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Abstract Game theory models provide very powerful tools for evaluating strategies that
are beneficial to both rail and road operators competing for passengers on parallel routes.
This study examines how game theory can help rail operators who are incurring losses
on passenger transport to identify strategies that can minimise costs, using the method-
ology of dual linear programming to analyse strategies. In identifying the best strategies
for minimising costs for the railway operator, the best strategies for maximising profits
for the road operators are also identified. The game model is set up between two pas-
senger transport operators (rail and road) and is based on the income earned by the road
operators from passengers. This study illustrates the following: how the strategies of the
two competitors (rail and road) are determined; the formation of the payoff matrix and
the presentation of the mathematical problem for the two competitors; and the results and
verification of the best strategies for both competitors. The Leonid Hurwicz criterion was
used to verify the optimal strategies.

Keywords Game theory · dual linear programming · hurwicz criterion · minimum costs

1 Introduction

Four decades ago, the railway sector in Africa enjoyed and profited from the business
of freight and passenger transport. This was because it was the only reliable and well-
connected mode of transport, unlike road transport, which had not been opened up and
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developed. Unprecedented infrastructure development in Africa has resulted in the con-
struction of roads linking cities and ports. This has led to the shrinking of the railway
sector in Africa as freight and passenger business has shifted to road transport. One of
the most affected rail services, which often operate at a loss in most African countries and
some in other parts of the world, is passenger service. The annual report of the Commit-
tee on Parastatal Bodies [1] revealed that the passenger services of the Tanzania Zambia
Railway Authority (TAZARA) were operating at a loss, and the little revenue generated
from freight transport was channelled into passenger services to keep them running. Ac-
cording to Plumer [2], Amtrak, the national rail passenger company of the United States
of America, loses a lot of money every year. It has also been reported that India, Japan
and other countries are incurring heavy losses in passenger services [3, 4]. ”Game theory
examines how incentives affect decisions in strategic environments. An economic envi-
ronment is said to be strategic if the decisions made by one player affect the opportunities
and payoffs available to other players, and the players are mutually aware of this” [5].
In game theory, players are allowed to make independent decisions in the absence of a
mechanism to enforce cooperation. In this study, road and rail operators make indepen-
dent decisions, even though they carry passengers in the same operational areas. Game
theory has been used in some studies to analyse inter-modal competition between two
modes of transport. This study was particularly needed in the transport sector as it has
received little research attention[6–11]. The following section highlights the literature re-
view related to this research study, followed by the discussion section, which consists of
two subsections, namely strategies for both competitors and the game theory model, and
then the conclusion section.

2 Literature Review

Game theory, combined with other theories and concepts, has been used extensively in
many studies to provide and project solutions for decision makers. According to Simon
[12], modern game theory is an extensive and energetic search for ways to extend the con-
cept of rational behaviour to situations involving bargaining, fighting and out-guessing.
Game theory is used to make decisions in circumstances where there are conflicting in-
terests between the players. It provides powerful tools for analysis in the transport sector.

In a study conducted by Raturi and Verma [13], a game theoretic approach was used to
analyse inter-modal competition between high-speed rail and airlines in the Indian context
and to assess the impact of speed and passenger characteristics on the equilibrium of the
game. The frequency and fares offered by the players (operators) to maximise their profits
are the conditions under which the competition was modelled. Roumboutsos and Kapros
[14], conducted a study on urban public transport integration policy using the game theory
approach. The results highlighted that the game theory model is a strategy guidance tool
that can be used to help transport policy makers identify the most cost-effective form of
intervention and its timely implementation in public transport integration. A study by Ko-
ryagin [15], entitled ’Game theory approach to optimising public transport traffic under
conditions of travel mode choice by passengers’, shows how decision makers (city au-
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thorities) can determine the frequency of minimising the population’s time loss and costs
associated with transport. Yang et al. [16] conducted a study on a route choice model
based on game theory for commuters. The game theory was used to provide reliable route
choice for commuters in traffic congestion during peak hours. In measuring the relia-
bility of transport network performance, Bell [17] found that when users are extremely
pessimistic about the state of the network, the Nash equilibrium can be used to measure
network performance and can indeed be used as a basis for a cautious approach to net-
work design. Škrinjar et al. [18] conducted a study in urban transport planning using
game theory. Game theory was found to be an effective tool for decision makers to make
optimal decisions in dealing with traffic in large cities.

