IMPLEMENTASI SIMPLE QUEUE DAN FILTER WEBSITE UNTUK OPTIMASI MANAGEMENT BANDWIDTH PADA APARTEMEN MEDITERANIA

Muhammad Syarief¹, Mohammad Badrul²

Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Nusa Mandiri Jl. Jatiwaringin No.2, Cipinang Melayu, Makasar Jakarta Timur E-mail: <u>muhammadsyarif1994@gmail.com¹</u>, *<u>mohammad.mbl@nusamandiri.ac.id²</u>

Abstrak – Jaringan komputer adalah kumpulan perangkat komputer yang saling terhubung dan saling berkomunikasi satu sama lain melalui media komunikasi. Kebutuhan jaringan komputer dalam sebuah perusahaan dapat bervariasi tergantung pada ukuran perusahaan, industri, dan tujuan bisnis. Penggunaan jaringan komputer yang optimal saat ini juga dibutuhkan oleh Apartemen Mediterania Boulevard Residences guna untuk melaksanakan rutinitas dan kinerja yang lebih baik lagi. Salah satu aspek yang belum terpenuhi pada bagian kantor Apartemen Mediterania Boulevard Residences saat ini yaitu kurang optimalnya akses internet yang belum stabil dari segi bandwidth atau kecepatan aksesnya. Selain itu permasalahan yang ditemui pada bagian kantor Apartemen Mediterania Boulevard Residences itu sendiri yaitu seringnya karyawan membuka aplikasi atau situs aplikasi yang tidak berkaitan dengan pekerjaan pada saat jam kerja berlangsung seperti streaming video yang mengonsumsi banyak bandwidth. Hal ini karena tidak ada penentuan skala prioritas, jika prioritas aplikasi atau layanan tidak ditetapkan dengan benar. Manajemen bandwidth merupakan proses mengontrol dan mengatur penggunaan bandwidth atau kapasitas jaringan dalam sebuah jaringan komputer. Tujuannya adalah untuk memastikan bahwa setiap pengguna atau aplikasi mendapatkan akses yang adil dan optimal terhadap sumber daya jaringan yang tersedia. Penelitian ini bertujuan untuk meningkatkan performa jaringan komputer khususnya jaringan internet yang ada di Apartemen Mediterania Boulevard Residences dengan cara meningkatkan efisiensi di dalam menggunakan resource supaya dapat memprioritaskan dan membatasi bandwidth dengan menggunakan simple queue dan filtering website sehingga pembagian bandwidth bisa dilakukan secara merata yang dapat meningkatkan kecepatan koneksi jaringan internet di setiap client Apartemen Mediterania Boulevard Residences.

Kata Kunci:, Filter Web, Internet, Jaringan, Manajemen Bandwidth, Simple queue

I. PENDAHULUAN

Jaringan komputer adalah kumpulan perangkat komputer yang saling terhubung dan saling berkomunikasi satu sama lain melalui media komunikasi seperti kabel, serat optik, atau nirkabel. Tujuan utama dari jaringan komputer adalah memungkinkan berbagi informasi, sumber daya, dan layanan antara perangkat-perangkat yang terhubung. Kebutuhan jaringan komputer dalam sebuah perusahaan dapat bervariasi tergantung pada ukuran perusahaan, industri, dan tujuan bisnis (Madcoms, 2016). Sebelum merancang atau mengimplementasikan jaringan komputer, penting untuk memahami kebutuhan khusus perusahaan dan mempertimbangkannya. Semakin besar suatu perusahaan, maka semakin banyak pula kebutuhan akan kinerja jaringan komputer yang optimal. Salah satu hal yang perlu dilakukan adalah dalam hal manajemen bandwidth (Supendar & Siregar, 2018). Penggunaan jaringan komputer yang optimal saat ini juga dibutuhkan oleh Apartemen Mediterania Boulevard Residences guna untuk melaksanakan rutinitas dan kinerja yang lebih baik lagi salah

92

satunya tentang pengaturan *bandwidth* atau manajemen *bandwidth*.

Apartemen Mediterania Boulevard Residences merupakan sebuah perusahaan yang bergerak pada bidang penyewaan tempat tinggal. Salah satu aspek yang belum terpenuhi pada bagian kantor Apartemen Mediterania Boulevard Residences saat ini yaitu kurang optimalnya akses internet yang belum stabil dari segi bandwidth atau kecepatan aksesnya. Selain itu permasalahan yang ditemui pada bagian kantor Apartemen Mediterania Boulevard Residences itu sendiri yaitu seringnya karyawan membuka aplikasi atau situs aplikasi yang tidak berkaitan dengan pekerjaan pada saat jam kerja berlangsung seperti streaming video yang mengonsumsi banyak bandwidth vang mengakibatkan kemacetan pada jaringan jika tidak ada mekanisme untuk mengendalikan penggunaannya. Permasalahan tersebut tidak lepas dari segi bandwidth yang disediakan oleh ISP (Internet Service Provider) yang terkadang dirasa belum optimal pada saat digunakan oleh user yang tentunya dapat mengganggu kinerja jaringan secara keseluruhan dan menciptakan ketidakseimbangan dalam penggunaan sumber daya jaringan. Hal ini karena tidak ada penentuan skala prioritas, jika prioritas aplikasi atau layanan tidak ditetapkan dengan benar, aplikasi atau layanan yang seharusnya mendapatkan prioritas lebih tinggi mungkin tidak menerima alokasi *bandwidth* yang memadai (Prasetyo et al., 2019). Ini dapat mengakibatkan pengalaman pengguna yang buruk untuk aplikasi atau layanan tersebut.

