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ABSTRACT

APPLICATION OF BUSINESS ANALYTICS APPROACHES TO ADDRESS

CLIMATE-CHANGE-RELATED CHALLENGES

August 2023

Donald J. Jenkins, A.A.S., Charter Oak Community College, Connecticut
B.S./B.A., University of San Diego

M.S., Naval Postgraduate School, Monterey
Ph.D., University of Massachusetts Boston

Directed by Associate Professor Foad Mahdavi Pajouh

Climate change is an existential threat facing humanity, civilization, and the natural world. It

poses many multi-layered challenges that call for enhanced data-driven decision support meth-

ods to help inform society of ways to address the deep uncertainty and incomplete knowledge

on climate change issues. This research primarily aims to apply management, decision, infor-

mation, and data science theories and techniques to propose, build, and evaluate novel data-

driven methodologies to improve understanding of climate-change-related challenges. Given

that we pursue this work in the College of Management, each essay applies one or more of the

three distinct business analytics approaches (i.e., descriptive, prescriptive, and predictive analy-

sis) to aid in developing decision support capabilities. Given the rapid growth in data availabil-

ity, we evaluate important data characteristics for each analysis, focusing on the data source,

granularity, volume, structure, and quality. The final analysis consideration is the methods

used on the data output to help coalesce the various model outputs into understandable visual-

izations, tables, and takeaways. We pursue three distinct business analytics challenges. First,

we start with a natural language processing analysis to gain insights into the evolving climate

change adaptation discussion in the scientific literature. We then create a stochastic network

optimization model with recourse to provide coastal decision-makers with a cost-benefit anal-

iv



ysis tool to simultaneously assess risks and costs to protect their community against rising

seas. Finally, we create a decision support tool for helping organizations reduce greenhouse

gas emissions through strategic sustainable energy purchasing. Although the three essays vary

on their specific business analysis approaches, they all have a common theme of applying busi-

ness analytics techniques to analyze, evaluate, visualize, and understand different facets of the

climate change threat.
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C H A P T E R 1

INTRODUCTION

1.1 Background

Climate change is real, and its effects are worsening (United Nations Treaty Collection

2015). Much climate-change-related research highlights the associated risks and the deep un-

certainty of the timing and severity of climate change impacts (Hallegatte et al. 2012; Haasnoot

et al. 2013). Given the complexity of climate change, numerous fields of study are actively

pursuing research into climate change causes and how to adapt to or mitigate its worst ef-

fects. Because of this, there is substantial research applying various analytical approaches to

manage the associated risks. Just a small sampling of the topics covered include predicting

rising sea levels (Garner et al. 2018; Sweet et al. 2017; Neumann et al. 2015), mitigating

greenhouse gas creation (Fernandez and Watterson 2012; Vuuren et al. 2011; Google 2013),

adapting natural and built environments to climate changes (Rosenzweig et al. 2011; Aerts et

al. 2014; Ibáñez-Forés, Bovea, and Pérez-Belis 2014; Toimil et al. 2020; Reiblich et al. 2019;

Sutton-Grier, Wowk, and Bamford 2015), addressing impacts on vulnerable communities (Hal-

legatte et al. 2013; Mikulewicz 2017; Reed et al. 2013), and managing the significant effects

of climate-change-related catastrophes (Neumann et al. 2015; Hsiang et al. 2017; Nordhaus

2017). Researchers are applying analytical means to better understand climate change risks.

The complexity of many climate change challenges calls for interdisciplinary approaches to

attacking climate change issues head-on. With the rapid increases in data availability, comput-

ing resources, and data science capabilities (Pollard, Spencer, and Jude 2018; Hassani, Huang,
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and Silva 2019), there is a growing focus on leveraging computer and information sciences to

apply unique analytical and algorithmic techniques to tackling climate-change-related issues

(Faghmous and Kumar 2014). This increasing focus is most visible in how researchers are

forming communities around computational sustainability (Gomes et al. 2019) and climate in-

formatics (Monteleoni et al. 2016), as well as information and decision sciences conferences

holding dedicated tracks for sustainability-related issues (INFORMS 2020). This momentum

of applying advanced analytics presents a real opportunity to help in the fight against climate

change. In furthering the cause of using business analytics to better inform the issues associated

with climate change, this dissertation will combine the capabilities of management, decision,

information, and data sciences to explore three distinct issues regarding climate change chal-

lenges. In applying business analytics, there are several considerations we will discuss in the

following paragraphs.

Before applying business analytics to a problem, the analyst needs to understand the pur-

pose of the analysis. The primary goal of business analytics is to help decision-makers under-

stand and solve problems and to make decisions (Evans 2016). In order to make data-driven

decisions, the analyst applies a problem-solving approach to define, structure, and analyze the

problem (Phillips-Wren, Daly, and Burstein 2021). Upon completion of the analysis, the an-

alyst presents results that will inform relevant stakeholders of the problem while potentially

providing possible courses of action and associated challenges of taking those courses of ac-

tion. In short, sometimes, the analysis may only be undertaken to inform a particular situation,

enabling stakeholders to ground their understanding of a problem in a data-driven manner.

Other times, the situation may be well understood, and the analysis is applied to aid in the

stakeholders’ decision-making. Understanding when an analysis’ purpose is meant to inform

versus aid in decision-making is critical context to know before starting an analysis.

The next consideration is the analytics approach; specifically, the approaches are descrip-

tive, predictive, and prescriptive analyses (Evans 2016). In many business analyses, one or
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more of these approaches are used depending on the objective of the analysis. Descriptive

analysis is commonly used to understand a business or field’s past and current performance.

A descriptive analysis allows an interested party to understand the state of a problem and find

areas for opportunity. Predictive analytics attempts to predict the future by examining histor-

ical data to detect patterns or relationships that can help inform possible futures. Predictive

analytics allows one to ask “what if?” questions based on information already captured or

understood from the past. Finally, prescriptive analytics attempts to identify the “best” alter-

natives to choose based on a combination of choices or alternatives that would typically be too

challenging for a person to determine effectively. Businesses often apply prescriptive analytics

to maximize financial outcomes or minimize overall costs. Although ample literature high-

lights each analytics approach, in reality, many analytical challenges often apply two or three

approaches to address the needs of a particular problem (Evans 2016).

The next essential consideration is the data used in an analysis. In recent years, there has

been a significant increase in the amount of data generated and made available for numerous

purposes, whether in business, research, or other areas (Desjardins 2019). According to IBM

in 2017, “Every day, we create 2.5 quintillion bytes of data. To put that into perspective, 90%

of the data in the world today has been created in the last two years alone.” (Watson Market-

ing 2017). This continuing growth in data is due to many factors, including the growth of the

internet, the widespread use of digital technologies, and the increasing availability of comput-

ing power and storage (Desjardins 2019). The increased data availability has led to myriad

new opportunities for researchers in many fields associated with climate change (Monteleoni

et al. 2016). However, with this increased data availability, there are new challenges in man-

aging, analyzing, and interpreting larger datasets. As such, researchers must be well-equipped

with the necessary skills and tools to navigate this new data landscape effectively (Sebestyén,

Czvetkó, and Abonyi 2021).
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Before starting an analysis, the analyst needs to identify key data sources to use in the

analysis and understand the characteristics of the data. Many sources of research in data usage

exist that highlight elements one needs to consider when capturing or using data (Madnick

et al. 2009). For our purposes, Table 1 captures the key data characteristics we considered

when applying a business analytics approach to the climate-change problems discussed in this

research. When conducting analysis, it is essential to use data fit for purpose (Devillers et

al. 2007). More often than not, the data is not fit for purpose “as-is”, but there may be transfor-

mations the analyst can apply to enable using that data for the analysis. Alternative data sources

must be identified and obtained if available data cannot be made fit for purpose. Sometimes

data may be too costly or unavailable to conduct the desired analysis, so simulated or random-

ized data may be needed to complete the analysis. Even after identifying the data source, the

analyst must spend substantial time assessing the data’s usefulness. In today’s business world,

analysts spend 70-80% of their time developing an understanding of their data and wrangling

it to be used within their analysis (Rehman et al. 2019). One should expect the same effort

when applying business analytics to climate change challenges. We essentially encountered

that same level of effort in conducting the research in the following three chapters.

The final consideration when applying business analytics is the analysis output. Some

factors to consider are the presentation format, key findings, visualization methods, model lim-

itations, and actionable recommendations (Evans 2016). Given that we focus the work in our

research from a management information sciences perspective, we will seek novel ways to

identify the key findings and actionable recommendations through visualizations. Visualiza-

tion is a powerful tool to help analysts connect to their audience in ways that the written word

or numerical tables cannot (Tufte 2006). Often the volume of numerical information precludes

effectively communicating patterns or results in a tabular format, but using summary visual-

izations enables effective display and discussion of the results. There are many visualization

techniques to assist in displaying information, with the method used being dependent on the
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Table 1: Common Data Characteristics to consider when applying business analytics.

Characteristic Definition Examples

Source The origin of the data Published reports, sensor data, Geographic Information Sys-
tem (GIS) data, open-source government reports, online text
repositories

Granularity The level of detail or speci-
ficity of the data

In business, fine-grained data includes individual transaction
details, while coarse-grained data may be monthly or quar-
terly sales figures

Volume The size or amount of data
that is collected

Big data can contain billions or even trillions of data points,
whereas much smaller datasets may contain tens to hundreds
of data points

Structure Data may or may not be
organized in a structured
manner

Structured data is organized into a specific format, such as a
spreadsheet, database, or tables of numbers, while unstruc-
tured data is not, such as free text, video, or audio files

Quality The accuracy, completeness,
and consistency of the data
(often context dependent)

High-quality data is accurate, complete, and consistent,
while poor quality data is prone to errors and inaccuracies

characteristics of the information to be displayed, the purpose of the analysis, and the audience

interpreting the results (Keim 2002). We believe that applying business analytics techniques

discussed in the preceding provides additional interdisciplinary capability in attacking the chal-

lenges of climate change.

1.2 Problem statement

Climate change is a grave threat to both humanity and the natural world. We can better un-

derstand climate change’s multifaceted challenges by applying data-driven theories and tech-

niques commonly used in management and business settings. It is crucial to develop effective

decision-making strategies relying on data analyses that assist society in addressing knowledge

gaps and understanding complex uncertainties related to climate change. This study aims to

assess the effectiveness of the business analytics approach in addressing climate change issues

through applications such as understanding adaptation discussions, aiding businesses in en-

ergy purchasing decisions that contribute to mitigation efforts, and equipping coastal decision-
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makers with decision support tools to assess risks and costs associated with safeguarding their

communities.

1.3 Research purpose

This research aims to apply decision, information, and data science theories and techniques

to propose, build, and evaluate novel data-driven methodologies to improve understanding

climate-change-related challenges. Additionally, given that we undertake this work in the Col-

lege of Management, we will bring a management focus to the discussion. We will apply the

business analytics considerations discussed above, considering the analysis purpose, the ap-

proach used, characteristic data assessment, and effective output methodologies. Each essay

will incorporate one or more of the three distinct business analytics approaches (i.e., descrip-

tive, prescriptive, and predictive analysis) (Evans 2016) to aid in developing decision support

capabilities. Regardless of the analytics approaches used in each paper, all analyses ultimately

have a common thread of using various analytical techniques to evaluate, visualize, and assess

applying data science to understand or address associated aspects of the climate change threat.

1.4 Research essays

To commence our exploration, we will start by laying out the flow of the chapters. We begin

in Chapter 2 by delving into existing research on climate change. We aim to gain insights from

the existing research to enable us to apply business analytics to address climate-change-related

challenges. Within Chapter 2, we discover existing topics where a business analytics mindset

can be applied. Of particular significance to our overall investigation is that, among nearly

15K papers encompassing climate change adaptation, finance-related issues never emerge as

the majority focus in any paper. Building upon this revelation, we approach climate change-
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related challenges from two finance-related perspectives. In the first perspective, discussed in

Chapter 3, we present work that explores the effects of climate change, specifically focusing on

investing to safeguard an urban coastal region against sea-level rise. Chapter 3 demonstrates

that the costs associated with flooding due to sea-level rise can be substantial and highly uncer-

tain. These costs lead us to explore the second finance-related perspective in Chapter 4. Instead

of passively enduring and managing the costly and uncertain repercussions of climate change,

we propose a decision-support model that empowers global companies to curtail their contri-

butions to greenhouse gas emissions while considering the value of going green. Specifically,

we incorporate financial, sustainability, and brand attributes to help decision-makers consider

the overarching value of their sustainable energy purchasing needs. Ultimately, the three core

chapters of this dissertation each contain an essay dedicated to understanding or addressing

climate-change-related challenges. Knowing the reasoning behind the chapter flow, we will

next discuss in more detail the purpose, approach, data characteristics, and outputs of each

essay and summarize the discussions in Tables 2, 3, and 4.

We begin in Chapter 2 by evaluating the discourse occurring within published climate

change adaptation literature using the natural language processing technique of Latent Dirich-

let Allocation (LDA) (Blei, Ng, and Jordan 2003). We use the LDA model results, conducting

a descriptive analysis of climate change adaptation topics discussed over the last two decades,

their interrelation, and their prevalence over time. Even though the final output is primarily a

descriptive analysis, the underlying LDA model used is predictive, transforming unstructured

research article abstracts into a quantitative matrix for analysis. The data source comprises

published literature abstracts identified and downloaded from the Web of Science’s extensive

library (Clarivate Analytics 2020). The dataset contains nearly 15K abstracts, much larger than

that used for a typical literature review but relatively modest for our LDA analysis. One would

expect high-quality data from this source. However, given that we are looking across many

fields of study, we had substantial data-wrangling considerations. For instance, we under-
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Table 2: Relevant analysis considerations for Chapter 2 (Text-mining
climate change adaptation research for thematic patterns emerging in the

21st century.)

Consideration Details

Purpose Inform

Approach Descriptive approach with underlying LDA predictive text-mining application

Data Source Published articles from Web of Science research database and subject matter expertise
from climate change experts

Data Granularity Rough, the abstracts of papers are used rather than the full articles

Data Volume Small, 15K abstracts comprised of hundreds of words

Data Structure Mostly unstructured text data, with additional metadata fields in a table format (e.g., pub-
lication date, journal, field of study)

Data Quality Expected high quality, but some cleansing required (e.g., inconsistent acronym usage, En-
glish language differences)

Output Predictive text model output evaluated by subject matter experts then used to evaluate
patterns in the data using time series, correlation, and heatmap visualizations supported
with summary table outputs

took data cleaning efforts to account for acronyms used inconsistently across fields, different

English word spellings, and bi-lingual entries for some abstracts. The LDA model output is

relatively abstract and complicated. Therefore, we used Subject Matter Experts (SMEs) to re-

view and validate the output of relevant words in order to name the topics meaningfully. This

multi-tiered analysis enabled us to conduct subsequent descriptive analyses to plot time-series

graphs, heatmaps, correlation matrices, and summary tables showing the most pertinent in-

formation describing the relationships within the dataset. Ultimately, this descriptive analysis

exposed the depth and breadth of topics covered within climate change adaptation research

over the last two decades and helped set the stage for enabling the analyses done in Chapters 3

and 4.

In Chapter 3, we conduct an analysis that applies all three of the business analytics ap-

proaches. At its core we have the creation of a network optimization model, which is pre-

scriptive in nature. However, as seen in Table 3, because of the model’s complexity and the

inclusion of multiple datasets, we also require a liberal application of both predictive and de-
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scriptive analytics to solve the model and understand its inputs and outputs. In this chapter,

we develop a cost-benefit analysis model for evaluating coastal protection along a city coast-

line. This model focuses on adapting to climate change over time using a stochastic approach

incorporating future sea level rise. Our model is novel in that we use a network graph-based

approach to assess a non-protected coastal area’s risk while simultaneously evaluating the costs

of implementing a flood protection system. Although the core model is a prescriptive network

optimization, the ultimate decision support analysis also applies a predictive approach in the

use of probabilisitic scenarios and simulation to assess the model outputs on real-world data.

In evaluating the model’s generalizability, we create and assess random network data using the

same techniques. With voluminous input and output data, the summary discussions also require

descriptive analysis in the form of geographic map visualizations, cost-benefit analysis charts

and distribution boxplots aggregating billions of data points for millions of model simulation

runs. To enable coastal decision-makers to potentially use our modeling approach elsewhere,

we demonstrate our case study by using real-world data from only open-source data reposito-

ries, including geographical elevation data, city tax data, tidal gauge data, and published sea

level forecasts. The open-source data required significant transformation to convert into usable

data to create a network model. The characteristics of the input and output datasets cut across

the entire spectrum, ranging in size from large GIS elevation datasets to simple data tables with

a handful of tidal values. We believe the novelty of this model, combined with the ability to

execute it with fully open-source datasets, presents an opportunity for coastal decision-makers

to evaluate the risks in their geographic area, assess the potential costs to adapt to rising sea

levels, and ultimately mitigate its effects.

In seeing the potentially astronomical costs for mitigating damages due to rising sea levels

in Chapter 3, we go upstream of the problem and aim to reduce the underlying greenhouse

gas emissions in Chapter 4’s research. The overarching analytical framework is prescriptive

in its focus, incorporating multi-attribute utility theory (Keeney, Raiffa, and Meyer 1993) and
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Table 3: Relevant analysis considerations for Chapter 3 (Which is more
rewarding in managing sea level rise and hurricane storm surge flooding:

mitigation or response?)

Consideration Details

Purpose Decision Support

Approach Prescriptive approach creating network optimization model, with liberal application of
predictive simulation and descriptive analysis

Data Source Varied, Open source using published research for sea level rise, sensor data from tide level
gauges, GIS land elevation and tax data, tax assessor data tables, and simulated network
data for testing model’s generalizability

Data Granularity Varied, some data very precise and granular (e.g., land elevation heights to one square
meter), some rough estimations based on past literature (e.g., costs to build levees), and
some data simulated from random generation (e.g., random network generation)

Data Volume Varied, inputs Big (e.g., GIS land elevation), to Small (e.g., discount rate single values), to
outputs being Big (billions of network output data points)

Data Structure Varied, very structured datasets (e.g., GIS land elevation) to semi-structured (e.g., tax file
metadata), to probability distributions (e.g., storm and rising sea levels)

Data Quality Varied, high quality (e.g., GIS land elevation), estimated (e.g., cost assumptions for build-
ing levees), and moderate (e.g., incomplete tax assessor data)

Output Multiple, geographic network (e.g., defining relevant area for analysis), chloropleth dis-
plays (e.g., grid flood damages and investments), aggregated stacked bar charts (e.g., cost
benefit graphs), boxplot, and panel graphs (e.g., parameter sensitivity analysis)

10



strategy tables (McNamee and Celona 2008) to strategically assess a multinational company’s

sustainable energy purchases over an extended period as shown in Table 4. This analysis also

incorporates a predictive approach in using the underlying Monte Carlo simulation (Mooney

1997). In this study, our model is novel in that it goes beyond just a cost-benefit model and

incorporates three distinct attributes of energy cost, sustainability requirements, and brand pres-

tige to determine the option with the best utility for the decision-maker. In this case study, while

assessing tools, we needed to create generalizable multi-attribute utility theory and strategy ta-

ble modules for use in the decision support software Lumina Analytica. This final analysis

focuses on helping mitigate the worst of climate change effects by helping a company poten-

tially reduce greenhouse gas emissions. The case study’s data source includes both anonymized

real-world energy usage data for a factory based in Mexico and estimated values for other mar-

ket dynamics based on input from SMEs who worked directly with the customer. Bringing

in distributions for several key parameters, we run simulations to provide the decision maker

with output distributions of potential costs and utility values. We capture the analysis out-

puts with descriptive analysis to describe the results using expected value tables, probability

distribution charts, and a parameter sensitivity analysis. These outputs will enable a decision-

maker to understand the potential outcomes for each strategic scenario presented. Utilizing a

business analytics method on this problem enables decision support for decision-makers to re-

duce greenhouse gas emissions from their energy usage and mitigate the worst-case scenarios

associated with climate change.

It is clear from the variety of elements found in Tables 2, 3, and 4 that business analytics can

be applied to help fight climate change. The diversity of analytical approaches in these chapters

shows that climate change is a complex issue requiring an interdisciplinary approach. Business

analytics can provide insights into the complex interactions between human activities and the

environment, helping organizations to develop effective strategies to mitigate and adapt to the

impacts of climate change. The upcoming chapters will evaluate potential analytical opportu-
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Table 4: Relevant analysis considerations for Chapter 4 (A
decision-analytic tool for corporate strategic sustainable energy

purchases.)

Consideration Details

Purpose Decision Support

Approach Prescriptive approach in overarching framework, predictive approach involved in using
Monte-Carlo simulation, and descriptive approach for summaries

Data Source Anonymized company energy usage data and simulated values for remaining inputs

Data Granularity Low granularity, with real-world facility energy usage broken down across monthly billing
periods and estimates for other parameters based on conversations with subject matter
experts

Data Volume Small with thousands of data points for both input and output

Data Structure Real-world energy usage data simple time series tables across a handful of dimensions,
with remaining datasets based on simple tables of probability distributions or lookup
tables.

Data Quality Energy usage data is of high quality, while the estimations and assumptions from subject
matter experts of potentially lower quality.

Output Cost tables and probability distributions of expected costs across various strategies, plus
individual sensitivity analysis visualization

nities, define problems, conduct detailed analyses, and present outcomes of unique analytical

situations, all aimed at informing stakeholders and providing decision-support frameworks to

those on the front line of climate change. Business analytics can help organizations transition

to a more sustainable and resilient future.
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C H A P T E R 2

TEXT-MINING CLIMATE CHANGE ADAPTATION RESEARCH FOR THEMATIC

PATTERNS EMERGING IN THE 21ST CENTURY

2.1 Introduction

The rapid growth of ever-changing climate change knowledge presents society with mean-

ingful challenges and opportunities (Wuebbles, Fahey, and Hibbard 2018). This changing

knowledge, combined with deep uncertainty of climate change’s future impacts, makes ef-

fective communication about potential mitigation and adaptation opportunities challenging.

Such challenges impede society’s ability to develop and implement appropriate climate change

adaptation (CCA) strategies. In just the last few decades, the volume of research being con-

ducted and published regarding CCA has exploded across numerous fields (Siders 2019).

CCA research was a relatively new and emerging concept at the turn of the century (Smit

et al. 1999) primarily concentrated in the environmental and natural sciences (Biesbroek et

al. 2018; Haunschild, Bornmann, and Marx 2016). Since then, CCA research has systemati-

cally grown to encompass many research fields. Potential challenges associated with this rapid

growth are the introduction of new frameworks, divergent word meanings, and fractured ap-

proaches to researching CCA. However, this substantial increase in the volume of published

articles and expansion to include a broader range of research fields also opens up the possibility

for emerging interdisciplinary research opportunities.

To adapt successfully to face climate change head-on, in a timely manner, the scientific

community must effectively evaluate and understand the discourse within the research litera-
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ture (Berrang-Ford, Pearce, and Ford 2015). Do the ideas and issues discussed in this growing

CCA research provide thematic patterns within and across various research fields to better in-

form society and policymakers? This question exposes an opportunity to identify and describe

themes that open new opportunities for interdisciplinary CCA research. However, given this

rapid growth, traditional literature review techniques are challenged to efficiently and effec-

tively digest this burgeoning body of published research (Asmussen and Møller 2019). Given

the anticipated ongoing growth in the published research, there is an opportunity to apply text-

mining techniques to evaluate this growing body of research (Debortoli et al. 2016). Such an

analysis could shed light on the coherence of ideas, relevancy of issues, and approaches used

between research fields over time (Lesnikowski et al. 2019). Using natural language process-

ing, unsupervised learning, and data mining techniques, we can expose the topics and themes

underlying the conversation in the CCA scientific literature during this period of rapid research

growth. CCA subject matter expertise can then be applied to interpret the text-mining analysis

results and tie the findings back via an informed understanding of CCA research.

Given the insights above, we now discuss our research in the following sections. We start

with a literature review covering the state of peer-reviewed CCA literature, research classifi-

cation approaches, and available techniques for unsupervised topic modeling, along with our

problem statement and expected contributions in Section 2.2. We then discuss in Section 2.3

the model development and methods applied to identify topics in the CCA literature. Sec-

tion 2.4 covers the interpretation of our model output along with additional analysis of the

topics. Finally, in Section 2.5, we cover the contributions and limitations of this study, along

with the potential for future research opportunities, before wrapping up with our conclusions.
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2.2 Literature review

2.2.1 Climate change adaptation research

There is a growing awareness of climate change, and its associated societal challenges (Ner-

lich, Koteyko, and Brown 2010). Increased risks and costs are associated with rising sea levels,

increasing storm severity, worsening drought, increasing temperatures, and advancing species

extinctions, all potentially leading to slow-moving disasters (Neumann et al. 2015). With grow-

ing awareness of this broad range of issues, the research on CCA has substantially expanded

across many research fields in the 21st century (Haunschild, Bornmann, and Marx 2016). As

shown in Figure 1, our search for CCA literature in the Web of Science (Clarivate Analytics

2020) results in more than 15,000 research articles published in peer-reviewed journals from

the year 2000 to the year 2020. Only 41 articles from this search were published in 2000,

predominantly from the environmental sciences. Contrast that with the nearly 2,500 published

articles from more than 100 research fields in 2020. This substantial increase demonstrates the

considerable growth in the CCA research published during that period.

Figure 1: Published articles by year in climate change adaptation research since 2000.
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The interest in CCA research has ballooned to include research areas as diverse as Eco-

nomics (Linnenluecke, Smith, and McKnight 2016; Jawid and Khadjavi 2019), Urban Stud-

ies (Chen 2015; Carter 2018; Douglas, Reardon, and Täger 2018), Law (Marjanac and Pat-

ton 2018; Hecht 2008), Energy (Solaun and Cerdá 2017; Metz, Darch, and Workman 2016;

Chandramowli et al. 2016), Operations Research (Truong, Trück, and Mathew 2018; Ches-

ney, Lasserre, and Troja 2017), Public Administration (Samaddar et al. 2015; Schlager and

Heikkila 2011), Sociology (Smith, Anderson, and Moore 2012; Helicke 2019), Architecture

(Pedersen Zari 2014; Solera Jimenez 2017), and Art (Inwood and Kennedy 2020). With such

rapid growth across so many disciplines, researchers must be challenged to stay abreast of

advances in CCA. To gain a sense of the breadth of research areas, Table 5 shows a break-

down of the top 25 research areas captured in CCA research found during our search of the

Web of Science (Clarivate Analytics 2020). Environment-related science areas still dominate

the coverage (e.g., Environmental Sciences, Environmental Studies, Meteorology Atmospheric

Sciences), but one may also notice non-environmental areas with more than 100 publications

in this timeframe (e.g., Economics, Public Administration, Energy & Fuels). As shown in Ta-

ble 5, we can see the Web of Science categories for each article. However, we do not get a

sense of the topics being discussed, nor do we see the potential interdisciplinary nature of the

research dialogue.

2.2.2 Methods to categorize research content

Researchers have been attempting to categorize and synthesize research topics in published

literature for many years (Krippendorff 2004). Methods used to identify themes and topics

found in the literature vary by research area but include terms such as comprehensive literature

review, formal systematic reviews, systematic mappings, narrative reviews, and research text

coding (Berrang-Ford, Pearce, and Ford 2015; Okoli 2015). In line with these approaches, one

methodology currently used in capturing advances in CCA is the systematic literature review
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Table 5: Top 25 Web of Science categories in the climate change
adaptation literature since 2000. Note: Some papers are tagged with more

than one category.

Web of Science Category Articles
Environmental Sciences 3750

Environmental Studies 2480

Meteorology & Atmospheric Sciences 1411

Ecology 1032

Water Resources 923

Green & Sustainable Science & Technology 630

Geosciences, Multidisciplinary 591

Geography 583

Development Studies 438

Economics 424

Forestry 411

Multidisciplinary Sciences 381

Biodiversity Conservation 374

Agronomy 323

Regional Urban Planning 316

Engineering, Civil 295

Agriculture, Multidisciplinary 280

Urban Studies 275

Engineering, Environmental 245

Public, Environmental & Occupational Health 237

Plant Sciences 232

Geography, Physical 220

Public Administration 163

Marine & Freshwater Biology 153

Energy & Fuels 141

(Berrang-Ford, Pearce, and Ford 2015). Systematic literature reviews are a useful way for

researchers to summarize existing evidence, identify research gaps, and provide frameworks

for positioning new research (Brereton et al. 2007). Similar to systematic literature reviews
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are systematic mapping studies, with the critical difference being that in a mapping study,

the research questions are more general and aim to classify research in a particular domain,

rather than address particular research questions (Kitchenham, Budgen, and Brereton 2011).

In either case, there is a heavy reliance on manual coding of texts, whether using a top-down,

bottom-up, or dictionary approach to the classification (Debortoli et al. 2016). Regardless of

the terminology used for synthesizing research topics covered in the literature, these manual

categorization approaches face challenges. Some of these challenges include limited research

population size, time-intensive manual reviews, significant time requirements from subject

matter experts, and natural bias of the experts conducting the review (Asmussen and Møller

2019; Berrang-Ford, Pearce, and Ford 2015; Okoli 2015; Brereton et al. 2007). In essence,

these manual approaches are supervised methods in classifying, synthesizing, or categorizing

the existing literature on a given topic or research area.

With advances over the last few decades in information retrieval, computer processing

speeds, parallel computing, and natural language processing algorithms, improved text analysis

methods have made it possible to quantitatively analyze extensive collections of text (Asmussen

and Møller 2019). Applying a data-mining framework, such as business standard CRISP-DM

(Cross-Industry Standard Process for Data Mining) (Wirth and Hipp 2000) and pairing it with

supervised or unsupervised text-mining methods, social scientists can evaluate substantial col-

lections of text to identify patterns or topics (Ignatow and Mihalcea 2017). The social sciences

are learning and applying these new tools that convert words to analyzable quantitative val-

ues using techniques such as Latent Semantic Analysis (LSA) (Deerwester et al. 1990), La-

tent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan 2003), and Correlated Topic Modelling

(CTM) (Blei and Lafferty 2006). This list is not exhaustive, as there are frequent text-mining

developments, including the creation of new techniques and the introduction of enhancements

to existing techniques. Each type of text-mining analysis has its advantages and disadvantages,

so researchers must evaluate the research they will be conducting before choosing any particu-
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lar method (Lee, Song, and Kim 2015). Researchers have employed these relatively new tools

to convert extensive text into a quantitative representation they can then manipulate to develop

meaningful insights such as themes, topics, and trends over time. Applying text-mining tech-

niques to the expanding literature base mentioned in Section 2.2.1 has the potential to advance

our understanding of CCA research (Sarma 2017).

2.2.3 Latent Dirichlet Allocation (LDA)

As highlighted in Section 2.2.2, there are various methods we could use for an unsupervised

topic model analysis of the CCA literature. Given the exploratory nature of this analysis,

we will be using the LDA methodology (Blei, Ng, and Jordan 2003) to explore and identify

topics within the research literature. LDA has seen significant growth as a topic modeling

method within academic research, business analytics, machine learning, and general online

text analysis (Asmussen and Møller 2019; Jelodar et al. 2019). LDA modeling and analyses

on academic literature has been done in research areas as diverse as Information Sciences

(He et al. 2013), Accounting (Fang et al. 2018), Computational Linguistics (Hall, Jurafsky,

and Manning 2008), Biology (Zheng, McLean, and Lu 2006), and Business & Economics

(Piepenbrink and Nurmammadov 2015). In most studies of this type, the work was done in an

exploratory manner in search of the underlying topics being discussed. However, there are also

LDA-related studies that have been conducted for side-by-side comparisons with pre-existing

manual coding schemes (Nelson et al. 2018) or conducted as the input to a separate manual

categorization exercise using the LDA model topics (Grimmer and Stewart 2013). LDA is

widely used and accepted, as noted by the substantial citation count (more than 43,000 on

Google Scholar as of July 2022) associated with the original paper that introduced the LDA

methodology (Blei, Ng, and Jordan 2003).

Given the extensive use of LDA in past studies, we now describe the methodology and

underlying model structure. LDA ignores the order of occurrence of words and the syntactic
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information, only treating documents as a collection of words, or more commonly known as a

“bag of words” (Steyvers and Griffiths 2007). The basic premise underlying LDA is that each

document is a mixture of topics and each topic is a mixture of words (Blei 2012). By finding

the words in a topic, we can then use those words to identify the topics in a document. Breaking

down LDA into its component words (Sharma 2020), the assumption is that there is a “Latent”,

or hidden, distribution of topics within a corpus of documents. These hidden distributions are

composed of “Dirichlet” distributions for both the distribution of words to topics and topics

to documents. Finally, the “Allocation” signifies that the topics are allocated across the docu-

ments, meaning each document is likely to have multiple topics covered within it. The general

graphical structure of LDA is shown in Figure 2 (Blei 2012). Documents are treated as if they

are generated from a random mixture of topics, and topics are seen as a probability distribution

over the words. Each box (plate) in Figure 2 represents the sampling steps needed to achieve

the number of samples in the lower right corner of the box (D = documents, N = words in a

document, and K = topics). The term α can be thought of as the prior observation count (latent

count) for the number of times a topic is sampled in a document. The term η can be thought of

as the prior observation count (latent count) of the number of times words are sampled before

any word from the corpus is observed (Steyvers and Griffiths 2007). More specifically, LDA

assumes that documents are generated from the probabilistic processes as follows (Blei 2012).