It is worth noting that most studies of transport systems use non-cooperative games,
two-person zero-sum games and perfect games. In a non-cooperative game, each player
plays the response based on the strategies played by the opponents. In a two- person
zero-sum game, two players are involved and one player wins whatever the other player
loses. In a perfect game, each player has complete information about the payoff structure
and chooses strategies sequentially. Game theory has been used with other mathematical
tools, such as linear programming, to form complex models that attempt to find optimal
solutions to real-world problems. Linear programming is a mathematical method for
achieving the best outcome, i.e. maximum profit or minimum cost. Ighodae and Ekoko
[19] in their study proved that ”every game problem can be calculated by converting it
into a related linear programming problem, and every linear programming problem can
be artificially converted into a game problem, resulting in a super linear programming
problem” (para.1). Thie and Keough [20] assert that ”once our mathematical model for
two-person zero-sum games is developed, the problems of existence and of computing
a solution to a game will be related to the theory of linear programming, the unifying
concept being the notion of duality” (p.8). The use of the Hurwicz criterion cannot go
unmentioned in the application of linear programming, as it attempts to strike a balance
between the maximax and maximin criteria calculated in linear programming [21].

3 Discussion

Game theory has the potential to address the challenges faced by railway companies in
passenger services. It is unfortunate that most passenger train services are loss-making
and depend on freight revenues for their operating costs in many railway companies. The
losses are attributed to various factors, including low passenger numbers due to road trans-
port running parallel to the railways. One might ask, why continue to operate if you are
losing money? The problem is that the state railways cannot allow passenger services to
be discontinued, as it is considered a form of service delivery to the vulnerable communi-
ties. Therefore, in this scenario, the only option for management and decision makers is to
minimise the total cost of transport (the loss minimisation option). Based on the literature
review on game theory, this study replicated the conference paper by Stoilova [22] with
some modifications, to prove and determine how game theory can be applied to railway
companies struggling to minimise the cost of rail passenger services in relation to road
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operators operating in parallel with rail. This was entirely based on the understanding of
concepts, some of which were explained earlier in the introduction, in the literature and
in the conference paper by Stoilova [22]. The concepts are game theory, Hurwicz crite-
rion, linear programming, dual programming, perfect information game, non-cooperative
game and two-person zero-sum game. In order to best illustrate this application, examples
have been elaborated below. Please note that the numbers are fictitious and are used for
illustration purposes only. The formulas for the calculations are also well tabulated. The
game theory model represents the behaviour of a railway company, which we will call
’QVT’, and road operators operating in parallel to the railway, competing only in passen-
ger transport. The model is constructed and based on the revenue generated by the road
operators’ passengers that the rail operator has lost, applying the two-person zero-sum
game principle. The game model would help to identify strategies for maximum revenue
for road operators and minimum cost for QVT.

3.1 Strategies for both Competitors

The route under consideration is the route in from point X to Y for both QVT and the road
operator. The player of road transport is presented by all road operators that use the very
route. The following are QVT (Player Z) strategies:

1. QVT1- transport by express train. Stops only at major stations along the route.

2. QVT2 - transport by the Shuttle train. Like ordinary train but only runs twice a
week.

3. QVT3- transport by Ordinary train. This one stops at every station along the route.

The following are the strategies for the road transport player (Player V):