Manajemen bandwidth merupakan proses mengontrol dan mengatur penggunaan bandwidth atau kapasitas jaringan dalam sebuah jaringan komputer. Tujuannya adalah untuk memastikan bahwa setiap pengguna atau aplikasi mendapatkan akses yang adil dan optimal terhadap sumber daya jaringan yang tersedia (Dicky Zulkifli & Yunita, 2022). Dalam jaringan komputer, bandwidth mengacu pada kapasitas maksimum transfer data yang dapat dilakukan melalui jaringan dalam satu Manajemen bandwidth waktu. melibatkan implementasi kebijakan dan mekanisme untuk mengatur dan mengontrol aliran data dalam jaringan. Salah satu metode yang digunakan untuk mengatasi kekurangan bandwdith dalam perusahaan adalah metode simple queue. Metode simple queue merupakan satu fitur yang digunakan untuk mengatur dan mengendalikan lalu lintas jaringan berdasarkan antrian sederhana(Agung & Harafani, 2022). Simple queue, dapat memprioritaskan dan membatasi bandwidth untuk berbagai jenis lalu lintas, seperti pengguna, alamat IP, protokol, atau 2023). port(Sopandi et al.. Untuk lebih meningkatkan performa jaringan komputer, bisa ditambahkan fitur lain yaitu filtering web yang meningkatkan berfungsi efisiensi didalam resource router menggunakan pada yang digunakan. Dengan Filtering web, seorang IT bisa menambahkan aturan-aturan tambahan untuk memblokir atau mengizinkan akses ke situs web lainnya berdasarkan kriteria yang berbeda sehingga performa jaringan komputer bisa lehih optimal(Prasetyo et al., 2019).

Penelitian ini bertujuan untuk meningkatkan performa jaringan komputer khususnya jaringan internet yang ada di Apartemen Mediterania Boulevard Residences dengan cara meningkatkan efisiensi didalam menggunakan *resource* supaya dapat memprioritaskan dan membatasi *bandwidth* untuk berbagai jenis lalu lintas, seperti pengguna, alamat IP, protokol, atau port dengan menggunakan metode *simple queue* dan *filtering website* yang digunakan sehingga pembagian *bandwidth* bisa dilakukan secara merata yang dapat meningkatkan kecepatan koneksi jaringan internet di setiap client Apartemen Mediterania Boulevard Residences.

II. TINJAUAN PUSTAKA

A. Konsep Dasar Jaringan

Jaringan komputer adalah adalah kumpulan beberapa komputer (dan perangkat lain seperti

router, Switch, dan sebagainya) yang saling terhubung satu sama lain melalui media perantara (Madcoms, 2015a). Secara lebih sederhana, jaringan komputer dapat diartikan sebagai sekumpulan komputer beserta mekanisme dan prosedurnya yang saling terhubung dan berkomunikasi. Komunikasi yang dilakukan oleh komputer tersebut dapat berupa transfer berbagai data, instruksi, dan informasi dari satu komputer ke komputer lain(Fauzi & Maulana, 2019).

Dibandingkan dengan komputer yang berdiri sendiri (*stand-alone*), jaringan komputer memiliki beberapa keunggulan antara lain:

1. Berbagi peralatan dan sumber daya

Beberapa komputer dimungkinkan untuk saling memanfaatkan sumber daya yang ada, seperti printer, harddisk, serta perangkat lunak bersama, seperti aplikasi perkantoran, basis data (*database*), dan sistem informasi. Penggunaan perangkat secara bersama ini akan menghemat biaya dan meningkatkan efektivitas peralatan tersebut (Madcoms, 2015b).

2. Integrasi data

Jaringan komputer memungkinkan pengintegrasian data dari atau ke semua komputer yang terhubung dalam jaringan tersebut (Komputer, 2012).

3. Komunikasi

Jaringan komputer memungkinkan komunikasi antar pemakai komputer, baik melalui e-mail, *teleconference* dan sebagainya.

4. Keamanan (Security)

Jaringan komputer mempermudah dalam pemberian perlindungan terhadap data. Meskipun data pada sebuah komputer dapat diakses oleh komputer lain tetapi kita dapat membatasi akses orang lain terhadap data tersebut. Selain itu kita juga bisa melakukan pengamanan terpusat atas seluruh komputer yang terhubung ke jaringan.

- B. Klasifikasi Jaringan Komputer
- 1. Local Area Network/LAN

LAN adalah jaringan komputer yang mencover area lokal, seperti rumah, kantor atau group dari bangunan. LAN sekarang lebih banyak menggunakan teknologi berdasar IEEE 802.3 Ethernet Switch, atau dengan Wi-Fi (Sukaridhoto, 2014). Kebanyakan berjalan pada kecepatan 10, 100, atau 1000 Mbps, Perbedaan vang mencolok antara Local Area Network (LAN) dengan Wide Area Network (WAN) adalah menggunakan data lebih banyak, hanya untuk daerah yang kecil, dan tidak memerlukan sewa jaringan (Warnillah & Simpony, 2020). Walaupun sekarang ethernet Switch yang paling banyak digunakan pada layer fisik dengan TCP/IP menggunakan sebagai protokol, setidaknya masih banyak perangkat lainnya yang dapat digunakan untuk membangun LAN.

LAN dapat dihubungkan dengan LAN yang lain menggunakan *router* dan *leased line* untuk membentuk WAN. Selain itu dapat terkoneksi ke internet dan bisa terhubung dengan LAN yang lain dengan menggunakan tunnel dan teknologi VPN.

2. Metropolitan Area Network (MAN)

Metropolitan Area *Network* (MAN) adalah sebuah jaringan menggunakan teknologi yang sama dengan LAN, hanya ukuranya bisannya lebih luas daripada LAN, MAN dapat mencakup kantor-kantor, perusahaan yang letaknya berdekatan atau antar sebuah kota dan dapat dimanfaatkan untuk keperluan pribadi (swasta) atau umum. Metropolitan Area *Network* mampu menunjang data dan suara, bahkan dapat berhubungan dengan jaringan televisi kabel (Madcoms, 2015a).

3. Wide Area Network (WAN)

Wide Area Network (WAN) jangkauanya mencakup daerah geografis yang lebih luas, seringkali mencakup sebuah negara bahkan benua, WAN terdiri dari kumpulan LAN dan MAN dan mesin mesin yang bertujuan untuk pemakai menjalankan program aplikasi (Madcoms, 2015b). Pada sebagian besar WAN, jaringan terdiri dari sejumlah kabel atau saluran telepon yang menghubungkan sepasang router. Bila dua *router* vang tidak mengandung kabel vang sama akan melakukan komunikasi secara tak lagsung melalui router lainnya. Ketika sebuah paket dikirimkan dari sebuah router ke router lainnya melalui router perantara atau lebih, maka paket akan di terima router dalam keadaan lengkap, disimpan sampai saluran output menjadi bebas, kemudian diteruskan.

