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Abstract: Epstein–Barr virus (EBV), defined as a group I carcinogen by the World Health Organi-
zation (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma,
including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders,
and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to
the development of these different types of B-cell lymphoma has not only provided fundamental
insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new
therapeutic opportunities. In this review, we describe the effects of EBV infection in normal B-cells
and we address the germinal centre model of infection and how this can lead to lymphoma in some
instances. We then explore the recent reclassification of EBV+ DLBCL as an established entity in the
WHO fifth edition and ICC 2022 classifications, emphasising the unique nature of this entity. To that
end, we also explore the unique genetic background of this entity and briefly discuss the potential
role of the tumour microenvironment in lymphomagenesis and disease progression. Despite the
recent progress in elucidating the mechanisms of this malignancy, much work remains to be done to
improve patient stratification, treatment strategies, and outcomes.

Keywords: Epstein–Barr virus; diffuse large B-cell lymphoma; tumour microenvironment; chronic
inflammation

1. Introduction

Diffuse Large B-cell Lymphoma (DLBCL) is the most prevalent subtype of non-
Hodgkin lymphoma, accounting for approximately 25–35% of diagnosed cases [1–3]. In
the last three decades, treatment strategies for DLBCL have improved through the ad-
dition of the anti-CD20 monoclonal antibody, rituximab, to the chemotherapy cocktail
of cyclophosphamide, hydroxy-daunorubicin (doxorubicin), vincristine, and prednisone
(R-CHOP), resulting in an increase in overall survival (OS) and progression-free survival
(PFS). However, up to 40% of DLBCL patients have refractory or relapsed (R/R) disease
which is eventually fatal in most cases [4–6].

A particularly poor prognosis subtype of DLBCL is those tumours that are associated
with Epstein–Barr virus (EBV). EBV, formally named human herpesvirus 4 (HHV-4), is one
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of eight known human herpesviruses. As a herpesvirus, the genome of EBV is double-
stranded, linear, and surrounded by a protein capsid. This is, in turn, surrounded by an
envelope embedded with glycoproteins, and the intermediate space is filled with a protein
tegument (Figure 1). The viral genome is approximately 172 kb in length and encodes over
85 genes [7–9]. Due to the oncogenic properties of a small subset of these 85 genes, EBV
is associated with a number of human B-cell lymphomas, including Hodgkin lymphoma
(HL), post-transplant lymphoproliferative disorder (PTLD), and, more recently, diffuse
large B-cell lymphoma (DLBCL). Although the presence of EBV in DLBCL is relatively rare
(approx. 5–15% of DLBCL tumours are diagnosed as EBV+), this malignancy is reportedly
associated with poorer outcomes even after adjusting for confounding factors [10,11]. EBV+
DLBCL was first included in the World Health Organization (WHO) classification in 2008 as
a provisional entity, under DLBCL, NOS, where it was restricted to a population >50 years
of age (termed EBV+ DLBCL of the elderly) [12,13]. However, the age restriction was
subsequently removed in 2016 and EBV+ DLBCL was reclassified as an established entity
in 2022 [14].
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Figure 1. Schematic of B-cell infection by Epstein-Barr virus (EBV). EBV consists of linear, double-
stranded DNA surrounded by a nucleocapsid layer, a protein tegument, and, finally, a viral envelope.
The viral envelope includes the protein gp350 which binds to B-cells via the CD21 receptor on
the B-cell surface, and the protein gp42 which binds to the MCH class II molecule. Created with
BioRender.com.
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Herein, we review the role of viral and cellular genetics on tumour development and explore
possible roles of the tumour microenvironment in pathogenesis. Although progress has
been made in improving our understanding of this malignancy, it is clear that further work
is needed to better understand this disease if we hope to improve outcomes associated with
this rare but aggressive malignancy.

2. EBV Is Transforming in B-Cells

EBV is an ancient virus which has co-evolved with humans for approximately 12 mil-
lion years, proven by its similarity to Old World non-human primate lymphocryptoviruses
(LCVs) [15]. Though the virus itself is ancient, it was only discovered in 1964 in a cell line
(known as the EB1 cell line after Tony Epstein and Yvonne Barr) derived from a patient
with Burkitt lymphoma (BL), an aggressive malignancy of germinal centre B-cells [16]. A
critical question that followed this discovery was whether the virus contributed to the
disease process or, as many suggested at the time, was merely an innocent bystander.

