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ABSTRACT 1 

The auditory system relies on both local and summary representations; acoustic local 2 

features exceeding system constraints are compacted into a set of summary statistics. 3 

Such compression is pivotal for sound-object recognition. Here, we assessed whether 4 

computations subtending local and statistical representations of sounds could be 5 

distinguished at the neural level. A computational auditory model was employed to 6 

extract auditory statistics from natural sound textures (i.e., fire, rain) and to generate 7 

synthetic exemplars where local and statistical properties were controlled. Twenty-four 8 

human participants were passively exposed to auditory streams while the EEG was 9 

recorded. Each stream could consist of short, medium, or long sounds to vary the 10 

amount of acoustic information. Short and long sounds were expected to engage local 11 

or summary statistics representations, respectively. Data revealed a clear dissociation.  12 

Compared to summary-based ones, auditory-evoked responses based on local 13 

information were selectively greater in magnitude in short sounds. Opposite patterns 14 

emerged for longer sounds. Neural oscillations revealed that local features and 15 

summary statistics rely on neural activity occurring at different temporal scales, faster 16 

(beta) or slower (theta-alpha). These dissociations emerged automatically without 17 

explicit engagement in a discrimination task. Overall, this study demonstrates that the 18 

auditory system developed distinct coding mechanisms to discriminate changes in the 19 

acoustic environment based on fine structure and summary representations. 20 

 21 

 22 
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 23 

SIGNIFICANCE STATEMENT 24 

Prior to this study, it was unknown whether we could measure auditory discrimination 25 

based on local temporal features or spectrotemporal statistics properties of sounds from 26 

brain responses. Results show that the two auditory modes of sound discrimination 27 

(local and summary statistics) are automatically attuned to the temporal resolution (high 28 

or low) at which a change has occurred. In line with the temporal resolutions of auditory 29 

statistics, faster or slower neural oscillations (temporal scales) code sound changes 30 

based on local or summary representations. These findings expand our knowledge of 31 

some fundamental mechanisms underlying the function of the auditory system. 32 

 33 

 34 

INTRODUCTION 35 

The human auditory system can discriminate sounds at both high and low temporal 36 

resolutions (McAdams, 1993; Griffiths, 2001). The processing of fine temporal details 37 

relies on extracting and retaining local acoustic features (on the order of a few 38 

milliseconds) to detect transient changes over time (Plomp, 1964; McDermott, 39 

Schemitsch, and Simoncelli, 2013; Dau, Kollmeier, and Kohlrausch, 1997). These 40 

temporal variations characterize different sound objects and help the system discern 41 

among acoustic sources. However, environmental inputs typically comprise long-lasting 42 

sounds in which the number of local features to be retained exceeds the sensory 43 

storage capacity. For this reason, the system may need to condense information into 44 

more compact representations to discriminate sounds over more extended periods 45 
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(McDermott, Schemitsch, and Simoncelli, 2013). As the duration of the entering sounds 46 

increases, summary representations are built upon fine-grained acoustic features to 47 

condense information into a more compact and retainable structure (Yabe et al., 1998). 48 

The processing of summary representations allows abstraction from local acoustic 49 

features and prompt sound categorization (McDermott and Simoncelli, 2011; 50 

McDermott, Schemitsch, and Simoncelli, 2013).  51 

For sounds characterized by a constant repetition of similar events over time (such as 52 

sound textures, e.g., rain, fire, typewriting; Saint-Arnaud and Popat, 1995), this form of 53 

compression consists of a set of auditory statistics comprising averages over time of 54 

acoustic amplitude modulations at different frequencies (McDermott and Simoncelli, 55 

2011; Figure 1A).  56 

Computational approaches in auditory neuroscience allow the mathematical 57 

formalization of this set of auditory statistics (Figure 1A). The basic assumption is 58 

derived from information theories (Barlow, 1961) and suggests that if the brain 59 

represents sensory input with a set of measurements (statistics), any signal containing 60 

values matching those measurements will be perceived as the same. 61 

Psychophysical experiments revealed that stimuli including the same summary statistics 62 

-but different local features- are easy to discriminate when they are short, but that as 63 

duration increases and summary representation takes over, they are progressively more 64 

challenging to tell apart (Berto et al., 2021; McDermott, Schemitsch, and Simoncelli, 65 

2013). On the other hand, when sounds comprise different statistics, their perceived 66 

dissimilarity will increase with duration as their summary representations diverge (Berto 67 

et al., 2021; McDermott, Schemitsch, and Simoncelli, 2013). While some evidence 68 
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exists in the animal model (see Zhai et al., 2020, for results in rabbits), the neural 69 

activity underpinning local features and summary statistics is unknown in humans. 70 

Moreover, previous behavioral studies required participants to attend to stimuli to 71 

perform a task actively. From this evidence alone, it thus remains unanswered whether 72 

discrimination based on local features and their summary statistics can occur despite 73 

the lack of an active task and can therefore occur automatically. 74 

To fill these gaps, we used a validated computational auditory model (McDermott and 75 

Simoncelli, 2011) to extract auditory summary statistics from natural sounds and 76 

generate synthetic sounds that feature this same set of measurements (see Material 77 

and Methods; Figure 1A,B). With this approach, it is possible to impose the same set of 78 

statistics on different white noise samples that initially had different local structures 79 

(Figure 1B,C).  By employing this synthesis approach, we could create sounds that 80 

differ at high temporal resolutions (e.g., local features) but are perceptually 81 

indistinguishable at lower ones (summary statistics) and vice versa (Figure 1C). We 82 

acquired EEG measurements in participants passively exposed to streams composed of 83 

triplets of sounds presented at a fast stimulation rate (2Hz). To ensure generalizability, 84 

sounds were randomly drawn from a large set of synthetic excerpts (see Material and 85 

Methods). Within each triplet, the first sound was repeated twice, while the third one 86 

was novel. Two experiments were designed (Figure 2A). (1) In Local Features, the 87 

novel and repeated sounds differed only in their local structures, as they were 88 

generated by imposing the same auditory statistics on different white noise samples; (2) 89 

in Summary Statistics, the novel sound was generated from the same white noise 90 

sample but differed from the repeated ones as it comprised a different set of auditory 91 
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statistics. As summary statistics are expected to be relevant at increasing sound 92 

duration (McDermott, Schemitsch, and Simoncelli, 2013), sounds including the same 93 

statistics but originating from different input white noises will be easily distinguishable at 94 

short duration but not at long ones (Figure 1D). By contrast, sounds derived from the 95 

same white noise sample but including different summary statistics will have different 96 

statistical values when measured at long durations but more similar values when 97 

measured at short durations (Figure 1D). In fact, at short durations, statistics will be 98 

influenced by their similar temporal structure (see Figure 1F). 99 

Thus, to manipulate the extent of temporal and statistical similarity, we presented 100 

separate sound streams comprising stimuli of different lengths (either 40, 209, or 101 

478ms; Figure 2A). First, we investigated auditory-evoked responses to uncover 102 

magnitude changes in neural activity associated with the two modes of representation. 103 

We predicted that short and long sounds would prompt larger auditory-discriminative 104 

responses for local features and summary statistics, respectively. Specifically, we 105 

hypothesized that since the amount of information (e.g., sound duration) impacts the 106 

statistical similarity of sound excerpts, distinct mechanisms are engaged in the 107 

processing of local features compared to summary statistics emerging over time. That 108 

is, in the case of short sounds, the brain may emphasize transient amplitude 109 

modulations (i.e., broadband envelope changes), while spectrotemporal statistics will 110 

become informative as sound size increases. 111 

In line with this prediction, we expected brief local information to be encoded at a faster 112 

timescale (Panzeri et al., 2010) than summary statistics. That is, we expect the 113 

response pattern of the neuronal populations involved in processing local features to be 114 
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encoded at higher frequency ranges and earlier latencies of neural oscillations 115 

compared with summary statistics. To this end, we investigated neural oscillations and 116 

assessed whether information measured at different temporal scales in the oscillatory 117 

pattern revealed specific fingerprints of discrimination based on local features and 118 

summary statistics. 119 

 120 

MATERIALS AND METHODS 121 

Participants  122 

Twenty-four normal-hearing right-handed young adults (12 of either sex; mean age= 123 

27.13 years, std= 2.83) participated in the experiment. All participants were healthy; 124 

they were fully informed of the scope of the experiment, signed written informed consent 125 

before testing, and received monetary compensation. The study was approved by the 126 

regional ethical committee, and the protocol adhered to the guidelines of the Declaration 127 

of Helsinki (2013). 128 

 129 

Sample size estimation 130 

This sample size was estimated via simulations. We used the procedure described in 131 

Wang and Zhang (2021) and simulated a dataset with two conditions (Local Features 132 

and Summary Statistics) of Auditory Evoked Potentials data. First, we selected three 133 

electrodes of interest at central locations (E7, E65, E54). For the simulation, we chose a 134 

time window between 0.1 and 0.3s based on previous MMN studies (see Näätänen et 135 

al., 2007 for review). The amplitude values at the electrodes of interest for the two 136 

conditions were sampled from a bivariate normal distribution (within-subject design) 137 
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where mean and standard deviation were chosen based on results of four pilot datasets 138 