C. Perangkat Keras jaringan

Ada beberapa perangkat keras yang digunakan untuk penelitian ini antara lain:

1. Modem

Modem berasal dari singkatan Modulator Demodulator. Modulator merupakan bagian yang mengubah sinyal informasi kedalam sinyal pembawa (carrier) dan siap untuk dikirimkan, sedangkan Demodulator adalah bagian yang memisahkan sinyal informasi (yang berisi data atau pesan) dari sinyal pembawa yang diterima sehingga informasi tersebut dapat diterima dengan baik. Modem merupakan penggabungan kedua-duanya, artinya modem adalah alat komunikasi dua arah (Fauzi & Maulana, 2019).

2. Router

Router sering digunakan untuk menghubungkan beberapa network. Baik network yang sama maupun berbeda dari sei teknologinya (Komputer, 2012). Router juga digunakan untuk membagi network besar menjadi beberapa buah subnetwork (network-network kecil). Setiap subnetwork seolah-olah "terisolir" dari network lain. Hal ini dapat membagi-bagi traffic yang akan berdampak positif pada performa *network*. Sebuah *router* memiliki kemampuan routing. Artinya *router* secara cerdas dapat mengetahui kemana rute perjalanan informasi (yang disebut packet) akan dilewatkan, apakah ditujukan untuk host lain yang satu *network* atau berbeda *network*.

3. Bridge

Bridge atau transparent bridge merupakan perangkat *network* yang digunakan untuk menghubungkan dua buah LAN (Local Area *Network*) atau membagi sebuah LAN menjadi dua buah segmen. Tujuannya adalah untuk mengurangi traffic sedemikian rupa sehingga dapat meningkatkan performa *network* (Madcoms, 2015a).

4. Switch/Hub

Switch adalah bridge yang memiliki banyak port, sehingga disebut sebagai multiport bridge. Switch berfungsi sebagai sentral atau konsestrator pada sebuah network (Madcoms, 2015b). Switch dapat mempelajari alamat hardware host tujuan, sehingga infoemasi berupa data bisa langsung dikirim ke host tujuan. Sedangkan hub mirip dengan Switch, namun hub tidak secerdas Switch. Jika Switch mengirim suatu informasi langsung dikirim ke host tujuan, kalau hub mengirim informasi tersebut ke semua host. Kondisi seperti ini menyebabkan beban traffic yang tinggi. Oleh sebab itu, hub biasanya digunakan pada network berskala kecil, seperti network di Lab.komputer sekolah, warnet dll.

5. NIC

NIC (*network interface card*) adalah expansion board yang digunakan supaya komputer dapat dihubungkan dengan jaringan. sebagian besar NIC dirancang untuk jaringan, protokol, dan media tertentu. NIC biasa disebut dengan LAN card (Local Area *Network* Card).

D. Manajemen Jaringan

Manajemen jaringan yang penulis ingin uraikan disini ialah tentang pengertian *bandwidth*, manajemen *bandwidth*.

1. Bandwidth

Bandwidth merupakan kisaran frekuensi yang dinyatakan dalam kilobit per detik (kbps), yang dapat melewatkan channel transmisi dalam Bandwidth sebuah jaringan. menentukan kecepatan pengiriman data melalui channel. Semakin besar bandwidth yang diberikan, semakin banyak data yang dapat dikirimkan pada waktu yang sudah ditentukan (Warnillah & Simpony, 2020). Bandwidth disebut juga Data Transfer atau Site Traffic adalah data yang keluar dan masuk atau upload dan download ke perangkat komputer. Bandwidth yang tidak dibagi secara merata akan mengakibatkan koneksi pada sebagian *user* (*Client*) menjadi lambat. Hal ini terjadi disebabkan sebagian user ada yang memang sedang dalam aktivitas yang menguras *bandwidth* seperti browsing atau *download*, agar trafic menjadi seimbang maka dibutuhkan *bandwidth* manager pada mikrotik.

2. Manajemen Bandwidth

Manaiemen *bandwidth* merupakan teknik pengelolaan jaringan sebagai usaha untuk memberikan performa jaringan yang adil dan Manajemen bandwidth juga memuaskan. digunakan untuk memastikan bandwidth yang memadai untuk memenuhi kebutuhan trafik data dan informasi serta mencegah persaingan antara aplikasi (Warnillah & Simpony, 2020). Manajemen bandwidth menjadi hal mutlak bagi jaringan multi layanan, semakin banyak dan bervariasinya aplikasi yang dapat dilayani oleh jaringan akan berpengaruh suatu pada penggunaan link dalam jaringan tersebut.

E. Metode Simple queue

Simple queue merupakan teknik antrian pada sistem manajemen bandwidth pada router mikrotik. Simple queue merupakan teknik antrian dengan metode FIFO (First Input First Output). Teknik antrian FIFO adalah paket data yang pertama datang akan diproses terlebih dahulu dan dimasukkan ke dalam antrian. kemudian dikeluarkan sesuai dengan urutan kedatangannya. Cara pelimitan dengan menggunakan pelimitan sederhana berdasarkan data rate. Simple queue juga merupakan cara termudah untuk melakukan manajemen bandwidth yang diterapkan pada jaringan skala kecil sampai menengah untuk mengatur pemakaian bandwidth upload dan download tiap user (Madcoms, 2015a). Metode Simple queue adalah salah satu fitur yang ada di MikroTik RouterOS yang digunakan untuk mengatur dan mengendalikan lalu lintas jaringan berdasarkan antrian sederhana. Metode ini memungkinkan Anda untuk membatasi bandwidth, memprioritaskan lalu lintas, dan mengontrol penggunaan sumber daya jaringan.