1. For each topic k, draw from topic distribution βk ∼ Dirichlet(η),k ∈ {1, . . . ,K}

2. For each document d, draw topic proportions from θd ∼ Dirichlet(α)

3. For each word n in each document d,

• Draw a topic assignment from the topic proportions zd,n|θd ∼Multinomial(θd)

• Draw the word from the corresponding topic, wd,n|zd,n,β1:K ∼Multinomial(βzd,n)
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Figure 2: Probabilistic graph model of Latent Dirichlet Allocation.
Source: Image from Blei 2012.

2.2.4 Application of LDA topic modeling to climate change adaptation research

The 2019 review “Frontiers in Data Analytics for Adaptation Research” highlights poten-

tial opportunities to apply topic modeling to the burgeoning corpus of CCA policy-making

documentation (Lesnikowski et al. 2019). The authors demonstrate LDA application by eval-

uating speeches given at the United Nations Framework Convention on Climate Change and

evaluating adaption efforts in Canadian city meeting minutes and staff reports. In line with the

authors’ call to action, LDA has also found traction in studying aspects of climate change in

other document collections. Some examples include papers published on the identification of

climate change bias in newspapers (Bohr 2020), finding the signals of climate change doubt

in climate change denier organizations (Boussalis and Coan 2016), evaluating climate change

communities and topic discussions on blogs (Elgesem, Steskal, and Diakopoulos 2014), study-

ing the climate change discourse in industrial ecology literature (Dayeen, Sharma, and Derrible

2020), and assessing climate change technology transfer from US patents (Kulkarni 2020). In

(Lesnikowski et al. 2019), the authors identify four critical areas where topic modeling could

be applied to help inform the CCA conversation, specifically:

1. Analyzing framing and issue salience in adaptation discourse

2. Shedding light on the coherence of ideas, issues, and approaches to adaptation

3. Connecting adaptation’s thematic patterns by applying topic models
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4. Testing relationships between the content of texts and variables.

We believe the call to action in items 1-4 is just as applicable to assessing the corpus of

CCA research given its explosive growth in the published literature over the last few decades

(Siders 2019). Potential challenges associated with this rapid growth in research and publica-

tion can be various workstreams introducing new frameworks, fracturing word meanings, and

causing divergent paths to research CCA. In line with the recommendations from (Lesnikowski

et al. 2019), this rapid growth in the CCA literature provides us an opportunity to apply text-

mining techniques to evaluate the whole body of research. Such an analysis could shed light

on the coherence of ideas, relevancy of issues, and approaches used over time and between

research fields.

As an exploratory, descriptive analysis, this study uses the call to action in item 3, above, to

gain insights into items 1 and 2 while laying the groundwork for future analysis that could test

relationships as called out in item 4. We apply the LDA topic modeling approach to explore

and evaluate a corpus built using research abstracts found on the Web of Science (Clarivate An-

alytics 2020; Li, Rollins, and Yan 2017). In doing so, we describe and evaluate the associated

topics in the peer-reviewed literature published over the last two decades.

2.3 Model development and methods

We conduct our descriptive analytics effort with the four-phased approach adapted from

the business standard CRISP-DM (Wirth and Hipp 2000), with relevant sections shown in

Figure 3. We discuss these four stages in the following subsections. The first step is to conduct

a comprehensive literature search to capture the relevant population of published research that

forms our corpus (Section 2.3.1). The next stage entails data preparation to ready the entire

corpus of texts for the LDA transformation and text-mining phase (Section 2.3.2). The third

stage is composed of model development, where we explore the corpus and identify topics
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using LDA analysis (Blei, Ng, and Jordan 2003) (Section 2.3.3), immediately followed by

reviews from climate change experts to help name and validate the topics (Section 2.4.1). The

final analysis stage explores the identified topics, including additional analyses looking at topic

interactions and changes over time (Section 2.4.2.2).

Figure 3: Workflow for text-mining analysis adapted from CRISP-DM.
Source: CRISP-DM model from Wirth and Hipp 2000.

2.3.1 Data collection

The first stage of this study requires identifying the population of research papers to be

included in our corpus. Even though we are not doing a systematic literature review, we con-

duct the initial phase of our data collection according to the best practices identified in (Okoli

2015). The first step is identifying and refining the appropriate search criteria to evaluate across

as many disciplines as possible. As shown in Figure 1, there has been explosive growth in the

volume and breadth of CCA literature since 2000; therefore, we choose 2000 to 2020 as the

search coverage period. To collect the data, we searched the Web of Science (WoS) online

search engine (Clarivate Analytics 2020). WoS is a highly effective database leveraged by

thousands of large-scale data-intensive studies, typically involving activities cutting across di-

verse domains (Li, Rollins, and Yan 2017). WoS provides functionality to download up to 500

results at a time, which enables downloading all of the 67 available fields as shown in Table 7.
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Table 6 shows the search criteria we apply during two distinct search phases. The search

is limited to English language publications to minimize interpretability challenges. Our initial

search focuses on CCA-related research by looking for synonymous words to “adaptation” lo-

cated within three words of the term “climate change”. As highlighted in Table 6, we utilize

a wildcard with roots of words associated with adaptation (i.e., adapt*, resilien*, prepared*),

which will capture terms such as resilience, preparedness, and adaptation. We limit our boolean

search to the abstract, title, and keywords as the abstract comprises the text we include in our

analysis, and the title and keywords should reflect the authors’ perspective on the discussed top-

ics. After reviewing the data from our first search with a subject matter expert, he postulated

that in recent times researchers might be dropping the word “change” in their published re-

search to avoid politically charged push-back from climate change deniers (Nerlich, Koteyko,

and Brown 2010). Using that feedback, we conduct a second phase of the search using the

keyword search shown in Table 6.

Table 6: Search criteria used to build corpus.

Criteria Description
Database Source Web of Science

Period Covered Research published between 2000 - 2020

Text Searched Title, abstract, and keywords associated with the article

Boolean keyword search “climate change” NEAR3 (adapt* OR prepared* OR resilien*)

(Phase I)

Boolean keyword search “climate” NEAR3 (adapt* OR prepared* OR resilien*)

(Phase II)

We conduct our search using the WoS interface to identify articles meeting the search term

criteria. This download includes each full abstract needed to complete the LDA analysis. Ad-

ditionally, as shown in Table 7, the WoS database contains other fields for each article available

for the data prep and subsequent analysis, such as authors, title, keywords, journal, publica-

tion date, and research areas. Our search results include 10,525 documents in Phase I and
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grows to 15,309 documents when adding the results of Phase II. We appreciate that conduct-

ing a comprehensive text-mining of each article’s entirety has demonstrated better accuracy in

some evaluations (Rezaeian, Montazeri, and Loonen 2017). However, there is also evidence

that points to abstracts providing comparable coherence scores when the corpus and document

sizes are sufficiently large (Syed and Spruit 2017). In Syed and Spruit 2017, the authors saw

a significant difference in coherence scores when comparing LDA model runs for 4,417 full

articles and again for their abstracts. When looking at LDA model runs for 15,004 articles,

they found a negligible difference in coherence scores and human-ranked scores between mod-

els built with either the full article or the abstract. Therefore, given the expected volume and

accessibility of abstracts, we choose the research abstract as a representative subset of text for

our corpus development for all articles of interest.

2.3.2 Data preparation

The workflow we use for the data preparation stage is shown in Figure 4. As with any

data analysis, we first need to evaluate the abstracts for any consistency, quality, or other issues

that could be problematic (Chu et al. 2016). We initially profile the data, searching for blank

abstracts, duplicate titles, and matching doi numbers. This initial review removes several hun-

dred articles that show up as two entries due to being early-access and later published articles.

We next visually inspect the abstracts for oddities, including leading or trailing information

associated with the publication, such as “©2018 The Research Center for Eco-Environmental

Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.” Other abstract clean-up

includes removing citations, forced structure words like “Purpose” or “Aim”, and hyperlink

information to avoid these types of entries from skewing the actual abstract language. Finally,

one unanticipated cleaning activity involves removing sections of non-English words that were

in the abstracts, caused mainly by abstracts with both an English and non-English translation

25



Table 7: Available fields from Web of Science. Fields of interest for current
analysis highlighted and boldfaced.

Publication Type Reprint Addresses Volume

Authors Email Addresses Issue

Book Authors Researcher Ids Part Number

Book Editors ORCIDs Supplement

Book Group Authors Funding Orgs Special Issue

Author Full Names Funding Text Meeting Abstract

Book Author Full Names Cited References Start Page

Group Authors Cited Reference Count End Page

Article Title Times Cited, WoS Core Article Number

Source Title Times Cited, All Databases DOI

Book Series Title 180 Day Usage Count Book DOI

Book Series Subtitle Since 2013 Usage Count Early Access Date

Language Publisher Number of Pages

Document Type Publisher City WoS Categories

Conference Title Publisher Address Research Areas

Conference Date ISSN IDS Number

Conference Location eISSN UT (Unique WOS ID)

Conference Sponsor ISBN Pubmed Id

Conference Host Journal Abbreviation Open Access Designations

Author Keywords Journal ISO Abbreviation Highly Cited Status

Keywords Plus Publication Date Hot Paper Status

Abstract Publication Year Date of Export

Addresses

contained within the same abstract, such as that found in (Rondinini and Visconti 2015). There

are 14,780 unique abstracts remaining after this data preparation stage.

While reviewing abstracts, it became apparent that researchers used acronyms inconsis-

tently across the various research fields. For instance, when evaluating CCA literature, one

might reasonably expect “CCA” to be an acronym for “Climate Change Adaptation”, which is

not always the case. Some uses of CCA are for word combinations like “Canonical Correspon-
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Figure 4: Data preprocessing workflow.

dence Analysis” or “Crustose Coralline Algae”. If left unaddressed, a topic model would treat

CCA as having the same meaning within our corpus even though there are obvious differences

across abstracts. We extract a list of all the acronyms in the corpus and then conduct a manual

review of all acronyms that appear 25 or more times. During this review, we tag acronyms

with all potential meanings. If an acronym has multiple meanings, but a majority with the

same meaning, we manually convert the oddballs to their words within the abstract (e.g., we

replaced “CA” with “California” where that was its meaning). In cases with no clear majority

acronym, we evaluate and manually expand all instances of that acronym within the abstract

(e.g., “ES” in Table 8). After this manual cleaning, acronyms with only one meaning are left

to be expanded by the code in a later preprocessing stage. Finally, there are instances where

changing the acronym is unnecessary because the acronym is consistently used. An example

of this is the common usage of “EU” for the European Union. Table 8 shows some examples

of each of these acronym instances.

The next few steps include preprocessing the corpus of text to be machine-readable for

natural language processing (Ignatow and Mihalcea 2017). For this next preprocessing stage,

we use “spaCy”, a free, open-source library for advanced Natural Language Processing (NLP)

in Python. The spaCy API is available online at https://spacy.io (Vasiliev 2020). First, we
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tokenize, identifying words from the string of characters and returning a list of words without

punctuation. We also lemmatize the tokens, identifying appropriate punctuation like contrac-

tions and abbreviations in the text. To execute this stage, we call the spaCy lemmatization

function. First, identifying the part-of-speech of each word in an abstract and then tokenizing

that word using its proper base form using lemmatization. We only keep nouns, verbs, adverbs,

adjectives, or proper nouns. We keep the proper nouns in this phase due to the many acronyms

that will be converted to their proper words in the next step. Finally, as part of conducting the

lemmatization, all tokens are made lower-case to ensure the same words would not be treated

as two different tokens due to different capitalizations. The output of this stage is a list of

tokens representing each abstract.

The next few preprocessing steps are needed to clean up the text for consistency. It is at

this point where we automatically swap out remaining acronyms that have only one mean-

ing of their actual underlying words (e.g., “Greenhouse Gas” in Table 8). Next, we sweep

through the list of words again, looking for words with British spelling and swapping them

with their American spelling. Some examples of this include “behaviour” changed to “behav-

ior” or “grey” changed to “gray”. To facilitate these word swaps, we use the online dictionary

of British to American translations located online at https://github.com/hyperreality/American-

British-English-Translator (Hyperreality 2016). We then remove stopwords, which are high-

frequency words such as pronouns (e.g., we, them), determiners (e.g., an, the), and prepositions

(e.g, in, on, of ) (Ignatow and Mihalcea 2017). We do this using the Natural Language Toolkit

(NLTK) and its built-in stopword dictionary (Bird, Klein, and Loper 2009). We then clean up

the lists of words for each abstract by removing any words with one or two characters. In most

cases, these words do not actually add value to the actual topics being discussed (Resch, Us-

länder, and Havas 2017). Finally, we rerun the lemmatization one more time for two reasons.

The first is to remove proper nouns based on their part-of-speech. The second is to account for
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any remaining transformation of words to their bases (e.g., any plurals remaining are turned

into the singular form).

Table 8: Example of acronyms in the corpus and methods used to address each example.

Acronym Count Instances Meanings Correction

CA 194 4

Conservation Agriculture

Auto/Manual
Cellular Automata

California

Central Africa

ES 81 4

Ecosystem Services

Manual
Environmental Sustainability

Environmental Stewardship

Expected Shortfall

CC 189 3
Climate Change

Auto/ManualCanopy Cover

Correlation Coefficient

GHG 350 1 Greenhouse Gas Auto

EU 221 1 European Union No Change

The final data preprocessing step is to conduct collocation identification, which entails

identifying sequences of words (n-grams) that have special meanings (Mikolov et al. 2013).

In this research, some examples of likely n-grams are “greenhouse_gas_emission” or “deci-

sion_maker”. To make n-grams, we start with 2-grams, then rerun the collocation algorithms

with the tokens (including 2-grams) as the input to the 3-grams. This is where we introduce the

Gensim Python package (Rehurek and Sojka 2011), which is commonly used for conducting

LDA modeling. To do the collocation, we use the native functionality of Gensim, specifically

the “gensim.models.phrases” functionality, with settings of 100 for the minimum number of

occurrences to create an n-gram and a threshold setting of 100. The threshold setting is used

by Gensim to determine the ease with which n-grams are allowed to be created. The higher

the setting, the harder it is for n-grams to be created. We create 609 n-grams, with the top
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10 (based on count in abstracts) shown in Table 9. These representative n-grams seem appro-

priately linked to CCA, except for potentially “take_account”, which frequently occurs with

phrases such as “taking into account” and “take account of” found within many abstracts.

Upon completion of n-gram creation, we save two different lists of the corpus, one without

n-grams and one with both 2-grams and 3-grams. We keep these different versions in order to

later train LDA models on both versions while looking for results with the highest coherence

scores and reader interpretability.

Table 9: Count of top 10 n-grams in corpus and the number of abstracts containing n-gram.

n-gram combination n-gram count count of abstracts
long_term 1908 1519

food_security 853 598

socio_economic 737 553

decision_maker 599 492

greenhouse_gas_emission 689 469

policy_maker 492 441

short_term 438 371

take_account 385 365

greenhouse_gas 469 322

representative_concentration_pathway 550 295

Figure 5 shows the original number of words in the abstracts compared to the number of

words upon completion of the data preprocessing. One sidebar note of interest in Figure 5, the

word counts of the abstracts before preprocessing show observable spikes at 100, 150, 200, 250,

and 300. These spikes are likely due to authors meeting word count limits in their abstracts

that align with these multiples of 50. At the completion of data preprocessing, we have an

average reduction of 38.9% in the number of words per abstract. This sizeable reduction is

expected for two reasons. First, we remove stop words that commonly represent 25% to 30% of

words in English language documents (Schütze, Manning, and Raghavan 2008). Additionally,
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the lemmatization process reduces the number of unique words by reducing the variations of

specific words (e.g., plural words converted to singular). Upon completing the preprocessing

phase, our corpus consists of 35,946 distinct tokens across the 14,780 abstracts.

Figure 5: Distribution of abstract word counts versus token counts
available after pre-processing abstracts.

2.3.3 Model development

During this phase of the analysis, we conduct a topic modeling analysis using the LDA tech-

nique (Blei, Ng, and Jordan 2003) to identify topics, specifically using the Gensim (Rehurek

and Sojka 2011) Python package (version 3.8.0. with Python version 3.8.5). LDA Analysis

requires providing the model with a set number of topics to start the algorithm; however, we
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do not know the number of topics apriori. Therefore, we explore a range of potential topics,

iteratively running the LDA analysis on a potential range (e.g., 3 - 30) and assessing the best

number of topics. Finding the best number of topics can be debated. However, there are qual-

itative methods and quantitative measures to assess LDA models to help identify a reasonable

number of topics, such as coherence and perplexity (Greene, O’Callaghan, and Cunningham

2014; Röder, Both, and Hinneburg 2015). This section on model development walks through

how we evaluate potential models before arriving at our best model.

2.3.3.1 Parameter tuning

As discussed in Section 2.2.3, the LDA model requires selection of settings and hyperpa-

rameters as shown in Table 10. For the first three hyperparameters in Table 10, we use the

recommendation from Hoffman, Bach, and Blei (2010) for the best settings of offset (τ0 = 64),

decay (κ = 0.5), and batch size (S ≥ 256). For α and η described in Section 2.2.3, Gensim

has three potential settings: symmetric, asymmetric, and auto. One additional alternative is to

provide the settings in a vector. However, providing a vector requires knowing expected values

for the α and η settings apriori, something we do not know. Therefore, we use the “auto”

setting, which allows the Gensim model to automatically seek out and converge on favorable

settings as it runs through multiple iterations. The downside of using “auto” is that it takes

longer for the model to run than the symmetric or asymmetric settings.

Additional settings include the number of “passes” and “iterations” Gensim applies when

creating the model (Hoffman, Bach, and Blei 2010). The “iterations” setting represents a max

limit of how many times the algorithm may repeat each document’s probability distribution

assignments, thereby imposing an upper cap on how long the process will run if all documents

have not achieved convergence. The setting “passes” is the number of times the algorithm trains

the model on the entire corpus. To determine appropriate settings for passes and iterations, we

ran multiple versions of the model process while recording every pass (i.e., “eval_every” = 1)

32



to determine how quickly the model was converging. After conducting multiple logging runs

on topic models ranging from 7 to 30 topics, we chose values of 40 passes and 100 iterations

based on where the convergence, coherence, and perplexity scores leveled out. In Figure 6, we

show an example of the per pass convergence of coherence scores when creating models with

8 and 9 topics, each with lower limits on word presence in 3 or 5 abstracts. Finally, to enable

comparison between runs, we choose a random seed (i.e., “random” = 42) to set a constant

start point for model runs.

Table 10: LDA model settings and hyperparameters used when training
LDA models with Gensim.

Parameter Setting Details
κ 0.5 decay recommended from (Hoffman, Bach, and Blei 2010)

τ0 64 offset recommended from (Hoffman, Bach, and Blei 2010)

S 256 batch size recommended from (Hoffman, Bach, and Blei 2010)

α auto allow algorithm to determine value

η auto allow algorithm to determine value

eval_every 1 used for assessment of model runs

passes 40 selected based on model convergence in logging runs

iterations 100 selected based on model convergence in logging runs

random 42 random seed used to allow repeatability

Highlighted by bidirectional arrows in Figure 3, developing the model requires an iterative

process between data preparation, model building, and model assessment. With each iterative

run, we learn more about the data and the potential topics in the corpus. For instance, we create

our first LDA models before addressing the acronyms sprinkled throughout the text. Upon

evaluating these first models, it was clear that acronyms are not being treated accordingly with

the underlying words that defined the acronyms. The next round of model building helps us

determine a tighter range for the number of potential topics to explore, reducing our initial

range from 3-30 down to 7-21. We make this assessment based on models with ≥ 22 topics

seeming to have quite a few nonsense or non-interpretable topics and models with ≤ 6 topics
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lacking sufficient topic granularity. That leads us to the next section, where we conduct many

model runs with changes to a handful of key parameters to assess the most interpretable models.

Figure 6: Estimated coherence from convergence logging runs of initial
test models when varying topic count and infrequent word settings.

2.3.3.2 Creating full range of models

To identify candidate models, we conduct Gensim model runs while varying the parameters

shown in Table 11. The first parameter we vary is the number of topics ranging from 7 to

21. Next, we choose the corpus from either the simple unigram or the combined n-grams

(specifically both bi- and tri-grams). We use both because we do not know in advance if one

will be better than the other. The following two parameters we change are related to the pruning

of frequently and infrequently used words (Grimmer and Stewart 2013; Maier et al. 2018). We

provide the model with three cut-points for the frequently used words, removing words that

appear in more than 30%, 20%, and 15% of the abstracts. Frequently used or ubiquitous

words within the corpus will not help distinguish clear lines between the topics. We also use
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cut-points for words that show up in no more than 5, 10, or 15 abstracts for the infrequently

used words. Infrequently used words appearing within only a tiny subset of abstracts will not

help identify the discussion within the corpus. Additionally, removing infrequent words also

reduces the size and sparsity of the document-term matrix, thereby reducing overall model

runtimes. When looking at all possible combinations of these parameters, there are 270 unique

models we build with Gensim. Each model takes approximately 20-30 minutes to train and

build with our established parameters in Table 10. To expedite the creation of the 270 models,

we use a multicore instance of an Amazon Web Services (AWS 2021) server to create our

models in parallel, saving all results for later analysis and assessment.

Table 11: Parameters for running multiple models for assessment.

Parameter Values Combinations
Topics 7 - 21 15

Corpus unigram vs. n-grams (n = 2 and 3) 2

Frequent words words in no more than 3

15%, 20%, or 30% of abstracts

Infrequent words words in at least 5, 10, or 15 abstracts 3

Total combinations (15 ·2 ·3 ·3) 270

2.3.3.3 Assessing full range of models and topics

After completing the 270 model runs, we assess the models based on coherence and per-

plexity scores to look for models with interpretable topics based on these quantitative measures.

To determine the coherence for each model, we use the Cv measure developed and described

in (Röder, Both, and Hinneburg 2015) and provided for in the Gensim package. The Cv coher-

ence provides values in the range of 0.0 to 1.0, with larger coherence numbers ideally relating

to more interpretable topics. Likewise, lower values for perplexity typically represent better

generalization performance (Hoffman, Bach, and Blei 2010). Figure 7 shows a scatter plot

35



of all 270 models’ coherence and perplexity scores. To screen for representative models, we

initially limit our review to models with the top 25 coherence scores as shown in Figure 7. We

review each of these top 25 models using the pyLDAVis tool discussed in Sievert and Shirley

(2014), with an example shown in Figure 8. The pyLDAVis interactive tool provides a con-

cise capability to visualize the most relevant words within each topic, their distribution across

topics, and the relative distance of topics when reduced to a two-dimensional (2D) space. To

assess the models, we visually inspect each of the top 25 models looking at multiple elements

of pyLDAVis. Specifically, we look for a good breakdown of topics without any single topic

thoroughly dominating the space (i.e., the area of the topic bubble) and a distributed spread of

topics throughout the 2D space (topics separated and filling the entire space). We also evaluate

if the top 10 tokens associated with each topic were semantically similar. Finally, where topics

overlapped, we evaluate if the overlaps made sense semantically.

Figure 7: Comparison of model coherence and perplexity scores for the
270 LDA models, with inset showing breakdown of screening results to get

to top 3 models.

Following our initial screening of the 25 models, we narrow the field down to 10 models for

deeper inspection. We expand this review to inspect the 30 most relevant tokens in the topic,
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with relevancy determined by setting the pyLDAVis λ value to 0.6 as recommended in Sievert

and Shirley (2014). Of note, as shown by the green circles in the inset graph in Figure 7, the top

3 models do not have the highest coherence or the lowest perplexity scores, but they are still

strong contenders based on the pyLDAVis review. By assessing multiple quantitative measures

(coherence and perplexity) and visualizing the model with pyLDAVis, our assessment method-

ology mitigates the limitations of choosing the most representative model solely by quantitative

scores. As shown in Table 12, we narrow the model selection to three viable candidates to be

assessed by two CCA subject matter experts in more detail in Section 2.4.1. Figure 8 shows

the pyLDAVis visualization for one of the top three candidate models, specifically the model

that contained 16 topics.

Table 12: Parameters and scores for the three candidate models.

Parameter Model 1 Model 2 Model 3
Number of Topics 12 15 16

Corpus unigrams n-grams unigrams

Frequent Words Cutoff >15% >15% >15%

Infrequent Words Cutoff 10 abstracts 10 abstracts 10 abstracts

Perplexity 164.0 160.2 163.5

Coherence 0.643 0.640 0.634

2.4 Results

With the successful identification of three viable topic models, we begin working with two

subject matter experts (SMEs) in climate change. Their role is to review the candidate models,

label the topics, and assess each model’s interpretability. Below we discuss this SME model

review process, topic labeling, and semantic validation. Finally, after selecting the final model,

we then explore its topics, topic correlation, and topic weighting changes over time.
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Figure 8: Visual representation of 16 topic LDA model in PyLDAViz with
one of the topics highlighted. Source: Tool from Sievert and Shirley 2014.

2.4.1 Incorporation of domain expertise

Topic models do not explicitly label topics; instead, they probabilistically weight lists of

words belonging to each topic. In an exploratory topic modeling analysis, best practices high-

light the need for domain expertise in evaluating model output (DiMaggio, Nag, and Blei

2013). We do so in this research with the assistance of two CCA SMEs who identify the under-

lying theme for each topic and then assign topic names based on domain knowledge. They use

the most relevant words per topic and the most representative abstracts to assign names to the

topics. This model validation exercise takes place in three stages, as shown in Figure 9, with

each stage discussed in the following sections.
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Figure 9: Workflow for Subject Matter Expert topic review, naming,
reconciliation, and validation.

2.4.1.1 SME review/naming phase

In the first phase of the SME review, we introduce the SMEs to the three candidate topic

models described in Section 2.3.3. The SMEs are provided with a breakdown of each model

that includes the ten most relevant words and the three most representative abstracts for that

topic. Word relevance as defined in (Sievert and Shirley 2014) is a weighted score of the

term’s probability and its lift. In line with the findings of (Sievert and Shirley 2014), we use a

weighting value of λ = 0.6 to determine word relevance. Given that no single topic makes up

100% of any abstract, we use the three abstracts in the corpus that have the highest weighting

of that topic to find the most representative abstracts. In most cases, these weights are in the

0.70-0.90 range, meaning the preponderance of topic distribution within the abstract is for the

topic of interest. In some cases, some topics do not represent a majority of the topics in any

one abstract; instead, the topic has the largest percentage weight for that abstract (e.g., topic

weight is 0.45).

As shown in Figure 9, we ease the SMEs into the topic naming work in three steps. The

first step is to look at the top five most relevant words and assign a topic name. Next, they are

given the following five most relevant words and tasked with naming the topic based on the
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ten most relevant words. Finally, the SMEs look at the three most representative abstracts for

each topic and write down their final name for each topic. Upon completing this exercise, the

SMEs then tag each topic within a given model with a ranking of 1 through 3, with 1 = easy to

interpret, 2 = moderate to interpret, and 3 = hard to interpret. The SMEs conduct these steps

for all three models in our candidate pool. After the SMEs finish, we evaluate two components

of their topic rankings for each model. The first component is the SMEs’ average topic inter-

pretability rankings for each model. This score indicates the relative, subjective interpretability

for each model. The second component is a per-topic difference of SME interpretability rank-

ings between the two SMEs. This score indicates SME consistency of ease of interpretation.

The scores provided by the SMEs results in Model 2 being seen as the least interpretable, and

Model 3 as the most interpretable.

2.4.1.2 Reconciliation phase

The next step is to reconcile the SMEs’ Model 3 results with our candidate model in hand.

As expected, when working in isolation, the SMEs come up with similar yet somewhat different

topic names or difficulty of topic interpretability. The name differences are often semantically

minor, but joint agreement on the topic label is still necessary. For example, one SME named a

topic “Carbon Storage in Soils” while the other called it “Land Carbon Storage”. After further

review, the SMEs agreed with “Soil Carbon Storage” as the topic name in this instance. Several

other examples include “Climate Attitudes and Behaviors” versus “Behavior and Adaptation”,

which became “Attitudes and Behaviors”, and “Genetics and Climate Adaptation“ versus “Ge-

netic Impacts”, which became “Climate-related Genetics”. After this initial review round, the

SMEs agree on 12 of 16 topic names for an initial naming agreement of 75%. The rows tagged

as Round 1 in Table 13 include the 12 resolved at this stage.

In instances where we do not gain initial agreement on the remaining four topics, we expand

our review to the 25 most representative abstracts and look for language that might help close

40



the gap between the two SMEs. At this stage, the goal of expanding the review to the 25

abstracts is to look for commonalities on the topic that may not be readily discernable with

just the top three abstracts. An example of one of these topics had one SME initially naming it

“Climate Adaptation in African Agriculture” while the other SME named it “Improving Farmer

Household Food Security”. For further review of this topic, specific questions we have when

looking at the expanded list of abstracts are: 1) Is this topic limited to African Agriculture, 2) Is

there an element of Household Food Security throughout the abstracts, and 3) Is the topic more

generally about Agriculture in the Developing World? This deeper review enables the SMEs

to reconcile differences from their initial reviews, allowing us to gain inter-coder agreement on

all 16 topics for agreement on 100% of topic names. Table 13 includes each topic’s name, the

ten most relevant words, which round of reconciliation it was finalized, and a short name used

for ease of further analysis.

2.4.1.3 Validation phase

The final topic modeling step is a validation process that entails identifying word intrusion

and topic intrusion tasks (Chang et al. 2009) conducted by the SMEs, researchers, and research

assistants. The word intrusion task measures the topic coherence gauged by identifying an

intruder word that does not belong within a given topic. More specifically, we present a list of

six words for each topic, where five of the words are the five most relevant words for the topic

plus one intruder word. We select the intruder words from a pool of words with low relevancy

for the topic but high relevancy for one of the other topics. We select the intruder this way

to avoid the word being rejected outright due to being a rare word (Ying, Montgomery, and

Stewart 2019). We shuffle the six words such that the intruder shows up randomly in the list of

six words. If the reviewer can identify the intruder word in the list, that implies good semantic

coherence. If the reader cannot identify the intruder word, that suggests they had to guess due
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to poor semantic coherence of the topic. The word lists we use for the word intrusion task are

shown in Table 14.

The second intrusion task entails presenting reviewers with an abstract and four lists of the

five most relevant words for four topics potentially in the abstract. Three topics are the highest

probability-weighted topics for the abstract, while one topic is chosen randomly from the other

low-probability topics for the abstract in the model. In this task, the reviewers need to identify

the intruder topic with the expectation that by selecting the proper topics, the reviewers are ver-

ifying that the document-topic assignments are valid. Conversely, if the reviewers choose the

wrong topic, then the assignment of the topics to the abstract may be poor matches. Figure 10

shows one topic intrusion example, with Topic 2 being the intrusion topic in this example.

For the word intrusion task, the seven reviewers are able to identify 101 of 112 intruder

words, resulting in a precision of 90.2% (Chang et al. 2009). Only one of the seven reviewers

identified the intruder word for Topic 12 (“Modelling Rainfall and Temperature Variability”),

accounting for more than half of the incorrect guesses. In evaluating the topic intruders, the

five reviewers are able to identify 87 of 100 topic intruders for precision of 87.0% (Chang

et al. 2009). There were no readily identifiable patterns in the incorrect guesses for the topic

intrusion task. Evaluating the inter-rater reliability, we find strong agreement with a Fleiss

Kappa (Fleiss 1971) of 0.631 for the word intrusion task and 0.708 for the topic intrusion task.

The strong inter-rater reliability and high detection percentage of intruders lead us to believe

our model validly represents the topics contained within the CCA literature.

2.4.2 Analysis

2.4.2.1 Topic weights distributions

Our first analysis is to look at the distribution of topics. Figure 11 shows a histogram for

the topic weights distributed within the corpus for those abstracts including the topic (i.e., topic
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Table 13: Topics identified and named following Subject Matter Expert review of models.

Topic Name Short Name for Analysis Round Ten Most Relevant Words in Topic
Forest Ecosystems forest_ecosystems 1 forest, tree, ecosystem, habitat, site,

fire, conservation, native, distribution,
landscape

Climate-related
Genetics

genetics 1 genetic, trait, thermal, gene, variation,
selection, tolerance, cold, evolutionary,
breed

Attitudes and
Behaviors

attitudes_behaviors 1 health, perception, survey, perceive,
school, behavior, education, respon-
dent, public, participant

Soil Carbon Storage soil_carbon_storage 1 soil, land, carbon, cover, surface, or-
ganic, vegetation, air, storage, measure-
ment

Urban and
Greenspace
Environments

urban_and_greenspace 1 urban, city, green, infrastructure, build-
ing, build, design, urbanization, space,
construction

Finance-related
Issues

finance_issues 1 service, market, finance, insurance, fi-
nancial, industry, private, investment,
provision, business

Plant-related
Impacts

plant_impacts 1 plant, leaf, treatment, root, growth,
stress, fruit, content, flower, arctic

Government and
Politics

govt_politics 1 governance, government, institutional,
disaster, political, national, actor, coun-
try, state, international

Mitigation
Economics and
Markets

mitigation_econ_markets 1 energy, emission, greenhouse, gas, cost,
mitigation, consumption, demand, car-
bon, country

Extreme Weather
Events

extreme_wx_events 1 extreme, event, drought, flood, weather,
heat, frequency, mortality, damage, dis-
ease

Coastal Effects coastal_effects 1 coastal, sea, rise, island, ocean, marine,
pacific, wetland, storm, coast

Freshwater Effects
and Management

freshwater_effects_mgmt 1 river, basin, flow, groundwater, lake,
hydrological, runoff, supply, catch-
ment, stream

Frameworks,
Planning, and
Decision Support

frameworks_planning_dec_sup 2 framework, context, information,
knowledge, assessment, tool, address,
integrate, planning, exist

Modelling Rainfall
and Temperature
Variability

rainfall_temp_variability 2 precipitation, degree, period, rainfall,
cultivar, trend, annual, season, wheat,
variability

Farmers and
Agriculture in
Developing World

farmers_and_ag 2 crop, yield, farmer, agricultural, pro-
duction, food, agriculture, farm, rice,
maize

Rural Households
and Livelihood
Vulnerability

household_livelihood_vuln 2 vulnerability, household, livelihood, ru-
ral, vulnerable, indigenous, tourism,
migration, gender, people
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Table 14: Word intrusion list for validating semantic coherence. Intruder
word is not disclosed to test subject until completion of task.