The uncertainty with which EBV was regarded as a new cancer-causing virus was
fuelled by the results of the newly developed serological assays. These assays demon-
strated that antibodies to EBV antigens were detectable in infectious mononucleosis (IM)
sufferers [17] but also in most healthy individuals [18,19]. The frequency with which EBV
was detected in healthy individuals, as well as its identification as the causative agent in
IM, seemed incompatible with a potential role as a carcinogen. EBV virions are also found
in the saliva of IM patients and at much lower levels in healthy seropositive people [20].

In early experiments to address the question of EBV’s transforming capabilities, it
was shown that cord blood lymphocytes cultivated with irradiated EBV+ Jijoye BL cells,
which produce virions, led to the growth of the lymphocytes [21]. It was also shown in the
same year that immortalised B-cell lines, termed lymphoblastoid cell lines (LCL), could be
established from the peripheral lymphocytes of EBV-infected individuals, confirming that
EBV is a potent transformer of normal B-cells [22,23]. Further, it was established that tumour
cells in EBV+ BL and EBV+ AIDS-related lymphoma contained clonal copies of EBV [24].
This indicated that the progenitor tumour cell carried EBV, thereby supporting that belief
that EBV was involved in tumorigenesis [25]. This ultimately led to the designation of EBV
as the first human virus linked to cancer [26,27].

Later, viral genomic sequencing studies began to elucidate the viral genes that were
responsible for the in vitro transformation of B-cells [8]. We now know it is the coordinated
expression of the so-called latent EBV genes that is responsible for EBV’s transforming
potential. Established LCL express all latent genes (known as the ‘growth programme’ or
latency III), which include six proteins located in the nucleus of infected cells (known as
Epstein–Barr nuclear antigens; EBNAs 1, 2, 3A, 3B, 3C, LP), and three proteins present in
the plasma membrane (known as latent membrane proteins (LMP1, LMP2A, and LMP2B)
(Figure 2) [28,29]. In all infected cells, EBV also encodes the highly abundant non-coding
Epstein–Barr virus-encoded RNAs (EBER1 and EBER2), which are used as a target in
diagnostic assays to detect EBV [28,29]. EBV also encodes 44 viral miRNAs which can be
clustered in two groups according to the region of the EBV genome from which they are
derived: BART (40 miRNAs) and BHRF1 (4 miRNAs) [30–32]. These miRNAs are thought
to contribute to oncogenesis, at least in part, by inhibiting translation of host mRNAs
encoding tumour suppressors [31,33].

B-cells latently infected with EBV can also be induced into the lytic phase, which
is accompanied by the shutting down of expression of most of the latent genes and the
expression of a larger number of proteins that are required for the reproduction of the viral
genome and the eventual construction and release of new virions.
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Figure 2. Major EBV latent proteins and their functions in B-cells. (A) The major EBV latent proteins,
including the Epstein–Barr nuclear antigens (EBNAs) and the latent membrane proteins, LMP1
and LMP2A. LMP1 and LMP2A, in particular, act as constitutively active CD40 and B-cell receptor
mimics, respectively, which are thought enable the cells to transition through the germinal centre
reaction and exit as memory B-cells. The latent proteins are additionally important not only for
EBV’s ability to transform healthy B-cells, but are also implicated in the pathogenesis of virus-
associated B-cell malignancies, including diffuse large B-cell lymphoma. (B) Marker positivity
for the different latency programs are shown in the table; “+” signifies expressed; “-” signifies
not expressed. EBERs = Epstein–Barr virus-encoded RNAs (non-coding); LMP = latent membrane
protein; EBNA = Epstein–Barr nuclear antigen; LP = leader protein; BCR = B-cell receptor. Created
with BioRender.com.
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The Nature of Asymptomatic EBV Carriage in B-Cells

The transmission of EBV is mainly via oral contact, but can also occur via inter-
course [34–36]. To infect B-cells, EBV gp350 binds to the CD21 receptor (also known as
CR2, complement C3d receptor, and the EBV receptor), widely expressed on the B-cell
surface. The viral gp42 then interacts with the HLA class II molecules, which results
in fusion with the host membrane (Figure 1) [37,38]. Infection can lead to IM or can be
asymptomatic [9]. In asymptomatic carriers, memory B-cells have been shown to be the
major cell type infected with EBV [39]. It has been suggested that memory B-cells may be
directly infected with EBV [40,41] or that EBV initially infects naïve B-cells, which then
differentiate to become memory B-cells. The latter provides an elegant model to explain
EBV persistence (see [42,43] for a more detailed discussion of primary EBV infection and
IM) and, in turn, also explains the distinct forms of latency which are tightly controlled in
the different EBV-associated B-cell malignancies (Figure 3). In this model, EBV-infected
naïve B-cells adopt a latency III programme that drives their proliferation. During the early
stages of EBV infection, it is also thought that there may be expression of additional viral
genes that promote cell survival, in addition to proliferation. In particular, Altmann and
Hammerschmidt (2005) demonstrated that the expression of two viral homologs of BCL-2, a
protein involved in pro-survival signalling, may be important for providing anti-apoptotic
signals in newly infected B-cells [44]. They found that without these BCL-2 homologs,
EBV-infected cells immediately underwent apoptosis, but that these proteins are no longer
essential once latent infection is established [44].

