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1. Introduction  

In the research literature review [1]–[3], the positions and orientations of the end-effector in the 

forward kinematics problem are determined using the joints’ variables. This process is 

straightforward, easy, and not complex. This part is very important and crucial for calculating the error 

of the position and/or the orientation to calculate the controller’s qualify [4]. In contrast, inverse 

kinematics is opposite to forward kinematics in such a way that the joints’ variables can be calculated 

using known positions and orientations of the robot end-effector. This process is complex, difficult, 
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 In this research paper, the multilayer feedforward neural network 

(MLFFNN) is architected and described for solving the forward and 

inverse kinematics of the 3-DOF articulated robot. When designing the 

MLFFNN network for forward kinematics, the joints' variables are used as 

inputs to the network, and the positions and orientations of the robot end-

effector are used as outputs. In the case of inverse kinematics, the 

MLFFNN network is designed using only the positions of the robot end-

effector as the inputs, whereas the joints’ variables are the outputs. For both 

cases, the training of the proposed multilayer network is accomplished by 

Levenberg Marquardt (LM) method. A sinusoidal type of motion using 

variable frequencies is commanded to the three joints of the articulated 

manipulator, and then the data is collected for the training, testing, and 

validation processes. The experimental simulation results demonstrate that 

the proposed artificial neural network that is inspired by biological 

processes is trained very effectively, as indicated by the calculated mean 

squared error (MSE), which is approximately equal to zero. The resulted in 

smallest MSE in the case of the forward kinematics is 4.592 × 10−8 in the 

case of the inverse kinematics, is 9.071 × 10−7. This proves that the 

proposed MLFFNN artificial network is highly reliable and robust in 

minimizing error. The proposed method is applied to a 3-DOF manipulator 

and could be used in more complex types of robots like 6-DOF or 7-DOF 

robots.  
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and computationally expensive [3]. This part is very important for determining the robot’s motion to 

reach the desired position and for programming the manipulator for performing tasks. 

For the forward kinematics problem, different types of solutions were considered by researchers: 

1) Denavit and Hartenberg (DH), 2) product of exponential (POE), 3) dual-quaternion, 4) geometric 

approach, and 5) machine learning-based approaches as support vector regression (SVR) and neural 

network (NN), as shown in Fig. 1. Denavit and Hartenberg in [5] proposed a new method including 

four parameters that are considered necessary for the transformation procedure that occurs between 

two joints. All the parameters have been named as the D and H parameters. Furthermore, the four 

parameters were considered the operational standard for describing the kinematics of the robot. 

Although the presented D and H method is the most concise method compared with all, it contains 

some limitations, as described in [6]. For example, Asif and Webb in [7] performed the forward 

kinematics of a 6-DOF articulated robot with a spherical wrist by the use of the DH parameters. The 

product of exponential and unit dual quaternion was proposed for forward kinematics problems [8], 

[9]. In [10], a comparison research work was developed between the POE method and the unit dual 

quaternion in determining the forward motion of the 7-DOF KUKA LWR robot. Their experimental 

results proved the unit dual quaternion has a higher compactness compared with the product of the 

exponential method. In addition, the unit dual quaternion facilitates better comprehension of the 

geometrical purpose of the joint axes. The geometric approach has also been proposed for the forward 

motion problem. In [11], Kim et al. used the conformal geometric algebra for utilizing three SPS/S to 

analyze the forward kinematics of the duplicated motion manipulator. An additional sensor was 

required to provide more positional information and to allow the unique solution to be chosen 

geometrically from the many found solutions using the geometric approach. SVR [12] is a supervised 

machine learning method used widely in regression tasks. NN [13]–[15] has the ability to approximate 

any linear/nonlinear function and generalize it in the case of different conditions. SVR was used with 

the forward motion of parallel manipulator robots [16]–[19]. 

 

Fig. 1. The different types of solutions used for the forward kinematics problem of a robot 

For the inverse kinematics problem, also different types of solutions were considered by 

researchers, such as 1) closed-form solution method, 2) numerical solution method, 3) evolutionary 

computing, and 4) neural networks (NNs), as shown in Fig. 2. Closed-form solution method was used 

when the analytic expression or the polynomial has less than 4-DOF [2]. This solution depended on 

robot-specific geometry for the formulation of the mathematical model. An example of this approach 

was presented in [20], where Lou et al. used the closed-form solution for the inverse kinematics of the 

manipulator based on the general spherical joint. Numerical methods were proposed for the kinematics 

problem in the inverse mode in case of the resulting polynomial in the solution has more than 4-DOF 

[21]. These mentioned methods are less accurate compared to the methods of closed-form [2]. An 
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example of these methods was presented in [22], where Elnady developed an iterative technique to 

solve the inverse kinematics. Evolutionary computing was proposed in ref. [23], [24]  as a method for 

inverse kinematics solution. NNs were also developed to solve the problem of inverse kinematics. 