Berikut adalah langkah-langkah untuk menggunakan metode *Simple queue* di MikroTik(Madcoms, 2015a):

- 1. Mengakses *Router*OS: Untuk mengkonfigurasi *Simple queue*, Anda perlu mengakses perangkat MikroTik menggunakan Winbox atau koneksi Terminal.
- 2. Membuat Antrian: Di menu "Queue", buatlah antrian baru dengan mengklik tombol "Add New" atau menggunakan perintah CLI "queue simple add". Pada saat pembuatan antrian, Anda dapat mengatur parameter seperti nama antrian, target (misalnya, alamat IP atau subnet), limit *bandwidth*, prioritas, dan aturan lainnya.
- 3. Mengatur Limit *Bandwidth*: Tetapkan batasan *bandwidth* untuk antrian dengan mengatur

parameter "Max Limit". Anda dapat mengatur limit *bandwidth* dalam bentuk pengaturan maksimum (misalnya, 1M untuk 1 Megabit per detik) atau sebagai persentase dari *bandwidth* total yang tersedia.

- 4. Menentukan Prioritas: Jika Anda ingin memberikan prioritas tertentu pada antrian, Anda dapat mengatur nilai "Priority" untuk setiap antrian. Antrian dengan prioritas yang lebih tinggi akan mendapatkan alokasi *bandwidth* yang lebih besar saat lalu lintas jaringan sibuk.
- 5. Mengatur Target: Tentukan target antrian, misalnya alamat IP atau subnet yang ingin Anda batasi atau priotitaskan lalu lintasnya.
- 6. Mengaktifkan Antrian: Setelah antrian dibuat, pastikan untuk mengaktifkannya agar konfigurasi berlaku. Anda dapat mengaktifkan antrian dengan mengklik tombol "Enable" atau menggunakan perintah CLI "queue simple enable".
- Memantau Antrian: Anda dapat memantau kinerja antrian dengan melihat statistik seperti jumlah paket, jumlah *byte*, dan penggunaan *bandwidth*. Informasi ini dapat ditemukan di menu "Queue" atau dengan menggunakan perintah CLI "queue simple print".

F. Filtering/Pembatasan web

Secara umum, *firewall filtering* biasanya dilakukan dengan cara mendefinisakn *Ip Address*, baik itu *Src-Address* maupun *Dst-Address*. Ketika ingin blok komputer *client* yang memiliki ip tertentu atau ketika ingin blok web tertentu berdasarkan ip web tersebut. Untuk memblokir website yaitu dengan *Firewall filter rules* dan *address list*, yang dimana keduanya saling berkaitan (Madcoms, 2016).

Filtering web adalah proses mengendalikan akses pengguna terhadap situs web berdasarkan kriteria tertentu. Hal ini dilakukan untuk membatasi atau memblokir akses ke situs web yang dianggap tidak diinginkan atau tidak pantas, serta untuk meningkatkan keamanan, produktivitas, dan kepatuhan dalam lingkungan jaringan.

Beberapa kriteria yang sering digunakan dalam *filtering web* meliputi:

- 1. Kategori Situs: Situs web dikelompokkan ke dalam kategori tertentu, seperti sosial media, perjudian, konten dewasa, atau streaming video. *Filtering web* dapat dilakukan dengan memblokir akses ke kategori-kategori situs tertentu.
- 2. Daftar Hitam (*Blacklist*): Daftar hitam berisi daftar situs web yang secara khusus diblokir atau tidak diizinkan aksesnya. Daftar ini dapat berisi situs web yang dianggap berbahaya, ilegal, atau tidak diinginkan.
- 3. Daftar Putih (*Whitelist*): Daftar putih berisi daftar situs web yang diizinkan untuk diakses.

Hanya situs web yang ada dalam daftar putih yang diperbolehkan, sementara situs web lainnya akan diblokir.

- 4. Kata Kunci dan Frase: *Filtering web* juga dapat dilakukan dengan memblokir akses ke situs web yang mengandung kata kunci atau frase tertentu. Misalnya, Anda dapat memblokir situs web yang mengandung kata-kata kasar atau kata-kata terkait kegiatan yang tidak diinginkan.
- 5. Waktu Akses: *Filtering web* dapat dikonfigurasi untuk membatasi akses ke situs web tertentu pada waktu-waktu tertentu. Misalnya, Anda dapat membatasi akses ke situs media sosial selama jam kerja.

Di dalam filter rules terdapat fungsi DROP (menutup), ACCEPT (mengijinkan) yang digunakan sebagai pemberi akses paket koneksi, baik koneksi yang diijinkan maupun paket yang tidak diperbolehkan melewati *router*." Ketika ingin melakukan filtering terhadap beberapa ip yang tidak berurutan atau acak. Apabila kita buat rule satu persatu, tentu akan menjadi hal yang melelahkan. Dengan kondisi seperti ini, kita bisa menerapkan group ip membuat addrest list.

G. State of the Art

Beberapa penelitian yang membahas tema yang sama seperti yang dilakukan oleh peneliti antara lain:

- 1. Penelitian yang dilakukan oleh (Prasetyo et al., 2019) yang membahas tentang implementasi manajemen *bandwidth* dan *filtering web* access control dengan menggunakan address list yang bertujuan untuk menyelesaikan masalah jaringan internet yang digunakan untuk menunjang kegiatan operasional di CV. Cahaya Indo Alumunium.
- 2. Penelitian yang dilakukan oleh (Musmuharam & Eko Suharyanto, 2020) yang membahas tentang manajemen *bandwidth* dengan menggunakan metode *simple queue* di SMKN 5 Batam. Hasilnya adalah dengan implementasi manajemen *bandwidth* jaringan internet lebih stabil dan merata.
- 3. Penelitian yang dilakukan oleh (Supendar & Siregar, 2018) yang membahas tentang metode queue tree dalam membangun manajemen *bandwidth* dengan menggunakan mikrotik. Dengan menggunakan metode *simple queue*, jaringan menjadi lebih stabil dan lebih simple dalam pengelolaan *bandwidth* di jaringan internet.

III. METODE PENELITIAN

Untuk memperoleh data yang akurat dalam penulisan ini, penulis menggunakan beberapa tahapan sebagai sarana untuk membantu serta memudahkan penulis dalam penyusunan laporan. Adapun tahapan yang penulis gunakan yaitu Analisa Penelitian dan Metode pengumpulan data. A. Analisa Penelitian

Analisa penelitian yang digunakan penulis dalam penelitian ini dengan beberapa tahapan adalah Analisa kebutuhan, Desain, Testing, dan Implementasi.

