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1. Introduction 
Indonesian red chili pepper (Capsicum annuum L.) or better known as “Red chili pepper” is one of 

the most popular vegetable commodities that has a high economic value in Indonesia [1]. Indonesian 

Red chili pepper production in Indonesia is the third-largest production after shallots and cabbages [2]. 

The market price of this commodity often varies due to supply disruptions caused by pests and diseases, 

leading to reduced production quality and quantity. Indonesian Red chili pepper plants are known to be 

highly susceptible to a variety of pests, Subagyono et al. [3] stated that there are five main pests that 

attack the Indonesian red chili pepper plant, (1) Green peach aphid (Myzus persicae Sulz.), (2) Thrips 

(Thrips parvispinus Karny), (3) Broad mite (Polyphagotarsonemus latus Banks), (4) Oriental fruit fly 
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 This research developed a pest detection model for Indonesian red chili 

pepper based on fine-tuned YOLOv5. Indonesian red chili pepper is the 

third largest vegetable commodity produced in Indonesia. Pest attacks 

disrupt the quantity and quality of crop yields. To control pests effectively, 

it is necessary to detect the type of pest correctly.  A viable solution is to 

leverage computer vision and deep learning technologies. However, no 

previous studies have developed a pest detection model for Indonesian red 

chili pepper based on this technology. YOLOv5 is a variant of the YOLO 

object detection algorithm, which has major advantages in terms of 

computation cost and execution speed. The dataset comprises 4,994 image 

files collected from a chili plantation in Bengkulu province, Indonesia, 

covering 4 different classes and a total of 10,683 pests. The image is 1216 

x1216 px with the smallest, largest, and average object dimensions of 2%, 

35%, and 4% of the image dimensions. The training model used is fine-

tuning YOLOv5s with variations of patience as an early stop parameter of 

100, 200, and 300. The evaluation of the trained model is based on train 

loss, validation loss, and mAP@0.5:0.95, the best-trained model is the 

445th epoch on patience 100 with the best confidence value of 0.321 and 

the highest TF1 of 0.74. From the best-trained model testing on the test 

dataset, the mAP@0.5 performance for all classes is 81.3%. The model not 

only detected large pests but was also able to detect objects that were small 

in size compared to the image size. The best-trained model's best mAP@0.5 

performance and speed are 82.6% and 20 ms/image, or 50 fps on NVIDIA 

P100 GPU. 
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(Bactrocera dorsalis Hendel), and (5) Cotton bollworm (Helicoverpa armigera Hubner). These five pests 

can cause crop failure between 20-100% so they require proper control. 

In line with the problem of plant pest, the Indonesian government has created an Integrated Pest 

Control Program, which is regulated in Law of the Republic of Indonesia No. 12 of 1992 regarding 

Plant Cultivation System that is expected to reduce farmers' losses due to pest attacks [4]. This program 

requires that control be carried out by applying the "six correct" pesticides, namely: correct target, correct 

quality, correct type, correct time, correct dose, and correct method. This requires a different handling 

process depending on the type of pest that attacks. Farmers often misuse pesticides, which leads to their 

ineffectiveness, wastage of pest control costs, and incomplete eradication of pests. Therefore, it is 

necessary to have a pest control program on large chilies accurately and quickly. 

The initial stage of integrated pest control is the ability to identify pests correctly. Conventional pest 

identification is obtained using direct observation of the pest. Pests can be identified based on their shape 

and or effects. In the conventional way, observers need special knowledge or expertise regarding pests 

and plant types. Computer vision technology has modernized the process of recognizing and detecting 

pests, as digital images captured by cameras can now be processed to automatically identify pests 

computer-based. The use of computers and digital cameras has led to large and rapid changes in pest 

identification and detection systems, from basic techniques in image processing to advanced machine 

learning and deep learning.  

Motivated by the development of deep learning in computer vision technology, especially object 

detection based on the YOLO algorithm [5], this study developed a pest detection system based on 

YOLOv5 [6], which is the latest version of YOLO. The pests detected were pests that attacked 

Indonesian red chili pepper plants, such as Green peach aphid (Myzus persicae), Silverleaf whitefly 

(Bemisia tabaci), Thrips, Cotton bollworm (Helicoverpa armigera), and Tobacco cutworm (Spodoptera 
litura). The dataset used is a primary dataset collected by the research team from the Indonesian Red 

chili pepper plantation in Bengkulu, Indonesia. 

