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Noise cleaning the precision matrix of short time series
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We present a comparison between various algorithms of inference of covariance and precision matrices in
small data sets of real vectors of the typical length and dimension of human brain activity time series retrieved by
functional magnetic resonance imaging (fMRI). Assuming a Gaussian model underlying the neural activity, the
problem consists of denoising the empirically observed matrices to obtain a better estimator of the (unknown)
true precision and covariance matrices. We consider several standard noise-cleaning algorithms and compare
them on two types of data sets. The first type consists of synthetic time series sampled from a generative Gaussian
model of which we can vary the fraction of dimensions per sample q and the strength of off-diagonal correlations.
The second type consists of time series of fMRI brain activity of human subjects at rest. The reliability of each
algorithm is assessed in terms of test-set likelihood and, in the case of synthetic data, of the distance from the
true precision matrix. We observe that the so-called optimal rotationally invariant estimator, based on random
matrix theory, leads to a significantly lower distance from the true precision matrix in synthetic data and higher
test likelihood in natural fMRI data. We propose a variant of the optimal rotationally invariant estimator in which
one of its parameters is optimzed by cross-validation. In the severe undersampling regime (large q) typical of
fMRI series, it outperforms all the other estimators. We furthermore propose a simple algorithm based on an
iterative likelihood gradient ascent, leading to very accurate estimations in weakly correlated synthetic data sets.
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I. INTRODUCTION

Multiple, complex, rapidly changing brain activity patterns
are constrained by an underlying structural connectivity (SC)
network of neuronal fiber bundles that evolve on distinctly
larger timescales [1–4]. It is precisely this degeneration
(reminiscent of collective phases in physics) of emerging
complex and segregated dynamical states, subtended by a
relatively static and sparse SC network, that makes possible
context-sensitive conscious cognition, perception, and action
[5–7]. For this reason, the study of the relation between brain
structure and the associated emergent cognitive functions in
healthy and diseased subjects is, arguably, one of the most
important challenges in neuroscience. Since the advent of
high-quality functional magnetic resonance imaging (fMRI)
and electro- and magnetoencephalography (EEG and MEG)
data sets, a wide range of linear [2,8–11] and nonlinear
[12–22] models explaining the emergent function in terms of
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a latent, subtending model of effective connectivity [4] have
been considered.

In this context, the role played by correlation and precision
matrices of brain activity patterns is receiving increasing
interest [11,23–32]. Functional connectivity (FC) is usually
estimated through the correlation matrix (C) among pairs
of functional time series of activity (usually blood oxygen
level dependent (BOLD) fMRI signals at rest) corresponding
to different brain areas. A related quantity, considered as
an alternative estimator of FC (see, for example, Ref. [11]),
is the precision matrix, or the inverse of the correlation
matrix J = C−1. Assuming that the vector of brain activity
patterns obeys Gaussian statistics [2,8,9,11] (or that the time
series follow an Ornstein-Uhlenbeck process [3,33]), the
precision matrix J represents harmonic coupling constants
that constrain the emergent correlations C. For this reason,
J may be understood as an (inferred) model of more direct
[11] anatomical connections between brain areas. Indeed,
differently from C, and within a Gaussian approximation,
J accounts for direct causal relations only. As a matter of
fact, in the context of the SC-FC relationship, the inferred
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precision matrix J has been demonstrated to be a more
accurate statistical estimator of SC (as retrieved, e.g., by
diffusion tensor imaging techniques) than C and than the
interarea couplings resulting from Granger causality and
autoregressive inference ([11,24] and references therein).
Furthermore, J has also been shown to provide better
prediction scores than correlation-based FC for some diseases
and nonimaging phenotypic measures [25–28] (see also
Ref. [29]), and to better capture intrasubject FC differences
[30]. Finally, recent results suggest [11] that the relation
between the empirical SC matrix and the precision matrix
from temporal BOLD series can be exploited, beyond
the Ornstein-Uhlenbeck hypothesis, to infer the relative
timescales of temporal correlation of the BOLD activity in
different brain subnetworks of grey matter, that in turn reflect
the relative complexity of cognitive functions involved in the
cortical hierarchy.

The studies of precision matrices are, however, severely
limited by the limited accuracy of their statistical estimation
due to the short length of time series [11,27,29,31,32,34]. To
overcome this issue, several techniques of statistical inference
of the correlation (and, hence, of the precision) matrix have
been proposed in the context of network neuroscience. These
are Ledoit-Wolf and Tikhonov regularized precision matrix
[11,25,32,35,36], L1-regularization with or without popula-
tion priors [31,37], addition of regularized aggregation to
construct the group precision matrix [29], and (nonisotropic)
population-shrinkage covariance estimators [30] (see further
references in Refs. [25,29,30]). Accurate strategies for corre-
lation and precision matrix regularization, or noise cleaning,
are also crucial to improve the efficiency of autoregressive
models of causal inference [11] since they rely on the in-
version of sample covariance estimators constructed from a
few data vectors (please note that we do not use clean in the
sense of denoising of the fMRI primary data as in Ref. [38]
but, rather, in the sense of noise cleaning the correlation and
precision matrices, as in Ref. [39]).

The previous discussion highlights the need for accurate
benchmarking of estimators of FC. In the present contribution,
we compare standard noise-cleaning methods [such as linear
shrinkage and principal component analysis (PCA)] on corre-
lation matrices derived from short time series of the typical
size and length of fMRI data. Importantly, we add to the com-
parison recent methods grounded on random matrix theory
[40]. Despite such methods having been known in statistical
physics and in theoretical finance for a few years, they have
not been, to the best of our knowledge, benchmarked nor just
employed in the study of the human brain connectome. The
algorithms are compared in two types of data sets: synthetic
ones, sampled from a known generative Gaussian model, and
two natural data sets of human resting-state brain activity by
fMRI. We evaluate the efficiency of each algorithm on each
data set in terms of the out-of-sample (test) likelihood, that
takes into account both variance and bias errors, and of two
related criteria. In the case of synthetic data sets, the efficiency
of the methods is further evaluated in terms of the elemen-
twise distance from the true or population precision matrix.
Correlation and precision matrices are here independently
inferred for each multivariate time series (each subject). We
do not leverage the groupwide information across subjects

in our algorithms, which is a relevant direction for further
investigations and comparisons.

The article is structured as follows. In Sec. II, we define
the problem of noise-cleaning correlation matrices and set
the notation. Then we describe the benchmarked algorithms
(Sec. II A), the quality criteria (Sec. II B), the cross-validation
(CV) strategies (Sec. II C), and the characteristics of the syn-
thetic (Sec. II D) and natural fMRI (Sec. II E) data sets. We
finally present the results and draw the conclusions in Secs. III
and IV, respectively.