1. Analisa Kebutuhan

Tahap awal ini dilakukan analisa kebutuhan terhadap permasalahan yang ada, untuk mengatasi hal tersebut dibutuhkan perangkat jaringan yaitu *router* digunakan untuk manajeman *bandwidth* dari perusahaan,

2. Desain

Dari data-data yang didapatkan sebelumnya, maka akan dibuat rancangan *topologi star* yang telah disesuaikan dari skema jaringan, dengan menentukan filter *Simple queue* untuk layanan jaringan.

3. Testing

Ketika di desain rancangan sistem yang dibuat, maka akan dilakukan testing dari aplikasi vmware untuk membuktikan kebenaran dan menjawab solusi atas permasalahan yang timbul dari awal sejak dilakukan analisa.

4. Implementasi

Setelah testing dilakukan langkah selanjutnya adalah menerapkan semua yang telah direncanakan dan didesain sebelumnya, supaya dapat menyelesaikan permasalahan yang ada.

B. Metode Pengumpulan Data

Dalam melakukan pengumpulan data, penulis menggunakan beberapa metode penelitian, yaitu:

1. Observasi

Penulis melakukan pengumpulan data secara langsung di dalam kantor Apartemen Mediterania Boulevard Residences, dengan melihat objek penelitian dari sejumlah orang yang bekerja di kantor tersebut dalam jangka waktu bersamaan.

2. Wawancara

Penulis melakukan tanya jawab dengan bagian IT pada Apartemen Mediterania Boulevard Residences yang berkaitan dengan jaringan komputer.

3. Studi Pustaka Pada sudi pustaka, penulis mengumpulkan dan memperoleh data seperti membaca, meneliti dan menganalisis dari buku-buku referensi diperpustakaan, junal dan artikel yang berkaitan dengan materi skripsi untuk mendapatkan solusi atau gambaran mengenai permasalah terkait.

IV. HASIL DAN PEMBAHASAN

Dalam pembahasan ini, penulis membahas tentang jaringan yang sedang diterapkan di perusahaan dan usulan jaringan yang penulis usulkan.

A. Jaringan Usulan

Berdasarkan permasalahan yang terjadi pada Apartemen Mediterania Boulevard Residences, maka penulis mengusulkan untuk menerapkan rancangan yang penulis buat, sebagai berikut:

- 1. Untuk memanajemen *bandwidth*, menggunakan aplikasi winbox dengan menentukan *bandwidth* awal upload 5Mbps dan download 5Mbps, menggunakan menu *simple queue* dari setiap *user* yang berada di Apartemen Mediterania Boulevard Residences.
- 2. Untuk pemblokiran *website*, mengatur hak akses dengan cara memblok beberapa situs yang dianggap mengganggu kinerja perusahaan sesuai kebijakan atau ketentuan perusahaan, diantaranya Facebook, Youtube, Twitter, atau yang lainnya.

B. Topologi Jaringan

Topologi jaringan yang digunakan pada kantor Apartemen Mediterania Boulevard Residences menggunakan topologi star, dari analisa sistem yang sedang berjalan dimana semua perangkat komputer terhubung ke *Switch*. Alasan mengapa memilih topologi star, karena mudah pemasangannya dan perawatan jaringannya. Jika terdapat masalah pada satu komputer, maka jaringan komputer yang lain tidak terganggu.

Sumber: Penelitian tahun 2022

Gambar 1. Topologi Jaringan Kantor Apartemen

C. Skema Jaringan

Pada penelitian ini penulis mencoba untuk menggambarkan usulan penulis dalam bentuk skema implementasi jaringan usulan tersebut menggunakan software simulator. Software yang penulis gunakan adalah Cisco Packet Trace versi 6.2.0.0052 keluaran dari Cisco. Penulis memberikan gambaran koneksi yang digunakan mengimplementasikan untuk pembagian bandwidth, Berikut adalah skema jaringan yang penulis buat berdasarkan topologi yang sedang digunakan pada kantor, tanpa merubah topologi asli dari perusahaan. Dengan menggunakan 3 PC yang terinstall pada Aplikasi VMware sebagai contohnya.

Sumber: Penelitian tahun 2022

Gambar 2. Skema Jaringan Komputer Simulasi

Detail IP Address, sebagai berikut:

- 1. IP ISP (Internet Service Provider): 101.128.73.237
- 2. IP Router Public: 101.128.73.233
- 3. IP *Router* Lokal: 192.168.28.1
- 4. IP PC AM: 192.168.28.52
- 5. IP PC PGA 1 : 192.168.28.21
- 6. IP PC Gudang: 192.168.28.73

D. Keamanan Jaringan

Keamanan jaringan komputer yang penulis ingin terapkan pada Apartemen Mediterania Residences Boulevard, sebagai berikut:

- 1. Membatasi *bandwidth* dari beberapa *client* yang terhubung dengan *internet*, sesuai ketentuan atau kebijakan dari perusahaan.
- 2. Mengatur keamanan *firewall* (*Address List*) dalam menu winbox, untuk memblock beberapa situs pada masing-masing *user*.
- 3. Untuk *antivirus* yang digunakan harus selalu terjaga dengan baik yaitu dengan selalu *update antivirus* Norton dan menscan virus secara berkala.

E. Rancangan Aplikasi

Dalam perancangan aplikasi, penulis menggunakan simulasi menggunakan VMware, tanpa merubah topologi asli dari perusahaan, dengan menginstall *Router*OSMikrotik, dua Windows XP dan satu Windows 7 sebagai PC User.