YOLO is one of the most popular models and is claimed to have an excellent performance, especially 

in terms of speed, compared to other deep learning models for object detection that have been developed 

to date. The YOLO model has developed very quickly, starting from YOLOv1 [5], YOLOv2 [7], 

YOLOv3 [8], YOLOv4 [9] to YOLOv5 [6]. YOLOv4 and YOLOv5 are considered to have the best 

performance compared to the previous YOLO version. In this study, the YOLOv5s release 6 model was 

chosen for pest detection, considering its performance in terms of mAP and speed. The objective was to 

develop a model that could be utilized in smartphone applications. 

Previous studies have not developed a pest detection system that attacks Indonesian Red chili pepper 

plants, and there is no study that has studied the value of the patience parameter on YOLOv5s to get 

the best model. Patience serves to determine an early stop. If in the number of epochs (n+patience), the 

trained model does not experience improvement, then the best trained model is the n

th

 epoch [6]. 

Therefore, the major contributions of this work are as follows: 1). Detection model of pest that attacks 

Indonesian Red Chili pepper plant based on fine-tuning learning YOLOv5s. The types of pests detected 

were Green peach aphid (Myzus persicae), Silverleaf whitefly (Bemisia tabaci), Thrips, Cotton bollworm 

(Helicoverpa armigera), and Tobacco cutworm (Spodoptera litura). In addition to detecting larger pests, 

the model is capable of detecting small and tiny pest objects compared to the size of the image. 2). 

Comparison of models based on the value of patience as a determinant of early stop training. 3). Primary 

pest dataset collected from Indonesian red chili pepper plantation in Bengkulu, Indonesia.  

The rest of this paper is organized as follows. Section 2 describes the previous studies related to this 

research. Section 3 describes the steps and details of the method. Section 4 explains the results of the 

research and its discussion. And finally, Section 5 contains the conclusions of the research that has been 

done. 
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2. Related work 
The following are some previous studies that used basic image processing techniques for the detection 

or classification of pests on plants. The method of comparing the detected image with reference images 

[10], [11] or with heuristic indicators of healthy plants [12], and using some basic filters to improve 

quality and extract important features. The Relative Difference Intensity (RDI) algorithm employs a 

simple computation involving two subtractions and one comparison per pixel [13]. Image processing 

analysis by combining the Grab Cut algorithm and the One Cut algorithm to improve segmentation 

efficiency and accuracy [14]. Edge detection is utilized for the identification of pests, enabling the 

extraction of geometric shapes of insects [15]. Early detection of pests on greenhouse plants by 

combining image processing techniques with knowledge-based [16]. Pest detection and positioning 

based image segmentation, binocular stereo vision [17] and there is also pest segmentation using thermal 

imaging [18].  

With the invention of machine learning, many previous researchers have made improvements in 

terms of feature extraction, classification, detection, or a combination of both, intending to increase the 

speed and accuracy of pest detection. Machine learning is employed in two ways for pest classification: 

the first is for segmentation or feature extraction, and the second is for classification purposes. Pest 

classification systems using machine learning are generally claimed to have better performance than using 

the previous basic image processing techniques. 

Pratheba et al. [19] used machine learning for segmentation using the K-Means and Fuzzy C-means 

(FCM). Vinushree et al. [20] used a segmentation method based on a kernel-based fuzzy C-means 

clustering algorithm (KFCM) and a Neural Network (NN) classifier. Gondal & Khan [21] carried out 

morphology-based segmentation and classification using the Support Vector Machine (SVM). Bayat et 
al. [22] compared several feature extraction methods such as histograms, Laplacian filters, Canny, Sobel, 

and Principal Component Analysis (PCA) combined with NN and SVM classification methods. 

Ebrahimi et al. [23] developed a Thrips pest detection system on strawberry plants using the SVM 

method with a difference kernel functions. Paranjothi [24] used color histogram and contour-based 

feature extraction and SVM classifier. Dey et al. [25] used statistical-based feature extraction such as 

Gray Level Run Length Matrix (GLRLM) and Gray Level Co-occurrence Matrix (GLCM) and 

compared the performance among SVM, Artificial Neural Network (ANN), Bayesian, Binary decision 

tree, and K -Nearest Neighbor (KNN) classifier. Fina et al. [26] conducted a pest classification based on 

K-Means Clustering Algorithm & Correspondence Filters. 

The discovery of deep learning technology has made a lot of improvisations to get a more accurate 

detection system. Deep learning has revolutionized feature extraction methods, replacing traditional 

image processing and machine learning techniques. With its convolutional layers, deep learning can 

independently extract features, rendering older methods obsolete. The following are previous studies 

that have been carried out to classify pests using deep learning methods. Türkoğlu & Hanbay [27] carried 

out pest classification with transfer learning of AlexNet, VGG16, VGG19, SqueezeNet, GoogleNet, 

Inceptionv3, InceptionResNetv2, ResNet50, and ResNet101 architectures, and compared them with 

SVM, extreme learning machine (ELM), and K-nearest neighbor (KNN). Malathi & Gopinath [28] 

carried out the classification of rice pests using transfer learning CNN with the architecture of AlexNet, 

GoogleNet, Resnet34, Resnet50, and Fine-Tuned Resnet-50.  