II. MATERIALS AND METHODS

a. Data sets. Let data set X be an N × T real ma-
trix consisting of T N-dimensional vectors, and let x(t ) :=
(X1t , . . . , XNt ) ∈ RN . In the context of network neuroscience,
X represents the single subject data, N is the number of
anatomic areas or regions of interest, and T is the length of
the time signal. We will assume that the observations x(t ) are
identically and independently distributed. Furthermore, we
assume the signal distribution to be a multivariate Gaussian.
Without loss of generality, we will assume that the data is nor-
malized in such a way that it exhibits null temporal averages
and unit standard deviation:

∑T
t=1 xi(t ) = 0,

∑T
t=1 x2

i (t ) = T .
In this article, we will focus on the case T � N , or q � 1
being q := N/T .

b. Sample and population covariance matrices. We will
call E = XX †/T the sample correlation matrix, where † in-
dicates matrix transpose. Whenever T is finite or q = N/T is
nonnegligible, E and its inverse, in particular, are not good
estimators of the (unknown) population or true (verus) corre-
lation and precision matrices, Cv and Jv = Cv−1, that would
have been obtained in the limit of infinitely many data, T →
∞ and q → 0. From the Marchenko-Pastur equation (see,
for example, Refs. [40,41]) one knows, in particular, that the
differences in the spectral densities of E and Cv are governed
by q and vanish only for q = 0.

c. Noise-cleaned estimators of the covariance matrix. The
problem of noise cleaning a covariance matrix amounts to
proposing a noise-cleaned matrix C, given X , that aims to
be as similar as possible to Cv (and more than what E is)
according to some criterion. Equivalently, the cleaned ma-
trix C aims to correct the overfitting (for small T ) and the
curse of dimensionality (for large q) that affect the unbi-
ased estimator E . In other words, C should present lower
bias+variance error [42] at the expense of a higher bias
error.

In Bayesian terms, E is the maximum likelihood (ML) esti-
mator of the covariance matrix given the data set X [assuming
a Gaussian likelihood, N (X |E )], while C is a beyond-ML es-
timator [43] in the sense that it aims at achieving a higher test
likelihood at the expense of a lower train likelihood. Indeed,
the design of noise-cleaning algorithms can be cast in terms of
Bayesian random matrix theory [40]. Most of the algorithms
that we consider here depend on a hyperparameter, generi-
cally γ , such that, for γ = 0 the resulting cleaned matrix is
Cγ=0 = E (minimum bias, maximum variance) while, for its
maximum value γ+, it is Cγ+ = 1N (maximum bias, minimum
variance). The optimal value γ ∗ of the hyperparameter can
be set by cross-validated maximization of a validation-set
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likelihood (or by maximization of the training-set Bayesian
evidence, as in PCA-Minka, see before). For infinitely many
data-set vectors T � N , there is no overfitting and no curse of
dimensionality, hence γ ∗ = 0 and C = E .

d. Training- and test sets, and hyperparameters. Each
subject data set X is decomposed by columns into training
and test data sets, X = (X (tr), X (te) ), of dimensions N × Ttr ,
and N × Tte, respectively. Given X (tr), we will obtain noise-
cleaned covariance matrices C from several algorithms, also
called methods in this article.

Some of the considered methods lead to a cleaned matrix
Cπ depending on a hyper-parameter π . For these methods,
the training set is in turn decomposed into inversion (or
pure training) and validation sets, X (tr) = (X (in), X (va) ), of
dimensions Tin, Tva, respectively. The optimal value of the
hyperparameter is chosen by maximization of a criterion
Q, π∗ = arg maxπ Q(X (va)|Cπ ) evaluated on the validation
set (while Cπ is computed from the inversion set), and the
inversion-validation split is given by K-fold CV. Finally, the
quality of each method according to the criterion Q (cross
validated across random (X (in), X (va) ) partitions when needed)
is given by Q(X (te)|Cπ∗ ). We evaluate the average and errors
of this quantity, across all the subjects X belonging to a given
collection of data sets, (X (s) )s.

We describe the considered methods, criteria, and data sets
in Secs. II A, II B, II D and II E, respectively.

A. Algorithms of noise-cleaning correlation matrices

It is out of the scope of this article to present a complete
review of the immense amount of results on the general prob-
lem of overfitting and curse of dimensionality mitigation of
covariance matrices. We limit ourselves to mention and com-
pare a list of the better known and most popular algorithms
for cleaning correlation matrices according to Ref. [39]. Let
the spectral decomposition of the sample correlation matrix
E = X (tr)X (tr)†

/Ttr be E = U †�U , where U is orthogonal and
� is a diagonal, real matrix. The noise-cleaned or regular-
ized matrix will be called C and its spectral decomposition
C = W †�̂W where, again, W is orthogonal and �̂ diagonal.
We will assume their eigenvalues λi = �ii � 0 and λ̂i = �̂ii

to be in decreasing order. As we will see, most of the standard
algorithms modify only the sample spectra, so W = U .

a. Eigenvalue clipping, or PCA, according to which only
p eigenvalues of E are considered to be significant, with 0 �
p � N .

(1) The cleaned spectrum is set equal to the sample spec-
trum λ̂i = λi whenever i � p, otherwise it is set to a common
noise value: λ̂i>p = λ̄p = ∑

j>p λ j/(N − p), equal to the av-
erage of the N − p neglected eigenvalues.

(2) The resulting cleaned matrix is C = U †�̂ U . Given
p,�,U , the choice of λ̄ corresponds to a ML prescription
(see, for example, Ref. [44]).

In PCA, the γ hyperparameter is the number of nonfitted
principal components γ = N − p.

We have implemented two variants of this method: For
the first one [ PCA (CV)], the value of p is set by CV (see
Sec. II C). In the second one [PCA (Minka)], p is chosen
with the Minka criterion [44], consisting of a maximization

of the training-set Bayesian evidence. This method does not
require CV.

b. Linear shrinkage (shrinkage). The cleaned matrix here
is a convex combination of the unbiased sample estimator E
and a completely biased matrix, not depending on the data,
that we will take as the identity matrix 1N [45,46]. Depending
on α ∈ [0, 1], the cleaned estimator is Cα = (1 − α)1N + αE
or λ̂i = (1 − α) + αλi. In this case, it is γ = 1 − α. As ex-
plained in Ref. [39], the shrinkage method corresponds, in
Bayesian random matrix theory, to the posterior average of the
covariance matrix when the prior distribution is the inverse-
Wishart distribution whose mean is the identity matrix in N
dimensions, 1N .

c. Optimal rotationally invariant estimator (RIE). The
cleaned spectrum is [39,40,47,48]

λ̂i = λi

|1 − q + qzis(zi)|2 , (1)

where s(z) := tr[(z1N − E )−1]/N is the Cauchy transform of
the E spectral density, being zi := λi − ıη, ı the imaginary
unit, and η a small parameter, coming from the limit η → 0 in
the derivation of the RIE estimator for large N, T (through
the Sokhotski–Plemelj identity, see Ref. [40], Sec. 4). In
Refs. [39,40] it is explained that, for finite N , a convenient
choice is η = N−1/2.