Topic Shuffled Word List for Topic Intruder Word
Topic1 city, green, building, cyclone, urban, infrastructure cyclone
Topic2 group, soil, land, carbon, surface, cover group
Topic3 perceive, survey, health, school, cereal, perception cereal
Topic4 disaster, government, institutional, political, vegetable

governance, vegetable
Topic5 market, dam, service, financial, finance, insurance dam
Topic6 net, basin, flow, river, groundwater, lake net
Topic7 production, financial, yield, farmer, crop, agricultural financial
Topic8 variation, gene, genetic, thermal, winter, trait winter
Topic9 island, coastal, sea, ocean, rise, winter winter
Topic10 event, flood, weather, extreme, dioxide, drought dioxide
Topic11 downscale, assessment, framework, information, downscale

knowledge, context
Topic12 evaporative, degree, cultivar, rainfall, evaporative

precipitation, period
Topic13 household, vulnerable, vulnerability, river, river

rural, livelihood
Topic14 electricity, treatment, root, growth, plant, leaf electricity
Topic15 gas, greenhouse, emission, cost, energy, enzyme enzyme
Topic16 efficacy, ecosystem, forest, tree, habitat, site efficacy

weight > 0 in a paper). Given that there are 16 topics, and most topics appear in only a subset of

documents, we see that all topics skew towards zero weight. This visual makes sense as most

papers generally have three or four meaningfully weighted topics, with most topics appearing

in fewer than half the papers (i.e., topic weight = 0). All but three topics are present in at least

25% of abstracts.

These histograms show that a single topic rarely dominates an article, given how few bars

show up on the right-hand side of each histogram. One histogram that stands out is frame-

works_planning_dec_sup. Because this topic appears in all but 163 abstracts, its histogram is

denser and not skewed as heavily to the left. The preponderance of frameworks_planning_-
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Figure 10: Example of topic intrusion task for validating semantic coherence.

dec_sup points to the research community focusing on needed frameworks and decision sup-

port tools to address climate change challenges while feeding into potential efforts to im-

prove adaptation efforts. The only other topic present in more than half the papers is rain-

fall_temp_variability, which is not surprising given the main effects of climate change will be

increasing temperatures and uncertain variability in the climate systems. Alternatively, fresh-

water_effects_mgmt is present in fewer than 25% of the papers, possibly the result of fresh-

water management potentially studied as an issue wrapped up in more prominent issues such

as rainfall variability or planning and decision support. Hence, maybe it is present in papers

looking at the specific challenges of freshwater management in the face of climate change. Fi-

nally, of interest from a business perspective is that finance_issues is the only topic that is not

a clear majority topic weight (i.e., topic weight > 0.5) in any single paper. Even with no clear

majority, the finance_issues topic appears in more than 25% of articles, so it is finding its way

into the discussions in the published research. This breakdown of topic weights leads us to the
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Figure 11: Topic weight histogram distributions for abstracts containing
given topic (excludes zeroes).

natural follow-on analysis, to wit, what are the interactions between individual topics within

the documents in our corpus?

2.4.2.2 Topic correlations

In this next analysis, we investigate the correlations between topic weights within docu-

ments across the corpus. Given that each document contains multiple topics, the correlation of

topics is essentially looking for which topics appear together in the article abstracts. Figure 12

shows a pairwise heatmap view of topic correlations. We use greyscale to highlight values

further, with positively correlated topics being closer to white and negatively correlated topics

being closer to black. Given that the total weight of all topics in a given document is equal

to one, we expect the values to skew towards negative correlations, which shows in the scale
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range at the bottom of Figure 12. Correlations that stand out in Figure 12 are the negative

correlations associated with the frameworks_planning_dec_sup and govt_politics topics and

other topics. These two topics also have the highest positive correlation, while tending to have

higher negative correlations with the other topics.

Figure 12: Correlation of topic weights across all abstracts.

Delving deeper into the larger numbers, Table 15 shows the top five negative and top five

positive correlations extracted from Figure 12. As noted from the heatmap, the top positive cor-

relation is for frameworks_planning_dec_sup and govt_politics, which seems reasonable given
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the work taking place in the public policy sphere focused on building frameworks for address-

ing climate change. Also noticeable in the positive correlations is freshwater_effects_mgmt

pairing with rainfall_temp_variability, which also makes sense given that rainfall variability

can certainly impact freshwater supplies. Additionally, genetics is positively correlated with

both forest_ecosystems and plant_impacts, two natural systems genetically stressed by climate

change. Alternatively, when looking at negative correlations, four of the top five are frame-

works_planning_dec_sup to natural sciences studies associated with rainfall, genetics, plants,

and forests. The fifth most negative correlation is govt_politics with rainfall_temp_variability.

These negative correlations are somewhat surprising. One would expect the natural effects of

climate change would entail the need for society to focus on developing frameworks to address

changes in the nature-related sciences. This negatively correlated relationship is an area of

interest potentially requiring additional focus in understanding if there is an insufficient cross-

disciplinary focus on research within the natural sciences and policy-making spheres today.

Table 15: Top five negatively and positively correlated topics.

First Topic Second Topic Correlation
frameworks_planning_dec_sup rainfall_temp_variability -0.409

Top Five frameworks_planning_dec_sup plant_impacts -0.327

Negative frameworks_planning_dec_sup genetics -0.308

frameworks_planning_dec_sup forest_ecosystems -0.293

govt_politics rainfall_temp_variability -0.289

genetics forest_ecosystems 0.108

Top Five govt_politics finance_issues 0.109

Positive freshwater_effects_mgmt rainfall_temp_variability 0.144

genetics plant_impacts 0.241

frameworks_planning_dec_sup govt_politics 0.296
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2.4.2.3 Time series analysis

One area of interest to explore with the topic model is the potential changes of topic weights

within the documents over time. This next visualization can give us a sense of how the dis-

course around climate change is evolving. Figure 13 shows each of the 16 average topic

weights over the 21 years of our corpus. At the top of Figure 13, the area plot is a reminder

of the growth in the published CCA literature to provide perspective for the small volume in

earlier periods. The line on each topic’s time-series plot represents the mean topic weight

across the corpus for each period, with the shaded region providing the 95% confidence inter-

val around each period’s mean. Given the much smaller count of abstracts in the earlier periods

(fewer than 100 per year), the shaded confidence interval for data earlier than 2005 consists of

much wider confidence intervals than data close to 2020, when there are thousands of abstracts

for each year.

Of interest in evaluating the trend lines in Figure 13, several topic weights appear to have in-

creased in recent years, most notably farmers_and_ag and urban_and_greenspace, with urban_-

and_greenspace consistently climbing since the mid-2000s. Conversely, a few topics decreased

over the recent past, most notably mitigation_econ_markets and frameworks_planning_and_-

dec_sup. Given the substantial amount of abstracts containing some weighting of the frame-

works topic, this seems to be pointing to frameworks_planning_dec_sup losing ground to other

topics showing a recent increase in average topic weights. These plots provide a helpful visual

to search for trends, but given the low volumes in the earlier periods, we have to be cautious

in interpreting trends from the graphs. Instead, we will explore z-scores in the next section to

identify and determine the significance of trends.
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Figure 13: Overall growth over time in CCA literature and weighted topic
means for each topic over time with shading representing the 95%

confidence interval.

2.4.2.4 Topics trending hot and cold

Given the substantial increase in the number of CCA articles over time, looking for hot

and cold topics based on a simple linear regression of the data shown in Figure 13 would

be inappropriate. Instead, we will calculate z-scores from the weighted averages of the topic

weights per document using a representative grouping of periods for the current period and the

recent past. The time to publish new research can be quite extended, with some journals taking

up to a year from initial paper submission until final acceptance and publication (Powell 2016).
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This delay is for the papers that actually get published in a journal, so given that many papers

get submitted to multiple journals in series as some journals reject the papers originally, it can

take many months, even years, to get original research published. We choose the current period

to include the most recent three-year period (2018-2020) to account for this publication delay.

We use the five years preceding the current period for the historical comparison to represent the

recent past historical period (2013-2017). Equation 2.1 shows how we calculate the z-scores,

with the resulting values shown in Table 16.

z-score =
µcurrent−µprior

σprior
(2.1)

µcurrent is the weighted topic mean for the most recent three year period

µprior is the weighted topic mean for the recent historical period

σprior is the weighted topic standard deviation for the recent historical period

Consistent with the trends in Figure 13, we can see that the z-scores show two of the three

coldest topics are mitigation_econ_markets and frameworks_planning_and_dec_sup, with

freshwater_effects_mgmt showing the most negative z-score. Even though the visual for fresh-

water_effects_mgmt does not show a consistent downward trend, the very low z-score seems

to be an artifact of the last three years of this topic being lower than the preceding five years.

The hottest topics by z-score appear to be urban_and_greenspace, soil_carbon_storage, and

finance_issues, all of which are in line with the trends we see in Figure 13. Again, while

farmers_and_ag has been visually trending positively for most of the last decade in Figure 13,

the last two years have seen a drop-off causing the z-score for this topic to only show up fifth

highest on the list.
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Table 16: Topic z-scores for hot and cold topics using the latest 3 years
trend (2018-2020) compared to the prior 5 years (2013-2017)

Topic z_score
urban_and_greenspace 2.130

soil_carbon_storage 2.052

finance_issues 1.665

extreme_wx_events 1.242

farmers_and_ag 1.149

attitudes_behaviors 1.070

household_livelihood_vuln 1.015

plant_impacts 0.825

genetics 0.778

rainfall_temp_variability 0.611

coastal_effects 0.528

govt_politics -1.028

forest_ecosystems -1.148

frameworks_planning_dec_sup -1.364

mitigation_econ_markets -1.472

freshwater_effects_mgmt -3.164

2.5 Discussion and conclusion

Although researchers use text-mining in many fields for identifying the underlying themes

and topics addressed in published literature (He et al. 2013; Fang et al. 2018; Hall, Jurafsky,

and Manning 2008; Zheng, McLean, and Lu 2006; Piepenbrink and Nurmammadov 2015),

our analysis of the CCA literature using LDA is the first of its kind that we have seen. Using a

well-documented analytical technique (LDA), we build a model that helps us identify 16 topics

within the language used in the CCA literature. These 16 topics make sense when evaluated

from a quantitative perspective scoring with coherence and perplexity measures. Better yet,

with the help of two CCA SMEs, these topics also make sense from a qualitative perspective.

We see a handful of themes when looking at these topics that loosely fall into themes that par-
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allel effects of climate change (e.g., Extreme Weather Events; Coastal Effects; and Modeling

Rainfall and Temperature Variability), effects on the natural environment (e.g., Forest Ecosys-

tems; Plant-related Impacts; Climate-related Genetics; Freshwater Effects and Management),

effects on people (e.g., Attitudes and Behaviors; Farmers and Agriculture; and Rural House-

holds and Livelihood Vulnerability), and finally, individual or systemic efforts to address cli-

mate change (e.g., Soil Carbon Storage; Urban and Greenspace Environments; Finance-related

Issues; Mitigation Economics and Markets; Government and Politics; and Framing, Planning,

and Decision Support).

As shown in Figure 11, not all topics have the same presence throughout the literature.

The Frameworks, Planning, and Decision Support topic is the dominant topic, showing up in

all but 163 of the abstracts. It has an average weight of 0.281, a value that is three times

larger than the next closest topic. This topic’s ubiquitousness makes sense, given that we are

looking at literature meant to address how civilization adapts to climate change. Researchers

are actively working on ways to understand the effects of climate change and build out the

adaptations necessary to address the worst that climate change will throw at us. These adap-

tations naturally will entail frameworks to understand the situation, discussion of planning for

climate change, and the creation of decision support tools to enable decision-makers to make

informed decisions that will combat uncertain climate change scenarios. That said, this topic

tends to have meaningful negative correlations with those topics that have more of a natural

environment theme. This apparent relationship opens up the logical question, should there be

more interdisciplinary decision sciences focus for the natural environment studies associated

with forests, plants, rainfall, and climate-related genetics? Is there an opportunity to leverage

these research areas to enhance the conversation, including frameworks, planning tools, and

decision support? We believe this is undoubtedly an outcome of our descriptive analysis worth

investigating more deeply.
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Notwithstanding, we are parsing the literature to look for areas ripe for improved cross-

disciplinary research. By identifying the topics within the CCA research, we are able to do

further analysis that could help us better understand them, how they are changing over time,

and how they may interact. When looking at the topics growing during this period, we see

three interesting topics in the most positive z-scores. Research on Urban and Greenspace En-

vironments has seen the fastest growth in the recent past. It would be interesting to understand

if this growth is due to the research ramping up in universities around the globe. Perhaps re-

searchers are helping urban leaders learn how to help their cities adapt to climate change while

leveraging improvements to the green space in their communities. The second fastest-growing

topic is the topic of Soil Carbon Storage, possibly pointing to plant or agriculture-based meth-

ods progressing faster if researchers conduct more cross-disciplinary studies associated with

carbon storage in the soil. The third highest z-score was for Finance Issues, yet interestingly

Finance Issues did not have a single article where it was the clear majority topic. Is it possible

that as CCA research has exploded, more researchers understand the significance of financial

support? Going further, perhaps researchers are looking for appropriate finance mechanisms

and funding available to take on what is arguably the biggest challenge facing humanity?

With our research grounded in the School of Management, we find Finance Issues’ un-

derrepresentation and recent growth within the corpus intriguing. This observation sets the

stage for the two forthcoming chapters, where we delve into finance-related aspects of climate-

change-related challenges. In Chapter 3, we will introduce a groundbreaking cost-benefit

model to assess the overall expenses associated with investing in flood protection infrastructure

in an urban coastal region to mitigate the damages caused by climate-change-induced sea level

rise. In Chapter 4, we will develop a novel decision support model that considers the financial

costs of adopting sustainable energy while incorporating the utility value of sustainability and

branding attributes. These two studies will address existing research gaps in their respective

areas while also approaching the challenges from a finance-focused perspective.
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Any study attempting to distill themes out of a large set of literature has inherent limitations.

We take a text-mining technique that assumes the words within the abstracts can be used to

identify the themes discussed within the literature. The underlying assumptions of LDA that we

can identify topics by finding the latent distribution of words and topics within the documents

leaves us open to potentially finding topics that are nonsensical or that are not meaningful.

To mitigate these limitations, we conduct our analysis by assessing hundreds of LDA model

iterations, applying appropriate quantitative measures, evaluating with visualization tools, and

incorporating the experience of CCA SMEs. Ideally, these efforts have produced sound results,

but we must appreciate that this is not the only possible solution to such an analysis. We

can only offer that the results are a reasonable representation of the topics being discussed

in CCA literature and acknowledge that these results are a good foundation to delve deeper

into the literature. The model output is also limited to the peer-reviewed published research

available in one research database (Web of Science), meaning this is not the full scope of all

CCA research that could be included. For instance, other ways to expand the corpus include

exposing additional research databases (e.g., Proquest, JSTOR) or incorporating other types of

published research such as conference proceedings, master’s theses, and Ph.D. dissertations.

Additionally, given that LDA is a method to turn words into tokens to create matrices for

analysis, we focus solely on English language publications to avoid translation challenges.

This language constraint means we may be missing out on potential topics captured in non-

English research publications not found in our corpus.

As highlighted in Section 2.2.4, the LDA modeling done in this research can be used to

potentially form hypotheses to test relationships between the topics we are seeing in the CCA

literature and what we are seeing develop elsewhere. For instance, we may be interested in

determining possible relationships between news articles about climate-related urban develop-

ment and the topic of the Urban and Greenspace Environments. This research may include

testing the hypothesis that the growth we see in the Urban and Greenspace Environments topic
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is driven mainly due to activity discussed in news articles over the last decade. The output from

our analysis enables the potential to test the relationship between published news articles and

compare it to the timing of the growth seen in the period of interest. In Section 2.4.2, we only

scratch the surface on the types of analysis that are possible using the dataset captured from

Web of Science. For example, given the fields available from WoS, the relationship of spe-

cific topics could be analyzed by publication, publisher, author, or author location to determine

concentrations of topics by any one of these parameters. Identifying relationships of topics

to these fields could help bridge gaps in the research and capture opportunities for improved

cross-disciplinary research. As noted in the limitations, this research could be extended by

broadening the corpus to include other English language research (e.g., dissertations) or even

to conduct the same text-mining exercise on a non-English language corpus to determine if the

topics meaningfully change. Finally, there are additional text-mining approaches to dive deeper

into the corpus that may enable us to segment further the topics found here in a hierarchical

manner, which would enable a fuller understanding of particular topics and potential subsets

of research captured therein.

As seen in Figure 1, there has been an explosion in CCA research over the last two decades,

with nearly 100x growth in the WoS peer-reviewed literature during that time. Understanding

the discourse in the literature has become more challenging because of this growth, stressing

the traditional means of conducting comprehensive literature reviews or mapping exercises.

As highlighted in (Lesnikowski et al. 2019), gaining insights into the CCA discourse within

the peer-reviewed literature can be used to analyze framing and issue salience in the adapta-

tion discourse. Our text-mining analysis included here applies the LDA method approach to

published research in an attempt to do just that. Our analysis ties together best practices from

past LDA text-mining based research to pull out meaningful topics present within the CCA

literature since the beginning of the 21st century. Ideally, the topics we uncover in this analysis
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will lead to better understanding this discourse and will feed into potentially new insights to

expand opportunities for improved cross-disciplinary CCA research.
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C H A P T E R 3

WHICH IS MORE REWARDING IN MANAGING SEA LEVEL RISE AND HURRICANE

STORM SURGE FLOODING: MITIGATION OR RESPONSE?

3.1 Introduction

Flooding accounts for nearly half of all natural disasters across the globe (Sodhi and Tang

2013). Economic losses caused by floods, only during 2009–2018, are estimated to be over

$356T (EM-DAT 2020), making it one of the most devastating types of natural disasters (equal

to earthquakes). Flooding, caused by the rapid melting of thick snow packs and ice jams,

is Canada’s most frequent and expensive natural disaster. For example, the 2013 flooding

across Alberta displaced more than 100,000 people and imposed economic damages over $5

billion (Wang and Huang 2016). A more recent example is Hurricane Ida that unleashed a trail

of destruction cutting from the Gulf Coast to the Northeast in the United States, causing an

estimated $43B to $64B in total damages, much of it due to associated coastal flooding (Scism

2021). Projections indicate that flood hazard continues to accelerate. For example, by 2050,

the city of Boston is expected to be annually hit by what is now a one in 10-year winter storm

flood, under all emissions scenarios (Douglas and Kirshen 2022). Others report that, by 2100,

the equivalent of today’s one in 100-year flood event will probably become an annual disaster

in Boston (Baranes et al. 2020; Thompson et al. 2019).

Flooding conditions are significantly affected by higher groundwater elevations, especially

in coastal areas as sea level rises (Douglas and Kirshen 2022). There are many low-lying is-

lands and coastal regions around the world, housing millions of people, that face increased
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flooding and potential inundation year-round due to rising sea levels (Geest and Berg 2021;

Nicholls et al. 2007). Thus, it is not surprising that the total estimated value of potential flood-

ing damages from sea level rise (SLR) is in the trillions of dollars (Abadie 2018). The recurring

theme for SLR-related coastal flooding is the lack of existing infrastructure such as levees and

seawalls to protect coastal areas that can significantly mitigate the hazard (Chakravarty 2018).

Given the effectiveness of storm barricades in mitigating the risk of coastal flooding, we aim

to develop a decision support system to optimally manage investments in building a flood pro-

tection system in the form of dikes and levees.

This study is inspired by a critical issue that the City of Boston is encountering. Boston is

an example of a coastal city facing the potential risk of flooding due to its rapid SLR. Over the

past 20 years, the city has experienced an average SLR rate of 5.4 mm/yr, much faster than the

global mean and twice the rate of Boston’s SLR over the last century (Douglas and Kirshen

2022). Projections of SLR in Boston harbor diverge as a function of future emissions. Yet,

compared to a 2000 baseline, SLR in 2100 is 35–78 cm under the most optimistic scenario,

and it might exceed two meters under the worst case scenario (Oppenheimer et al. 2019; Cli-

mate Change 2019; Douglas and Kirshen 2022), warning of a significant risk of coastal area

flooding (Sweet et al. 2017). Even without anticipated sea level rise, Boston has more than

3,000 properties that face substantial damage from flooding, so it can expect to see flood costs

in excess of $35M each year (Abel 2021).

As highlighted in Chapter 2, the decision frameworks topic is dominant, while finance-

related issues were a growing topic within climate change adaptation literature. These two

topics stand out in the work done by the City of Boston to evaluate the SLR threat highlighted

above. The city’s management focuses on eleven strategic initiatives to address the expanded

effects of climate change (City of Boston 2016). Among these are five flood-related strategies:

monitoring up-to-date climate change projections, creating a coastal flood protection system,

updating zoning and building regulations, retrofitting existing buildings, and insuring buildings
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against flood damage. Striving to keep momentum, as part of the recommended actions in

City of Boston 2016, this coastal protection strategy called for the city to launch a harbor-wide

feasibility study within two years. The subsequent 2018 Boston harbor barrier feasibility report

recommended forgoing a barrier system while implementing incremental steps and continued

monitoring to see how the SLR situation unfolds (Kirshen, Borrelli, et al. 2018). The findings

recommend using other multi-layer adaptation strategies (i.e., protection, accommodation, and

retreat), at least for the next few decades, while monitoring actual SLR to better understand the

uncertainty of the city’s risks.

It is a positive sign that cities like Boston are working to overcome this inertia of inac-

tion, but the latest Boston report still takes a wait-and-see approach (see Kirshen, Borrelli, et

al. 2018). Unfortunately, cities face challenges requiring unprecedented foresight, complex co-

ordination, and heightened urgency. While facing these challenges, multiple stakeholders are

clamoring for attention, such as state and federal agencies, developers, landowners and non-

profit organizations (Wissman-Weber and Levy 2021). In light of these challenges, there are

opportunities to improve acknowledging the risks of SLR-related flooding and develop meth-

ods that evaluate differential benefits and costs of public and policymaker (in)action (Mechler

et al. 2014; Wissman-Weber and Levy 2021). Policymakers taking a wait-and-see approach

in the face of rising seas require new decision support tools to provide the flexibility to more

frequently assess the potential flood risks and investment costs their communities face.

In this paper, we focus on the finance-related issues of one effect of climate change. Specifi-

cally, we propose a cost-benefit analysis model to optimize investment decisions at each period,

to mitigate flood hazards. To conduct a more granular analysis, we focus on flooding caused by

sea level rise and hurricane storm surge along the sea coast. The flood protection infrastructure

sought throughout this paper is in the form of creating dikes and levees via coastal land eleva-

tions. We propose a generalized modeling approach to minimize a cost function composed of

two components: (1) the estimated cost of constructing an infrastructure of dikes and levees,
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and (2) the potential SLR-related flood cost. We develop a multi-stage stochastic program with

recourse to determine the least cost option when weighing both permanent and temporary flood

damages in conjunction with investment costs to create a flood protection system of dikes and

levees. This combined approach provides enlightening managerial insights into related costs

for coastal areas if decision-makers are proactive in preventing damages versus waiting for the

damages to occur and cleaning up the disaster after the fact. We also present a network-based

framework for modeling complex flood movement dynamics on land to identify regions at risk.

Our model is more generalized than the existing cost-benefit analyses, all limited to starting

from a pre-existing infrastructure and enhancing that infrastructure over time. Creating such a

cost-benefit analysis that simultaneously evaluates flood damage costs and the costs of building

a shore-based infrastructure while also incorporating changing SLR projections would enable

policymakers to meet the periodic monitoring recommended by experts.

One additional goal of this study is to demonstrate that completing this complex cost anal-

ysis could be done using only open-source data (USGSA 2009), which enables our approach

to be applied more broadly. To this end and to demonstrate the performance of our proposed

model, we discuss a case study of East Boston, which is a coastal region facing a substantial

risk of SLR-related flooding. We consider a grid network representing the neighborhood of

East Boston using open-source land elevation, tax appraisals, tidal gauge data, and published

sea level rise elevations for possible climate change scenarios. We supplement this dataset with

Google street view visualization to fill in gaps in the open-source tax data.

Using a simulation-based approach, we illustrate that our proposed method results in a cost

reduction of as much as 92.2%, with an average of 63.2%, when compared to a “do nothing”

strategy. Moreover, in a scenario-based experiment, we illustrate that our model results in

similar cost savings when compared to a “do nothing” strategy in four different scenarios.

Specifically, in the optimistic scenario (best-case), we see a cost reduction of as much as 85.0%

and an average of 60.2%. These same maximum and average cost reductions are 92.5% and
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59.2% in the expected-low scenario, 96.5% and 78.3% in the expected-high, and 96.5% and

78.9% in the high (worst-case) scenario. In addition to the East Boston case study, we repeated

the experiments using 50 random networks, and showed that the methodology and insights

are generalizable beyond the East Boston case. Finally, across all experiments, we present an

extensive parameter sensitivity analysis, offering decision-makers the ability to compare the

outcomes by incorporating the latest financial data or economic values.

We identify a few key takeaways from a policymaker’s perspective. The first is that a

modest investment at a fraction of the cost of expected damages under the “do nothing” strategy

results in a meaningful reduction in flood-related and overall costs. Doing nothing and hoping

for the best will only set up a coastal area for much higher costs over the evaluated time horizon.

Sea level rise is a real threat which can significantly increase the cost of coastal flooding. Even

under a scenario with no sea level rise and only expected annual storm flooding, the model

suggests making investments if the build costs of levees are in the low to moderate range.

Our model is also a powerful tool which can provide meaningful estimations for the optimal

investment amounts required per period. This enables city planners to make more reasonable

budgeting decisions in their financial planning for disaster prevention. From our sensitivity

analysis, we could identify key factors (namely the costs to build the levees, the minimum

build height, and the discount rate) that have significant impact on the investment amounts and

their timing. Planners must pay close attention to these parameters to not underestimate the

costs or overestimate the risk. Underestimating costs may result in building infrastructure that

costs more than the damages it is meant to mitigate. Conversely, overbuilding for the potential

sea level rise may limit the areas that can be protected due to quickly eating into any available

budget. Finally, our experiments show that there will be areas that are not cost-effective to

protect. No matter how much budget is available, the investment costs to protect these areas

exceed the potential flood damage mitigation. This allows policymakers to assess areas under

their control for a potential retreat rather than trying to protect them at any cost.
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3.2 Literature review

The literature of disaster operations management has substantially grown in the recent past

(Galindo and Batta 2013b; Besiou and Van Wassenhove 2020). Yet, much of this attention

skews towards crisis response and logistics with little regarding mitigation policies (Akter and

Wamba 2019; Galindo and Batta 2013b; Gupta et al. 2016; Besiou and Van Wassenhove 2020).

The attention to response operations is justified by a variety of reasons, such as the high depri-

vation costs during response operations (Eftekhar, Song, and Webster 2022), media attention,

and donors’ sensitivity (Eftekhar et al. 2016).1 Consequently, the majority of humanitarian

assistance donations come with restrictions to focus on short-term relief operations, limiting

opportunities for long-term investment to mitigate potential disasters (Oloruntoba and Gray

2006), and so mitigation strategies are often under-financed.

Looking at the special issues of 2014 Production and Operations Management, 2016

Journal of Operations Management, and 2018 European Journal of Operational Research,

Besiou and Van Wassenhove 2020 found only one paper related to mitigation. Likewise, in

their seminal review of papers published during 1957–2014 on disaster management, Gupta et

al. 2016 identified 50 of 268 (18.7%) papers as being in the administrative function of preven-

tion/mitigation, collectively referring to activities aimed at reducing the severity of a disaster’s

impact or ensuring that a man-made/natural event does not result in disaster. Of these, the

majority concentrate on terrorism prevention policies following 9/11, with papers such as allo-

cation of resources for airport screening (Bagchi and Paul 2014), response planning to bioter-

ror attacks in airport terminals (Berman, Gavious, and Menezes 2012), and strategic terrorism

deterrence in two-country frameworks (Roy and Paul 2013). Within these papers, there is a

preponderance of papers not focused on specific disaster types (i.e., they treat disasters as a

1. For example, studies show that on average, it takes 38,920 deaths for a “food shortage crisis” to receive
media coverage, while major U.S. networks cover news of an earthquake if it leads to two deaths (Eisensee and
Strömberg 2007).
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general problem). These studies tend to evaluate overarching methods or frameworks to apply

generally to disasters, with some examples including evaluating disaster severity assessments

(Rodríguez et al. 2011), representing perceived trade-offs between disaster impact and time

to recovery to define disaster resilience (Zobel 2011), and developing a general methodology

for inductive rule-building for NGOs involved in responding to natural disasters (Rodríguez,

Vitoriano, and Montero 2012). Consequently, Gupta et al. 2016 emphasizes the need for more

research in prevention/mitigation.

In digging deeper into the papers labeled as prevention/mitigation, there appear to be scant

references centered on planning for mitigation of some disaster types such as flooding, epi-

demics, and wildfires. In the case of disaster-related research, this includes modeling with spe-

cific disaster characteristics to help practitioners develop adequate frameworks for the preven-

tion and mitigation of disasters (Kovacs and Moshtari 2019). For example, although hurricane

disaster management has received significant attention (see e.g., Uichanco 2022, Galindo and

Batta 2013a, Campbell and Jones 2011, Lodree and Taskin 2008 and Davis et al. 2013), almost

all of these studies focus on the response phases of crisis management. Gupta et al. 2016 found

only seven papers related to floods, with only two of those focusing on prevention/mitigation.

Of the two papers with some focus on prevention/mitigation, one was modeling disruption

to freight transportation networks (Miller-Hooks, Zhang, and Faturechi 2012) and the other

was covering optimal deployment for search and rescue operations during disasters (Chen and

Miller-Hooks 2012).

Constructing a storm barricade system of levees and dikes is an effective technique for mit-

igating the risk of coastal flooding. Jonkman et al. 2009 employ an economic optimization

approach for risk-based design of levee systems for the New Orleans metropolitan area. Sud-

deth, Mount, and Lund 2010 present an economic decision analysis approach for levee upgrade

and repair investments in 34 major islands in California’s Sacramento-San Joaquin Delta. Is-

sues related to construction and maintenance of locally operated levees, and an overview of

64



federal programs addressing them are discussed in Keegan et al. 2011. Eijgenraam et al. 2017

discuss improving the dike infrastructure in the Netherlands to protect more than 55% of the

land area that is below sea level. Perhaps the closest to the current paper is Chakravarty 2018,

which proposes an optimization model integrating multiple decisions pre- and post-disaster to

determine how investment in constructing levees can be leveraged in procuring relief items

during preparation and response phases. Chakravarty 2018 considers a setting where a levee

capacity decision is made by a governmental agency at the beginning of a multi-year plan-

ning horizon, while humanitarian relief agencies make procurement decisions every year. With

this integrated model, Chakravarty 2018 analytically shows how increasing the levee capacity

creates more social surplus over time. Nevertheless, depending on the severity of storms, the

levees can be damaged or completely destroyed. An example is the 2005 Hurricane Katrina,

which shattered the protective barriers and caused the disaster in New Orleans. Sills et al. 2008

investigate the Southeast Louisiana Flood and Hurricane Protection System that was in place at

the time of Hurricane Katrina to further highlight the deficiency of knowledge in the technology

and expertise needed for development of levee systems. Given the importance for reliability of

a levee system, revamping these systems is very common (Chakravarty 2018), reflecting that

flood hazard mitigation requires continuous investment from city management.

Upon evaluating the literature, there is a surprisingly small number of disaster-related pa-

pers focused on what many consider to be a slow-motion disaster in the making, coastal flood-

ing caused by rising sea levels (IPCC 2014), and there is scant coverage for addressing the

sea level rise in areas where infrastructure is non-existent today. In light of these limitations,

our research aims to contribute to the literature by building a model that supports an adaptive

strategic approach to mitigate potential disasters caused by flooding of a coastal city. This arti-

cle puts a spotlight on the need for local and national government investment in infrastructure

to lessen the impending risk of climate-change-induced flooding. To our knowledge, this is the

first study that uses network-based modeling and linear algebra logic to represent complex wa-
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ter movement dynamics on land for detecting regions at risk of flooding. Moreover, our model

is more general than the existing methods because it incorporates both permanent and tempo-

rary flood damages along with investment costs, can be used in regions without any preexisting

infrastructure, and can be built by using only open-source data.

