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Abstract

The present paper is inspired by Sylvan and Plumwood’s logic
BM defined in “Non-normal relevant logics” and by their treatment
of negation with the ∗-operator in “The semantics of first-degree en-
tailment”. Given a positive logic L including Routley and Meyer’s
basic positive logic and included in either the positive fragment of E
or in that of RW, we investigate the essential De Morgan negation ex-
pansions of L and determine all the deductive relations they maintain
to each other. A Routley-Meyer semantics is provided for each logic
defined in the paper.

Keywords: Minimal De Morgan logic BM; ∗-operator; De Morgan type
negation; relevant logics; Routley-Meyer ternary relational semantics.

1 Introduction

The present paper is inspired by two papers Valerie Plumwood (née Morelli,
also named Routley) wrote with Richard Sylvan (né Routley), “The seman-
tics of first degree entailment” (cf. [13]) and “Non-normal relevant logics”
(cf. [15]).

In the first one of these papers, their authors used what is named in [2]
the “∗-operator”, in order to represent negation in the system of first degree
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entailment. Afterwards, the ∗-operator has generally been used to modelize
negation in relevant logics, as it is done in Chapter 4 of [12], the fundamental
treatise on the Routley-Meyer semantics (RM-semantics) for relevant and
indeed non-classical logics in general, also co-authored by Plumwood. In that
respect, it has to be remarked that the ∗-operator is adequate to represent
De Morgan negations and extensions thereof, not only in relevant logics but,
as just pointed out, in non-classical logics by and large, and both in the
context of a binary, as well as a ternary, relational semantics for interpreting
the conditional or implication (cf. [9, 11] and references therein).

In the second one of the papers quoted above, (relevant) De Morgan
minimal logic BM is introduced. Although it is Routley and Meyer’s basic
logic B the logic usually taken as the fundamental basis for building up
the main relevant logics (cf. Chapter 4 of [12]), it is actually BM, which is
the minimal or basic logic interpretable with the RM-semantics in the sense
that any logic defined in the language of BM strictly included in it is not
representable in said semantics.

In the second paper ([15]), extensions of BM defined by using both the
∗-operator (cf. §8 below) and a falsity constant are introduced. We have
conceived the present paper as a continuation of the results in [15] about
extensions of BM defined with the ∗-operator (as regards those with a falsity
constant, cf. [10]). In particular, we define the taxonomy of expansions with
the ∗-operator of any positive logic including Routley and Meyer’s basic
logic B+ and included in either E+ (the positive fragment of the logic of
entailment E) or in RW+ (the positive fragment of contractionless logic of
relevant implication R). In some cases, the positive spectrum is extended
to contain logics equivalent to, or included in, RM3+, the positive fragment
of the quasi-relevant logic RM3, the 3-valued extension of the logic RM,
R-Mingle (cf. Definitions 2.3 and 3.1 below).

The De Morgan negation expansions to be defined in the sequel are built
up by using the double negation axioms and the contraposition and reductio
axioms and rules (cf. Definition 3.1). As a whole, it is shown that there are
33 different De Morgan negation expansions of any logic L+ including B+

and included in either E+ or in RW+. We determine all deductive relations
these 33 expansions of L+ maintain to each other. Sylvan and Plumwood’s
logic BM will play a fundamental role in the determination of said relations.
as it will be apparent below.

In [15, p. 10], Sylvan and Plumwood note that “System BM and various of
its extensions are of especial interest, among other things, in the formalization
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of dialectical logics”. It is to be hoped that some of the wealth of systems
defined below will be interesting in this sense, but also in others as well.

The structure of the paper is as follows. We define some of the main
positive relevant logics in §2 and some of the main full ones in §3. In §4, a
variety of De Morgan negations for any logic L+ including B+ and included in
RM3+ is defined by using the double negation axioms and the contraposition
axioms and rules. By using, in addition, the ‘constructive’ reductio axioms
and rule, in §5, a variety of De Morgan negations for any logic including B+

and included in E+ or RW+ is defined. In §6, the ‘non-constructive’ axioms
and rules as well as the ‘constructive’ ones are used along with the double
negation axioms and the contraposition axioms and rule. In each one of
these sections (§4, 5, 6), all the deductive relations the expansions obtained
maintain to each other are defined. In §7, we provide an RM-semantics for
each one of the logics defined in the paper. In §8, the paper is ended with
some concluding remarks. We have added an appendix displaying some sets
of truth-tables used in establishing the deductive relations referred to above.
Most of these sets have were obtained with Slaney’s MaGIC (cf. [14]).

2 Main positive relevant logics

Below, we recall some of the main positive (i.e., negationless) relevant logics.
They can be taken as exemplary instances of the wealth of positive logics
we are going to show how to expand with a variety of De Morgan negations.
Firstly, we set some preliminary notions. Then Routley and Meyer’s basic
positive logic B+ is defined.

Definition 2.1 (Preliminary notions). The propositional language consists
of a denumerable set of propositional variables p0, p1, ..., pn, ..., and the fol-
lowing connectives: → (conditional), ∧ (conjunction), ∨ (disjunction) and
∼ (negation). The biconditional (↔) and the set of wffs are defined in the
customary way. A,B,C, etc. are metalinguistic variables. Then logics are
formulated as Hilbert-type axiomatic systems, the notions of ‘theorem’ and
‘proof from a set of premises’ being the usual ones, as well as those of exten-
sion and expansion of a given logic.