(mean Local Features= 0.16; mean Summary Statistics= 0.56; std Local Features= 139 

0.52; std Summary Statistics= 0.54).  140 

We then ran a cluster-based permutation on simulated datasets to test whether any 141 

statistical cluster (t-values) exhibited a significant difference between the two conditions 142 

with an alpha level of 0.05. The procedure started with a sample size of 10 and 143 

increased in steps of one until it reached a power of 0.80. We ran 1000 simulations for 144 

each sample size and calculated the power as the proportion of the number of times 145 

significant clusters were found in these 1000 simulations. The simulation results showed 146 

that to obtain power above 0.8, a sample size of N= 24 was required. 147 

The algorithm to perform such analyses can be downloaded from this link: 148 

https://osf.io/rmqhc/ 149 

 150 

Stimuli 151 

Synthetic sounds were generated using a previously validated computational auditory 152 

model of the periphery. The auditory model and synthesis toolbox are available at: 153 

http://mcdermottlab.mit.edu/downloads.html.  154 

This auditory model emulates basic computations occurring in the cochlea and midbrain 155 

(McDermott and Simoncelli, 2011). 156 

The signal (7s original recording of a sound texture, N=54; see Extended Data Table 1-157 

2) was decomposed into 32 cochlear subbands using a set of gammatone filter banks 158 

with different central frequencies spaced on an ERB scale. Absolute values of the 159 

Hilbert transform for each subband were computed to extract the envelope modulation 160 
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of each cochlear channel over time. Envelopes were then compressed to account for 161 

the nonlinear transformations performed by the cochlea. The first set of statistics was 162 

measured from the transformed envelopes: mean, skewness, variance, autocorrelation 163 

(within each cochlear channel), and cross-correlation (between channels). Additional 164 

filtering was applied to the envelopes to account for the modulatory response of the 165 

spectrotemporal receptive fields of neurons in the midbrain (Bacon and Wesley 166 

Grantham, 1989; Dau et al., 1997). Three additional statistics resulting from these 167 

operations could be derived: modulation power, C1, and C2 (respectively, the 168 

correlation between different envelopes filtered through the same modulation filter and 169 

the correlation between the same envelopes filtered by other modulation filters; Figure 170 

1A). The resulting set of statistics extracted from the original recording of sound textures 171 

was imposed on four 5s white noise samples (Figure 1A, B, C). This allowed the 172 

generation of four different sound exemplars for each sound texture, which varied 173 

selectively in their local features but included similar long-term summary 174 

representations (Figure 1C). All synthetic exemplars featuring the same auditory 175 

statistics were perceptually very similar to the original sound texture from which they 176 

were derived, even when their input sounds (white noise) varied (Figure 1C-E). 177 

Synthetic sounds with the same imposed auditory statistics represent different 178 

exemplars of the same sound texture with the same summary statistics but a different 179 

fine-grained structure. This is because, in the synthesis procedure, the imposed 180 

statistics are combined with the fine structure of the original white noise sample (Figure 181 

1B).  182 
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Importantly, to create experimental stimuli, all four 5s synthetic exemplars were cut from 183 

the beginning to the end into excerpts of different lengths, either short (40ms), medium 184 

(209ms) or long (478ms). These lengths were chosen based on results in previous 185 

behavioral investigations (Berto et al., 2021; McDermott, Schemitsch, and Simoncelli, 186 

2013). Excerpts were equalized to the same root mean square amplitude (RMS= 0.1) 187 

and had a sampling rate of 20kHz. A 20ms ramp  (half-hann window) was applied to 188 

each excerpt, 10ms at the beginning and 10ms at the end, to avoid edge artifacts 189 

(McDermott, Schemitsch, and Simoncelli, 2013). The stimuli used here were validated 190 

in a previous study (Berto et al., 2021) in which we replicated the original finding 191 

(McDermott, Schemitsch, and Simoncelli, 2013). The experimental stimuli presented for 192 

each run were randomly drawn from all available excerpts according to the experiment 193 

requests (see below). 194 

 195 

Procedure 196 

Participants were tested in a sound-isolation booth. After reading instructions on a 197 

monitor, they listened to the sounds in the absence of retinal input (participants were 198 

blindfolded to prevent visual input).  199 

For each run of the experimental session, a sound sequence lasting 108s was 200 

presented. The series contained triplets of sounds (n = 216) presented one after the 201 

other to form an almost continuous sound stream, in which sound onsets occurred 202 

every 500ms (Figure 2A). Within each sequence, all sounds had the same duration 203 

(either 40, 209, or 478ms).  204 
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Two experiments were implemented: (1) In Local Features, two different 5s synthetic 205 

exemplars of the same sound texture were selected (out of the four we had created); 206 

the combination of selected pair of exemplars vary randomly across triplets (e.g., first 207 

and second; second and fourth, and so on). These two exemplars were cut into brief 208 

excerpts of either 40, 209, or 478ms. According to the selected duration (which was 209 

different for each sequence), two excerpts  (one for each exemplar) were chosen from 210 

among the available ones. The two excerpts had the same starting point (in seconds) 211 

from the onset of the 5s exemplar. The first sound excerpt was repeated twice, and 212 

afterward, the other was presented as the third element in the triplet.  213 

Thus, two sounds within a triplet were identical (repeated), while the third one (novel) 214 

comprised different local features but converging summary statistics; in other words, 215 

repeated and novel sounds had the same generative statistics (both could be, e.g., 216 

waterfall) but different acoustic local features (Figure 2A, left panel; Extended Data 217 

Table 1-2, column 1). (2) In Summary Statistics, sound textures were coupled according 218 

to their perceived similarity (McDermott, Schemitsch, and Simoncelli, 2013; see 219 

Extended Data Table 1-2, columns 1 and 2). For the textures in column 1, one out of the 220 

four 5s synthetic exemplars was selected and cut into excerpts of the required duration 221 

(40, 209, or 478ms); one of such excerpts was picked randomly. The same was done 222 

for the coupled texture, ensuring that both were derived from the same white noise 223 

sample and that both drawn excerpts had the same starting point in seconds. Thus, we 224 

ensured that the sounds came from the same segment of the original input noise 225 

sample and varied only for their imposed statistics. Again, the first excerpt was repeated 226 

twice, while the other was used as the last sound in the triplet. The novel sound thus 227 
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deviated from the other two (repeated) in its auditory statistics, as it was a segment of 228 

an exemplar of a different sound texture. This means the novel sound was a different 229 

sound object (e.g., the repeated sounds might be waterfall excerpts and the novel one 230 

air conditioner; see Figure 2A, right panel). However, since both originated from the 231 

same segment of the same input white noise sample, their temporal structure (i.e., 232 

broadband envelope) measured at high resolution (that is, in brief excerpts) was 233 

expected to be more similar in Summary Statistics than in the Local Features 234 

experiment. This was indeed the case (see Figure 1F) and would affect the similarity of 235 

statistics measured from short (but not long) sound excerpts (Figure 1D). 236 

To ensure generalizability, the sound textures were different across triplets, so the 237 

statistical similarity between repeated and novel sounds was kept constant within an 238 

experiment while presenting different types of stationary sound objects.  239 

Discriminative responses emerging from the contrast between the novel and repeated 240 

sounds did not depend on specific properties (e.g., a change in frequency between a 241 

particular type of sound category) but only on their local or statistical changes. 242 

In both experiments, the order of the triplets was shuffled for each participant and run. 243 

Moreover, excerpts were selected randomly from among those that shared the required 244 

characteristics, so not only the presentation order but also stimuli per se were always 245 

different across participants. 246 

A total of six conditions were employed: two experiments (Local Features and Summary 247 

Statistics) for three sound durations (40, 209, 478ms). Note that for each sound texture, 248 

we synthesized only four exemplars that we cut into excerpts of different sound 249 

durations (short, medium, or long). This means that within one experiment, the 250 
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presented excerpts belonged to the same pool of synthetic sounds, and only their 251 

duration changed, not their properties. Thus, any dissociation between experiments 252 

(Local Features or Summary Statistics) according to sound duration would indicate that 253 

the processing of either local features or summary statistics strictly depends on the 254 

amount of information presented. 255 

Two sequences/runs per condition (Experiment * Duration) were presented for a total of 256 

twelve runs. The order of runs was randomized across participants, and short breaks 257 

were taken between runs. In a sound stream, excerpts were presented in triplets, with 258 

the repeated one presented twice, followed by the novel one. Keeping the number of 259 

repeated sounds constant allowed to control for the effects that differences in their 260 

number could have on the brain response (e.g., standard formation, the effect by which 261 

the number of repeated stimuli influence the response to the deviant element; see 262 