Tejomurtula and Kak [25] presented the structured NNs for inverse kinematics. The conventional 

backpropagation algorithm was performed for the NN training. This led to some difficulties regarding 

accuracy. NNs were also used in ref. [3], [26], [27]. 

 

Fig. 2. The different types of solutions used for the inverse kinematics problem of a robot 

From the above discussion, further investigation is recommendable for using the NN as a simple 

and intelligent technique compared with other methods for forward and particularly inverse 

kinematics solutions. Achieving high levels of performance and reliability of the NN is required by 

having small values of mean squared error (MSE), which are close to zero and the training error. This 

can increase the accuracy and robustness of the application and estimate the forward and inverse 

kinematics correctly. In addition, minimizing the input size of the implemented NN is also 

recommendable to minimize the complexity and mathematical computations.  

The primary contribution of our research paper is proposing an MLFFNN network to solve the 

issue of kinematics for the 3-DOF articulated robotic manipulator in both forward and inverse modes. 

In forward kinematics used in the design of the network, the positions and orientations for the 

manipulator end-effector are outputs, and the joints’ variables for the manipulator are used as the 

inputs. For the inverse kinematics case, only the positions of the end-effector are used as the inputs of 

the implemented MLFFNN to minimize the size of inputs. The joints’ variables are the outputs. In 

each case, the proposed network is trained using LM learning, which provides fast convergence easily. 

The main concern during the training on the MLFFNN is obtaining a very small (close to zero) MSE 

and training error. The training is executed in MATLAB using collected data considering the 

sinusoidal joints’ motion of the manipulator. The testing and the verification of the trained MLFFNN 

are presented to investigate its reliability in minimizing the approximation error and its effectiveness 

in estimating the forward and inverse kinematics correctly. 

The rest of this paper is divided into the following sections. Section 2 illustrates the forward 

kinematics of the 3-DOF articulated robot using DH parameters and the inverse kinematics depending 

on the geometrical approach. In Section 3, the collected data considering sinusoidal joints’ motion are 

described. The design, analysis, and testing of the proposed network to resolve the kinematics problem 

in forward mode are explained in Section 4. In Section 5, the architectural concept, training, testing 

and verification of the proposed MLFFNN for solving the problem of inverse kinematics are 
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presented. Finally, Section 6 summarizes the work shown in this manuscript, and Section 7 gives some 

points for work in the future. 

2. Kinematics of a 3-DOF Articulated Manipulator in the Forward and Reverse 

Mode 

This section discusses the forward kinematics as well as the inverse kinematics of the 3-DOF 

articulated (with rotational joints) manipulator. This type of robot is presented in Fig. 3. In Subsection 

2.1, parameters of Denavit-Hartenberg (DH) are used to illustrate the concept of forward kinematics, 

whereas a geometrical method is used to show the concept of inverse kinematics in Subsection 2.2. 

 

Fig. 3. The 3-DOF articulated robotic manipulator [28], [29] 

2.1. Forward Kinematics  

The forward kinematics of the 3-DOF manipulator is performed using the DH parameters, which 

are considered the standard for robot kinematics description. These parameters are presented in Table 

1. In the table, 𝑎 is the link length, 𝛼 is the link twist, 𝑑 is the link offset, and 𝜃 is the joint angle.  

Table 1.  The DH parameters of the 3-DOF articulated manipulator 

Link 𝒂𝒊−𝟏 𝜶𝒊−𝟏 𝒅𝒊 𝜽𝒊 

1 𝟎 𝟗𝟎𝐨 𝑳𝟏 𝜽𝟏 

2 𝑳𝟐 0 0 𝜽𝟐 

3 𝑳𝟑 0 0 𝜽𝟑 

 

According to Table 1, the position and orientation of the robot end-effector are represented by a 

whole homogeneous transformation matrix, which is obtained as Equation (1) [8]. 

 𝑇0
3 = [

𝐶1𝐶23

𝑆1𝐶23

𝑆23

0

    

−𝐶1𝑆23

−𝑆1𝑆23

𝐶23

0

    

𝑆1

−𝐶1

0
0

   

𝐿3𝐶1𝐶23 + 𝐿2𝐶1𝐶2

𝐿3𝑆1𝐶23 + 𝐿2𝑆1𝐶2

𝐿3𝑆23 + 𝐿2𝑆2 + 𝐿1

1

 ] = [

𝑅11

𝑅21

𝑅31

0

    

𝑅12

𝑅22

𝑅32

0

    

𝑅13

𝑅23

𝑅33

0

   

𝑝𝑥

𝑝𝑦

𝑝𝑧

1

 ] (1) 

where, 𝑝𝑥, 𝑝𝑦, and 𝑝𝑧 represent the position of the robot end-effector in 𝑥 −, 𝑦 −, and 𝑧 − directions. 