3.3 Model, complexity, and solution

We model the Flood Risk Mitigation (FRM) problem as a multistage stochastic program

with recourse. To present the model, we will define some sets, parameters and variables in

this section. A list summarizing all these defined sets, parameters and variables is presented

in Appendix A. The proposed model incorporates the risk of flooding over time, with tmax pe-

riods within the planning horizon t ∈ T = {1, . . . , tmax}, on a network of interconnected land

grids. We first address the input parameters (i.e., associated with the sea level rise, grid parti-

tioning, investment costs, flood damages, and available budget) and the necessary assumptions

in section 3.3.1, and then present the full model in section 3.3.2. Then, we discuss the FRM

problem’s computational complexity and solution in section 3.3.3.

3.3.1 Input parameters and assumptions

3.3.1.1 Sea level states and their probabilities

Given that we are only focusing on flooding caused by SLR and hurricane storm surge

along the sea coast, we model the state of the sea level during a period (denoted by S) using

two components. The first component, denoted by s, represents the sea level during a period

solely due to the climate change effects. The second one, denoted by ŝ, indicates the sea level

during a period due to both climate change effects and hurricane storm surge factors. Notice

that we assume climate change effects and hurricane storm surge factors are independent of
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each other. We also assume that the change in s and ŝ happens at the start of a given period,

and these two components stay unchanged during the period. These two components together

shape the sea level state during a period (i.e., S = (s, ŝ)), and the set containing all possible sea

level states during a period t is denoted by Ξt . At time zero, we assume that both components of

the sea level state are zero (i.e., (s = 0, ŝ = 0)), and define the set containing this sea level state

as Ξ0 = {(0,0)}. Since the hurricane storm surges increase the sea level temporarily within a

period, they pose even higher sea levels during the period, i.e., s ≤ ŝ for all t ∈ T and S ∈ Ξt .

Given t ∈ {0, . . . , tmax− 1}, S ∈ Ξt and S ′ ∈ Ξt+1, let pSS
′

t denote the probability that the sea

level state during period t is S and during period t + 1 is S ′. We assume that probabilities

pSS
′

t ,∀t ∈ {0, . . . , tmax−1},S ∈ Ξt ,S ′ ∈ Ξt+1, are known.

3.3.1.2 Grid-based partitioning

To model the SLR and hurricane storm flooding system as a network, we use a grid parti-

tioning that segments a coastal region into hexagonal grids. More precisely, let us denote the

coastal area in which we have control to create dikes and levees by elevating the land and we

are also responsible for the cost of land elevation and flooding as the “region of interest.” We

only concern ourselves with areas within the region of interest that might get flooded during

the planning horizon. Some parts of the region of interest might be adjacent to the sea at the

start of the planning horizon (referred to as “time zero”) and might get flooded directly from

the sea. Depending on the land formations, other areas of the region of interest that are not

adjacent to the sea may also get flooded due to water passing through the surrounding region

during future time periods. To capture the possibility of the sea approaching a nonadjacent part

of the region of interest during a future period, we also need to take into account parts of the

region surrounding the region of interest that might get flooded at some point in future.

To identify parts of the region of interest and the surrounding region that are at risk of flood-

ing during the planning horizon, we first partition the land in these two regions into hexagonal
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grids. We assume that the elevation of the land on the surface of a grid is uniform and con-

stant, and is equal to the average elevation of all points across the surface of that grid. We then

consider the highest sea level across all sea level states (i.e., ŝmax = max{ŝ : (s, ŝ) ∈ ∪t∈T Ξt}),

and identify land grids within the region of interest and the surrounding region at time zero

that will get flooded under this sea level (i.e., the land grid elevation is below ŝmax). A flooded

land grid in the surrounding region will be considered in our model if it has a water path to a

flooded land grid in the region of interest without going through the sea under the highest sea

level ŝmax. Let us refer to the flooded land grids in the region of interest under sea level ŝmax

as the “area of interest” and denote the set containing these grids as Φ. We also refer to the

flooded land grids in the surrounding region with a water path to some flooded land grid in the

region of interest without going through the sea under sea level ŝmax as the “area of relevance.”

The set of land grids in the area of relevance is denoted by Ψ. Figure 14 shows the process of

identifying the areas of interest and relevance in a simple example.

Land grids i ∈Φ start with an initial elevation denoted by hi. In our model, building levees

and dikes within the area of interest is synonymous with raising the elevations of some land

grids in set Φ incrementally over time throughout the planning horizon to prevent flooding

within the area of interest. However, the elevations of land grids i ∈ Ψ (also denoted by hi)

are going to stay unchanged throughout the planning horizon as we do not have control over

these grids and we are not responsible for their flooding. The only reason grids in set Ψ are

incorporated in our model is that these grids might create pathways for the sea to approach

the area of interest. Notice that for some i ∈ Φ∪Ψ, we might have hi < 0, which indicates

that the elevation of the land grid i at time zero is below the sea level state at time zero (i.e.,

(s = 0, ŝ = 0)). We also similarly partition the sea at time zero into hexagonal grids designated

as set O. These sea-based grids start with an elevation of zero, and rise accordingly with sea

level changes over time.
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Figure 14: Illustration of the process of identifying the areas of interest and relevance.

(a) An illustration of the sea, region of interest and its surrounding region
at the beginning of the planning horizon.

(b) An illustration of the flooded land grids under the highest sea level across all sea level states
(i.e., ŝmax = max{ŝ : (s, ŝ) ∈ ∪t∈T Ξt}).

(c) An illustration of the areas of interest and relevance identified under the highest sea level.

Note: All land grids in the area of relevance are flooded under the highest sea level and have a water path to
some flooded land grid in the region of interest without going through the sea. The area marked as “Nonrelevant
area” is also flooded under the highest sea level but any water path from this area to the region of interest passes

through the sea.
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To focus our modeling approach on the land grids subject to flooding during a given period

t and under a given sea level state S ∈ Ξt , we further segment the grids in sets Φ and Ψ

into those grids at risk of temporary (hurricane storm surge related) flooding or permanent

inundation flooding versus those grids that are not at risk of any flooding during period t and

under sea level state S. Assuming water can only flow between grids that share a physical

border, we define the land grids at risk during a period t and under sea level state S ∈ Ξt as

follows:

Definition 3.1. Let RS
t denote the subset of land grids in Φ at risk of permanent inundation

flooding during period t and under sea level state S ∈ Ξt . Similarly, let QS
t denote the subset

of land grids in Ψ at risk of permanent inundation flooding during period t and under sea level

state S ∈ Ξt . Given t ∈ T and S = (s, ŝ) ∈ Ξt , a land grid i ∈ Φ is in RS
t if and only if it has

an initial elevation hi below the permanent sea level s during period t, and at least one of its

neighbors is in set O∪RS
t ∪QS

t . Similarly, a land grid i ∈ Ψ is in QS
t if and only if it has an

elevation hi below the permanent sea level s during period t, and at least one of its neighbors

is in set O∪RS
t ∪QS

t . Notice that land grids in RS
t ∪QS

t are also logically at risk of temporary

flooding.

Definition 3.2. Let R̂S
t denote the subset of land grids in Φ only at risk of temporary flooding

during period t and under sea level state S ∈ Ξt . Similarly, let Q̂S
t denote the subset of land

grids in Ψ only at risk of temporary flooding during period t and under sea level state S ∈ Ξt .

Given t ∈ T and S = (s, ŝ) ∈ Ξt , a land grid i ∈ Φ is in R̂S
t if and only if one of the following

mutually exclusive cases happens:

• It has an initial elevation hi below the temporary sea level ŝ and above (or equal to) the

permanent sea level s during period t, and at least one of its neighbors belongs to set

O∪RS
t ∪QS

t ∪ R̂S
t ∪ Q̂S

t .
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• It has an initial elevation hi below the permanent sea level s during period t, none of its

neighbors belongs to set O∪RS
t ∪QS

t , and at least one of its neighbors belongs to set

R̂S
t ∪ Q̂S

t .

Similarly, a land grid i∈Ψ is in Q̂S
t if and only if one of the above mentioned mutually exclusive

cases happens for land grid i.

Given a period t and a sea level state S ∈ Ξt , the land grids in set RS
t ∪ R̂S

t ∪QS
t ∪ Q̂S

t

represent the vertices in a network (referred to as the “at-risk network during period t and

under sea level state S”), and the grids that share borders are made adjacent via edges within

the network. Figure 15 provides an example for transformation of a full grid layout of the areas

of interest and relevance along with the sea into an at-risk network during a period t and under

a sea level state S = (0.6,0.9) ∈ Ξt in meters. The starting elevations are labeled in each land

grid and the sea-based grids are highlighted in blue. Highlighting the grids at risk during this

time period and under this sea level state results in the middle image with sets RS
t , R̂S

t , QS
t and

Q̂S
t identified. To create the associated at-risk network using the identified at-risk land grids, we

collapse all sea-based grids into one vertex (denoted by vertex “o”), and build the network with

the at-risk grids and edges based on shared borders. The at-risk network basically highlights

which grids will flood during the given time step and under the given sea level state, if no

elevation increase is made for flood protection throughout the planning horizon. As shown in

the At-Risk Network in Figure 15, the set of vertices includes a risk vertex for each risk grid

in set RS
t ∪ R̂S

t ∪QS
t ∪ Q̂S

t and a single sea vertex. This means that we will have a total number

of | RS
t ∪ R̂S

t ∪QS
t ∪ Q̂S

t |+ 1 vertices. Note that if a risk grid shares a border with the sea, we

also add an edge between its corresponding vertex and the sea vertex (i.e., vertex o). Given the

at-risk network during a period t and under a sea level state S ∈ Ξt , the set containing vertices

that are adjacent to a vertex i ∈ RS
t ∪ R̂S

t ∪QS
t ∪ Q̂S

t is referred to as the neighbors of i within

the at-risk network, and is denoted by NS
t (i).
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Figure 15: Example transformation of a full grid layout of the areas of
interest and relevance along with the sea into an at-risk network for a given

period t and a given sea level state (s = 0.6m, ŝ = 0.9m) ∈ Ξt .
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3.3.1.3 Grid costs for investment and flood damage

There are four inputs required to model the costs associated with the FRM problem. The

first parameter is related to the investment cost to elevate grids in set Φ by building dikes and

levees on them. The cost c is what it takes to elevate a grid in Φ by one meter at the start of

a given period. We assume that investment costs are uniform across grids, independent of the

grid’s surface structure, and do not vary much over the planning horizon. The units of c are in

terms of dollars per meter of elevation raise. Similar to the case of the sea level rise, we assume

that the increase in grids’ elevations happens at the start of a given period before realization of

the sea level state at the start of that period, and the grids’ elevations stay unchanged during the

period.

The next two inputs provide the information needed to determine flood-related damages.

The first parameter is the cost gi of losing a grid i ∈ Φ due to inundation if the grid is in RS
t

during a period t and under a sea level state S ∈ Ξt , and is permanently flooded. We assume

the inundation cost is a constant value representing the full grid loss during a given period. We

also assume that once a grid is inundated (permanently flooded) during a period, it is possible

to raise the elevation of that grid at the start of the next period and pull it out of the inundation

(full loss) state. This is specifically possible when the investment budget in early periods is

limited. Notice that during a period t and under a sea level state S ∈ Ξt , a grid may be in

RS
t but not be permanently flooded because that grid has been elevated at the start of period

t before realization of S or during the previous periods, or there is no path to it from the sea

due to other grids being elevated. We assume gi is strictly positive, and its units are in dollars

per time period for a given grid i ∈ Φ. The second flood-cost related parameter is the cost for

one meter of hurricane storm surge flood damage fi to a grid i in RS
t ∪ R̂S

t during a period t

and under a sea level state S ∈ Ξt when the grid is temporarily flooded. Notice that we assume

a grid will not experience hurricane storm surge related costs if it is permanently inundated
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during a given period. This is due to the fact that when a grid i is permanently inundated

during a period, the total value of the grid (i.e., gi) is lost during that period, but the storm

surge only causes partial grid value loss (e.g., only first floors of buildings being damaged)

during a period. Therefore, during a period t and under a sea level state S ∈ Ξt , a grid might

be in RS
t ∪ R̂S

t , but not be temporarily flooded because it is permanently flooded, or it has been

elevated at the start of period t or during previous periods, or there is no path to it from the sea

due to other grids being elevated. Hurricane storm surge flood cost in a given grid is based on

a linear depth damage curve for that grid. Similarly, we assume fi is strictly positive, and its

units are in dollars per time period per meter of sea level elevation above a grid i elevation.

The final input to incorporate realistic costs over time is to apply a discount rate per period,

denoted by λ . The discount rate systematically adjusts the value of costs and benefits during

future periods. Notice that to get λ , the standard annual discount rate (i.e., d) will need to be

adjusted to match the time frame used for a period in our model.

3.3.1.4 Budget

We consider a fixed construction and maintenance budget for each period t (denoted by

bt) that does not carry over into other periods, where bt is given for t ∈ T . Coastal cities’

resources are limited, and so this budget imposes a constraint on the amount of investment and

construction in a given period. Inclusion of this budget constraint in the FRM problem makes

this problem more realistic, but imposes significant computational challenge for its solution.

We further discuss the FRM problem’s complexity and solution in Section 3.3.3.
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3.3.2 Model development

3.3.2.1 Decision variable

The main decision variables for the FRM model are the heights of each grid i ∈ Φ during

each period t ∈ T . As mentioned before, we assume that the decisions on the heights of the

grids in Φ during a period t are made at the start of period t before disclosure of the sea level

change at the start of this period. We also assume that the decisions on the heights of the grids

in Φ at the start of any period t ∈ {1, . . . , tmax} only depend on the sea level state during period

t− 1, which is known to the decision maker at the time of decision making. This means that

the heights of the grids during the first period (first-stage decisions) are decided while the only

piece of information available is the sea level state at time zero (i.e., (s = 0, ŝ = 0)). So, given

a period t ∈ T and a sea level state S ∈ Ξt−1, we use notation xitS to represent the decision

variable associated with the height of a grid i ∈ Φ during period t if the sea level state during

period t−1 is S.

It is important to note that elevating grids by building dikes and levees on them cannot

be done in small increments across the years. In practice, if the decision maker decides to

elevate a grid in Φ during a time period, the elevation increase should be done up to a minimum

threshold to justify the initial setup cost. Therefore, we incorporate a parameter m in our model

that represents the minimum threshold of elevation increase in any grid in Φ during a period.

Moreover, to model the FRM problem, we need to find a valid upper bound on the elevation

increase in any grid in Φ during a period (denoted by M). One such valid upper bound is

M = max{ŝmax−min{hi : i ∈Φ∪Ψ},m}, which is used in our model.

3.3.2.2 Objective function

This model’s main objective is to minimize the total cost, with two primary components to

address. The first is the expected investment cost for building dikes and levees by increasing
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the elevation of grids to protect themselves and possibly other grids in the network. The second

is the expected flood cost when grids are affected by either permanent inundation or hurricane

storm surge flooding.

The cost for investment is evaluated on a per grid basis, and the overall cost for each grid

is determined by looking at a grid’s height change throughout the planning horizon. Equa-

tion (3.1) below captures the expected investment cost (denoted by EIC) for all at-risk grids

during the planning horizon. To account for discounted future periods, we incorporate the

adjusted discount rate λ in this equation.

EIC = c ∑
i∈Φ

(xi1(0,0)−hi)+ c ∑
i∈Φ

tmax−1

∑
t=1

∑
S∈Ξt−1

∑
S ′∈Ξt

pSS
′

(t−1)
(xi(t+1)S ′− xitS)

λ t (3.1)

A grid i ∈Φ∪Ψ faces two mutually exclusive possibilities of flooding during a period and

under a sea level state: (1) permanent inundation where the grid is deemed underwater (at least

during daily high tides) for the full period t, and (2) temporary hurricane storm surge flooding

where the grid only faces damage due to short duration flooding within the period. During a

period t ∈ T and under sea level states S ∈ Ξt−1 and S ′ ∈ Ξt for which pSS
′

t−1 > 0, to capture

if a grid i ∈ RS ′
t ∪QS ′

t is inundated, we designate a binary variable witSS ′ , where witSS ′ = 0 if

the grid is not inundated, and witSS ′ = 1 otherwise. If a grid i ∈ RS ′
t ∪QS ′

t ∪ R̂S ′
t ∪ Q̂S ′

t is not

inundated but faces hurricane storm surge related flooding during period t and under sea level

states S ∈ Ξt−1 and S ′ ∈ Ξt for which pSS
′

t−1 > 0, we designate the water depth used to calculate

the flood cost by a continuous variable zitSS ′ . As mentioned before, if a grid i ∈ RS ′
t ∪QS ′

t is

inundated, then it is assumed to be only subject to the permanent flooding cost, and not the

hurricane storm surge cost. This means that if witSS ′ = 1 for some t ∈ T , S ∈ Ξt−1, S ′ ∈ Ξt ,

and i ∈ RS ′
t ∪QS ′

t , then zitSS ′ is assumed to be zero.

If a grid i ∈Φ is inundated during a period (permanent flooding), there is a fixed cost (i.e.,

gi) for losing that grid during that period. If a grid i ∈ Φ is not inundated but is affected by

hurricane storm surge level during a period (temporary flooding), then the cost is assumed to
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be a linear depth damage curve (using parameter fi) that depends on the depth of the flood in

grid i during that period. Using variables witSS ′ and zitSS ′ , and incorporating the discount rate

for each period, we have the expected flood cost (denoted by EFC) as shown in Equation (3.2).

EFC =
tmax

∑
t=1

∑
S∈Ξt−1

∑
S ′∈Ξt

pSS
′

t−1

λ t

 ∑
i∈RS′

t ∪R̂S′
t

fizitSS ′+ ∑
i∈RS′

t

giwitSS ′

 (3.2)

3.3.2.3 Associated constraints and the full model

Minimize EIC+EFC (3.3)

Subject to:

xi1(0,0) ≥ hi +mvi1(0,0) ∀i ∈Φ (3.4)

xi1(0,0) ≤ hi +Mvi1(0,0) ∀i ∈Φ (3.5)

xi(t+1)S ′ ≥ xitS +mvi(t+1)SS ′ ∀i ∈Φ, ∀t ∈ {1, . . . , tmax−1}, ∀S ∈ Ξt−1,S ′ ∈ Ξt : pSS
′

t−1 > 0 (3.6)

xi(t+1)S ′ ≤ xitS +Mvi(t+1)SS ′ ∀i ∈Φ, ∀t ∈ {1, . . . , tmax−1}, ∀S ∈ Ξt−1,S ′ ∈ Ξt : pSS
′

t−1 > 0 (3.7)

c ∑
i∈Φ

(xi1(0,0)−hi)≤ b1 (3.8)

c ∑
i∈Φ

(xi(t+1)S ′− xitS)

λ t ≤ b(t+1) ∀t ∈ {1, . . . , tmax−1}, ∀S ∈ Ξt−1,S ′ ∈ Ξt : pSS
′

t−1 > 0 (3.9)

witSS ′ ≥
(s′− xitS)

M
− (1− yitSS ′)

∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ = (s′, ŝ′) ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ RS ′
t

(3.10)

witSS ′ ≥
(s′−hi)

M
− (1− yitSS ′)

∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ = (s′, ŝ′) ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ QS ′
t

(3.11)

∑
i′∈NS′

t (i)∩(RS′
t ∪QS′

t )

wi′tSS ′ ≤ |NS ′
t (i)| yitSS ′

∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ RS ′
t ∪QS ′

t : o ̸∈ NS ′
t (i)

(3.12)
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yitSS ′ = 1 ∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ RS ′
t ∪QS ′

t : o ∈ NS ′
t (i) (3.13)

zitSS ′ ≥ (ŝ′− xitS)−M(1− ŷitSS ′+witSS ′)

∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ = (s′, ŝ′) ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ RS ′
t

(3.14)

zitSS ′ ≥ (ŝ′−hi)−M(1− ŷitSS ′+witSS ′)

∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ = (s′, ŝ′) ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ QS ′
t

(3.15)

zitSS ′ ≥ (ŝ′− xitS)−M(1− ŷitSS ′)

∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ = (s′, ŝ′) ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ R̂S ′
t

(3.16)

zitSS ′ ≥ (ŝ′−hi)−M(1− ŷitSS ′)

∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ = (s′, ŝ′) ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ Q̂S ′
t

(3.17)

∑
i′∈NS′

t (i)

zi′tSS ′+ ∑
i′∈NS′

t (i)∩(RS′
t ∪QS′

t )

wi′tSS ′ ≤ |NS ′
t (i)| (M+1)ŷitSS ′

∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ RS ′
t ∪QS ′

t ∪ R̂S ′
t ∪ Q̂S ′

t : o ̸∈ NS ′
t (i)

(3.18)

ŷitSS ′ = 1

∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ RS ′
t ∪QS ′

t ∪ R̂S ′
t ∪ Q̂S ′

t : o ∈ NS ′
t (i)

(3.19)

zitSS ′ ≥ 0 ∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ RS ′
t ∪QS ′

t ∪ R̂S ′
t ∪ Q̂S ′

t (3.20)

witSS ′ ∈ {0,1} ∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ RS ′
t ∪QS ′

t (3.21)

vi1(0,0) ∈ {0,1} ∀i ∈Φ (3.22)

vitSS ′ ∈ {0,1} ∀t ∈ {2, . . . , tmax}, ∀S ∈ Ξt−2, ∀S ′ ∈ Ξt−1 : pSS
′

t−2 > 0, ∀i ∈Φ (3.23)

yitSS ′ ∈ {0,1} ∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ RS ′
t ∪QS ′

t (3.24)

ŷitSS ′ ∈ {0,1} ∀t ∈ {1, . . . , tmax}, ∀S ∈ Ξt−1, ∀S ′ ∈ Ξt : pSS
′

t−1 > 0, ∀i ∈ RS ′
t ∪QS ′

t ∪ R̂S ′
t ∪ Q̂S ′

t (3.25)
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The elevation of a grid i ∈ Φ is assumed to stay constant or increase due to an investment

in building dikes and levees on the grid. Using Inequalities (3.4)-(3.7), the model ensures

that a grid i ∈ Φ cannot be lowered in elevation from its initial elevation hi or any subsequent

elevation it may be raised to in the planning horizon. These equations also ensure that if a

grid i ∈ Φ is elevated at the start of a period, the increase in elevation is at least equal to the

minimum required threshold m. Notice that Inequalities (3.6)-(3.7) are written for any possible

transition of water level states from a period t− 1 to a period t (with positive probability) as

we do not need to enforce these requirements on impossible water level state transitions. This

is the case for many of the constraints in our proposed model. Inequalities (3.8) and (3.9) limit

the amount of money spent at the start of a given period t for raising the elevations of grids in

Φ by a user-specified parameter bt .

Given a period t and water level states S ∈Ξt−1 and S ′=(s′, ŝ′)∈Ξt with positive transition

probabilities, a grid i ∈ RS ′
t ∪QS ′

t is protected from inundation during period t, if its elevation

(i.e., xitS for i ∈ RS ′
t , and hi for i ∈ QS ′

t ) is higher than permanent sea level s′. Grid i is also

protected if it does not have a hydraulic connection to the sea via one or more paths through

inundated grids in RS ′
t ∪QS ′

t . This secondary protection is determined by checking if grid i is a

neighbor of the sea grid or it has any adjacent grid i′ ∈ NS ′
t (i)∩ (RS ′

t ∪QS ′
t ) that is inundated,

and is represented by a binary variable yitSS ′ in the model. If grid i is safe from inundation due

to not being a neighbor of the sea grid and also due to the absence of a hydraulic connection

to the ocean through inundated grids in RS ′
t ∪QS ′

t , yitSS ′ is zero, and one otherwise. Using

variables yitSS ′ , Inequalities (3.10)-(3.13) along with the objective function guarantee that grid

i ∈ RS ′
t ∪QS ′

t is inundated during period t (i.e., witSS ′ = 1) if and only if its elevation is below

the sea level s′ and it is a neighbor of the sea grid or has a hydraulic path through inundated

grids to the sea (i.e., yitSS ′ = 1).

With the temporary flooding during a period t and under water level states S ∈ Ξt−1 and

S ′ = (s′, ŝ′) ∈ Ξt with positive transition probabilities, a grid i ∈ RS ′
t ∪QS ′

t ∪ R̂S ′
t ∪ Q̂S ′

t incurs
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hurricane storm surge flooding, if and only if its elevation (i.e., xitS for i ∈ RS ′
t ∪ R̂S ′

t , and hi

for i ∈ QS ′
t ∪ Q̂S ′

t ) is below water level ŝ′, it is a neighbor of the sea grid or has a hydraulic

connection to the sea via a path through flooded grids (permanent or temporary), and it is

not inundated. A grid i ∈ RS ′
t ∪QS ′

t ∪ R̂S ′
t ∪ Q̂S ′

t being a neighbor of the sea grid or existence

of a hydraulic path to the sea from this grid is captured by the binary variable ŷitSS ′ , which

is equal to one if grid i is a neighbor of the sea or such a path exists, and zero otherwise.

Inequalities (3.14)-(3.20) along with the objective function, use variables ŷitSS ′ to assure that

a grid i ∈ RS ′
t ∪QS ′

t ∪ R̂S ′
t ∪ Q̂S ′

t is temporarily flooded during period t (i.e., zitSS ′ > 0) if and

only if its elevation is below the sea level ŝ′, it is a neighbor of the sea grid or has a hydraulic

path through flooded grids to the sea (i.e., ŷitSS ′ = 1), and it is not inundated (i.e., witSS ′ = 0 if

i ∈ RS ′
t ∪QS ′

t ).

3.3.3 Computational complexity and solution approach

Having defined the FRM problem to this point in Section 3.3, we address its computational

complexity in Theorem 1 below, and establish that the decision version of this problem is

indeed NP-complete.

Theorem 1. The decision version of the FRM problem is NP-complete.

We present the proof of Theorem 1 by reducing the well-known Knapsack problem (Karp

1972) to a special case of the FRM decision version. Given a planning horizon

T = {1, . . . , tmax}, set ΞΞΞ = [Ξt : t ∈ T ] containing the sets of sea level states during each period

t ∈ T , sea level state transition probabilities ppp= [pSS
′

t : t ∈ {0, . . . , tmax−1},S ∈Ξt ,S ′ ∈Ξt+1],

a coastal region with the associated set of land grids in the area of interest Φ and the area

of relevance Ψ, initial elevations hhh = [hi : i ∈ Φ∪Ψ], minimum elevation threshold m, sets

RRR = [RS
t : t ∈ T ,S ∈ Ξt], QQQ = [QS

t : t ∈ T ,S ∈ Ξt ], R̂RR = [R̂S
t : t ∈ T ,S ∈ Ξt], and Q̂QQ = [Q̂S

t :

t ∈ T ,S ∈ Ξt] containing sets of land grids in Φ or Ψ at risk of permanent or temporary
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flooding during each period t ∈ T and under each sea level state S ∈ Ξt , a neighborhood set

N = [NS
t (i) : t ∈ T ,S ∈ Ξt , i ∈ RS

t ∪QS
t ∪ R̂S

t ∪ Q̂S
t ], cost c of elevating a grid in Φ by one

meter at the start of a period, permanent flooding costs ggg = [gi : i ∈ Φ] and hurricane storm

surge related flooding costs fff = [ fi : i ∈ Φ], a discount rate per-period λ , budgets per-period

bbb = [bt : t ∈ T ], minimum elevation threshold m, and a scalar C, the decision version of the

FRM problem, denoted by ⟨T ,ΞΞΞ,ppp,Φ,Ψ,hhh,RRR,QQQ, R̂̂R̂R,Q̂̂Q̂Q,N ,c,ggg, fff ,λ ,bbb,m,C⟩, is defined as fol-

lows: “Is there an assignment to variables xxx = [xitS : i ∈Φ, t ∈ T ,S ∈ Ξt−1] that satisfies Con-

straints (3.4)-(3.9) and (3.22)-(3.23) for which the value of Objective Function (3.3) (calculated

with respect to Constraints (3.10)-(3.21) and (3.24)-(3.25)) is at most C”. Now we will employ

a reduction from Knapsack problem to establish the intractability of the decision version of the

FRM problem in Theorem 1.

Proof of Theorem 1. It can be easily verified that given a decision vector xxx0, verifying whether

Constraints (3.4)-(3.9) and (3.22)-(3.23) are satisfied and the value of Objective Function (3.3)

incorporating Constraints (3.10)-(3.21) and (3.24)-(3.25) is at most C, can be done in poly-

nomial-time. Therefore, the decision version of the FRM problem belongs to class NP.

Next, we prove that the decision version of the FRM problem is NP-hard by performing a

polynomial-time reduction from the well-known NP-complete Knapsack problem (Karp 1972).

The decision version of the Knapsack problem, denoted as ⟨ααα = [αi : i ∈ {1, . . . ,n}],βββ = [βi :

i ∈ {1, . . . ,n}],σ ,η⟩, is “Given a finite set of n items each one with the value of αi and weight

of βi, a desired total value σ , and a knapsack with weight capacity of η , is there a subset

J ⊆ {1, . . . ,n} such that ∑i∈J βi ≤ η and ∑i∈J αi ≥ σ?”

Given an instance of the Knapsack decision problem ⟨ααα,βββ ,σ ,η⟩, we transform this in-

stance into a special case of the decision version of the FRM problem in polynomial-time as

follows:

1. The length of the planning horizon is set to be equal to one (i.e., T = {1}).
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2. There is only one sea level state during period 1, which is

(s1, ŝ1) = (max{βi : i ∈ {1, . . . ,n}}+1,max{βi : i ∈ {1, . . . ,n}}+1).

Therefore, ΞΞΞ = [Ξ1 = {(s1, ŝ1)}].

3. The transition probability p(0,0)(s1,ŝ1)
0 is also set to be equal to one. Therefore, ppp =

[p(0,0)(s1,ŝ1)
0 = 1].

4. The set of land grids in the area of interest is composed of n grids (i.e., Φ = {1, . . . ,n}).

The set of land grids in the area of relevance is empty (i.e., Ψ = /0). Each land grid in Φ

is assumed to be surrounded by the sea, and land grids in Φ themselves do not share any

border.

5. The initial elevation of each land grid i ∈ Φ (i.e., hi) is set to be equal to max{βi : i ∈

{1, . . . ,n}}+1−βi. Therefore, hhh = [max{βi : i ∈ {1, . . . ,n}}+1−βi : i ∈Φ].

6. The set of land grids in Φ at risk of permanent flooding during the single period consid-

ered and under the single sea level state given (i.e., R(s1,ŝ1)
1 ) is set to be equal to {1, . . . ,n}.

The set of land grids in Φ only at risk of temporary flooding during the single time pe-

riod and under the single sea level state (i.e., R̂(s1,ŝ1)
1 ) is set to be empty. Therefore,

RRR = [R(s1,ŝ1)
1 = {1, . . . ,n}] and R̂̂R̂R =QQQ = Q̂̂Q̂Q = [ /0].

7. The set containing neighbors of each land grid i ∈ R(s1,ŝ1)
1 within the at-risk network

corresponding to the given single period and single sea level state (i.e., N(s1,ŝ1)
1 (i)) is set

to only contain the sea grid. Therefore, N = [{o} : i ∈ {1, . . . ,n}]. The at-risk network

for the given single time period and sea level state is illustrated in Figure 16 below.

8. The cost of raising a grid i ∈Φ by one meter (i.e., c) is set to be equal to one dollar.
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9. The cost of losing a grid i ∈Φ due to inundation (i.e., gi) is set to be equal to αi+βi, and

the cost of hurricane storm surge flood damage to a grid i ∈Φ (i.e., fi) is set to be equal

to zero. Therefore, ggg = [αi +βi : i ∈Φ] and fff = [0 : i ∈Φ].

10. The discount rate per-period (i.e., λ ) is set to be equal to one.

11. The budget for the single considered period (i.e., b1) is set to be equal to η . Therefore,

bbb = [η ].

12. The minimum elevation threshold m is set to be equal to min{βi : i ∈Φ}.

13. Finally, the upper bound on the total cost in the FRM model (i.e., C) is set to be equal to

n

∑
i=1

(αi +βi)−σ .

Figure 16: Illustration of the at-risk network used in the proof of Thereom 1.

We now show that the answer to the Knapsack decision problem is a “yes”, if and only if the

answer to the constructed special case of the FRM decision problem is a “yes”. Suppose, there

exists a set J ⊆ {1, . . . ,n} that satisfies the Knapsack capacity constraint (i.e., ∑i∈J βi ≤ η)

and the total value for items in set J is at least σ (i.e., ∑i∈J αi ≥ σ ). Consider the solution

corresponding to elevating the land grids in set J in the constructed FRM problem so that each

grid in this set is raised up to the permanent (or storm-related) sea level, and is not permanently

flooded. The nodes in set J each cost βi when elevated, therefore, incurring a total investment

cost of ∑i∈J βi ≤ η , meeting the FRM budget limit. So, this solution satisfies Constraints (3.4)-

(3.9) and (3.22)-(3.23). Additionally, as shown in Equation (3.26) below, the value of Objective
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Function (3.3) (calculated with respect to Constraints (3.10)-(3.21) and (3.24)-(3.25)) is also at

most C.