Studies on pest detection systems based on deep learning conducted by previous researchers can be 

divided into three main parts, R-CNN based, YOLO based, and other methods. The following are 

previous studies of R-CNN-based pest detection systems. Fuentes et al. [29] carried out pest detection 

on tomato plants using the Faster Region-based Convolutional Neural Network (Faster R-CNN), 

Region-based Fully Convolutional Network (R-FCN), and Single Shot Multibox Detector (SSD) 

algorithm with a combination of VGG and ResNet architecture. Jiao et al. [30] modified the Region 

Convolutional Neural Network (RCNN) algorithm into an anchor-free Region Convolutional Neural 

Network (AF-RCNN) to detect multi-class pests. D. Li et al. [31] developed the detection of pests on 

rice plants using faster RCNN. W. Li et al. [32] detected tiny pests from sticky trap images with TPest-

RCNN based on the Faster R-CNN. Patel & Bhatt [33] carried out pest detection with Faster R-CNN. 
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Zhang et al. [34] developed a multi-feature fusion Faster R-CNN (MF3 RCNN) to detect pests and 

diseases on soybean leaves. Jiao et al. [35] detected pests using CNN as feature extraction and used two-

stage R-CNN for refining predicted bounding boxes. Lin et al. [36] detected pests on Sweet Peppers 

using faster R-CNN and Mask RCNN with Inception V2, ResNet-50, and ResNet-101 backbones. 

Previous studies on pest detection systems using YOLO were as follows. J. Liu & Wang [37] carried 

out early detection of diseases on tomatoes based on MobileNetv2-YOLOv3. Bhatt et al. [38] used 

YOLOv3 to detect tea plant pests with DarkNet-19, MobileNet, Inception v2, ResNet-101, and 

DarkNet-53 architecture. Chen et al. [39] developed a smartphone application to detect the species of 

mealybugs, Coccidae, and Diaspididae using YOLOv4. Kuzuhara et al. [40] developed a regional proposal 

network for insect pest detection using YOLOv3 and the re-identification method using the Xception 

model. Liang et al. [41] detected butterfly using YOLOv3. Legaspi et al. [42] detected Whiteflies and 

Fruit Flies using YOLOv3. Mamdouh & Khattab [43] developed Olive Fruit Fly Detection and counting 

system using YOLOv4. Rustia et al. [44] developed greenhouse insect detection system using YOLOv3 

and cascade CNN classifier. Tang et al. [45] developed a real-time pest detection based on YOLOv4. 

Verma et al. [46] developed pest detection on Soybean crop based on YOLOv3, YOLOv4, and YOLOv5. 

Zha et al. [47] developed pest detection based on YOLOv4 with MobileNetv2 as the feature extraction 

block. D. Li et al. [48] developed YOLO-based Jute Pest detection with a modified backbone that 

integrates the Sand Clock Feature Extraction Module (SCFEM), Deep Sand Clock Feature Extraction 

Module (DSCFEM), and Spatial Pyramid Pooling Module (SPPM) to extract image features effectively. 

J. Liu & Wang [49] detected pests on tomato plants using YOLOv3 with feature fusion to increase the 

number of feature maps. Önler [50]  developed a real-time detection system for the thistle caterpillar 

(Vanessa cardui) which is a pest on sunflower plants using YOLOv5. Ahmad et al. [51] developed an 

insect pest detector based on YOLOv5 which can operate in real-time with image input from smartphone 

IP-camera. 

The following are previous studies on pest detection systems other than R-CNN and YOLO based. 

Selvaraj et al. [52] detected diseases and pests on bananas using transfer learning method of the 

Convolutional Neural Network (CNN) SSD (Single Shot Detector) and compared the architectures of 

ResNet50, InceptionV2, and MobileNetV1. Burhan et al. [53] compared the architectures of CNN 

VGG16, VGG19, ResNet50, ResNet50V2, and ResNet101V2 for the classification of pests and diseases 

in rice. Nguyen et al. [54] conducted a comparison of transfer learning from eight variants of the 

EfficientNet architecture for the classification of Ladybird, Mosquito, Grasshopper, Butterfly, and 

Dragonfly pests. L. Liu et al. [55] designed a pest detection model called "PestNet" based on CNN with 

the addition of Channel-Spatial Attention (CSA) as a feature extraction backbone and adopted a Region 

