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a b s t r a c t

In this paper, we first summarize the algorithm presented in Blasco and Pérez-Díaz
(2014) for computing the generalized asymptotes of algebraic curves implicitly defined.
This algorithm is based on the computation of Puiseux series. The main and very
important contribution of this paper is a new and efficient method that allows to easily
compute all the generalized asymptotes of an algebraic plane curve implicitly defined by
just solving a triangular system of equations. The method can be easily generalized to
the case of algebraic curves implicitly defined in the n-dimensional space.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

An algebraic curve may have more general curves than lines describing the status of a branch at the points with
ufficiently large coordinates. Intuitively speaking, we say that a curve C̃ is a generalized asymptote (or g-asymptote) of
nother curve C if the distance between C̃ and C tends to zero as they tend to infinity, and C cannot be approached

by a new curve of lower degree. This notion, introduced and studied by S. Pérez-Díaz in some previous papers [1–3],
generalizes the classical concept of an asymptote of a curve C defined as a line such that the distance between C and the
line approaches zero as they tend to infinity (see e.g. [4–6]).

Generalized asymptotes contain much of the information about the behavior of the curves in the large and additionally
they are an important tool for instance, for sketching its graph. This motivates our interest in efficiently computing these
entities and some important and efficient algorithms for the case of curves parametrically defined are presented in [7,8].
Additionally, some important properties concerning generalized asymptotes for implicit algebraic curves are obtained
in [9] and a initial generalization for surfaces of these new concepts are presented in [10].

However, although the implicit case for algebraic curves is studied in [2,3] no efficient methods of computation are
provided. More precisely, the algorithm presented in [2] is based on the computation of all the infinity branches by means
of Puiseux series which turns to be very expensive and inefficient. For this purpose, the great contribution of this paper
is a new and efficient method that allows to easily compute all the generalized asymptotes of an algebraic curve implicitly
defined by just solving a triangular system of equations constructed from the polynomials defining the input curve.

In Section 2, we recall the theory of infinity branches and introduce the notions of convergent branches (branches that
get closer as they tend to infinity) and approaching curves (see [1]). Section 3 provides the fundamental concepts of perfect
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curve (a curve of degree d that cannot be approached by any curve of degree less than d) and g-asymptote (a perfect curve
that approaches another curve at an infinity branch), and we present an algorithm which is developed in [1,3], which
is based on the computation of Puiseux series, that returns all the asymptotes of a given curve implicitly defined (see
Section 3.1).

In Section 4, we develop a new and very efficient method that allows to easily compute all the generalized asymptotes
of an implicitly defined algebraic curve by only determining the solutions of a triangular system of equations constructed
from the implicit polynomial. The results presented are concerned with algebraic plane curves but, as we remark in
the paper, they can trivially be adapted for dealing with algebraic curves in n-dimensional space (see Example 4). The
method proposed implies the computation of roots of some univariate polynomials, which sometimes may require the
use of algebraic numbers. For this reason, we have included an example that shows how to overcome this problem by
using conjugate points and polynomial remainders (see Example 5). In Section 4.1, we show the advantage of the new
algorithm and we report running times for the algorithm presented and the previous algorithm presented in Section 3.1.
For this purpose, we consider ten input curves defined implicitly. Finally, a section of conclusions and future work is
presented (see Section 5).

2. Notation and previous results

In this section, we introduce the notion of infinity branch, convergent branches and approaching curves, and we present
some properties which allow us to compare the behavior of two implicit algebraic plane curves at infinity. For more details
on these concepts and results, we refer to [2] (Sections 3 and 4).

Let C be an irreducible algebraic affine plane curve over C defined by the irreducible polynomial f (x, y) ∈ R[x, y]. C∗

denotes its corresponding projective curve defined by the homogeneous polynomial

F (x, y, z) = fd(x, y) + zfd−1(x, y) + z2fd−2(x, y) + · · · + zdf0 ∈ R[x, y, z],

where d := deg(C) and fj(x, y) are the homogeneous forms of degree j, for j = 0, . . . , d. Throughout the paper, we assume
that (0:1:0) is not an infinity point of C∗ (otherwise, we may consider a linear change of coordinates).

In order to get the infinity branches of C, we consider the curve defined by the polynomial g(y, z) = F (1 : y : z) and
we compute the series expansion for the solutions of g(y, z) = 0 around z = 0. There exist exactly degy(g) solutions
given by different Puiseux series that can be grouped into conjugacy classes. More precisely, if ϕ(z) = m + a1zN1/N

+

a2zN2/N
+ a3zN3/N

+ · · · ∈ C⟨⟨z⟩⟩, ai ̸= 0, ∀i ∈ N, where N ∈ N, Ni ∈ N, i ∈ N, and 0 < N1 < N2 < · · · , is
a Puiseux series such that g(ϕ(z), z) = 0, and ν(ϕ) = N (N is the called ramification index of ϕ), the series ϕj(z) =

m + a1c
N1
j zN1/N

+ a2c
N2
j zN2/N

+ a3c
N3
j zN3/N

+ · · · , where cNj = 1, j ∈ {1, . . . ,N}, are called the conjugates of ϕ. The set of
all the conjugates of ϕ is called the conjugacy class of ϕ and it contains ν(ϕ) different series.

Since g(ϕ(z), z) = 0 in some neighborhood of z = 0 where ϕ(z) converges, there exists M ∈ R+ such that
F (1 : ϕ(t) : t) = g(ϕ(t), t) = 0 for t ∈ C and |t| < M , which implies that F (t−1

: t−1ϕ(t) : 1) = f (t−1, t−1ϕ(t)) = 0, for
t ∈ C and 0 < |t| < M . We set t−1

= z, and we obtain that f (z, r(z)) = 0 for z ∈ C and |z| > M−1 where

r(z) = zϕ(z−1) = mz + a1z1−N1/N
+ a2z1−N2/N

+ a3z1−N3/N
+ · · · , ai ̸= 0, ∀i ∈ N

N,Ni ∈ N, i ∈ N, and 0 < N1 < N2 < · · · .
One may reason similarly with the N different series in the conjugacy class, ϕ1, . . . , ϕN . Since in [2], we prove that all

the results hold independently on the chosen series in the conjugacy class in the following, we consider any representant
in the conjugacy class and we introduce the following definition.

Definition 1. An infinity branch of a plane curve C associated to the infinity point P = (1 : m : 0), m ∈ C, is a set
B = {(z, r(z)) ∈ C2

: z ∈ C, |z| > M}, M ∈ R+,

r(z) = zϕ(z−1) = mz + a1z1−N1/N
+ a2z1−N2/N

+ a3z1−N3/N
+ · · · , (2.1)

where N,Ni ∈ N, i ∈ N, and 0 < N1 < N2 < · · · .

Now, we introduce the notions of convergent branches and approaching curves. Intuitively speaking, two infinity
branches converge if they get closer as they tend to infinity. This concept will allow us to analyze whether two curves
approach each other.

Definition 2. Two infinity branches, B = {(z, r(z)) ∈ C2
: z ∈ C, |z| > M} ⊂ B and B = {(z, r(z)) ∈ C2

: z ∈ C, |z| >

M} ⊂ B, are convergent if limz→∞(r(z) − r(z)) = 0.