Roughly speaking, the RIE estimator is derived by impos-
ing that matrix C is, among those sharing the eigenvectors
with E , C = U †�̂ U , the one that exhibits a minimum
Hilbert-Schmidt distance dHS(C,Cv) = tr[(C − Cv)2] from
the population matrix Cv = V †�vV . Albeit, the population
matrix is not known; for the minimization of dHS(C,Cv), it
is sufficient to know, for large enough T , its spectral density
ρCv , which is in turn related to the sample spectral density ρE

through the Marcenko-Pastur equation (see Appendix A and
Refs. [39,40,47,48] for details).

The RIE estimator is expected to provide a better estima-
tion, in terms of dHS, than any other algorithm modifying only
the sample spectrum �, at least for sufficiently large values
of T . In particular, we expect the RIE estimator to be more
efficient than the PCA, shrinkage, caut-PCA, and q-corrected
raw estimators.

We have implemented two variants of the RIE algorithm,
one in which the parameter η is chosen according to the value
prescribed in the literature η = N−1/2 [39,40] (simply called
RIE), the other one [called RIE (CV)]. in which η is cross
validated on a grid of values. The RIE estimator does not
require being cross validated (hence, for it, X (tr) = X (in) and
Tva = 0). The cross-validated hyperparameter η of RIE (CV)
does not balance bias and variance errors, hence it does not
play the role of the parameter γ mentioned above.

d. Factor analysis (FA). This method proposes a cleaned
matrix of the form (lower-rank matrix) + (heteroschedastic
noise diagonal matrix). The generic form of the cleaned ma-
trix is given by C = M†M + Q. Here M is a r × N real matrix,
r ∈ {0, . . . , N}, and Q is a real diagonal square matrix of size
N . Given r, the values of M and Q are found numerically by
maximization of the inversion likelihood N (X (in)|C) (see, for
example, Refs. [49,50]). The value of the hyperparameter r
(the rank of the M†M matrix) is chosen by CV.
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e. Graphical lasso (lasso). Given the positive regular-
ization (L1-norm) hyperparameter αL, the cleaned precision
matrix J = C−1 is given by maximization of the training like-
lihood minus a regularization term [51] (see also references in
Ref. [52]):

J∗ = arg max
J

⎧⎨
⎩lnN (X (tr)|J−1) − αL

∑
i< j

|Ji j |
⎫⎬
⎭. (2)

In this case, it is γ = αL. For αL = 0, the estimated C = E ,
while for αL = ∞, it is C = 1N .

As a comparative reference for the efficiency of the above
algorithms, we propose two further, simple methods.

f. Cautious-PCA (caut-PCA). We propose the following
simple variant of PCA. In this case, γ = N − p is again the
number of neglected principal components but the spectrum
of the cleaned matrix is modified differently.

(1) First, one provisionally sets λ̂i�p = λi and λ̂i>p = λ̄p

as in PCA, but with λ̄p = λp (the value of the lowest fitted
sample eigenvalue) instead of λ̄p = ∑

i>p λi/(N − p) as in
normal PCA.

(2) Second, the whole cleaned spectrum is hence rescaled
in such a way that C exhibits the same total variance as
E : tr(�̂) = tr(�) or λ̂ j := κpλ̂ j , with κp = N/(Nvp + (N −
p)λp) and vp = (

∑
j�p λ j )/p.

(3) Finally, the cleaned matrix is C = U †�̂U .
Alternatively, the rescaling of the spectrum in step II A

0 f may be substituted by a standardisation of C: Ci j :=
Ci j/

√
CiiCj j . In our numerical analysis, both strategies lead

to almost identical results.
Both PCA and caut-PCA methods fit the p largest eigen-

values and corresponding eigenvectors of E and neglect the
lowest N − p sample eigenvalues and corresponding eigen-
vectors. In the N − p-dimensional subspace of RN generated
by the neglected eigenvectors, the associated cleaned matrices
are degenerated with a single noise variance λ̄p. The differ-
ence is that in PCA the noise variance λ̄p is substituted by
its ML value λ̄(ml)

p = N (1 − vp)/(N − p) [44], while in caut-
PCA the noise variance λ̄(cau)

p = κpλp consistently equals the
lowest fitted eigenvalue λp that is considered to be significant,
apart from the normalizing constant κp, which is close to 1
in the relevant regime λp � Nvp/(N − p). In this regime,
and whenever λp � vpλ̄

(ml)
p , the noise variance of caut-PCA is

larger than its ML value λ̄(cau)
p � λ̄(ml)

p . In this sense, caut-PCA
is more cautious. See more details in Appendix B.

g. Early-stopping gradient ascent (GA) algorithms. con-
sist of an iterative updating of the correlation matrix C.
It is initially set to 1N , hence updated following a GA
search of the training likelihood lnN (X (in)|C) or C := C +
ηGA(∂ lnN (X (in)|C′)/∂C′)|C , where ηGA is a constant learn-
ing rate. While the likelihood is maximized by C = E , we
stop the optimization earlier. The stopping criterion is given
by the time of the first decrease of one of the validation-set
criteria in Sec. II B).

We have implemented and compared mainly two variants
of this algorithm, differing as follows. DGAW (deterministic
gradient ascent-Wishart): the iteration is not on the matrix
elements of C, but on those of an N × N matrix Y such that
J = C−1 = YY † (in such a Wishart form, the symmetry and

positive definiteness of C is guaranteed in the iterative dynam-
ics); SGA (stochastic gradient ascent) and its Wishart form
SGAW: the iterative update algorithm for C or Y is not deter-
ministic but stochastic: the gradient in each iteration τ is not
that of lnN (X (in)|C) but, similarly to minibatch learning in
machine learning [42], that of a random bootstrapping X (in)(τ )
of the training data, different from iteration to iteration. We
have as well implemented further optional variants, as the
coupled dynamics of a Lagrange multiplier guaranteeing the
condition tr(C) = tr(E ). Please see further details of the GA
algorithms in Appendix D.

B. Quality of the cleaned matrices according to different criteria

We evaluate the quality of the cleaned matrix C in the test
set according to different criteria Q(X (te)|C):

a. Test likelihood (referred to as �). The criterion
lnN (X (te)|C)/Tte is the average of the logarithm
of the Gaussian likelihood over the test-set vectors
x(t ): lnN (X (te)|C)/Tte = −(1/2)[ln(2π ) + ln det C +
tr(C−1Ete )].

b. Test pseudolikelihood. We compute the average over
the test-set vectors x(t ) of the pseudolikelihood lnL(x) =∑N

i=1 ln pi(xi|x/i,C), where x/i is the vector x with missing ith
coordinate, and where pi(xi|x/i,C) is the marginal of N (x|C)
given all the coordinates but xi; it is a univariate normal
distribution pi(xi|x/i,C) = N (xi − μi|σ 2

i ) with C- and x/i-
dependent average μi and variance σ 2

i :

lnL(X (te)|C)

= 1

NTte

Tte∑
t=1

N∑
i=1

lnN
(
xi(t ) − μi(x(t ),C)|σ 2

i (C)
)
, (3)