Proposal Network (RPN) for the selection of area proposals and using a Position-Sensitive Score Map 

(PSSM), replaces the fully connected layer for the classification and bounding box regression. Roosjen 

et al. [56] detected The fruit fly Drosophila suzukii, or spotted wing drosophila (SWD) using a CNN 

developed by Kellenberger et al. [57] to detect mammals in UAV images. Lyu et al. [58] detected small 

grain pests using the SSD feature fusion method. L. Liu et al. [59] detected wild pests using Local 

activated Region Proposal Network (LaRPN) with Global activated Feature Pyramid Network (GaFPN) 

extraction. Wang et al. [60] used a Sampling-balanced region proposal (S-RPN) and fast R-CNN to 

detect small pests. Türkoğlu et al. [61] developed PlantDiseasesNet using the CNN feature extraction 

and SVM classifier for the classification of plant pests and diseases. 

The previous studies mentioned above generally research and develop detection systems based on 

their respective datasets and the types of pests on certain plants. However, there were only a few studies 

that discuss detection performance for tiny pests. Several studies conducted studies by comparing the 

performance of several deep learning models, such as comparing the performance of the YOLO variant 

with the R-CNN variant. The significant research contributions mentioned in Chapter 1 are based on 

several studies that have compared the performance of different architectures, such as R-CNN with 

ResNet-50 versus ResNet-101, within a single deep learning model. 
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3. Method 

3.1. Dataset 

3.1.1. Images Acquisition 
The pest images used for the dataset in this study were taken directly at the Indonesian red chili 

pepper garden center in Bengkulu Province, Indonesia, using a smartphone camera with a minimum of 

13 MP (Mega Pixel) camera so as to produce a fairly good resolution. Pest images are taken at a distance 

of 10–20 cm from the camera. Data collection time was carried out in the morning and evening. For the 

morning session, it started at 7.00–10.00 Western Indonesian Time. Meanwhile, for the afternoon 

session started at 14.30–16.00 Western Indonesian Time. The schedule is adjusted to the time the pests 

begin to appear. The picture is not taken at a certain specific angle.  

The data collection process was conducted five times. The first data collection was carried out on 

December 1, 2021. The second data collection was carried out on December 4, 2021. The third data 

collection was carried out on December 5, 2021. The fourth data collection was carried out on December 

28, 2021, and lastly, the fifth data collection was carried out on December 30, 2021.  

Four types of pests were successfully validated from the collected images, Green peach aphid (Myzus 
persicae Sulz.), Silverleaf whitefly (Bemisia tabaci), Thrips, Cotton bollworm (Helicoverpa armigera), and 

Tobacco cutworm (Spodoptera litura). The validation process is carried out by the relevant experts. Due 

to their similar visual appearance, the Cotton bollworm and Tobacco cutworm are combined into a single 

pest object class called "Caterpillar". The sample image dataset is presented in Fig. 1, and a large pest 

reference image is presented in Fig. 2. 

    

(Myzus persicae) (Bemisia tabaci) (Thrips) (Caterpillar) 

Fig. 1. Image Samples 

 

https://www.inaturalist.org/photos/ 

75370975 

 

(a) 

 

https://www.ars.usda.gov/oc/images/ 

photos/nov11/d288-4/ 

 

(b) 

 

https://commons.wikimedia.org/wiki/ 

File:Thrips_(15817836204).jpg 

 

(c) 

 

https://commons.wikimedia.org/wiki/ 

File:Spodoptera_litura1.jpg 

(d) 

 

https://commons.wikimedia.org/wiki/ 

File:Helicoverpa_armigera_(24161899965).jpg 

(e) 

Fig. 2. Pest image references (a) Myzus persicae; (b) Bemisia tabaci; (c) Thrips; (d) Spodoptera litura; (e) 

Helicoverpa armigera. 

3.1.2. Dataset preparation and annotation 
At the dataset preparation stage, the process of resizing, annotating, augmenting, and dividing data 

is carried out. To reduce computational costs, the image size was changed from 3240 x 3240 to 1216 x 

https://www.inaturalist.org/photos/75370975
https://www.inaturalist.org/photos/75370975
https://www.ars.usda.gov/oc/images/photos/nov11/d288-4/
https://www.ars.usda.gov/oc/images/photos/nov11/d288-4/
https://commons.wikimedia.org/wiki/File:Thrips_(15817836204).jpg
https://commons.wikimedia.org/wiki/File:Thrips_(15817836204).jpg
https://commons.wikimedia.org/wiki/File:Spodoptera_litura1.jpg
https://commons.wikimedia.org/wiki/File:Spodoptera_litura1.jpg
https://commons.wikimedia.org/wiki/File:Helicoverpa_armigera_(24161899965).jpg
https://commons.wikimedia.org/wiki/File:Helicoverpa_armigera_(24161899965).jpg
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1216 px while taking into account that the pest object in the annotated image is at least 24 x 24 px. The 

location distribution and object dimensions in the image are shown in Fig. 3. The smallest, largest, and 

average object dimensions are about 2%, 35%, and 4% of the image size, respectively, with an image 

size of 1216. Therefore, each dimension is 24, 462, and 49 px. 