EIC+EFC =

∑
i∈J

βi + ∑
i∈{1,...,n}\J

(αi +βi) =
n

∑
i=1

(αi +βi)−∑
i∈J

αi ≤
n

∑
i=1

(αi +βi)−σ = C (3.26)

Conversely, suppose there exists a set of land grids that are built up to protect against

permanent (and temporary) flooding in a way that the investment cost is bounded above by the

FRM budget η (i.e., Constraints (3.4)-(3.9) and (3.22)-(3.23) are satisfied) and the value of

Objective Function (3.3) (calculated with respect to Constraints (3.10)-(3.21) and (3.24)-(3.25)

is at most C = ∑
n
i=1(αi +βi)−σ . Let J ⊆ {1, . . . ,n} denote the set of land grids in the FRM

model that are not permanently flooded. Consider a solution to the Knapsack problem is which

we select the items in set J. Since the grids in J are not permanently flooded, then they should

have been elevated to a level higher than or equal to the permanent (or storm-related) water

level. Therefore,

∑
i∈J

βi ≤ EIC ≤ η , (3.27)

which means that the items in set J satisfy the Knapsack capacity constraint. Additionally, we

know that

EIC+EFC ≤ C =
n

∑
i=1

(αi +βi)−σ .

Since

EFC = ∑
i∈{1,...,n}\J

(αi +βi),

then, by Inequality (3.27), we have

∑
i∈J

βi + ∑
i∈{1,...,n}\J

(αi +βi)≤
n

∑
i=1

(αi +βi)−σ .

This means

∑
i∈J

αi ≥ σ ,
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which indicates that the total value for items in set J is at least σ .

Therefore, the decision version of the FRM problem is NP-hard. Combined with the ear-

lier mentioned fact that this decision problem belongs in class NP, we also conclude that the

decision version of the FRM problem is NP-complete.

Given the intractability of the FRM problem and considering the extremely large num-

ber of variables and constraints in Formulation (3.3)-(3.25), solving this problem by classical

branch-and-cut algorithms available via commercial solvers is impractical and computationally

expensive. In our case study in Section 3.4, to solve the FRM problem within practical time

limits and obtain managerial insights, we employed two different methods: a simulation-based

approach and a scenario-based approach. The reader is referred to Sections 3.5.1 and 3.5.2 for

the details of these proposed methods.

3.4 Case study

In this section, we employ our proposed model to develop a decision-support system for

building levees to protect the neighborhood of East Boston, using only publicly available data.

This research is the fifth paper of a series of articles on climate change adaptation in Boston.

Douglas et al. 2012 identified major obstacles and incentives for adaptation based upon rep-

resentative focus groups, Kuhl et al. 2014 examined in more details some of the challenges

and implementation barriers for evacuation in an environmental-justice community, Kirshen,

Ballestero, et al. 2018 addressed how to involve vulnerable exposed populations in urban adap-

tation strategy planning and the use of multi-stakeholder collaborative processes, and Zand-

voort et al. 2019 studied how pathway thinking can be used to inform landscape architects to

design sustainable and adaptive landscapes.
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3.4.1 Data and experiment settings

The neighborhood of East Boston presents a large coastal front with a relatively dense

population and a variety of building structures. This region has a nonuniform topography with

several hilly areas that overlook the city and are not at risk of flooding because of their higher

elevations. As shown in Figure 17(a), the neighborhood of East Boston marked within the

solid boundary line is the region of interest in our case study. The surrounding region includes

the neighboring towns of Winthrop and Revere, as well as Boston Logan airport owned by

MassPort and not under control of the city (Aloisi 2017). By following the procedure outlined

in Section 3.3.1.2, we create the network for our model by overlaying the grids as shown in

Figure 17(b), and then Figure 17(c) shows the identified areas of interest and relevance in our

case study. In creating the grid attributes (i.e., hi, fi, and gi), we use open source tax appraisal

data from the City of Boston (Boston 2020, 2016) and Light Detection and Radar (LIDAR)

elevation data from the Massachusetts Commonwealth (MassGIS 2017). Full details of the

data sources and transformations conducted to create the network and estimate grid parameters

hi, fi, and gi are found in Section 3.4.2.

Given that the model’s parameters are estimated based on available open-source data, there

might be inaccuracies associated with the estimated values. Therefore, we used a range of

possible values for some of the primary parameters as shown in Table 17, and conducted a

sensitivity analysis in our experiments to show the behavior of the optimal objective as the

values for these parameters change. We go through data used in the model in greater detail

in Section 3.4.2 below, but justify the range of values chosen for each one of these primary

parameters as follows. In evaluating flooding of coastal mega-cities, Aerts et al. 2014 provide

multiple sources and a range of discount rates (d) applicable to studies evaluating flood protec-

tion investment, leading to our chosen values of 3, 5, and 7 percent. We chose minimum levee

heights (m) of 1, 3, and 5 meters, which is also based on past studies showing a breakdown of
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Figure 17: Map of East Boston and overlays to make the network.

(a) Overlay of Region (East Boston marked). (b) Hex grids overlaid.

(c) Resulting Grid Network.
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heights for levee projects around the globe as discussed in Jonkman et al. 2013. To determine

the levee build cost (c), we initially started with a linear estimate of $450 per foot build-up per

linear foot of wall (Hecht and Kirshen 2019) as a potential lower value. In order to provide for

assessing sensitivity, we evaluated and chose values of $5M, $15M, and $25M per kilometer of

wall built one meter in height based on historical and regional factors affecting these values as

discussed in Jonkman et al. 2013. To conduct sensitivity analysis on the values used for storm

surge flooding, we shift the slope of the estimated depth damage function curve ( f̄i) by ±25%

to attain fi. Finally, we determined the budget values (bt) by initially running the full range

of simulations with an unlimited budget. We then looked for clear breakpoints for the initial

period spends across all scenarios to use them as possible values for budgets.

Table 17: Parameter values used to conduct sensitivity analysis.

Parameter Values used Units
Discount rate (d) 3, 5, 7 %

Minimum elevation increase (m) 1, 3, 5 meters

Grid elevation cost (c) 5, 15, 25 $M/km per m

Storm flood damage curve ( fi) 0.75 f̄i, f̄i, 1.25 f̄i $M/m

Budget per period (bt) 0, 25, 50, 75, 100, 150, 200, 400, 600 $M

3.4.2 Data Collection and Transformation for Case Study

Given that East Boston is the location of interest in our case study, we need to compile the

necessary data to create the actual model parameter values for this region. As we aim to create a

useful model for any coastal area, we only use available open-source datasets. Figure 18 shows

the breakdown of the data references used for compiling the input parameters, with three main

categories: sea level, network, and financial data. Given the model’s inherent spatial nature,

the network-related data are captured and transformed from Geographical Information System

(GIS) open-source data. All elevations are referenced to the North American Vertical Datum of
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1988 (NAVD88) (Vanicek 1991) to ensure consistency in the spatial data used. Figure 18 high-

lights the three main elements of the data preparation, including identifying the data sources,

interactions, and transformations to model parameters. In the following subsections, we will

detail the data sources, assumptions made to apply the data accordingly, and the transformation

methods needed to produce the model parameters.

3.4.3 Sea level data

To capture the full range of sea level states (parameters s and ŝ) over time, we need to

incorporate three important factors. These three factors include the climate-induced sea level

rise heights and probabilities, tidal range captured by tidal data, and hurricane storm surge

heights and probabilities. We will discuss each of these factors in the next four subsections.

3.4.3.1 Climate-induced sea level rise

Before discussing the actual data source for the potential sea level rise scenarios, it is im-

portant to briefly mention the Representative Concentration Pathway (RCP) carbon emission

trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC 2014). The

pathways describe different possible climate futures. All of them are possible and depend on

the volume of greenhouse gases emitted now and in the future. Most sea level rise analy-

ses align with these RCP trajectories; therefore, we will segment our data into the four original

RCP trajectories of RCP2.6, RCP4.5, RCP6.0, and RCP8.5. Given the non-deterministic future

of greenhouse gas emissions reductions, we will treat each of the four RCPs as independent

and equally likely.

There are many sources of potential sea level rise within the literature. Looking back over

the last few decades (Garner et al. 2018), the one common theme in all the predictions is sub-

stantial uncertainty in the best to worst-case sea level rise predictions. One can follow the

flow of sea level rise predictions from both plausible or probabilistic perspectives (Ruckert,
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Figure 18: Outline of data sources and their incorporation into model’s parameters.
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Srikrishnan, and Keller 2019). Given these ever-evolving sea level rise predictions, the model

we propose leaves open the ability to incorporate a range of sea level rise predictions. This

ability will allow us to be flexible in capturing the expected costs of the inundation and hur-

ricane storm surge flood damages as sea level rise understanding evolves. For parameters s

in the sea level states of our model, we utilize the sea level rise predictions captured in Kopp

et al. 2017 as the authors provide nine sets of probabilistic sea level curves for each of the

four RCPs. These curves predict sea level rise each decade through the year 2100, with further

50-year predictions out to the year 2300. Here we will only be using the period data up to 2070

starting from 2020, which results in five decade-long periods in our model. The data from

Kopp et al. 2017 incorporate applicable sea level rise causes from multiple sources, including

ice sheet melt, glacier and ice cap melt, land water storage, oceanographic processes, glacial

isostatic adjustments, tectonics, and other non-climate local effects. The authors made their

model calculations publicly available for many coastal areas associated with local tidal gauges,

including the Boston tidal gauge.

In Kopp et al. 2017, there are nine probabilistic curves associated with each RCP, with the

example for RCP8.5 shown in Figure 19. For explanation, the curves in Figure 19 represent

the probability that the sea level rise will be less than or equal to that sea level associated with

that curve at that point in time. For instance, in the year 2100, one can see that the sea level for

the 50% curve will be 90 cm. That is interpreted to mean that the sea level is 50% likely to be

at or below that level in the year 2100. Similarly, when looking at the 99.9% curve in the year

2100, we would expect the sea level is 99.9% likely to be at or below 316 cm in the year 2100.

This data provides us with the required sea level curves, the periods t we will need, and a basis

for assigning their probabilities, as discussed in Section 3.4.3.4 below.
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Figure 19: Boston sea level rise curves for Representative Concentration
Pathway 8.5 (RCP8.5). Source: Graph from Kopp et al. 2017

.

3.4.3.2 Tidal range

To obtain the tidal value used in the model, we reference the National Oceanic and Atmo-

spheric Administration (NOAA) tide gauge based in Boston harbor (NOAA 2018). In using

the tidal data, we assume the sea level rise data will account for any changes over time dis-

cussed in Section 3.4.3.1. The data we use is relative to North American Vertical Datum of

1988 (NAVD88) (Vanicek 1991), providing us with the Mean Higher High Water level of 1.52

meters as the highest elevation caused by high tides in our sea level data. We add this high tide

value to the values reported in Kopp et al. 2017 to obtain the parameters s used in the sea level

states of our model.

3.4.3.3 Hurricane storm surge levels

To determine our storm surge levels, we use the hurricane storm surge data from the Na-

tional Oceanic and Atmospheric Administration (NOAA) tide gauge based in Boston harbor

(NOAA 2018). We assume that storm surge heights over time will remain constant based on
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the hurricane storm surges and any change in absolute height are captured by factors discussed

in Section 3.4.3.1. Table 18 shows the surge levels and associated exceedance probability lev-

els for the four hurricane storm surge levels we use in our model. The exceedance storm surge

levels represent the likelihood of a storm surge height above the Mean Higher High Water high

tide level captured in Section 3.4.3.2. For instance, on average, the 1% level will be exceeded

in only one year per century, while the 10% level will be exceeded in ten years per century.

As shown in Table 18, we use the median value for the four exceedance probabilities for the

Boston tidal gauge published by NOAA (NOAA 2018) to simplify the model development and

to reduce the risk of overly long model runtimes. We add these values to the parameters s, as

determined above, to obtain parameters ŝ in the sea level states of our model.

Table 18: National Oceanic and Atmospheric Administration storm surge levels.

Storm Surge Exceedance Probability Water Level above Mean Higher High Water

100-year 0.01 1.41 m

10-year 0.10 1.07 m

2-year 0.50 0.81 m

1-year 0.99 0.56 m

3.4.3.4 Sea level states paths and their probabilities

To calculate the associated probabilities for each curve under a given RCP, we first trans-

form the RCP’s probabilistic curves into time-dependent exceedance curves. Figure 20 shows

an example of an exceedance curve for RCP8.5 in the year 2100. Using a linear interpolation

methodology (Kirshen et al. 2012), we calculate an estimated probability for each probabilistic

curve for a given RCP at a given time. For explanation, considering the exceedance curve in

Figure 20, we estimate the probability for the 50%-probabilistic curve by taking the halfway

points between the 50%- and 83.3%- curves and the 50%- and the 16.7%- curves, and then

measure the distance between those two midway points as shown in Figure 20. It is important
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Figure 20: Representative Concentration Pathway 8.5 (RCP8.5) sea level
rise exceedance curves for year 2100 adapted for Boston. Source: Graph

from Kopp et al. 2017.

to note that for a given p%-curve in a given RCPα , the actual sea level increases over time,

while the estimated probability for the curve (denoted by Pα,p
curve) does not change as the distance

between the two midway points remains constant over time. We show the estimated probabil-

ities for each of the nine p%-curves in Table 19. We apply the same technique to each β -year

storm surge exceedance curve to determine estimated probabilities Pβ
surge as shown in Table 20.

As mentioned, the probability distribution for the hurricane storm surge levels is assumed to

be fixed over time.

Now that we have estimates for the probabilities of each RCP’s probabilistic curves and

the probabilities of hurricane storm surge instances, we can determine the complete set of

possible sea level states paths and their probabilities by bringing this information together.

Given an RCP α , to calculate the probability for each of the associated sea level states paths,

we treat the probabilities for sea level rise curves Pα,p
curve and hurricane storm surge levels Pβ

surge

as independent. By doing so, we can calculate the estimated probability for a path composed

of a p%-curve sea level rise in a given RCP α and a β -year storm surge (denoted by Pα,p,β )

as shown in Equation (3.28). When combining the four RCPs with equal probabilities, we
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Table 19: Estimated probabilities for sea level rise curves for a given
Representative Concentration Pathway α .

SLR Curve (p) Pα,p
curve

99.9% 0.0030

99.5% 0.0045

99.0% 0.0225

95.0% 0.0785

83.3% 0.2250

50.0% 0.3330

16.7% 0.2250

5.0% 0.0785

1.0% 0.0300

Table 20: Estimated probabilities for four storm surge curves.

Storm Surge curve Pβ
surge

100 year 1% 0.055

10 year 10% 0.245

2 year 50% 0.445

1 year 99% 0.255

produce a total of N = 144 unique sea level states paths, each with the probability of 0.25 ∗

Pα,p,β . These will be the paths we use in our simulation-based and scenario-based solution

approaches discussed in Sections 3.5.1, 3.5.2, and 3.5.3. In Table 31 in Appendix B, we show

the probabilities for each of the 144 sea level states path and the associated values of s and ŝ

for each path in each period.

Pα,p,β = Pα,p
curve ∗Pβ

surge (3.28)
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3.4.4 Network data

To create our network, we start by overlaying a grid in the geographic region of interest,

which is East Boston and the surrounding region in our case study. We chose to create our grid

overlay using hexagonal grids. Although many flood studies use square grids, we use hex grids

for two main reasons. First, hex grids provide a tessellated grid structure with equidistant grids

between their centers. Second, hex grids have distinct boundary lines with limited ambiguity.

The reduced boundary ambiguity overcomes the challenge of determining water flow with

square cells as to whether it is just across the four shared sides (four neighbors) or also across

the corners (eight neighbors). Using hex grids, the network nodes’ neighbors are just the six

neighbors sharing same-length borders, which are very straightforward to define and account

for flow between nodes. These are the two main reasons we use hex grids to develop our

network, but the interested reader can find more background on the pros and cons of hex grids

in geospatial analysis applications (Birch, Oom, and Beecham 2007; De Sousa et al. 2017).

We conduct all geographical data inputs and transformations for modeling purposes using

the Quantum Geographic Information Software (QGIS) application, specifically version 3.10.

To create our grid overlays, we use the MMQGIS Python library that allows creating a grid

overlay by providing information covering the geographic region of interest and individual

grid size. In determining the hex grids’ size, we have to trade off between hex grid area size

and expected model runtime. On the one hand, the smaller we make the hex grids, the larger

the number of overall grids there will be, which will result in a more complex model and

longer runtimes to reach suitable solutions. Conversely, the grids should be sufficiently small

to keep the model relevant for protecting discrete areas that can be built up over time to provide

potential protection for the network. In evaluating the model, we evaluated various size grid

overlays to get a sense of model runtime compared to realistic grid sizes for planning. In the

end, we have used a grid overlay with hex grids with a side-to-side length of 100 meters and
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an area of 8660 m2, resulting in 404 at-risk land grids in the region of interest. We will create

our network within this grid structure and conduct the necessary transformations to create

grid attributes. In the following sections, we will discuss the assumptions and transformations

needed to calculate the grid attributes for elevation (hi), depth damage coefficient ( fi), and

value (gi) used in the model.

3.4.4.1 Grid elevation data

To determine each grid’s elevation, we start with available Light Detection and Ranging

(LIDAR) data for Massachusetts. This dataset is open-source and available online from the

MassGIS repository (MassGIS 2017). MassGIS terrain data comes in varying degrees of gran-

ularity. The raster file data used in this analysis had elevation data by one square-meter of land

coverage. The surveys that captured this data were conducted in 2013-2014 to assist in evalu-

ating hurricane storm damage and erosion of the local environment as part of the United States

Geologic Survey (USGS) response to Hurricane Sandy. For the bathtub-type flood analysis

used in this study, LIDAR data with this level of accuracy are considered to be of sufficient

quality (Gesch 2018). To capture each hex grid’s elevation, using the QGIS software, we sam-

pled the elevation from the LIDAR raster values within a given hex grid and then assigned the

mean as the elevation of the hex grid. Given the overall exploratory nature of the model, we

must accept some limitations to the ability to capture the grid elevations perfectly.

3.4.4.2 Tax appraisal data

We use the open-source Geographic Information System (GIS) tax appraisal data available

from the City of Boston to obtain the value and types of buildings located within the study area.

Specifically, we use the tax appraisal data from the 2016 tax year because it was the fullest

dataset available at the beginning of this study. The tax appraisal dataset is available from

the City of Boston at their GIS data repository (BostonGIS 2016). Supporting information
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and metadata were also needed and available from the Analyze Boston website (Boston 2020),

including the tax parcel data key and associated property occupancy codes.

It was necessary to profile the data to ensure its quality and applicability due to it being

an open-source dataset. There were several elements of the data that required subsequent

validation. For example, to properly determine the building structure, we needed to know how

many floors were in a given building. Unfortunately, for multi-unit buildings with multiple

taxpayers, the dataset’s records only had the number of floors associated with a taxable unit

(e.g., condo or apartment). To correctly classify the number of floors in a building, we used

secondary validation to visually inspect the buildings using Google Streetview (Anguelov et

al. 2010) to assess the total number of floors for multi-tenant buildings. The number of floors is

essential in determining the classification to assign each building for assigning the appropriate

depth damage function. We also used Google Streetview for additional validation when a

building in the tax database no longer existed or a building did exist but was not in the tax

database. Finally, a subset of buildings and lots in the tax database was categorized as “exempt”

for taxation purposes, and had zero appraised value. Examples of such buildings included

churches, government buildings, hospitals, and state transportation nodes. Because these tax-

exempt parcels have a value of zero, exempt parcels in the model understate the potential total

damages. That said, in the overall dataset, only 2% of the tax parcels were exempt, so we leave

their value as zero for purposes of this model evaluation.

3.4.4.3 Depth damage curve estimation

To determine the flood damage associated with temporary related flooding from hurricane

storm surges, we need to use the tax parcel data to capture the type of building within each tax

parcel. We also need a method of determining flood damage based on the level of flooding.

Depth damage functions are typically defined by interpolating flooding depth and damage data

through systematic procedures that analyze historical flood events or insurance claims data, or
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even from synthetic damage data from simulation models (Armal et al. 2020). The resulting

function can be used to estimate how much damage a building may experience based on a given

depth of flooding.

For purposes of this study, we adapt the hurricane storm surge-related depth damage curves

captured following Hurricane Sandy-related flooding in 2012. In the aftermath of Hurricane

Sandy, the US Army Corps of Engineers worked with a group of experts to elicit depth damage

functions for the building types common in the area affected by Hurricane Sandy. The result

was a listing of 14 building types and the associated depth damage function for these buildings

when experiencing inundation, erosion, and wave impacts (USACE 2015). For our model with

the bathtub-type flooding methodology, we only use the inundation-related damage curves

from (USACE 2015) to develop our associated depth damage functions. More specifically, of

the 14 building types identified within the study, there are five that we apply to the buildings in

our model. Specifically, we used the depth damage curves for one-story commercial, one-story

residential, two-story residential, three-story apartment, and high-rise buildings. Not every

building in East Boston fits perfectly into these categories, so we had to apply a judgment call in

some instances. For instance, there are many three- and four-story residential buildings in East

Boston with very similar characteristics. Given these similarities, we put all of these buildings

into the three-story apartment category. Table 21 shows the breakdown of buildings and their

type classification. Due to our model’s linear nature, we applied a linear approximation of

the depth damage curves in (USACE 2015), with all costs starting at zero. This linearization

method introduces potential errors into the model, so we check its sensitivity in the model by

running three potential values at 125%, 100%, and 75% of the estimated values captured using

our method. Using the linear approximation for each curve, we arrive at the coefficient of the

depth damage function for each building in a tax parcel as shown in Table 21.
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Table 21: Breakdown of building types in East Boston and associated
depth damage coefficients.

Building Type Count Depth Damage Coefficient per meter

Three Story Apartment 3290 0.203

Two Story Residential 2040 0.203

One Story Commercial 206 0.233

One Story Residential 155 0.246

High Rise 6 0.108

3.4.4.4 Calculating flood loss values fi and gi

With each building’s values and types now captured in the tax parcel dataset, it is necessary

to transform the applicable tax parcel data within each hex grid into the flood loss coefficients

that are the attributes for each hex grid. We next derive the flood cost parameters fi and gi by

weighting and aggregating the previously described tax appraisal data. Below, we describe the

steps necessary to calculate these two grid monetary-related attributes as discussed in (Mole-

naar 1998).

Within the tax dataset, tax entities represent units that are taxable within a tax parcel. There

can be more than one tax entity in a tax parcel, but a tax entity can only reside in one and only

one tax parcel. We represent the tax entity by index k, where there are K = 7,979 tax entities

in the dataset (i.e., k ∈ {1, . . . ,K}). Tax parcels are the geographic areas within the data that

contain one or more tax entities. Tax parcels will be represented by index l, where there are L

= 6,467 tax parcels in the dataset (i.e., l ∈ {1, . . . ,L}).

Tax entities have three appraised value fields in the tax dataset: building value, lot value,

and total value consisting of the sum of building and lot values. In this analysis, for a given tax

entity k, we use the appraised building value (denoted by BVk) to determine the flood damage

costs from temporary flooding, and use the appraised total value (denoted by TVk) to determine
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the loss caused due to inundation. We used the appraised values available via the Boston 2016

tax parcel data (Boston 2020, 2016).

Using the information we have for each tax entity, the tax entity values can then be aggre-

gated into the applicable geographic-based tax parcels as described next.

• Appraised Building Value for Tax Parcel l is

PBVl = ∑
k∈l

BVk ∀l ∈ {1, ..,L}

• Appraised Total Value for Tax Parcel l is

PTVl = ∑
k∈l

TVk ∀l ∈ {1, ..,L}

Each tax parcel represents an area of land on the map where the tax entities are located. To

allow for aggregating portions of the tax parcels that intersect with the hex grids, we need to

determine a unit measure of value within each tax parcel. In this case, we can determine that

unit measure by dividing the tax parcel’s appraised values by the tax parcel area. Area of the

Tax Parcel l is designated as Al as measured in square meters and is determined by using QGIS

software. Using this tax parcel area, we can determine the unit values for both building and

total appraised values per square meter within each tax parcel as follows.

• Unit Building Value in parcel l is

pbvl =
PBVl

Al
∀l ∈ {1, ..,L}

• Unit Total Value in parcel l is

ptvl =
PTVl

Al
∀l ∈ {1, ..,L}

The aggregation’s next step is to determine the depth damage value for a square meter of

tax parcel l. We can do this by using the information in the data set that indicates the property

type along with the applicable depth damage coefficient from Table 21. The depth damage

coefficient is a linear approximation used to determine the dollars of property damage as a
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percentage of value per depth of one meter flood. We designate this by Dl , then multiply it

with the unit building value pbvl to attain the per meter squared depth damage per meter of

flood level. In other words, the damage value in a meter squared of tax parcel l ∈ {1, . . . ,L}

per meter of flooding is pdvl = Dl pbvl

Now that we have our values for parcel depth damage and total value, we need to aggregate

those values into the hex grids i to develop the per grid estimated depth damage values f̄i and

the inundation flood loss value gi. To this aim we will merge the two map layers and evaluate

the overlapping areas of the tax parcels captured within each hex grid. The overlapping area

between a hex grid i ∈ {1, . . . , imax} and a tax parcel l ∈ {1, . . . ,L} is denoted by OAil , and

is calculated using the QGIS software. Using these overlapping areas, we can determine the

aggregated depth damage and total values associated with each hex grid as described next.

• Hex grid i depth damage value (dollars/meter) is

f̄i = ∑
{l∈{1,...,L}:i∩l ̸= /0}

pdvlOAil ∀i ∈ {1, .., imax}

• Hex grid i total value (dollars) is

gi = ∑
{l∈{1,...,L}:i∩l ̸= /0}

ptvlOAil ∀i ∈ {1, .., imax}

3.4.5 Financial data

As discussed in Section 3.4.1, there are three financial components that we need to incor-

porate into our model. The first is the cost of investment to elevate a grid (i.e., parameter c).

We treat the investment cost as the cost of building a levee on the grid. Typically a levee would

have a range of values per meter of height build-up based on the levee height. To determine

the cost in our model, we started with a linear estimate of $450 per foot build-up per linear

foot of wall (Hecht and Kirshen 2019) (or $4,841.28 per meter per linear meter). Given the
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expected importance of this parameter to the model solutions, and based on values from previ-

ous projects (Jonkman et al. 2013), we check the model’s cost sensitivity using three values of

$5M, $15M, and $25M per kilometer of length for one meter of elevation ($M/km per m). Con-

verting these costs for the model to use per grid, the values we used were $0.866M, $2.598M,

and $4.33M per meter of elevation change for one grid. We do this by using the linear distance

measurement of half the perimeter of our hex grids for the length to build.

The next financial parameter we include is a discount rate (d). Wide ranges of discount

rates can be used for this type of cost-benefit analysis (Aerts et al. 2014). The value used

often depends upon the decision-maker’s financial risk tolerance. To account for a range of

sensitivity, we incorporate three annual discount rate values of 3%, 5%, and 7%. Given that

the time duration of each period in our model is ten years, we end up with an adjusted discount

rate parameter in the model of λ = (1+d)10.

The final financial parameter needed for our model is the budget spent to build up grid ele-

vations for each period (i.e., bt for all t ∈ {1, . . . , tmax}). Given this study’s exploratory nature,

we use this financial value primarily as a per-period constraint to assess the model under var-

ious budget limitations. In reality, if running this model for a government agency, we would

need to work with the agency to understand their current budget plans, constraints, and limits

on what they would spend for the area under investigation. A simple way to arrive at an ac-

ceptable budget range is to look at the city’s current budget for its infrastructure development

and use that as a constant value throughout the study period. In the end, we use a band of

budgets determined by initially running the model without the budget constraint and picking

representative values based on the breakpoints for the initial period spends across all scenar-

ios. This results in the case study budgets ranging from $0 to $600M per period as shown in

Table 17 for the case study of East Boston. These values span a wide range, with the lower

to mid-ranges being within a reasonable range of what we would expect the city to spend to

avoid flood damages. The final factor we need to address in the financial data is that the model
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periods are a decade long, while the flood damages are based on annual factors. Thus, we

increase the expected damages by a factor of 10 in calculating all expected flood damages that

the model determines.

3.5 Results

As discussed in Section 3.3.3, given the intractability and impracticality of solving the FRM

model, we employ two different approaches to solving the case study, namely a simulation-

based approach (Section 3.5.1) and a scenario-based approach (Section 3.5.2) to handle this

challenge. To check the generalizability of the model, we subsequently use the same ap-

proaches on 50 randomly generated networks (Section 3.5.3). In all experiments, we built

the related models using Python 3.8.5 and used Gurobi version 9.5.2 as the commercial solver.

The experiments were conducted on Amazon Web Services EC2 c5n.4xlarge instances (AWS

2023). Given more than 100K individual optimization runs for the case study, we set the ter-

mination condition for each optimization run as either one percent optimality gap or one hour

running time limit, whichever is observed first. Most (98.5%) of the runs completed by reach-

ing the one percent optimality gap. In the remainder of this article, we refer to the best solution

found before reaching the termination condition in each optimization run as the “optimal” so-

lution. We discuss the details of our experiments next.

3.5.1 Simulation-based approach

The first approach is a simulation-based approach in which we solve the FRM Formula-

tion (3.3)-(3.25) for each possible combination of chosen values for the model’s parameters

on simulated sea level states sample paths each composed of a collection of possible sea level

states over the next five decades. In this approach, each run of the model is done on a single

simulated sea level states path (i.e., we assume Ξt = {St}, where St is the sea level state on
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the considered path during period t ∈ {1, . . . ,5}), which makes this solution approach com-

putationally practical. Then, incorporating the probability associated with each simulated sea

level state path, we compute and analyze the expected optimal objective of the FRM Formula-

tion (3.3)-(3.25) across all simulation runs.

As discussed in Section 3.4.3, we sample sea level states paths over the next five decades in

our simulation, using a collection of four RCP greenhouse gas emission pathways (IPCC 2014),

nine probabilistic sea level rise curves per RCP (Kopp et al. 2017), and four potential hurricane

storm surge levels (NOAA 2018). Using this sampling approach discussed in Section 3.4.3, we

can derive the actual distribution for all possible simulated five-period sea level states paths.

This distribution contains a total of 144 five-period sea level states paths and their probabilities

of occurrence as shown in Table 31 in Appendix B. We use Ω to denote the set containing these

144 paths, and p(SSS) to represent the probability associated with a path SSS ∈Ω.

Assuming that the distribution of all possible simulated sea level states paths is given by

Table 31, we solve the FRM Formulation (3.3)-(3.25) for a possible combination of chosen

values for the model’s parameters 144 times, each time on a distinct five-period simulated

sea level states path, and compute the expected optimal objective for the chosen parameters’

combination in our simulation experiment as ∑
SSS∈Ω

p(SSS)z∗SSS, where z∗SSS is the optimal objective of

the FRM Formulation (3.3)-(3.25) for the chosen parameters’ combination using path SSS ∈ Ω.

We discuss key takeaways from our simulation-based approach below, and refer the reader to

Appendix C for the full set of simulation results.

In Figure 21, we present three simulation results with expected optimal costs reported for

two extreme parameter settings and the mid-point of these settings as shown in the inset table

in this figure. In Figure 21, charts (a) and (b), the parameters selection results in the worst-case

combination (i.e., highest overall costs). The “do nothing” (zero budget) expected costs nearly

reach $340M. The optimal expected investment is $88.7M with a per-period budget of at least

$400M. Notice that $88.7M is an expected value and there might be a sea level states path under
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which the build cost could be substantially more in a given period, but due to the low probability

for such sea level states path, the expected value is much lower. This is the reason that with

budgets less than $400M, the overall expected costs are higher. It is also important to note that

even with budget values of more than $400M, there are combined expected storm surge and

inundation costs tallying more than $70M. This is due to the fact that given the highest build

costs (i.e., c) and the largest increments in levee heights (i.e., m) in this worst-case parameters

setting, more grids are sacrificed to flooding and inundation over the planning horizon. This

simulation’s discounted flooding costs are higher due to the low discount rate causing future

flooding to be more expensive at today’s rates. Figure 21(b) provides a percentage by type

breakdown of costs. Storm-surge flooding under lower budgets makes up the bulk of costs.

Not until the model reaches a $400M per-period budget does the expected investment cost

stabilize at an optimal point where an $88.7M expected investment reduces total expected

costs from “do nothing” by 52.3% while also reducing total expected flood-related damages by

78.5%. On the other extreme parameters setting, Figure 21 charts (e) and (f) show that with

lower minimum levee heights (i.e., m) and building costs (i.e., c), expected costs are the same

under all budget values. Only in the “do nothing” case does the model reach total expected

costs of $82.8M, with inundated grids making up nearly 40% of those costs. With just a

$10.6M expected investment over the planning horizon, the total expected costs are reduced

by 81.0%, while total expected flood-related damages are reduced by 94.3%. Of note, even

at these investment costs, the model still sacrifices some grids to storm-surge flooding and

inundation, meaning they are not protected even with the extra funding available to build. The

behaviour of the expected optimal costs is in between the two extreme cases for the mid-point

parameters setting as shown in Figure 21 charts (c) and (d). As mentioned before, Appendix C

shows the full breakdown of expected costs and percentages observed for all possible parameter

combinations. The best overall expected cost reduction compared to a “do nothing” policy is

92.2% across all parameter combinations and budget values (attained when d = 3%, m = 1m,
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c = $5M/km per m, fi = 1.25 f̄i, and bt ≥ $25M), while the average cost reduction is 63.2%.

Across the board, investment shows a meaningful reduction in flood damages, but only until

further investment is no longer cost-beneficial.

Figure 21: Overall expected optimal costs and their percentage breakdown
by per-period budget for worst-case (charts (a) & (b)), mid-case (charts (c)
& (d)), and best-case (charts (e) & (f)) parameter settings across full 144

simulated sea level states paths.