Once infected, the B-cells differentiate in a germinal centre (GC)-like phase and express
another form of latency, known as the ‘default programme’ or latency II, in which expression
is limited to the LMPs and EBNA1 [45]. LMP1 and LMP2A would seem to be crucial here
as they act as CD40 and B-cell receptor (BCR) mimics, respectively, ensuring that the EBV-
infected cells can survive and exit the GC reaction, emerging as memory B-cells in which
the EBV genome is maintained as an extra-chromosomal episome [32,46,47].

Thereafter, EBV-infected memory B-cells almost entirely shut down virus gene expres-
sion (known as latency 0) [45], but can switch on EBNA1 expression to allow the replication
and segregation of viral episomes during the proliferation of memory B-cells (latency I).
EBV-infected memory B-cells can differentiate into plasma cells and this is accompanied by
induction of the virus lytic cycle [48].

In a normal host, adaptive T-cell responses effectively eliminate EBV-infected cells
expressing viral antigens [27]. This appears to be especially important in latency III; in
these cells, the immunodominant EBNA3 family of EBV proteins are expressed [27,49].
However, the loss of adaptive immunity, for example, in iatrogenically immunosuppressed
individuals or in those with uncontrolled HIV infection, can lead to the outgrowth of
latency III-expressing cells. This eventually leads to the development of latency III-type
lymphomas [49]. Moreover, it is important to note that innate lymphocyte populations
are also involved in the control of EBV in the asymptomatic host, as evidenced by the
development of EBV-associated pathologies, including lymphomas, in people with primary
immunodeficiencies associated with a loss of innate lymphocyte functions [50].
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3. EBV+ Diffuse Large B-Cell Lymphoma

In the most recent lymphoma classifications, WHO fifth edition (WHO-HEAM5) and
ICC 2022, a wide range of large B-cell lymphomas are recognised, showing a variable
association with EBV (Table 1). The archetypal EBV-associated large B-cell lymphoma,
EBV+ DLBCL, has long been regarded a separate entity from DLBCL, NOS, based on
the unique clinical, morphological, and prognostic features. Defined as a large B-cell
lymphoma in which the majority of the neoplastic cells harbour EBV without a prior history
of immunodeficiency or dysregulation, EBV+ DLBCL was initially thought to mostly affect
people over 50 years old (peak in seventh and eighth decades), and frequently presents
with extranodal disease. The lung, gastrointestinal tract, skin, and bone marrow are the
most frequently affected. Younger patients (peak in third decade) typically present with
nodal disease. Histopathologically, EBV+ DLBCL shows a broad spectrum of features,
ranging from monotonous sheets of large blasts to polymorphous infiltrates with variable-
sized neoplastic B-cells and dense lymphoid infiltrates comprising lymphocytes, plasma
cells, and epithelioid histiocytes. The lesional B-cells can even show Hodgkin-/Reed
Sternberg-like features, leading to diagnostic confusion with Hodgkin lymphoma and
other EBV+ lymphoproliferations (see [51] for a recent review of EBV-associated B-cell
lymphoproliferative disorders). On immunophenotyping, the lesional cells express pan
B-cell markers (CD20, CD19, PAX5) and approx. 40% of cases express CD30, which is
significantly more than the EBV-negative cohort [52]. EBV+ tumoral status has been shown
to be associated with more aggressive clinical behaviour in DLBCL patients; although,
the prognostic effect may vary according to geographical region and within different
age groups.