 

Fig. 3. The distribution of pest size data 

In the annotation process, the area of each pest contained in the image is bound in a box and labeled 

according to the type of pest. Annotation examples are shown in Fig. 4. 

 

Fig. 4. Bemisia tabaci annotation sample 

To enhance the variety of input image data, each input image is augmented into three output images. 

The augmentation technique used is presented in Table 1.   

Table 1.  The augmentation technique 

No Augmentation Value 
1 Rotation -10˚

 

 -  10˚ 

2 Shear 10˚ horizontal, 10˚vertical 

3 Brightness -15% - 15% 

4 Noise 3% 

5 Blur 3 px 

 
The last step of data preparation is to divide the data for training, validation, and testing purposes, 

which are stored in the train, val, and test folders. Each of these folders consists of two sub-folders: an 

"image" sub-folder and a "labels" sub-folder. The "image" sub-folder contains image data in jpg or png 

format, while the "labels" sub-folder contains annotation data in txt format. The information in the txt 

file in the labels sub-folder is the data class, x-axis, y-axis, width, and height, each separated by a space. 

Meanwhile, the class name data for the entire dataset is stored in the "data.yaml" file. The dataset root 

folder structure is presented in Table 2. The total and number of each class are presented in Table 3 and 

the composition of the training, validation, and test datasets is shown in Table 4. 
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Table 2.  The dataset folder structure 

Dataset Folder 
train folder val folder test folder 

data.yaml 

images labels images labels images labels 

Table 3.  The composition of dataset based on pest class 

No Class Class Label Total images Total object 
1 Green Peach Aphid (Myzus persicae) MP 568 3.589 

2 
Silverleaf whitefly (Bemisia tabaci) BT 1.473 1.739 

3 Thrips  T 795 2.580 

4 Caterpillar C 2.158 2.505 

Total 4.994 10.683 

Table 4.  The composition of training, validation, and test datasets 

No Dataset Total 

1 Train 70%  = 3.496 

2 Val  20%  = 999 

3 Test 10%  = 499 

Total 100% = 4.994 

3.2. Model and Training  
Yolo is a single-stage object detector consisting of a backbone, a neck, and a head model [5]. The 

backbone is used for feature extraction from the input image. The neck component is utilized to generate 

pyramidal features, enabling the system to detect objects at various scales, while the head component is 

responsible for the final detection process. 

YOLOv5 consists of several release versions, and when this research was conducted, the latest release 

used was v6.0. YOLOv5 has high detection accuracy, a lightweight model, and a high detection speed. 

Therefore, YOLOv5 can be used for real-time detection systems on embedded devices [6]. The main 

block of architecture of YOLOv5 - v6.0 is shown in Fig. 5. The Backbone YOLOv5 – v6.0 uses New 

CSP (Cross Stage Partial Networks)-Darknet53. The Neck model uses SPPF (Spatial Pyramid Pooling 

– Fast) and the New CSP-PAN (Path Aggregation Network). While the head model uses YOLOv3 

Head, the same as the previous version. The hidden and final detection layer use the Sigmoid-Weighted 

Linear Units (SiLU) activation function. The optimization function consists of two options, SGD 

(Stochastic Gradient Descent) or Adam [6]. 

 

Fig. 5. Main block of Architecture YOLOv5 

The training process is carried out at the Google Collaboratory with the Nvidia Tesla-P100 16GB 

GPU hardware accelerator. YoloV5 used is version 6 with the pyTorch framework. Fine-tuning with 

pre-trained model yolov5s.pt, batch 16, hyp.scratch.yaml, image size 1216, 1200 epoch, and SGD 

optimization function. The architecture of YOLOv5s with an input image size of 1216 is shown in Fig. 

6.  
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Fig. 6. Model YOLOv5s Architecture with input size 1216 x 1216 px 

The SPPF, C3, Bottleneck, and Conv structure layers are shown in Fig. 7. The SPPF layer consists 

of two Conv layers and three MaxPool2D layers. The bottleneck layer in layer C3 consists of two types, 

bottleneck 1 and bottleneck 2. The type and number of bottlenecks used in each layer of C3 are presented 

in Table 5. Conv consists of three sequential processes: Conv2d, Bathnorm2D, and SiLu. 