Theorem 1 provides a characterization for the convergence of two infinity branches.

Theorem 1. Two branches B = {(z, r(z)) ∈ C2
: z ∈ C, |z| > M} and B = {(z, r(z)) ∈ C2

: z ∈ C, |z| > M} are convergent
f and only if the terms with non negative exponent in the series r(z) and r(z) are the same. Hence, two convergent infinity
ranches are associated to the same infinity point.
2
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This paper is concerned with the study of the asymptotes of an implicit algebraic curve. The classical concept of
symptote has to be with a line that approaches a given curve at the infinity. In the following we generalize this idea

in the sense that two curves approach each other if they have two infinity branches that converge (see Definition 3 and
Theorem 2 below).

Definition 3. Let C be an algebraic plane curve with an infinity branch B. We say that a curve C approaches C at B if
limz→∞ d((z, r(z)), C) = 0.

Theorem 2. Let C be a plane algebraic curve with an infinity branch B. A plane algebraic curve C approaches C at B if and
nly if C has an infinity branch, B, such that B and B are convergent.

It is clear that C1 approaches C2 if and only if C2 approaches C1. When it happens, we say that C1 and C2 are approaching
urves or that they approach each other. In the next section we use this concept to generalize the classical notion of
symptote of a curve.

. Asymptotes of an algebraic curve

Let C be an algebraic plane curve and B an infinity branch of C. In Section 2, we have described how C can be approached
t B by a second curve C. Let us assume that deg(C) < deg(C). Then, one may say that C degenerates since it behaves at
nfinity as a curve of smaller degree. For instance, a hyperbola is a curve of degree two that has two real asymptotes,
hich implies that the hyperbola degenerates, at infinity, to two lines. Similarly, an ellipse has two asymptotes that, in
his case, are complex lines. However, the asymptotic behavior of a parabola is different since it cannot be approached at
nfinity by any line. This motivates the definition of perfect curve.

efinition 4. An algebraic curve of degree d is a perfect curve if it cannot be approached by any curve of degree less
han d.

A curve that is not perfect can be approached by other curves of smaller degree. If these curves are perfect, we call
hem g-asymptotes.

efinition 5. Let C be a curve with an infinity branch B. A g-asymptote (generalized asymptote) of C at B is a perfect
curve that approaches C at B.

The notion of g-asymptote is similar (in fact it is a generalization) to the classical concept of asymptote. The difference
is that a g-asymptote is not necessarily a line, but a perfect curve (see Definition 4). Throughout the paper we refer
sometimes to g-asymptote simply as asymptote.

We remark that the degree of an g-asymptote is less than or equal to the degree of the curve it approaches. In fact, a
g-asymptote of a curve C at a branch B has minimal degree among all the curves that approach C at B.

In Section 3.1, we show that every infinity branch of a given algebraic plane curve implicitly defined has, at least, one
asymptote and we show how to compute it. For this purpose, we rewrite Eq. (2.1) defining a branch B (see Definition 1)
as

r(z) = mz + a1z1−n1/n
+ · · · + akz1−nk/n + ak+1z1−Nk+1/N

+ · · · (3.1)

here 0 < N1 < · · · < Nk ≤ N < Nk+1 < · · · and gcd(N,N1, . . . ,Nk) = b, N = n · b, Nj = nj · b, j ∈ {1, . . . , k}. That
s, we simplify the non negative exponents such that gcd(n, n1, . . . , nk) = 1. Note that 0 < n1 < n2 < · · · , and nk ≤ n,
nd N < Nk+1, i.e. the terms ajz1−Nj/N with j ≥ k+ 1 are those which have negative exponent. We denote these terms as
(z) :=

∑
∞

ℓ=k+1 aℓz−qℓ , where qℓ = 1 − Nℓ/N ∈ Q+, ℓ ≥ k + 1.
Under these conditions, we say that n is the degree of B, and we denote it by deg(B).

.1. Construction of a g-asymptote

Taking into account Theorems 1 and 2, we have that any curve C approaching C at B should have an infinity branch
B = {(z, r(z)) ∈ C2

: z ∈ C, |z| > M} such that the terms with non negative exponent in r(z) and r(z) are the same. In
he simplest case, if A = 0 (there are no terms with negative exponent, see Eq. (3.1)), we get

r̃(z) = mz + a1z1−n1/n
+ a2z1−n2/n

+ · · · + akz1−nk/n, (3.2)

here a1, a2, . . . ∈ C \ {0}, m ∈ C, n, n1, n2 . . . ∈ N, gcd(n, n1, . . . , nk) = 1, and 0 < n1 < n2 < · · · . Note that r̃ has the
ame terms with non negative exponent as r , and r̃ does not have terms with negative exponent.
Let C̃ be the plane curve containing the branch B̃ = {(z, r̃(z)) ∈ C2

: z ∈ C, |z| > M̃} (note that C̃ is unique since two
ifferent irreducible algebraic curves have finitely many common points). Observe that

Q̃(t) = (tn,mtn + a tn−n1 + · · · + a tn−nk ) ∈ C[t]2,
1 k

3
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where n, n1, . . . , nk ∈ N, gcd(n, n1, . . . , nk) = 1, and 0 < n1 < · · · < nk, is a polynomial parametrization of C̃, and it is
proper (see Lemma 3 in [1]). In Theorem 2 in [1], we prove that C̃ is a g-asymptote of C at B.

From this construction, we obtain the following algorithm that computes an asymptote for each infinity branch of a
given plane curve. We illustrate it with an example. We assume that we have prepared the input curve C, by means of a
uitable linear change of coordinates, such that (0:1:0) is not an infinity point of C.

lgorithm Asymptotes Construction-Implicit Case.
Given a plane curve C implicitly defined by an irreducible polynomial f (x, y) ∈ R[x, y], the algorithm computes one

symptote for each of its infinity branches.
. Compute the infinity points of C. Let P1, . . . , Pn be these points.
. For each Pi := (1 : mi : 0) do:

2.1. Compute the infinity branches of C associated to Pi. Let Bij = {(z, rij(z)) ∈ C2
: z ∈ C, |z| > Mij}, j ∈ {1, . . . , si}, be

these branches, where rij is written as in Eq. (3.1). That is,

rij(z) = miz + a1,i,jz1−n1,i,j/nij + · · · + akij,i,jz
1−nkij,i,j/nij + Aij(z),

Aij(z) =

∞∑
ℓ=kij+1

aℓ,i,jz−qℓ,i,j , qℓ,i,j = 1 − Nℓ,i,j/Nij ∈ Q+, ℓ ≥ kij + 1,

a1,i,j, a2,i,j, . . . ∈ C \ {0}, nij, n1,i,j, . . . ∈ N, 0 < n1,i,j < n2,i,j < · · · , nkij ≤ nij, Nij < nkij+1, and
gcd(nij, n1,i,j, . . . , nkij,i,j) = 1.

