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Abstract: Power station engines are critical infrastructure components that require 
constant monitoring to prevent failures and ensure an uninterrupted power supply. This 
paper proposes a failure early warning system based on a thermal camera using a 
computer vision approach. The system uses a thermal camera to generate thermal images 
in a video format, which is then processed by an automated fire detection engine and 
temperature detection engine. The results of these two subsystems are then used as input 
for an anomaly detection engine, which predicts the likelihood of engine failure. Based on 
the results of the experiments, it can be concluded that the YOLOv7 model outperforms 
Faster R-CNN in detecting fires, achieving a higher mAP score on the one-class dataset. 
The proposed temperature and anomaly detection system also accurately detected 
temperature levels and anomalies in thermal images. Furthermore, in the failure time 
prediction experiment, the Holt-Winters additive method with additive errors, additive 
trend, and additive seasonality model was identified as the best fit among the models 
evaluated. In contrast, the Decision Tree model showed good performance and a short 
training time, making it a good choice for applications where training time is critical. These 
results highlight the importance of selecting the most suitable method for a given 
application. Moreover, it demonstrates the effectiveness of different models and 
approaches for engine failure early warning systems in a power station using a thermal 
camera. 
 
Keywords: Anomaly detection; Computer vision; Machine learning; Power station engine; 
Thermal camera 

Introduction  

 
Power stations are critical infrastructures that play 

a vital role in providing electricity to support the needs 
of society (Salite et al., 2021). Power station engines are 
the heart of the power generation process, and their 
failure can cause significant economic losses and 
jeopardize the reliability of the power supply. Early 
detection of engine failure is crucial to prevent 
catastrophic consequences and ensure the continuity of 
the power supply (Majchrzak et al., 2021). The 
development of automated early warning systems for 
engine failure detection using thermal cameras and 
computer vision technologies represents a significant 
advancement in the field (Soori et al., 2023). These 
systems bring several advantages over traditional 
manual inspection methods, including improved 

efficiency, accuracy, and cost-effectiveness (Hassani & 
Dackermann, 2023). By leveraging the power of 
computer vision and machine learning algorithms 
(Adnan et al., 2021), these systems can identify abnormal 
heat patterns and other tell-tale signs of potential engine 
failure that may go unnoticed during manual 
inspections. 

Using thermal cameras in engine failure detection 

is particularly advantageous (Bhadoriya et al., 2022). It 
allows for the non-invasive monitoring of engine 
components and provides high accuracy and precision 
in temperature measurement. Additionally, thermal 
imaging can capture data in real time, enabling the 
system to detect and respond to changes in temperature 
patterns quickly (Filippini et al., 2020). By generating 
continuous, real-time data, automated early warning 
systems can alert operators to potential issues before 
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they escalate into more significant and costly problems 
(Eash-Gates et al., 2020). Therefore, integrating thermal 
cameras and computer vision technologies in engine 
failure detection represents a promising approach to 
enhancing engine safety, reliability, and efficiency 
across various industries (Andoga et al., 2019). 

This paper proposes a power station engine failure 
early warning system that utilizes thermal cameras and 
computer vision technologies. The system aims to 
provide a reliable and automated approach to detecting 
engine failure in real time, allowing for prompt 
maintenance and repair (Nunes et al., 2023). We evaluate 
the performance of the proposed system by conducting 
experiments on a real-world power station engine, and 
the results demonstrate the system’s effectiveness in 
detecting engine failure with high accuracy (Dwivedi et 
al., 2023). The rest of this paper is organized as follows: 
Section II provides an overview of the proposed system. 
Section III presents the Automated Fire Detection 
Engine. Section IV describes the Automated 
Temperature and Anomaly Detection Engine. Section V 
presents the Failure Time Prediction Engine. Section VI 
describes the experimental setup and the results 
obtained from the experiments. Finally, Section VII 
concludes the paper and discusses future research 
directions. 
 

Method  
 

The proposed system uses a thermal camera to 
generate thermal images in a video format, which is then 
processed by an automated fire detection engine and 
temperature detection engine. The results of these two 
subsystems are then used as input for an anomaly 
detection engine, which predicts the likelihood of engine 
failure. The final result is disseminated to users as a 
mobile notification.  
 

Result and Discussion 
 

The system overview is shown in Figure 1. The 
proposed power station engine failure early warning 
system consists of three main engines: the Automated 
Fire Detection Engine, the Automated Temperature and 
Anomaly Detection Engine, and the Failure Time 
Prediction Engine. These engines work together to 
provide a comprehensive and reliable real-time 
approach to detecting engine failure. 