 

Fig. 7. SPPF, C3, Bottleneck, Conv structure 
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Table 5.  Layer C3-Bottleneck 

No C3 Block Botleneck 1 Botleneck 2 
1 [2] - 1 

2 [4] - 2 

3 [6] - 3 

4 [8] - 1 

5 [13] 1 - 

6 [17] 1 - 

7 [20] 1 - 

8 [23] 1 - 

 

3.3. Evaluation 

3.3.1. Evaluation Metrics 
To evaluate the performance of the trained model, the observed indicators are train and validation 

loss data, precision, recall, F1, mAP@0.5, mAP@0.5:0.95, and mAP versus GPU Speed. Train and 

validation loss data consists of box loss, object loss, and class loss. A box loss occurs when there is an 

error in box prediction, while an object loss arises from an inaccurate prediction of the Intersection over 

Union (IoU) between the prediction. IoU is the ratio of the overlap area to the combined area of the 

predicted bounding box and the ground-truth box. A class loss is a loss due to deviation from predicting 

'1' for the correct class and '0' for all other classes for the object in the box. Precision, recall, and F1 are 

calculated based on confusion matrix data using equations (1), (2), and (3).  

Precision =  TP
TP+FP

  (1) 

recall =  TP
TP+FN

  (2) 

F1 =  2 × recall×precision
recall+precision

  (3) 

Precision shows the ratio of true positive prediction to all positive predictions data. Recall is shows 

the ratio of true positive predictions to all real positive data. The Confusion matrix shows performance 

of object prediction to the correct label of object, encompassing True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN). The Confusion matrix form is presented in Fig. 8. TP 

indicates the number of correct positive predictions, TN is the number of correct negative predictions, 

FP is the number of false positive predictions, and FN is the number of false negative predictions.  

 

Fig. 8. Confusion Matrix 

Average precision serves as an indicator of the model's capability to correctly recognize true positive 

labels while minimizing errors of predicting true negative labels as positive. As a result, a high average 

precision is achieved when the model accurately predicts positive labels. The average precision value is 

the area under the precision-recall curve based on different IoU threshold values. If precision and recall 

are each worth 1, the average precision value is 1. The average value of the average precision of all 

detection results is called the mean Average Precision (mAP). 

3.3.2. Best-Trained Model 
The best training model among patience 100, 200, and 300 is determined by comparing the 

performance of the training model based on evaluation indicators. The best-trained model of each 
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YOLOv5 training epoch is determined based on equation (4). Best-trained models were chosen and 

tested on the test dataset. 

best = max {(0.1 × mAP@0.5) × (0.9 × mAP@0.5: 0.95)}   (4) 

In the validation section, utilizing the default confidence threshold value of 0.001 in YOLOv5 can 

lead to high recall but lower precision. To overcome this, the best confidence value to use is chosen 

based on TF1 curve, which is the confidence value at the highest TF1 score.  

In the evaluation section of the model, the mAP with IoU 0.5 (mAP@0.5) and the average mAP 

with IoU 0.5:0.95 (mAP@0.5:0.95) were used. As for the implementation of detection, the primary 

challenge metric uses mAP@0.5:0.95, the PASCAL VOC metric uses mAP@0.5, and the strict metric 

uses mAP@0.75. In this study, the IoU threshold used is 0.6, which is the default Non-Maximum 

Suppression IoU (NMS-IoU) of YOLO5v. 

4. Results and Discussion 

4.1. The Best Trained Model Evaluation 
Based on the comparison of the patience value as an early stop determining parameter, the trained 

model with patience 100 is the best with the best-trained model obtained in the 445

th

 epoch of the total 

target of 2000 epochs. Fig. 9, Fig. 10, and Fig. 11 show the training performance, validation, and mAP 

metrics of the trained model. The best training model obtained for each patience value is shown in Table 

6. Patience values of 200 and 300 demonstrate improved training loss; however, they exhibit lower 

precision and recall metrics compared to a patience value of 100, particularly a significant decrease in 

recall at a patience of 300. This indicates that the ability of the trained model to predict TP is decreasing. 

Table 6.  Best Epoch based on patience 

No Patience Early Stop Epoch Best epoch 
1 100 545 of 2000 445 

2 200 1198 of 2000 998 

3 300 1578 of 2000 1278 

Based on loss validation, the performance of the trained model is getting lower with a higher patience 

value, even though the performance of the train loss is getting smaller. This suggests that increasing the 

training epoch with higher patience values can lead to overfitting of the trained model, as evidenced by 

the decreasing mAP metric with higher patience values. 