3.1. Evolution of DLBCL Classification and EBV

Before considering the role of EBV in the pathogenesis of EBV+ DLBCL, it is worth
pausing briefly to consider the classification of large B-cell lymphomas, which has un-
dergone, and continues to undergo, substantial modification. Lymphoma classification
started in the first half of the 19th century with the pioneering works of Thomas Hodgkin
and Rudolph Ludwig Carl Virchow, and since the second half of the 19th century, many
iterations of lymphoma classifications have been proposed. During the 1980s, the Interna-
tional Lymphoma Study Group (ILSG) proposed new a classification known as the REAL
(Revised European American Lymphoma) classification which was based on identifying
lymphoma entities, sorting according to B- and T-cell origin, and defining precursor and
mature morphology. In the REAL classification, only one subtype of large B-cell lymphoma
was recognised, termed diffuse large B-cell lymphoma, which encompassed a biologically
and clinically heterogenous group of lymphomas with shared morphological features.
The highly variable architecture, histology, and cytology of DLBCL is a reflection that
this lymphoma consists of many different and yet incompletely distinguishable entities
(Table 1) [3,53]. In 1995, a new executive committee was organised under the supervision
of WHO to achieve a common classification consensus according to morphological, im-
munophenotypic, and genotypic lymphoma features that had clinical relevance [3,53–56].
Currently classified hematologic entities, including provisional ones, are described in the
WHO “Blue books” (2001, 2008, 2016, 2022; Table 1) and based on a complex of lymphoma
features—architectural growth pattern and the origin of neoplastic lymphoid cells defined
by morphological, immunophenotypic, molecular genetics, and viral status [3,53–66].
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Table 1. Modifications to aggressive B-cell lymphoma classification in 2022 WHO and ICC classifica-
tion, and the frequency of EBV involvement.

WHO Classification 2017 WHO Classification 2022 ICC Classification 2022 EBV Status

1. Diffuse large B-cell
lymphoma NOS 1. Large B-cell lymphomas

DLBCL, NOS DLBCL DLBCL Negative by definition

2. Other lymphomas of large
B-cells

T-cell/histiocyte-rich LBCL T-cell/histiocyte-rich LBCL T-cell/histiocyte-rich LBCL Negative

Primary DLBCL of the CNS

Primary large B-cell
lymphoma of

immune-privileged sites
(CNS, vitreoretinal, testicular)

Primary DLBCL of
immune-CNS, Primary

DLBCL of testis *
Predominantly negative

Primary cutaneous DLBCL,
leg type

Primary cutaneous DLBCL,
leg type

Primary cutaneous DLBCL,
leg type Negative

EBV-positive DLBCL, NOS EBV-positive DLBCL EBV-positive DLBCL, NOS 100% positive by definition
Primary mediastinal (thymic)

LBCL Primary mediastinal LBCL Primary mediastinal LBCL Rare examples of
EBV-positive cases reported

Intravascular LBCL Intravascular LBCL Intravascular LBCL Negative
DLBCL associated with
chronic inflammation

DLBCL associated with
chronic inflammation

DLBCL associated with
chronic inflammation 100% positive

Lymphomatoid
granulomatosis

Lymphomatoid
granulomatosis

Lymphomatoid
granulomatosis 100% positive

ALK-positive LBCL ALK-positive LBCL ALK-positive LBCL Negative
Plasmablastic lymphoma Plasmablastic lymphoma Plasmablastic lymphoma 70–80% positive

LBCL with IRF4
rearrangement

LBCL with IRF4
rearrangement

LBCL with IRF4
rearrangement * Negative

Burkitt-like lymphoma with
11q aberration

High-grade B-cell lymphoma
with 11q aberrations LBCL with 11q aberrations Negative

(Previously included in
DLBCL associated with
chronic inflammation)

Fibrin-associated LBCL Fibrin-associated DLBCL ~100% positive

(Not previously included) Fluid overload-associated
LBCL HHV8 and EBV-negative PEL WHO:13–30% positive. ICC:

negative by definition.

2. KSHV/HHV8-associated
B-cell LPD

HHV8-positive DLBCL, NOS KSHV/HHV8-positive
DLBCL HHV8+ DLBCL Occasional cases are positive

Primary effusion lymphoma Primary effusion lymphoma Primary effusion lymphoma Most cases positive

3. B-cell lymphoma
unclassifiable

1. Large B-cell Lymphoma
(continued)

B-cell lymphoma,
unclassifiable, with features

intermediate between DLBCL
and classical Hodgkin

lymphoma

Mediastinal grey zone
lymphoma

Mediastinal grey zone
lymphoma Negative

4. High-grade B-cell
lymphoma

High-grade B-cell lymphoma
with MYC and BCL2 and/or

BCL6 rearrangements

DLBCL/high grade B-cell
lymphoma with MYC and

BCL2 rearrangements

High grade B-cell lymphoma;
MYC:BCL2 or MYC:BCL6 or

MYC:BCL2:BCL6

Negative (rare reported
EBV-positive cases)