Definition 2.2 (The logic B+). The logic B+ can be formulated with the
following axioms and rules of inference (cf., e.g., [12, Chapter 4]; A1,..., An ⇒
B means ‘if A1, ..., An, then B’):
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Axioms :

a1. A → A

a2. (A ∧B) → A; (A ∧B) → B

a3. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

a4. A → (A ∨B); B → (A ∨B)

a5. [(A → C) ∧ (B → C)] → [(A ∨B) → C]

a6. [A ∧ (B ∨ C)] → [(A ∧B) ∨ (A ∧ C)]

Rules of inference:

Adjunction (Adj). A,B ⇒ A ∧B

Modus ponens (MP). A → B,A ⇒ B

Prefixing (Pref). B → C ⇒ (A → B) → (A → C)

Suffixing (Suf). A → B ⇒ (B → C) → (A → C)

Definition 2.3 (Main positive relevant logics). Consider the following ax-
ioms:

b1. [(A → B) ∧ (B → C)] → (A → C)

b2. (A → B) → [(B → C) → (A → C)]

b3. (B → C) → [(A → B) → (A → C)]

b4. [(A → B) ∧ A] → B

b5. [A → (A → B)] → (A → B)

b6. [[(A → A) ∧ (B → B)] → C] → C

b7. A → [(A → B) → B]

b8. A → (A → A)

b9. A ∨ (A → B)

Some of the main positive relevant logics are Brady’s DJ+ (cf. [5]); C+ (cf.
[12, p. 186]); Anderson and Belnap’s Ticket Entailment (T+), Entailment
(E+) and Relevance (R+) (cf. [1]); RMO+ (cf. [1, §8.15]) and RM3+ (cf. [1,
§29.3, 29.4]). The logic DJ+ (equivalent to DL+) is the result of adding b1 to
B+. Then the rest of the logics mentioned above are axiomatized with Adj,
MP, a1-a6 and the following axioms:

Australasian Journal of Logic (20:2) 2023, Article no. 9



352

• C+: b2, b3, b4.

• T+: b2, b3, b5.

• E+: T+ plus b6.

• R+: b2, b5, b7.

• RMO+: R+ plus b8.

• RM3+: RMO+ plus b9.

Finally, we note the logic RW+, which is important in the sequel:

• RW+: b2, b7.

That is, RW+ is the result of dropping the contraction axiom b5 from the
formulation of R+ (notice that b3 is provable from b2 and b7).

Concerning RMO+ and RM3+, it has to be remarked that their standard
negation expansions are not relevant logics in the sense that they lack the
variable-sharing property, although they enjoy the weak relevant property (cf.
[1, §29]), while some authors consider them in the “family of relevance logics”
anyway (cf., e.g., [3, p. 276]).

The logics in Definition 2.3 are related to each other as summarized in
the following diagram (for any logics L, L′, L → L′ means that L′ is a proper
extension of L).

Figure 1

We remark that RW+ includes C+, it is included in R+ but does not
include nor is it included in T+ and E+.

3 Main relevant logics

In this section, we recall some of the main relevant logics.
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Definition 3.1 (Main relevant logics). Consider the ensuing axioms and
rules:

A1. (∼A ∧ ∼B) → ∼(A ∨B)

A2. ∼(A ∧B) → (∼A ∨ ∼B)

A3. (A → B) → (∼B → ∼A)

A4. A → ∼∼A

A5. ∼∼A → A

A6. (A → B) → ∼(A ∧ ∼B)

Contraposition (con). A → B ⇒ ∼B → ∼A

Reductio (r). A → ∼A ⇒ ∼A

Some of the main relevant logics are negation expansions of the positive
logics defined in Definition 2.3. In particular, the logics B, DJ, DL, C, T, E,
R, RM and RM3, whose relations mirror those between the corresponding
positive logics (cf. Figure 1). In addition, the fundamental Sylvan and
Plumwood’s minimal De Morgan logic BM has to be mentioned (cf. [15]).
These logics are axiomatized as follows (cf. [5, 4]):

• BM: B+, A1, A2, con.

• B: B+, A4, A5, con.

• DJ: DJ+, A3, A4, A5.

• DL: DJ, A6.

• C: C+, A3, A4, A5.

• T: T+, A3, A4, A5, A6.

• E: E+, A3, A4, A5, A6.

• R: R+, A3, A4, A5.

• RM: RMO+, A3, A4, A5.

• RM3: RM3+, A3, A4, A5.

Remark 3.2 (The De Morgan laws and other questions). Notice that the
De Morgan laws ∼(A ∨ B) ↔ (∼A ∧ ∼B) and ∼(A ∧ B) ↔ (∼A ∨ ∼B)
are provable in BM (by A1, A2, a2-a5 and con). In addition, it has to be
noted that Sylvan and Plumwood’s BM is the minimal logic definable in the
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context of the Routley-Meyer ternary relational semantics, as remarked in
the introduction (then, the De Morgan laws are provable in all logics referred
to above). Also, that A6 (so, r) is a theorem of R (so, of RM and RM3).
(A6 is usually rendered in the form (A → ∼A) → ∼A —cf. [1]—. But this
thesis and A6 in its present form are equivalent w.r.t. BM plus A4 —cf. §8.)
Lastly, it has to be mentioned that RMO+ is not the positive fragment of
RM3 (cf. [1, §8.1]) and that RM and RM3 enjoy the weak relevant property
though they lack the variable-sharing property, as pointed out above (cf. [1,
§29]).

4 Variety of De Morgan negations I. Double negation and

contraposition

In this section, unless otherwise explicitly stated, by L+, we refer to a positive
logic including B+ and included in RM3+ (cf. Definition 2.3). Below, it is
shown how to expand L+ by using the double negation axioms A4, A5, the
contraposition rule con and its corresponding axiom A3.

