R[x, y].

8
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We apply algorithm Improvement Asymptotes Construction-Implicit Case Il. Let £ = {#}.
Step 1: Set k = 6.
1.1. Consider O(t) = (t®, bot® + b1t> + -+ - + bg), and

6 36
FOE) =" Ajlbo, ..., Bt T+ Aylbo, ..., b)t ™.
j=7

1.2. We solve the triangular system of equations
Ai(bo, ..., bg)=0, i=0,...,¢
for some ¢ € N such that we get all the solutions for the parameters b;, j = 1, ..., 6. More precisely we have that
Ao(bo) =b3(2bg —9) =0 = by =0, by =9/2.
Note that every value of by provide the infinity points Py =(1:0:0)and P, =(1:9/2:0).

1.2.1 We first compute the asymptotes for Py = (1 : 0 : 0) (i.e. bg = 0). We have that A;(0, by,...,bs) =0, i =
1,...,4, and

As(0,by, ..., bs)=—9b7 = b; =0.
Now, we have that A;(0,0,b,...,bs)=0,i=6,...,9,and A(0,0, by, ..., bs) = —9b3(b3 + 16) =
by =0, by=-2.2"3 b, =2"3_-43.231, b,=2"743.2°L
1.2.1.1 Now, we compute the solutions for by = b; = b, = 0. We have that
A12(0,0,0,b3,...,bg) = —144b3 = b3 =0.
Furthermore

A14(0,0,0,0, by, bs, bg) = —144b; = by =0,

A16(0,0,0,0,0, bs, bg) = —144b2 = bs =0,
and
A15(0,0,0,0,0,0, bg) = —9(4bg + 5> = bg = —5/4.

We substitute the solutions in O(t) and we get the first asymptote defined by the parametrization
(t%, —5/4). We reparametrize this parametrization properly and we get the proper parametrization
given as

On(t) = (t, —5/4).
1.2.1.2 Now, we compute the solutions for by = b; = 0 and b, = —2 - 21/3, We get that
A11(0,0, =223 by, ..., bg) = —864-2"°b; = b3=0,

A1x(0,0,—=2-23,0, by, bs, bg) = 864 - 2134223 —by) = by =4-2%5,
A13(0,0,—2-213,0,4.2%3 by bg) = —864-2'3bs = bs =0,

A14(0,0,—2-23,0,4.2%3,0,bg) = —144 - 2'3(6bg — 19) = bg = 19/6.

We substitute the solutions in O(t), and we get the second asymptote defined by (t®, 19/6 —2.21/3t% 4+
4 . 22/3t2). We reparametrize properly this parametrization and we get the proper parametrization of
the second asymptote corresponding to the infinity point P,

O1a(t) = (t3,19/6 — 2 - 21/3¢2 4. 22/3).

1.2.1.3 Now, we compute the solutions for by = by = 0 and b, = 2173 _ /3.21/3]. Reasoning as before we get
again the parametrization Qj,.

1.2.1.4 Now, we compute the solutions for by = by = 0 and b, = 2"/ — /3 -2173]. Reasoning as before we get
again Qq;.
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1.2.2 Now, we compute the asymptotes for P, = (1:9/2 :0) (i.e. by = 9/2). We get the equations
A1(9/2,b1)=0 = by =0,

A5(9/2,0,b) =0 = b, =0,
A5(9/2,0,0,b5)=0 = b;=0,
A4(9/2,0,0,0,b) =0 = bs=0,
A5(9/2,0,0,0,0,b5) =0 = bs=0,

A6(9/2,0,0,0,0,0,bg) =0 = bg = 5.

We substitute the solutions in O(t) and we get the third asymptote defined by (t®, 9/2+45t%). We reparametrize
this parametrization properly and we get the proper parametrization given as

O1(t) = (t,9/2 + 5¢).
1.4. Let £ = {Oys(t), Or2(t), Oar(0)}
Step 2: This step does not provide new asymptotes. Observe that we have to check if there exists asymptotes of degree 5,
and 4 (note that these degrees do not divide 6 and thus it would not appear in the previous process). When we consider

k = 5 (similarly for k = 4), we obtain again a non-proper parametrization for the asymptotes of degree 1 obtained in
Step 1.