𝑅11, 𝑅12, 𝑅13,……. 𝑅33 illustrate the orientation of the robot end-effector. 𝐶1 = cos(𝜃1), 𝑆1 =
sin(𝜃1), 𝐶23 = cos(𝜃2 + 𝜃3), and 𝑆23 = sin(𝜃2 + 𝜃3). 
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2.2. Inverse Kinematics  

In this subsection, the inverse kinematics (the joints’ variables 𝜃1, 𝜃2, and 𝜃3) are determined 

using the geometrical approach. This approach solves the joint variable 𝜃𝑖 by projecting the robot onto 

the plane of 𝑥𝑖−1 −  𝑦𝑖−1 and then solving a simple problem of trigonometry.  

The joints’ variables using this approach are given as Equations (2), (3), and (4) [29]. 

 𝜃1 = arctan(𝑝𝑦, 𝑝𝑥) (2) 

where, 𝜃1 is defined only when 𝑝𝑥
2 + 𝑝𝑦

2 > 0. 

 𝜃3 = 𝑎𝑡𝑎𝑛2(sin 𝜃3 , cos 𝜃3) (3) 

where, cos 𝜃3 =
𝑝𝑥

2+𝑝𝑦
2+(𝑝𝑧−1)2−𝐿2

2−𝐿3
2

2𝐿2𝐿3
 and sin 𝜃3 = ±√1 − (cos 𝜃3)2. sin 𝜃3 ∈ [−0.173, 0.173] 

(Otherwise, the end-effector's point is outside the work area). This happens because of the constraint 

of joint three. 

 𝜃2 = 𝑎𝑡𝑎𝑛2(sin 𝜃2 , cos 𝜃2) (4) 

where, 𝜃2 is defined only when 𝑝𝑥
2 + 𝑝𝑦

2 + (𝑝𝑧 − 1)2 > 0.  

sin 𝜃2 =
(𝐿2+𝐿3 cos 𝜃3)(𝑝𝑧−𝐿1)−𝐿3 sin 𝜃3(𝑝𝑥 cos 𝜃1+𝑝𝑦 sin 𝜃1)

𝐿3
2(sin 𝜃3)2−(𝐿2+𝐿3 cos 𝜃3)2  and cos 𝜃2 = ±√1 − (sin 𝜃2)2 ∈ [−1, 1]. 

It is clear from equations (2)-(4) the solution of inverse kinematics, depending on the geometrical 

approach, is complex and more cumbersome. Furthermore, this is familiar in robotics books that the 

inverse kinematics solution is complex. Therefore, an MLFFNN network is used for solving the 

kinematics of the 3-DOF articulated manipulator in forward and inverse. MLFFNN has the following 

properties and advantages:  

1) It is a very simple architecture in comparison to the other different NNs types [13], [30], [31].  

2) It has the ability of adaptivity, parallelism, and generalization [32]–[34]. In addition, it can be 

linear or nonlinear. 

3) It is applied successfully in various types of engineering problems [35]–[40].  

However, the MLFFNN network needs a high number of input and target pairs in the training 

stage [41], [42]. This disadvantage is taken into consideration in the current research, and we use large 

datasets. However, overfitting is avoided, as seen from the results.   

In this current research work, the developed MLFFNN is trained depending on the Levenberg-

Marquardt (LM) learning algorithm, which possesses the following qualities:  

1) The work can be implemented quickly with the mentioned learning algorithm. It is an 

optimization technique with a second order that approximates Newton's Method and has a 

solid theoretical foundation as well as quick convergence [43], [44].  

2) This algorithm is preferred because it strikes a balance between the gradient descent 

algorithm's assured convergence and the quick learning speed of the traditional Newton's 

method [43], [45]. In addition, its preference for large datasets and its convergence in fewer 

iterations and a short time in comparison with the other learning methods [31].  

Using the LM algorithm, the adjustment of the weight ∆𝒘, which is applied to the parameter 

vector 𝒘, is calculated using Equation (5) [13], [31], 

 ∆𝒘 = [𝑯 + 𝜷𝑰]−𝟏𝑮 (5) 

where 𝐇 and 𝑮 represent, respectively, the Hessian and the gradient vector of the second-order 

function. 𝐈 is the identity matrix which, its dimension is the same dimensions as 𝐇.  𝛃 is a regularizing 
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parameter responsible for forcing the part (𝐇 + 𝛃𝐈) to be positive definite as well as safely well-

conditioned through the computation.  