2.2. For each branch Bij, j ∈ {1, . . . , si} do:

2.2.1. Consider r̃ij as in Eq. (3.2). That is,

r̃ij(z) = miz + a1,i,jz1−n1,i,j/nij + · · · + akij,i,jz
1−nkij,i,j/nij

Note that r̃ij has the same terms with non negative exponent as rij, and r̃ij does not have terms with negative
exponent.

2.2.2. Return the asymptote C̃ij defined by the proper parametrization Q̃ij(t) = (tnij , r̃ij(tnij )) ∈ C[t]2.

Example 1. Let C be the curve of degree d = 6 defined by the irreducible polynomial f (x, y) = −9xy5 + 2y6 − 144x3y2 −

00x2y3 +159xy4 −24y5 −360x3y+2872x2y2 −929xy3 +53y4 −225x3 +9303x2y+2855xy2 +114y3 +6360x2 +4966xy+

08y2 − 508x ∈ R[x, y].
We apply algorithm Asymptotes Construction-Implicit Case to compute the asymptotes of C.

tep 1: The infinity points are P1 = (1 : 0 : 0) and P2 = (2 : 9 : 0).
We first consider P1:

Step 2.1: There are three branches associated to P1, B1j = {(z, r1j(z)) ∈ C2
: z ∈ C, |z| > M1}, j = 1, 2, 3, where

r11(z) = −5/4 + 207/128z−1
− 19757/8192z−2

+ 4386031/1048576z−3
· · · ,

r12(z) = −5/4 + 121/1152z−1
− 6413/663552z−2

+ 958441/764411904z−3
+ · · · ,

r13(z) = 19/6 + z1/3162/3
− z2/3161/3

+ 5/96z−1/3164/3
+ 437/36864z−2/3165/3

+ 1/2z−1
+ · · ·

(we compute r1j, j = 1, 2, 3, using the algcurves package included in the computer algebra system Maple; in particular,
we use the command puiseux).

Step 2.2.1: We compute r̃1j(z), j = 1, 2, 3, and we have that

r̃11(z) = −5/4, r̃12(z) = −5/4, r̃13(z) = 19/6 + z1/3162/3
− z2/3161/3.

Step 2.2.2: The parametrizations of the asymptotes C̃j, j = 1, 2, 3, are given by

Q̃1(t) = (t, −5/4), Q̃2(t) = (t, −5/4), Q̃3(t) = (t3, 19/6 + 162/3t − 162/3t2).

ote that the curve C̃1 is the same than the curve C̃2. One may compute the polynomial defining implicitly C̃3 (apply
.g. Chapter 4 in [11]), and we have that

f̃1(x, y) = −216y3 − 3456x2 − 10368xy + 2052y2 + 88128x − 6498y + 6859 ∈ R[x, y].

Now, we analyze the point P2:

tep 2.1: We have only one infinity branch associated to P2 is B2 = {(z, r2(z)) ∈ C2
: z ∈ C, |z| > M2}, where

2(z) = 5 + 9/2z − 29/9z−1
+ 16/81z−2

− 5230/729z−3
+ · · · .

tep 2.2.1: We obtain that r̃2(z) = 5 + 9/2z.

tep 2.2.2: The parametrization of the asymptote C̃4 is given by Q̃4(t) = (t, 5 + 9/2t) ∈ R[t]2. One may compute the
olynomial defining implicitly C̃ , and we have f̃ (x, y) = 9x + 10 − 2y ∈ R[x, y].
4 4

4
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Fig. 1. Curve C (left), and curve and asymptotes (right).

In Fig. 1, we plot the curve C, and the asymptotes C̃1, C̃3 and C̃4.

. New efficient method for the implicit algebraic curves

In this section, we present an improvement of the method described above, which avoids the computation of infinity
ranches and Puiseux series. Instead, we simply have to determine the solutions of a triangular system of equations
onstructed from the implicit polynomial.
The results presented are concerned with algebraic plane curves but, as we remark, they can trivially be adapted for

ealing with algebraic curves in n-dimensional space (see Example 4).
We recall that we are assuming that (0:1:0) is not an infinity point; otherwise, we consider a change of coordinates.
We start with the main theorem that provides a constructive method for determining all the asymptotes associated

o the infinity points.

heorem 3. Let C be a plane algebraic curve defined by the irreducible polynomial f (x, y) ∈ R[x, y] of degree d. The
g-asymptotes of C are defined by the parametrizations

Q̃(t) = (tk, b0tk + b1tk−1
+ · · · + bk), 1 ≤ k ≤ d

with bi ∈ C, i = 0, . . . , k satisfying that

Λi(b0, . . . , bi) = 0, i = 0, . . . , k, Λi(b0, . . . , bk) = 0, i = k + 1, . . . , u, u ≥ k + 1

where f (Q̃(t)) =

Λ0(b0)td·k + Λ1(b0, b1)td·k−s1 + · · · + Λu(b0, b1, . . . , bk)td·k−su +

v∑
j=u+1

Λj(b0, b1, . . . , bk)td·k−sj

0 < s1 < s2 < · · · < sv ≤ d · k, sj ∈ N, j = 1, . . . , v. Furthermore, b0 = m is a root of Λ0(b0) = 0 if and only if (1 : m : 0) is
an infinity point.

Proof. The idea of the proof is that given a branch, the substitution in the implicit function f (x, y) must converge at
infinity and this implies that the terms of positive exponents of this substitutions must be 0 (see equality (4.1)). We do
not use the complete branch (because in reality this branch cannot be calculated in its entirety) but the truncated branch,
and from it and its substitution in f (x, y), we obtain certain coefficients that must be zero (see equality (4.3)).

For this purpose, we first recall that B = {(z, r(z)) ∈ C2
: z ∈ C, |z| > M}, M ∈ R+, and

r(z) = zϕ(z−1) = b z + b z1−N1/N
+ b z1−N2/N

+ b z1−N3/N
+ · · ·
0 1 2 3

5
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where N,Ni ∈ N, i ∈ N, 0 < N1 < · · · < Nk = N < Nk+1 < · · · ,

ϕ(z) = b0 + b1zN1/N
+ b2zN2/N

+ b3zN3/N
+ · · · .

Let

γ (z) = ϕ(zN ) = b0 + b1zN1 + b2zN2 + b3zN3 + · · ·

and Γ (z, w) be the homogenization of γ (z). It holds that F (zN , zNγ (z−1), 1) =

F (zN , b0zN + b1zN−N1 + b2zN−N2 + b3zN−N3 + · · · + bk + bk+1zN−Nk+1 + · · · , 1) = 0

which is equivalent to

F (1, Γ (1, w), wN ) = F (1, b0 + b1wN1 + b2wN2 + · · · + bkwN
+ bk+1w

Nk+1 + · · · , wN ) = 0 (4.1)

where N − Nj ≥ 0, j = 1, . . . , k and N − Nj < 0, j ≥ k + 1. Let us denote

E1(w) := F (1, Γ (1, w), wN ).