Definition 4.1 (Variety of minimal De Morgan negations). There are essen-
tially four ways of expanding L+ with a minimal De Morgan negation (the
labels ‘m’, ‘i’ and ‘e’ abbreviate ‘minimal’, ‘introduction of double negation’
and ‘elimination of double negation’).

1. Lm: L+ plus A1, A2 and con.

2. Lmi: Lm plus A4.

3. Lme: Lm plus A5.

4. Lmie: Lm plus A4 and A5.

Definition 4.2 (Variety of basic De Morgan negations). There are essentially
four ways of expanding L+ with a basic De Morgan negation (the label ‘b’
abbreviates ‘basic’; the labels ‘i’ and ‘e’ are understood as in Definition 4.1).

5. Lb: L+ plus A1, A2 and A3.

6. Lbi: Lb plus A4.

7. Lbe: Lb plus A5.

8. Lbie: Lb plus A4 and A5.
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Remark 4.3 (On the contraposition axioms and rules). Consider the following
contraposition axioms and rules:

con1. A → ∼B ⇒ B → ∼A

con2. ∼A → B ⇒ ∼B → A

con3. ∼A → ∼B ⇒ B → A

A31. (A → ∼B) → (B → ∼A)

A32. (∼A → B) → (∼B → A)

A33. (∼A → ∼B) → (B → A)

We have (the easy proof is left to the reader): Lmi ⊢ con1; Lme ⊢ con2; Lmie
⊢ con1, con2, con3; Lbi ⊢ A31; Lbe ⊢ A32; Lbie ⊢ A31, A32, A33 (of course,
⊢ means ‘is provable from’).

The proposition that follows displays the relations the different De Mor-
gan expansions just introduced in Definitions 4.1 and 4.2 maintain to each
other.

Proposition 4.4 (Relations between the expansions in Definitions 4.1 and
4.2). Consider the eight expansions of L+ introduced in Definitions 4.1 and
4.2. The relations the said expansions maintain to each other are summarized
in the following diagram, where the arrow is interpreted as in Figure 1.

Figure 2

Proof. The inclusion relations are immediate. Then concerning the non-
inclusion claims, it suffices to use the following facts. (1) A3 does not follow
from RM3+ plus A1, A2, A4 and A5. (2) A4 is not provable from RM3+

plus A1, A2, A3 and A5. (3) A5 is not derivable from RM3+ plus A1, A2,
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A3 and A4. Now, (1), (2) and (3) are a consequence of tables t1, t2 and t3,
respectively (cf. the Appendix).

It is a result of Proposition 4.4 that there are, so far, eight different to
each other ways of expanding L+ with a De Morgan negation. For instance,
let L+ be B+ (cf. Definition 2.2). Then Lm is Sylvan and Plumwood’s
minimal De Morgan logic BM; Lmie is Routley and Meyer’s basic logic B (cf.
[12, Chapter 4]), and Lbie is the logic DW (cf. [12, Chapter 4]). But many
more important relevant logics are included in Definitions 4.1 and 4.2. For
instance, let L+ be R+. Then Lbi (included in Jankov’s KC —cf. [7]) includes
the basic ‘constructive’ logic RBc defined in [10], while Lbie is Anderson and
Belnap’s R. A last example. Lbie is RM (resp., RM3) if L+ is RMO+ (resp.,
RM3+).

Nevertheless, most of the logics defined in Definitions 4.1 and 4.2, even
strong ones, lack the reductio axiom A6 or even the reductio rule r. For
example, if L+ is E+, then r is not provable in Lbie. But, as we have seen
above (cf. Definition 3.1), the reductio axiom A6 is instrumental in the
characterization of some strong relevant logics. Moreover, the axiom A6 or
the reductio rule r characterize some important weak relevant logics such
as G (i.e., B plus r —cf. [12, Chapter 4]), TWR and EWR, which are the
result of dropping b5 from T and R, respectively, while maintaining A6 (cf.
Definition 3.1; notice that RWR and R are equivalent systems —cf. [12,
Chapter 4]).

The reductio axioms and/or rules are crucial in a number of relevant
logics weaker than R. So, we discuss them in the two following sections.

5 Variety of De Morgan negations II. The reductio rules

and axioms

In this section, it is shown how to use the reductio rule r and the reductio
axiom A6, in addition to the double negation axioms and the contraposition
rule and axiom, for defining De Morgan negation expansions of positive rel-
evant logics. Firstly, we note some theses and rules deductively equivalent
(from now on, simply ‘equivalent’) to r. (In what follows, ai-ak where i<k
and i, k ∈ {7, 8, ..., 17} abbreviates ai through ak.)

Proposition 5.1 (Theses and rules equivalent to r). Consider the following
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rules and theses:

a7. A → B,A → ∼B ⇒ ∼A

a8. A → (B ∧ ∼B) ⇒ ∼A

a9. A → B ⇒ ∼(A ∧ ∼B)

a10. A → ∼B ⇒ ∼(A ∧B)

a11. ∼(A ∧ ∼A)

a12. ∼A ∨ ∼∼A

Given Sylvan and Plumwood’s logic BM (cf. Definition 3.1), we have that
a7-a12 are equivalent to rule r (A → ∼A ⇒ ∼A).

Proof. It is easy and is left to the reader.

Regarding the relations between the logics in Definitions 4.1 and 4.2 and
the rules and theses in Proposition 5.1 just proved, we have the ensuing
fundamental fact.