LXJ System	L J 1996	l J routerboard
[] dhen	f] kuw	[] securitu
[] advanced-tools	[]] led	[] une
[] calea	[] muls	[] user-manager
[] ms	[] multicast	[] wireless
[] hotspot	[] ntp	

Sumber: Penelitian tahun 2022

Gambar 3. Proses Instalasi RouterOSMikrotik(1)

2. Memilih paket *service* yang disediakan mikrotik, tekan tombol (a) pada *keyboard* untuk memilih semua paket, tekan (m) untuk pilihan

Helcome to MikroTik Router Software installation								
Select all with 'a', mi cancel and reboot.	nimum with 'm'. Press	'i' to install locally or 'q' to						
[X] system [X] ppp [X] dhcp [X] advanced-tools [X] calea [X] gps [X] hotspot	[X] ipu6 [X] isdn [X] kum [X] Led [X] mp1s [X] multicast [X] ntp	(X) routerboard (X) routing (X) security (X) ups (X) ups (X) user-sanager (X) user-sanager (X) wireless						

Sumber: Penelitian tahun 2022

Gambar 4. Proses Instalasi RouterOSMikrotik(2)

3. Tekan (y) untuk melanjutkan format disk, dan menunggu proses selesai.

Sumber: Penelitian tahun 2022

Gambar 5. Proses Instalasi RouterOSMikrotik(3)

4. Jika sudah selesai maka masuk kedalam tampilan login. ketik admin, dan *password* dikosongkan.

MikroTik	5.20	
MikroTik	Login:	admin
Password		

Sumber: Penelitian tahun 2022

Gambar 6. Proses Instalasi RouterOSMikrotik(4)

5. Tekan enter untuk melanjutkan.

Sumber: Penelitian tahun 2022

Gambar 7. Proses Instalasi RouterOSMikrotik(5)

 Mengatur koneksi jaringan dengan penambahan dengan penambahan mikrotik *remote router* menggunakan aplikasi winbox. Tampilan awal aplikasi winbox. Ketik dan masukkan pada menu login: admin dan *password* : (dikosongkan)

Login	Login: admin				
Password:			Save		
	Secure Mode	Secure Mode			
	Load Previou	Load Previous Session			
Note:	MikroTik				
Address 🗠	User	Note			

7. Tampilan untuk setting penggantian nama *interface ether1 ether2* menjadi *Public* dan *Local* dan setting ip pada setiap *interface*.

Gambar 9. Setting Ganti Nama Interface dan Setting IP

8. Untuk setting ip *firewall* nat, setting ip dns, setting ip route gateway, dimana ip *route gateway* ini adalah ip nat pada VMnet8 pada VMware, dan tes ping ke ip *route gateway* tersebut, hasilnya (REPLY).

dan i nen 1 krol	ik] > ip firewall nat add chain=srcnat out-interface=Public action=
asquerade	
adminOMikraT	ik1) in dns set allow-remote-requests=wes servers=101 128 23 232
adminON ikmo T	iki) in moute and extensu=101 120 72 227
dan i nen i krui	iki > ip ruute daa gateudy-iui.izo.rs.zsr
adminOMikroT	ik] > ping 101.128.73.237
OST	SIZE TTL TIME STATUS
84 420 72 22	
01.120.73.23	JO 120 JAS
01.128.73.23	56 128 Ins
01.128.73.23	7 56 128 Øns
cont-2 no	neived-2 macket-loco-84 min-mtt-8mc aug-mtt-3mc may-mtt-9mc
SCHU-3 FE	cervea-3 packet-tuss-0% win-rtt-ons avg-rtt-3ms max-rtt-3ms
and a second	
adninefikrof	IKI > _
Safe Mode	
Interfaces	Frend C ×
Wreless	Fiter Rules NAT Mangle Service Ports Connections Address Lists Layer/7 Protocols
PPP	Advance Over Outles On Meset Al Counters Find all
Mesh	0 mil masquerade eronat Public 5.2 KB 46
IP P	DNS Settings
MPLS P	Servers: 101.128.73.237 © OK
Routing P	Cancel
System P	Max UDP Parket Size: 4095
Files	Cache Size: 2048 KiB Contra
Log	Route List
Radius	Routes Nexthops Rules VRF
New Terminal	◆ < 2 Z ▼ Find at ▼
ISDN Channels	Dat. Address / Gateway V
KVM	DAC 101.128.73.0/ Public reachable
Make Supout If	UNG P 102.166.28.0/ Local resonable
Ext	
<u>ě</u>	
8	• •

Gambar 10. Tampilan Setting IP Firewall Nat, IP DNS, Dan IP Route

Su

Sumber: Penelitian tahun 2022 Gambar 11. Tampilan Ip VMnet8

9. Selanjutnya ping ke koneksi tersebut, dan ping juga ke koneksi google.com. jika koneksi berhasil. Maka sudah dapat terhubung ke *internet*.

<pre>[admin@MikroTik] > ping 101.128.73.2</pre>	37
HOST	SIZE TTL TIME STATUS
101.128.73.237	56 128 9ms
101.128.73.237	56 128 1ms
101.128.73.237	56 128 Ons
<pre>sent=3 received=3 packet-loss=0;</pre>	: min-rtt=0ms avg-rtt=3ms max-rtt=9ms
<pre>[admin@MikroTik] > ping google.com</pre>	
HOST	SIZE TTL TIME STATUS
74.125.68.100	56 128 49ms
74.125.68.100	56 128 182ms
74.125.68.100	56 128 175ms
<pre>sent=3 received=3 packet-loss=0;</pre>	min-rtt=49ms aug-rtt=135ms max-rtt=182m
[admin@MikroTik] >	

Sumber: Penelitian tahun 2022

Gambar 12. Tampilan PING REPLY

F. Manajemen Jaringan

Berdasarkan ketentuan yang telah ditetapkan dari kebijakan, penulis menerapkan manajemen *bandwidth* dengan hasil, sebagai berikut:

Tabel 1. Pembagian Up dan Down *Bandwidth* Usulan

Osulali								
Nama	IP Address	UP	Down					
Perangkat		Bandwidth	Bandwidth					
User								
PC Server	PC Server 192.168.28.11		256k					
Laptop IT 1	192.168.28.12	384k	384k					
PC PGA 1	192.168.28.21	384k	384k					
PC PGA 2	192.168.28.22	256k	256k					
PC PGA 3	192.168.28.23	128k	128k					
PC CS 1	192.168.28.31	384k	384k					
PC CS 2	192.168.28.32	128k	128k					
PC CS 3	192.168.28.33	128k	128k					
PC CS 4	192.168.28.34	128k	128k					
PC FA 1	192.168.28.41	384k	384k					
PC FA 2	192.168.28.42	256k	256k					
PC FA 3	192.168.28.43	128k	128k					
PC FA 4	192.168.28.44	128k	128k					
PC FA 5	192.168.28.45	128k	128k					
PC SEK 1	192.168.28.51	128k	128k					
PC AM 1	192.168.28.52	512k	512k					
PC ENG 1	192.168.28.61	384k	384k					
PC ENG 2	192.168.28.62	128k	128k					
PC ENG 3	192.168.28.63	128k	128k					

PC HK 1	192.168.28.71	384k	384k
PC SEC 1	192.168.28.72	128k	128k
PC G1	192.168.28.73	128k	128k

Sumber: Penelitian tahun 2022

Dari hasil tabel diatas, disimpulkan terdapat 22 perangkat komputer yang di manajemen *bandwidth*, untuk *upload* dan *download* AM yakni 512kbps sedangkan untuk 384kbps terdapat 6 komputer, dimana komputer ini digunakan oleh CHIEF per Divisi dan menggunakan akses *internet* lebih besar dari yang lain.