1. RD1 – Transport by large buses (express). These are direct and fast buses with few
stations along the route.

2. RD2- Transport by large buses (ordinary). These stop at every station.

3. RD3 – Transport by minibuses (run as ordinary). They stop at every station.

3.2 Method

Game theory is an approach that deals with the problems of conflicting objectives between
two opponents. The two opponents are called players in a game conflict, and each has
several strategies or alternatives. The game is represented by the decision/payoff m× n
matrix: 

a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . .
am1 am2 . . . amn
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The rows do present strategies for player A (i = 1, . . . ,m), columns present strategies for
player B(j = 1, . . . , n). For instance,a21 , represents the profit of player A, if s/he chooses
second strategy and player B chooses first strategy. This game is known as two-person
zero-sum games, because a gain for one player implies an equal loss for the other. When-
ever two players have more than one optimal strategy, then the game becomes a mixed
strategy game. This game can be presented by dual linear programming method. The
optimal solution of one problem (player A) automatically provides the optimal solution
of the other (player B). Two problems optimize same value of the game. Below is a break-
down of the mixed strategies of the two players. The optimal mixed strategies for player
V are:

max
x

min

{
m

∑
i=1

ai1xi,
m

∑
i=1

ai2xi, . . . ,
m

∑
i=1

ainxi

}
x1 + x2 + . . .+ xm = 1,

0 ≤ xi ≤ 1, i = 1,2, . . . ,m

(1)

where x = (x1, . . . ,xm) represents the respective probabilities for the strategies for player
V .

Now, let:

Φ = min

{
m

∑
i=1

ai1xi,
m

∑
i=1

ai2xi, . . . ,
m

∑
i=1

ainxi

}
(2)

The equation implies that:

m

∑
i=1

ai jxi ≥ Φ, j = 1,2, . . . ,n, (3)

where Φ is the value of the game.
The problem of player V can be written:

Maximize Φ under the constraints:

a11x1 +a12x2 + . . .+am1xm ≥ Φ,
a12x1 +a22x2 + . . .+am2xm ≥ Φ,

...
a1nx1 +a2nx2 + . . .+amnxm ≥ Φ,

x1 + x2 + . . .+ xm = 1,
0 ≤ xi ≤ 1, i = 1,2, . . . ,m

(4)

For player Z the problem is as follows:

min
y

max

{
n

∑
j=1

a j1y j, . . . ,
n

∑
j=1

a j2y j, . . . ,
n

∑
j=1

am jy j

}
y1 + y2 + . . .+ yn = 1,

0 ≤ y1 ≤ 1, j = 1,2, . . . ,n

(5)

where y = (y1, . . . ,yn) represents the respective probabilities for strategies for player Z.
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Now let

ω = max

{
n

∑
j=1

a1 jy j,
n

∑
j=1

a j2y j, . . . ,
n

∑
j=1

am jy j

}
(6)

The problem of player Z can be written as follows:

Minimise ω under the constraints:

a11y1 +a12y2 + . . .+an1yn ≤ ω,
a12y1 +a22y2 + . . .+a2nyn ≤ ω,

...
am1y1 +am2y2 + . . .+amnyn ≤ ω,

y1 + y2 + . . .+ yn = 1,
0 ≤ y1 ≤ 1, j = 1,2, . . . ,n

(7)

The two problems are usually transformed to be solved. The transformations high-
lighted on Tab. 1 and Tab. 2 below show in the first column the way of transformation and
the second column shows the transformed model. The solution of the transformed model
provides results for the game model using the dual linear programming.