Step 3: The algorithm returns the asymptotes defined by the proper parametrizations
On(t)=(t, =5/4), Op(t)= (3, —2-2"2t2 +4.2*3t +19/6), and Oy (t) = (t,9/2t +5).
The input curve, C, and its three asymptotes have been plotted in Fig. 1.

The method above described may be trivially adapted for dealing with algebraic curves C in the n-dimensional space
defined by irreducible polynomials f;_1(x1, %;), j = 2, ..., n. For instance, if n = 3, and we have a curve C defined by the
irreducible polynomials f;(x1, xo) and fo(x1, x3), we can compute the asymptotes defined by the parametrizations

0 =(th, apt* + at" 1+ -+ ay, bot* + bt + -+ by)

by successively applying the algorithm to the first and second component, and then to the first and third component. Note
that as in the planar case, we also must assume that (0 : 1:0:0)and (0 : 0 : 1: 0) are not infinity points (otherwise,
we consider a change of coordinates and afterward we undo it in the obtained parametrization of the asymptote).
Observe that a curve C in the n-dimensional space defined by n — 1 polynomials can be assumed to be defined by
irreducible polynomials of the form fi_1(x1,%;), j = 2, ..., n (see [3]). Example 4 illustrates this idea (see Fig. 2).

Example 4. Let C be the space curve defined by the polynomials
fi(x1,x2) = —9X%X2 + 12x1x§ — 4x§ + 9xf + 21x1x, + 9x§ — 6x1 —6x, + 1,

falX1,X3) = —2x1X5 — 2X3 + 4x5 + 2x13.

We apply Algorithm Improvement Asymptotes Construction-Implicit Case | for each plane curve, C; and C,, defined by
f1(x1, x2) and f>(x1, x3), respectively. We start with C;.

Step 1: The homogeneous form of maximum degree of F;(xq, X2, X4) is X2(3%; — 2x)%. Hence, the infinity points are
P]] =(13/20)andP12=(100)

Step 2: We start with the simple point Py;. Thus, we have one branch of degree two.

2.1. Consider O(t) = (t?, 3/2t% + byt! + b,), where by, b, are undetermined coefficients. Compute f;(3(t)).
2.2. Solve the triangular system obtained from the first two non-zero coefficients of maximum degree of the above
polynomial. We get that

243/4—6b2 =0 = by =—-9/4v2, by =9/4V2,

—4by(b? +3b; —12)=0 = b, =5/8.
We substitute the solutions in O(t), and we get the proper parametrization
31i(t) = (¢2,3/2t% + 9/4v/2t +5/8).
10
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Fig. 2. Curve ¢ and asymptote C; (left), curve ¢ and asymptote C, (right).

Step 2: We reason now with the simple point Py,. Thus, we have one branch of degree one.

2.1. Consider O(t) = (t, b;), where b; is an undetermined coefficient. Compute f;(3(t)).
2.2. Solve the equation obtained from the first non-zero coefficient of maximum degree of the above polynomial. We get
that

—91+9=0 = b =1
We substitute the solutions in O(t), and we get the proper parametrization
Opp(t) = (t, 1).
Now, we reason with the plane curve C,.

Step 1: The homogeneous form of maximum degree of Fp(x1, X3, X4) is —2x§(x1 + x3). Hence, the infinity points are
Pyy=(1:0:0)and P»; =(1:—1:0).

Step 2: We start with the simple point P,; and reasoning similarly as above, we get the proper parametrization

Oi(t) = (¢2, V2t — 1/2).

Step 2: For the simple point P,;, we get the proper parametrization

On(t) = (t, —t + 1).

Step 3: The asymptotes of the input space curve, C, are defined by the proper rational parametrizations
(t2,3/2t> + 9/4v2t +5/8,/2t —1/2), and (t, 1, —t + 1).

We observe that the infinity points of C are (1:0:—1:0) and (1:3/2:0:0). Therefore, the point Py is associated with the point
P51 (both points provide the infinity point of the input curve (1:0:—1:0)), and the point Py, is associated with the point
P,, (both points provide the infinity point of the input curve (1:3/2:0:0)). We use this remark to combine appropriately
the asymptotes of C; and C, to get the asymptotes of C.