Now, we consider the truncated branch. More precisely, let

r⋆(z) = b0zN + b1zN−N1 + b2zN−N2 + · · · + bk

and R⋆(z, w) its homogenization (note that r⋆(z) provides the same asymptote than considering the polynomial r̃(z), see
Eq. (3.2), except that possibly the asymptote is not proper since gcd(N,N1, . . . ,Nk) = b and we have not simplified the
non negative exponents; see Eq. (3.1)). Then, we consider the polynomial F (zN , R⋆(z, w), wN ) (which is not identically
zero since we have truncated the branch), and let

E2(w) := F (1, R⋆(1, w), wN ) = F (1, b0 + b1wN1 + b2wN2 + · · · + bkwN , wN ). (4.2)

Finally, we consider the previous equality in the affine chart,

E3(z) := F (zN , r⋆(z), 1) = f (zN , b0zN + b1zN−N1 + b2zN−N2 + · · · + bk) =

Λ0(b0)zN·d
+ Λ1(b0, b1)zN·d−s1 + · · · + Λu(b0, b1, . . . , bk)zN·d−su +

v∑
j=u+1

Λj(b0, b1, . . . , bk)zN d−sj (4.3)

0 < s1 < s2 < · · · < sv ≤ N · d, sj ∈ N, j = 1, . . . , v.

Now, from equalities (4.1) and (4.2), we get the coefficients Λi in equality (4.3) that are the numbers we are looking
for constructing the asymptote Q̃ introduced in the statement of the theorem. More precisely, we observe that equalities
(4.1) and (4.2) can be written as

E2(w) = Λ0(b0) + Λ1(b0, b1)ws1 + · · · + Λu(b0, b1, . . . , bk)wsu + · · · + Λv(b0, b1, . . . , bk)wsv

0 = E1(w) = E2(w) + Λv+1(b0, b1, . . . , bk)wsv+1 + · · · ,

where 0 < s1 < s2 < · · · , sj ∈ N. Hence,

Λ0(b0) = Λ1(b0, b1) = · · · = Λj(b0, b1, . . . , bk) = 0, j = 1, . . . , v.

Note that we show that all Λj(b0, b1, . . . , bk) = 0, j = 1, . . . , v. However, some equations may become redundant and
that a subset of equations up to index u ≤ v may be enough.

Finally, we observe that

0 = F (1, ϕ(0), 0) = F (1, Γ (1, 0), 0) = F (1, R⋆(1, 0), 0) = F (1, b0, 0)

which is equivalent to 0 = E1(0) = E2(0) = Λ0(b0). From this equation, we obtain the values of b0 and we deduce that
b0 = m is a root of Λ0(b0) = 0 if and only if (1 : m : 0) is an infinity point. □

Remark 1. Since each root of Λ0(b0) = 0 provides an infinity point then, for each root of Λ0(b0) = 0, we get the infinity
branches associated to this infinity point and then, the corresponding asymptotes.

We note that redundant equations are obtained (some Λi0 could be identically zero) and that is why additional
equations (Λi(b0, . . . , bk) = 0, i = k + 1, . . . , u, u ≥ k + 1) must be considered until all the indeterminate coefficients
can be computed. The authors have not been able to determine the exact value of u that would fix the number of
equations to consider. Although it is known that u is intimately related to the possible singular character of the infinity
point, it is left as a future work to be able to determine the exact number u and therefore, the exact equations to be

considered.
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Remark 2.

1. Note that we do not know the degree of the asymptote but a bound (1 ≤ k ≤ d). Therefore, in order to compute
the parametrization of the asymptote Q̃(t), we can start with k = d and the constructive method presented in
Theorem 3 provides the proper parametrizations of the asymptotes of degree d (if they exist) and all the non-
proper parametrizations of the asymptotes of degree k⋆

∈ N, where k⋆ divides d (if they exist). In this case, a
reparametrization of the original parametrization provides a proper parametrization of these asymptotes of degree
k⋆

∈ N. Afterward, one repeat the process with 2 ≤ k ≤ d − 1, and k ̸∈ {k⋆, d}. Also we can reason as we suggest in
the following statement.
In order to reparametrize properly a rational parametrization of an algebraic curve one may apply the method
presented in [12].

2. Let fd(x, y) = (y − mx)ℓ
∏κ

i=1(y − mix)ℓi . We consider the factor (y − mx)ℓ that provides the infinity point (1 : m : 0)
(we reason similarly for the factors (y − mix)ℓi , i = 1, . . . , κ). It holds that ℓ = n1 + · · · + nr , where r are the
number of branches associated to (1 : m : 0), and ni is the degree of each asymptote obtained from each branch
(see [2,7]). We can know in advance the number of branches r (use, for instance, the algcurves package included in
the computer algebra system Maple) and then we have a bound for ni. More precisely, if n1 ≤ n2 ≤ · · · ≤ nr , we
have that

n1 ≤ ⌊ℓ/r⌋ ≤ nr .

Hence, in order to apply the constructive method presented in Theorem 3, one consider first asymptotes of degree
⌊ℓ/r⌋ and we determine, at least, one asymptote of degree n1. Once we have n1, we compute n2 reasoning as before
and considering ℓ − n1 = n2 + · · · + nr . Observe that in this case, we obtain proper parametrizations defining the
asymptotes (see [1]).
Finally, we note that if ℓ = 1 then r = 1 and ni = 1.

In the following, we introduce the Algorithm Improvement Asymptotes Construction-Implicit Case I, which uses the
bove results for computing the g-asymptotes of a plane curve. In fact, we apply Remark 1 and statement 2 in Remark 2,
nd we compute the number of branches for each infinity point.
Recall that we have assumed that (0:1:0) is not an infinity point; otherwise, we consider a change of coordinates and

fterward we undo it in the obtained parametrization of the asymptote.

lgorithm Improvement Asymptotes Construction-Implicit Case I.
Given an irreducible algebraic plane curve C defined by a polynomial f (x, y) ∈ R[x, y] of degree d, the algorithm outputs

ll the asymptotes of C.
. Compute the homogeneous form of maximum degree of F (x, y, z). Let fd(x, y) =

∏κ

i=1(y−mix)ℓi . The infinity points are
i = (1 : mi : 0), i = 1, . . . , κ .
. For each Pi := (1 : mi : 0) do: determine the number of branches, ri, associated to Pi and let ℓ := ℓi and r := ri.

2.1. Consider k := ⌊ℓ/r⌋ and

Q̃(t) = (tk, mitk + b1tk−1
+ · · · + bk),

where bi ∈ C, i = 1, . . . , k are undetermined coefficients. Compute f (Q̃(t)) =

Λ0(b0)td·k + Λ1(b0, b1)td·k−s1 + · · · + Λu(b0, b1, . . . , bk)td·k−su +

v∑
j=u+1

Λu(b0, b1, . . . , bk)td·k−sj .

(Note that Λ0(mi) = 0).
2.2. Solve the triangular system of equation

Λi(b0, . . . , bi) = 0, i = 0, . . . , k, Λi(b0, . . . , bk) = 0, i = k + 1, . . . , u

and substitute the solutions in Q̃(t). Let Q̃ij(t), j = 1, . . . , h be these reparametrizations and deg(Q̃ij) = nj.
2.3. If h < ri let ℓ := ℓ − n1 − · · · − nh and r := r − h and go to Step 2.1. Otherwise, go to Step 3.