 

Fig. 9. Patience 100 
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Fig. 10. Patience 200 

 

Fig. 11. Patience 300 

The performance of GPU Speed versus mAP is shown in Fig. 12. As a performance comparison, we 

used mAP@0.5:0.95 from EfficientDet detection on the MS-COCO dataset with NVIDIA V100 GPU. 

The best-trained model performance for every patience with mAP@0.5:0.95 is lower than EfficientDet, 

but this is quite reasonable because this study used the NVIDIA P100 GPU, which has a DL training 

speed of 10 TFLOPS, while the NVIDIA V100 GPU has 120 TFLOPS. In addition, it is also caused by 

the difference in the ratio of the object size to the image size. The MS-COCO dataset contains fairly 

large common objects, such as people, cats, dogs, and others, while the pest dataset in this study consists 

of small objects. However, for mAP@0.5, the best trained model for each patience was much better than 

EfficientDet, and the best trained model for patience 100 showed the best performance. The best-trained 

model's best mAP@0.5 performance and speed are 82.6% is 20 ms/image or 50 fps on NVIDIA P100 

GPU. The term "best trained model" pertains to the model trained with a patience of 100, which was 

chosen for subsequent evaluation on the test dataset. Details of the indicator data for the best epoch 

training results are presented in Table 7. 
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Fig. 12. GPU Speed vs mAP, best trained model with patience 100:best100.pt, patience200:best200.pt, 

patience 300:best300.pt (this research used NVIDIA P100, EfficientDet used NVIDIA V100) 

Table 7.  445

th

 epoch training data and validation with patience 100 

Data Box loss Object loss Class loss 
Train 0.02619 0.0094296 0.00022905 

Validasi 0.052495 0.023551 0.003869 

Metrics 

precision recall F1 

0.71407 0.60979 

0.65782295 

mAP 

@0.5 @0.5:0.95 

0.64382 0.23058 

The performance of training with patience 100 is presented in Fig. 13. Precision has the highest value 

of 1 with a confidence value of 0.841. The highest recall is 0.88 with a confidence of 0.01, which indicates 

that precision and recall cannot be used as sufficient performance evaluation metrics for the model. The 

confidence value that will be used for the detection system cannot be taken from these two indicators. 

A high confidence value results in a low success rate of true positive (TP) predictions, but also reduces 

the number of false positive (FP) predictions. Conversely, a low confidence value leads to a higher TP 

prediction rate, but also increases the number of FP predictions. To get the best detection ability, the 

confidence value used is the confidence value with the highest F1-Score. Based on the F1-Score curve 

in Fig. 13, for all classes, the highest F1-Score is 0.74 with a confidence value of 0.321. 

From the final results of the training process, validation with a default confidence value of YOLOv5s 

0.001, the mAP metrics are shown in the Precision-Recall graph in Fig. 13. With an IoU of 0.5, the 

mAP for all classes is 0.726. However, as presented in Fig. 14 (confidence 0.001), this confidence value 

causes a very high false predictions. With a confidence value of 0.321, the results of object detection in 

the validation dataset are presented in Fig. 14 (confidence 0.321). Out of a total of 999 files, 837 files 

were successfully detected with objects in them, indicating a significantly enhanced object detection 

capability compared to the default confidence value.Based on the data on the detection test results 

indicators in Table 8, it can be seen that with 0.321 confidence, the trained model can detect 90.04% of 

objects on the validation datasets with more balanced precision and recall values and better mAP metrics. 

The lowest detection rate from the total validation dataset label occurred in BT class with a percentage 

of 63.55%. The performance of the best trained model detection results on the overall validation dataset 

image is presented in the confusion matrix in Fig. 15 (Validation dataset). 
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Fig. 13. Metrics evaluation validation of the best training model 

 

(Confidence 0.001) 

 

(Confidence 0.321) 

Fig. 14. Prediction performance on validation datasets 

Table 8.  The perfomance of model on validation dataset based on confidence value and IoU 0.6 

Confidence 0.001 

Class Total Images Labels Detected 
Percentage 

P R mAP 
@0.5 

mAP 
@0.5:0.95 

all 999 2772 100% 0.798 0.697 0.726 0.286 

MP 999 1447 100% 0.737 0.591 0.634 0.234 

BT 999 299 100% 0.766 0.522 0.514 0.18 

T 999 550 100% 0.795 0.858 0.844 0.262 

C 999 476 100% 0.894 0.816 0.911 0.468 

Confidence 0.321 
(based on best 

TF1-Score) 

all 999 2496 90.04% 0.813 0.817 0.826 0.356 

MP 999 1377 95.16% 0.747 0.619 0.706 0.293 

BT 999 190 63.55% 0.785 0.805 0.766 0.294 

T 999 521 94.73% 0.824 0.896 0.873 0.291 

C 999 408 85.71% 0.896 0.949 0.958 0.545 

a. MP: Myzus persicae, BT: Bemisia tabaci, T: Thrips, C: Caterpillar 
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4.2. Evaluation of The Best Trained Model On Datasets Test 
Out of a total of 499 test dataset image files, using a confidence threshold of 0.321 and IoU of 0.6, 