G. Pengujian Jaringan

Pengujian jaringan yang akan penulis lakukan mengenai permasalahan yang terjadi yakni memanajemen *bandwidth* dan pengamanan *website* (blokir *website*) dari pengujian jaringan awal sampai pengujian jaringan akhir.

1. Pengujian Jaringan Awal

a. Pengujian Bandwidth

Pengujian jaringan awal yang berada pada Apartemen Mediterania Boulevard Residences berikut hasil yang didapat ketika komputer mendapatkan *bandwidth* yang belum di*manage* (4,18Mbps), yaitu:

Sumber: Penelitian tahun 2022

Gambar 13. Tampilan Bandwidth

b. Pengujian Internet belum diblock

Pengujian membuka koneksi www.detik.com pada Apartemen Mediterania Boulevard Residences berikut hasil yang didapat ketika komputer membuka situs *website* www.detik.com, yaitu:

Sumber: Penelitian tahun 2022

Gambar 14. Tampilan Membuka situs detik.com

2. Pengujian Jaringan Akhir

- a. Pengujian *bandwidth*
 - 1) Pembuatan *Simple queue*, dari pembuatan *Bandiwdth*, yaitu:

Sumber: Penelitian tahun 2022

Gambar 15. Tampilan Membuat *simple queue*(1)

 Pembuatan PC PGA1, dengan IP Address 192.168.28.21 max upload dan max download ialah 384kbps.

Sumber: Penelitian tahun 2022

Gambar 16. Tampilan Membuat *simple queue*(2)

 Untuk bagian advanced, interface dipilih Public, limit upload download diisi dengan 384kbps, dan parent masuk kedalam Parent Bandwidth,

Sumber: Penelitian tahun 2022

Gambar 17. Tampilan Membuat simple queue (3)

 Pembagian *Bandwidth* dari hasil yang telah ditentukan, PC AM1 512kbps, PC PGA1 384kbps, PC G1 128kbps, yaitu:

0					admin@1	92.168.28.1	(MikroTik) - Win	Box v5.20 on x8	6 (x86)		
¢	(4	Safe Mode]								
	Interfa	08									
	Wrees										
	Bidge Queue List					Ξ×					
	PPP Smple Queues Interface Queues Queue Tipes										
	Nesh 🖕 🖉 💥 73 🕎 😂 Read Courtes 🚥 Read Al Courtes					F	ind				
	P	1	1 Name	Tarcet Address Rx Max	Limit Tx Nax Limit	Rx Limit At	Tx Lint At	Rx Avo. Rate	Tx Avo. Rate	Tx	•
	IPv6	1	0 🔒 Bandwidth	51	5M	uninted	unimited			Obps	
	MPLO	. N	1 🔮 PC AM 1	192.168.28.52 512k	512k	512k	512k			Obps	
			2 🔮 PC PGA 1	192.168.28.21 384k	384k	38 4 k	384k			Obps	
	Routi	g í	3 🔮 PCG 1	192.168.28.73 128k	128k	128k	129k			Obps	
	Syste	1									
	Queu	5									

Sumber: Penelitian tahun 2022

Gambar 18. Tampilan hasil *simple queue*

5) Hasil dari keterangan PC AM1, *max* 512kbps dengan rata-rata, yaitu:

Gambar 19. Tampilan Traffic PC AM1

6) Hasil dari keterangan PC PGA1, max 384kbps dengan rata-rata, yaitu:

Sumber: Penelitian tahun 2022

Gambar 20. Tampilan Traffic PC PGA1

7) Hasil dari keterangan PC G1, max 128kbps dengan rata-rata, yaitu:

Sumber: Penelitian tahun 2022 Gambar 21. Tampilan Traffic PC G1

- b. Pengujian Internet Setelah Diblock
 - 1) Membuka menu *address list* dengan membuat *name* (blokir_situs) dan *address* yang dituju (192.168.28.73) untuk menentukan *address* yang akan digunakan, yaitu:

					[
Filter Rules NAT Mangle Se	rvice Ports Co	nnections	Address Lists	Layer7 Protocols		
+ - 🗸 🛏 🏹	,			Find	all	Ŧ
Name 🗸 Address						
Firewall Address List <blokir_situs< td=""><td>> • ×</td><td></td><td></td><td></td><td></td><td></td></blokir_situs<>	> • ×					
Name: blokir_situs ∓	ОК					
Address: 192.168.28.73	Cancel					
	Apply					
	Disable					
	Comment					
	Сору					
	Remove					
enabled						
3 items (1 selected)						

Sumber: Penelitian tahun 2022

Gambar 22. Tampilan menambahkan address list

 Berikut adalah hasil dari *address* yang dituju dan pemberian nama yaitu blokir_situs (192.168.28.73 dan 192.168.28.21) sedangkan blokir_ situs2 yaitu (192.168.28.73).

Firewall					X
Filter Rules NAT Mangle Service Po	rts Connections	Address Lists	Layer7 Protocols		
+ - * X 🗅 🍸			Find	al	Ŧ
Name / Address					v
blokir_situs 192.168.28.21					
blokir_situs2 192.168.28.73					

Sumber: Penelitian tahun 2022

Gambar 23. Tampilan hasil address list

3) Pada menu *Firewall Rule* dalam sub general, pilih *chain forward*.