High-grade B-cell lymphoma,
NOS

High-grade B-cell lymphoma,
NOS

High-grade B-cell lymphoma,
NOS Negative

* denotes provisional entity.
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Over the course of subsequent WHO classifications, the number of large B-cell lym-
phoma entities have proliferated, and some are strongly associated with EBV. Prior to
the 2008 WHO classification, a subset of DLBCL, NOS were regarded as EBV+ [67,68].
However, it was not until the 2008 classification that a separate entity was recognised,
termed EBV+ DLBCL of the elderly. The rationale was that EBV+ DLBCL was thought to
predominantly arise in those over 50 years old, and the presumed aetiology was that of
immunoscenecence. In an ageing population, defects in EBV-specific T-cell surveillance
were believed to enable an outgrowth of the EBV-infected B-cells [13]. It was later recog-
nised that EBV+ DLBCL also occurred in younger patients [69], and the age criteria was
abandoned and the provisional entity was renamed EBV+ DLBCL, NOS [70–72]. In fact,
studies have reported no significant difference in the incidence of EBV+ DLBCL between
younger (<50 years old) and elderly (≥50 years old) patients [52,69].

Both the WHO-HAEM5 and ICC 2022 are unified in their approach to EBV+ DLBCL,
which is now regarded as an established entity occurring in patients without immune
dysfunction or dysregulation, except for immunoscenecence. EBV+ lymphomas have now
been excluded from the DLBCL, NOS category. To render a diagnosis of EBV+ DLBCL,
the ICC 2022 classification requires that 80% of the lesional cells are positive, whereas the
WHO simply requires that most cells should be EBV+.

3.2. Other EBV-Associated Large B-Cell Malignancies

Other large B-cell lymphomas (LBCLs) and lymphoproliferations are consistently
associated with EBV, including lymphomatoid granulomatosis, DLBCL, associated with
chronic inflammation and fibrin-associated LBCL. Others show EBV infection in a subset
of cases such as plasmablastic lymphoma and fluid overload-associated LBCL. Similarly,
LBCLs arising in the context of immune deficiency/dysfunction show a more frequent but
variable association with EBV.

DLBCL associated with chronic inflammation (DLBCL-CI) occurs in the setting of
confined or acquired tissue spaces affected by longstanding inflammation. A typical
example would be pyothorax-associated lymphoma in the pleural cavity of patients with
longstanding pyothorax. These cases are always associated with EBV and show a clinically
aggressive course with a 5-year overall survival of 20–35%. Fibrin-associated large B-cell
lymphoma (FA-LBCL) was previously categorised as DLBCL-CI, and comprises a large
B-cell proliferation at sites of chronic fibrin deposition. As with DLBCL-CI, FA-LBCL is
always associated with EBV, but shows an excellent prognosis with no recorded cases of
disseminated disease [73,74].

Lymphomatoid granulomatosis (LG) is another EBV-associated large B-cell lympho-
proliferation that occurs in immunocompetent patients and is characterised by angiocentric
and angiodestructive lesions in extranodal sites. The lesions comprise large atypical le-
sional EBV+ B-cells admixed with a prominent reactive T-cell infiltrate. The prognosis of
LG depends on the grade; low-grade lesions show a good prognosis and are treated with
immune modulation, whereas high-grade lesions are considered to be on a spectrum with
EBV+ DLBCL and often require chemotherapy [73].

Some other LBCLs are associated with EBV in most cases. These include primary
effusion lymphoma (PEL) and plasmablastic lymphoma (PBL). PEL presents as an effusion
in the pleural, pericardial, or peritoneal space in the absence of lymph node involvement
or extranodal mass. PEL always shows HHV8 infection and is EBV+ in around 80% of
cases, and most cases are associated with HIV infection. The prognosis of PEL is poor,
but EBV positivity is associated with a better prognosis. PBL is associated with EBV in
approximately 60% of cases and comprises atypical large B-cells with plasmablastic or
immunoblastic differentiation. PBL typically affects extranodal sites and shows a dismal
prognosis, with an overall survival of 6–32 months [73].

A number of other LBCLs are infrequently or rarely show EBV infection such as HHV8+
DLBCL, high grade B-cell lymphoma/DLBCL with MYC and BCL2/BCL6 rearrangements
and primary mediastinal LBCL. The ICC 2022 and WHO-HAEM5 show divergence in their
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approach to ‘Fluid overload-associated LBCL’ and ‘HHV8 and EBV-negative PEL’, whereby
as the name implies, EBV positivity is only permitted in the WHO-HAEM5 classification of
this entity [74].