Transformation for QVT Game model for QVT
Minimise Φ Maximize ω = Y1 +Y2 + . . .+Yn
Subject to Subject to
a11

y1
Φ
+a21

y2
Φ
+ . . .+am1

yn
Φ
≥ 1 a11Y1 +a21Y2 + . . .+an1Yn ≤ 1

a12
y2
Φ
+a22

y2
Φ
+ . . .+am2

yn
u ≥ 1 a12Y1 +a22Y2 + . . .+an2Yn ≤ 1

a1m
y1
Φ
+a2m

y2
Φ
+ . . .+amn

yn
Φ
≥ 1 a1mY1 +a2mY2 + . . .+amnYn ≤ 1

0 ≤ y j ≤ 1, j = 1,2, ..,n Yj ≥ 0, j = 1,2, ..,n

Table 1 Transformations for QVT (Player Z)

Transformation for Road Operator Game model for Road Operator
Maximise Φ Minimise z = X1 +X2 + . . .+Xm
Subject to Subject to
a11

x1
Φ
+a21

x2
Φ
+ . . .+am1

xm
Φ

≤ 1 a11X1 +a21X2 + . . .+am1Xm ≥ 1
a12

x2
Φ
+a22

x2
Φ
+ . . .+am2

xm
Φ

≤ 1 a12X1 +a22X2 + . . .+am2Xm ≥ 1
a1n

x1
Φ
+a2n

x2
Φ
+ . . .+amn

xn
Φ
≤ 1 a1nX1 +a2nX2 + . . .+amnXm ≥ 1

0 ≤ xi ≤ 1, i = 1,2, ..,m Xi ≥ 0 , i = 1,2, ..,m

Table 2 Transformations for Road Transport Operator (Player V)

3.3 The Model of Game Theory

A payoff matrix indicates the likely value of different alternatives depending on the dif-
ferent possible outcomes associated with each different possible outcome associated with
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them. The use of a payoff matrix requires that several alternatives are available, that sev-
eral different events could occur, and that the consequences depend on which alternative
is chosen and which event or which event or set of events occurs. An important concept in
understanding the payoff matrix is probability. A probability is the likelihood, expressed
as a percentage, that a particular event will or will not occur. The payoff matrix in Tab. 3
below shows the revenue earned by the road transport operator from the sale of tickets to
passengers, taking into account the differences in ticket prices according to bus category.
The payoff matrix for QVT is formed as a transposed matrix of that of the road operator,
since the revenue of the road operator is a loss to QVT. In this game model, those pas-
sengers who bought tickets from the bus operators are a loss to the rail operator (QVT),
applying a two-person zero-sum game principle. This model is not only useful for QVT’s
decision makers to determine and identify the strategies with minimum costs, but also for
the road transport operators who would determine the strategies with maximum profits.

Road Transport (Player V) QVT (Player Z) — Strategies
QVT1 QVT2 QVT3

Strategies Probabilities y1 y2 y3
RD1 x1 2500 2000 3500
RD2 x2 5000 4500 5500
RD3 x3 5800 4000 4200

Table 3 Decision matrix (Payoff matrix), USD

The transformation for the player V (Road operators) according to Tab. 3 is as follows:

Maximize the income, i.e., maximize ω = X1 +X2 +X3,
subject to

2500X1 +5000X2 +5800X3 ≤ 1
2000X1 +4500X2 +4000X3 ≤ 1
3500X1 +5500X2 +4200X3 ≤ 1

Xi > 0, i = 1,2,3

(8)

The transformation for QVT according to Tab. 3 is as follows:

Minimize the cost, i.e., minimize ω = Y1 +Y2 +Y3,
subject to

2500Y1 +2000Y2 +3500Y3,≥ 1
5000Y1 +4500Y2 +5500Y3,≥ 1
5800Y1 +4000Y2 +4200Y3,≥ 1

Yj > 0, i = 1,2,3

(9)

The mathematical models represented by the above formulas are solved by the method
of Dual Linear Programming. This means that the optimal (outcome) solution of one
problem (road operator) automatically provides the optimal (outcome) solution of the
other problem (railway operator).
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3.4 Breakdown of Linear Programming Computation

3.4.1 Road Transport Operator (Player V)

The transformation for the player V (Road operators) according to Tab. 3 can be refereed
to Eq. 8.

The problem is converted to canonical form by adding slack, surplus and artificial vari-
ables as appropriate: As the constraints are of type ’≤’, we should add slack variables,
After introducing slack variables.