The next section discusses in detail the generated data that have been used for the analysis, 

testing, and validation of the MLFFNN network. 

3. Generated Data 

This section describes the data that have been utilized for validating and testing the proposed 

implemented MLFFNN network to solve the forward and inverse kinematics. A sinusoidal motion is 

chosen to be commanded to the three joints of the articulated robotic manipulator. This motion is 

given by Equation (6). 

 𝜃𝑖(𝑡) =
𝜋

4
−

𝜋

4
𝑐𝑜𝑠 (2𝜋𝑓𝑡) (6) 

where 𝑖 is the joint 1, 2, and 3, 𝑓 is the frequency of the sinusoidal type of motion, and it is variable 

and linearly increasing.  

This type of kinematic is similar to the motion presented in our previous work [46]. The range of 

each joint motion is [−90, 90] 𝑑𝑒𝑔. The position and the orientation of the robot end-effector is 

calculated according to Equation (1) considering the following parameters: 𝐿1 = 0.31 𝑚, 𝐿2 =
0.40 𝑚, and 𝐿3 = 0.47 𝑚. The number of the collected samples is 30395. All these data are presented 

from Fig. 4, Fig. 5, and Fig. 6. 

 

Fig. 4. The joints’ variables 𝜃1, 𝜃2, and 𝜃3 in radians 
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Fig. 5. The position of the robot end-effector 𝑝𝑥, 𝑝𝑦, and 𝑝𝑧 in meters 

 

Fig. 6. The orientations of the robot’s end-effector 𝑅11, 𝑅12, 𝑅13,……. 𝑅33 in radians 
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4. Forward Kinematics Solution Using MLFFNN 

This section presents designing, training, testing, and verifying the proposed MLFFNN to solve 

the forward kinematics of a 3-DOF articulated manipulator.  

4.1. Network Design 

The proposed MLFFNN is designed using three layers. The first layer is the input layer which 

contains the three inputs, which are the joints’ variables 𝜃1, 𝜃2, and 𝜃3. The hyperbolic tangent, 

denoted by tanh, serves as the activation function for the second layer, which is the hidden, non-linear 

layer. It also contains hidden neurons. The output layer is the third layer. This layer is linear and 

estimates the values of the position and the orientations for the targeted robot (𝑝𝑥
′ , 𝑝𝑦

′ , 𝑝𝑧
′ , 𝑅11

′ , 𝑅12
′ , 

𝑅13
′ …….𝑅33

′ ), which are twelve outputs. These estimated outputs are compared with the actual 

positions and orientations (which are presented in Fig. 5 and Fig. 6). The main and followed criteria 

during the design of the MLFFNN-network is implementing a simple NN can achieve high levels of 

performance which can be represented by small mean squared error and training error. In other 

meaning, these values should be close to zero value. The proposed MLFFNN is presented in Fig. 7. 

 

Fig. 7. The MLFFNN was used as a solution for the kinematics of the 3-DOF articulated manipulator in a 

forward mode. The inputs are the joints’ variables, and the outputs are the positions and the orientations of 

the end-effector for the robot. The hidden layer includes 40 hidden neurons. The figure is drawn using an 

online program available at https://app.diagrams.net/  

The intended end-effector positions and orientations of the robot are used only for the training of 

the designed MLFFNN. In addition, the error resulting from training must be small as possible and 

close to zero. The training process is described in the following subsection.  

Input Layer Hidden Layer 

𝜃1 

𝜃2 

𝜃3 

1 

1   

𝑝𝑥
′  

𝑝𝑦
′  

𝑝𝑧
′  

𝑅11
′  

𝑅33
′  

Output Layer 

https://app.diagrams.net/
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Fig. 8. The following steps for the train and the test processes of the MLFFNN in solving the forward 

kinematics. This graphical chart was sketched by the available online program at https://app.diagrams.net/ 

https://app.diagrams.net/
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4.2. Designed Network Training 

The collected data that are presented in section 3 are used for analyzing the behavior of the 

proposed MLFFNN network. These data are divided into three groups as follows:  

1) 80% of these data (24315 samples) are used for the training,  

2) 10% (3040 samples) are used for validation, and  

3) The last 10% (3040 samples) are used for testing.  

This division in data occurs in MATLAB randomly. In addition, this is very important to be able 

to test and validate the trained NN by different types of data used for the training procedure. Therefore, 

we can be sure that the trained NN works effectively and can estimate the output value correctly. The 

training is occurring in MATLAB using LM learning. The steps and methodology that followed during 

the training and test processes of the designed MLFFNN network are presented in Fig. 8.  