Sussman and Gumeyuk, 2005); moreover, it allowed to keep the duration of the 263 

streams constant while manipulating the amount of information they encompass (e.g., 264 

the size of each sound excepts). On the other hand, by keeping the novel position fixed 265 

(as the third element of the triplet), we controlled for between-experiment differences in 266 

expectancy effects (e.g., some novel sounds could be more predictable than others at 267 

specific durations or based on their intrinsic properties) and, more importantly, we 268 

ensured that the novel sound varied from the repeated ones only for its generative 269 

statistics (same in Local Features and different in Summary Statistics) and original fine 270 

structure (different in Local Features and same in Summary Statistics).  271 
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Since the interstimulus gap always depended on sound duration (sound onset was kept 272 

constant at every 500ms), comparisons were assessed between experiments and within 273 

the duration.  274 

Participants had to listen to the sound stream but were asked to perform an orthogonal 275 

task consisting of pressing a button when a beep sound was heard. The beep was a 276 

pure tone higher in pitch and intensity than the sound-texture stream. The pure tone 277 

was 50ms in length, had a frequency of 2200Hz, an amplitude of 50dB, a sampling rate 278 

of 20kHz, and an RMS of 5. The beeps randomly occurred during the stimulation period. 279 

The number of beeps varied randomly across runs from 0 to 3. Detection was 280 

considered valid when the participant pressed the key within an arbitrary window of 3s 281 

from beep occurrence.  282 

 283 

Similarity of summary statistics as a function of sound duration 284 

In order to assess the impact of sound duration on the statistical similarity between pairs 285 

of excerpts, we extracted statistical values from all the pairs of excerpts (repeated and 286 

novel) presented in the experiment to all participants and in all runs (n= 20736; note that 287 

stimuli would appear more than once, as we adhered to the exact sound sequences 288 

presented to participants). That is, for each synthetic excerpt pair, we extracted the set 289 

of summary statistics (envelope mean, skewness, variance, and cross-band correlation; 290 

modulation power, C1, and C2) through the auditory texture model (Figure 1A; 291 

McDermott and Simoncelli, 2011). To assess similarity between summary statistic of 292 

repeated and novel sounds, we used a similar procedure to the one employed during 293 

sound synthesis to evaluates the quality of the output. This procedure consists of 294 
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computing the signal-to-noise ratio (SNR) between statistic classes measured from the 295 

synthetic signal and the original sound texture (McDermott and Simoncelli, 2011). 296 

Firstly, we computed the total squared error 𝜀 of statistics measured from repeated 297 

sounds and the corresponding novel sound at each cochlear channel 𝑘  (n=32) as 298 

follow:   299 𝜀 =  (𝑆𝑡𝑎𝑡𝑅𝑒𝑝 − 𝑆𝑡𝑎𝑡𝑁𝑜𝑣)   ,   𝑘 ∈ [1,2,3 … , 32] 
where 𝑆𝑡𝑎𝑡𝑅𝑒𝑝 is a statistic class (i.e., envelope mean, variance, or modulation power) 300 

measured from a repeated sound excerpt and 𝑆𝑡𝑎𝑡𝑁𝑜𝑣 is the same statistic class  301 

measured from the corresponding novel sound in the triplet. Note that for statistic 302 

classes that had more than the one dimension 𝑘 (i.e., modulation  power and 303 

correlations) the values across other dimensions (i.e., modulation bands) were summed 304 

prior to compute the error, as in McDermott and Simoncelli (2011). 305 

Secondly, we calculated the SNR for each statistic class by dividing the sum of the 306 

squared statistic values measured from the repeated sound by the squared error 307 

between repeated and novel sounds as follow:   308 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔 ( ∑ 𝑆𝑡𝑎𝑡𝑅𝑒𝑝(𝑘)∑ 𝜀(𝑘) ), 𝑘 ∈ [1,2,3 … , 32] 
We computed one SNR for each statistic class (n=7) and then average their values to 309 

have one average SNR for each excerpt pair presented in each experiment and 310 

duration. Average SNRs are displayed in Figure 1D.  311 

We then compared whether the average SNRs of sound excerpts were significantly 312 

different between experiment and within duration by performing non-parametric tests 313 

(Wilcoxon rank sum test). The results showed a clear dissociation according to sound 314 
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duration. When sounds were short (40ms), the average SNR of statistics between 315 

repeated and novel sounds was higher in the Summary Statistics experiment (p < 316 

0.001, mean=9.94; std=2.4) than in the Local Features one (mean= 8.34; std= 1.24). 317 

Namely, when sounds were short, statistical values were influenced by the white noise 318 

sample, thus sounds originated from the same seed had more similar values compared 319 

to when they originated from a different one, disregarding the generative statistics that 320 

were imposed. Thus, we expected larger neural discriminatory responses in Local 321 

Features experiment compared to the Summary Statistics one.    322 

Conversely, at long duration (478ms), the average statistic SNR between repeated and 323 

novel sounds was more dissimilar in the Summary Statistics experiment (p < 0.001, 324 

mean= 6.73; std= 2.10) than in Local Features one (mean=9.31; std=1.23). At 325 

increasing sound duration, summary statistics were no longer influenced by the 326 

temporal structure of the original white noise sample as they converged to their original 327 

values.  Based on this observation, we expected greater neural activation in response to 328 

Summary Statistics change compared to Local Features when sounds were long. The 329 

same pattern was observed for medium sound duration (209ms; p<0.001, mean 330 

Summary Statistics= 8.00; std= 2.21; mean Local Features=9.19; std=1.30), although 331 

there was a clear trend of decreasing average SNR with increasing sound duration in 332 

the Summary Statistics experiment (see Figure 1D).  333 

Overall, this analysis showed that the statistical similarity measured from the presented 334 

sounds well predicted the brain response observed in the EEG. 335 

 336 

Similarity of temporal amplitude modulation in brief excerpts 337 
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The previous analysis showed higher statistical similarity measured at high (but not low) 338 

temporal resolutions from the excerpt pairs presented in the Summary Statistics 339 

experiment. To test the hypothesis that this effect depended on the original temporal 340 

structure of white noise samples (which will be more similar in the Summary Statistics 341 

experiment compared to the Local Features one), we conducted a similar correlation 342 

analysis for brief excerpts, but this time using as dependent variables the excerpts 343 

broadband amplitude modulations and disregarding their spectral density. Specifically, 344 

for every sound pair presented across participants, we used the auditory texture model 345 

(Figure 1A; McDermott and Simoncelli, 2011) to compute the cochleograms of all the 346 

40ms excerpts presented in the study (n= 6912) and averaged them across frequency 347 

bands to extract their broadband envelopes. We then computed Pearson's correlations 348 

between the envelopes of each excerpt pair (repeated and novel) to estimate their linear 349 

relationship (Figure 1F). The correlation coefficients (r) were transformed into Fisher-z 350 

scores for statistical comparison by t-tests. The results showed that the amplitude 351 

modulations over time between excerpt pairs were more correlated in the Summary 352 

Statistics experiment (mean = 2.35, std = 0.71) than in the Local Features experiment 353 

(mean = 1.63, std = 0.51, p-value <0.001). This result confirmed that regardless of their 354 

spectral density, the repeated and novel sounds in the Summary Statistics experiment 355 

shared more comparable temporal amplitude modulations than those in the Local 356 

Features experiment. 357 

 358 

EEG recording  359 
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Electroencephalography (EEG) was recorded from an EGI HydroCel Geodesic Sensor 360 

Net with 65 EEG channels and a Net Amps 400 amplifier (Electrical Geodesics, Inc., 361 

EGI, USA).  The acquisition was obtained via EGI’s Net Station 5 software (Electrical 362 

Geodesics, Inc., EGI, USA). Central electrode E65 (Cz) was used as a reference. Four 363 

electrodes were located above the eyes and on the cheeks to capture eye movements. 364 

Electrode impedances were kept below 30 kΩ. The continuous EEG signal was 365 

recorded throughout the session with a sampling rate of 500Hz.  366 

Experiment sounds were played from a stereo speaker (Bose Corporation, USA) 367 

positioned in front of the participant and at a 1m distance from the eyes; the sound level 368 

was kept constant across participants and runs (70dB). The experiment ran on MATLAB 369 

(R2018b; Natick, Massachusetts: The MathWorks Inc.); written instructions were 370 

displayed only at the beginning of the experimental session, via Psychtoolbox version 3 371 

(Brainard and Vision, 1997; PTB-3; http://psychtoolbox.org/).  372 

 373 

 374 

EEG Data Analysis 375 

Preprocessing  376 

Data were preprocessed with a semi-automatic pipeline implemented in MATLAB (see 377 

Stropahl et al., 2018; Bottari et al., 2020). Preprocessing was performed using EEGLAB 378 

(Delorme and Makeig 2004; https://sccn.ucsd.edu/eeglab/index.php). Data were loaded, 379 

excluding electrode E65 (Cz), which was the reference channel of our EEG setup (thus 380 

consisting only of zero values). 381 



 