3. Return the asymptotes defined by all the proper parametrizations Q̃ij(t), j = 1, . . . , ri, i = 1, . . . , κ .
By applying Algorithm Improvement Asymptotes Construction-Implicit Case I, we can easily obtain all the g-asymptotes

of any plane curve, as the following example shows.

Example 2. Consider the plane curve C introduced in Example 1 and defined by the irreducible polynomial
f (x, y) = −9xy5 +2y6 −144x3y2 −400x2y3 +159xy4 −24y5 −360x3y+2872x2y2 −929xy3 +53y4 −225x3 +9303x2y+

2855xy2 + 114y3 + 6360x2 + 4966xy + 508y2 − 508x ∈ R[x, y].
We apply Algorithm Improvement Asymptotes Construction-Implicit Case I.

Step 1: The homogeneous form of maximum degree of F (x, y, z) is −y5(9x − 2y). Hence, the infinity points are P1 = (1 :

0 : 0) and P = (1 : 9/2 : 0).
2
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Step 2: We start with the infinity point P1 (which is a singular point) that has three branches, i.e. r1 = 3 and ℓ1 = 5.

2.1. We have that k = 1, and thus we consider Q̃(t) = (t, b1), where b1 is an undetermined coefficient. Compute f (Q̃(t)).
2.2. Solve the equation obtained from the first non-zero coefficient of maximum degree of the above polynomial. We get a

double root b1 = −5/4 and thus, we have one (double) asymptote of degree 1 defined by the proper parametrization

Q̃11(t) = (t, −5/4).

2.3 We go to Step 2.1 with k = 3. Reasoning similarly, we get an asymptote of degree 3 defined by the proper
parametrization

Q̃12(t) = (t3, −2 · 21/3t2 + 4 · 22/3t + 19/6).

We may compute the implicit polynomial defining this asymptote and we have that 6859/216 + 408x − 16x2 −

48xy − y3 + 19/2y2 − 361/12y (see Chapter 4 in [11]).

Step 2: We reason with the infinity point P2 which is a simple point. Thus, we have one only branch of degree one.

2.1. Consider Q̃(t) = (t, 9/2t + b1), where b1 is an undetermined coefficient. Compute f (Q̃(t)).
2.2. Solve the equation obtained from the first non-zero coefficient of maximum degree of the above polynomial. We

get

59049/16b1 − 295245/16 = 0 ⇒ b1 = 5.

We substitute the solution in Q̃(t) and we get the proper parametrization

Q̃21(t) = (t, 9/2t + 5).

Step 3: The asymptotes of the input curve C are defined by the proper parametrizations

Q̃11(t) = (t, −5/4), Q̃12(t) = (t3, −2 · 21/3t2 + 4 · 22/3t + 19/6), and Q̃21(t) = (t, 9/2t + 5).

The input curve, C, and its three asymptotes have been plotted in Fig. 1.

Additionally to the previous algorithm, we present Algorithm Improvement Asymptotes Construction-Implicit Case II,
here we do not need to compute the number of branches. That is, we apply statement 1 in Remark 2.

lgorithm Improvement Asymptotes Construction-Implicit Case II.
Given an irreducible algebraic plane curve C defined by a polynomial f (x, y) ∈ R[x, y] of degree d and L = {∅}, the

lgorithm outputs all the asymptotes of C.
. Set k = d and do:

1.1. Consider

Q̃(t) = (tk, b0tk + b1tk−1
+ · · · + bk),

where bi ∈ C, i = 0, . . . , k are undetermined coefficients and f (Q̃(t)) =

Λ0(b0)td·k + Λ1(b0, b1)td·k−s1 + · · · + Λu(b0, b1, . . . , bk)td·k−su +

v∑
j=u+1

Λj(b0, b1, . . . , bk)td·k−sj .

1.2. Solve the triangular system of equation

Λi(b0, . . . , bi) = 0, i = 0, . . . , k, Λi(b0, . . . , bk) = 0, i = k + 1, . . . , u

and substitute the solutions in Q̃(t).
1.3. Reparametrize properly Q̃(t) (apply [12]). Let Q̃ij(t) be the proper reparametrizations obtained of degree kij and

associated to the infinity points (1 : mi : 0) (recall that each mi is a different root of Λ0(b0)).
1.4. Let L = {L ∪ Q̃ij(t)}.

2. Go to Step 1. and consider 2 ≤ k ≤ d − 1, such that k ̸∈ {kij, d}. Repeat this step till such a k does not exists and then,
go to Step 3.
3. Return the asymptotes defined by all the proper parametrizations given in the set L.

In the following example, we apply Algorithm Improvement Asymptotes Construction-Implicit Case II to compute all
the g-asymptotes of the plane algebraic curve introduced in Example 1.

Example 3. We consider the curve C of degree d = 6 of Example 1 defined by the polynomial
f (x, y) = −9xy5 +2y6 −144x3y2 −400x2y3 +159xy4 −24y5 −360x3y+2872x2y2 −929xy3 +53y4 −225x3 +9303x2y+

2 3 2 2
2855xy + 114y + 6360x + 4966xy + 508y − 508x ∈ R[x, y].

8
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We apply algorithm Improvement Asymptotes Construction-Implicit Case II. Let L = {∅}.

tep 1: Set k = 6.

1.1. Consider Q̃(t) = (t6, b0t6 + b1t5 + · · · + b6), and

f (Q̃(t)) =

6∑
j=0

Λj(b0, . . . , bj)td·k−j
+

36∑
j=7

Λj(b0, . . . , b6)td·k−j.

1.2. We solve the triangular system of equations

Λi(b0, . . . , b6) = 0, i = 0, . . . , ℓ

for some ℓ ∈ N such that we get all the solutions for the parameters bj, j = 1, . . . , 6. More precisely we have that

Λ0(b0) = b50(2b0 − 9) = 0 ⇒ b0 = 0, b0 = 9/2.

Note that every value of b0 provide the infinity points P1 = (1 : 0 : 0) and P2 = (1 : 9/2 : 0).

1.2.1 We first compute the asymptotes for P1 = (1 : 0 : 0) (i.e. b0 = 0). We have that Λi(0, b1, . . . , b4) = 0, i =

1, . . . , 4, and

Λ5(0, b1, . . . , b5) = −9b51 ⇒ b1 = 0.

Now, we have that Λi(0, 0, b2, . . . , b6) = 0, i = 6, . . . , 9, and Λ10(0, 0, b2, . . . , b6) = −9b22(b
3
2 + 16) ⇒

b2 = 0, b2 = −2 · 21/3, b2 = 21/3
−

√
3 · 21/3I, b2 = 21/3

+
√
3 · 21/3I.

1.2.1.1 Now, we compute the solutions for b0 = b1 = b2 = 0. We have that

Λ12(0, 0, 0, b3, . . . , b6) = −144b23 ⇒ b3 = 0.