After executing many experiments and trials by using different initialization of weights and 

different hidden neurons number, the preferred settings of parameters that enable the MLFFNN's high 

performance are obtained. These parameters are the best number of hidden neurons, the number of the 

used epochs or iterations, the very small MSE value, and the training time. All these parameters are 

presented in Table 2. Some other resulting parameters are presented in the Appendix. The intended 

high performance is achieving the lowest MSE as well as the training error. The time of training is not 

a very important issue because the training happens offline, and the main aim is to have a very well-

trained MLFFNN network that can estimate the outputs efficiently with an error close to zero. The 

MSE value is calculated using Equation (7), 

 𝑀𝑆𝐸 = ∑
(𝐴𝑐𝑡𝑂𝑢𝑡(𝑖) − 𝐸𝑠𝑡𝑂𝑢𝑡(𝑖))2

𝑛

𝑛

𝑖=1
 (7) 

where 𝐴𝑐𝑡𝑂𝑢𝑡 is the actual output that is used for the training process, and 𝐸𝑠𝑡𝑂𝑢𝑡 is the estimated 

output by the designed NN. 𝑛 is the number of samples.  

Table 2.  Obtained best parameters which lead to the high performance of the designed MLFFNN for 

forward kinematics solution 

Parameter Value 

Number of hidden neurons  40 

Number of epochs (iterations) 1000 

Lowest MSE 𝟒. 𝟓𝟗𝟐 × 𝟏𝟎−𝟖 ≅ 𝟎 

Training time 1 hour, 33 minutes, and 1 second 

 

The MSE and the regression obtained from the training are shown in Fig. 9 and Fig. 10. The 

resulting error histogram is presented in the Appendix. As presented in Fig. 9, the obtained MSE is a 

very small value and approximately zero. In addition, the resulting regression is 1, as shown in Fig. 

10. These results illustrate that the required positions and orientations for the targeted robot end 

effector converge/coincide with the corresponding estimated ones by the MLFFNN network. In other 

meaning, the training error between them is approximately zero. The simulation results demonstrate 

that the analyzed MLFFNN network is learned and trained efficiently, which can estimate the 

positions and the orientations of the robot’s end-effector. The process of testing and the verification 

of the trained method is presented in the following subsection. This process of very important to show 

the effectiveness and reliability of the method.  
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Fig. 9. The gained lowest MSE from training the designed MLFFNN for forward kinematics 

 

Fig. 10. The obtained regression from training the designed MLFFNN for forward kinematics 
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4.3. Trained Network Verification and Testing 

All samples (30395) are used to verify and test the trained MLFFNN. Results and comparisons 

of the robot's desired effector's positions and orientations, and the corresponding estimated ones by 

the trained network are presented from Fig. 11 to Fig. 14. Furthermore, the average, the maximum, 

the minimum, and the standard deviation (std) of the approximation error between the desired and 

estimated end-effector positions are shown in Table 3.  

From Fig. 11, Fig. 12, Fig. 13 and Table 3, it is clear that desired positions of the robot end-

effector in 𝑥 −, 𝑦 −, and 𝑧 − directions and the corresponding estimated ones by the NN are coincide. 

The approximation error between them is a very small value and approximately zero. In Fig. 14, the 

desired orientations of the robot also coincide with the corresponding approximated ones by the neural 

network. This also means that the approximation error is a very small value and about the zero value. 

These results prove that the trained MLFFNN is highly reliable in minimizing errors and is trained 

very well. Furthermore, it is able to solve the forward kinematics (finding positions and orientations 

of end-effector) of a 3-DOF articulated manipulator in a correct way.  

Table 3.  The resulting parameters values: average, maximum, minimum, and standard deviation (std) of the 

approximation error between the desired and estimated end-effector positions 

Parameter 
Position in 

𝒙 −direction 

Position 

in 𝒚 − 

direction 

Position in 

𝒛 − direction 

Approximation of absolute error between 

the desired and estimated positions of the 

end-effector 

Average 1.4058e-04 2.2879e-04 9.8047e-05 

Maximum 7.9550e-04 0.0036 7.1878e-04 

Minimum 4.5048e-09 2.6214e-09 6.1091e-10 

Standard 

deviation (std) 

1.1052e-04 2.3766e-04 8.4661e-05 

 

 

Fig. 11. The comparison between the desired and estimated position of the robot’s end-effector in 𝑥 − 

direction. (a) 𝑝𝑥 and 𝑝𝑥
′ , (b) 𝑒1(𝑡) =  𝑝𝑥(𝑡) − 𝑝𝑥

′ (𝑡) 