 19

A high-pass filter (windowed sinc FIR filter, cut-off frequency 0.1 Hz, and filter order 382 

10000) was applied to the continuous signal to remove slow drifts and DC offset.  383 

A first segmentation in time was performed by epoching the signal according to the 384 

event onset. To avoid boundary artifacts, the signal was cut 2s before its onset event 385 

and until 2s after the end of the presentation (thus, from -2 to +114s) for each run. For 386 

each participant, epochs were merged in a single file containing only the parts of the 387 

signal referring to significant stimulation (thus excluding breaks between trials).  388 

Independent Component Analysis (ICA; Bell and Sejnowski, 1995; Jung et al., 2000a,b) 389 

was used to identify stereotypical artifacts. To improve ICA decomposition and reduce 390 

computational time, data were low-pass filtered (windowed sinc FIR filter, cut-off 391 

frequency 40Hz, filter order 50), downsampled to 250Hz, high-pass filtered (windowed 392 

sinc FIR filter, cut-off frequency 1Hz, filter order 500), and segmented into consecutive 393 

dummy epochs of 1s to spot non-stereotypical artifacts. Epochs with joint probability 394 

larger than three standard deviations were rejected (Bottari et al., 2020). PCA rank 395 

reduction was not applied before ICA to avoid compromising its quality and 396 

effectiveness (Artoni, Delorme, and Makeig, 2018).  397 

For each subject, ICA weights were computed using the EEGLAB runica algorithm and 398 

then assigned to the corresponding original raw (unfiltered) dataset. Topographies for 399 

each component were plotted for visual inspection. Artifacts associated with eye 400 

movements and blinks were expected, and so a CORRMAP algorithm (Viola et al., 401 

2009) was used to remove components associated with such artifacts semi-402 

automatically. The automatic classification of components was performed using the 403 

EEGLAB plugin ICLabel (Pion-Tonachini, Kreutz-Delgrado, & Makeig, 2019). 404 
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Components representing eye movements and blinks were identified from their 405 

topographical map within the components ICLabel marked as ‘Eye’ with a percentage 406 

above 95%. Among these components, those with the highest rankings were selected 407 

from a single dataset and used as templates (one for eye movements and one for 408 

blinks). CORRMAP algorithm clusters ICA components with similar topography across 409 

all datasets to highlight the similarity between the IC template and all the other ICs. A 410 

correlation of the ICA inverse weights was computed, and similarity was allocated with a 411 

threshold criterion of correlation coefficient being equal to or greater than 0.8 (default 412 

value of CORRMAP; Viola et al., 2009). For all participants, on average, 1.92 413 

components were removed (std= 0.88; range= 0-4).  414 

Bad channels were interpolated after visually inspecting the scroll of the entire signal 415 

and power spectral density for each electrode. On average, 3.75 (range= 1-8; std= 2.21) 416 

channels were interpolated. The interpolation of noisy channels was performed via 417 

spherical interpolation implemented in EEGLAB.  418 

Finally, the reference channel (Cz) was reintroduced in the EEG data of each 419 

participant, and the datasets were re-referenced to the average across all channels. 420 

 421 

Time domain analysis 422 

This analysis was performed to extract auditory evoked potentials and uncover phase-423 

locked magnitude changes associated with the two modes of sound representation 424 

(Local Features or Summary Statistics).  425 

Pre-processed data were low-pass filtered (windowed sinc FIR filter, cut-off frequency= 426 

40Hz, filter order= 50). Additionally, detrend was applied by filtering the data above 427 
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0.5Hz (windowed sinc FIR filter, cut-off frequency= 0.5Hz, filter order= 2000). 428 

Consecutive epochs (from -0.1 to 0.5s) were generated, including segments of either 429 

the novel sounds or the repeated one (the second) of the triplets for each participant 430 

and condition. Data were baseline corrected using the −0.1 to 0s pre-stimulus period. 431 

Specifically, we averaged all the time points from -100 to 0ms before the onset of each 432 

stimulus (either novel or repeated) and subtracted that value from post-stimulus activity 433 

(Luck, 2014).  Joint probability was used to prune non-stereotypical artifacts (i.e., 434 

sudden increment of muscular activation); the rejection threshold was four standard 435 

deviations (Stropahl et al., 2018). For novel sounds, on average, 16.58 epochs per 436 

participant were removed (std=5.42; range 5-30) out of the 144 concatenated epochs 437 

that each Experiment * Duration comprised; for repeated sounds, on average, 16.15 438 

epochs were removed (std= 5.11; range 5-29), again out of 144 trials per condition.  439 

Data was converted from EEGLAB to FieldTrip (Oostenveld, Fries, Maris, and 440 

Schoffelen, 2011; http://fieldtriptoolbox.org). Grand averages across participants were 441 

computed for each experiment, duration, and stimulus type (repeated or novel). Data 442 

across trials were averaged, generating Auditory Evoked Potentials (Figure 2-1 in 443 

Extended Data).  444 

For each triplet, we subtracted from the evoked response to the novel sound the one to 445 

the preceding repeated one. Since all stimuli in the triplets (repeated and novel) were 446 

never the same across runs and participants, the subtraction was performed to ensure 447 

that neural responses were not driven by idiosyncratic differences in the stimuli that 448 

were presented in that specific run, but by the statistical difference between novel and 449 

repeated ones. Moreover, subtracting the response to the repeated sound from the one 450 
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to the novel sound allowed us to isolate within-triplet differences from those between 451 

triplets. That is, since the first sound is repeated twice, the response to the second 452 

repetition is not independent of the brain activity elicited by the first one and likely 453 

incorporates a suppression mechanism to being exposed to the same stimulus twice. In 454 

the same vein, the subtraction metrics represented the relative distance between being 455 

exposed to the same sound as opposed to hearing a new one. Finally, the fact that in 456 

the two experiments, novel and repeated sounds varied for selective properties (either 457 

local features or summary statistics) allowed us to address how a deviation in fine 458 

temporal details or global statistics altered the response to sound change. 459 

A nonparametric permutation test was performed between experiments (Local Features 460 

vs. Summary Statistics) for each duration (short, medium, and long), employing the 461 

subtracted auditory responses between the novel and repeated sounds. The 462 

permutation test was performed under the null hypothesis that probability distributions 463 

across condition-specific averages were identical across experiments.  464 

The cluster-based permutation approach is a nonparametric test that has the advantage 465 

of solving the multiple comparison problem of multidimensional data in which you must 466 

control several variables, such as time, space, frequencies, and experimental conditions 467 

(Maris and Oostenveld, 2007). 468 

Notably, statistical analyses between experiments were performed only within each 469 

duration to avoid possible confounds associated with refractoriness effects due to 470 

different interstimulus intervals (ISI) at long and short durations. 471 
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Thus, the contrasts of interest were: (1) Local Features short vs. Summary Statistics 472 

short; (2) Local Features medium vs. Summary Statistics medium; (3) Local Features 473 

long vs. Summary Statistics long. 474 

A series of cluster-based permutation tests (Maris and Oostenveld, 2007; cluster alpha 475 

threshold of 0.05 (two-tailed, accounting for positive and negative clusters); 10000 476 

permutations; minimum neighboring channels = 2) was performed. Cluster-based 477 

analyses were performed within a pool of central channels (according to EGI system, 478 

channels: E3, E4, E6, E7, E9, E16, E21, E41, E51, E54, E65); we selected the 479 

channels that better characterized the response to the second repeated sound, and 480 

which corresponded to the 11 central sensors we used in the analysis (e.g., see the 481 

topography in Extended Data, Figure 2-1). By pre-selecting this smaller number of 482 

central channels (whose response likely originates from auditory sources), we avoided 483 

including noisy channels in the model. Statistics were run for all samples from 0 to 0.5s. 484 

We expected novel sounds to elicit larger responses than repeated sounds.  485 

 486 

Time-Frequency analysis 487 

Following the differences in magnitude changes observed between experiments for long 488 

and short durations, we performed data decomposition in the time-frequency domain to 489 

test whether sound changes at a high temporal resolution (local features in short 490 

sounds) were encoded at faster timescales compared to those occurring at a low 491 

temporal resolution (summary statistics in long sounds). We investigated frequencies 492 

below 40Hz, which have been associated with auditory processing in studies including 493 

both humans and animals (for review, see Gourevic et al., 2020). Specifically, several 494 



 

 24

studies have marked the relevance of lower (theta, alpha) and higher (beta) frequency 495 

bands concerning auditory feature integration (e.g., VanRullen, 2016; Teng et al., 2018) 496 

and detection of deviant sounds (e.g., Fujioka et al., 2012; Snyder and Large, 2005). 497 

Preprocessed data were low-pass filtered to 100Hz (windowed sinc FIR filter, cut-off 498 

frequency= 100Hz, filter order= 20) to attenuate high frequencies and high-pass filtered 499 

at 0.5Hz (as with time-domain data). Data were epoched into segments from -0.5 to 500 