Maximize Z = x1 + x2 + x3 +0S1 +0S2 +0S3
subject to

2500x1 +5000x2 +5800x3 +S1 = 1
2000x1 +4500x2 +4000x3 +S2 = 1
3500x1 +5500x2 +4200x3 +S3 = 1

and
x1,x2,x3,S1,S2,S3 ≥ 0

(10)

The optimum is determined iteratively. Please refer to Tab. 7 and 8 in the Appendix B.
Based on the results of the Tab. 8 (see appendix B) the optimal solution is obtained with
the value of the variables as : x1 = 0.0003, x2 = 0, x3 = 0, and the maximum is Z = 0.0003.

3.4.2 QVT (Player Z)

The transformation for the player Z (Rail operator) according to Tab. 3 can be refereed to
Eq. 9.

The problem is converted to canonical form by adding slack, surplus and artificial vari-
ables as appropriate: As the constraints of type ’≥’,we should subtract surplus variables
S and add artificial variables A. After introducing surplus, artificial variables

Minimize Z = y1 + y2 + y3 +0S1 +0S2 +0S3 +A1 +A2 +A3
subject to

2500y1 +2000y2 +3500y3 −S1 +A1 = 1
5000y1 +4500y2 +5500y3 −S2 +A2 = 1
5800y1 +4000y2 +4200y3 −S3 +A3 = 1

and
y1,y2,y3,S1,S2,S3,A1,A2,A3 ≥ 0

(11)

The optimum is determined iteratively. Please refer to Tab. 9-13 in the appendix B.
Based on the results of the Tab. 13 (please refer to appendix B), the optimal solution is
obtained with the value of the variables as : y1 = 0, y2 = 0, y3 = 0.0003 and the minimum
is Z = 0.0003.

Tab. 4 below presents the results for the respective probabilities for the strategies. Us-
ing the mathematical model of linear programming, the optimal solutions for both players
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has been determined based on the decision matrix above. The table below summarises
the results of this model-based dual linear programming method. It shows that the opti-
mal strategy for player V (road operators) is RD1, i.e. transport by large buses (express
buses). The optimal strategy for QVT is QV T3, i.e. transport by ordinary train. The
value game shows that both players are guaranteed a minimum payoff of 4,500 United
State Dollars. The results were computed using Excel Solver, a tool built into Microsoft
Excel, and later checked using linear programming online calculator (please refer to:
https://cbom.atozmath.com/CBOM/Simplex.aspx?q=sm)..

Player road Transport (Player V) QVT (Player Z)
Strategies Probabilities Strategies Probabilities
RD1 X1= 0.0003 QVT1 Y1=0
RD2 X2 =0 QVT2 Y2 = 0
RD3 X3=0 QVT3 Y3=0.0003

Table 4 Results for Decision matrix, in USD

3.5 Verifications of results using Leonid Hurwicz Criteria

The Hurwicz criterion allows decision-makers to consider both the worst and best possi-
ble outcomes simultaneously. To do this, they choose a ”coefficient of pessimism”, which
is alpha (α) and is a number between 0 and 1. This number determines the emphasis on
the worst possible outcome. The(1−α) number determines the emphasis to be placed
on the outcome. The Hurwitz criterion was used to check the results. The strategies
(RD1,RD2 and RD3) for the road operator were aimed at choosing the strategy with the
maximum profit (see Tab. 5 in Appendix A for the calculations and formulas) and the
strategies(QV T1, QV T2 and QV T3) for the rail operator were aimed at choosing the strat-
egy with the minimum cost (see the Tab. 6 in the appendix A for the calculations and
formulas).