(a) (b)

(c) (d)

(e) (f)

In Figure 22, we show overall expected costs across per-period budgets with combinations

of minimum levee heights (m) and levee costs (c) while holding the discount rate (d =3%)
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Table 22: Parameter values used in each chart of Figure 21.

Parameter values used in each chart Chart
Parameter (a) & (b) (c) & (d) (e) & (f)

Discount rate (d) [%] 3 5 7

Minimum elevation increase (m) [meters] 5 3 1

Grid elevation cost (c) [$M/km per m] 25 15 5

Storm flood damage curve ( fi) [$M/m] 1.25 f̄i f̄i 0.75 f̄i

and the depth damage function ( fi = 1.25 f̄i) constant. In Figure 22(c), with m = 1m and c =

$5M/km per m, the lowest curve is constant regardless of budget. As the value of c increases,

the other curves begin increasing when the budget falls below $75M. In Figure 22(b), with m =

3m, the c = $5M/km per m line remains constant until the budget falls to $25M. With higher

values of c, the overall expected costs increase as the per-period budgets fall. At the lowest

budget of $25M, there is a significant uptick in overall costs due to the inability of the model

to build up enough grids to protect the network overall. Finally, in Figure 22(a), the expected

costs are rising again, especially at the lower budgets. At m =5m, both the $15M/km per m

and $25M/km per m values of c show increased overall costs when falling below the $200M

per-period budget. At these higher values of m and c, the model hinders building levees on

enough grids to provide adequate protection within the network overall. It uses constrained

funding to protect the most valuable grids and initially requires higher funding to protect the

network more broadly.

Figure 23 shows expected overall, build, storm surge, and inundation cost distributions for

the three values of each parameter d, c, m, and fi when holding the budget constant at $50M.

The top row shows overall expected cost distributions for the simulations when varying each

parameter. As anticipated, increasing discount rate reduces the expected overall costs, while

increasing the other parameters causes higher overall expected costs. The discount rate has the

largest overall effect across model runs. In contrast, changes to the depth damage function ( fi)
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Figure 22: Effects of varying minimum levee heights (m) and levee costs
(c) on expected optimal costs for varying per-period budgets ranging from
$25M to $200M (discount rate (d) at 3% and storm depth damage function

slope ( fi) at 1.25 f̄i).

(a) min levee 5.0m (b) min levee 3.0m (c) min levee 1.0m

have the smallest effect, which makes sense given that it primarily affects storm surge flooding

costs. Looking at individual cost charts is where we see some interesting effects. For instance,

in Figure 22, we saw that changes to m and c result in significantly more flood-related damage

at lower budgets. Figures 23 (f) and (g) show substantially lower build costs for levee costs of

c = $5M/km per m and minimum levee height of m = 1m than for the higher values of each

parameter. Additionally, the median build cost for m = 3m is higher than when m = 5m. The

combination of c and m values are critical factors in evaluating building a levee system that

can protect as much of the network as possible. At the lower values, adequate funding exists to

leverage the network effect and build levees that protect as many grids as possible. However,

at higher levee costs with higher minimum levee heights, the model shifts to protecting the

most valuable grids in the network because the investment to protect more of the network is

too costly.

When evaluating discount rate sensitivity in Figures 23 (e) and (m), there are notable obser-

vations in the individual build and inundation costs. At the 3% discount rate, the build costs’

boxplot stretches upward, with its lower quartile higher than the upper quartile of the 5% box-
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plot. Similarly, at 3%, the inundation costs cover a wider range of values, while at 5%, the

inundation cost distribution is much smaller, with a handful of outliers. The smaller discount

rates cause future storm surge and flood costs to be higher in discounted terms. So, we inter-

pret these observations to mean that the model is inclined to protect against inundation when

those costs can be higher due to lower discount rates. The model invests earlier to protect those

grids from future damages. However, with the higher discount rate of 5%, the model invests

less because the discounted inundation costs are lower in future periods. Essentially, the lower

discount rate tends to cause earlier investments due to flooding and inundation costs in future

periods having a more considerable effect on costs in discounted terms.

Some key takeaways from the simulation experiment and its sensitivity analysis are:

1. From Figure 21, potential overall expected costs can be significantly reduced by investing

only a small fraction of the “do nothing” flood-related costs independent of parameters’

values. This quantifiably proves the effectiveness of a mitigation policy in dollar values

and shows the extent of the loss for following a response-type strategy.

2. From Figure 21, some grids appear too expensive to protect through the network effect

(or individually) and incur storm-surge flooding and inundation costs even when a sur-

plus budget is available. Identifying such grids for planning purposes is not a trivial task

and our proposed model can be an effective tool for this purpose.

3. From Figures 21 and 22, our model can be used to find optimal budget per period values

that yield the minimum expected overall costs for a given combination of input param-

eters. We also observed that the levee cost (c) and minimum levee height (m) have the

biggest effect on the amount of budget needed to reach the minimum expected over-

all cost before no further spending occurs. Our proposed model is a powerful tool for

determining such meaningful budget values and can be used in financial planning for

development of a levee system.
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Figure 23: Boxplots showing effects of changing parameters on expected
costs for all $50M budget runs.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
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4. From Figure 23, the discount rate (d) has the largest effect on overall expected costs

while the changes to the storm depth damage function ( fi) has the smallest effect. This

is an important capability of our model as it can be used to identify parameters that re-

quire more accurate estimations because of their significant effects on levee construction

planning and timing.

3.5.2 Scenario-based approach

Given the uncertainty associated with the expected sea level rise used in the model, policy-

makers might be interested in adopting a scenario-based approach by investigating individual

scenarios ranging from the best- to the worst-case sea level rise predictions. For example, a

policymaker might want to highlight the range of values for investment and flood cost across

four different scenarios, namely optimistic, expected-low, expected-high, and high sea level

rise scenarios for the next five periods (50 years). This scenario-based approach provides pol-

icymakers with meaningful insights to make decisions based on their judgment on anticipated

future sea levels. To this aim, in this section, we focus on solving the FRM Formulation (3.3)-

(3.25) on four scenarios (i.e., optimistic, expected-low, expected-high, and high sea level rise

scenarios) chosen from the 144 simulated sea level states paths mentioned in Section 3.5.1.

The chosen scenarios are paths numbered 114 (high), 130 (expected-high), 85 (expected-low)

and 64 (optimistic) in Table 31 of Appendix B, respectively. The optimistic and high scenario

values represent points near the extremes of the 144 simulated sea level states paths, while the

expected-high and expected-low scenarios represent points near the middle. Similar to the case

of the simulation-based method, we use the same ranges of values for the model’s parameters

to conduct a sensitivity analysis for each of the four scenarios considered. Figure 24 shows the

results for these four chosen scenarios using the same worst-, mid-, and best-case parameter

settings as in Section 3.5.1.
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Figure 24: Overall optimal costs by per-period budget for worst-case,
mid-case, and best-case parameter settings for no SLR with annual

flooding, optimistic, expected-low, expected-high, and high sea level rise
scenarios.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)
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Table 23: Parameter values used in each chart of Figure 24.

Parameter Worst-case Mid-case Best-case

Discount rate (d) [%] 3 5 7

Minimum elevation increase (m) [meters] 5 3 1

Grid elevation cost (c) [$M/km per m] 25 15 5

Storm flood damage curve ( fi) [$M/m] 1.25 f̄i f̄i 0.75 f̄i

We see similar patterns in Figure 24 when compared to Figure 21. In the best-case parame-

ters column, all four scenarios show minimal change in total costs across all non-zero budgets.

Therefore, mitigating the “do nothing” damages can be met with funding available in the $25M

per-period budget. The investment required in the four scenarios under best-case parameters is

3.5% to 14.1% of the “do nothing” damages, resulting in a 79.2% to 91.3% reduction in over-

all costs. Contrasting that with the worst-case parameters column, we observe that the overall

costs increase significantly due to 1) higher investment required due to higher and more expen-

sive levees and 2) more costly damages due to a lower discount rate and steeper depth damage

function. In the high scenario and under the worst-case parameters, the overall costs of a “do

nothing” policy nearly reaches $2.4B over 50 years. A substantial investment of $454.8M is

only 19.1% of the “do nothing” total costs, but reduces overall costs by 72.4%. Appendix C

shows the full breakdown of costs and percentages observed for all possible parameter com-

binations for each of the four sea level rise scenarios. In all four scenarios, investing in flood

protection infrastructure at a fraction of the potential flood-related damages results in a mean-

ingful reduction in overall costs.

While evaluating the costs under the four scenarios, we observed consistent sensitivity anal-

ysis behavior to that seen previously in Figure 23. The main difference in the scenario-based

analysis is the extensive range of investment costs and flood damages. This wide range of sea

level states causes substantial variation across the four scenarios, with the “do nothing” overall

costs in the high scenario being 27.3 times larger than in the optimistic scenario when aver-
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aged across the different parameter settings. Investigating this range for an individual scenario

and across different parameter settings also reveals interesting facts. In the optimistic scenario,

when given the best-case parameters, the investment required is $0.9M to handle the address-

able risk, while in the worst-case parameters, the investment required is $21.7M. This presents

a reasonably manageable range for a policymaker trying to address the sensitivity of the op-

timal investment costs to the parameters’ estimation accuracy while protecting East Boston

from the optimistic flooding. Contrast that with the challenge posed under the high scenario

when these numbers go to $33.0M and $454.8M, respectively. This presents an extremely risk-

averse policymaker with potentially hard trade-offs, and the policymaker must ensure sufficient

diligence in estimation of parameters to defend their coastal areas adequately.

In addition to the four sea level rise scenarios discussed above, we also include a no sea

level rise (only hurricane storm) flooding scenario in Figures 24 (m)-(o). Comparing this sce-

nario with the other four potential sea level rise scenarios further emphasizes the magnitude of

additional flooding costs caused by sea level rise, and calls for more attention to this potential

threat. We see investments made in Figure 24 where the costs are balanced in the case of only-

storm flooding. However, there are several combinations of parameters for which the model

forgoes any investment regardless of the budget amount (see Figure 42 in Appendix C). This

happens when investment costs are high due to higher minimum levee heights and construction

costs and future flood costs are low due to higher discount rates. For a policymaker believing

that sea levels do not rise, given the proper cost structure and levee scope, there is still con-

siderable financial benefit to building such protection infrastructure. Figure 42 in Appendix C

shows the full breakdown of costs observed for all possible parameter combinations for no sea

level rise (only-storm) flooding scenario.

Table 24 shows the per-period spend for the scenario and parameter combination shown

in Figure 24(a). In this table, we include per-period budget data only up to $400M, because

both the $600M and unlimited budget runs had the same optimal solutions as the $400M case.
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The investment costs per decade shown in the $400M row are essentially the actual amounts

required in each period to reach the optimal solution, because even with the higher per-period

budgets ($600M and unlimited cases), the model will only spend up to these levels, and then

spends no more. As the per-period budget decreases, however, the budget constraints start

enforcing limits on per-period spend. We see that with reduced spending in 2030, the model

shifts development costs into future periods to mitigate as much damage as possible. This

effect results in total investment decreasing as the per-period budget decreases, while the total

flood-related damages proliferate with each reduction in per-period budget. Of note, if possible,

investment costs are pushed to future periods at the discounted rate. For instance, in both the

$150M and $200M budgets, one can see reduced spending in 2060 compared to 2070. One

key takeaway from Table 24 when looking at the $400M row is that an initial influx of cash

in the first period can reduce future cash needs while significantly reducing overall total costs

experienced throughout the planning horizon.

Table 24: Investment costs per period for the high sea level rise scenario
and worst-case parameter combination given for each per-period budget

value.

Per-period Discounted Investment Cost [$M] Total Total Flood

Budget [$M] 2030 2040 2050 2060 2070 Investment [$M] Related Costs [$M]

0.0 0.0 0.0 0.0 0.0 0.0 0.0 2,379.0

25.0 21.7 16.1 12.0 8.9 6.6 65.3 2,205.0

50.0 43.3 32.2 24.0 17.8 13.3 130.6 1,657.1

75.0 65.0 48.3 36.0 26.8 13.3 189.3 1,064.1

100.0 86.6 64.4 47.9 35.7 26.5 261.2 649.6

150.0 129.9 96.7 71.9 26.8 39.8 365.1 424.8

200.0 173.2 145.0 24.0 26.8 39.8 408.7 319.2

400.0 281.5 80.5 24.0 35.7 33.2 454.8 202.9

In summary, the following are the key takeaways from our scenario-based experiment.
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1. From Figure 24, similar to the simulation results, all four scenarios show opportunities

to significantly reduce potential overall costs with levels of investment that are a fraction

of “do nothing” flood-related costs. This again demonstrates how rewarding a mitigation

approach could be compared to a wait-and-see response-type policy.

2. From Figure 24, the wide range of potential investment and flood costs shows the impor-

tance of adequately assessing the potential risks and estimating the relevant parameters

for making an investment decision. The more risk-averse the decision maker is, the more

accurate their estimation of the model’s parameters need to be.

3. From Figure 24, sea level rise threat is real, and can potentially increase the storm-only

flood damages by several orders of magnitude. Even if policymakers do not believe sea

levels are rising, there is still value to invest in protecting against annual storm flooding

if the anticipated cost structures and discount rate support building a levee.

4. From Table 24, policymakers get a view into the actual funding required per decade to

mitigate flood-related damages, allocating only as much money as needed to address

risks over time. This again proves the value of our model when used for budgeting and

financial planning purposes.

3.5.3 Random networks experiment

In order to evaluate the generalizability of the takeaways from our East Boston case study to

other coastal areas with different at-risk network structures, we conducted the same simulation-

based and scenario-based experiments on 50 randomly generated networks. We created the

random networks consisting of 402 hexagonal nodes with random selections of approximately

100 sea nodes, 200 surrounding region nodes, and 100 contiguous region of interest nodes that

have at least one border grid with the sea. Values for hi, fi, and gi for each grid were selected
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by randomly sampling the attribute data from East Boston. These random network experiments

resulted in more than 3M optimization runs across the full range of parameters and sea level

states paths. Full details of random network creation and experiment outputs are available in

Appendix D.

After comparing the results from the 50 random network experiments with the East Boston

case study, we conclude that the key takeaways highlighted in Sections 3.5.1 and 3.5.2 are

generalizable to any other coastal area as discussed below.

• We still observe meaningful cost reductions with investments that are a small portion of

the “do nothing” flood-related damages.

• Some grids still incur storm-surge flooding and inundation costs even when a surplus

budget is available. However, the East Boston case study incurs more inundation damage

than most random networks. The features of East Boston contributing to this effect are

its extensive border with the sea where sea level incursion can occur, and multiple areas

within East Boston connected through groupings of low-lying grids.

• Levee build cost (c) and minimum levee heights (m) still meaningfully affect how much

budget is needed to reach minimum overall expected costs before no further spending

occurs.

• Overall discounted costs behave consistently with the East Boston case, and we see simi-

lar effects when delving into the specific costs as discussed in Figure 23. We still observe

that the discount rate (d) has the largest effect on overall expected costs, and changes to

the storm depth damage function ( fi) has the smallest effect.

• When evaluating the costs from optimistic to high scenarios for sea level states paths,

there is still a substantial range of differences in investment required and total overall

costs. The same patterns emerge across parameter sensitivity and sea level states paths.
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Similar to the Boston case, the overall costs are more sensitive to errors in parameter

estimations as the decision-maker becomes more risk-averse.

3.6 Discussion and conclusion

In this study, we employ networks to model the movement of temporary (storm-related) and

permanent sea level rise floods on land and propose a multi-stage stochastic program with re-

course for cost-benefit analysis of creating dikes and levees in a coastal city to mitigate climate-

change-induced flood damages. In reviewing the experiments in Section 3.5, our model enables

an improved understanding of the costs associated with protecting an urban coastal neighbor-

hood from rising sea levels. We find that a “do nothing” strategy of zero flood protection

infrastructure investment incurs significant flooding costs. When evaluating the full range of

scenarios, modest investment in creation of dikes and levees enhances protection significantly,

thereby causing a precipitous drop in overall long-term costs. With a relatively limited in-

vestment in mitigation, the worst-case effects will be reduced, and the response needed during

a flooding catastrophe is likely not as acute or urgent as would be the case if there were no

investment in mitigation.

By including a constrained budget, our model provides planners with a powerful tool for

budgeting and financial planning. It also enables a what-if analysis to evaluate potential flood-

related damages if they constrain available funding for investment. Even if policy-makers

are confronted with uncertainty and competing stakeholders, our model provides the ability

to show that mitigation still yields real value in preventing flooding risks and mitigates the

potential severity of future flooding disasters for that coastal area. Moreover, our model is very

effective in identifying critical parameters whose estimation requires high accuracy in order to

avoid large costs due to miscalculations.
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The multi-stage character of our model and its recourse feature allow prospective com-

munity leaders to revise their adaptation measures as the sea level rise situation unfolds, as

recommended in Kirshen, Borrelli, et al. 2018. The model also enables quickly incorporating

the latest thinking in sea level rise probabilities, thereby interpreting and applying potential

probabilities for a broader range of sea level rise as found in studies by Kopp et al. 2017 and

Sweet et al. 2017. The agile nature of our proposed method also enables quick solution adap-

tation when facing infrastructure changes in built-up areas, new risks in specific locations, and

changes in flood protection design and costs.

In pursuing this model, we aimed to be able to build and run the model using readily

available open-source data. We believe planners can apply this methodology in any coastal

area with the same data availability. For example, low-lying cities like Miami and New Orleans

have publicly available elevation data (through the NOAA Data Access Viewer (NOAA 2013))

and appraised tax data (through local municipal Open Data Hubs (USGSA 2009)). In practice,

these cities could similarly use this methodology to evaluate their city’s changing situation.

As potential directions for future studies, researchers may focus on potential impacts of

hurricane storm and sea level rise flooding on other kinds of infrastructure such as roads and

transportation networks. Moreover, future research may try to mitigate the non-financial im-

pacts of flooding associated with disrupted communities, lost lives, and displacement of people

particularly those from socially or economically marginalized communities. Although we do

not currently capture these non-monetary parameters, we believe there is an opportunity to

incorporate these considerations in the future development of our proposed model.
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C H A P T E R 4

A DECISION ANALYTIC TOOL FOR CORPORATE STRATEGIC SUSTAINABLE

ENERGY PURCHASES

4.1 Introduction

Within the industry sector, energy consumption accounts for nearly 40% of global energy

usage (International Energy Agency 2021). Decision frameworks rooted in finance-related

considerations are crucial to transition this sector away from greenhouse-gas-emitting energy

sources. As discussed in Chapter 2, decision frameworks were prevalent across various stud-

ies, yet finance-related issues never emerged as the predominant focus. Nevertheless, energy

procurement for global companies continues to grow more complex due to the rise of corpo-

rate sustainability initiatives, increased greenhouse gas compliance reporting, declining costs

of renewable energy, and ongoing regulatory changes in electricity markets. Moreover, compa-

nies strive to manage costs amidst intensifying international competition (Google 2013). This

complexity poses significant challenges for company executives, sustainability leaders, pro-

curement professionals, and energy managers. Confronted with numerous objective decision-

making scenarios, it demands substantial effort to arrive at optimal sustainable energy purchas-

ing decisions (Esty and Winston 2008).

Many companies find they do not have adequate decision-making frameworks for proper

tactical decision-making at the facility or regional level, let alone ensuring that company strate-

gic initiatives and objectives are met more broadly. This apparent need in industry can seem-

ingly be met with the ample literature that exists in research publications that spell out chal-
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lenges of integrating renewable energy and sustainability initiatives on a regional or country-

level (Wang et al. 2009; Brede and Vries 2013; Strantzali and Aravossis 2016; Kumar et

al. 2017; Martínez-García et al. 2018). There are also many vendors with point solutions for

optimizing energy usage in combination with energy storage that can be integrated to varying

degrees with on-site generation and electricity markets more broadly. Among these competing

products, there are real-time energy usage optimization products, including, but not limited to

Athena from STEM, DER Optimization from Enel X, AEROS control suite from NEC Energy

Solutions, IQ from Fluence, and GEMS OS from Wartsila (Baxter 2021). However, there is

little research covering these challenges from the perspective of a multinational company look-

ing to gain a competitive advantage while optimizing energy purchasing strategies through

a combination of achieving energy cost savings, managing volatile energy market risks, and

meeting greenhouse gas compliance reporting requirements. Companies must balance these

needs while aiming to optimally run their organization and improve their brand recognition.

In this chapter, we create general decision-support modules in the Lumina Decision Sys-

tems Analytica 5.0 decision-support modeling software (Lumina Decision Systems 2020) for

both multi-attribute utility theory decision-making and strategy development methodologies.

These general modules being made available within Analytica is a meaningful contribution

for decision sciences researchers to apply within not only energy purchasing decisions, but in

other complex decision scenarios with multiple attributes and substantial complexity to possi-

ble strategies. We then apply these modules to further build a decision model that helps cor-

porate decision-makers pick their optimal sustainable energy purchasing strategy for a given

location. The model inputs are based on anticipated energy usage combined with the decision-

makers’ applied utility functions for energy cost, sustainability requirements, and brand pres-

tige. We then apply the model in a use case from a multinational corporation to demonstrate

the model’s capabilities. Throughout the model design and case study demonstration, we in-

corporate best practices from similar efforts in decision analysis and energy-related journals to
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introduce a decision-support framework, enabling a more systematic approach to sustainable

energy procurement management for global companies.

4.2 Literature review

A search for published research on multi-criteria decision-making (MCDM) in sustainable

energy yields many hundreds of articles; therefore, to begin our search, we first identified sev-

eral holistic reviews of articles published on MCDM in the energy decision space. The first

holistic review paper evaluated conducts a thorough review of more than 100 studies involving

multi-criteria decision analysis aids in sustainable energy decision-making (Wang et al. 2009).

This paper performs a breakdown of criteria for what constitutes sustainable energy, methods

for criteria selection, weighting methods, multiple MCDM analysis methods, and aggrega-

tion methods. A subsequent holistic review paper also conducts a similarly thorough review of

MCDM application in sustainable and renewable energy development (Kumar et al. 2017). The

authors in this second instance evaluate sustainable and renewable energy for electrification of

rural areas along five dimensions of sustainability indicators: Economic, Technical, Environ-

ment, Social/Ethical, and Organizational/Institutional. The authors also conduct a complete

breakdown of the differing MCDM methods applied from eight possible MCDM methodolo-

gies, including the one we will use in our framework – multi-attribute utility theory. The

third comprehensive review paper in this space ventures further into sustainability, evaluating

literature applicable to assessing and selecting optimal technology alternatives from a sustain-

ability perspective (Ibáñez-Forés, Bovea, and Pérez-Belis 2014). That assessment explores the

literature and buckets selection criteria along five dimensions: Economic, Technical, Environ-

mental, Social, and Political. When taken together, these three review articles evaluated more

than 300 papers, conducting thorough reviews of the application of decision-making methods

for choosing sustainable material or energy from multiple criteria.
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Evaluating these comprehensive sustainability-related MCDM reviews reveals a gap in the

research, highlighted by the growing need for companies to capture value from a demonstrated

commitment to sustainability. There is an increasing importance of consumer awareness on

sustainability as consumers actively decide among competitors based on their focus on sustain-

ability (Galbreth and Ghosh 2013). In the United States, some forward-leaning multinational

companies pay for commercials in prime sports television spots to paint their brands as sustain-

able (The Climate Group 2019). In a recent study conducted from a company perspective, the

authors evaluate how branding products as “made with renewable energy” will positively affect

Australian consumers’ impression of a company (Mydock III et al. 2018). In a drive to increase

consumer awareness, consumers are being influenced through environmentally friendly initia-

tives to learn more about how their purchasing behavior can contribute to more sustainable

activities by the companies where they purchase goods and services (Frostell et al. 2015).

In light of this trend, few articles focus on energy purchasing strategies that balance the

competing priorities of short- and long-term energy costs with sustainability reporting require-

ments while also enhancing brand prestige as a sustainability-focused company. Some papers

approach the challenge from a strategic perspective of defining corporate energy policy and

strategy to achieve carbon emissions reduction targets (Finnerty et al. 2018). In contrast, other

papers get to a more tactical decision-support framework to prioritize energy efficiency projects

in an industrial organization (Contreras et al. 2017), but none tie all of the strategic needs to-

gether. Still, companies worldwide are increasingly sensitive to climate change challenges and

the need to reduce greenhouse gas emissions globally (Esty and Winston 2008) and are thus

making sustainable energy choices every day.

The situation highlighted above created the context for conducting the effort in this analy-

sis. In conducting this analysis, we had access to a US-based Energy Services company that

helps guide customers through the complicated process of developing and executing sustain-

able energy purchasing strategies. Through this company, we had access to the facilitator of
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a strategic energy purchasing workshop held for a global company operating in Mexico. The

facilitator provided an interview about the workshop in general and also provided workshop

information, including data and participant input about concerns and drivers of their decisions.

We took the general framework discussed, used it to evaluate the company’s needs, and created

a more structured and formal method to concisely capture, analyze, and present the possible

strategic options and outcomes for the decision-maker. We populated the model with (here,

disguised) energy usage data from the global company. This analysis provided a better under-

standing of the customer’s priorities and how the Energy Advisory team from the US company

could help guide the customer to the “best” decision based on customer-provided criteria. In

the following sections, we will walk through the general framework and model formulation

before applying it to this particular case. We also discuss the results from applying the model

specifically to the case study, but the framework here is generalizable to many situations where

companies make similar sustainable energy purchasing decisions. To the best of our knowl-

edge, this is the first study to incorporate brand prestige into the strategic sustainable energy

purchasing decision process for a large multinational company.

4.3 Model development and methods

After evaluating the case study mentioned above, we synthesize the key elements discussed

in the workshop and break them down to create a generalizable framework for decision sup-

port. We apply several decision-support methodologies to balancing short/long term energy

costs with the need to meet green reporting requirements and the strategic value of leveraging

the purchase of sustainable energy to build a better brand image. To facilitate the modeling, we

use the Lumina Decision Systems Analytica 5.0 decision-support modeling software to create,

explore, and share the quantitative decision model presented in the following sections (Lumina

Decision Systems 2020). Analytica provides a rich quantitative modeling environment using a
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graphical interface based on influence diagrams. It was initially developed for decision anal-

ysis use and, over time, added many general quantitative modeling and analysis capabilities

(Morgan, Henrion, and Small 1990). It has been used in a wide range of complex challenges

in related areas, including energy (Stadler et al. 2009; Tylock et al. 2012), climate change

(Dowlatabadi 1998; Senbel, McDaniels, and Dowlatabadi 2003), emissions policy (McKinley

et al. 2005), and transportation (Maizlish et al. 2013). Analytica has an active, though selec-

tive, user community, and it supports libraries of reusable components from both public and

organization-specific models.

Before discussing model development, it is important to understand the objects used within

the Analytica model. In the discussions that follow, our model will use the Analytica nodes as

described below and shown in Figure 25. More detailed background on Analytica objects is

available on the Lumina website (Lumina Decision Systems 2020).

• Decision Node – Variable that the decision-maker can control directly

• General Node – Variable typically representing a deterministic input or a functional de-

pendency

• Objective Node – Variable evaluating overall value or desirability of outcomes

• Constants Node – Variable representing constant values

• Index Node – Class of variable defined as a list or sequence

• Chance Node – Variable with uncertain values, usually contains probability distribution

• Module Node – A collection of related objects and nodes

• Influence Arrow – An arrow from one node to another showing influence between nodes
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Figure 25: Node types used in Analytica model.

Next, we will discuss the decision analysis methods included in this analysis. We first

introduce and discuss the creation of general modules to apply both Strategy Table and Multi-

attribute Utility Modules and how to implement them in Analytica (Section 4.3.1 and 4.3.2).

Then we discuss integrating these general modules into a particular implementation of an over-

all model in a case study for purchasing sustainable energy. We then follow up with a descrip-

tion of the entire model implementation (Section 4.3.3), the data used in the model for the case

study (Section 4.3.4), and the results from running the model (Section 4.4). We finish the paper

with a discussion of our findings, which is followed by conclusions (Section 4.5).

4.3.1 Strategy tables

4.3.1.1 Strategy table module development

The first decision analysis structure we will use in creating our model is a strategy table

(McNamee and Celona 2008). A strategy table is used for generating strategic alternatives

when there are many components of a decision to consider. A strategy table is typically con-

structed by identifying a set of decision variables and creating a table with one column for

each decision variable. Next, a set of options is identified for each decision variable entered in

rows of the corresponding columns. Finally, a new column is added to the left of the decision

variables, and this column contains a set of strategic alternatives. Each strategic alternative is

associated with a left-to-right path through the table, selecting one option for each decision

variable. Each path should be feasible, internally coherent, and consistent with the particular
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theme of its associated strategy (Jeffrey M. Keisler 2003). These strategic alternatives then

form the decision-maker’s overall choices to consider by evaluating the strategies in the usual

way. The strategy with the highest expected utility can then be identified.

We note that in many ways, the Analytica modeling environment has powerful capabilities

for decision-analytic computations, but it does not explicitly incorporate strategy tables. Thus,

we developed a module that should integrate smoothly with Analytica across many applications

(not just for the energy purchasing model). The structure of the module in Analytica is shown

in Figure 26 and is outlined further below:

Figure 26: Strategy table module design in Analytica (Jeffrey M Keisler 2020b)

1. The decision variables, represented by the columns of the strategy table, are indexed with

the Decision_index.

2. The options, represented by the rows of the strategy table, are indexed with the Op-

tion_index.
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3. The table Decision_options is indexed by Option_index and Decision_index. The cell

in row i and column j contains the ith option associated with the jth decision variable.

Thus the first column contains the options for the first decision variable, and the second

column contains the options for the second decision variable, which then continues for

all j columns. Cells may contain numeric values or other types of values. If the cells

contain non-numeric values, decision variable values would also be non-numeric, and in

order to be evaluated, any subsequent nodes (such as Utility) would require expressions

that operate on these types of values in their predecessors.

4. The strategic alternatives are indexed with the Strategy_index.

5. The table Strategy_table is indexed by Decision_index and Strategy_index. The cell row

k and column j of the strategy table contains the index value for the option that is to be

selected for a jth decision under the kth strategy.

6. Strategy_selection is a decision variable, indicating the operative strategy (row) from the

strategy table.

7. The variables Decision_1 and Decision_2 are for the values of the first and the second

decision variables as determined by the strategy selection. The Decision_1 expression

is Decision_options[Decision_index= 1 , Option_index=Strategy_table[Decision_index

= 1]], which pulls out the appropriate option for decision 1 from the option table un-

der each strategy, and a similar expression is used for Decision_2. One node will be

required for each decision variable. The purpose of these nodes is to utilize the values of

the specific decision variables associated with the strategy in later computations of, for

example, profit or utility. Depending on the application, it may be more elegant to put

the decision variables in a separate module.
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8. The variable Utility is a stand-in for whatever later variables or modules will make use

of the decision variables.

4.3.1.2 Strategy table model implementation

The Energy Purchasing Model specifies a strategy table that we incorporate into Analytica

via the application of the above module in Section 4.3.1.1. Many decisions come into play

when companies weigh the type of energy to purchase for one of their given locations. We need

to apply a strategy table to enable reducing the decision set to suitable, feasible combinations of

the decision points. Based on the previously mentioned case study in Section 4.2, we develop

five critical decisions that the decision-maker will need to make to plan for their energy and

sustainability needs. These decisions are shown in Table 25 and represent an essential subset

of this customer’s critical decision points. This table is representative but is not a complete

set of all possible decisions that any specific firm may need to make. In Table 25, there are

23 · 42 = 128 possible combinations of decisions in just this relatively small table of choices.

Not all of those options are feasible (e.g., “No Renewable Energy” should not be paired with

“Own Green”), but there is still a non-trivial amount of complexity to the choices facing the

decision-makers.

In evaluating the case study, we synthesize five possible strategy alternatives that are dif-

ferent enough to ensure the strategic options are distinct. We break down these five strategy

alternatives as:

1. Install, use, and maintain their own green generation supply

2. Purchase cheapest retail energy (assumed it is not green)

3. Purchase green energy from a supplier on a short-term basis, without capital expense

(CAPEX)

130



Table 25: Energy purchasing decision options.

Decision Points Decision Options

Build or Buy
Build Energy Supply

Buy Energy Supply

Location
On-site

Off-site

Renewable Energy Strategy

No Renewable Energy

Use Own Energy

Buy Green Energy

Buy Renewable Energy Credits

Purchase Strategy

Retail Green

Own Green

Power Purchase Agreement (PPA)

Retail Any Energy

Equipment Type
Existing

New

4. Purchase green energy from a supplier on a long-term basis, without CAPEX

5. Offset non-green retail energy purchases with Renewable Energy Credits (RECs)

Combining these strategic options with the decision choices in Table 25 and applying the

appropriate options for each decision, we end up with the strategy table shown in Table 26. The

five alternatives shown in Table 26 will form the foundation for the remainder of the model’s

implementation.

4.3.2 Multi-attribute utility

4.3.2.1 Multi-attribute utility module development

As noted previously in Section 4.2, there are many different methodologies to approach

a multi-criteria decision analysis (MCDA). A recent review of literature focused on decision-
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Table 26: Strategy table with strategy alternatives and associated decision options.