 
Automated Temperature and Anomaly Detection Engine 

The ”Automated Temperature and Anomaly 
Detection Engine” harnesses the power of the Residual 
Network with 18 layers, colloquially known as 
ResNet18. This model has been chosen for its capacity to 

accurately classify and detect anomalies in temperature 
states across a range of thermal images. ResNet18’s can 
effectively learn intricate patterns and details in the data 
through a series of convolutional layers that utilize 
residual connections, making it adept at identifying 
subtle changes in temperature states (Alzubaidi et al., 
2021). 

Moreover, ResNet18’s ability to combat the 
vanishing gradient problem, thanks to its unique 
residual connections, allows it to perform exceptionally 
well in deep learning tasks, like anomaly detection in 
thermal images (Binta Islam et al., 2023). In a series of 
experiments, the model has consistently proven highly 
effective, achieving impressive validation accuracy in 
both multi-class temperature state and anomaly 
detection tasks. The hyperparameters used for training 
are set as follows: the optimizer used is Stochastic 
Gradient Descent (SGD). 

 
Failure Time Prediction Engine 

The failure time prediction engine uses the results 
of the anomaly detection engine as input and predicts 
the time to failure of the engine. The engine uses 
machine learning algorithms to learn the patterns of 
engine failure and then applies the learned models to the 
current data to predict the time to failure. This research 

used nine methods for Failure Time Prediction Engine. 
The methods are Naive Bayes (NB) (Uddin et al., 2019), 
Generalized Linear Model (GLM), Logistic Regression 
(LR), Fast Large Margin (LM), Deep Learning (DL), 
Decision Tree with CART (DT), Random Forest (RT), 
Gradient Boosted Trees (GBT), and Support Vector 
Machine (SVM). 

In this section, we present the experimental results 
of the proposed Failure Early Warning System. The 
experiments were designed to evaluate the system’s 
performance in detecting and predicting potential 
failures in power station engines. Three experiments 
were conducted, each focusing on different subsystems. 
The first experiment evaluated the performance of the 
Automated Fire Detection Engine, the second 
experiment evaluated the performance of the 
Automated Temperature and Anomaly Detection 
Engine, and the third experiment evaluated the 
performance of the Failure Time Prediction Engine. The 
experiments showed that the proposed system provides 
an effective and reliable approach to detecting and 
predicting potential failures in power station engines, 
improving their reliability and reducing downtime and 
associated costs. 

 
Experiment 1 - Automated Fire Detection 

Considering the objective of detecting the location 
of fire objects, we explored the use of suitable deep 
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learning architectures that have been proven to yield 
high performance, namely YOLO version 7 and Faster R-
CNN (Hussain, 2023). Based on previous experience, 
YOLO has shown excellent performance in various 
object detection tasks in terms of both accuracy and 
speed. However, in this study, we also investigated an 
alternative and comparative architecture, Faster R-CNN, 
which is generally slower but is considered to be better 
at detecting small and closely spaced objects or objects 
with non-standard aspect ratios as compared to YOLO. 

In evaluating the trained models, several metrics or 
measures can be used as a benchmark to assess the 
quality of the models (Vishwakarma et al., 2021). Each 
model for different purposes has its own set of metrics 
(Petter et al., 2008). As previously explained, this study 
uses two types of models: detection models and 
classification models. For detection models (Iwendi et 
al., 2020), the metrics used are Intersection over Union 
(IoU) (Chen et al., 2022) and mean Average Precision 
(mAP). The IoU measures the overlap between the 
predicted bounding box and the ground truth bounding 
box, while the mAP measures the average precision 
across different levels of recall (Padilla et al., 2021). These 
metrics are commonly used in object detection tasks and 
provide a quantitative evaluation of the performance of 
the detection model (Hodges et al., 2021). The 
experiments used two different models, YOLOv7 and 
Faster R-CNN, and two datasets, one (fire) and three-
class (fire, smoke, others) (Almazroa & Alotaibi, 2023).  
 