μi(x,C) := −
∑

m 	=i Jimxm

Jii
, σ 2

i (C) := Jii
−1, (4)

and where J = C−1.
c. Test-completion error (referred to as c̄). We define the

completion error of the ith coordinate of vector x, ci, as the
absolute value of the difference between xi and its expected
value according to the marginal distribution pi(xi|x/i,C) or
ci := |xi − μi(x,C)|. The completion error of the data set
X (te), c̄(X (te)|C) is defined as the average of the single coordi-
nate completion error ci over all coordinates i and all vectors
x in X (te). It is a variant of the pseudolikelihood in which σi is
not taken into account:

c̄(X (te)|C) = 1

NTte

Tte∑
t=1

N∑
i=1

|xi(t ) − μi(x(t ),C))|. (5)

The completion error is, hence, interpretable: it is the error,
in units of the coordinates’ variance (= 1), of the expected
value of the missing coordinates xi, Eq. (4), according to the
Gaussian model induced by the inferred C.

d. Distance to the true precision and correlation matrices
(referred to as d). . If the generative model of the data de-
fined by the probability density Pv is known, it is possible to
evaluate the quality of the cleaned matrix by computing the
similarity between C and Cv (being Cv

i j = 〈xix j〉Pv ) and be-
tween J = C−1 and Jv = Cv−1, according to a given criterion.
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We will consider the matrix-element-wise metric,

d (Jv, J ) =
∑

i� j

∣∣Jv
i j − Ji j

∣∣∑
i� j

∣∣Jv
i j

∣∣ , (6)

and equivalently for d (Cv,C). This metric is essentially equiv-
alent to the Hilbert-Schmidt distance dHS(Cv,C) = tr[(Cv −
C)2]. Indeed, given the generative model, the relative ef-
ficiency of various algorithms as presented in Sec. III is
qualitatively equal using d or dHS. The only essential dif-
ference is that in Eq. (6) the mean error between matrix
elements is expressed in units of the mean absolute value
of the population matrix elements. The results are again es-
sentially unchanged using a variant of d (·, ·) in which one
discards the diagonal [i.e., i < j in (6)]. Notice that the metric
is interpretable: d (Jv, J ) is the average distance between the
matrix elements of the cleaned and true precision matrices,
in units of the average value of the true precision matrix
elements.

C. Hyperparameter tuning

Hyperparameter tuning for the algorithms in Sec. II A is
performed by K-fold CV with K = 6, using the four quality
criteria Q defined in Sec. II B. In other words, the optimal hy-
perparameter π∗ is chosen by maximization of 〈Q(X (va)|Cπ )〉,
where Cπ is computed from X (in) and the average is over the
K-fold partitions of X (tr) = (X (in), X (va) ).

D. Synthetic data generation

For the generation of the synthetic data, we employ
a generative multivariate Gaussian model N (·|Cv) whose
population covariance matrix is drawn from a probabil-
ity distribution over correlation matrices that we dub the
Dirichlet-Haar model. In the Dirichlet-Haar model, Cv is
defined through the spectral decomposition Cv = W †�̃W ,
where W is drawn from the Haar distribution (the uniform
distribution over orthogonal matrices) and �̃ is a diagonal
matrix whose eigenvalues λ̃ are drawn from the Dirichlet
distribution with parameter αD: λ̃/N ∼ Dir(·|αD) so tr(Cv) =
tr(E ) = N . Therefore, αD is the parameter that determines the
degree of homogeneity or sparsity of the spectrum of Cv: large
values of αD lead to homogeneous eigenvalues λ̃i, hence to
correlation matrices with off-diagonal elements much lower
than the diagonal (for αD → ∞, the Dirichlet-Haar model
converges to the delta distribution around Cv = 1N ). Vice
versa, lower values of αD lead to larger (and W -dependent)
off-diagonal correlation (and precision) matrix elements, with
a single large eigenvalue close to N . For this reason, αD (or,
more precisely, α−1

D ) may be seen as a measure of the degree
of interaction strength of the population precision matrices Jv.

Summarizing, given N , q = N/T and αD, we generate
Ns synthetic data sets, representing the subjects, according
to the following procedure: We first sample an orthogonal
matrix W from the Haar ensemble and a set of eigenval-
ues from the Dirichlet distribution y ∼ Dir(·|αD), λ̃ = Ny;
we construct Cv = W †�̃W and sample T vectors from the
resulting Gaussian distribution x(t ) ∼ N (·|Cv). Such vectors
[x(1), . . . , x(T )] constitute the synthetic sample X . We repeat
the procedure Ns times, getting a Ns × N × T synthetic collec-

tion of data sets (X (s) )Ns
s=1 in such a way that to every subject

corresponds a different correlation matrix, with different (ran-
dom) eigenvectors and different (random, but with common
interaction strength) eigenvalues.

E. fMRI data

We analyze two fMRI data-set collections of BOLD
activity time series of human subjects at rest, called A
and B. Collection A is the one analyzed and described in
Refs. [53,54]. Collection B is the large population-derived
CamCAN Data Repository from the Cambridge Center for
Aging and Neuroscience [55–57]. In collection A, we have
measurements of Ns = 40 subjects, with T = 180 observa-
tions of N = 116 features, that we randomly split in Ttr =
144 = Tin + Tva with Tin = 120, Tva = 24, and Tte = 36 for
those algorithms necessitating a validation set, otherwise Ttr =
Tin = 144. For collection B, we have Ns = 652, N = 114,
and T = 260 observations split in Tin = 174, Tva = 34, and
Tte = 52.

III. RESULTS

A. Noise cleaning the synthetic data set

We applied the methods from Sec. II A to the synthetic data
sets described in Sec. II D with varying dimensions per sample
q = N/T and degree of interaction α−1

D . We assess the quality
of the cleaned correlation and precision matrices according to
the criteria described in Sec. II B, evaluated on the test set of
each subject.

We consider a grid of values of q, αD constructed as
follows: We take N = 116 fixed, that coincides with the di-
mension of the standard fMRI parcelization of the human
brain in 116 regions of interest, and coinciding with value of N
for fMRI collection A, see Sec. II E. The value of Ttr takes the
values 144, 200, 300, 1000, 2000. The lower value Ttr = 144
coincides with Ttr of fMRI collection A. αD takes the values
αD = 0.5, 1, 1.5, 2, 2.5, 3, 4. A fraction 1/6 of the Ttr obser-
vations is used for validation, as we said in Sec. II C. The test
sets are composed by Tte = 0.25 Ttr vectors. For each value
of the couple q, αD the results are averaged over Ns = 102

realizations of the data set (different “subjects”).
In this section and in Appendix C, we present results for the