Furthermore

Λ14(0, 0, 0, 0, b4, b5, b6) = −144b24 ⇒ b4 = 0,

Λ16(0, 0, 0, 0, 0, b5, b6) = −144b25 ⇒ b5 = 0,

and

Λ18(0, 0, 0, 0, 0, 0, b6) = −9(4b6 + 5)2 ⇒ b6 = −5/4.

We substitute the solutions in Q̃(t) and we get the first asymptote defined by the parametrization
(t6, −5/4). We reparametrize this parametrization properly and we get the proper parametrization
given as

Q̃11(t) = (t, −5/4).

1.2.1.2 Now, we compute the solutions for b0 = b1 = 0 and b2 = −2 · 21/3. We get that

Λ11(0, 0, −2 · 21/3, b3, . . . , b6) = −864 · 21/3b3 ⇒ b3 = 0,

Λ12(0, 0, −2 · 21/3, 0, b4, b5, b6) = 864 · 21/3(4 · 22/3
− b4) ⇒ b4 = 4 · 22/3,

Λ13(0, 0, −2 · 21/3, 0, 4 · 22/3, b5, b6) = −864 · 21/3b5 ⇒ b5 = 0,

Λ14(0, 0, −2 · 21/3, 0, 4 · 22/3, 0, b6) = −144 · 21/3(6b6 − 19) ⇒ b6 = 19/6.

We substitute the solutions in Q̃(t), and we get the second asymptote defined by (t6, 19/6−2 ·21/3t4 +

4 · 22/3t2). We reparametrize properly this parametrization and we get the proper parametrization of
the second asymptote corresponding to the infinity point P1

Q̃12(t) = (t3, 19/6 − 2 · 21/3t2 + 4 · 22/3t).

1.2.1.3 Now, we compute the solutions for b0 = b1 = 0 and b2 = 21/3
−

√
3 · 21/3I . Reasoning as before we get

again the parametrization Q̃12.
1.2.1.4 Now, we compute the solutions for b0 = b1 = 0 and b2 = 21/3

−
√
3 · 21/3I . Reasoning as before we get

again Q̃ .
12
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1.2.2 Now, we compute the asymptotes for P2 = (1 : 9/2 : 0) (i.e. b0 = 9/2). We get the equations

Λ1(9/2, b1) = 0 ⇒ b1 = 0,

Λ2(9/2, 0, b2) = 0 ⇒ b2 = 0,

Λ3(9/2, 0, 0, b3) = 0 ⇒ b3 = 0,

Λ4(9/2, 0, 0, 0, b4) = 0 ⇒ b4 = 0,

Λ5(9/2, 0, 0, 0, 0, b5) = 0 ⇒ b5 = 0,

Λ6(9/2, 0, 0, 0, 0, 0, b6) = 0 ⇒ b6 = 5.

We substitute the solutions in Q̃(t) and we get the third asymptote defined by (t6, 9/2+5t6). We reparametrize
this parametrization properly and we get the proper parametrization given as

Q̃21(t) = (t, 9/2 + 5t).

1.4. Let L = {Q̃11(t), Q̃12(t), Q̃21(t)}.

Step 2: This step does not provide new asymptotes. Observe that we have to check if there exists asymptotes of degree 5,
and 4 (note that these degrees do not divide 6 and thus it would not appear in the previous process). When we consider
k = 5 (similarly for k = 4), we obtain again a non-proper parametrization for the asymptotes of degree 1 obtained in
Step 1.

Step 3: The algorithm returns the asymptotes defined by the proper parametrizations

Q̃11(t) = (t, −5/4), Q̃12(t) = (t3, −2 · 21/3t2 + 4 · 22/3t + 19/6), and Q̃21(t) = (t, 9/2t + 5).

The input curve, C, and its three asymptotes have been plotted in Fig. 1.

The method above described may be trivially adapted for dealing with algebraic curves C in the n-dimensional space
defined by irreducible polynomials fj−1(x1, xj), j = 2, . . . , n. For instance, if n = 3, and we have a curve C defined by the
irreducible polynomials f1(x1, x2) and f2(x1, x3), we can compute the asymptotes defined by the parametrizations

Q̃ = (tk, a0tk + a1tk−1
+ · · · + ak, b0tk + b1tk−1

+ · · · + bk)

by successively applying the algorithm to the first and second component, and then to the first and third component. Note
that as in the planar case, we also must assume that (0 : 1 : 0 : 0) and (0 : 0 : 1 : 0) are not infinity points (otherwise,
we consider a change of coordinates and afterward we undo it in the obtained parametrization of the asymptote).

Observe that a curve C in the n-dimensional space defined by n − 1 polynomials can be assumed to be defined by
irreducible polynomials of the form fj−1(x1, xj), j = 2, . . . , n (see [3]). Example 4 illustrates this idea (see Fig. 2).

Example 4. Let C be the space curve defined by the polynomials

f1(x1, x2) = −9x21x2 + 12x1x22 − 4x32 + 9x21 + 21x1x2 + 9x22 − 6x1 − 6x2 + 1,

f2(x1, x3) = −2x1x23 − 2x33 + 4x21 + 2x1x3.

We apply Algorithm Improvement Asymptotes Construction-Implicit Case I for each plane curve, C1 and C2, defined by
f1(x1, x2) and f2(x1, x3), respectively. We start with C1.

Step 1: The homogeneous form of maximum degree of F1(x1, x2, x4) is x2(3x1 − 2x2)2. Hence, the infinity points are
P11 = (1 : 3/2 : 0) and P12 = (1 : 0 : 0).

Step 2: We start with the simple point P11. Thus, we have one branch of degree two.

2.1. Consider Q̃(t) = (t2, 3/2t2 + b1t1 + b2), where b1, b2 are undetermined coefficients. Compute f1(Q̃(t)).
2.2. Solve the triangular system obtained from the first two non-zero coefficients of maximum degree of the above

polynomial. We get that

243/4 − 6b21 = 0 ⇒ b1 = −9/4
√
2, b1 = 9/4

√
2,

−4b1(b21 + 3b2 − 12) = 0 ⇒ b2 = 5/8.

We substitute the solutions in Q̃(t), and we get the proper parametrization

Q̃ (t) = (t2, 3/2t2 + 9/4
√
2t + 5/8).
11
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Fig. 2. Curve C and asymptote C̃1 (left), curve C and asymptote C̃2 (right).

Step 2: We reason now with the simple point P12. Thus, we have one branch of degree one.

2.1. Consider Q̃(t) = (t, b1), where b1 is an undetermined coefficient. Compute f1(Q̃(t)).
2.2. Solve the equation obtained from the first non-zero coefficient of maximum degree of the above polynomial. We get

that

−9b1 + 9 = 0 ⇒ b1 = 1.

We substitute the solutions in Q̃(t), and we get the proper parametrization

Q̃12(t) = (t, 1).

Now, we reason with the plane curve C2.

tep 1: The homogeneous form of maximum degree of F2(x1, x3, x4) is −2x23(x1 + x3). Hence, the infinity points are
21 = (1 : 0 : 0) and P22 = (1 : −1 : 0).

tep 2: We start with the simple point P21 and reasoning similarly as above, we get the proper parametrization

Q̃21(t) = (t2,
√
2t − 1/2).