Table 1. Performance of Each Class in Fire and Smoke 
Detection Dataset 

Class Num. Labels P R mAP@.5 

All 2145 0.46 0.44 0.41 

Fire 1177 0.55 0.64 0.60 

Other 641 0.36 0.22 0.20 

Smoke 327 0.46 0.48 0.45 

 

Figure 1. The sequence of steps taken for extracting 

temperature state sequences from video for the failure time 

prediction process 

The results show that the model had the most 
difficulty detecting the “other” class, with a mAP of only 
0.2. The purpose of including the “other” class 
annotation is to improve the precision of fire and smoke 
detection, to avoid false positives on similar objects. 
Therefore, the”Other” class is not a priority for 
improving accuracy if fire and smoke detection 
performance are good. The results demonstrate the 
effectiveness of the proposed approach in detecting fire 
and smoke objects using deep learning models and 
highlight the importance of considering the performance 
of each class in evaluating the model’s performance. 

 
Experiment 2 - Temperature and Anomaly Detection 

Firstly, we formulated the problem of temperature 
level detection and anomaly detection as an image 
classification problem. We then prioritized selecting a 
lightweight deep-learning architecture for efficient 
resource utilization and fast detection processing. The 
model selected for this purpose is the Residual Network 
with 18 layers, commonly known as ResNet18, which 
has a model size of 44 MB. 

The hyperparameters used for training are set as 
follows: the optimizer used is Stochastic Gradient 
Descent (SGD) (Tian et al., 2023) with a learning rate (lr) 
of 0.001 and momentum of 0.9. The training is conducted 

for 10 epochs, and the best model is selected based on 
the best validation accuracy achieved during the 
training process. Using an SGD optimizer with 
momentum effectively improves deep learning models’ 
convergence speed and performance. The learning rate 
of 0.001 ensures stable training and prevents overfitting. 
The training process is conducted for 10 epochs to ensure 
the model has sufficient time to learn the dataset’s 
features and achieve optimal performance. The result of 
experiment 2 is shown in Table 2. 
 
Table 2. Validation Experiment Results 

Task Experiment Val Accuracy (%) 

1 Temperature State Classification (9 
classes) 

100 

2 Temperature State and Anomaly 
Classification (10 classes) 

95.56 

3 Anomaly Detection (3 classes) 98.89   

 
Table 2 presents the results of the validation 

experiments for the proposed system. The experiments 
were conducted for three tasks: temperature state 
classification, temperature. 

Table 3 Validation experiment results state, 
anomaly classification, and anomaly detection. The 
validation accuracy is used as a performance metric for 
each experiment. The results show that the proposed 
system achieved 100% validation accuracy in the 
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temperature state classification task (9 classes), 
demonstrating the effectiveness of the proposed 
approach in accurately detecting temperature levels. In 
the temperature state and anomaly classification task (10 
classes), the proposed system achieved a validation 
accuracy of 95.56%, indicating good performance in 

detecting temperature levels and anomalies in thermal 
images. In the anomaly detection task (3 classes), the 
proposed system achieved a validation accuracy of 
98.89%, highlighting the effectiveness of the proposed 
approach in detecting anomalies in thermal images. 

 

Table 3. Performance Of Prediction Models 
Model Acc. Std Dev Gains Total Time Training Time Scoring Time 

NB 0.30 0.20 0.0 13.27 12.78 30.46 
GLM 0.30 0.20 0.0 7.53 11.33 7.78 
LR 0.30 0.20 0.0 10.40 9,272.1 10.32 
FLM 0.30 0.20 0.0 17.57 7.75 37.09 
DL 0.30 0.20 0.0 8.72 7.01 5.86 
DT 0.30 0.20 0.0 7.23 3.29 2.00 
RF 0.30 0.20 0.0 18.34 10.05 7.05 
GBT 0.30 0.20 0.0 67.58 7.38 4.07 
SVM 0.30 0.20 0.0 27.94 3.66 7.01 

 

Extraction of Temperature Level Sequences from Video 

For the next task, which is failure time prediction 
from thermal video monitoring, the temperature state 
detection process is applied to a sequence of frames from 
the video. Figure 2 below illustrates the process from the 
video to the failure time prediction. Starting with an 
input video or CCTV streaming, frame sampling is 
performed based on time intervals, for example, every 5 
minutes. Then, temperature state detection is directly 
applied to each sampled frame (Varshini et al., 2021). 
Subsequently, a sequence of temperature states is 
prepared with a length determined by the failure time 
prediction model, for example, the last 10 data 
(Petropoulos et al., 2022). After the sequence of 
temperature states is ready, it is passed to the failure 
time prediction model, which outputs the estimated 

time until failure (Van Dinter et al., 2022). 
Figure 2 illustrates the sequence of steps taken for 

extracting temperature state sequences from the video 
for the failure time prediction process. The frame 
sampling is performed based on the defined time 
intervals, and the temperature state detection is applied 
to each sampled frame. The sequence of temperature 
states is then prepared according to the length 
determined by the failure time prediction model. Finally, 
the sequence is fed to the model, which outputs the 
estimated time until failure Experiment 3 - Failure Time 
Prediction 

Firstly, a time series analysis is conducted on the 
model dataset. 6 time series models can be used for 
regression analysis on the available dataset. This 
research compared different time series forecasting 
models and their associated goodness-of-fit measures, 
including Akaike Information Criterion (AIC), corrected 
AIC (AICc), Bayesian Information Criterion (BIC), and R 
squared. The models include combinations of additive 

errors, trend, and seasonality components. Figure 3 
shows the time series models performance. 