methods: PCA (CV-l), PCA (Minka), shrinkage (CV-l), Lasso
(CV-l), FA (CV-l), RIE, RIE (CV-l), RIE (CV-e), DGAW
(CV-l), SGAW (CV-l), SGAW (CV-e), caut-PCA (CV-l), and
caut-PCA (CV-e). The first part of the methods’ name is
as explained in Sec. II, while the notations CV-l and CV-
e refer to the cross-validation strategy by maximization of
the test-likelihood or test-completion error, respectively (see
Sec. II C). For the sake of clearness, in the figures of this
section we omit the combinations of methods and CV strate-
gies that are less distinguishable or efficient. Although the
CV strategy may induce some statistically significant differ-
ences for some values of the parameters q, αD (see Fig. 1,
αD = 1, Ttr = 144), such differences are negligible in most
cases. Importantly, in the analysis below we add the baselines
oracle and raw, in which no cleaning procedure is applied
but, instead, the quality estimators Q(X (te)|Cv) and Q(X (te)|E )
are directly evaluated using as cleaned matrices the true and
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FIG. 1. Scatter plot of d (Jv, J ) (lower is better) versus � (higher
is better) for synthetic data in the severe undersampling regime
Ttr = 144. Points and error bars are averages and standard errors of
the mean across subjects, and each point corresponds to a different
method. The thin vertical error bars with no cap over RIE are the
standard deviation across subjects. The vertical line indicates the
likelihood of the oracle method (whose d (Jv, J ) vanishes). Higher
panel: αD = 1 (strongly correlated matrices, highly discontinuous
spectrum). Lower panel: αD = 3 (weakly correlated matrices).

the sample matrices, respectively. An efficient estimator is
expected to exhibit a value of Q larger than that of the raw es-
timator, and as close as possible to that of the oracle estimator.

We mainly focus on the analysis of the distance from the
true precision matrix d (Jv, J ). This is the quality criterion
presenting by far higher variability across methods in terms
of its subject-to-subject errors (see Fig. 1). Information
regarding the performance in terms of other quality
criteria [test-likelihood, d (Cv,C), test-completion error,
test-pseudolikelihood] and for variants of these cleaning
methods (cross validated with respect to the completion error
or the pseudolikelihood) may be found inAppendix C and in
Ref. [58], where a complete table of the performance of all
algorithms according to all the criteria is made available [59].

In Figs. 1 and 2, we show the subject-averaged values of
d (Jv, J ) (J = C−1 being the best precision matrix for a given
method) versus the test likelihood. Each point corresponds to a
different algorithm, and each figure to a different combination
of the data-set parameters q, αD. The error bars represent the

FIG. 2. As in Fig. 1 but for Ttr = 1000 (moderately under-
sampled regime). The horizontal bars indicate the mean±standard
deviation of d (Jv, J ) corresponding to the raw (upper), and raw
q-corr (lower) methods.

standard error of the mean (SEM) across subjects. For refer-
ence, we also include the standard deviation across subjects
(Ns

1/2 = 10 times larger than the SEM) only for the RIE (CV-
l) method (yaxis thin error bars without cap). Please notice
that the SEM, indicated by capped error bars are, instead, of
the same order than the symbol size. The grey vertical strip
(oracle method) indicates the value of the test-likelihood error
corresponding to the true correlation matrix Cv. Mind that the
oracle estimator exhibits null d (Jv, J = Jv) = 0.

Figure 1 corresponds to Ttr = 144 (q  0.85, severe under-
sampling), while Fig. 2 to Ttr = 1000 (q = 0.116, moderate
undersampling). In the severe undersampling regime, all
the considered methods lead to a cleaned precision matrix
whose error is lower than one, while the distance d (Jv, J =
E−1) corresponding to the raw estimator lies far outside
the figure at (�, c̄, d )  (−327, 0.79, 11.7) for αD = 1 and
(�, c̄, d )  (−381, 1.5, 17.6) for αD = 3. In such a severe
undersampling situation, the raw unbiased estimator of the
precision matrix exhibits matrix elementwise errors which are
more than ten times larger than the average of the matrix
elements of Jv.

This is precisely what we expect from random matrix
theory: whatever distribution the Cv has been sampled from,
the empirical matrix E , follows (assuming a Gaussian data
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likelihood) the Wishart distribution PW(E |Cv) whose aver-
age is Cv (see, for example, Ref. [40]), while the sample
precision matrix E−1 follows the inverse-Wishart distribution
PiW(E−1|Cv−1) whose average is (1 − q)−1Cv−1. Hence, we
expect that the precision matrix in a situation of q  0.9 is
about ten times larger than the true precision matrix. This
argument suggests we compare our results with an additional,
reference cleaning method simply consisting of multiplying
the raw precision by 1 − q:

E → J = (1 − q)E−1. (7)

We refer to this method to infer J as raw (q-corr.) in the
figure legend. The raw q-corrected method systematically re-
duces the distance to the true precision matrix with respect
to E−1 (d  2.0 for αD = 1 and d  3.3 for αD = 3) for the
lowest Ttr but, in this case, it still leads to a much larger
distance d than the rest of the considered cleaning methods.
The situation is the opposite for the largest Ttr = 1000, see
Fig. 2: For αD = 1, there is no cleaning method leading to a
significantly lower d than the raw q-corrected method: clean-
ing is likely to be counterproductive [only RIE (CV) leads to
a nonlarger d than raw (q-corr.)]. The intermediate situation
for Ttr = 300 is shown in Fig. 11.

We now draw some conclusions on the synthetic data anal-
ysis from the results in Figs. 1, 2 and Appendix C.

(1) The across-method differences in terms of distance
from the true precision matrix are more significant than in
terms of test likelihood and completion error: significant
differences between two methods in � and c̄ also imply sig-
nificant differences in d , while the opposite does not hold
(see Figs. 1 and 2). In any case, the method ranking resulting
from d , c̄, and � are consistent, these quantities being strongly
correlated across methods (Figs. 10 and 11).

The across-method differences in d are, in some cases,
significant not only in terms of SEM but even in terms of
standard deviation across subjects (Fig. 1). In these cases, the
difference between the best and worst algorithms’ average
d amounts to two or more standard deviations of d across
subjects and, consequently, the best methods present lower
distance than the worst methods for most of the subjects.

(2) The ranking of methods providing a lower distance to
the population precision matrix depends much on the dataset
characteristics q, αD. While for high values of q all the con-
sidered noise-cleaning algorithms reduce the distance to the
population precision matrix, beyond the raw and raw (q-corr.)
algorithms, for low values of q the noise-cleaning may be
counter-productive (Fig. 6).

(3) For sufficiently large values of Ttr , the optimal RIE is
the best performing in terms of all the criteria, when comple-
mented with the CV for the parameterη suggested in this article
[algorithm RIE (CV), see Figs. 2 and 6].

(4) Considering the whole grid of data-set parameters
q, αD, the best performing algorithms (according to d) are RIE
(CV), shrinkage (CV), DGAW (CV-l) (see Figs. 1 and 6). The
first two, however, have the advantage of being principled,
faster (not requiring an optimisation at the level of X (in)), and
robust (performing well in all regimes of the synthetic bench-
mark and on the fMRI data as well—see below), while GAW
works well for low degrees of interaction only, and it is less
robust. The high-αD, high q regime in which the GAW algo-

rithm performs well is, incidentally, the most difficult regime,
presenting the highest values of d , c̄, and the lowest values
of � (Figs. 6, 10, and 11). The results of this section (limited
to the specific Haar-Dirichlet generative model that we use
to generate the synthetic data) suggest using the RIE (CV)
algorithm, since it is the one providing a distance d lower or
statistically compatible with the (q-corrected) raw estimator
even for large values of Ttr .