Figure 1 Ranking of QVT Strategies

https://cbom.atozmath.com/CBOM/Simplex.aspx?q=sm
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Figure 2 Ranking Strategies for Road Transport Player

The results shown in Tab. 4, Fig. 1 and Fig. 2 are consistent and confirm that the best
strategy with the highest profit for road transport is RD1 - transport by large buses (ex-
press), while the best strategy with the lowest cost for QVT is QV T3 - transport by ordinary
train. The application of this model would help decision-makers in the railway sector to
identify the best low-cost strategies in rail passenger transport. The model is also essential
for road transport operators to determine which strategies have the highest profits. Ap-
pendix A presents Leonid Hurwicz’s criterion in detail, with both the calculation and the
formula for both rail and road operators.

4 Conclusion

Most railway companies, especially the state-owned ones, make heavy losses on passen-
ger services due to many factors. Despite these losses, state-owned railways cannot stop
operating because of the need to provide passenger services to the most vulnerable com-
munities, some of whom cannot afford to pay high bus fares and others who have limited
access to roads. The managers of these state railways have no choice but to develop
low-cost strategies for running passenger trains.

This paper explains how game theory can be used to formulate a model that can help
the railway operator to identify the best low-cost strategies for operating passenger trains
using the available information from the road operator (competitor) in a perfect game
principle. The study also shows how road operators can also identify the best profit max-
imising strategies. The study has also shown the importance of integrating other tools,
i.e. linear programming, Hurwicz criteria with game theory, to come up with the stronger
game model for decision making. In particular, this paper also validates the findings of
Stoilova [22] on the application of game theory in road and rail transport planning.
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Appendix A: The Leonid Hurwicz ’s criterion

The Hurwicz criterion is probably one of the most widely used rules in decision making
under uncertainty. Hurwicz’s criterion gives each decision a value that is ”a weighted
sum of its worst and best possible outcomes”, represented as (α) and known as the index
of pessimism or optimism. It allows the decision maker to simultaneously consider the
best and worst possible outcomes by formulating a ”coefficient of optimism” that deter-
mines the emphasis on the best outcome. The Hurwicz criterion can be seen as a weighted
average of the best and worst uncertainty realisations. Thus, it generalises the most opti-
mistic Maximax criterion and the most pessimistic Maximin criterion - both of which are
popular alternative rules for decision making under uncertainty - in a unified way. The
classical Hurwicz criterion models uncertainty as a random variable governed by a known
probability distribution. As such, the decision maker has perfect knowledge to accurately
assess the loss under the criterion. However, such perfection is rarely available in practice.

In many real-world applications, the decision maker is typically faced with a data-
driven environment with distributional ambiguity: the distribution of uncertainty is am-
biguous and only partial knowledge is available, including prior statistical information
(such as support and moments) and historical observations of uncertainty. In addition,
the classical Hurwicz criterion only considers the best and worst outcomes, which can
only occur with small probabilities, while neglecting all the other distributional informa-
tion mentioned above, which is valuable for characterising the ambiguous distribution
of uncertainty. Therefore, the classical Hurwicz criterion needs to be revised to address
the challenge of incorporating distributional information under distributional ambiguity
in emerging data-driven analytics.

“A Hurwicz weighted average H is calculated for every action strategy as follows: H
(A1) = (α) (row maximum) +(1−α) (row minimum) - for positive flow payoffs of profits
or revenues and, H (A1) = (α) (row minimum) + (1−α)(row maximum) - for negative
flow payoffs of costs.

Leonid Hurwicz’s criteria for rail and road operators are presented in Tab. 5 and 6
below.

https://hrcak.srce.hr/39437
http://dx.doi.org/10.22616/ERDev.2020.19.TF320
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Payoff matrix Leonid Hurwicz ’s criterion
Road Rail Coefficient a

QVT1 QVT2 QVT3 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
RDI 2500 5000 5800 2500 2830 3160 3490 3820 4150 4480 4810 5140 5470 5800
RD2 2000 4500 4000 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500
RD3 3500 5500 4200 3500 3700 3900 4100 4300 4500 4700 4900 5100 5300 5500

Table 5 Leonid Hurwicz ’s criterion for Road Operators

Rail Road Coefficient a
RD1 RD2 RD3 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