3.3. Prevalence of EBV+ DLBCL

Clonal EBV is present in approximately 5% of DLBCL cases in Western countries [10,75,76]
and in 5–15% of DLBCL arising in Asian and South-American countries [69,71,77]. However,
it should be noted that there is considerable variation in the cut-off applied to define EBV
positivity between different studies, where EBER cut-offs between 10–80% have been
reported (reviewed in [78] and [79]). Moreover, a recent study has identified rare tumour
cells in EBV-negative DLBCL that express EBNA1 detected by RNAscope, but which were
negative by conventional EBER staining [80]. These included cases of clonally-related
relapsed EBER-negative DLBCL occurring after an initial EBER-positive DLBCL [80]. Thus,
these findings support the possibility that loss of the viral genome can occur during
disease progression and that this ‘hit and run’ mechanism may be more prevalent than first
thought [80].

3.4. Viral Gene Expression in EBV+ DLBCL

As described earlier, the EBV-infected B-cells of asymptomatic carriers can express
different forms of EBV latency and can also undergo lytic cycle, reflecting the requirement
for different gene functions at distinct stages of EBV’s life cycle. EBV+ DLBCL usually
expresses a latency II or latency III pattern of virus gene expression (Figure 3) [67,81,82]
which could, in part, reflect the origin of EBV+ DLBCL from a different stage of B-cell
differentiation. Alternatively, latency II, in which the immunodominant EBNA3 gene
family is not expressed, could represent the requirement to minimise the recognition of
tumour cells by the immune system in immunocompetent individuals while still retaining
critical virally-mediated oncogenic activities such as NF-κB signalling promoted by EBV’s
oncogene, LMP1 [83,84]. It is also likely that immune evasion in EBV+ DLBCL might be
mediated through the recruitment of an immune suppressive tumour microenvironment
(TME) (see Section 3.5).

It has become apparent that mutations in the EBV genome can promote malignancy.
One of the best examples of this is the minority of EBV-associated Burkitt lymphoma (BL)
that have an unusual form of virus latency in which EBNA2 is deleted [85,86]. These
unusual cases are known as ‘Wp-restricted’ BL because expression of the EBNAs is initiated
from the Wp promoter as opposed to the Qp promoter that drives EBNA1 expression in
conventional BL. Wp-restricted BL cell lines were more resistant to apoptosis than Qp-
restricted BL lines, [87,88]. Since then, several studies have shown that genetic variation in
the EBV genome also contributes to the pathogenesis of EBV+ DLBCL. Recently, the Wp-
restricted genome, P3HR1, was used to infect cord blood humanised (CBH) mice. It was
found that although the EBNA2-deleted EBV strain was not capable of transforming cells
in vitro [89], in vivo, a subset of mice developed tumours with either a Hodgkin Lymphoma-
like or DLBCL-like phenotype [90]. In addition to the lack of EBNA2 expression, these
DLBCL-like tumours were found to have low LMP1 expression [90]. This was of particular
interest, as in vitro, both EBNA2 and LMP1 are required for B-cell transformation [89,91].

The Kenney lab have also recently shown that B-cells infected with LMP1-deleted EBV
can form tumours in vivo in CBH mice [92]. In these mouse models, CD4+ T-cells in the
tumour microenvironment were necessary for tumour formation. The CD4+ T-cells pro-
vided crucial CD40-ligand signalling in the absence of LMP1, a constitutively active CD40
homolog [92]. Although LMP1 was not necessary for transformation, they also report that
LMP1 and LMP2A may cooperate in vivo to promote early-onset lymphomagenesis [93].
In double LMP1 and LMP2A knockouts, fewer tumours were formed in CBH mice, and the
tumours that did form grew much slower. In contrast, while LMP2A-deficient tumours
were also found to grow more slowly than those expressing LMP2A, the lack of LMP2A
did not impact the number of tumours formed [93].
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Furthermore, White et al. (2012) showed that B-cells infected with a recombinant virus
lacking EBNA3B were more tumorigenic than wild-type (WT) EBV in mice reconstituted
with a human immune system [94]. EBNA3B-deficient tumours induced the expansion
of EBV-specific T-cells in humanised mice, but these cells failed to infiltrate the tumours.
Importantly, truncating mutations in EBNA3B were detectable in tissue samples of some
patients with EBV-associated lymphomas, including DLBCL. Taken together, these data
suggest that EBNA3B has tumour suppressor functions mediated through its ability to
recruit EBV-specific T-cells.