(5) The proposed algorithm caut-PCA significantly
improves PCA for almost all considered values
of q, αD.

We note that, for some of the probed values of q, αD, RIE
(CV) performs worse than RIE (Fig. 6) despite the fact that
the parameter η is cross validated from a list that actually
contains the value η = N−1/2 used by the plain RIE method.
This is possible since RIE does not have any hyperparameter
and consequently does not need a validation set: the spectrum
λ in Eq. (1) is computed from the Ttr vectors in X (tr), while
in RIE (CV) it is computed from the Tva = (5/6)Ttr vectors in
X (va). The same happens with PCA (CV) and PCA (Minka)
(Fig. 6).

B. Noise cleaning the fMRI brain activity datasets

We have applied the noise-cleaning algorithms to the two
fMRI collections A and B described in Sec. II E. In this case,
we do not have a population precision matrix Jv to compute
the distance d from the inferred J . We assess the quality in
terms of the criteria �, c̄.

We present, in Fig. 3, the average of the criteria �, c̄ across
the subjects of collections A and B for various noise-cleaning
methods. The short, capped error bars indicate the SEM across
data-set subjects, while the thin error bars without cap over the
PCA (CV-l) method indicate the standard deviation. The lasso
(CV-l,e) algorithms are absent in the figure since they did not
achieve convergence (see the details in Appendix E). The GA
algorithms not in Wishart form may present problems with the
positive-definiteness of the optimizing matrix C, depending
on the choice of the learning rate—this is why they are ab-
sent in collection B. Conversely, in collection A, the DGAW
and SGAW algorithms have been excluded since they present
lower performance (generally speaking, the performance of
the GA-based algorithm is rather sensible to the choice of the
learning rate and bootstrapping fraction, see Appendix D).

We draw the following conclusions for this section:
(1) The differences across algorithms are definitely sta-

tistically significant in both data sets, in some cases even at
the subject level. Assuming that the results on synthetic data
sets hold in this context, we expect that the across-algorithm
differences in the (inaccessible) d are even more significant.

(2) The results are qualitatively consistent in the two data
collections. The best performing algorithms in terms of both
� and c̄ are RIE (CV) and shrinkage (CV), followed by caut-
PCA, consistently with the synthetic data-set results.

(3) On the natural data sets, only RIE (CV), not RIE, per-
forms well: the CV of the parameter η becomes particularly
useful. We make note that the RIE algorithm Eq. (1) is a
function of q and that, in natural data, the choice q = N/Ttr

neglects the temporal correlation between data-set vectors. A
more convenient choice would be qeff = Nτ/T , where τ is
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FIG. 3. Scatter plot of test-set likelihood � (higher is better)
versus completion error c̄ (lower is better) in empirical fMRI data.
Points and error bars are averages and standard errors of the mean
across subjects, and each point corresponds to a different method.
The thin vertical error bars with no cap over PCA are the standard
deviation across subjects. Higher and lower panels: fMRI databases
A and B, respectively.

the correlation time of the series (so the effective number of
uncorrelated vectors is taken to be Teff = T/τ ). It is possible
that the CV of η in RIE (CV) compensates for the misleading
choice q = N/Ttr . This is a possible origin of the inadequacy
of plain RIE for natural data.

IV. CONCLUSIONS AND DISCUSSION

The precision matrix between different brain regions, in-
ferred from fMRI of MEG, is a fundamental quantity in the
context of network neuroscience. It is widely studied as a
model of SC between brain areas in the harmonic approxi-
mation and to capture significant intersubject and intergroup
differences, beyond those encoded in the correlation matrix
[11,24,25,27,27–32].

This motivates the interest in an assessment of the absolute
and relative utility of various noise-cleaning strategies for
an accurate inference of the precision matrix in the context
of network neuroscience. In particular, we are interested in
assessing, and comparing with known methods, the efficiency
of an overfitting mitigation strategy based on random matrix
theory, the Ledoit-Péché, or optimal RIE [39,47] (see as well

Ref. [60]), whose efficiency and potential utility has not yet
been, to the best of our knowledge, addressed in the context
of neuroscience.

In this article, we have performed a numerical analysis
of the relative efficiency of several well-known strategies of
regularization of the covariance (and hence precision) ma-
trix of data sets in the T � N regime, being N , T of the
order of typical fMRI and MEG neural data. For such a
comparison, we have used both synthetic data sets of Gaus-
sian vectors, of varying inverse sample ratio q = N/T and
degree of off-diagonal correlation, and two data sets of human
brain activity at rest, measured by fMRI. We have performed
such a comparison in terms of both the distance d between
the noised-cleaned (inferred) and population (true) precision
matrices, in the case of the synthetic data sets, and of the
out-of-sample likelihood �.

We have observed that:
(1) At least in our synthetic data set, the distance d , or

the average error in the inferred precision matrix elements,
may significantly depend on the chosen cleaning strategy (that
may induce typical differences of the 20% in d or larger).
Such interalgorithm differences in d are larger than those
in �. This suggests that, in a context in which the precision
matrix should be inferred accurately (e.g., for classification
purposes), the choice of the noise-cleaning method may be
crucial.

(2) The analysis of both fMRI data sets consistently sug-
gests that the algorithms shrinkage (CV) and RIE (CV) are
those providing a higher � and, consequently, a more faithful
precision matrix. Notably, the RIE method is accurate only
in its RIE (CV) variant, proposed here, in which one of
the plain RIE parameters is cross validated, hence compen-
sating for the presence of temporal correlations in the data
(Fig. 3). The method RIE (CV) has the further advantage
of being, by construction, optimal with respect to other ro-
tationally invariant methods (as shrinkage) for large enough
values of T , as confirmed by the synthetic data-set analysis.
Indeed,

(3) In synthetic data, RIE (CV) exhibits, as expected, sig-
nificantly lower d for large T ’s, being the only method that
improves the raw estimator E−1 [with the Marcenko-Pastur
q-correction Eq. (7)] in all the simulated regimes (see Fig. 6).
Again, and specially for strongly correlated synthetic data,
only our cross-validated variant RIE (CV) method performs
well (Figs. 1 and 2).

(4) The simple GA algorithms, consisting in a (train-data-
set likelihood) GA iterative updating of the covariance matrix,
combined with an early stopping criterion to prevent over-
fitting, outperforms the most efficient algorithms in low-T ,
weakly correlated synthetic data (Figs. 1 and 6). It is not our
aim to present a systematic nor rigorous study of the effi-
ciency of such algorithms that could be optimized in several
ways (bootstrapping strategy and fraction, learning rate, initial
condition, stopping criterion). We rather show numerically
that, as a proof of principle, such a simple early stopping GA
technique is enough to accurately infer weak correlations of
strongly undersampled data, at least in the synthetic data set
at hand.