464 images were identified as containing objects. Among the 1082 labels present, only 982 labels were 

successfully detected. This indicates that the trained models achieved a 90.93% accuracy in 

distinguishing the ground truth from the background. The confusion matrix of the best-trained model 

test on the test dataset for the entire ground-truth label is shown in Fig. 15 (test dataset). Class C 

exhibits the highest performance, with a true prediction rate of 96%, whereas Class MP has the lowest 

performance, with a true prediction rate of 66%. On average, the true prediction rate across all classes is 

85.5%. Fig. 16 shows the detection performance of 464 image files that have detected the presence of 

objects. The comparison of the number of true predictions with false predictions shows that the best 

trained model can distinguish between each class very well. 

 

(Validation dataset)  

(Test dataset) 

Fig. 15. Confusion matrix best trained model 

 

(Ground-Truth) 

 

(Predicted) 

Fig. 16. Prediction Perfomance on Test dataset 

Based on the mAP@0.5 metrics in Table 9, the T class has the lowest mAP, which is 67%, not much 

different from the percentage from the confusion matrix, while the highest is class C, with 98.1% mAP, 

also not too different from the confusion metrics data. The mAP of the detection test of the overall test 

datasets is 81.3%. This performance closely aligns with the average true prediction rate indicated by the 

confusion matrix. Comparison of the mAP@0.5 metrics and the confusion matrix data shows that the 

trained model exhibits outstanding performance. Meanwhile, when compared with the evaluation 

metrics on the previous validation dataset test, it shows that the trained model does not experience 

overfitting. Fig. 17, Fig. 18, Fig. 19, and Fig. 20 show the visualization of the detection of image data 

samples for each pest.  

Table 9.  Evaluation metrics best trained model on test dataset 

Class Images Labels Detected 
Labels 

Detected 
Percentage 

P R mAP@0.5 mAP@0.5:0.95 

all 499 1080 982 90.93% 0.792 0.826 0.813 0.37 

MP 499 448 392 87.50% 0.737 0.671 0.727 0.326 

BT 499 173 147 84.97% 0.845 0.891 0.874 0.362 

T 499 217 213 98.16% 0.659 0.77 0.67 0.217 

C 499 242 230 95.04% 0.926 0.974 0.981 0.576 
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(Original) (Ground-Truth) (Prediction) 

Fig. 17. MP detection 

 
Fig. 18. BT detection 

 
Fig. 19. T detection 

 
Fig. 20. C detection 

5. Conclusion 
In this study, a detection model of pest that attacks Indonesian red chili pepper was developed based 

on the YOLOv5 algorithm. Using a primary dataset from a chili plantation in Bengkulu province, the 

model was trained using a fine-tuning mode of the YOLOv5s pre-trained model. Based on the difference 

in patience values, the best model obtained is the model on the 445th epoch with patience 100, and the 

(Original) (Ground-Truth) (Prediction) 

Zoom 

(Original) (Ground-Truth) (Prediction) 
Zoom 

(Original) (Ground-Truth) (Prediction) 
Zoom 

Zoom 
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best confidence value is 0.321 on TF1 0.74. In retesting the pest detection on the train and validation 

dataset with IoU 0.6 and confidence 0.321, the mAP@0.5 were 72.5% and 82.6%. This mAP comparison 

showed that the mode is not overfitting. In the test dataset test, it was obtained that mAP@0.5 was 

81.3% with the lowest 67% for thrips class and the highest 98.1% for caterpillar class (Helicoverpa 
armigera, Spodoptera litura). With an average pest object dimension of 4% of the image dimensions, this 

indicated that the model can detect tiny pests, such as Thrips and Silverleaf whitefly well. The best-

trained model's best mAP@0.5 performance and speed are 82.6% is 20 ms/image or 50 fps on NVIDIA 

P100 GPU, it shows that the model can be used for real-time detection. In this study, mAP@0.5 was 

81.3%, but it still has to be improved. Therefore suggestions for future research include how to improve 

mAP@0.5 and mAP@0.95. Furthermore, studies can be conducted to increase real-time performance so 

that it can be deployed on embedded devices with lower computational capabilities, such as the NVIDIA 

Jetson Nano. 
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