Proposition 5.2 (On the reductio axioms and rules). Let L1+ and L2+ be
logics including B+ the former being included in E+ and the latter in RW+

(cf. Definition 2.3). We prove: (1) the rule r (so a7-a12) is neither derivable
from L1bie nor from L2bie; (2) A6 is neither derivable from L1bie plus r nor
from L2bie plus r (cf. Definitions 4.1 and 4.2).

Proof. We use the tables in the Appendix. (1) L1bie: t5; L2bie: t4. (2)
L1bie: t6; L2bie: t7.

As a consequence of Proposition 5.2, we can state the following definitions:

Definition 5.3 (Variety of De Morgan negations with r). Let L+ be a logic
including B+ and included in either E+ or RW+ (cf. Definition 2.3). Then,
in addition to the eight different De Morgan expansions of L+ described in
Definitions 4.1 and 4.2, L+ can be expanded as follows:

9. Lmr: L+ plus A1, A2, con and r.

10. Lmir: Lmr plus A4.

11. Lmer: Lmr plus A5.

12. Lmier: Lmr plus A4 and A5.

13. Lbr: L+ plus A1, A2, A3 and r.
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14. Lbir: Lbr plus A4.

15. Lber: Lbr plus A5.

16. Lbier: Lbr plus A4 and A5.

Definition 5.4 (Variety of De Morgan negations with A6). Let L+ be as in
Definition 5.3. The logics LmR, LmiR, LmeR, LmieR, LbR, LbiR, LbeR and
LbieR are defined as Lmr through Lmier, respectively, except that the rule r
(or a7-a12) is replaced by A6.

Concerning the relations the logics introduced in Definitions 5.3 and 5.4
maintain to each other, we prove the ensuing proposition.

Proposition 5.5 (Relations between the logics with reductio). The relations
the logics in Definitions 5.3 and 5.4 maintain to each other mirror those
relating the reductioless logics to each other, as they have been summarized
in Figure 2 (ρ stands uniformly for either r or else R; LM stands uniformly
for Lm or else Lb, where L+ is as in Definitions 5.3 and 5.4). Cf. Figures
3, 4 and 5:

Figure 3
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Figure 4

Figure 5

Proof. It follows from Propositions 4.4 and 5.2, once having noted that
tables t1, t2 and t3 verify A6.
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6 More on the reductio axioms and rules

In this section, we elaborate on the question of extending minimal or basic
De Morgan logics (as defined in Definitions 4.1 and 4.2) with the reductio
axioms and rules. We begin by introducing some additional reductio rules.

Proposition 6.1 (Some reductio rules equivalent to PEM). Consider the
following reductio rules and thesis.

rbis. ∼A → A ⇒ A

a13. A → B,∼A → B ⇒ B

a14. (A ∨ ∼A) → B ⇒ B

a15. A → B ⇒ ∼A ∨B

a16. ∼A → B ⇒ A ∨B

a17. A ∨ ∼A

Given Sylvan and Plumwood’s logic BM (cf. Definition 3.1), rbis and
a13-a17 are equivalent to each other.

Proof. It is easy and is left to the reader (remark that a17 is the “Principle
of Excluded Middle”, PEM).

Proposition 6.2 (On the relations between r1 and r2). Let us refer by r1
(resp., r2) to the set of rules and theses a7-a12 (resp., rbis and a13-a17).
Given the logic BM, we prove that r1 is derivable from r2.

Proof. It suffices to show that the rule r, A → ∼A ⇒ ∼A, is provable from
rbis, which is immediate.

But there is more to be said on the relations between r1 and r2.

Proposition 6.3 (On the unprovability of r2). Let L+ be a logic included in
RM3+. Then r2 is unprovable from Lbi plus r1.

Proof. By table t8 in the Appendix.

Proposition 6.4 (On the provability of r2). Given BM plus A5 (∼∼A → A)
and r1, r2 is derivable.

Proof. It is immediate: rbis (∼A → A ⇒ A) follows from the rules r, con
and re (∼∼A ⇒ A).
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Remark 6.5 (On the extensions of Lm and Lb with r1 and r2). Let L+ be a
logic included in RM3+ and Lm and Lb be its expansions with minimal and
basic De Morgan negation, respectively (cf. Definitions 2.3, 4.1 and 4.2).
From Propositions 6.2, 6.3 and 6.4, it follows that the result of extending
Lme (so Lbe) with either r1 or r2 are equivalent systems. Nevertheless, Lm
(resp., Lmi, Lb, Lbi) plus r1 is included in (but does not include) Lm (resp.,
Lmi, Lb, Lbi) plus r2.

The facts just remarked are contained in the ensuing proposition.

Proposition 6.6 (On the rel. between Lm- & Lb-extensions with r1 & r2).
Let L+ be a logic including B+ and included in either E+ or in RW+. The
relations Lm and Lb (cf. Definitions 4.1 and 4.2) maintain with each other
when extended with r1 and r2 are summarized in the following diagram (recall
that, for instance, Lmer1 and Lmer2 are equivalent):

Figure 6

Proof. Given Propositions 6.1, 6.2, 6.3 and 6.4, the proof follows once having
remarked that all items in r1 and r2 are verified by t1, t2 and t3.

Now, let us consider extensions of Lm and Lb (in the sense of the preced-
ing proposition) by using the following alternative, A6bis, to A6:

A6bis. (A → B) → (∼A ∨B)
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Notice that r, a7-a11 and A6 are ‘constructive’ in the sense that they are
provable in intuitionistic logic IPC. On the other hand, a12 (the characteristic
axiom of KC —cf. [7]), rbis and a13-a17 and A6bis are ‘non-constructive’,
since they are not derivable in IPC.