1sec from stimulus onset: the second repeated or the novel. Joint probability was used 501 

to remove bad segments with a threshold of 4 standard deviations. On average, 11.96 502 

epochs were removed for repeated sounds (range= 4-25; std= 4.28) and 11.58 for novel 503 

ones (range 4-26; std= 4.23). The resulting epoched datasets were converted to 504 

Fieldtrip for time-frequency analysis. We used complex Morlet wavelets to extract the 505 

power spectrum at each frequency of interest and time point. The frequencies spanned 506 

from 4 to 40Hz in steps of 2Hz; the time window for decomposition comprised latencies 507 

from -0.5 to 1s, around stimulus onset (either novel or repeated) in steps of 20ms. 508 

Finally, the length of the wavelets (in cycles) increased linearly from 3 to 6.32 cycles 509 

with increasing frequency (depending on the number of frequencies to estimate; N=19). 510 

The signal was zero-padded at the beginning and end to ensure convolution with the 511 

central part of the window. The resulting power spectrum for each participant was 512 

averaged across trials.  513 

Then, we performed a baseline correction to account for the power scaling (1/f). Unlike 514 

ERP analysis, baseline selection is a more sensible choice in time-frequency. 515 

Therefore, it was crucial to choose a baseline whose position did not affect the results 516 

or over-boosted the effects. By using a stimulus-specific baseline as in the ERPs, for 517 
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the novel sounds, we would be using as baseline the activity from a condition that, at 518 

least in some frequency ranges, is likely suppressed (the last 100ms of the response to 519 

the second repeated sound), while for the second repeated sound, we would be using 520 

as a baseline a segment in which activity is likely enhanced (as the first repeated sound 521 

includes between-triplet changes). Because of the nonlinearity of the baseline (to 522 

account for 1/f distribution), this will affect some frequencies more than others. When 523 

subtracting the power to the second repeated sound from the power measured for the 524 

novel sound, we would not be measuring the real dissimilarity between these 525 

responses, because the baseline correction would be unfair and so the relative power 526 

change. To account for this, we selected the same baseline for both the repeated and 527 

novel sounds, corresponding to the activity from -100 to 0ms before the second 528 

repeated sound. We decided to use a condition-averaged baseline (e.g., Cohen and 529 

Donner, 2013; Cohen and Cavanagh, 2011) to account for differences in the oscillatory 530 

tonic response as compared to the phasic one; since we are presenting a change 531 

always at the same rate, the activity could be phase-locked in time in a similar way 532 

across all the experiments, but the power at specific frequency bands could be higher in 533 

one experiment as compared to the other. If we used a condition-specific baseline, this 534 

effect would be masked because the activity would be corrected for the relative baseline 535 

measured during that stimulation stream.  Therefore, we took the activity from 100ms 536 

prior to the onset of the second repeated sound for each experiment (Local Features or 537 

Summary Statistics) and averaged their power separately for each duration. As a 538 

baseline normalization method, we selected the relative change:  539 

(pow(t)-bsl)/bsl 540 



 

 26

where pow is the total power at each sample (t) within the latencies of interest for 541 

repeated and novel grand-averaged trials, and bsl is the averaged baseline (across 542 

Experiment and time). The grand average of baseline-corrected power spectra of all 543 

participants was computed.  544 

We investigated the neural activity underlying the discrimination of novel and repeated 545 

sounds across experiments for short and long durations. Thus, we first subtracted the 546 

power at repeated trials from that at novel trials and then used cluster-based 547 

permutation (Maris and Oostenveld, 2007) to investigate differences between neural 548 

responses to sound changes across experiments (Local Features vs. Summary 549 

Statistics) at each of the selected durations (short or long), at any latency (0 500ms) 550 

and across all (65) channels (minimum neighboring channels = 1).  Following the 551 

inspection of power change between novel trials and repeated trials, oscillatory activity 552 

above 30Hz was not considered. We used the period of the oscillatory activity as an 553 

index of the temporal scale of the discriminative auditory processing, either slow, 554 

medium or fast. Since we did not have any apriori hypothesis concerning the 555 

contribution specific bands or ranges (e.g., from 9.5 to 16Hz) might have, we divided the 556 

power change into equally spaced frequency bands (each including 8 frequencies of 557 

interest, spaced in steps of 2Hz), creating a slow, medium, and fast oscillation range 558 

between 4 and 30Hz. These frequencies of interest included canonical theta, alpha, and 559 

beta oscillations (theta and alpha: 4-12Hz; low beta: 12-20Hz; high beta: 20-28Hz) but 560 

were unbiased by their canonical subdivision (for which theta would be 4-7Hz, alpha 8-561 

12Hz, beta 13-25Hz and low gamma 25-40Hz). We instead hypothesized that the 562 

temporal scale of oscillation (from slower to higher) would encode the type of change 563 
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that had occurred (local features vs. summary statistics). That is, depending on sound 564 

duration, we expected to detect different power modulations in response to changes in 565 

local features as compared to summary statistics at different timescales (frequency 566 

bands). Cluster permutation was performed separately for each frequency range (10000 567 

permutations). The directionality of the test was based on results in the Auditory Evoked 568 

Responses (see Time-domain results) and on the specific frequency ranges: 569 

specifically, for a short duration, we expected power changes in higher frequencies in 570 

Local Features as compared to Summary Statistics. Conversely, at long duration, we 571 

expected greater power changes in the lower-frequency range in response to sound 572 

discrimination based on Summary Statistics compared with those based on Local 573 

Features. For the short duration, we thus expected: Local Features > Summary 574 

Statistics in the 4-12Hz range and Local Features < Summary Statistics in 12-20Hz and 575 

20-28Hz. The opposite outcome was anticipated for the long duration: Summary 576 

Statistics > Local Features in the alpha-theta range; Summary Statistics < Local 577 

Features for beta bands (given the predefined directions of the effects, cluster alpha 578 

threshold was 0.05, one-tailed). 579 

 580 

RESULTS  581 

Behavioral Results 582 

For each condition, the percentage of correct beep detections was above 90% (Local 583 

Features 40: mean= 0.99, std= 0.03; Local Features 209: mean= 0.99, std= 0.05; Local 584 

Features 478: mean= 1, std= 0; Summary Statistics 40: mean=0.99, std= 0.05; 585 

Summary Statistics 209: mean= 0.97, std=0.08; Summary Statistics 478: mean= 0.97, 586 
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std= 0.11; Figure 1-1A, in Extended Data). We ran a two-way ANOVA for repeated 587 

measures with factors Experiment (2 levels, Local Features vs. Summary Statistics) and 588 

Duration (3 levels, 40, 209, and 478) to address whether experiment type and stimulus 589 

length had any impact on beep detection and participant attention to the task. No 590 

significant main effects were observed (Experiment, F(1,23)= 3.62, p =0.07, n2= 0.14; 591 

Duration, F(2,46)= 0.58, p= 0.56, n2= 0.3) or their interaction (Experiment*Duration, 592 

F(2,46)= 0.45, p= 0.64, n2= 0.2).  593 

These behavioral results provide evidence that participants were attentive and 594 

responsive during sound presentation throughout the experiment and that attention to 595 

this orthogonal task was not influenced by the duration of the sound or experimental 596 

condition.  597 

 598 

Time domain results 599 

By comparing Local Features vs. Summary Statistics separately for each sound 600 

duration, cluster permutation revealed a significant positive cluster, selectively for the 601 

short sound duration 40 (p < 0.02), lasting from 188 to 220ms after stimulus onset. 602 

Following the prediction, results revealed a greater auditory potential of Local Features 603 

compared to Summary Statistics for short duration. No significant positive cluster was 604 

found for the medium (209) and long (478) sound durations (all p > 0.39). Conversely, a 605 

significant negative cluster was found selectively for the long duration 478 (p < 0.001), 606 

lasting from 220 to 308ms after stimulus onset. These results indicate a greater 607 

response for Summary Statistics than Local features at long durations only. No 608 

differences emerged for short and medium sound durations (all ps >0.33).  609 
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Results clearly reveal double dissociations at the neural level based on stimulus length 610 

and mode of representation (Figure 2B,C). Findings support behavioral outcomes for 611 

which the processing of local features is favored for brief sound excerpts, while 612 

summary statistics are built at a slower temporal rate as information is accumulated 613 

(i.e., Berto et al., 2021; McDermott, Schemitsch, and Simoncelli, 2013). Going beyond 614 

past behavioral effects, our results clearly show that local and summary representations 615 

can emerge automatically from exposure to systematic sound changes. The neural 616 

response to an acoustic change depends on the similarity between local features and 617 

summary representations of sound excerpts. Summary statistics similarity can be 618 

manipulated as a function of sound duration, eliciting a dissociation in the magnitude of 619 

brain response that matches behavioral expectations. 620 

 621 

Time-Frequency Results 622 

Since summary statistics emerge over time, we expected statistical variations to be 623 

encoded by slower oscillations than local feature changes. For such encoding, we 624 

expected power modulations at faster oscillations in response to local feature changes 625 

in short sounds and at slower oscillations in response to the emergence of a different 626 

set of summary statistics in long acoustic excerpts. To test this, we separated the power 627 

between 4 and 30Hz into three ranges, equally spaced:  slow, 4-12Hz; medium, 16-628 