 

 
Figure 2. Time series models performance 

 

 
Figure 3. AAA model regression 

 
The training data was then run with nine prediction 

models: Naive Bayes (NB) (Romano et al., 2023), 
Generalized Linear Model (GLM), Logistic Regression 
(LR), Fast Large Margin (LM), Deep Learning (DL), 
Decision Tree with CART (DT), Random Forest (RT), 
Gradient Boosted Trees (GBT), and Support Vector 
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Machine (SVM). The following performance was 
obtained and shown in Table 4 from the nine prediction 
models used Table 4 summarizes the performance of 
nine different prediction models in terms of accuracy 
(acc.), standard deviation, gains, total time (in ms), 
training time (1,000 rows), and scoring time (1,000 rows). 

All models have similar accuracy and standard 
deviation values, indicating they are equally effective in 
predicting anomalies (Nobre et al., 2023). The models 
differ in total time, training time, and scoring time. The 
Fast Large Margin model has the shortest training time, 
while the Gradient Boosted Trees model has the shortest 
scoring time. The Support Vector Machine model has the 
longest total time, including training and scoring time. 
The Decision Tree model stands out in terms of its short 
training time of only 3.29 ms and its overall 
performance, which is on par with the other models in 
terms of accuracy and standard deviation. This 
information highlights the strengths of the Decision Tree 
model and may make it a good choice for applications 
where training time is a critical factor. 

In the third experiment, the Holt-Winters additive 
method with additive errors, additive trend, and 
additive seasonality model stands out as the best fit 
among the models evaluated, with the Decision Tree 
model also showing good performance and a short 
training time, indicating its potential suitability for 
applications where training time is a critical factor. 

After analyzing the performance of the different 
models, several areas for future work were identified. 
Firstly, further investigation could be done to improve 
the accuracy of the models, especially for tasks that 
involve thermal images and videos. One approach could 
be to incorporate more sophisticated feature extraction 
techniques, such as deep feature extraction, to capture 
more complex patterns in the data. Secondly, the models 
could be further optimized to reduce the training and 
scoring times, especially for larger datasets. One 
potential solution could be implementing distributed 
computing techniques to parallelize the training and 
scoring processes across multiple computing nodes. 
Thirdly, the models could be extended to incorporate 
more data types, such as audio and text, to enable more 
comprehensive anomaly detection and prediction. For 
example, audio data could detect abnormal sounds, 
while text data could be used to identify abnormal 
patterns in written descriptions of equipment behavior. 

In conclusion, the results of this study demonstrate 
the effectiveness of deep learning and machine learning 
methods for anomaly detection and prediction tasks in 
industrial settings. Further research and optimization of 
these methods could lead to even greater accuracy and 
efficiency in detecting and predicting anomalies, 

ultimately improving the safety and reliability of 
industrial systems. 

 
Conclusion  

 
This paper proposes a failure early warning system 

based on a thermal camera using a computer vision 
approach. The system uses a thermal camera to generate 
thermal images in a video format, which is then 
processed by an automated fire detection engine and 
temperature detection engine. The results of these two 
subsystems are then used as input for an anomaly 
detection engine, which predicts the likelihood of engine 
failure. Based on the first experiment, YOLOv7 
outperforms Faster R-CNN regarding mAP on the one-
class dataset and performs relatively well on the three-
class dataset. Moreover, YOLOv7 is significantly smaller 

than Faster R-CNN, which may make it a better choice 
for applications with limited computing resources. The 
second experiment shows that the proposed system 
achieves high accuracy in temperature state 
classification, temperature state and anomaly 
classification, and anomaly detection tasks, indicating 
the effectiveness of the proposed approach in accurately 
detecting temperature levels and anomalies in thermal 
images. These results demonstrate the effectiveness of 
different models and approaches for various tasks, 
highlighting the importance of carefully selecting the 
most suitable method for a given application. 
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