In contrast, in CBH mice, EBNA3C-deleted EBV resulted in fewer DLBCL-like tumours,
and those tumours that did form showed 1) reduced tumour growth; 2) increased levels of
the tumour suppressor, p16, and type 1 interferon; and 3) higher levels of T-cell infiltration
compared with WT EBV [94]. Therefore, although EBNA3C is not always essential for
lymphomagenesis, it may play an important role in reducing cellular and immune-mediated
tumour suppression.

EBNA3A is known to collaborate with EBNA3C to repress p16 in LCLs [95] and reduce
the expression of the pro-apoptotic protein, BIM, in BL cell lines [88,95]. Additionally, BH3-
profiling revealed that EBNA3A can upregulate the transcription of the anti-apoptotic
protein, BFL1, and improve the localisation of another anti-apoptotic protein, MCL1, to
the mitochondria in vitro [96]. In CBH mice, DLBCL-like tumours induced by mutant EBV
lacking EBN3A resembled tumours arising from WT EBV infection with similar levels of
p16 expression [97]. However, similar to the EBNA3C-deficient tumours, the ENBA3A
knockout tumours grow more slowly and with an increased infiltration of CD4+ and CD8+
T-cells [97].

In a recent study, deletions in another part of the EBV genome were observed in
DLBCL and other EBV-associated cancers [98]. These deletions result in the loss of genes
that are required for completion of EBV’s lytic cycle, e.g., BALF5 [98], while at the same
time upregulating the immediate early genes, BZLF1 and BRLF1 [99]. Mutated EBV lacking
this region was shown to enhance lymphoma formation by inducing BZLF1 expression in
xenograft models [100]. Deletions within the EBV Cp promoter were also reported in EBV+
DLBCL [101]. The Cp promoter usually transcribes the EBNA genes in latency III. Its loss
resulted in enhanced in vitro transformation and increased the rate of the progression of
EBV+ lymphoproliferative lesions in animal models.

3.5. Cellular Genetics of EBV+ DLBCL

Gene expression profiling (GEP) has shown that DLBCL consists of two major subtypes:
germinal centre B-cell-like (GCB) DLBCL and activated B-cell like (ABC) DLBCL [63,64].
The GCB and ABC subtypes express genes that are characteristic of normal germinal centre
B-cell differentiation or activation of peripheral B-cells, respectively [63,65]. This so-called
Cell of Origin (COO) classification of DLBCL can be performed on formalin-fixed paraffin
embedded samples (FFPE) using the Hans classifier, but is not as accurate as GEP [42]. In
the context of EBV+ DLBCL, generally, studies report a higher prevalence of EBV infection
in the ABC-subtype [7], but recent studies in Western countries reported that up to 40% of
EBV+ DLBCL were of the GCB subtype [59,66].

Despite the advantages of the COO classification for explaining some of the hetero-
geneity in DLBCL, the methodology does not fully recapitulate the inter-tumour variability
in terms of predicting treatment responses. Instead, genomic studies have revealed that
DLBCL consists of many genetic subtypes, with distinct genomic profiles. A recently devel-
oped algorithm, LymphGen classifier, identified seven distinct genetic subtypes, namely
MCD, N1, A53, BN2, ST2, EZB MYC+, and EZB MYC- [102]. In addition to differing ge-
netic signatures, each profile revealed distinct immune microenvironments and treatment
outcomes. Additionally, the profiles could be applied to nearly 60% tumours of various
DLBCL subtypes, including nodal and extranodal tumours [102]. However, when this
algorithm was applied to EBV+ DLBCL, over 80% of tumours could not be attributed to a
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genetic subtype [103]. This provides further evidence of the unique genetic profile of EBV+
DLBCL compared to its EBV-negative counterpart [103].