20Hz; and fast, 20-28Hz. Then, we used a nonparametric permutation approach to 629 

address whether differences between Local Features and Summary Statistics emerged 630 

according to sound duration (short or long) within the three frequency ranges.  631 



 

 30

Results followed the predicted pattern. For the short sound duration, the analysis 632 

revealed a significant cluster between 100 and 220ms, in which sound change in Local 633 

Features elicited a greater decrease of power in the fastest oscillation range (20-28Hz; 634 

p< 0.05) compared to Summary Statistics (Figure 3A, left panel). This significant effect 635 

was located over left frontocentral and right posterior sensors (see Grand-average 636 

topography in Figure 3A, left). Conversely, for the long sound duration, we found a 637 

greater increase of power in the slow oscillation range for Summary Statistics compared 638 

to Local Features (4-12Hz; p < 0.03); the significant cluster consisted mainly of left 639 

frontocentral channels and bilateral posterior channels and spanned from 260 to 500ms 640 

(Figure 3A, right panel). No differences in power were found between Local Features 641 

and Summary Statistics for any sound duration in the medium frequency range (12-642 

20Hz ranges, at any latency; all ps > 0.24). Overall, results revealed that when sound 643 

duration is short, neural oscillations at higher frequency bands (canonically 644 

corresponding to high-beta band) desynchronize more when the acoustic discrimination 645 

is driven solely by local features; vice-versa when sound duration is long, i.e., higher 646 

low-frequency oscillations (alpha and theta bands) are associated with stimulus 647 

changes based on different summary statistics (Figure 3B).  648 

Overall, these findings show that different temporal scales at the neural level underpin 649 

the discrimination of variant elements in the auditory environment based on the amount 650 

of information available and the type of sound change that has occurred.  651 

Notably, beta desynchronization for Local Features (short duration) peaks 100-150ms 652 

after stimulus onset, while the same effect in the time domain has a peak that builds up 653 

around 200ms. The opposite was found for Summary Statistics (long duration), in which 654 
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theta-alpha synchronization starts about 40ms later than the effect observed in the time 655 

domain and is more sustained over time (i.e., it lasts the entire time window). These 656 

differences are indicative that the two measures capture at least partly different aspects 657 

of sound discrimination.  658 

 659 

DISCUSSION 660 

The auditory system extracts information at high (local) and low (summary) temporal 661 

resolutions. Here, we assessed whether discriminative responses to local or summary 662 

representations could be measured at the neural level and whether they are encoded at 663 

different temporal scales (Panzeri et al., 2010). We employed a computational model 664 

(McDermott and Simoncelli, 2011) to synthetically create stimuli with the same summary 665 

statistics but different local features. We used these synthetic stimuli to present streams 666 

of triplets containing repeated and novel sounds that could vary in their local features or 667 

summary statistics. 668 

Results in the time domain showed that when the sound duration was short, the 669 

magnitude of auditory potentials increased selectively for changes in local features. In 670 

contrast, when the sound duration was long, changes in auditory statistics elicited a 671 

higher response compared with changes in local features (Figure 2B, C). Thus, 672 

according to sound duration, we observed an opposite trend in the magnitude change of 673 

the evoked response.  Note that for each sound texture, we manipulated the duration of 674 

the excerpts, and not their properties (we synthesized only 4 synthetic exemplars per 675 

sound texture, that we cut into smaller excerpts either 40, 209, or 478ms which were 676 

then randomly drawn in the experiments; see Material and Methods above). The 677 
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dissociation observed between experiments according to sound duration is indicative 678 

that the processing of local features or summary statistics is strictly dependent on the 679 

amount of information presented. This trend perfectly matched expectations based on 680 

previous psychophysics evaluations (i.e., Berto et al., 2021; McDermott et al., 2013) 681 

despite the protocol was slightly different from the behavioral implementation. In the 682 

psychophysical version, the two experiments (Local and Summary) were substantially 683 

different from each other. One experiment, called Exemplar Discrimination, was the 684 

equivalent of the Local Features experiment in our protocol and contained two different 685 

sounds (since one was repeated twice). However, the other experiment, named Texture 686 

Discrimination, contained three different sound excerpts (two derived from the same 687 

white noise but with different imposed summary statistics; one derived from a different 688 

white noise with the same statistics). Different task demands justified this disparity. 689 

Specifically, in the behavioral version, participants were given very clear instructions on 690 

which sound properties to pay attention to during each experiment (sound details or 691 

sound source, respectively) and even which sound to use for comparison (the middle 692 

one; McDermott et al., 2013). In this protocol, the sequences had the same structure in 693 

both experiments (two repeated sounds followed by a novel one), while the only 694 

difference was the generative statistics imposed on the novel sound compared to the 695 

repeated one (same in Local and different in Summary) or the white noise sample used 696 

to initialize the synthesis (different in Local and same in Summary). This allowed us to 697 

test for the automaticity of the processes and to measure distinct neural responses 698 

when the system is exposed to a similar or different set of statistics combined with the 699 

same or different local structure. Moreover, it permitted a fair comparison between 700 
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experiments. Nonetheless, results went in the same direction in both the EEG and the 701 

behavioral evaluations, suggesting similar mechanisms are in place despite the lack of 702 

an explicit request to pay attention to specific sound properties.   703 

Finally, analysis in the time-frequency domain revealed that neural activity at different 704 

temporal scales characterized discriminative responses to local features or summary 705 

statistics. Faster oscillations (in the beta range) were associated with discrimination 706 

based on local features, and slower oscillations (in the theta-alpha range) with changes 707 

based on summary statistics.   708 

 709 

Automaticity of Local Features and Summary Statistics Processing 710 

Auditory responses to novel local features or summary statistics were associated with 711 

differences in magnitude that could be automatically detected. This finding confirms that 712 

the auditory system can attune its response to specific sound changes and expands 713 

seminal studies measuring the mismatch negativity (MMN) response (Näätänen et al., 714 

1978; Tiitinen et al., 1994). MMN is the neural marker of a process by which the system 715 

“scans” for regularities in entering sounds and uses them as references to detect 716 

variations in the auditory scene (for reviews, see Näätänen et al., 2001, 2010). In our 717 

study, expectations that a change would occur in the third element of the triplet had a 718 

probability of 1 in each experiment (Local Features and Summary Statistics; Figure 2A). 719 

Thus, spurious expectancy or attentional effects cannot explain results. Coherently, the 720 

MMN response to a deviant sound is not affected by prior expectations that the novel 721 

element will occur (Rinne et al., 2001); rather, the auditory system automatically orients 722 

attention toward it. Here we highlighted another ability of the system. Beyond automatic 723 
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orientation toward a relevant deviant sound, our results show that it is possible to 724 

categorize the acoustic change according to the representation (local or summary) and 725 

temporal resolution (high or low) at which it has occurred. Importantly, discriminative 726 

neural responses could be detected even if the task per se did not involve any 727 

discrimination or in-depth processing of either local features or summary statistics. In 728 

other words, the sound changes were processed even when irrelevant to the behavioral 729 

task participants were attending (rare beep detection), strongly suggesting that the 730 

entrainment to local or global acoustic change emerges automatically from exposure to 731 

regular changes in the environment and is strictly dependent on the amount of 732 

information presented.  733 

Furthermore, the double dissociation we observed based on sound duration (with Local 734 

Features eliciting greater magnitude change than Summary Statistics for short sounds 735 

and vice-versa for long sounds) rules out the possibility of results being explained by a 736 

mere saliency effect (i.e., the fact that, in Summary Statistics, a different sound object 737 

was presented). Importantly, the main advantage of using synthetic sounds instead of 738 

natural recordings was to be able to control the summary statistics embedded in the 739 

sounds. That is, all sounds were random white noise samples to which we imposed the 740 

same (or a different set) of summary statistics. If the brain were not automatically 741 

encoding the summary statistics, we would not have been able to distinguish between 742 

Local Features and Summary Statistics experiments, especially at long duration, since 743 

all repeated and novel sounds differed for their local structure. Nor would it have been 744 

possible to detect a dissociation in the neural response according to sound duration. 745 

This observation is further supported by the fact that results emerged despite sound 746 
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objects between the triplets being continuously changing (the only fixed parameter was 747 

the expected similarity in local features or summary statistics between the novel and 748 

repeated sounds).   749 

These findings can be generalized to a variety of sound textures (Figure 2A; see also 750 