(5) The cautious PCA algorithm, simply consisting of rais-
ing the value λ̄ of the noise eigenvalues in the PCA method,
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systematically improves the inferred precision matrix with re-
spect to PCA in the natural and synthetic datasets (see Figs. 3,
6, and Appendix B).

Summarizing, the present analysis results suggest that,
whenever accurate statistical estimators of the precision
matrices are needed in brain connectivity studies, the optimal
RIE, if completed with the simple CV strategy for the
parameter η proposed in this article, is the best one in terms
of robustness, accuracy, and computational cost.

In this article, we have cast the inference of brain struc-
ture from single-subject temporal fMRI of MEG series as
a problem of covariance matrix noise cleaning, hence de-
liberately restricting the analysis to (1) linear inference: the
data nonlinearities are neglected; (2) noncausal inference: we
neglect the data temporal correlations; (3) inference from
single-subject data only: we do not exploit group informa-
tion. In this precise context, we have performed a systematic
comparison between well-known noise-cleaning algorithms,
together with a further method (RIE) based on random matrix
theory.

All such algorithms stand on a Gaussian likelihood
N (X |C), and some of them on the Marchenko-Pastur relation
or on the inverse Wishart distribution for C: i.e., on a statistical
theory of finite-T correction of the sample spectrum, again
under Gaussian hypotheses. The quality of the noise cleaning
will consequently depend on the extent to which the data meet
the above mentioned assumptions [1, 2].

The working hypotheses [1, 2] are, in principle, not satis-
fied in fMRI data. Nevertheless, in the presence of moderate
temporal correlations and relatively small nonlinear cumu-
lants, as those exhibited by BOLD resting-state fMRI data
[61], the use of (linear) noise-cleaning algorithms may still be
advantaged in front of causal or nonlinear inferring models.
First, it is not obvious that, in severe undersampled situa-
tions, cumulants of higher order can be significantly inferred.
Second, in the linear setup we can count, as said before, on
a statistical theory of finite-T corrections of the population
matrix spectrum.

Starting from linear inference, and sequentially accounting
for nonlinearities, temporal correlations [12–21], and group
information [11,25,29,30,32,35–37] would allow addressing
the relative importance of these elements in the inference of
functional data. Particularly interesting could be the compari-
son with one of the standard tools for inferring brain structure,
dynamic causal modelling [62–66], accounting for both non-
linearities and temporal correlations. We suggest as well a
comparison with the recent promising algorithm [60], rooted
as well in random matrix theory.

We publicly release the algorithm’s implementations and
the code for reproducing the experiments [58].
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APPENDIX A: OPTIMAL RIE DERIVATION SKETCH

We present an informal sketch of the derivation of the
Optimal RIE algorithm; please see Refs. [39,40,47,48] for
details. Minimizing dHS(C,Cv) = tr[(C − Cv)2] with the con-
straint C = U †�̂ U leads to λ̂i = ∑

k (v̂†
k ûi )2λ

(v)
k . The optimal

FIG. 5. As in Fig. 4, but cross validating the value of p and
comparing (in the same database X ) PCA (CV) and caut-PCA (CV)
with other methods.
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FIG. 6. d (Jv, J ) (lower is better) versus αD in synthetic data.
Points and error bars are averages and standard errors of the mean
across subjects, and each curve corresponds to a different method.
Higher, middle and lower panel correspond to Ttr = 144, 300, 1000,
respectively. In the two highest panels, the inset compare the raw, raw
(q-corr.) and RIE estimators, while in the lower panel all estimators
are in the main figure.

�̂ is, in other words, a function of the true spectrum and
of the overlap between the true and empirical eigenvectors.
Fortunately, and roughly speaking, there exist RMT relations
allowing us to express the (average) overlap between true and
sample eigenvectors in terms of the true spectrum and the
(Cauchy transform of the) sample spectrum (see Ref. [40]).
In this way, one can write �̂ in terms of the true spectrum �v

FIG. 7. d (Cv,C) (lower is better) versus αD in synthetic data, for
Ttr = 300. Points and error bars are averages and standard errors of
the mean across subjects, and each curve corresponds to a different
method.

FIG. 8. Test-likelihood � (higher is better) versus αD in synthetic
data, for Ttr = 300. Points and error bars are averages and standard
errors of the mean across subjects, and each curve corresponds to a
different method.

FIG. 9. Completion error c̄ (lower is better) versus αD in syn-
thetic data, for Ttr = 300. Points and error bars are averages and
standard errors of the mean across subjects, and each curve corre-
sponds to a different method.
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FIG. 10. Top left: scatter plot of d (Jv, J ) (lower is better) versus test-likelihood � (higher is better), for Ttr = 144, αD = 1. Top right: idem
but d (Jv, J ) versus c̄ (lower is better). Bottom, left and right: idem, but for αD = 3.

only. Finally, the true spectrum may be related to the empir-
ical spectrum through the Marchenko-Pastur equation, which
relates the spectral density of Cv to (the Cauchy transform of)
that of E :

gE (z) =
∫

dλ
ρCv (λ)

z − (1 − q + qzgE (z))λ
,

gM(z) :=
∫

dλ
ρM(λ)

z − λ
Cauchy transform.

In this way, it is possible to write an expression for �̂ in terms
of � only:

λ̂i  λi

|1 − q + qλi limη↘0 gE (λi − ıη)|2 ,

of which Eq. (1) is a further simplification.
We make note that in our repository [58], we actually

implement the further debiased RIE heuristic correction for
low values of N . Please see the details in Ref. [39].

APPENDIX B: CLEANED SPECTRA

In Fig. 4, we illustrate the effect of the algorithm caut-
PCA. We generate a single synthetic database X ∼ N (·|Cv),
where Cv is sampled from the Haar-Dirichlet model with
Ttr = 144, N = 116, αD = 3. Afterward, we plot the spectra
of the cleaned matrix C according to PCA and caut-PCA for a
fixed value of p = 40. As explained in Sec. II A, the noise
eigenvalue of caut-PCA (λ̄(cau)

p ) is larger than that of PCA
(λ̄(ml)

p ) for a fixed p, whenever λ̄vp � λp.
The reader may notice that the λ j>p eigenvalues of caut-

PCA in Fig. 4 are not constant. This is because we are using
the standardization in step 2 of the description of cautious-
PCA in Sec. II A. Using the rescaling instead, one obtains a
similar spectrum with a constant noise eigenvalue.