QVTI 2500 2000 3500 3500 3350 3200 3050 2900 2750 2600 2450 2300 2150 2000
QVT2 5000 4500 5500 5500 5400 5300 5200 5100 5000 4900 4800 4700 4600 4500
QVT3 5800 4000 4200 5800 5620 5440 5260 5080 4900 4720 4540 4360 4180 4000

Table 6 Leonid Hurwicz ’s criterion for QVT

Appendix B: Numerical Method - iterative equations

It is evident from Tab. 7 that the negative minimum Zj-Cj is -1 and its column index is 1.
So, the entering variable is x1. Minimum ratio is 0.0003 and its row index is 3. So, the
leaving basis variable is S3.
The pivot element is 3500.
Entering = x1, Departing = x3, Key Element = 3500
R3(new) = R3(old)/3500
R1(new) = R1(old)−2500R3(new)
R2(new) = R2(old)−2000R3(new)

Iteration-1 Cj 1 1 1 0 0 0

B CB XB x1 x2 x3 S1 S2 S3
MinRatio
XB
X1

S1 0 1 2500 5000 5800 1 0 0 1
2500 = 0.0004

S2 0 1 2000 4500 4000 0 1 0 1
2000 = 0.0005

S3 0 1 (3500) 5500 4200 0 0 1 1
3500 ≈ 0.0003

Z=0 Zj 0 0 0 0 0 0
Zj-Cj -1 -1 -1 0 0 0

Table 7 Numerical Method - 1st iterative equations
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Iteration-2 Cj 1 1 1 0 0 0
B CB XB x1 x2 x3 S1 S2 S3 MinRatio
S1 0 0.2857 0 1071.4286 2800 1 0 -0.7143
S2 0 0.4286 0 1357.1429 1600 0 1 -0.5714
x1 1 0.0003 1 1.5714 1.2 0 0 0.0003
Z=0.0003 Zj 1 1.5714 1.2 0 0 0.0003

Zj-Cj 0 0.5714 0.2 0 0 0.0003

Table 8 Numerical Method - 2nd iterative equations

Iteration-1 Cj 1 1 1 0 0 0 M M M

B CB YB y1 y2 y3 S1 S2 S3 A1 A2 A3
MinRatio
YB
Y1

A1 M 1 2500 2000 3500 -1 0 0 1 0 0 1
2500 = 0.0004

A2 M 1 5000 4500 5500 0 -1 0 0 1 0 1
5000 = 0.0002

A3 M 1 (5800) 4000 4200 0 0 -1 0 0 1 1
5800 = 0.0002

Z=3M Zj 13300M 10500M 13200M -M -M -M M M M
Zj-Cj 13300M-1 10500M-1 13200M-1 -M -M -M 0 0 0

Table 9 Numerical Method - 1st iterative equations

It is evident from Tab. 9 above that the positive maximum Z j - C j is 13300M-1 and its
column index is 1. So, the entering variable is y1. Minimum ratio is 0.0002 and its row
index is 3. So, the leaving basis variable is A3.
The pivot element is 5800.
Entering = y1, Departing = A3, Key Element = 5800
R3(new) = R3(old)/800
R1(new) = R1(old)−2500R3(new)
R2(new) = R2(old)−5000R3(new)