Algorithms Improvement Asymptotes Construction-Implicit Case | and Il allow us to easily obtain all the generalized
asymptotes of an algebraic curve implicitly defined. However, one has to determine the roots of some given equations,
which may entail certain difficulties if algebraic numbers are involved. For this purpose, we use the notion of conjugate
points (see [11]), which will help us to overcome this problem.

The idea is to collect points whose coordinates depend algebraically on all conjugate roots of the same irreducible
polynomial, say m(t) € R[t]. This will imply that the computations on such families can be carried out by using the
defining polynomial m(t) of these algebraic numbers. That is, one applies the formulae presented in Theorem 3, but
modulo m(t), i.e. we use the polynomial m(t) to carry out the arithmetic by computing polynomial remainders.

The following example shows this method based on the conjugate points to obtain the asymptotes of a plane curve.

11
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Example 5. We consider the algebraic plane curve ¢ defined by the irreducible polynomial f(x, y) = 6xy°> +2y% 4+ 6x3y? —
70x%y> — 96xy* — 24y° — 30x3y + 992x%y? + 421xy> + 53y* + 75%> — 4037x%y — 1335xy? + 114y° + 8010x> + 4966xy +
508y? — 508x € R[x, y].

We apply algorithm Improvement Asymptotes Construction-Implicit Case |.

Step 1: The homogeneous form of maximum degree is 2y°(3x + y) and hence, the infinity points are P; = (1:0: 0) and
P,=(1:-3:0).

Step 2: We start with the singular point P; that has three branches, i.e. r; = 3 and ¢; = 5.

2.1. We have that k = 1, and thus, we consider O(t) = (t, b;), where b; is an undetermined coefficient. Compute f(O(t)).

2.2. Solve the equation obtained from the first non-zero coefficient of maximum degree of the above polynomial. We
get that b; = «, where m;(a) = 0 and m;(t) = 6t2 — 30t + 75. Thus, we have two asymptotes, each of degree one,
given by the proper parametrization O1;(t) = (t, ), m;(a) = 0.

2.3 We go to Step 2.1 with k = 3. Reasoning similarly as above, we get the asymptote of degree 3 defined by the proper
parametrization Qy,(t) = (t3, Bt + 4t/ +7/3), where my(8) = 0 and my(t) = t2 — t + 1. One may check that the
implicit polynomial defining this asymptote is

27y% + 27x* — 324xy — 189y? + 2484x + 441y — 343.

Step 2: Now, we reason with the simple point P,. Thus, we only have one branch of degree one.

2.1. Consider O(t) = (t, —3t + b;), where b is an undetermined coefficient. Compute f(O(t)).
2.2. Solve the equation obtained from the first non-zero coefficient of maximum degree of the above polynomial. We
have

—486b; =0 = b;=0.
We substitute the solution in O(t) and we get the proper parametrization

O (t) = (t, —3¢t).

Step 3: The proper rational parametrizations defining the asymptotes are
On(®)=(t, @), m(a)=0
where m;(t) = 6t> — 30t + 75,
Oua(t) = (£, B> + 4t/ +7/3), my(B) =0
where my(t) =t?> —t + 1, and
(

(t) = (t, =31).
4.1. Experimental times

We finish this section by comparing the performance of Algorithm Asymptotes Construction-Implicit Case, presented
in [3] (method 1) and Algorithm Improvement Asymptotes Construction-Implicit Case | (method 2). The performance of
Algorithms Improvement Asymptotes Construction-Implicit Case | and Improvement Asymptotes Construction-Implicit Case
Il provides similar results.

We have implemented the algorithms using Maplesoft 2022 on a Lenovo ThinkPad Intel(R) Core(TM) i7-10510UU CPU
@ 2.30 GHz and 16 GB of RAM, 0S-Windows 11 Pro. We have run these algorithms on a set of ten arbitrary implicit curves
with different degrees and different numbers of infinity branches (these properties are displayed in the next table). For
each of these curves, we show the degree, the number of monomials, the number of infinity branches, and the running
time (given in seconds of CPU) spent by each of the two methods. All these data are shown in the following table:

Curve Degree Nops Infinity Method 1 Method 2
branches
C1 8 28 4 0.078 0.062
Cy 14 39 6 0.172 0.047
C3 36 29 6 7.093 3.500
Ca 24 33 7 3.469 0.031
Cs 3 4 3 3.703 4.750
Cs 18 34 6 1.625 0.109
Cr 32 26 8 18.281 1.125
Cs 20 6 2 18.281 0.062
Co 40 5 8 6.954 0.125
C1o 30 35 3 7.875 0.047

—_
N
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In order to compare the methods, we have marked in red the longer running time for each curve. We observe that,
in general, the new method (method 2) is better than method 1 which is based on the computation of Puiseux series. In
fact, we have noted that we get a significant improvement when we deal with high degree curves having a large number
of monomials and when there exist families of conjugate points.

Note also that these running times are related to the degree of the curve and the number of infinity branches as well
as the number of conjugate points that provide the branches. It makes sense, since the number of coefficients we need
to compute for getting the asymptotes depends on these parameters.

5. Conclusion

The main result of this paper, Theorem 3, provides a method to determine the generalized asymptotes of a curve
by only computing the solutions of a triangular system of equations constructed from the implicit polynomial defining
the input algebraic curve. From this theorem, we develop an efficient algorithm which determines all the g-asymptotes
avoiding the laborious computation of Puiseux series and infinity branches. In fact, the comparison with the other existing
method shows that this one reduces significantly the computation time, specially when we deal with high degree curves
and when families of conjugate points exist.

Thus, the present paper yields a remarkable improvement of the methodology developed in [3] (see Section 5).
Furthermore, this procedure can be trivially applied for dealing with algebraic curves in the n-dimensional space. All
these techniques are proved to work on several illustrative examples.

As a future work, we aim to extend the notion of g-asymptote to the study of the asymptotic behavior of algebraic
surfaces. We look for surfaces which approach a given one of higher degree, when “moving to infinity”, that is, when
some of the coordinates take infinitely large values. The ideas introduced in this paper might provide the foundations for
efficient methods that allow us to compute those “asymptotic surfaces”.
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Appendix

In this appendix, we present the implicit curves used in the study of the algorithms presented in Section 4.1.
fi(X1, X2) = —729x3x; + 486x3x5 — 108x1x, + 8x5 — 11664x3x5 — 21384x7x3 + 33102x3x; — 13615x3x; + 758%1x5
+ 88x) — 16200x7x, + 463374x7x3 — 356142x3x5 + 81460x2x;5 + 10019x,x5 + 2717x5 — 2025x]
+ 720963x]x; + 99053 1x;x5 + 360506x3x3 + 26086x1x; — 538x5 + 91170x] + 151414x;x,
+ 68580x2x% 4 10160x;x3 + 508x3 — 508x.

fa(x1, X2) = 8683257856x%x)% + 323348480x,x)° + 3010225x3* + 64703758336x2x)" + 862548160x,X,°
+ 16170050x,> + 232442176512x3x)° + 48053996xx,' + 43580990x,” + 528605828352x7x;
— 4439796536x:x,° + 73326664x," + 841835426768x3x5 — 11331043129x,x; + 84195424x,°
+ 983078241348x%x; — 15767456944x,x5 + 66445920x3 + 8479744x3x; + 858325540303x3x5
— 13731543555x,x] 4 35276319x5 + 18668608x3x; + 561575753843x%x; — 7598293305x,X5
+ 11576043x) + 15965033x3x3 + 271978409572x%x; — 2421613296x,x; + 1807272x5
+ 7462357x3x% + 9472813053 1x3x5 — 279328716x,X; + 1805013x3x, + 22440615102x%x3
+ 38555136x1x; + 170667x7 + 3209154048x3x, + 205627392x].