Firewall Rule 🗢	
General Advanced Extra Action Statistics	ОК
Chain: forward	Cancel
Src. Address:	Apply
Dst. Address:	Disable
Protocol:	Comment
Src. Port:	Сору
Dst. Port:	Remove
Any. Port:	Reset Counters
P2P:	Reset All Counters

Sumber: Penelitian tahun 2022

Gambar 24. Tampilan general firewall rule

 Pada menu Firewall Rule dalam sub advanced, Src. Addres List blokir_situs, dan content isikan dengan facebook.com, memilih bahwa facebook.com telah diatur untuk di block.

Firewall Rule ⇔	
General Advanced Extra Action Statistics	ОК
Src. Address List: 🖾 blokir_situs	Cancel
Dst. Address List:	Apply
Layer7 Protocol:	▼ Disable
Content: Facebook.com	Comment
Constanting Datasa	Сору
Connection Bytes:	Remove
Connection Rate:	•
Per Connection Classifier:	Reset Counters
Src. MAC Address:	Reset All Counters

Sumber: Penelitian tahun 2022

Gambar 25. Tampilan advanced firewall rule

	1 2 1
Firewall Rule 🗢	
General Advanced Extra Action Statistics	ОК
Action: drop	₹ Cancel
	Apply
	Disable
	Comment
	Сору
	Remove
	Reset Counters
	Reset All Counters

5) Pada menu *sub action* pilih dengan *drop*.

Sumber: Penelitian Pribadi tahun (2016) Gambar 26. Tampilan action firewall rule

6) Berikut adalah tampilan menu daftar *website* yang di*block*, sebagai berikut:

Frenal													ΞX
Riter Rule	s NAT	Mangle	Service Ports	Connections	Address Lis	ts Layer7	Protocols						
•	1	6	🍸 🗆 Re	set Counters	oo Reset /	I Courters					Fil	d al	Ŧ
ţ	Action	Chain	Src. Addre	ss Dst. Addre	ss Proto	Src. Port	Dat. Port	h. hter	Out. Int	Content	Bytes	Packets	Ţ
0	Xdrop	forward								facebook.com	3380 B	20	
1	Xdrop	forward								bvitter.com	0 B	0	
2	Xdroo	forward								detik.com	12.2 KiB	53	

Sumber: Penelitian tahun 2022

Gambar 27. Tampilan filter firewall rule

7) Tampilan akses ke <u>www.detik.com</u>, ketika ingin diakses *website* tersebut sudah di*block*.

Convertients

Sumber: Penelitian tahun 2022 Gambar 28. Tampilan ketika akses website <u>www.detik.com</u>

V. PENUTUP

Berdasarkan hasil dari penelitian yang telah dilakukan dan dikemukakan adapun beberapa saran yang dapat penulis berikan adalah sebagai berikut

- 1. Pada saat terjadinya penambahan karyawan dengan kapasitas lebih banyak dari sebelumnya diharapkan dapat mempergunakan internet dengan *bandwidth* lebih terstruktur. maka perlunya untuk menambahkan kapasitas *bandwidth* dari ISP (Internet Service Provider).
- 2. Manajemen *bandwidth* yang diterapkan pada jaringan yang berskala besar sebaiknya menggunakan metode *Queue Tree* dan menggunakan *router* yang mempunyai spesifikasi tinggi agar tetap dapat memberikan *resource* terhadap implementasi manajemen *bandwidth*.
- 3. Untuk melakukan pemblokiran terhadap situssitus *negative* dan situs-situs media sosial selain menggunakan fitur *filtering layer 7 protocols* yang terdapat pada *router* mikrotik dapat menggunakan *web proxy* yang terdapat pada *router* mikrotik.

DAFTAR PUSTAKA

Agung, S., & Harafani, H. (2022). Implementasi Managemen Bandwith Mengunakan Metode *Simple queue* Pada Pt Bpr Depo Mitra Mandiri. *JISN (Jurnal Informatika Software* Dan Network), 03(01), 2-5.

- Dicky Zulkifli, & Yunita, Y. (2022). Implementasi Manajemen *Bandwidth* Dan Blokir Website Dengan Address List Name Di Mikrotik Pada CV Berkah Sumber Mas. *SATIN - Sains Dan Teknologi Informasi*, 8(2). https://doi.org/10.33372/stn.v8i2.813
- Fauzi, A., & Maulana, A. (2019). Administrasi Jaringan Komputer. Graha Ilmu.
- Komputer, W. (2012). Top Tips Dan Trik Optimalisasi Jaringan Komputer, Kabel Dan Nirkabel (1st ed.). Andi Offset.
- Madcoms. (2015a). *Membangun Sistem Jaringan Komputer Untuk Pemula* (1st ed.). Andi Offset.
- Madcoms. (2015b). Panduan Lengkap: Membangun Sendiri Sistem Jaringan Komputer. Andi Offset.
- Madcoms. (2016). *Manajemen Sistem Jaringan Komputer Dengan Mikrotik RouterOs* (1st ed.). Andi Publisher.
- Musmuharam, & Eko Suharyanto, C. (2020). Implementasi Manajemen Bandwidth Menggunakan Metode Queue Tree Pada Jaringan Internet. Innovation in Research of Informatics (INNOVATICS), 2(2), 69–79.
- Prasetyo, B., Puspitasari, A., & Nasution, R. (2019). Implementasi Manajemen *Bandwidth* Dan *Filtering web* Access Control Menggunakan Metode Address List. *JIKA* (*Jurnal Informatika*), 3(2), 73–82. https://doi.org/10.31000/jika.v3i2.2192
- Sopandi, R., Priyandaru, H., Taufik, A., & Saputra, U. (2023). Implementasi Manajemen Bandwidth Pada SMK Darul Mu'min Pakuhaji dengan Metode Simple queue dan Filtering Content. 14(2).
- Supendar, H., & Siregar, M. H. (2018). Metode Queue Tree Dalam Membangun Manajemen Bandwidth Berbasis Mikrotik. Journal of Information System, Applied, Management, Accounting and Research, 2(2), 29–34.
- Warnillah, A. Ilah, & Simpony, B. K. (2020). Jaringan Komputer; Switch-Router-Cisco. Graha Ilmu.