Well then, in order to maintain the parallelism with extensions by the set
of rules r1 and r2, by R1 (resp, R2), let us refer to extensions of Lm and Lb
by using A6 (resp., A6bis). Next, we investigate the relations the two types
of extensions maintain to each other.

Proposition 6.7 (On the unprovability of R2). Let L+ be a logic included
in RM3+. Then R2 is not derivable from Lbi plus R1.

Proof. By t8 in the Appendix.

Proposition 6.8 (On the provability of R2). Given Bme (BM plus A5) and
R1, R2 is derivable.

Proof. By using A6, De Morgan laws and the rule con, we get (∼A → B) →
∼∼(A∨B). Then, by A5, we prove (∼A → B) → (A∨B), whence A6bis is
immediate by A5.

Turning now to provability (or unprovability) of R1 from R2, we note the
following facts.

Proposition 6.9 (On the unprovability of R1). Let L+ be a logic included
in RM3+. Then R1 is not derivable from Lme and R2.

Proof. By t9.

Proposition 6.10 (On the provability of R1). R1 is provable given R2 and
(1) Bmi (BM plus A4) or (2) Bb (BM plus A3).

Proof. (1) Similarly as in Proposition 6.8, we get (A → ∼B) → ∼(A ∧ B),
whence A6 follows by A4. (2) An easy way is the following. (A → ∼A) → ∼A
is provable from BM plus A6bis. Then A6 follows from Bb and (A → ∼A) →
∼A

Remark 6.11 (On extensions of Lm and Lb with R1 and R2). Let L+ be a logic
included in RM3+ and Lm and Lb be understood as in Remark 6.5. From
Propositions 6.7, 6.8, 6.9 and 6.10, it follows that the result of extending Lbe
(or Lmie) with either R1 or R2 are equivalent systems. Nevertheless, LbR1
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(resp., LbiR1, LmiR1) is included in (but does not include) LbR2 (resp.,
LbiR2, LmiR2), while LmeR2 is included in (but does not include) LmeR1.
Finally, LmR1 ad LmR2 are systems independent from each other.

The facts just remarked are contained in the ensuing proposition.

Proposition 6.12 (On the rel. between Lm- & Lb-extensions with R1 &
R2). Let L+ be a logic including B+ and included in either E+ or RW+.
The relations Lm and Lb (cf. Definitions 4.1 and 4.2) maintain to each
other when extended with R1 and R2 are summarized in the following di-
agram (recall that LbeR1 —resp.,LmieR1— and LbeR2 —resp., LmieR2—
are equivalent systems):

Figure 7

Proof. Similar to that of Proposition 6.6: given Propositions 6.7, 6.8, 6.9
and 6.10. the proof follows as R1 and R2 are verified by t1, t2 and t3.

Now, let us note the ensuing remark.

Remark 6.13 (On the reductio axioms and rules II). The facts proved in
Proposition 5.2 w.r.t. r1 and A6 are also provable for r2 and A6bis. Let
L1bie and L2bie be as in said proposition. Then (1) rbis (so a13-a17) is
neither derivable from L1bie nor from L2bie; (2) A6bis is neither derivable
from L1bie plus rbis nor from L2bie plus rbis, since t4 nd t5 falsify rbis,
whereas t6 and t7 verify rbis but falsify A6bis.
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The section is ended with some concluding remarks on the results ob-
tained in this and the previous two sections.

In §4, we saw that there are 24 different De Morgan negation expansions
of any logic L+ including B+ and included in RM3+, when built up with the
double negation axioms and the contraposition axiom and rule. From the
facts discussed in this and the preceding section, it follows that there are
more possibilities if we consider positive logics including B+, as before, but
now included in either E+ or RW+ and extended with the reductio axioms
and rules. In particular, we have 24 different extensions when using only the
‘constructive’ reductio rules and axiom A6, but 33 if the ‘non-constructive’
rules and axiom A6bis are addded. The 24 extensions with the constructive
rules and axiom are related to each other as shown in Figure 5; the relations
that result when both the constructive and non-constructive axioms and rules
are added are summarized in Figures 6 and 7.

7 Semantics

In this section, a Routley-Meyer semantics (RM-semantics) is provided for
each logic defined in the paper. We begin by defining EBM-models for ex-
tensions of Sylvan and Plumwood’s logic BM.

Definition 7.1 (EBM-models). An EBM-model, M, is a structure with at
least the following items: (a) a set K and a subset of it, O; (b) a ternary
relation R and a unary operation ∗ defined on K subject at least to the
following definitions and postulates for all a, b, c, d ∈ K:

d1. a ≤ b =df ∃x ∈ O Rxab

d1′. a = b =df a ≤ b & b ≤ a

d2. R2abcd =df ∃x ∈ K(Rabx & Rxcd)

P1. a ≤ a

P2a. (a ≤ b & Rbcd) ⇒ Racd

P2b. (a ≤ b & b ≤ c) ⇒ a ≤ c

P2c. (d ≤ b & Rabc) ⇒ Radc

P2d. (c ≤ d & Rabc) ⇒ Rabd

P3. a ≤ b ⇒ b∗ ≤ a∗
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(c) a valuation relation ⊨ from K to the set of all formulas such that the
following conditions (clauses) are satisfied for every propositional variable p,
formulas A,B and a ∈ K:

(i). (a ≤ b & a ⊨ p) ⇒ b ⊨ p

(ii). a ⊨ A ∧B iff a ⊨ A & a ⊨ B

(iii). a ⊨ A ∨B iff a ⊨ A or a ⊨ B

(iv). a ⊨ A → B iff for all b, c ∈ K, (Rabc & b ⊨ A) ⇒ c ⊨ B

(v). a ⊨∼ A iff a∗ ⊭ A

Additional elements of M are a set of semantical postulates Pj1, ..., Pjn.
Structures of the form (O,K,R, ∗,⊨) satisfying just d1, d1′, d2, P1, P2a,

P2b, P2c, P2d, P3 and clauses (i), (ii), (iii), (iv) and (v) are the basic struc-
tures and in fact characterize the logic BM (they are labelled BM-models).
Introduction of additional postulates serve to determine extensions of BM

interpretable in RM-semantics.