Strategy Build On or Renewable Purchase Equipment
Alternatives or Buy Off-Site Energy Strategy Strategy Type

Install own Build On-Site Use Own Own Green New

Green Gen Energy

Cheapest Retail Buy Off-Site No Renewable Retail Any Existing

Energy Cost Energy

No CAPEX w/ Buy Off-Site Buy Green Retail Green Existing

Green short-term Energy

No CAPEX w/ Buy Off-Site Buy Green PPA Existing

Green long-term Energy

Offset with RECs Buy Off-Site Buy RECs Retail Any Existing

making for sustainable development shows a significant upward trend in the application of

MCDA, with at least 343 papers published from 2010 – 2017 (Kandakoglu, Frini, and Ben

Amor 2019). As highlighted in past studies, frequently, the main stakeholders involved in a

decision-making process initially lack the expertise to thoroughly assess and apply the available

techniques (Guikema and Milke 1999; Ewing and Baker 2009; Lerche et al. 2019). For our

modeling, we choose the multi-attribute utility theory (MAUT) approach (Keeney, Raiffa, and

Meyer 1993). Applying MAUT involves developing utility functions that define key metrics

(attributes) representing the level of achievement of the decision-makers’ objectives. Then an

overall utility function is developed – often a linear-additive multi-attribute utility model, i.e.,

a weighted sum of single-attribute utility functions. When the utility function is adequately

specified in terms of expressed preferences and tradeoffs over tractable reference cases, the

course of action with the highest utility score can also be assumed to be the course of action

that a rational decision-maker would ultimately prefer. Its simplicity is vital for explaining the

inputs and results to decision-makers who may not have the background, time, or patience to

understand the more mathematically complex approaches.
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While Analytica software also supports the use of utility functions (in particular, using

value nodes that are tracked in calculations and whose expectation models are intended to

maximize), it does not come with specific capabilities for encoding multi-attribute utility func-

tions. This module implements such a capability in a manner that should integrate smoothly

across Analytica applications (not just for the Energy Purchasing Model). The structure of the

module in Analytica is shown in Figure 27 and is outlined further below:

Figure 27: Multi-attribute utility theory implementation in Analytica
(Jeffrey M Keisler 2020a).

1. The first set of nodes on the left (Measure_1 through Measure_4, although any names and

any number of measures may be used) are the measures for the attributes. Alternatively,

the measures may be contained in a separate module and calculated in whatever way that

makes sense for a particular application.

2. There is an index node named Attribute which lists the attributes.

3. The nodes Measure_1, . . . , Measure_4 serve as inputs to a node named Measures which

is indexed by Attributes.
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4. Worst_cases contains the lowest allowable scores for each attribute, Best_cases con-

tains the best scores for each. Normalized_values transforms the measure for each at-

tribute to a 0-1 scale using the expression (Measures−Worst_cases)/(Best_cases−

Worst_cases).

5. Single_attribut_util calculates single attribute utilities based on the normalized value and

the exponent parameter for each attribute contained in the Exponents node.

6. Multi_attribute_util is not indexed by attributes. It calculates a multi-attribute utility

score using the expression sum(Single_attrib_util · Weights). If weights are between 0

and 1 and sum to 1, and if single attribute utilities range from 0 to 1, then the multi-

attribute utility will also range from 0 to 1.

4.3.2.2 Multi-attribute utility model implementation

The Energy Purchasing Model specifies a multi-attribute utility function incorporated into

Analytica via the above module in Section 4.3.2.1. This model highlights three key attributes

that come into play when selecting a strategy: Energy Cost, Green Value, and (Brand) Prestige

Value. The Energy Cost utility value comes straight from normalizing the calculated expected

energy costs described below. For this model’s purposes, we model the Green Value and Pres-

tige Value on a five-point scale ranging from the worst case of “not important” being zero to

the best case of “highest importance” being equal to 5. We use the 0 - 5 point scale as it was

the method used by the energy advisors in this case study when discussing options with the

decision-makers. The values were presented in the case study on a visual scale showing 0 =

Not Important/None, 1 = Little Importance, 3 = Important, and 5 = Highly Important. Exam-

ples of the type of questions used in the case study to determine the green and prestige utility

values include:

1. Are there corporate directives that call for environmental stewardship?
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2. Can multiple renewable energy strategies be employed to lower or eliminate an individ-

ual plant’s carbon footprint or applied to the entire organization?

3. Is there value in claiming renewable purchases for the corporation?

4. Can the company apply renewable attributes across geographies?

4.3.2.3 Energy cost

We use an Energy Cost calculation that is relatively straightforward based on expected en-

ergy usage, price rates for various usage parameters, and time covered. We use this simplified

method as a starting point but acknowledge that electricity charges are often uniquely depen-

dent upon the customer’s market tariff, country, utility, and many other parameters related to

the customer’s energy usage. This model could get overly complicated quickly if we tried to

replicate all possible charges for all possible scenarios (Capehart, Turner, and Kennedy 2006).

Table 27 shows at a high level the energy cost factors we use in this model broken down into

two columns; those factors used across all strategies versus elements unique to each strategy.

For all five electricity alternative strategies in Table 26, the data is ultimately summed up

to evaluate the total cost over twenty years. By looking over twenty years, we can estimate the

expected annual rate increases (e.g., Retail Elevator, Power Purchase Agreement (PPA) Eleva-

tor, Inflation Rate) for each scenario. Including these rates helps show the value of long-term

contracts or the potential risk of not locking in rates in potentially volatile markets. Finally, for

some types of electricity alternatives, in the model, there are unique costs we evaluate by ap-

plying a probability distribution to reflect each strategy’s specific values (e.g., Capital Expense

(CAPEX) and Operating Expense (OPEX) for Install Own Green Gen). Equation 4.1 below

shows the shared calculation for Energy Cost across all types of electricity usage.

EnergyCost j =

(
I

∑
i=1

(Ratei j ·Usagei j)+Dem j ·DemCharge j +AdderRate j ·
I

∑
i=1

Usagei j

)
· (1+VAT) ∀i ∈ I (4.1)
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With each of the items in the equation defined as:

i ∈ I = Types of Charges [Base, Intermediate, Peak periods]

j ∈ J = Types of electricity [Retail Green, Own Green, Power Purchase Agreement,

Retail Any]

Ratei j = Charge for energy usage by usage type i and electricity type j ($ per kWh)

Usagei j = Energy usage by usage type i and electricity type j (kWh)

Dem j = Electricity demand during peak period in the past per tariff for electricity type j

(kW)

DemCharge j = Rate for charging Demand Charges for electricity type j ($ per kW)

AdderRate j = Rate to apply for ancillary expenses for electricity type j ($ per kWh)

VAT = Value Added Tax (%)

Table 27: Cost factors applied to strategy to determine 20-year energy cost.

Strategy Cost Factors Used in Cost Cost Factors Applied
Alternatives Calculations for Individual Strategies to all Strategies

Install own CAPEX and OPEX for installing and

Green Gen maintaining Green Energy Generation Prior period peak demand

Cheapest Retail Retail Elevator and Possible Fines Value-added tax (VAT)

Energy Cost for failing to meet green regulations Inflation Rate

No CAPEX w/ Retail Elevator Adder charge rates

Green short-term
No CAPEX w/ PPA Elevator for contracted Energy usage & price rates

Green long-term annual rate increases (base, intermediate, peak)

Offset with RECs Cost of Renewable Energy Credits
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4.3.2.4 Green value

While most traditional energy-related business decisions are made concerning only the cost,

due to the introduction of sustainability regulations, greenhouse gas reporting, and science-

based goals, there is now more focus on being green within companies (Esty and Winston

2008). This value can be captured through economic means (e.g., selling renewable energy

credits), utility value (e.g., greenhouse gas reporting requirements), or other numeric means

(e.g., science-based targets for actual greenhouse gas reductions). For purposes of simplicity

for this case study, we treat Green Value as a utility value on a scale of 0 to 5. Although 0 to

1 is typically used in decision analysis, the scale of 0 to 5 was more intuitive to the Energy

Advisors and decision-makers in this case study.

4.3.2.5 Prestige value

Every company is always trying to get ahead of its competition (Porter 1998). Energy

purchasing has not been at the forefront of improving the corporate brand as energy was sim-

ply a commodity that a company’s procurement team worked to get as cheaply as possible.

With the advent of increasing green energy opportunities, significant news coverage on climate

change, and the changing regulatory environment, companies now have significant opportuni-

ties to leverage their energy purchasing strategy to improve the prestige of their brand (Winston,

Favaloro, and Healy 2017). For this research, we treat Prestige Value as a utility value on a

scale of 0 to 5, using similar reasoning as for the Green Value index.

4.3.3 Full model implementation

We use the Lumina Decision Systems software package, Analytica 5.0 (Lumina Decision

Systems 2020), for this analysis. Analytica enables us to visually break down and map out

the model’s complexity, segmenting the entire model into five main modules. As seen in Fig-
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ure 28, at the highest level of the model, we have one module each for the Strategy Table,

the three attributes (Energy Cost, Green Value, and Prestige Value), and the MAUT Scores.

The model’s analytical output is also available at this level of the model, including Outputs

and Sensitivity Analysis to conduct a deterministic sensitivity analysis for Energy Costs and

the Multi-attribute Utility Scores. The Strategy Table and Multi-attribute Utility modules are

implemented as described in Sections 4.3.1.1 and 4.3.2.1, respectively. There is one additional

MAUT Score Importance node for an alternative sensitivity analysis using the variable impor-

tance functionality of Analytica. The Green Value, Prestige Value, and Energy Cost modules

house all the inputs, variables, indices, and calculations necessary to provide outputs for each

strategy alternative to act as the required inputs into the MAUT Score calculations. All data

for monetary and electricity-related variables for the case study are easily ingested from a csv

(comma separated values) file.

Figure 28: Analytica top level of decision model.
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Figure 29 shows the structure for the implementation of our Strategy Table represented in

Table 26. The Strategy Index node represents the rows of strategic alternatives in Table 26, and

the Decision Index node represents the decisions to be made from the Table 26 columns. We

replicate the table in an array in the Strategy Table node, and the strategic choices that flow

throughout the model are based on the options in the green Strategy Selection decision node.

The five variable nodes representing the five decisions create individual arrays used for further

calculation triggered throughout the model.

Figure 29: Analytica model strategy table diagram.
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Figure 30 goes deeper into the Energy Cost module’s model development, the most com-

plex of the three attributes represented in this model. All strategies for Electricity Rates and

Electricity Costs are defined therein. Because different strategic alternatives have additional

costs, we also capture those unique costs in specific modules below. If a decision results in

building and maintaining Green Generation equipment, those costs are modeled in the Cost to

Build/Own module. If a strategy requires Renewable Energy Credits (RECs), those costs are

modeled in the Cost for the RECs module. If the energy is from a non-green source, and there
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is possible regulatory and penalty risk, those costs are modeled in the Cost for Fines module.

All of the different modules’ information is brought back together in the Combined Costs by

applying applicable expenses to each of the strategic Energy Cost alternatives, which provides

the final result in the Energy Cost Measure node. There is also a module that incorporates the

discount rate to account for properly discounting future costs. Finally, we have two modules

that help conduct a sensitivity analysis on just energy costs and total costs.

Figure 30: Energy cost module diagram.
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Figure 31 shows the inner flows for the Prestige Value and Green Value modules. For this

analysis, we use a simple combination of utility values (Utility Raw variables) for both the

additive (Good) and detrimental (Bad) strategies and shape them with probabilistic distribu-

tions (Utility Uncertainty variable nodes). These values are combined into the attribute values

passed on to the MAUT calculations as Prestige Measure and Green Measure. We believe keep-

ing these modules simple for this analysis is appropriate given the highly complex nature of

these attributes for potential companies who would evaluate these utility functions differently

based on their individual corporate needs.
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Figure 31: Prestige and green value model diagrams.
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Figure 32 gets to the heart of the multi-attribute utility scoring methodology we apply in the

model based on the previous discussion in Section 4.3.2.1. There is one main difference in our

full model in that we actually use constant nodes for weights, risk exponents, and best/worst

case measure values, given that we are providing the model with the values from the start.

On the left are the raw score outputs from the Energy Cost, Green Value, and Prestige Value

modules. Those raw scores are combined into a single table of values (Measures node) that

are then normalized to a 0 to 1 scale (Normalized Measures node) by linearizing values from

each measure from their worst to best case values. The next step converts the normalized

measures into an exponential utility function (Exponential Utilities node) to account for the

decision-maker’s risk attitudes (Risk Exponents node). The scores are then weighted (Weighted

Utilities node) based on their relative importance by multiplying each attribute’s score by a

weight (Weight Determination module) that is determined by the decision-maker or energy

advisor. The final step is to sum up the attribute scores for all three attributes for each strategic

alternative to give a resulting MAUT Score. There are a few remaining nodes within the MAUT
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module, including the nodes used to calculate the Weights and MAUT Sensitivity Analysis

outputs.

Figure 32: Analytica model multi-attribute utility score diagram.
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4.3.4 Data summary

Next, we discuss the critical data fed into the model and used for analysis, focusing on the

three main attributes previously discussed in Section 4.3. This discussion focuses on explaining

the data we use in the case study, but the model framework is generalizable to numerous similar

situations with different data formats and inputs. For the Cost of Energy, we use a combina-

tion of actual values from the case study and estimates where necessary. The energy-related

data we use was based on prospective customer data, including historical energy usage and

demand from the preceding 12 months, associated types of charges for that usage and demand,

and Value Added Tax (VAT). This actual usage data feeds all the calculations for the different

kinds of electricity, with the underlying assumption that the customer’s electricity usage will
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be consistent regardless of the electricity type procured. Using retail cost rates, we build rate

estimates for the other types of electricity. We estimate the Adder Rate by determining the per-

centage of historical bill expenses due to non-core charges and then use that percentage as the

baseline for the Adder Rate. We estimate the remaining inputs based on energy advisor input,

including PPA Elevator, Retail Elevator, Inflation Rate, CAPEX, OPEX, cost of Renewable

Energy Credits, and possible Fines for not mitigating greenhouse gases. Finally, we incorpo-

rate a discount rate to account for the time value of money, using a normal distribution for this

value with a mean of 4% and standard deviation of 1.2%.

The data we use for both the Green Value and the Prestige Value are estimated utility values

based on inputs from the case study, with the caveat that the utility values will change based

on the customer, the decision-maker’s risk attitude, and an individual company’s strategy for

energy procurement. We use a static number from 0 to 5 for the utility for each of the strategies,

with 0 being the least utility value to 5 being the highest utility value. We make the utility values

probabilistic by applying distributions skewed towards higher values if the strategy adds to the

sustainability or skews towards a lower value if the strategy does not. To achieve what we

believe to be representative skews, we use a Beta distribution for the Green Value and a Log-

Normal distribution for the Prestige Value. Again, these distributions are representative of

possible decision-makers’ inputs and could be represented accordingly with other distributions

based on the details of any given scenario.

Finally, we introduce additional shaping variables to calculate the final MAUT score for

the multi-attribute utility calculations. To start, we use upper and lower bounds to enable

normalizing each attribute’s measure to a value from 0 to 1. We use weights that allow each

attribute to contribute to the overall score based on the importance level the decision-maker

provides to the advisory team. The weights must sum to 1 to keep the overall utility score

bounded between 0 and 1. Finally, we provide a mechanism to apply the decision-maker’s risk

attitude to each attribute through designated exponents shaping the utility value (McNamee and
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Celona 2008). Table 28 shows the representative shaping values and weights for each of the

attributes, and Figure 33 shows the risk-attitude-shaped curves for each attribute. For instance,

the Energy Cost curve is adjusted to be convex, bowing upwards and to the left, which results in

the decision-maker attitude being one where they have a lower tolerance to the risk associated

with energy costs. In this instance, if the utility value of the model would be 0.5 for energy

cost prior to accounting for the risk attitude, it will be closer to 0.6 after adjusting it for the risk

attitude.

Table 28: Multi-attribute utility shaping values.

Attributes
Normalizing

Lower Bound
Normalizing
Upper Bound

Exponent
(Risk Attitude)

Weights

Energy Cost $1.01B $2.81B 1 0.7

Green Value 0 5 0.5 0.2

Prestige Value 0 5 -0.5 0.1

Figure 33: Exponential utility functions for the three risk attitude attributes.
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4.4 Results

In this section, we present and interpret the results of the Analytica model output as applied

in our case study. Of interest is that we introduce several probabilistic variables in the model,

which allows for a Median Latin Hypercube Sampling (McKay, Beckman, and Conover 1979)

method to run many sample simulations. In this case, we use 1,000 simulations as a reasonable

bound. The simulation functionality of Analytica provides a range of results that help model

and analyze uncertainties such that we can evaluate more than just a static expected value result

(Lumina Decision Systems 2020).

We first present the 20-year total cost determination results with expected cost and statis-

tics by strategy in Table 29, followed by the Cumulative Distribution of those total costs in

Figure 34. The results show that the strategy most likely to give us the lowest cost option over

20 years, at an expected discounted cost of $1.44B, is the “No CAPEX w/ Green long-term”

strategy. This option entails working with a supplier to contract rates for a long-term Power

Purchase Agreement (PPA) with known contracted annual increases. This option also is less

volatile than most, with the second smallest standard deviation after “Install Own Green Gen”

and is $55M smaller than that of the largest standard deviation for the “Cheapest Retail Energy

Cost” strategy. The most expensive option is “Offset with Renewable Energy Credits”, at an

expected discounted cost of $1.72B over 20 years, which is $280M more than the PPA option

expected value.

The following summary information below is the output of the multi-attribute utility score

calculations, which takes the utility value of the cost information above and combines it with

the utility values for Green Value and Prestige Value. Table 30 provides the expected utility

value and summary statistics by strategy alternative. Once again, the best strategy score for

utility is the “No CAPEX w/ Green long-term” strategy, with a utility value of 0.80, but this

time around it is actually tied with the “Install Own Green Gen” strategy. When looking at
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Table 29: Total discounted energy costs over 20 years by strategy selection.

Strategy Mean Min Median Max Std. Dev
Alternatives ($B) ($B) ($B) ($B) ($M)

Install own
Green Gen

$1.69 $1.19 $1.68 $2.30 $169

Cheapest Retail
Energy Cost

$1.68 $1.11 $1.66 $2.81 $229

No CAPEX w/
Green short-term

$1.68 $1.15 $1.66 $2.70 $220

No CAPEX w/
Green long-term

$1.44 $1.01 $1.44 $2.17 $174

Offset with RECs $1.72 $1.19 $1.72 $2.78 $225

Figure 34: Cumulative distribution of total costs by strategy.

the cumulative distribution in Figure 35, the two strategies are overlapping each other. More

interestingly, the max value of “Install Own Green Gen” actually is larger at 0.95, meaning if

conditions are right, it is the best option. That overlap is seen clearly in Figure 35, with the

red line surpassing the yellow near the top of the probability curves. Also, note that “Cheapest

Retail Energy Cost” has lost ground on all other strategy alternatives as its expected utility

value of 0.52 is the smallest, even though its expected value for cost was in the middle of the
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pack. This reduction is not surprising and is attributable to this option having limited utility for

both Green Value and Prestige Value.

Table 30: Statistics for multi-attribute utility scores by strategy selection.

Strategy
Alternatives

Mean Min Median Max Std. Dev

Install own
Green Gen

0.80 0.57 0.81 0.95 0.057

Cheapest Retail
Energy Cost

0.52 0.01 0.53 0.68 0.080

No CAPEX w/
Green short-term

0.65 0.21 0.67 0.81 0.075

No CAPEX w/
Green long-term

0.80 0.55 0.81 0.92 0.052

Offset with RECs 0.63 0.16 0.63 0.80 0.080

Figure 35: Cumulative distribution of multi-attribute utility scores by strategy.

The final results of interest are from the sensitivity analysis output of select input variables

for each strategic alternative. We apply the technique of varying input variables one-by-one

across three values of min (50%), baseline (100%), and max (150%) while holding all other

variables static to observe the sensitivity of the utility values to each inputs’ changes (Eschen-

bach and McKeague 1989). This method enables us to get the plots shown in Figure 36. If the
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graphs were sorted top to bottom based on the bars’ width, we would have a classic Tornado

Plot (Lumina Decision Systems 2018). We do not sort the graphs in that manner here to enable

easier comparison of the sensitivity variables between the different strategic alternatives.

To read the graph in Figure 36, we will walk through a quick example explaining one of the

bars. When looking at the “No CAPEX w/ Green short-term” strategy and the bar for “VAT,”

the reader will notice that the green bar shows a reduction of utility to ∼0.6 and an increase

to ∼0.7 with the red bar. These changes can be interpreted to mean that all else being held

constant; if the VAT increased by a factor of 50% above the values used in the model, the

overall utility for this strategy would drop to ∼0.6. Conversely, if the VAT were reduced by

50%, the overall utility for this strategy would increase to ∼0.7. With that understanding, here

are a few takeaways from the sensitivity plots:

1. The “No CAPEX w/ Green long-term” strategy does not show much sensitivity variation

to the input variables. Its lowest values on the chart are nearly all higher than three of

the other strategies’ highest values (except “Install Own Green Gen”), which lends more

strength to it being the strategy with the most utility and the least volatility.

2. The “Install Own Green Gen” strategy is highly sensitive to changes in the OPEX and

CAPEX values. This sensitivity makes sense, given that OPEX is one of the most sig-

nificant contributors to the expected cost. If OPEX increases by 50%, the utility value

for this strategy drops by ∼20%. This strategy is the only one that can compete with

the “No CAPEX w/ Green long-term” strategy based on the substantial overlap between

their utility sensitivities, but has significantly more volatility, so the OPEX and CAPEX

should be evaluated closely if pursuing this option.

3. The “No CAPEX w/ Green short-term” and “Offset with Renewable Energy Credits”

strategies are two lower-scored options that look very similar in their sensitivities. They

are sensitive to several variables, specifically: Retail Elevator, Rate of Inflation, and
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Figure 36: Strategic alternatives sensitivity analysis of selected parameters.
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VAT. If any of these values increase, the utility of these strategies drops. On the flip

side, decreases in these values could push their utility as high as 0.7 and make them look

competitive with the low end of the “Install Own Green Gen” strategy.

4. The final strategy of “Cheapest Retail Energy” shows similar sensitivity to Retail Ele-

vator, Inflation Rate, and VAT. Of note is that varying the Prestige and Green Measures

shows limited sensitivity on the “Cheapest Retail Energy” strategy’s utility score due to

the low utility values assigned to this strategy from the start.

5. Finally, the discount rate shows the largest sensitivity to change for all inputs across

strategies, except for OPEX for “Install Own Green Gen.” This sensitivity cutting across

all the strategies may be a gating factor for any final decisions to choose a strategy.

However, it should have the same impact regardless of which strategy is chosen, given

its consistency in sensitivity across the different strategies.

4.5 Discussion and conclusion

The case study results suggest a best choice to pursue a sustainable energy strategy based on

more than just the cost by incorporating multiple utility values for non-cost attributes. In fact,

when looking at solely costs, there appears to be one winning strategy of “No CAPEX w/ Green

long-term,” but when looking at utility scores, the “Install Own Green Gen” strategy looks

equally as attractive except for a wider sensitivity range due to OPEX and CAPEX uncertainty.

The remaining alternatives are sufficiently far away on both the Energy Costs and MAUT

Scores that in this particular case study looking out over a 20-year time horizon, we would not

recommend pursuing them as viable alternatives. We construct this model for this case study’s

particulars, meaning the model output results could change significantly for another customer

with different electricity market conditions, sustainability goals, and marketing strategies.
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As a first effort, the model has some limitations. Many of the energy cost input variables are

based on estimates or simplified probability distributions to provide uncertainty bands around

the forecast. Future applications in specific electricity markets would ideally utilize a history

of energy prices, forecasted future prices, rate structures, known rates, and a band of expected

values for other variables tied to the location and customer needs. These values are all key

contributors to the determination of energy cost and need to be closely aligned with actual

customer situations to choose the best alternative. Additionally, for the sake of simplicity,

the current model does not include parameters for foreign exchange rates, but this could be a

helpful extension of the model when looking across countries and regions.

In developing the Green and Prestige utility value functions, we simplify the scoring to a

scale from 0 to 5 and assign illustrative values based on our experience in this industry. In

practice, decision-maker utility or value functions ought to be elicited and codified through the

techniques available to decision analysts (Ayyub 2001). Additionally, the shaping variables

for the MAUT calculation in our case study are all values we estimate based on the energy

advisor’s experience.

The application of Analytica to this decision-support model proves to be very useful. Ana-

lytica has an initial learning curve – specifying models takes time beyond creating the graphical

representation. Nevertheless, it is well-documented and well-supported. This model’s com-

plexity could be replicated in a spreadsheet environment, but Analytica’s interface allows the

combination of developers, experts, users, and decision-makers to work more smoothly, with

less potential for user error. Similarly, the heavy lifting of the model’s array mathematics and

simulation could be coded in a programming language, but again, that results in a black box that

the decision-maker will need to trust without being able to walk through the model visually.

Some decision-makers may not trust models that they cannot see and understand. Analytica’s

object-oriented approach, indexing of arrays, and visual/tabular outputs make it simple to walk

through the model and explain how the model works to non-technical decision-makers and in-
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terested stakeholders. Note, Analytica can also serve as a front-end that can pass data to and

from spreadsheets or other common programming environments as needed.

We see several potential directions forward from our research in this study. The devel-

opment of general modules in Analytica for both Strategy Tables and Multi-attribute Utility

Theory provides a new application for decision modeling using these techniques. We applied

these modules in a particular case study for a strategic energy purchasing decision, but the gen-

eralized module can be used in any complex decision-making scenario being modeled within

Analytica. When looking more closely at our case study, we only evaluate the decision by

looking across five decision points. With significant developments in energy storage over the

last few years, there is an opportunity to include energy storage as part of the analysis, which

introduces considerable complexity but also presents the opportunity to substantially improve

the costs and efficiency of energy purchases. For practitioners, the ability to assess the purchase

as we have in this model, combined with the real-time energy storage optimization products on

the market (Baxter 2021), could enable significant cost reductions and more focus on intermit-

tent renewable energy generation capability for the energy purchase decision.

The tool developed here supports sustainable energy strategy decisions entailing multiple

attributes and business objectives. Much literature exists showing the application of multi-

criteria decision-making in the sustainable energy space; however, there is limited applied

research aimed at the challenge global companies face in effectively managing costs while

evaluating the utility of meeting sustainability requirements and capturing added brand pres-

tige. Incorporating multi-attribute utility theory helps to capture both the risk attitude of the

decision-maker as well as the importance of the three key attributes of Energy Cost, Green

Value, and Prestige Value, each of which can be calculated based on other business infor-

mation. The use of a Strategy Table reduces the decision scope to a reasonable selection of

strategic options, thereby reducing the complexity of the problem presented to the decision-

maker without loss of generality. By combining these two decision analysis methods into a
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functioning model with useful summary visualizations and output, we have created a model

and toolkit that can be used to support company executives in evaluating their decisions. This

approach has potential for broader application in the field of sustainable energy procurement

strategic decision-making.

Beyond its topical domain, this case study demonstrates the potential for MCDA modelers

to leverage Analytica software’s rich scientific and financial modeling environment. In par-

ticular, Analytica’s modular capability makes it straightforward to connect strategic MCDA

methods with modeling activities associated with building decision-support tools (e.g., visual-

izations, simulations, array calculations, probability distributions). We introduced two general

modules that can be applied to many different decision-making challenges. We then applied

these modules in a functioning model using Analytica for a real-world use case that incorpo-

rated reducing the numerous decision combinations into a few distinct strategies that will be

easier to explain to a time-strapped executive decision-maker. Finally, Analytica’s visual in-

terfaces and layered model views help explain the case study model’s inputs and outputs in

a manner that is easy to understand. Through the generic modules and the decision-analytic

methods they facilitate, the bridge to Analytica, and the sustainable energy procurement itself,

this effort aims to enhance MCDA practice.
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C H A P T E R 5

CONCLUSION

In this dissertation, we study the challenge of climate-change-related issues through an ap-

plied business analytics lens. We apply management, decision, information, and data science

theories and techniques to build and evaluate novel data-driven methodologies to improve our

understanding of climate-change-related challenges. Each chapter’s analysis applies one or

more business analytics approaches (i.e., descriptive, prescriptive, and predictive). We high-

light key characteristics of our data sources, demonstrating how to incorporate various datasets

into the analyses, whether directly or after transforming the data. To help the reader understand

the results of each analysis, we apply varied methods of explaining outputs, from simple tables

to detailed visualizations such as correlation heatmaps and sensitivity analysis using tornado

plots. Our analyses focused on a broad swath to demonstrate the agility of using business ana-

lytics on varied problems. We start by first describing the climate change adaptation literature

in a comprehensive manner using natural language processing. We then evaluate distinct areas

of climate adaptation (i.e., flood protection) and mitigation (i.e., sustainable energy purchas-

ing) to apply business analytics approaches to develop general decision support models that we

then apply to to our specific case case studies.

In Chapter 2, we apply the natural language processing technique of Latent Dirichlet Allo-

cation (LDA) to gain insights into the topics discussed in the climate change adaptation liter-

ature. Climate change adaptation research has grown substantially over the last two decades,

seeing nearly 100x growth in published papers associated with this topic since the turn of the

century. This study identifies 16 distinct topics from the literature through our supervised use
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of LDA. Our modeling approach includes varying key input parameters (e.g., the number of

potential topics) to construct hundreds of prospective models. We then use quantitative and

qualitative techniques to narrow down to the one model that best fits and identifies a valid and

representative breakdown of the discourse within this literature. When evaluating these topics

over the period, it is clear that there is a substantial focus on policy and frameworks within the

vast majority of the corpus. We observe a limited emphasis on financial elements as evidenced

by the absence of majority weighting of finance-related issues. Therefore, we adopt a finance-

oriented approach for the next two studies. We develop comprehensive models that leverage

business analytics methodologies to address climate-change-related challenges from a financial

perspective. In Chapter 3, we delve into the investment requirements and costs associated with

mitigating the impact of climate-induced sea-level rise on an urban coastal region. In seeing

the substantial and uncertain costs uncovered in Chapter 3, we see the need to move upstream

and evaluate methods to mitigate climate change effects at the source. Therefore, in Chapter 4,

we introduce a decision support model to assist businesses in reducing their contribution to

greenhouse gas emissions, which are major drivers of climate change.

In Chapter 3, we evaluate a coastal city’s flooding challenges caused by rising sea levels

due to climate change. This problem is universal for all coastal cities and is projected to cost

trillions of dollars of damage around the globe. We apply a prescriptive analytics method to

create a cost-benefit analysis that simultaneously accounts for flood damages while building

a flood protection network. We do this by superimposing a network layer on a coastal area,

enhancing each network node with real-world parameters associated with monetary value and

elevation, and subjecting that network to rising sea levels. In defining the problem, we also

prove the decision version of this problem to be NP-complete. Due to the intractability of the

core model, we use both a scenario-based and a simulation-based approach to assess the po-

tential cost benefits across a range of input parameters. In our simulations, we apply stochastic

values to the various prospective sea levels over time and optimize for the least cost option to
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jointly build defenses to protect the city and evaluate the associated flood damages that will

occur based on those defenses. In the scenarios, we assess the costs over a more comprehen-

sive range of outcomes to help decision-makers assess their willingness to take on risks and

handle associated costs. Our novel network flow approach to the problem of jointly building

flood defenses and mitigating flood damages has not been used before. Our East Boston case

study simulations show a significant reduction of up to 92.2% from the “do-nothing” strategy.

The multi-stage character of our model and its recourse feature allows prospective community

leaders to revise their adaptation measures as the sea level rise situation unfolds. Planners can

use only open-source data to apply this methodology in any coastal area with the same open-

source data availability. The work completed in chapter 3 demonstrates the ability to combine

many varied datasets and apply all three business analytics approaches to provide novel deci-

sion support capability to support coastal decision-makers in the face of rising seas.

Chapter 3 showed significant uncertainty about the expected levels of climate-change-

induced sea level rise. Therefore, in Chapter 4, we focus on upstream actions that could reduce

the worst-case climate change scenarios and lower the overall cost required for future climate

change adaptation. In this chapter, we develop a decision support tool to aid global companies

in making long-term strategic sustainable energy purchases. The value of such a tool from the

climate change perspective is that through increased sustainable energy usage, there should be

a requisite reduction in greenhouse gas emissions and improvement in the future prognostica-

tion of worst-case impacts of climate change. We find many studies on multicriteria decision

analysis in the sustainable energy space, but the vast majority only focus on technological or

economic aspects of energy usage. Seeing this gap in the literature, we approach the prob-

lem from a more generalized business perspective for any global company looking to make a

long-term strategic energy purchase. Our approach focuses not only on costs and sustainability

requirements but also on how a company could enhance its brand and improve its competitive-

ness by aligning its sustainable energy purchasing strategies. If global companies incorporate
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more than just cost into their decision-making, they potentially gain more utility value in pur-

chasing sustainable energy in the long term. Compared to the work done in Chapter 3, we have

significantly fewer data points in demonstrating this case study. However, we highlight how to

apply subject matter expertise to provide reasonable estimates and probabilities to conduct the

simulation. Finally, in building the model for our case study, we create new generalizable mod-

ules to incorporate Strategy Tables and Multi-attribute Utility Theory into the decision support

software provided by Lumina Analytica.

As the introduction states, climate change is an existential threat facing humanity, civi-

lization, and the natural world. Our primary purpose in conducting this research was to apply

management, decision, information, and data science theories and techniques to propose, build,

and evaluate novel data-driven methodologies to improve understanding of climate-change-

related challenges. We start by assessing climate change adaptation literature to understand

the main covered topics. After identifying less focus on finance-related issues, we pursue busi-

ness analytics approaches to assess both climate change adaptation and mitigation challenges.