Step 2: For the simple point P22, we get the proper parametrization

Q̃22(t) = (t, −t + 1).

tep 3: The asymptotes of the input space curve, C, are defined by the proper rational parametrizations

(t2, 3/2t2 + 9/4
√
2t + 5/8,

√
2t − 1/2), and (t, 1, −t + 1).

We observe that the infinity points of C are (1:0:−1:0) and (1:3/2:0:0). Therefore, the point P11 is associated with the point
P21 (both points provide the infinity point of the input curve (1:0:−1:0)), and the point P12 is associated with the point
P22 (both points provide the infinity point of the input curve (1:3/2:0:0)). We use this remark to combine appropriately
the asymptotes of C1 and C2 to get the asymptotes of C.

Algorithms Improvement Asymptotes Construction-Implicit Case I and II allow us to easily obtain all the generalized
asymptotes of an algebraic curve implicitly defined. However, one has to determine the roots of some given equations,
which may entail certain difficulties if algebraic numbers are involved. For this purpose, we use the notion of conjugate
points (see [11]), which will help us to overcome this problem.

The idea is to collect points whose coordinates depend algebraically on all conjugate roots of the same irreducible
polynomial, say m(t) ∈ R[t]. This will imply that the computations on such families can be carried out by using the
defining polynomial m(t) of these algebraic numbers. That is, one applies the formulae presented in Theorem 3, but
modulo m(t), i.e. we use the polynomial m(t) to carry out the arithmetic by computing polynomial remainders.

The following example shows this method based on the conjugate points to obtain the asymptotes of a plane curve.
11
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Example 5. We consider the algebraic plane curve C defined by the irreducible polynomial f (x, y) = 6xy5+2y6+6x3y2−

70x2y3 − 96xy4 − 24y5 − 30x3y + 992x2y2 + 421xy3 + 53y4 + 75x3 − 4037x2y − 1335xy2 + 114y3 + 8010x2 + 4966xy +

508y2 − 508x ∈ R[x, y].
We apply algorithm Improvement Asymptotes Construction-Implicit Case I.

Step 1: The homogeneous form of maximum degree is 2y5(3x + y) and hence, the infinity points are P1 = (1 : 0 : 0) and
P2 = (1 : −3 : 0).

Step 2: We start with the singular point P1 that has three branches, i.e. r1 = 3 and ℓ1 = 5.

2.1. We have that k = 1, and thus, we consider Q̃(t) = (t, b1), where b1 is an undetermined coefficient. Compute f (Q̃(t)).
2.2. Solve the equation obtained from the first non-zero coefficient of maximum degree of the above polynomial. We

get that b1 = α, where m1(α) = 0 and m1(t) = 6t2 − 30t + 75. Thus, we have two asymptotes, each of degree one,
given by the proper parametrization Q̃11(t) = (t, α), m1(α) = 0.

2.3 We go to Step 2.1 with k = 3. Reasoning similarly as above, we get the asymptote of degree 3 defined by the proper
parametrization Q̃12(t) = (t3, βt2 + 4t/β + 7/3), where m2(β) = 0 and m2(t) = t2 − t + 1. One may check that the
implicit polynomial defining this asymptote is

27y3 + 27x2 − 324xy − 189y2 + 2484x + 441y − 343.

Step 2: Now, we reason with the simple point P2. Thus, we only have one branch of degree one.

2.1. Consider Q̃(t) = (t, −3t + b1), where b1 is an undetermined coefficient. Compute f (Q̃(t)).
2.2. Solve the equation obtained from the first non-zero coefficient of maximum degree of the above polynomial. We

have

−486b1 = 0 ⇒ b1 = 0.

We substitute the solution in Q̃(t) and we get the proper parametrization

Q̃21(t) = (t, −3t).

Step 3: The proper rational parametrizations defining the asymptotes are

Q̃11(t) = (t, α), m1(α) = 0

where m1(t) = 6t2 − 30t + 75,

Q̃12(t) = (t3, βt2 + 4t/β + 7/3), m2(β) = 0

where m2(t) = t2 − t + 1, and

Q̃21(t) = (t, −3t).

4.1. Experimental times

We finish this section by comparing the performance of Algorithm Asymptotes Construction-Implicit Case, presented
in [3] (method 1) and Algorithm Improvement Asymptotes Construction-Implicit Case I (method 2). The performance of
Algorithms Improvement Asymptotes Construction-Implicit Case I and Improvement Asymptotes Construction-Implicit Case
II provides similar results.

We have implemented the algorithms using Maplesoft 2022 on a Lenovo ThinkPad Intel(R) Core(TM) i7-10510UU CPU
@ 2.30 GHz and 16 GB of RAM, OS-Windows 11 Pro. We have run these algorithms on a set of ten arbitrary implicit curves
with different degrees and different numbers of infinity branches (these properties are displayed in the next table). For
each of these curves, we show the degree, the number of monomials, the number of infinity branches, and the running
time (given in seconds of CPU) spent by each of the two methods. All these data are shown in the following table:

Curve Degree Nops Infinity
branches

Method 1 Method 2

C1 8 28 4 0.078 0.062
C2 14 39 6 0.172 0.047
C3 36 29 6 7.093 3.500
C4 24 33 7 3.469 0.031
C5 3 4 3 3.703 4.750
C6 18 34 6 1.625 0.109
C7 32 26 8 18.281 1.125
C8 20 6 2 18.281 0.062
C9 40 5 8 6.954 0.125

C10 30 35 3 7.875 0.047

12
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In order to compare the methods, we have marked in red the longer running time for each curve. We observe that,
n general, the new method (method 2) is better than method 1 which is based on the computation of Puiseux series. In
act, we have noted that we get a significant improvement when we deal with high degree curves having a large number
f monomials and when there exist families of conjugate points.
Note also that these running times are related to the degree of the curve and the number of infinity branches as well

s the number of conjugate points that provide the branches. It makes sense, since the number of coefficients we need
o compute for getting the asymptotes depends on these parameters.

. Conclusion

The main result of this paper, Theorem 3, provides a method to determine the generalized asymptotes of a curve
y only computing the solutions of a triangular system of equations constructed from the implicit polynomial defining
he input algebraic curve. From this theorem, we develop an efficient algorithm which determines all the g-asymptotes
voiding the laborious computation of Puiseux series and infinity branches. In fact, the comparison with the other existing
ethod shows that this one reduces significantly the computation time, specially when we deal with high degree curves
nd when families of conjugate points exist.
Thus, the present paper yields a remarkable improvement of the methodology developed in [3] (see Section 5).

urthermore, this procedure can be trivially applied for dealing with algebraic curves in the n-dimensional space. All
hese techniques are proved to work on several illustrative examples.