Extended Data, Table 1-2) and the exact moment in which the summary percepts 751 

emerge likely depends on specific comparisons across sound objects (repeated and 752 

novel). In line with this, using many different sounds to create sound streams led to 753 

grand averaged signals associated with discrimination based on summary statistics with 754 

a rather spread-out shape (see Figure 2C, right).  755 

Finally, it is important to notice that imposing different statistics on the same white noise 756 

leads to sounds with different long-term average spectra. Therefore, it is possible that 757 

magnitude differences in response to the Summary Statistics experiment, compared to 758 

Local Features, were driven by low-level spectrotemporal modulations rather than 759 

changes in higher-order statistics. However, if that was the case, we might have 760 

expected an effect already at medium duration (209ms), which was instead not present.  761 

Further experiments may be required to fully rule out this possible confound.  762 

 763 

Local features changes are encoded by fast oscillations 764 

By comparing the difference in total power between novel and repeated sounds in the 765 

two experiments, we found that, for short sounds, the power between 20 and 28Hz 766 

decreased when a change in local features was detected, as compared to when 767 

summary statistics were changed. This desynchronization occurred between 80 and 768 

200ms after stimulus onset (Figure 3A, B, left). Desynchronization of oscillatory activity 769 
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is the decrease in power measured at specific frequency bands (generally alpha and 770 

beta ranges), which generally emerges following the onset of an event (Pfurtscheller 771 

and Lopes da Silva,1999). It results from increased cellular excitability in thalamocortical 772 

circuits and generally reflects cortical withdrawal from the resting state to engage in a 773 

cognitive process (Pfurtscheller and Lopes da Silva,1999).  774 

The 20-28Hz band includes frequencies that are canonically attributed to high-beta 775 

oscillations. Changes in power synchronization in the beta range have been correlated 776 

with performance in tasks involving the detection of temporal or intensity deviations 777 

(Arnal et al., 2015; Herrmann et al., 2016). Overall, these findings suggest that, among 778 

other operations, brain activity in the high beta range could be engaged in the 779 

processing of low-level properties of a stimulus. Beta-band activity has also been 780 

investigated in the context of rhythmic perception. A disruption in beta power can be 781 

observed in non-rhythmic sequences or when an attended tone is omitted from a 782 

regular series (e.g., Fujioka et al., 2012). Interestingly, beta synchronization not only 783 

captures irregularities in a pattern but also reflects the type of change that has occurred. 784 

For instance, it has been shown that beta desynchronization was higher prior to the 785 

occurrence of a deviant sound whose pitch varied in a predictable way, as compared to 786 

an unpredictable variation. Accordingly, beta desynchronization has been proposed as 787 

a marker of predictive coding (Engel and Fries, 2010; Chang, Bosnyak, and Trainor, 788 

2018).  789 

In our model, stimuli could be derived from the same white noise sample or a different 790 

one (Figure 1C). In Local Features, the novel sound is derived from another white noise 791 

sample, as compared to the repeated sound on which we imposed the same summary 792 
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statistics. Thus, with this synthesis approach, in terms of fine acoustic features, when 793 

sounds were short, novel sounds had a more different temporal structure (Figure 1F) 794 

and were statistically more dissimilar  (Figure 1D, 2B) than their paired repeated one in 795 

the Local Features experiment as compared to Summary Statistics. Overall, these 796 

results suggest that, in the absence of enough information to build summary 797 

representations, faster oscillations are in charge of small, acoustic change detection to 798 

be used to discriminate sound excerpts. 799 

 800 

Slower oscillations are engaged in Summary Statistics processing 801 

By comparing Local Features with Summary Statistics at long durations, we observed 802 

that the emergence of different auditory statistics in the novel sound, as compared to 803 

the previous, repeated one, elicited higher power at slower frequencies, compatible with 804 

canonical alpha-theta oscillations. This power synchronization emerged at relatively late 805 

latencies from stimulus onset (between 240 and 500ms; Figure 3A, B, right). and was 806 

not present when solely local features were driving sound change (as in the Local 807 

Features experiment). Provided that summary statistics can primarily be measured at 808 

increasing sound duration, we expected differences between long-duration stimuli being 809 

carried by relatively slower brain activity. However, statistical comparisons were 810 

performed within the sound duration; thus, if this effect was simply driven by the sounds 811 

being longer (478ms) rather than the processing of auditory statistics, we should not 812 

have observed a difference in alpha-theta synchronization between experiments. 813 

Similarly, if the effect were driven by simply presenting a “more different” sound in the 814 

Summary Statistics experiment, as compared to Local Features one, then we would 815 
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have seen an effect also for 209ms, which was not the case; similarly, we would not 816 

have been able to dissociate the effects based on sound duration. Finally, it is worth 817 

noting that the stimulation rate was kept constant across all tested durations (40, 209, 818 

and 478), meaning that we always presented one sound every half a second. This 819 

means that, disregarding the amount of information we presented, the change always 820 

occurred in a window of 1.5 seconds (with novel sound always occurring at a frequency 821 

of 0.667Hz). Therefore, the effect strictly depends on the amount of information we 822 

presented within this temporal window, rather than the time interval between sound 823 

excerpts.  824 

A previous study investigated the temporal window of integration of sound textures, 825 

showing that it can extend for several seconds (McWalter and McDermott, 2018, 2019). 826 

In this study, we could not use stimuli longer than 500ms to maintain the 2Hz rhythmic 827 

stimulation pattern in all experiments. Thus, we could not address the integration effects 828 

of single sounds at longer durations. Interestingly, the integration window measured for 829 

sound textures is relatively long compared to the receptive fields of auditory neurons, 830 

whose response has been shown to be sustained for about a few hundred milliseconds 831 

(e.g., Miller et al., 2002). Previous evidence suggested the existence of an active 832 

chunking mechanism condensing entering acoustic information within a much longer 833 

temporal window, approximately 150-300ms (VanRullen, 2016; Riecke, Sacks, & 834 

Schroeder., 2015; Teng et al., 2018). Such integration length would be related to 835 

ongoing oscillatory cycles, specifically corresponding to the theta range (4-7Hz; Ghitza 836 

& Greenberg, 2009; Ghitza, 2012). Compatibly, a recent study showed that acoustic 837 
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changes occurring around 200ms could explain the modulations of phase 838 

synchronization in theta (Teng et al., 2018). 839 

Although there is no evidence that 200ms windows are relevant for texture perception 840 

(see McWalter and McDermott, 2018, 2019), our data show that brain activity already 841 

synchronizes 200ms after stimulus onset to the emergence of a novel set of auditory 842 

statistics. The integration window of sound texture defined by previous studies refers to 843 

the maximum duration within which the averaging of local information into summary 844 

statistics can occur (McWalter and McDermott, 2018). It is still unclear how this relates 845 

to the emergence of relevant percepts in the brain (i.e., sound object identity) in 846 

response to average statistics.  The higher power synchronization in the theta-alpha 847 

range observed in response to sensory statistics might be interpreted as one of the 848 

possible neural mechanisms underlying the development of such abstract 849 

representations, which may lead to the perceptual understanding that a new sound 850 

object has occurred. This would explain why it happens when a different set of statistics 851 

is detected and not when only local features change while sound identity remains 852 

unchanged.   853 

 854 

CONCLUSION 855 

Combining a computational synthesis approach with electrophysiology revealed distinct 856 

cortical representations associated with local and summary representations. We 857 

showed that different neural codes at faster and slower temporal scales are entrained to 858 

automatically detect changes in entering sounds based on summary statistics similarity 859 

emerging as a function of sound duration. These results promote using computational 860 
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methods to appoint neural markers for basic auditory computation in fundamental and 861 

applied research. Furthermore, the automaticity of the protocol and the fast 862 

implementation allow the testing of different populations (including newborns, infants, 863 

children, and clinical patients) that do not have the resources to attend to complex 864 

tasks. 865 

 866 

DATA AVAILABILITY 867 

Raw EEG data, analysis scripts, participants’ information, and sound excerpts employed 868 

in the experiment are available in an online repository at this link: 869 

https://data.mendeley.com/datasets/gx7cb7fnv4/1  870 
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 1047 

Legends 1048 

Figure 1. Experimental stimuli. (A) Computational Texture Model to extract auditory 1049 

statistics. An original recording of a natural sound texture is passed through the auditory 1050 

texture model (the list of presented sound textures is available as Extended Data, 1051 

Figure 1-2). The model provides a mathematical formulation of the auditory system's 1052 

computations (auditory statistics) to represent the sound object. The signal is filtered 1053 

with 32 audio filters to extract analytic and envelope modulations for each cochlear sub-1054 

band.  Envelopes are downsampled and multiplied by a compression factor. From the 1055 

compressed envelopes, a first set of statistics is computed: marginal moments 1056 