Definition 7.2 (Truth in a class of EBM-models). Let a class of EBM-models
M be defined and M ∈ M. A formula A is true in M (in symbols, ⊨M A) iff
x ⊨ A for all x ∈ O.

Definition 7.3 (Validity in a class of EBM-models). Let a class of EBM-
models M be defined and M ∈ M. A formula A is valid in M (in symbols,
⊨M A) iff A is true in every M ∈ M.

Now, BM is sound and complete w.r.t. BM-models (cf. [15]). Then, in
order to define RM-models characterizing extensions of BM, the basic notion
is “corresponding postulate” (cp) (cf. [12, Chapter 4]). Consequently, below,
a series of cp is listed, in order to provide RM-semantics characterizing each
one of he logics defined throughout the paper.

Definition 7.4 (Corresponding postulates). Given BM-models, we provide
corresponding postulates (cp) to each one of the theses b1-b8, A3-A5, rule r,

Australasian Journal of Logic (20:2) 2023, Article no. 9



366

rule rbis, A6 and A6bis (unless otherwise stated, quantifiers range over K).

Pb1. Rabc ⇒ ∃x[Rabx & Raxc]

Pb2. R2abcd ⇒ ∃x[Racx & Rbxd]

Pb3. R2abcd ⇒ ∃x[Rbcx & Raxd]

Pb4. Raaa

Pb5. Rabc ⇒ R2abbc

Pb6. ∃x ∈ ZRaxa[Za iff for all b, c ∈ K,Rabc ⇒ ∃x ∈ ORxbc]

Pb7. Rabc ⇒ Rbac

Pb8. Rabc ⇒ (a ≤ c or b ≤ c)

Pb9. (Rabc & a ∈ O) ⇒ b ≤ a

PA3. Rabc ⇒ Rac∗b∗

PA4. a ≤ a∗∗

PA5. a∗∗ ≤ a

Pr. a ∈ O ⇒ a∗ ≤ a∗∗

Prbis. a ∈ O ⇒ a∗∗ ≤ a

PA6. Raa∗a∗∗

PA6bis. Raa∗a

Remark 7.5 (On the cp in Definition 7.4). Concerning the cp for the positive
axioms, cf. [10, 12] and references therein. Then Prbis and PA6bis can
be found in [12, Chapter 4, pp. 288-289] as cp to A ∨ ∼A (equivalently
A → B ⇒ ∼A ∨ B) and (A → ∼A) → ∼A (equivalently, (A → B) →
(∼A∨B)); Pr is immediate from Prbis and, finally, PA6 appears here maybe
for the first time (as regards the equivalence between (A → ∼A) → ∼A and
(A → B) → (∼A ∨B); cf. the concluding remarks to the paper in §8).

Now, taking A6bis and PA6bis as an example, that the postulates in
Definition 7.1 are in fact the cp to their respective axioms or rules means
(1) given BM-models, A6bis is proved valid with PA6bis (that is, in any BM-
model in which PA6 holds); (2) given canonical BM-models (cf. [15, 12]),
PA6bis is proved canonically valid with A6bis.

As we have seen in the preceding sections, there are 33 different De Mor-
gan negation expansions of a relevant positive logic L+ including B+ and
included in E+ or RW+. The fact that, given Sylvan and Plumwood’s BM,
the postulates in Definition 7.4 are the cp to their respective axioms and
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rules immediately provides us with an RM-semantics for any of the 33 pos-
sible De Morgan expansions of L+. Suppose, for instance, that L+ is C+ (cf.
Definition 2.3) and consider the logic CbeR2 (that is, B+ plus b2, b3, b4, A3,
A5 and A6bis). Well then, CbeR2 is sound and complete w.r.t. BM-models
in which Pb2, Pb3, Pb4, PA3, PA5 and PA6bis hold.

Let us end this section by noting that b1-b9 define but only a limited
subset of the set of positive extensions of B+, as well as that the meaning of
reductio in relevant logics can be interpreted with (no necessarily equivalent)
different rules and/or axioms from r, rbis, A6 and A6bis, as discussed in the
following section.

The paper is ended with some concluding remarks.

8 Concluding remarks

In [15, p. 11], Sylvan and Plumwood note: “In the case of extensions of
BM, the modelling conditions corresponding to positive schemes are exactly
the same as those for extensions of B and any of the positive schemes may
be adjoined”, where they refer to the extensions of positive logic B+ defined
in Chapter 4 of [12]. Then, they provide ‘corresponding postulates’ (cp) to
the double negation axioms A4 and A5, the contraposition axiom A3 and
the theses A ∨ ∼A and ∼A ∨ ∼∼A (cf. Definition 3.1, Proposition 5.1 and
Proposition 6.1 above). These cp are the same we have used in this paper
(cf. §7 above). Additionally, they present cp to the contraposition axioms
(A → ∼B) → (B → ∼A) and (∼A → B) → (∼B → A) (cf. Remark
4.3 above), which are composed of the cp for A3 and A4, and the cp for
A3 and A5, respectively. Also, they propose the cp we have dubbed PA6bis
(cf. §7) as the cp to the specialized reductio axiom, sr, (A → ∼A) → ∼A.
Next, they establish the soundness and completeness for any extension of BM