We accomplish what we set out to do in this work by demonstrating enhanced data-driven

decision-support methods to help inform businesses and society as they seek to address the

deep uncertainty and incomplete knowledge of climate change issues.
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A P P E N D I X A

SETS, PARAMETERS AND VARIABLES USED IN THE FLOOD RISK MITIGATION

(FRM) MODEL IN CHAPTER 3

• tmax: Number of periods within the planning horizon.

• T : The set containing all time periods within the planning horizon, i.e., T = {1, . . . , tmax}.

• s: The sea level during a period solely due to the climate change effects.

• ŝ: The sea level during a period due to both climate change effects and hurricane storm

surge factors.

• S = (s, ŝ): The sea level state during a period.

• Ξt .: The set containing all possible sea level states during a period t.

• pSS
′

t : The probability that the sea level state during period t is S and during period t +1

is S ′ for a given t ∈ {0, . . . , tmax−1}, S ∈ Ξt and S ′ ∈ Ξt+1.

• ŝmax: The highest sea level across all sea level states, i.e., ŝmax = max{ŝ : (s, ŝ) ∈ Ξtmax}.

• Φ: The set containing the land grids forming the “area of interest”, which are the flooded

land grids in the region of interest under sea level ŝmax.

• Ψ: The set containing the land grids forming the “area of relevance”, which are the

flooded land grids in the surrounding region with a water path to some flooded land grid

in the region of interest without going through the sea under sea level ŝmax.

• hi: The initial elevation for a land grid i ∈Φ∪Ψ.

• O: The set containing the hexagonal grids formed on the sea at time zero.
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• RS
t : The subset of land grids in Φ at risk of permanent inundation flooding during period

t and under sea level state S ∈ Ξt .

• QS
t : The subset of land grids in Ψ at risk of permanent inundation flooding during period

t and under sea level state S ∈ Ξt .

• R̂S
t : The subset of land grids in Φ only at risk of temporary flooding during period t and

under sea level state S ∈ Ξt .

• Q̂S
t : The subset of land grids in Ψ only at risk of temporary flooding during period t and

under sea level state S ∈ Ξt .

• o: The vertex representing all sea-based grids within a given at-risk network.

• NS
t (i): The set containing vertices that are adjacent to a vertex i ∈ RS

t ∪ R̂S
t ∪QS

t ∪ Q̂S
t

within the at-risk network during a period t and under a sea level state S ∈ Ξt . This set

is also referred to as the neighbors of i within the aforementioned at-risk network.

• c: The cost to elevate a grid in Φ by one meter at the start of a given period.

• gi: The cost of losing a grid i ∈Φ due to inundation if the grid is in RS
t during a period t

and under a sea level state S ∈ Ξt , and is permanently flooded.

• fi: The cost of hurricane storm surge flood damage to a grid i in RS
t ∪ R̂S

t during a period

t and under a sea level state S ∈ Ξt when the grid is temporarily flooded to a depth of

1m.

• f̄i: The estimated value for fi based on tax parcel data and is basis for sensitivity analysis

of fi.

• λ : The discount rate per period to incorporate realistic costs over time.

• d: The standard annual discount rate.
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• bt : The fixed construction and maintenance budget for a period t ∈ T that does not carry

over into other periods.

• xitS : The decision variable associated with the height of a grid i ∈ Φ during a period

t ∈ T if the sea level state during period t−1 is S ∈ Ξt−1.

• m: The minimum threshold of elevation increase in any grid in Φ during a period.

• M: A valid upper bound on the elevation increase in any grid in Φ during a period. We

use M = max{ŝmax−min{hi : i ∈Φ∪Ψ},m} in our FRM model.

• witSS ′: A binary variable that captures if a grid i∈ RS ′
t ∪QS ′

t is inundated during a period

t ∈ T and under sea level states S ∈ Ξt−1 and S ′ ∈ Ξt for which pSS
′

t−1 > 0. witSS ′ = 0 if

the grid is not inundated, and witSS ′ = 1 otherwise.

• zitSS ′: A continuous variable to capture the water depth used to calculate the temporary

flood cost if a grid i ∈ RS ′
t ∪QS ′

t ∪ R̂S ′
t ∪ Q̂S ′

t is not inundated but faces hurricane storm

surge related flooding during period t and under sea level states S ∈ Ξt−1 and S ′ ∈ Ξt for

which pSS
′

t−1 > 0.

• vitSS ′: A binary variable indicating whether a grid i∈Φ is elevated at the start of a period

t ∈ {2, . . . , tmax} under sea level states S ∈ Ξt−2 and S ′ ∈ Ξt−1 for which pSS
′

t−2 > 0.

• vi1(0,0): A binary variable indicating whether a grid i ∈ Φ is elevated at the start of the

first period.

• yitSS ′: A binary variable that indicates whether a grid i ∈ RS ′
t ∪QS ′

t is a neighbor of the

sea grid or has an adjacent grid i′ ∈ NS ′
t (i)∩ (RS ′

t ∪QS ′
t ) that is inundated during period

t and under sea level states S ∈ Ξt−1 and S ′ ∈ Ξt for which pSS
′

t−1 > 0. If grid i is not a

neighbor of the sea grid and also does not have an inundated neighbor, then yitSS ′ is zero,

and one otherwise.
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• ŷitSS ′: A binary variable that indicates whether a grid i ∈ RS ′
t ∪QS ′

t ∪ R̂S ′
t ∪ Q̂S ′

t is a

neighbor of the sea grid or has a hydraulic path to the sea during period t and under sea

level states S ∈ Ξt−1 and S ′ ∈ Ξt for which pSS
′

t−1 > 0. ŷitSS ′ is equal to one if grid i is a

neighbor of the sea or if such a path exists, and zero otherwise.
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A P P E N D I X B

SEA LEVEL STATES PATHS, PROBABILITIES, AND SEA LEVEL VALUES FOR EACH

PERIOD IN CHAPTER 3

Table 31: Sea level states paths, probabilities, and sea level values in cm for each period.

1 rcp85 1.0% 99% 0.001912500 (154, 210) (156, 212) (159, 215) (161, 217) (162, 218)

2 rcp85 5.0% 99% 0.005004375 (156, 212) (159, 215) (164, 220) (169, 225) (172, 228)

3 rcp85 16.7% 99% 0.014343750 (157, 213) (162, 218) (168, 224) (175, 231) (181, 237)

4 rcp85 50.0% 99% 0.021228750 (159, 215) (167, 223) (176, 232) (186, 242) (196, 252)

5 rcp85 83.3% 99% 0.014343750 (162, 218) (172, 228) (184, 240) (197, 253) (212, 268)

6 rcp85 95.0% 99% 0.005004375 (163, 219) (175, 231) (190, 246) (207, 263) (226, 282)

7 rcp85 99.0% 99% 0.001434375 (165, 221) (181, 237) (200, 256) (222, 278) (246, 302)

8 rcp85 99.5% 99% 0.000286875 (167, 223) (184, 240) (205, 261) (230, 286) (258, 314)

9 rcp85 99.9% 99% 0.000191250 (170, 226) (194, 250) (223, 279) (256, 312) (294, 350)

10 rcp60 1.0% 99% 0.001912500 (152, 208) (154, 210) (154, 210) (156, 212) (157, 213)

11 rcp60 5.0% 99% 0.005004375 (154, 210) (156, 212) (158, 214) (163, 219) (166, 222)

12 rcp60 16.7% 99% 0.014343750 (156, 212) (160, 216) (164, 220) (169, 225) (175, 231)

13 rcp60 50.0% 99% 0.021228750 (158, 214) (163, 219) (170, 226) (179, 235) (187, 243)

14 rcp60 83.3% 99% 0.014343750 (160, 216) (168, 224) (178, 234) (189, 245) (202, 258)

15 rcp60 95.0% 99% 0.005004375 (163, 219) (172, 228) (185, 241) (199, 255) (215, 271)

16 rcp60 99.0% 99% 0.001434375 (166, 222) (178, 234) (195, 251) (212, 268) (235, 291)

17 rcp60 99.5% 99% 0.000286875 (168, 224) (181, 237) (200, 256) (220, 276) (246, 302)

18 rcp60 99.9% 99% 0.000191250 (171, 227) (190, 246) (214, 270) (245, 301) (281, 337)

19 rcp45 1.0% 99% 0.001912500 (154, 210) (155, 211) (156, 212) (157, 213) (156, 212)

20 rcp45 5.0% 99% 0.005004375 (156, 212) (159, 215) (161, 217) (165, 221) (167, 223)

21 rcp45 16.7% 99% 0.014343750 (157, 213) (161, 217) (166, 222) (171, 227) (175, 231)

22 rcp45 50.0% 99% 0.021228750 (158, 214) (165, 221) (173, 229) (181, 237) (188, 244)

23 rcp45 83.3% 99% 0.014343750 (160, 216) (170, 226) (181, 237) (192, 248) (203, 259)

24 rcp45 95.0% 99% 0.005004375 (162, 218) (174, 230) (187, 243) (202, 258) (216, 272)
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Table 31: Sea level states paths, probabilities, and sea level values in cm for each period.
(Continued)

25 rcp45 99.0% 99% 0.001434375 (164, 220) (179, 235) (197, 253) (216, 272) (236, 292)

26 rcp45 99.5% 99% 0.000286875 (166, 222) (183, 239) (203, 259) (224, 280) (249, 305)

27 rcp45 99.9% 99% 0.000191250 (169, 225) (192, 248) (219, 275) (248, 304) (281, 337)

28 rcp26 1.0% 99% 0.001912500 (152, 208) (152, 208) (151, 207) (149, 205) (150, 206)

29 rcp26 5.0% 99% 0.005004375 (154, 210) (155, 211) (156, 212) (158, 214) (160, 216)

30 rcp26 16.7% 99% 0.014343750 (155, 211) (159, 215) (162, 218) (165, 221) (168, 224)

31 rcp26 50.0% 99% 0.021228750 (158, 214) (164, 220) (170, 226) (176, 232) (182, 238)

32 rcp26 83.3% 99% 0.014343750 (161, 217) (170, 226) (180, 236) (189, 245) (197, 253)

33 rcp26 95.0% 99% 0.005004375 (163, 219) (175, 231) (188, 244) (200, 256) (210, 266)

34 rcp26 99.0% 99% 0.001434375 (166, 222) (181, 237) (198, 254) (215, 271) (231, 287)

35 rcp26 99.5% 99% 0.000286875 (167, 223) (185, 241) (204, 260) (223, 279) (243, 299)

36 rcp26 99.9% 99% 0.000191250 (170, 226) (193, 249) (221, 277) (250, 306) (278, 334)

37 rcp85 1.0% 50% 0.003337500 (154, 235) (156, 237) (159, 240) (161, 242) (162, 243)

38 rcp85 5.0% 50% 0.008733125 (156, 237) (159, 240) (164, 245) (169, 250) (172, 253)

39 rcp85 16.7% 50% 0.025031250 (157, 238) (162, 243) (168, 249) (175, 256) (181, 262)

40 rcp85 50.0% 50% 0.037046250 (159, 240) (167, 248) (176, 257) (186, 267) (196, 277)

41 rcp85 83.3% 50% 0.025031250 (162, 243) (172, 253) (184, 265) (197, 278) (212, 293)

42 rcp85 95.0% 50% 0.008733125 (163, 244) (175, 256) (190, 271) (207, 288) (226, 307)

43 rcp85 99.0% 50% 0.002503125 (165, 246) (181, 262) (200, 281) (222, 303) (246, 327)

44 rcp85 99.5% 50% 0.000500625 (167, 248) (184, 265) (205, 286) (230, 311) (258, 339)

45 rcp85 99.9% 50% 0.000333750 (170, 251) (194, 275) (223, 304) (256, 337) (294, 375)

46 rcp60 1.0% 50% 0.003337500 (152, 233) (154, 235) (154, 235) (156, 237) (157, 238)

47 rcp60 5.0% 50% 0.008733125 (154, 235) (156, 237) (158, 239) (163, 244) (166, 247)

48 rcp60 16.7% 50% 0.025031250 (156, 237) (160, 241) (164, 245) (169, 250) (175, 256)

49 rcp60 50.0% 50% 0.037046250 (158, 239) (163, 244) (170, 251) (179, 260) (187, 268)

50 rcp60 83.3% 50% 0.025031250 (160, 241) (168, 249) (178, 259) (189, 270) (202, 283)

51 rcp60 95.0% 50% 0.008733125 (163, 244) (172, 253) (185, 266) (199, 280) (215, 296)

52 rcp60 99.0% 50% 0.002503125 (166, 247) (178, 259) (195, 276) (212, 293) (235, 316)

53 rcp60 99.5% 50% 0.000500625 (168, 249) (181, 262) (200, 281) (220, 301) (246, 327)
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Table 31: Sea level states paths, probabilities, and sea level values in cm for each period.
(Continued)

54 rcp60 99.9% 50% 0.000333750 (171, 252) (190, 271) (214, 295) (245, 326) (281, 362)

55 rcp45 1.0% 50% 0.003337500 (154, 235) (155, 236) (156, 237) (157, 238) (156, 237)

56 rcp45 5.0% 50% 0.008733125 (156, 237) (159, 240) (161, 242) (165, 246) (167, 248)

57 rcp45 16.7% 50% 0.025031250 (157, 238) (161, 242) (166, 247) (171, 252) (175, 256)

58 rcp45 50.0% 50% 0.037046250 (158, 239) (165, 246) (173, 254) (181, 262) (188, 269)

59 rcp45 83.3% 50% 0.025031250 (160, 241) (170, 251) (181, 262) (192, 273) (203, 284)

60 rcp45 95.0% 50% 0.008733125 (162, 243) (174, 255) (187, 268) (202, 283) (216, 297)

61 rcp45 99.0% 50% 0.002503125 (164, 245) (179, 260) (197, 278) (216, 297) (236, 317)

62 rcp45 99.5% 50% 0.000500625 (166, 247) (183, 264) (203, 284) (224, 305) (249, 330)

63 rcp45 99.9% 50% 0.000333750 (169, 250) (192, 273) (219, 300) (248, 329) (281, 362)

64 rcp26 1.0% 50% 0.003337500 (152, 233) (152, 233) (151, 232) (149, 230) (150, 231)

65 rcp26 5.0% 50% 0.008733125 (154, 235) (155, 236) (156, 237) (158, 239) (160, 241)

66 rcp26 16.7% 50% 0.025031250 (155, 236) (159, 240) (162, 243) (165, 246) (168, 249)

67 rcp26 50.0% 50% 0.037046250 (158, 239) (164, 245) (170, 251) (176, 257) (182, 263)

68 rcp26 83.3% 50% 0.025031250 (161, 242) (170, 251) (180, 261) (189, 270) (197, 278)

69 rcp26 95.0% 50% 0.008733125 (163, 244) (175, 256) (188, 269) (200, 281) (210, 291)

70 rcp26 99.0% 50% 0.002503125 (166, 247) (181, 262) (198, 279) (215, 296) (231, 312)

71 rcp26 99.5% 50% 0.000500625 (167, 248) (185, 266) (204, 285) (223, 304) (243, 324)

72 rcp26 99.9% 50% 0.000333750 (170, 251) (193, 274) (221, 302) (250, 331) (278, 359)

73 rcp85 1.0% 10% 0.001837500 (154, 261) (156, 263) (159, 266) (161, 268) (162, 269)

74 rcp85 5.0% 10% 0.004808125 (156, 263) (159, 266) (164, 271) (169, 276) (172, 279)

75 rcp85 16.7% 10% 0.013781250 (157, 264) (162, 269) (168, 275) (175, 282) (181, 288)

76 rcp85 50.0% 10% 0.020396250 (159, 266) (167, 274) (176, 283) (186, 293) (196, 303)

77 rcp85 83.3% 10% 0.013781250 (162, 269) (172, 279) (184, 291) (197, 304) (212, 319)

78 rcp85 95.0% 10% 0.004808125 (163, 270) (175, 282) (190, 297) (207, 314) (226, 333)

79 rcp85 99.0% 10% 0.001378125 (165, 272) (181, 288) (200, 307) (222, 329) (246, 353)

80 rcp85 99.5% 10% 0.000275625 (167, 274) (184, 291) (205, 312) (230, 337) (258, 365)

81 rcp85 99.9% 10% 0.000183750 (170, 277) (194, 301) (223, 330) (256, 363) (294, 401)

82 rcp60 1.0% 10% 0.001837500 (152, 259) (154, 261) (154, 261) (156, 263) (157, 264)
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Table 31: Sea level states paths, probabilities, and sea level values in cm for each period.
(Continued)

83 rcp60 5.0% 10% 0.004808125 (154, 261) (156, 263) (158, 265) (163, 270) (166, 273)

84 rcp60 16.7% 10% 0.013781250 (156, 263) (160, 267) (164, 271) (169, 276) (175, 282)

85 rcp60 50.0% 10% 0.020396250 (158, 265) (163, 270) (170, 277) (179, 286) (187, 294)

86 rcp60 83.3% 10% 0.013781250 (160, 267) (168, 275) (178, 285) (189, 296) (202, 309)

87 rcp60 95.0% 10% 0.004808125 (163, 270) (172, 279) (185, 292) (199, 306) (215, 322)

88 rcp60 99.0% 10% 0.001378125 (166, 273) (178, 285) (195, 302) (212, 319) (235, 342)

89 rcp60 99.5% 10% 0.000275625 (168, 275) (181, 288) (200, 307) (220, 327) (246, 353)

90 rcp60 99.9% 10% 0.000183750 (171, 278) (190, 297) (214, 321) (245, 352) (281, 388)

91 rcp45 1.0% 10% 0.001837500 (154, 261) (155, 262) (156, 263) (157, 264) (156, 263)

92 rcp45 5.0% 10% 0.004808125 (156, 263) (159, 266) (161, 268) (165, 272) (167, 274)

93 rcp45 16.7% 10% 0.013781250 (157, 264) (161, 268) (166, 273) (171, 278) (175, 282)

94 rcp45 50.0% 10% 0.020396250 (158, 265) (165, 272) (173, 280) (181, 288) (188, 295)

95 rcp45 83.3% 10% 0.013781250 (160, 267) (170, 277) (181, 288) (192, 299) (203, 310)

96 rcp45 95.0% 10% 0.004808125 (162, 269) (174, 281) (187, 294) (202, 309) (216, 323)

97 rcp45 99.0% 10% 0.001378125 (164, 271) (179, 286) (197, 304) (216, 323) (236, 343)

98 rcp45 99.5% 10% 0.000275625 (166, 273) (183, 290) (203, 310) (224, 331) (249, 356)

99 rcp45 99.9% 10% 0.000183750 (169, 276) (192, 299) (219, 326) (248, 355) (281, 388)

100 rcp26 1.0% 10% 0.001837500 (152, 259) (152, 259) (151, 258) (149, 256) (150, 257)

101 rcp26 5.0% 10% 0.004808125 (154, 261) (155, 262) (156, 263) (158, 265) (160, 267)

102 rcp26 16.7% 10% 0.013781250 (155, 262) (159, 266) (162, 269) (165, 272) (168, 275)

103 rcp26 50.0% 10% 0.020396250 (158, 265) (164, 271) (170, 277) (176, 283) (182, 289)

104 rcp26 83.3% 10% 0.013781250 (161, 268) (170, 277) (180, 287) (189, 296) (197, 304)

105 rcp26 95.0% 10% 0.004808125 (163, 270) (175, 282) (188, 295) (200, 307) (210, 317)

106 rcp26 99.0% 10% 0.001378125 (166, 273) (181, 288) (198, 305) (215, 322) (231, 338)

107 rcp26 99.5% 10% 0.000275625 (167, 274) (185, 292) (204, 311) (223, 330) (243, 350)

108 rcp26 99.9% 10% 0.000183750 (170, 277) (193, 300) (221, 328) (250, 357) (278, 385)

109 rcp85 1.0% 1% 0.000412500 (154, 295) (156, 297) (159, 300) (161, 302) (162, 303)

110 rcp85 5.0% 1% 0.001079375 (156, 297) (159, 300) (164, 305) (169, 310) (172, 313)

111 rcp85 16.7% 1% 0.003093750 (157, 298) (162, 303) (168, 309) (175, 316) (181, 322)
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Table 31: Sea level states paths, probabilities, and sea level values in cm for each period.
(Continued)

112 rcp85 50.0% 1% 0.004578750 (159, 300) (167, 308) (176, 317) (186, 327) (196, 337)

113 rcp85 83.3% 1% 0.003093750 (162, 303) (172, 313) (184, 325) (197, 338) (212, 353)

114 rcp85 95.0% 1% 0.001079375 (163, 304) (175, 316) (190, 331) (207, 348) (226, 367)

115 rcp85 99.0% 1% 0.000309375 (165, 306) (181, 322) (200, 341) (222, 363) (246, 387)

116 rcp85 99.5% 1% 0.000061875 (167, 308) (184, 325) (205, 346) (230, 371) (258, 399)

117 rcp85 99.9% 1% 0.000041250 (170, 311) (194, 335) (223, 364) (256, 397) (294, 435)

118 rcp60 1.0% 1% 0.000412500 (152, 293) (154, 295) (154, 295) (156, 297) (157, 298)

119 rcp60 5.0% 1% 0.001079375 (154, 295) (156, 297) (158, 299) (163, 304) (166, 307)

120 rcp60 16.7% 1% 0.003093750 (156, 297) (160, 301) (164, 305) (169, 310) (175, 316)

121 rcp60 50.0% 1% 0.004578750 (158, 299) (163, 304) (170, 311) (179, 320) (187, 328)

122 rcp60 83.3% 1% 0.003093750 (160, 301) (168, 309) (178, 319) (189, 330) (202, 343)

123 rcp60 95.0% 1% 0.001079375 (163, 304) (172, 313) (185, 326) (199, 340) (215, 356)

124 rcp60 99.0% 1% 0.000309375 (166, 307) (178, 319) (195, 336) (212, 353) (235, 376)

125 rcp60 99.5% 1% 0.000061875 (168, 309) (181, 322) (200, 341) (220, 361) (246, 387)

126 rcp60 99.9% 1% 0.000041250 (171, 312) (190, 331) (214, 355) (245, 386) (281, 422)

127 rcp45 1.0% 1% 0.000412500 (154, 295) (155, 296) (156, 297) (157, 298) (156, 297)

128 rcp45 5.0% 1% 0.001079375 (156, 297) (159, 300) (161, 302) (165, 306) (167, 308)

129 rcp45 16.7% 1% 0.003093750 (157, 298) (161, 302) (166, 307) (171, 312) (175, 316)

130 rcp45 50.0% 1% 0.004578750 (158, 299) (165, 306) (173, 314) (181, 322) (188, 329)

131 rcp45 83.3% 1% 0.003093750 (160, 301) (170, 311) (181, 322) (192, 333) (203, 344)

132 rcp45 95.0% 1% 0.001079375 (162, 303) (174, 315) (187, 328) (202, 343) (216, 357)

133 rcp45 99.0% 1% 0.000309375 (164, 305) (179, 320) (197, 338) (216, 357) (236, 377)

134 rcp45 99.5% 1% 0.000061875 (166, 307) (183, 324) (203, 344) (224, 365) (249, 390)

135 rcp45 99.9% 1% 0.000041250 (169, 310) (192, 333) (219, 360) (248, 389) (281, 422)

136 rcp26 1.0% 1% 0.000412500 (152, 293) (152, 293) (151, 292) (149, 290) (150, 291)

137 rcp26 5.0% 1% 0.001079375 (154, 295) (155, 296) (156, 297) (158, 299) (160, 301)

138 rcp26 16.7% 1% 0.003093750 (155, 296) (159, 300) (162, 303) (165, 306) (168, 309)

139 rcp26 50.0% 1% 0.004578750 (158, 299) (164, 305) (170, 311) (176, 317) (182, 323)

140 rcp26 83.3% 1% 0.003093750 (161, 302) (170, 311) (180, 321) (189, 330) (197, 338)

Path RCP SLR
Curve

Surge
Curve

Path
Probability

2030
(s, ŝ)

2040
(s, ŝ)

2050
(s, ŝ)

2060
(s, ŝ)

2070
(s, ŝ)

Continued on next page
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Table 31: Sea level states paths, probabilities, and sea level values in cm for each period.
(Continued)

141 rcp26 95.0% 1% 0.001079375 (163, 304) (175, 316) (188, 329) (200, 341) (210, 351)

142 rcp26 99.0% 1% 0.000309375 (166, 307) (181, 322) (198, 339) (215, 356) (231, 372)

143 rcp26 99.5% 1% 0.000061875 (167, 308) (185, 326) (204, 345) (223, 364) (243, 384)

144 rcp26 99.9% 1% 0.000041250 (170, 311) (193, 334) (221, 362) (250, 391) (278, 419)

Path RCP SLR
Curve

Surge
Curve

Path
Probability

2030
(s, ŝ)

2040
(s, ŝ)

2050
(s, ŝ)

2060
(s, ŝ)

2070
(s, ŝ)
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A P P E N D I X C

FULL RESULTS FOR SIMULATION AND SCENARIO RUNS CONDUCTED IN
CHAPTER 3

In this appendix, we present the full results for the sensitivity analysis in our simulation-

based approach discussed in Section 3.5.1 and the scenario-based approach discussed in Sec-

tion 3.5.2. The 81 plots in each of the following six figures represent results across all 81

parameter combinations, with an overall cost shown with stacked bar charts of the three cost

types. Figure 37 shows the full results for the simulation runs discussed in Section 3.5.1. The

remaining Figures in this appendix show the full results for the scenarios discussed in Sec-

tion 3.5.2. We omit the zero budget cost curves because the large magnitude of these curves

overwhelms the curves for the other budgets, and prevents an effective visualization of the bud-

get effect in each cost benefit curve. At the top of each chart is the combination of parameters

for that chart, with the values shown in Table 32. To effectively show each combination of 81

charts, we have split each multi-paneled figure across two pages on the following pages.

Table 32: Parameter values used in sensitivity analysis for charts shown in Appendix C.

Parameter High Mid Low

Discount rate (d) [%] 7 5 3

Minimum elevation increase (m) [meters] 5 3 1

Grid elevation cost (c) [$M/km per m] 25 15 5

Storm flood damage curve ( fi) [$M/m] 1.25 f̄i f̄i 0.75 f̄i

168



Figure 37: East Boston simulation expected cost benefit curves by
per-period budget with expected costs averaged across full 144 simulated

sea level states paths for each of the 81 parameter combinations. (1/2)
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Figure 37: East Boston simulation expected cost benefit curves by
per-period budget with expected costs averaged across full 144 simulated

sea level states paths for each of the 81 parameter combinations. (2/2)
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Figure 38: East Boston High scenario cost benefit curves by per-period
budget for each of the 81 parameter combinations. (1/2)
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Figure 38: East Boston High scenario cost benefit curves by per-period
budget for each of the 81 parameter combinations. (2/2)
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Figure 39: East Boston Expected-high scenario cost benefit curves by
per-period budget for each of the 81 parameter combinations. (1/2)
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Figure 39: East Boston Expected-high scenario cost benefit curves by
per-period budget for each of the 81 parameter combinations. (2/2)
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Figure 40: East Boston Expected-low scenario cost benefit curves by
per-period budget for each of the 81 parameter combinations. (1/2)
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Figure 40: East Boston Expected-low scenario cost benefit curves by
per-period budget for each of the 81 parameter combinations. (2/2)
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Figure 41: East Boston Optimistic scenario cost benefit curves by
per-period budget for each of the 81 parameter combinations. (1/2)
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Figure 41: East Boston Optimistic scenario cost benefit curves by
per-period budget for each of the 81 parameter combinations. (2/2)
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Figure 42: East Boston No-sea-level-rise scenario cost benefit curves by
per-period budget for each of the 81 parameter combinations. (1/2)
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Figure 42: East Boston No-sea-level-rise scenario cost benefit curves by
per-period budget for each of the 81 parameter combinations. (2/2)
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A P P E N D I X D

RANDOM NETWORK CREATION AND EXPERIMENT DISCUSSION FOR RANDOM

NETWORKS USED IN CHAPTER 3

In this section, we present the pseudocode in Algorithm 1 used to create the random net-

works for the analysis discussed in Section 3.5.3. We start with a square grid made up of 402

hex grids, randomly select sea nodes and Region of Interest (ROI) nodes, randomly assign land

elevations hi to ROI and the Surrounding Region (SR) nodes, and then randomly assign gi and

fi to the ROI nodes. The result is a network used to run the same experiments as in the Boston

case study.

Below, we present the cost benefit curves for the experiments on the 50 random networks.

Figure 43 shows the combined average of all 50 networks with a cost benefit curve looking

at the costs for each budgeted run for one of the 81 parameter combinations. We omit the

zero budget cost curves to provide better visualization of the budget effect in each cost benefit

curve. To better understand where the model starts being constrained by the budget, we added

lower budgets for some model runs. These added per-period budget runs include $5M and

$12.5M per period budgets for all instances of runs with m at 1m, and $12.5M where m is

at 3m, and c is at $5M/km per m or $15M/km per m. Similar to Figure 43, we show the

cost benefit curves averaged across all 50 networks for each of the four scenarios discussed in

Section 3.5.2 across the 81 parameter combinations and for each budget. At the top of each

chart is the combination of parameters for that chart, with the values shown in Table 33. One

note of interest in the random network scenario charts, the inundation costs are a fraction of the

overall costs, so in many of the bar charts below the reader will notice that the costs are mostly

made up of build and storm surge costs, with very small inundation contribution in the stacked

bar charts.
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Algorithm 1 Random Network Generation

1: Initialize baseNetwork of 402 hex-grid nodes (i.e.,(23× 17)+11 extra nodes for the last
row)

2: repeat 50 times
3: randomNetwork← baseNetwork
4: Randomly select up to 3 nodes at the boundary of the baseNetwork as sea nodes
5: while Number of sea nodes < 100 do
6: Randomly select a non-sea node from the baseNetwork that is adjacent to some

sea node
7: Add the selected node to the set of sea nodes
8: end while
9: ▷ A Sea subcomponent is a connected component composed of sea nodes.

10: for each Sea subcomponent do
11: if |Sea subcomponent|< 4 then
12: while |Sea subcomponent|< 4 do
13: Randomly select a non-sea node from baseNetwork adjacent to

Sea subcomponent
14: Add the selected node to the set of sea nodes and the Sea subcomponent
15: end while
16: end if
17: end for
18: Randomly select one non-sea node bordering the set of sea nodes
19: Add the selected node to the Region of Interest (ROI) set
20: while |ROI|< 100 do
21: Randomly select a non-sea node from the baseNetwork that is adjacent to ROI
22: Add the selected node to ROI
23: end while
24: ▷ A SR subcomponent is a connected component composed of Surrounding Region

nodes
25: for each SR subcomponent do
26: if |SR subcomponent|< 4 then
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Algorithm 1 Random Network Generation - Continued
27: if all SR subcomponent nodes are adjacent to some ROI node then
28: Re-label the SR subcomponent nodes as ROI nodes
29: else
30: Re-label the SR subcomponent nodes as sea nodes
31: end if
32: end if
33: end for
34: for all non-sea nodes do
35: Randomly sample one hi elevation from East Boston population of hi
36: Assign sampled hi to the chosen node
37: end for
38: for all ROI nodes do
39: randomly sample one fi and gi pair from East Boston population of fi and gi
40: Assign sampled fi and gi pair to the chosen node
41: end for
42: save randomNetwork
43: until

Table 33: Parameter values used in sensitivity analysis for charts shown in Appendix D.

Parameter High Mid Low

Discount rate (d) [%] 7 5 3

Minimum elevation increase (m) [meters] 5 3 1

Grid elevation cost (c) [$M/km per m] 25 15 5

Storm flood damage curve ( fi) [$M/m] 1.25 f̄i f̄i 0.75 f̄i
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Figure 43: Random network simulation expected cost benefit curves by
per-period budget with expected costs averaged across all 50 networks for

each of the 81 parameter combinations. (1/2)
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Figure 43: Random network simulation expected cost benefit curves by
per-period budget with expected costs averaged across all 50 networks for

each of the 81 parameter combinations. (2/2)
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Figure 44: Random network High scenario cost benefit curves by
per-period budget with scenario costs averaged across all 50 networks for

each of the 81 parameter combinations. (1/2)
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Figure 44: Random network High scenario cost benefit curves by
per-period budget with scenario costs averaged across all 50 networks for

each of the 81 parameter combinations. (2/2)
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Figure 45: Random network Expected-high scenario cost benefit curves by
per-period budget with scenario costs averaged across all 50 networks for

each of the 81 parameter combinations. (1/2)
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Figure 45: Random network Expected-high scenario cost benefit curves by
per-period budget with scenario costs averaged across all 50 networks for

each of the 81 parameter combinations. (2/2)
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Figure 46: Random network Expected-low scenario cost benefit curves by
per-period budget with scenario costs averaged across all 50 networks for

each of the 81 parameter combinations. (1/2)
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Figure 46: Random network Expected-low scenario cost benefit curves by
per-period budget with scenario costs averaged across all 50 networks for

each of the 81 parameter combinations. (2/2)
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Figure 47: Random network Optimistic scenario cost benefit curves by
per-period budget with scenario costs averaged across all 50 networks for

each of the 81 parameter combinations. (1/2)
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Figure 47: Random network Optimistic scenario cost benefit curves by
per-period budget with scenario costs averaged across all 50 networks for

each of the 81 parameter combinations. (2/2)
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