(including envelope mean, variance, and skewness), autocorrelation between temporal 1057 

intervals, and cross-band correlations. Compressed envelopes are then filtered with 20 1058 

modulation filters. The remaining statistics are extracted from the filtered envelopes: 1059 

modulation power and cross-band correlations between envelopes filtered with the 1060 

same modulation filter (C1) and between the same envelope filtered through different 1061 

filters (C2).  1062 
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(B) Schematic of Sound Synthesis. The white-noise sample is filtered through the 1063 

auditory model (McDermott and Simoncelli, 2011) to extract its cochlear envelopes, 1064 

which are then subtracted from those obtained from the original sound texture. The 1065 

average statistics from the original sound textures are then imposed on the subtracted 1066 

white noise envelopes. The outcome is multiplied by the fine structure of the white noise 1067 

sample to preserve its local acoustic distribution (e.g., temporal structure). The result is 1068 

recombined in the synthetic signal, reiterating the procedure until a desired SNR of 20-1069 

dB is reached.    1070 

(C) Impact of white noise sample and imposed statistics on synthetic sounds. Two 1071 

different sets of statistics are extracted from two sound textures: “frogs” and “horse 1072 

trotting”. Each set of values is imposed on two different random white noise samples. 1073 

When the same statistics are imposed on different white noise samples, the outcomes 1074 

are two synthetic exemplars of the same sound texture. These exemplars will have the 1075 

same summary statistical representation but will diverge in their local features as the 1076 

original input sound will influence them. When different statistics are imposed on the 1077 

same white noise sample, the results are two synthetic exemplars that will diverge in 1078 

their overall summary statistics and be perceptually associated with different sound 1079 

objects. The cochleograms of the 0.5 s synthetic exemplars are displayed.  1080 

(D)  Similarity of statistics between excerpt pairs. Couples of sound excerpts presented 1081 

in the study (repeated and novel; see Figure 2A for the experimental protocol) could be 1082 

derived from different white noise samples to which we imposed the same statistics (in 1083 

coral) or from the same white noise sample with different statistics (in blue). The 1084 

summary statistics similarity between these couples of synthetic excerpts was 1085 
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computed by averaging the SNRs between statistics of repeated and novel sounds, 1086 

measured separately for each statistical class. Boxplots show the averaged SNRs at 1087 

three sound durations of interest (short, 40ms; medium, 209ms; long, 478ms). When 1088 

sounds were short (40ms), statistical values were more similar for sounds derived from 1089 

the same white noise samples (in blue) compared to different ones (in coral), even 1090 

when including different original statistics. As duration increased (209, 478ms), statistics 1091 

progressively converged to their original values and were more dissimilar for sounds 1092 

with different generative statistics (blue) than for sounds including the same statistics 1093 

(coral), irrespectively of original white noise sample. *** p < 0.001  1094 

(E) Comparing auditory statistics of 478ms synthetic sounds. Envelope marginal 1095 

moments (mean, skewness, and variance) of all sound textures are displayed, while 1096 

highlighted are those from three sound excerpts selected randomly; two have the same 1097 

imposed auditory statistics (in red and yellow), and one has different statistics (in blue). 1098 

In the bottom row, the remaining statistics are displayed (envelope correlation, 1099 

modulation power, C1, and C2). The similarity between statistical values is higher when 1100 

the sounds come from the same original texture.  1101 

(F) Similarity between envelope pairs of short sounds. In the top panel, boxplots 1102 

represent the correlation coefficients (r) measured between broadband envelopes for 1103 

each pair of 40ms sound excerpts (repeated and novel; n= 6912) divided according to 1104 

experiment (Local Features or Summary Statistics). Amplitude modulations of brief 1105 

excerpts are significantly more similar when sound pairs originate from the same white 1106 

noise sample  (Summary Statistics experiment) than when they do not (as in the Local 1107 

Features experiment), disregarding their imposed generative statistics. ***p< 0.001.   1108 
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In the bottom panel, show examples of the 40ms broadband envelopes used for 1109 

computing the correlation coefficients (r) above. 1110 

 1111 

Figure 2. Experimental procedure and results of time domain analysis. (A) 1112 

Experimental protocol for EEG. Triplets of sounds were presented at a fast rate (one 1113 

sound every 500ms). Two sounds were identical (Repeated), while the third was 1114 

different (Novel) and could vary in its local features (left) or summary statistics (right) 1115 

depending on the experiment (Local Features or Summary Statistics). Three sound 1116 

durations, equally spaced logarithmically (short, medium, and Long: 40, 209, and 1117 

478ms), were employed (in different sound streams) to tap into each auditory mode 1118 

separately (local features vs. summary statistics processing). The list of presented 1119 

sound textures is available as Extended Data, Figure 1-2. To ensure participants were 1120 

attentive during the presentation, they performed an orthogonal task, consisting of 1121 

pressing a button when an infrequent target (beep) appears. Performance accuracy was 1122 

high in all experiments and durations and is displayed in Figure 1-1 in Extended Data. 1123 

(B) Grand average topographies of the differential response associated with the sound 1124 

change (novel sound minus repeated sound) at significant latencies for each experiment 1125 

and duration. For each latency, electrodes associated with significant clusters are 1126 

displayed above as red stars on the scalp. * p < 0.025.  1127 

On the right side of the topographical maps, the boxplots represent objective differences 1128 

between the novel and repeated sounds of all auditory statistics (averaged). The 1129 

difference was computed between the statistics of sounds presented for each run, 1130 

experiment, and duration and averaged across all participants. Within each duration, 1131 
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medians differed at the 5% significance level between experiments. Local Features > 1132 

Summary Statistics at short (40) duration and Summary Statistics > Local Features for 1133 

medium (209) and long (478) durations. The evoked response in the EEG agrees with 1134 

the objective statistical difference measured from the sound excerpts. 1135 

(C) Grand average electrical activity (negative values are plotted up) of the differential 1136 

response (novel minus repeated) at significant electrodes (in red) for both short and 1137 

long durations. Shaded regions show interpolated repeated error of the mean (SE) at 1138 

each time point. Positive values indicate that the novel elicited a greater response than 1139 

repeated. Results of cluster permutation are displayed as black bars extending through 1140 

significant latencies. – p < 0.025.  1141 

For visualizing  the ERPs before subtraction (novel -repeated), see Extended Data, 1142 

Figure 2-1. 1143 

 1144 

Figure 3. Results of time-frequency analysis. (A) Grand average difference (novel 1145 

minus repeated) of total power for short and long sound durations in both experiments 1146 

(Local Features and Summary Statistics) at significant channels. Rectangular regions 1147 

comprise the latencies and frequency range in which power changes were significant 1148 

between experiments after cluster-based permutation. Significant channels are marked 1149 

as red stars over the sketch of a scalp (* p < 0.05). In the left panel, results for the short 1150 

duration are displayed and show higher-power desynchronization in the 20-28Hz 1151 

frequency range (high beta) for Local Features as compared to Summary Statistics. In 1152 

the right panel, results for the long duration show higher 4-12Hz (alpha-theta) power 1153 

synchronization for Summary Statistics as compared to Local Features. Grand-average 1154 
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topographical maps at significant latencies and frequency ranges are displayed next to 1155 

the corresponding power-spectrum plots. 1156 

(B) Average power difference between novel and repeated sounds for each range of 1157 

frequency bands (Slow, Medium, and Fast), averaged across all significant channels, 1158 

plotted at all latencies (from 0 to 0.5s). Significant channels are marked as red stars 1159 

over the sketch of a scalp. Shaded regions show interpolated standard error of the 1160 

mean (SE) at each time point. * p < 0.05. 1161 

 1162 

Figure 1-1. Behavioral results. Related to Figure 2. (A) The group-level average 1163 

proportion of correct detections of beeps when presented. Bar plots represent average 1164 

values of hits across all participants. Error bars represent the standard error of the 1165 

mean (SE). No significant difference existed across conditions (all p > 0.05). 1166 

 1167 

Figure 1-2. List of Sound Textures. Related to Figure 1 and 2.  In Local Features 1168 

Discrimination, for each sound texture in column 1, two synthetic exemplars of the 1169 

sound texture were selected. One was presented twice (repeated) and the other was 1170 

presented as the third element of the triplet (novel). In Summary Statistics 1171 

Discrimination, sound textures were paired according to perceived similarity 1172 

(McDermott, Schemitsch, and Simoncelli, 2013). For each sound texture in column 1, 1173 

one synthetic exemplar was selected and presented twice. Then, an exemplar of the 1174 

texture from the corresponding row in column 2 was selected and used as the third 1175 

element of the triplet (novel).  1176 

 1177 
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Figure 2-1. Auditory Evoked response for repeated and novel sounds. Related to 1178 

Figure 2. (A) Grand-average topographies across participants of the responses to 1179 

standard and oddball sounds for each experiment (Local and Global Discrimination), 1180 

displayed for short and long durations (478) at latencies of interest. (B) Grand-average 1181 

ERPs across participants of the average amplitude of the central channels displayed in 1182 

the legend (red circles on the sketch of a scalp). ERPs are shown for both standard and 1183 

oddball sounds for each experiment and duration. Shaded regions show interpolated 1184 

standard error of the mean (SE) at each point. 1185 

 1186 