defined by using any of the schemata or theses just mentioned w.r.t. BM-
models strengthened with the cp the said theses agree with. Well then, this
result does not seem correct as regards extensions of BM with the specialized
reductio axiom, sr, since, although the cp we have labeled PA6bis suffices to
show the validity of sr, on the contrary, this thesis seems insufficient to prove
the canonical validity of PA6bis (we would need, for example, A3 and A5,
in addition to sr —notice that, for instance, A6bis is unprovable from RM3+

plus A3, A4 and sr; cf. t8 in the Appendix). Indeed, this fact explains
that we have chosen A6 and A6bis as the basic reductio axioms from the
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RM-semantics point of view instead of sr or its ‘non-constructive’ companion
srbis (∼A → A) → A (notice that above, in §7, it is claimed that PA6bis is
the cp to A6bis).

On the other hand, the authors of [15] do not investigate the deductive
relations the expansions of BM they suggest maintain to each other. Con-
versely, in the present paper, we have established the relations the 33 different
extensions of L+ maintain to each other when L+ is a logic including B+ and
included in either E+ or RW+.

In [15, p. 10], it is noted that a negation is (relevantly) non-classical if it
lacks any of the double negation axioms A4 and A5 or any of the contraposi-
tion axioms A3, A31, A32 and A33 (cf. Definition 3.1 and Remark 4.3). Well
then, there is still much to be investigated about the reductio axioms and
rules in systems with a relevantly non-classical negation. We limit ourselves
to point out three comments to end the paper.

1. (a) A6 is not derivable from BM extended with the assertion rule,
A ⇒ (A → B) → B, the contraction axiom, [(A → (A → B)] →
(A → B), sr and srbis (cf. t10 in the Appendix).

(b) A6bis is not derivable from BM extended with the assertion rule,
rule r, the contraction rule, A → (A → B) ⇒ A → B, the rule ri,
A ⇒ ∼∼A and the thesis srbis (cf. t11 in the Appendix).

2. (a) Given BM and A4 (A → ∼∼A), the ensuing theses and rules
are equivalent to A6: (A → ∼A) → ∼A; A → ∼(A → ∼A);
(A ∧ ∼B) → ∼(A → B); (A → ∼B) → ∼(A ∧ B); (A ∧ B) →
∼(A → ∼B); A → B ⇒ (A → ∼B) → ∼A; A → ∼B ⇒ (A →
B) → ∼A.

(b) Given BM and A5 (∼∼A → A), the ensuing theses and rules are
equivalent to A6bis: (∼A → A) → A; ∼A → ∼(∼A → A);
(∼A → B) → (A ∨ B); A → B ⇒ (∼A → B) → B; ∼A → B ⇒
(A → B) → B.

3. The strong reductio axioms, sra, are the following theses: (A → B) →
[(A → ∼B) → ∼A]; (A → ∼B) → [(A → B) → ∼A]; (∼A →
B) → [(∼A → ∼B) → A]; (∼A → ∼B) → [(∼A → B) → A];
(A → B) → [(∼A → B) → B]; (∼A → B) → [(A → B) → B].

The logic DW is the result of extending the basic logic B with the
contraposition axiom A3.

We have:
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(a) The sra are not derivable from DW plus the contraction axiom,
the assertion rule (cf. 1(a) above) and A6 (consequently, all theses
and rules in 2(a) and 2(b) above). (Cf. t12 in the Apppendix.)

(b) The sra are not derivable from DW plus the assertion axiom A →
[(A → B) → B] and A6 (consequently all the theses and rules is
2(a) and 2(b) above). (Cf. t13 in the Appendix.)

However, we note that cp to each one of the sra can be defined in
any system containing DW plus either the axiom suffixing or prefixing:
(A → B) → [(B → C) → (A → C)], (B → C) → [(A → B) → (A →
C)], respectively (cf. [8]).

A Appendix

The following sets of truth-tables t1-t13 are used to prove some claims made
throughout the paper (designated values are starred). Let L be a logic defined
upon the language L (cf. Definition 2.1), Γ a set of wffs and A a wff of L.
On the other hand, let t be a set of truth-tables and v an assignment to the
propositional variables of L built upon t. v verifies A if it assigns a designated
value to A; and v verifies the rule Γ ⇒ A if it assigns a designated value to
A, provided it assigns a designated value to each B ∈ Γ. Then, t verifes
L if every assignment v verifies all axioms and rules of L. Most of the sets
have been found by using MaGIC (cf. [14]; each set of tables is the simpler
one justifying the respective claim). (In case a tester is needed, the reader
can use that in [6].) In what follows, p, q and r are distinct propositional
variables.

t1.

→ 0 1 2 3 ∼
0 3 3 3 3 3

*1 0 1 2 3 2
*2 0 0 2 3 1
*3 0 0 0 3 0

∧ 0 1 2 3
0 0 0 0 0

*1 0 1 1 1
*2 0 1 2 2
*3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3

*1 1 1 2 3
*2 2 2 2 3
*3 3 3 3 3

This set verifies all axioms and rules of RM3+ plus A1, A2, A4, A5, a1-
a17 and A6, A6bis but falsifies A3: v[(p → q) → (∼q → ∼p)] = 0 for any
assignment v such that v(p) = v(q) = 2.
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t2.