 

Fig. 12. The simulation comparative results between the desired and estimated position of the robot’s end-

effector in 𝑦 − direction. (a) 𝑝𝑦 and 𝑝𝑦
′ , (b) 𝑒2(𝑡) =  𝑝𝑦(𝑡) − 𝑝𝑦

′ (𝑡) 
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Fig. 13. The simulation comparative results between the desired and estimated position of the robot’s end-

effector in 𝑧 − direction. (a) 𝑝𝑧 and 𝑝𝑧
′ , (b) 𝑒3(𝑡) =  𝑝𝑧(𝑡) − 𝑝𝑧

′ (𝑡)  

 

Fig. 14. The simulation comparative results between the desired orientations of the robot’s end-effector and 

corresponding actual ones by the trained MLFFNN-network 

It should be noted that the trained MLFFNN takes 1.379 seconds in MATLAB to do all the 

calculations and give the results. This time is very short, and if the method is applied 

experimentally/practically to any 3-DOF robot, it cannot affect the continuity of the robot’ motion.  
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5. Inverse Kinematics Solution Using MLFFNN 

This section shows in detail the designing, training, testing, and verifying of the proposed 

implemented MLFFNN to resolve the 3-DOF articulated robotic manipulator's inverse kinematics. 

Fig. 15 shows his design of MLFFNN. 

 

Fig. 15. The designed MLFFNN is used to solve the kinematics of the 3-DOF articulated manipulator in 

reverse mode. The inputs are the positions of the end-effector, and the outputs are the joints’ variables. The 

hidden layer includes 120 hidden neurons. The figure is drawn using the online program available at 

https://app.diagrams.net/ 

5.1. Network Design 

The proposed MLFFNN network is designed in such a way that using three layers of neurons are 

interconnected with each other. The first layer is called the input layer, which contains the three inputs, 

which are only the positions of the robot’s end-effector (𝑝𝑥, 𝑝𝑦, and 𝑝𝑧). The second layer, which 

contains hidden neurons, is called the hidden layer, which is considered non-linear in its operation, 

and the activation function for this layer is the hyperbolic tangent which is represented by tanh. The 

third and last layer is the output layer. This layer is linear and estimates the joints’ variables (𝜃1
′ , 𝜃2

′ , 

and 𝜃3
′ ), which are three outputs. These estimated outputs are compared with the actual (desired) 

joints’ variables (which are presented in Fig. 4). This proposed MLFFNN is presented in Fig. 15. 

The desired joints’ variables are utilized for training the designed MLFFNN network. The error 

from the training phase must be very small and close to the zero value. In detail, training for the 

implemented MLFFNN is described in the following subsection (5.2. Designed Network Training).  

Input Layer  Hidden Layer    Output Layer 

 1 

1 

𝑝𝑥  

𝑝𝑦    

𝑝𝑧   

  

  𝜃1
′  

  𝜃2
′  

  𝜃3
′  

https://app.diagrams.net/
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5.2. Designed Network Training 

The same procedure that is presented in Subsection 4.2 is followed here. The collected data 

mentioned in Section 3 is divided as follows: 

1) 80% of the collected data (24315 samples) are used for the training,  

2) 10% (3040 samples) are used for validation, and  

3) The last 10% (3040 samples) are used for testing.  

The most suitable parameters which lead to high levels of performance for the designed 

MLFFNN network are the best number of hidden numbers, the number of epochs or iterations, the 

very small MSE, and the training time. These parameters are presented in Table 4. As mentioned in 

Section 4, the training time is not very important. Some other parameters are presented in the 

Appendix.  

Table 4.  The obtained best settings that were obtained led to the high performance of the designed 

MLFFNN for kinematics solution in an inverse method 

Parameter Value 

Number of hidden neurons  120 

Number of epochs (iterations) 1000 

Lowest MSE 9.071 × 10−7 ≅ 0 

Training time 44 minutes and 16 seconds 

 

The resulting MSE and regression from the training are shown in Fig. 16 and Fig. 17. The 

obtained error histogram is presented in the Appendix. As shown from the figures, the MSE is very 

small and approximately zero. The regression is equal to 1. This means that the desired joints’ 

variables are coinciding/converging with corresponding estimated ones by the implemented NN. 

Therefore, the training error is very small. This indicates that the designed MLFFNN-neural network 

is trained efficiently and it is ready to solve inverse kinematics correctly. Testing and the verification 

of the trained NN should be investigated, as presented in the following section. This process is very 

crucial for showing the effectiveness of the trained method.   