As a future work, we aim to extend the notion of g-asymptote to the study of the asymptotic behavior of algebraic
urfaces. We look for surfaces which approach a given one of higher degree, when ‘‘moving to infinity’’, that is, when
ome of the coordinates take infinitely large values. The ideas introduced in this paper might provide the foundations for
fficient methods that allow us to compute those ‘‘asymptotic surfaces’’.
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ppendix

In this appendix, we present the implicit curves used in the study of the algorithms presented in Section 4.1.

f1(x1, x2) = −729x31x
5
2 + 486x21x

6
2 − 108x1x72 + 8x82 − 11664x51x

2
2 − 21384x41x

3
2 + 33102x31x

4
2 − 13615x21x

5
2 + 758x1x62

+ 88x72 − 16200x51x2 + 463374x41x
2
2 − 356142x31x

3
2 + 81460x21x

4
2 + 10019x1x52 + 2717x62 − 2025x51

+ 720963x41x2 + 990531x31x
2
2 + 360506x21x

3
2 + 26086x1x42 − 538x52 + 91170x41 + 151414x31x2

+ 68580x21x
2
2 + 10160x1x32 + 508x42 − 508x31.

f2(x1, x2) = 8683257856x21x
12
2 + 323348480x1x132 + 3010225x142 + 64703758336x21x

11
2 + 862548160x1x122

+ 16170050x132 + 232442176512x21x
10
2 + 48053996x1x112 + 43580990x122 + 528605828352x21x

9
2

− 4439796536x1x102 + 73326664x112 + 841835426768x21x
8
2 − 11331043129x1x92 + 84195424x102

+ 983078241348x21x
7
2 − 15767456944x1x82 + 66445920x92 + 8479744x31x

5
2 + 858325540303x21x

6
2

− 13731543555x1x72 + 35276319x82 + 18668608x31x
4
2 + 561575753843x21x

5
2 − 7598293305x1x62

+ 11576043x72 + 15965033x31x
3
2 + 271978409572x21x

4
2 − 2421613296x1x52 + 1807272x62

+ 7462357x31x
2
2 + 94728130531x21x

3
2 − 279328716x1x42 + 1805013x31x2 + 22440615102x21x

2
2

+ 38555136x x3 + 170667x3 + 3209154048x2x + 205627392x2.
1 2 1 1 2 1
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f3(x1, x2) = x362 − 12x1x342 + 84x21x
32
2 − 346x31x

30
2 + 1116x41x

28
2 − 2703x51x

26
2 + 7167x61x

24
2 − 12432x71x

22
2 + 26268x81x

20
2

− 19780x91x
18
2 + 92451x101 x162 − 36x91x

17
2 + 46746x111 x142 − 1728x101 x152 + 183499x121 x122 − 20658x111 x132

+ 101730x131 x102 − 93984x121 x112 + 95988x141 x82 − 189576x131 x92 + 32705x151 x62 − 177504x141 x72
+ 15903x161 x42 − 75036x151 x52 + 2673x171 x22 − 12670x161 x32 + 729x181 − 594x171 x2 − x171 .

f4(x1, x2) = x242 − 824x1x221 − 6x1x202 − 135056x21x
18
2 − 1090032x21x

17
2 − 305878948x31x

15
2 + 15x21x

16
2 − 332513805x31x

14
2

+ 29561428776x41x
12
2 − 21896514x31x

13
2 + 84368663334x41x

11
2 − 20x31x

12
2 − 7336125742241x51x

9
2

+ 105311475102x41x
10
2 − 13905265469868x51x

8
2 − 47228926x41x

9
2 + 899624912729920x61x

6
2

− 20445470980563x51x
7
2 + 15x41x

8
2 + 879421250107854x61x

5
2 − 432927678855x51x

6
2

− 49546291457551243x71x
3
2 + 1106726149976610x61x

4
2 − 15188802x51x

5
2 + 11658438494227425x71x

2
2

− 302031801287456x61x
3
2 − 6x51x

4
2 − 2982955494854578697x81 + 34873482038112303x71x2

+ 30252411978x61x
2
2 − 38859097616298524x71 − 361023x61x2 + x61.

f5(x1, x2) = 1591619472413x31 − 673417059x21x2 + 695664x1x22 − 508x32

f6(x1, x2) = 16613x182 − 2740x172 − 12419798x1x152 + 6437x162 + 3582232x1x142 + 2746x152 + 1952563681x21x
12
2

− 1467646x1x132 + 508x142 − 885502736x21x
11
2 − 977636x1x122 + 108700209375x31x

9
2 − 58319519x21x

10
2

− 228600x1x112 − 46834562944x31x
8
2 + 88713464x21x

9
2 + 13105756970066x41x

6
2 − 30599270332x31x

7
2

+ 30109256x21x
8
2 + 623044982020x41x

5
2 − 10387555930x31x

6
2 − 1016x21x

7
2 + 275372079901108x51x

3
2

− 605624249977x41x
4
2 − 1150332004x31x

5
2 − 18962869580694x51x

2
2 − 129176285888x41x

3
2 − 504952x31x

4
2

+ 3482432688234375x61 − 8645033171511x51x2 + 7759907085x41x
2
2 − 2585419862778x51

− 4626150x41x2 + 508x41.

f7(x1, x2) = x322 − 16x1x302 + 120x21x
28
2 + 61940x31x

26
2 + 11001820x41x

24
2 + 161289382x51x

22
2 − 983098242x61x

20
2

+ 268005051060x71x
18
2 + 51939536575370x81x

16
2 + 1353401803363560x91x

14
2 − 4882812500000x81x

15
2

+ 11460450030186133x101 x122 − 170898437500000x91x
13
2 − 288506391460948118x111 x102

+ 574340820312500x101 x112 + 46321239729393454945x121 x82 + 149096679687500000x111 x92
+ 1300907094338145405690x131 x62 − 9101544189453125000x121 x72 + 1134304694512821093870x141 x42
− 91102025756835937500x131 x52 − 511379634409195284987516x151 x22 + 3738908596801757812500x141 x32
+ 26203247522421338446550001x161 + 120819541926269531250000x151 x2

− 23283064365386962890625x151 .

f8(x1, x2) = 669124x202 − x192 − 134152x1x152 + 5088x21x
10
2 + 164x31x

5
2 + x41.

f9(x1, x2) = 5x402 − x392 + x1x352 + x41x
20
2 + x81.

f10(x1, x2) = −5x302 + x292 − 742024584461x1x202 + 7683405853352x1x192 − 37988459635463x1x182 + 116162290454294x1x172
− 244084938363007x1x162 + 365869703752040x1x152 − 397726639601195x1x142 + 311055201529068x1x132
− 173145728975362x1x122 − 410519306272480779333x21x

10
2 + 68741967824024x1x112

+ 2166842986886772629632x21x
9
2 − 19684811300898x1x102 − 4739724078829277416759x21x

8
2

+ 4119511886657x1x92 + 3272371230339620137063x21x
7
2 − 636885234774x1x82

+ 5858951312742883334666x21x
6
2 + 73211082962x1x72 − 16713174075248406179379x21x

5
2

− 6262657946x1x62 + 11383535436314356906698x21x
4
2 + 396213107x1x52 + 1073292744115136447588x21x

3
2

− 18252147x1x42 − 11088154724678475021581x21x
2
2 + 594220x1x32 − 57068882708944144620962820001x31

2 2 2

− 1555468653865985432600x1x2 − 12941x1x2 + 732762343885049481905x1 + 169x1x2 − x1.
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