13
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F3(x1,%2) = x3° — 12x,%3* 4+ 84x3x3% — 346x3x3° + 1116x5x3° — 2703x3x3° + 7167x5x3% — 12432x]x22 + 26268x5x3°
— 19780x3x3% 4 92451x1%x1° — 36x7x,” + 46746x]'x)* — 1728x]°%,> + 183499x]%x)? — 20658x]'x)*
+ 101730x]3x)° — 93984x}%x)! + 95988x1%x5 — 189576x]°x5 + 32705x]°X5 — 177504x]x]
+ 15903x1%x3 — 75036x]°x; + 2673x17x3 — 12670x1%x3 + 72918 — 594x1x, — x17.

fa(X1,X2) = X3% — 824x1x31 — 6x;x3° — 135056x%x1® — 1090032x%x)7 — 305878948x3x,° + 15x3x3° — 332513805x3x,*
+ 29561428776x1x)> — 21896514x3x,° + 84368663334x]x;' — 20x3x;” — 7336125742241x3x)
+ 105311475102x3x3° — 13905265469868x3x5 — 47228926x7x5 + 899624912729920x5x5
— 20445470980563x3x] + 15x7x5 + 879421250107854x5x; — 432927678855x3x5
— 49546291457551243x7 x5 + 1106726149976610x5x5 — 15188802x3x; + 11658438494227425x x5
— 302031801287456x5x; — 6x3x; — 2982955494854578697x5 + 34873482038112303x]x,
+ 30252411978x5x% — 38859097616298524x] — 361023x5x, + x5.

fs(x1, %2) = 1591619472413x3 — 673417059x%x, + 695664x,x5 — 508x3

fo(X1,X2) = 16613x38 — 2740x)” — 12419798x1x)° + 6437x)° + 3582232x,x3% + 2746x)° + 195256368 1x2x)2
— 1467646x,x)° + 508x)* — 885502736x%x)! — 977636x,X)* + 108700209375x3% — 58319519x%x)°
— 228600x;x)! — 46834562944x3x5 + 88713464x3x5 + 13105756970066x7x5 — 30599270332x3x;
+ 30109256x%x5 + 623044982020x7x; — 10387555930x3x5 — 1016x3x], + 275372079901108x7x;
— 605624249977x1x; — 1150332004x3x; — 18962869580694x3x5 — 129176285888x7x3 — 504952x3x;
+ 3482432688234375x5 — 8645033171511x3x, + 7759907085x}x% — 2585419862778x]
— 4626150x7x, + 508x].

fa(x1, %2) = %32 — 16x,%3° + 120x2x3°% + 61940x3x5° 4 11001820x7x3* 4+ 161289382x7x3% — 983098242x5x%°
+ 268005051060x]x, + 51939536575370x3x;° + 1353401803363560x]x;* — 4882812500000} x}°
+ 11460450030186133x]°x;* — 170898437500000x3x,> — 288506391460948118x] 'x,°
+ 574340820312500x1%1" 4 46321239729393454945x1%x5 + 149096679687500000x1 x5
+ 1300907094338145405690x}°x5 — 9101544189453125000x}%x5 + 1134304694512821093870x}*x3
— 91102025756835937500x}°x; — 511379634409195284987516x;°x3 + 3738908596801757812500x]x3
+ 26203247522421338446550001x;° + 120819541926269531250000x1°x,
— 23283064365386962890625x;°.

fo(x1,%2) = 669124x5° — x)? — 134152x,x)> + 5088x%x,° + 164x3x; + X7.

40 _ 39 35, 4,20 , 8
fo(X1,X%2) = 5%, — X537 4+ X1X5” + X7X5" + X7,

frolx1, %) = —5x30 + x20 — 742024584461x,x2° + 7683405853352x1x)% — 37988459635463x,x,° + 116162290454294x, X’
— 244084938363007xx,° + 365869703752040x;x,> — 397726639601195x;x,* + 311055201529068x;x,>
— 173145728975362x,x)> — 410519306272480779333x3x," 4- 68741967824024x,x}'
+ 2166842986886772629632x2x5 — 19684811300898x,x.0 — 4739724078829277416759x2x5
+ 4119511886657x,x5 + 3272371230339620137063x%x) — 636885234774x1X5
+ 5858951312742883334666x2x5 + 73211082962x,x; — 16713174075248406179379x°x;
— 6262657946x,x5 4 11383535436314356906698x2x; + 396213107xx; + 1073292744115136447588x3x]
— 18252147x;x; — 11088154724678475021581x3x3 -+ 594220x,X3 — 57068882708944144620962820001x3
— 1555468653865985432600x3x; — 12941x,X3 + 732762343885049481905%2 + 169%;x, — X1.
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