Iteration-2 Cj 1 1 1 0 0 0 M M

B CB YB y1 y2 y3 S1 S2 S3 A1 A2
MinRatio
YB
Y3

A1 M 0.6 0 275.9 1689.7 -1 0 0.431 1 0 0.6
1689.7 ≈ 0.0004

A2 M 0.1379 0 1051.7241 (1879.3) 0 -1 0.86 0 1 0.1379
1879.3 ≈ 0.00007

y1 1 0.0002 1 0.6897 0.7241 0 0 -0.0002 0 0 0.0002
0.7241 ≈ 0.00028

Z=0.7M+0.0002 Zj 1 1327.59M+0.7 3569M+0.7 -M -M 1.3M-0.0002 M M
Zj-Cj 0 1328M-0.3 3569M-0.28↑ -M -M 1.3M-0.0002 0 0

Table 10 Numerical Method - 2nd iterative equations

The above Tab. 10 shows that the positive maximum Z j - C j is 3568.9655M-0.2759 and
its column index is 3. So, the entering variable is y3. Minimum ratio is 0.0001 and its row
index is 2. So, the leaving basis variable is A2.
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The pivot element is 1879.3103.
Entering = y3, Departing = A2, Key Element = 1879.3103
R2(new) = R2(old)/1879.3103
R1(new) = R1(old)−1689.6552R2(new)
R3(new) = R3(old)−0.7241R2(new)

Iteration-3 Cj 1 1 1 0 0 0 M

B CB YB y1 y2 y3 S1 S2 S3 A1
MinRatio
YB
S2

A1 M 0.445 0 -669.72 0 -1 0.9 -0.344 1 0.445
0.9 ≈ 0.49

y3 1 0.0001 0 0.56 1 0 -0.0005 0.0005 0 —
y1 1 0.0001 1 0.2844 0 0 (0.0004) -0.0005 0 0.0001

0.0004 = 0.25
Z=0.445M+0.0002 Zj 1 -669.8M+0.844 1 -M 0.9M-0.0001 -0.344M+0 M

Zj-Cj 0 -669.72M-0.156 0 -M 0.9M-0.0001↑ -0.34M+0 0

Table 11 Numerical Method - 3rd iterative equations

Tab. 11 above shows that the positive maximum Z j - C j is 0.8991M-0.0001 and its col-
umn index is 5. So, the entering variable is S2. Minimum ratio is 0.3095 and its row index
is 3. So, the leaving basis variable is y1. The pivot element is 0.0004.
Entering = S2, Departing = y1, Key Element = 0.0004
R3(new) = R3(old)/0.0004
R1(new) = R1(old)−0.8991R3(new)
R2(new) = R2(old)+0.0005R3(new)

Iteration-4 Cj 1 1 1 0 0 0 M

B CB YB y1 y2 y3 S1 S2 S3 A1
MinRatio
YB
S3

A1 M 0.17 -2333 -1333 0 -1 0 (0.8333) 1 0.17
0.8333 = 0.204

y3 1 0.0002 1.38 0.95 1 0 0 -0.0002 0 —
S2 0 0.31 2595.24 738.1 0 0 1 -1.31 0 —
Z=0.17M+0.0002 Zj -2333M+1.38 -1333M+0.95 1 -M 0 0.83M-0.0002 M

Zj-Cj -2333M+0.38 -1333M-0.0476 0 -M 0 0.83M-0.0002↑ 0

Table 12 Numerical Method - 4th iterative equations

Tab. 12 shows that a positive maximum Z j - C j is 0.8333M-0.0002 and its column in-
dex is 6. So, the entering variable is S3. Minimum ratio is 0.2 and its row index is 1. So,
the leaving basis variable is A1.
The pivot element is 0.8333.
Entering =S3, Departing =A1, Key Element = 0.8333
R1(new) = R1(old)/0.8333
R2(new) = R2(old)+0.0002R1(new)
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R3(new) = R3(old)+1.3095R1(new)

Iteration-5 Cj 1 1 1 0 0 0
B CB YB y1 y2 y3 S1 S2 S3 MinRatio
S3 0 0.2 -2800 -1600 0 -1.2 0 1
y3 1 0.0003 0.7143 0.5714 1 -0.0003 0 0
S2 0 0.5714 -1071.4286 -1357.1429 0 -1.5714 1 0
Z=0.0003 Zj 0.7143 0.5714 1 -0.0003 0 0

Zj-Cj -0.2857 -0.4286 0 -0.0003 0 0

Table 13 Numerical Method - 5th iterative equations
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