As a consequence of λ̄(cau)
p > λ̄(ml)

p , the cross-validated
value of p∗ tends to be lower in PCA (CV) than in caut-PCA
(CV), as illustrated in Fig. 5. The reason is that the low
value of λ̄(ml)

p penalises large values of p. In the presence
of overfitting, for low T , the validation-set energy term in
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FIG. 11. As in figure 10 but for Ttr = 300.

the likelihood, −(1/2)
∑

t

∑
j>p(x′

j (t ))2/λ̄p (being x′ = Ux)
decreases fast with p, since the average of (x′

j>p)2 over the
validation set tends to be larger than in the inversion set for
low T , i.e., larger than its ML value λ̄(ml)

p (as predicted by the
Marchenko-Pastur equation). Raising the value of λ̄p > λ̄(ml)

p ,
one takes into account this fact. Therefore, the resulting value
of the cross-validated p∗ tends to be larger in caut-PCA. As a
consequence (see Fig. 5), a larger number p∗ of eigenvalues
is more similar to the sample (and, more importantly, to the
oracle) spectrum.

For reference, in Fig. 5 we also compare the methods PCA
(CV) and caut-PCA (CV) with shrinkage (CV), RIE (CV),
GAW, raw, and oracle.

APPENDIX C: SYSTEMATIC RESULTS
FOR THE SYNTHETIC DATA SET

We here present some complementary results of the syn-
thetic simulations. In Fig. 6 we show d versus αD for various
algorithms, and different values of Ttr (in different panels).
This is a different perspective of the same data of Figs. 1 and
2, but for more values of αD. We show d (Cv,C) versus αD for
a single value of Ttr = 300 in Fig. 7. Intermethod differences
are less significant, with respect to their statistical errors, than
for d (Jv, J ). The same occurs with the test-likelihood (Fig. 8)
and the test-completion error (Fig. 9). Figures 10, 11 present
the likelihood versus the completion error for Ttr = 300, αD =
1, 3, respectively.
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FIG. 12. Illustration of the GAW algorithm. Upper panel:
Validation- and inversion-set likelihoods versus the number of iter-
ations τ . Lower panel: The trace of the resulting covariance matrix
tr(C(τ )) versus τ . In this example, the database X is a synthetic data
set with αD = 3, Ttr = 144, Tin = (5/6)Ttr . The algorithm parameters
are ηGA = 10−4, ηλ = 5 10−2.

APPENDIX D: EARLY-STOPPING GRADIENT
ASCENT ALGORITHMS

We now describe the GAW algorithm. We perform a GA
search of lnN (X (in)|C) on the N × N real matrix Y , defined
such that C−1 = YY †. Performing the GA search on Y guar-
antees the positive-definiteness of the precision matrix YY †

at each iteration. One first takes an initial condition in the
first τ = 0 step, Y (0) = 1N ; afterward we follow the simple
gradient iteration for the rs element of matrix Y ,

Yrs(τ + 1) − Yrs(τ ) = ηGA
∂

∂Y ′
rs

∣∣∣∣
Y (τ )

lnN (X (in)|C), (D1)

where C = (Y ′Y ′†)−1 and where the learning rate ηGA is a
small, positive parameter. The gradient in Eq. (D1) takes the
form

∂

∂Y ′
rs

lnN (X (in)|C) (D2)

= (CY ′ + (CY ′)†) − (EY ′ + (EY ′)†)rs, (D3)

where E is the unbiased estimator of the covariance matrix
given X (in). The term CY may be computed from Y using the
singular value decomposition Y = W �−1/2Z , where W , Z are
unitary matrices and � is the diagonal eigenvalue matrix of C,
afterward taking CY = W �1/2Z . The iterations stop when the
quality criterion Q(X (va)|C(τ )) decreases from the τ th to the
τ + 1th iteration, and the cleaned correlation matrix is taken
as C(τ ).

The SGA algorithm is based on the above described (de-
terministic) GA algorithm but, instead of the deterministic
gradient ascent of Eq. (D1), we use a stochastic gradient
ascent rule, inspired in artificial neural network learning,

Y (τ + 1) − Y (τ ) = η(M(τ ) + M†(τ )), (D4)

M(τ ) = (C(τ ) − E (τ ) )Y (τ ), (D5)

where E (τ ) is a random bootstrapping of the sample correla-
tion matrix, consisting of the covariance matrix of a subset
of B � T sample vectors composing the training set, with
repeating indices. In other words, at each iteration of the GA
algorithm, the sample term of the gradient in Eq. (D1) is
not constant, but calculated with a random bootstrapping of
the data, different at each epoch. In this case, the stopping
criterion is consequently modified: the iterations stop when
Q(X (va)|Q(τ )) decreases for τd consecutive iterations.

Adding the constant trace constraint. Suppose that Y ∗ is the
solution satisfying Y ∗ = arg max[N (X (in)|(YY †)−1)] subject
to the constraint tr(C) = N with C = (YY †)−1. Then, the Y ∗
satisfies

∂Y [lnN (X (in)|C) − μ [tr(C) − N]]|Y ∗,μ∗ = 0, (D6)

∂μ[lnN (X (in)|C) − μ [tr(C) − N]]|Y ∗,μ∗ = 0, (D7)

where μ is the Lagrange multiplier associated to the con-
straint. We have, hence, a further scalar variable and a further
equation in the satisfaction problem (that we solve only ap-
proximately, since we apply the early stopping criterion). The
two above coupled equations induce the following Euler iter-
ative dynamics in the variables Y , μ:

μ(τ + 1) − μ(τ ) = ±ημ [N − tr(C(τ ))], (D8)

Y (τ + 1) − Y (τ ) = ηGA [M(τ ) + M†(τ )], (D9)

M(τ ) := C(τ )Y (τ ) − EY (τ ) + 2μ(τ )C2(τ )Y (τ ), (D10)

where ημ is the learning rate associated to the updating of
μ that we set constant and larger than ηGA (in the numerical
calculations, we actually set ημ = 10ηGA).

We show the validation and inversion likelihood as a func-
tion of the number of iterations in the GAW algorithm in
Fig. 12. When the validation-set likelihood reaches its max-
imum value (horizontal line in Fig. 12), the iterations stop
and the resulting C is taken as the regularized matrix. The
lower panel of the figure shows the behavior of tr(C(τ )) and
its oscillations around its required value N = 116. Increasing
the value of ηλ reduces the amplitude of the oscillations in
tr(C), but this does not have a statistically significant impact
on the results for the subject-averaged values of d , �.

APPENDIX E: DETAILS OF
THE NUMERICAL SIMULATIONS

We present some details of the numerical algorithms (see
Ref. [58]). The array of values of the cross-validated hyper-
parameters is p = 1, . . . , N − 1 for PCA and caut-PCA; for
FA, the hyperparameter r takes the same values; for shrinkage,
α ∈ {1 − 10x} with x taking 30 equally spaced values between
−2 and −0.1; for RIE, η ∈ x N−1/2 with x taking the values
0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100. For the Lasso algorithm,
we have employed the scikit-learn implementation [68], called
GraphicalLassoCV, with an initial four-length grid with four
refinements and 1000 maximum number of iterations. Also,
for FA and shrinkage, we use the scikit-learn versions. For
the GA and GAW algorithms we employ ηGA = 10−4 and
ημ = 10−2. For the stochastic version, SGAW, we employ a
batch size B = Tin/4.
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