Furthermore, GEP in EBV+ DLBCL has demonstrated upregulation of NF-κB sig-
nalling and pathways involved in proliferation, cell cycle progression, and metabolism
compared to EBV-negative tumours [104]. However, since EBV genes likely contribute
to the development of DLBCL, EBV+ tumours appear to have reduced dependency on
cellular genetic events. Indeed, genomic profiling has revealed EBV+ tumours have a
low mutational burden [32,105] and that mutations in MYD88-mediated TLR-signalling
and B-cell receptor signalling pathways are less frequent in EBV+ DLBCL [106], unlike
conventional ABC-like DLBCL [107,108]. The exome sequencing of tumours from a cohort
of eleven Chinese patients with EBV+ DLBCL (without matched germline DNA) revealed a
heterogeneous landscape dominated by mutations associated with a failure of DNA double-
strand break–repair by homologous recombination [109]. Recently, targeted sequencing of
nine patients identified an elevated frequency of MYC and RHOA mutations together with
other genetic aberrations, including mutations in MEF2B and MYD88 [110]. Although the
sample size was small, they found that RHOA mutations were predictive of a favourable
outcome [110], potentially due to tumour suppressor functions for RHOA; although, this
remains to be determined [111]. Kataoka et al. (2019) described a significant enrichment
of mutations in TET2 and DNMT3A in EBV+ DLBCL [112]. Gebauer et al. (2021) used
whole-genome and targeted sequencing with FISH to analyse 47 EBV+ DLBCL. They found
that EBV+ DLBCL was genetically distinct from EBV-negative DLBCL due to frequent
mutations in ARID1A, KMT2A/KMT2D, ANKRD11, and NOTCH2 [105]. Gene set enrich-
ment analysis identified that mutated genes were enriched in NFκB, IL6/JAK/STAT, and
WNT signalling pathways [105]. They also found large deletions on chromosome 6 to be a
highly recurrent feature of EBV+ DLBCL [105].

DLBCL/high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrange-
ments carries a particularly poor prognosis [113,114]. Conventionally, these tumours are
known as double or triple hit lymphomas (DHL/THL). EBV is only rarely found in asso-
ciation with DHL/THL; a recent study examining a cohort of 846 DHL/THL found that
16 cases were EBV+, 13 of which were of the GCB type [115]. Another study by Frontzek
et al.l (2023) found that 4% of tumours carried translocations of MYC and BCL6, but no
cases of MYC/BCL2 double hit [103]. Nonetheless, whether synergistic effects between EBV
and MYC/BCL2/BCL6 aberrations contribute to the pathogenesis of this subset of tumours
remains to be established.

3.6. The Tumour Microenvironment of EBV+ DLBCL

The development of EBV+ DLBCL in some individuals with apparently healthy im-
mune systems argues against the requirement for a systemic loss of EBV control in all cases,
particularly in younger, immunocompetent patients [116]. To explain this, focus has begun
to shift towards an exploration of the tumour microenvironment (TME) as a contributing
factor. Thus, EBV+ DLBCL displays a tolerogenic TME with an increased expression of
PDL1, PDL2, LAG3, and TIM3 immune checkpoints [82,117,118]; raised levels of immuno-
suppressive cytokines (e.g., IL10) [118]; and higher pro-tumoral loads of CD163/CD68 “M2”
macrophages [117]. A recent study by Carreras et al. (2022) further found that pentraxin 3
(PTX3), a marker of the M2c-like macrophage subtype and NF-κB activation, correlated
with a poorer prognosis. These CD163 and PTX3 co-expressing M2-like macrophages
were also found at higher levels in EBV+ DLBCL than EBV-negative tumours [119]. This
regulatory environment co-exists with increased numbers of CD8+ T-cells and granzyme B+
cytotoxic effector cells, known as an ‘inflamed phenotype’, interpreted as an ineffective host
immune response to virus-infected tumour cells [81,117,118]. The potential importance
of targeting this tolerogenic TME in EBV+ DLBCL is evidenced in a study by Ma et al.
(2016) which used PD-1 and CTLA4 inhibition to increase the EBV-specific T-cell response
in humanised mice implanted with EBV+ cord blood cells [120]. This use of immune
checkpoint blockade facilitated the T-cell-mediated control of tumour out-growth [120].
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Although previous studies provide some insights into the nature of the TME of
EBV+ DLBCL, they have mainly used bulk RNA-seq or low-plex immunohistochemistry.
Consequently, we still lack a detailed spatial characterisation of the TME of EBV+ DLBCL
and an understanding of how it varies compared to other DLBCL subtypes. Moreover,
although LMP1 has been reported to increase the expression of some immunosuppressive
molecules in vitro (e.g., PDL1, IL10) [83], we also lack deeper mechanistic insights into the
contribution of different oncogenic drivers, including EBV, to the DLBCL TME.

4. Conclusions and Perspectives

EBV was first identified as a potent transformer of B-cells and was causally associated
with the development of BL. Since then, EBV has been shown to be associated with a
diverse range of different cancer types, including DLBCL. The pathogenesis of EBV+
DLBCL remains poorly understood and several key questions remain to be answered.
Unravelling the complex interplay between the different aetiological factors and EBV
infection, and how this contributes to transformation, will not only reveal new insights into
the pathogenesis of DLBCL, but is also likely to lead to the development of novel therapies
for treating this aggressive malignancy.
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