 

Fig. 16. The obtained lowest MSE from training the designed MLFFNN for inverse kinematics 
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Fig. 17. The obtained regression from training the designed MLFFNN for inverse kinematics 

5.3. Trained Network Verification and Testing 

In this step, all samples (30395) are used to verify and test the trained MLFFNN. The results and 

the comparisons between the targeted joints’ variables and the corresponding computed ones by the 

trained MLFFNN-neural network are presented in Fig. 18, Fig. 19, and Fig. 20. Furthermore, Table 5 

presents the average, maximum, minimum, and standard deviation of the approximation absolute error 

between the desired and estimated joints’ variables. 

Table 5.  The resulting parameters values: average, maximum, minimum, and standard deviation (std) of the 

approximation absolute error between the desired and estimated joints’ variables 

Parameter Theta 1 Theta 2 Theta 3 

Approximation of absolute error between the 

desired and estimated joints’ variables 

Average 7.9624e-04 7.3061e-04 6.5449e-04 

Maximum 0.0043 0.0044 0.0032 

Minimum  2.8322e-08 4.7931e-08 1.5800e-08 

Standard 

deviation (std) 

6.2181e-04 6.1428e-04 5.2187e-04 

 

It is clear from the presented figures (Fig. 18, Fig. 19, and Fig. 20) and Table 5 that the desired 

joints’ variables (Theta1, Theta 2, and Theta 3) coincide with the corresponding estimated ones by the 
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NN. The approximation error between them is a very small value and approximately zero value. This 

proves that the trained MLFFNN is highly reliable in minimizing error and is trained very well.  

 

Fig. 18. The comparison between the desired and estimated joint variable Theta 1. (a) 𝜃1 and 𝜃1
′ , (b) 𝑒1(𝑡) =

 𝜃1(𝑡) − 𝜃1
′(𝑡) 

 

Fig. 19. The comparison between the desired and estimated joint variable Theta 2. (a) 𝜃2 and 𝜃2
′ , (b) 𝑒2(𝑡) =

 𝜃2(𝑡) − 𝜃2
′ (𝑡) 

 

Fig. 20. The comparison between the desired and estimated joint variable Theta 3. (a) 𝜃3 and 𝜃3
′ , (b) 𝑒3(𝑡) =

 𝜃3(𝑡) − 𝜃3
′ (𝑡) 
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It should be noted that the trained MLFFNN takes 0.587 seconds in MATLAB to do all the 

calculations and give the results. This time is very short, and if the method is applied 

experimentally/practically to any 3-DOF robot, it cannot affect the continuity of the robot’ motion. 

The time in the case of the inverse kinematics is less than the time in the forward kinematics due to 

the fact that MLFFNN-network estimates 12 outputs in the forward kinematics case, and it estimates 

only 3 outputs in the other case.  

Remark: To solve the inverse kinematics, we created another MLFFNN and used both the 

positions and orientations of the robot end-effector as its inputs. The results are better compared with 

the presented one in this section (Section 5). However, the presented MLFFNN in this section (Section 

5) gives very good results because the MSE and training/approximation error are both very low values 

that are close to zero. In addition, we prefer it since the inputs are smaller than when using the end-

effector locations and orientations. The complexity of the presented MLFFNN is also lower.  

Limitation of the proposed method: The proposed method is investigated using a limited range 

of the joints’ motion of the manipulator as the range of each joint motion is [−90, 90] 𝑑𝑒𝑔. Therefore, 

applying the method using the entire experiment space of the robot joints should be investigated and 

considered in future work. The proposed method is used with a 3-DOF articulated robot. For 

investigating the generalization of the proposed network, it should be applied to other different types 

of robots and more complex robots like 6-DOF robots or 7-DOF robots.  

In the current work, only sinusoidal motion is recommended for the robot joints. Other different 

types of joint motion should also be considered and used. The proposed method is validated only using 

simulated data, and no experimental data or real robot experiments are conducted to validate the 

effectiveness of the proposed method in real-world scenarios. This happens because we do not have a 

real robot at the time of doing this paper. However, in future work, the experimental validation should 

be considered and investigated. 

The accuracy of the proposed MLFFNN for solving the problem of a 3-DOF manipulator 

working in the inverse kinematics is compared with other previous NNs-based approaches such as the 

ones presented by Koker et al. [47], Daya et al. [48], Duka [3], and Jiménez-López et al. [49]. With 

Duka [3], a feedforward NN was used for solving the inverse kinematics of a 3-DOF planar 

manipulator. The NN was designed using six inputs which were the three end-effector positions and 

the three orientations. With Koker et al. [47], a backpropagation NN with a sigmoidal activation 

function was proposed as a foundation for the inverse motion problem for the 3-DOF manipulator 

robot. In [48], Daya et al. developed an NN-based approach for the inverse kinematics solution of a 

3-DOF manipulator.  