→ 0 1 2
0 2 2 2

*1 0 1 2
*2 0 0 2

∧ 0 1 2
0 0 0 0

*1 0 1 1
*2 0 1 2

∨ 0 1 2
0 0 1 2

*1 1 1 2
*2 2 2 2

∼
0 2

*1 2
*2 0

This set verifies all axioms and rules of RM3+ plus A1, A2, A3, A5, a1-
a17 and A6, A6bis but falsifies A4: v(p → ∼∼p) = 0 for any assignment v
such that v(p) = 1.

t3.

∼
0 2

*1 0
*2 0

The tables for →, ∧ and ∨ are as in t2. This set verifies all axioms and
rules of RM3+ plus A1, A2, A3, A4, a7-a17 and A6, A6bis but falsifies A5:
v(∼∼p → p) = 0 for any assignment v such that v(p) = 1.

t4.

→ 0 1 2 ∼
0 2 2 2 2
1 1 2 2 1

*2 0 1 2 0

The tables for ∧ and ∨ are the same as in t2. This set verifies all axioms
and rules of RW+ (cf. Definition 2.3) plus A1-A5 but falsifies a7-a17 (this
set verifies all —and only all— theses and rules provable in  Lukasiewicz’s
3-valued logic  L3). It suffices to falsify the rule r. Well then, p → ∼p ⇒ ∼p
is falsified for any assignment v such that v(p) = 1.

t5.

→ 0 1 2
0 2 2 2
1 0 2 2

*2 0 0 2

The tables for ∧ ∨ and ∼ are the same as in t4. This set verifies all axioms
and rules of E+ (cf. Definition 2.3) plus A1-A5 but falsifies a7-a17. It suffices
to falsify the rule r. Now, p → ∼p ⇒ ∼p is falsified for any assignment v
such that v(p) = 1.

t6. The tables for →, ∧, ∨ and ∼ are the same as in t5 but now 2 and
3 are designated values. This set verifies all axioms and rules of E+ (cf.
Definition 2.3) plus A1-A5 and a7-a17 but falsifies A6 and A6bis. It suffices
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to falsify A6. Now, (p → q) → ∼(p ∧ ∼q) is falsified for any assignment v
such that v(p) = v(q) = 1.

t7.

→ 0 1 2 3 ∼
0 3 3 3 3 3
1 0 2 1 3 2

*2 0 1 2 3 1
*3 0 0 0 3 0

∧ 0 1 2 3
0 0 0 0 0
1 0 1 0 1

*2 0 0 2 2
*3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 3 3

*2 2 3 2 3
*3 3 3 3 3

This set verifies all axioms and rules of RW+ (cf. Definition 2.3) plus
A1-A5 and a7-a17 but falsifies A6 and A6bis. It suffices to falsify A6bis:
v[(p → q) → (∼p ∨ q)] = 0 for any assignment v such that v(p) = 1 and
v(q) = 2.

t8.

→ 0 1 2
0 2 2 2
1 0 2 2

*2 0 1 2

The tables for ∧ ∨ and ∼ are the same as in t3. This set verifies all
axioms and rules of RM3+ (cf. Definition 2.3) plus A1-A4 and a7-a12 but
falsifies a13-a17. It suffices to falsify rbis: ∼p → p ⇒ p is falsified for any
assignment v such that v(p) = 1.

t9. The tables for →, ∧ and ∨ are as in t3, but the table for ∼ is as
in t2. This set verifies RM3+, A1, A2, A5, A6bis and con but falsifies A6:
v[(p → q) → ∼(p ∧ ∼q)] = 0 for any assignment v such that v(p) = 2 and
v(q) = 1.

t10.

→ 0 1 2 ∼
0 1 1 2 1

*1 0 1 1 0
*2 0 0 1 0

The tables for ∧ and ∨ are as in t2. This set verifies BM plus a7-a17 and
A6bis but falsifies A6: v[(p → q) → ∼(p ∧ ∼q)] = 0 for any assignment v
such that v(p) = 0 and v(q) = 2.

t11.

→ 0 1 2 ∼
0 1 2 2 1

*1 0 1 1 1
*2 0 0 1 0
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The tables for ∧ and ∨ are as in t2. This set verifies BM plus a7-a17 and
srbis ((∼A → A) → A) but falsifies A6bis: v[(p → q) → (∼p ∨ q)] = 0 for
any assignment v such that v(p) = 0 and v(q) = 1.

t12. The tables for →, ∧ and ∨ are as in t10, but the table for ∼ is as in t4.
This set verifies DW, the contraction axiom ([A → (A → B)] → (A → B)),
the assertion rule (A ⇒ (A → B) → B) and the special reductio axiom
(sr) ((A → ∼A) → ∼A), but falsifies the strong reductio axioms sra. For
instance, v[(p → q) → [(∼p → q) → q]] = 0 for any assignment v such that
v(p) = 0 and v(q) = 2.

t13.

→ 0 1 2 3 4 ∼
0 4 4 4 4 4 4
1 0 2 3 3 4 3

*2 0 1 2 3 4 2
*3 0 0 1 2 4 1
*4 0 0 0 0 4 0

∧ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 1 1 1

*2 0 1 2 2 2
*3 0 1 2 3 3
*4 0 1 2 3 4

∨ 0 1 2 3 4
0 0 1 2 3 4
1 1 1 2 3 4

*2 2 2 2 3 4
*3 3 3 3 3 4
*4 4 4 4 4 4

This set verifies DW plus the assertion axiom (A → [(A → B) → B]),
the contraction rule (A → (A → B) ⇒ A → B) and the special reductio
axiom (sr) ((A → ∼A) → ∼A) but falsifies the strong reductio axioms, sra.
For example, v[(p → q) → [(∼p → q) → q]] = 0 for any assignment v such
that v(p) = 2 and v(q) = 1.
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