In their design, six inputs were used, which were the three positions and the three orientations of 

the end-effector. Jiménez-López et al. [49] implemented a NN for the inverse kinematic solution of a 

3-DOF manipulator. In their approach, the NN was trained using Bayesian regularization 

backpropagation. In addition, the limited range of the joints’ motion of the manipulator was 

considered. The comparison includes the resulting MSE, which is the main parameter to show the 

accuracy of each method. The comparison is shown in Fig. 21. As shown in Fig. 21, the proposed 

method has the resulting smallest MSE value compared with other previous related approaches. 

Hence, the results prove that the proposed method is the most accurate, and the resulting 

approximation error is the smallest.  
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Fig. 21. The comparison between the proposed method for solving the inverse kinematics of a 3-DOF 

manipulator and other previous related approaches 

6. Conclusion  

In this research, the kinematics of a 3-DOF articulated robotic manipulator in both forward and 

inverse modes are solved using the concept of the MLFFNN-network algorithm. For Forward 

kinematics, the MLFFNN is designed using the joints’ variables as its inputs. In addition, its outputs 

are the positions and orientations of the end-effector of the robot. For the kinematics in the inverse 

case, only the positions of the end-effector are used as the inputs of the MLFFNN. The outputs are the 

joints’ variables. For both cases, the designed MLFFNN network is trained using the LM learning 

algorithm using data collected from the sinusoidal joint motion of the manipulator. The resulting 

training errors and the MSE from the training stage have relatively very small values and close to zero 

values. The simulation results demonstrate that the proposed neural network is trained in an effective 

way. The trained MLFFNN is tested and verified, and the results prove that the approximation error 

between the actual output and the corresponding predicted one by the NN is equal to a very small 

value. Therefore, the MLFFNN is highly reliable in minimizing errors. Furthermore, it is efficient to 

solve the kinematics of the robot in forward and inverse modes correctly. Our proposed research 

approach is compared with other previously published methods. The experimental simulation result 

reveals that our proposed neural network-based method has the highest levels of accuracy compared 

with others.  
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7. Future Work 

Different aspects of future work can be discussed in this section. Firstly, as the range of each joint 

motion of the used robot is limited in the current work and is [−90, 90] 𝑑𝑒𝑔, the future work can 

consider the whole workspace of the robot joints. Secondly, the use of the NN in solving the forward 

and inverse kinematics of a complex robot, such as a 6-DOF or a 7-DOF manipulator, can also be 

considered. Thirdly, different types of NNs-based architectures inspired by biological concepts can be 

used and compared, such as WaveNet, RNN, and RBF. Deep learning methods can also be 

investigated and compared. Fourthly, we would synthesize the hardware implementation for the 

proposed MLFFNN network on file programmable gate array (FPGA) technology and use different 

fault-tolerant techniques. FPGA has many advantages, as follows: 

1) It can easily change its functionality after designing the product. 

2) It does not require a larger board area, and it is more energy efficient than other equivalent 

discrete circuits. 

3) It can carry out several operations on data simultaneously. 

  Finally, investigating the current work experimentally with a real robot is recommended.  
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Abbreviation Meaning 

DH Denavit–Hartenberg 

POE Product of Exponential 

SVR Support Vector Regression 

NN Neural Network 

DOF Degree of Freedom 

LWR Light Weight Robot 

MLFFNN Multilayer Feedforward Neural Network 

LM Levenberg–Marquardt 

MSE Mean Squared Error 

Tanh Hyperbolic Tangent 

FPGA File Programmable Gate Array 
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Appendix 

Part 1: Some parameters resulted from the training process of the MLFFNN that is used for solving 

the forward and inverse kinematics problem. These parameters are shown in Fig. A1. 

Part 2: The obtained error histogram from the MLFFNN training in the forward and inverse 

kinematics cases. These histograms are presented in Fig. A2. As shown from these histograms, the 

error, which is the difference between the actual output and the estimated one by NN, is very close 

to zero. This supports that the proposed NN is trained in a very effective way. 
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(a) In the forward kinematics case 

 

(b) In the inverse kinematics case 

Fig. A1. Some parameters result from the training of the MLFFNN (a) The case that is used for the forward 

kinematics problem (b) The case that is used for the inverse kinematics problem 

 

(a) The error histogram resulted in the case of the 

forward kinematics. 

 

(b) The error histogram resulted in the case of 

inverse kinematics. 

Fig. A2. The resulting error histogram from the training stage 
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