
Reproducible geoscientific modelling with
hypergraphs

By the Faculty of Geosciences, Geoengineering and Mining

of the Technische Universität Bergakademie Freiberg

approved

Doctoral Thesis

to attain the academic degree of

Doctor rerum naturalium

(Dr. rer. nat.)

submitted by M.Sc. Georg Semmler

born on the February 11, 1993 in Zschopau

Assessor: Prof. Helmut Schaeben
Prof. Heinrich Jasper
Prof. Martin Breuning

Date of the award: Freiberg, 23st May 2023

I

Acknowledgements

I would like to express my deepest appreciation to my supervisor Prof. Helmut Schaeben. He
mentored this work after his retirement. Without his guidance, advice and support none of
this work would have been possible.

This endeavour would not have been possible without the support from my co-supervisor
Prof. Heinrich Jasper. We had numerous discussions about content of this work. Without
his input this work would not be as detailed as it is today.

Many thanks to the Electromagnetic and Seismic Working Group of the Department of
Geophysics at TU Bergakademie Freiberg for providing code, instructions and datasets used
as part of the BHMZ case study. I want to thank Dr. Mathias Scheunert for answering my
questions about how to combine all the provided data.

Thanks should also go to the Landesamt für Umwelt, Landwirtschaft und Geologie Sachsen
for providing data and instructions used as part of the Kohlberg case study. I would like
to thank Dr. Ines Görz and Sascha Görne for guiding me trough the construction of the
subsurface model.

I am also thankful to Dr. Volkmar Dunger for the uncomplicated way in which he provided
the source code of Bowahald, which is used as part of the hydrologic balance model case
study.

Thanks should also go to my colleagues at GiGa Infosystems for their recurring input to the
topic of this thesis. Especially I would like to thank Aleksey Zholobenko for helping to correct
the language of this thesis and Paul Gabriel for providing the possibility to finish thesis.

I also wish to thank Anatoly Zelenin and Richard Gootjes for many hours of discussion about
the subject of this work and for their encouragement to complete this work.

Thanks should also go to all the other colleagues from university who provided environment
which made this work possible.

I would like to acknowledge the financial support to work on this topic provided by the IAMG
Computers and Geosciences Research Scholarships and the by the European Social Fund.

I gratefully acknowledgement the assistance of the student assistance that help me by the
implementation of the presented prototype.

I am also grateful to my partner Sophie for her support and continued encouragement to
finish this thesis. Last but not least, I want to thank all my friends and my family for their
support, inspiration and encouragement.

Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden
Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.

Die Hilfe eines Promotionsberaters habe ich nicht in Anspruch genommen. Weitere Perso-
nen haben von mir keine geldwerten Leistungen für Arbeiten erhalten, die nicht als solche
kenntlich gemacht worden sind. Die Arbeit wurde bisher weder im Inland noch im Ausland
in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

11. August 2023 M.Sc. Georg Semmler

Declaration

I hereby declare that I completed this work without any improper help from a third party
and without using any aids other than those cited. All ideas derived directly or indirectly
from other sources are identified as such.

I did not seek the help of a professional doctorate-consultant. Only those persons identified as
having done so received any financial payment from me for any work done for me. This thesis
has not previously been published in the same or a similar form in Germany or abroad.

23st May 2023 M.Sc. Georg Semmler

V

Contents

1. Introduction 1
1.1. Survey on Reproducibility and Automation for Geoscientific Model Construction 2
1.2. Motivating Example . 3
1.3. Previous Work . 7
1.4. Problem Description . 7
1.5. Structure of this Thesis . 8
1.6. Results Accomplished by this Thesis . 9

2. Terms, Definitions and Requirements 11
2.1. Terms and Definitions . 11

2.1.1. Geoscientific model . 11
2.1.2. Reproducibility . 12
2.1.3. Realisation . 12

2.2. Requirements . 13

3. Related Work 15
3.1. Overview . 15
3.2. Geoscientific Data Storage Systems . 15

3.2.1. PostGIS and Similar Systems . 15
3.2.2. Geoscience in Space and Time (GST) 16

3.3. Geoscientific Modelling Software . 18
3.3.1. gOcad . 18
3.3.2. GemPy . 21

3.4. Experimentation Management Software . 23
3.4.1. DataLad . 23
3.4.2. Data Version Control (DVC) . 24

3.5. Reproducible Software Builds . 26
3.6. Summarised Releated Work . 28

4. Concept 29
4.1. Construction Hypergraphs . 29

4.1.1. Reproducibility Based on Construction Hypergraphs 34
4.1.2. Equality definitions . 35
4.1.3. Design Constraints . 37

4.2. Data Handling . 37

5. Design 41
5.1. Application Structure . 41

5.1.1. Choice of Application Architecture for GeoHub 44
5.2. Extension Mechanisms . 47

5.2.1. Overview . 47
5.2.2. A Shared Library Based Extension System 48
5.2.3. Inter-Process Communication Based Extension System 50
5.2.4. An Extension System Based on a Scripting Language 51

VI Contents

5.2.5. An Extension System Based on a WebAssembly Interface 52
5.2.6. Comparison . 53

5.3. Data Storage . 54
5.3.1. Overview . 54
5.3.2. Stored Data . 55
5.3.3. Potential Solutions . 60
5.3.4. Model Versioning . 63
5.3.5. Transactional security . 65

6. Implementation 75

6.1. General Application Structure . 75
6.2. Data Storage . 75

6.2.1. Database . 75
6.2.2. User-provided Data-processing Extensions 78

6.3. Operation Executor . 80
6.3.1. Construction Step Descriptions . 80
6.3.2. Construction Step Scheduling . 82
6.3.3. Construction Step Execution . 85

7. Case Studies 89

7.1. Overview . 89
7.2. Geophysical Model of the BHMZ block . 89

7.2.1. Provided Data and Initial Situation 89
7.2.2. Construction Process Description . 90
7.2.3. Reproducibility . 92
7.2.4. Identified Problems and Construction Process Improvements 92
7.2.5. Recommendations . 94

7.3. Three-Dimensional Subsurface Model of the Kolhberg Region 94
7.3.1. Provided Data and Initial Situation 94
7.3.2. Construction Process Description . 95
7.3.3. Reproducibility . 97
7.3.4. Identified Problems and Construction Process Improvements 99
7.3.5. Recommendations . 100

7.4. Hydrologic Balance Model of a Saxonian Stream 100
7.4.1. Provided Data and Initial Situation 100
7.4.2. Construction Process Description . 102
7.4.3. Reproducibility . 107
7.4.4. Identified Problems and Construction Process Improvements 108
7.4.5. Recommendations . 108

7.5. Lessons Learned . 109

8. Conclusions 111

8.1. Summary . 111
8.2. Outlook . 112

8.2.1. Parametric Model Construction Process 112
8.2.2. Pull and Push Nodes . 112
8.2.3. Parallelize Single Construction Steps 113
8.2.4. Provable Model Construction Process Attestation 113

References 115

Contents VII

Appendix 125
A. Construction Steps for the BHMZ model . 125

A.1. stacking . 125
A.2. meshing . 125
A.3. DC inversion . 126
A.4. seismic inversion . 127
A.5. visualise BHMZ . 128

B. Provided manual for the Kohlberg dataset . 136
B.1. 3D-Modell Kohlberg . 136
B.2. Kartendaten vorbereiten . 138
B.3. Schnittdaten importieren: . 139

C. Construction Steps for the Kohlberg model 140
C.1. xlsx -> csv . 140
C.2. reproject to utm33 . 140
C.3. extract (Quartär) . 141
C.4. extract (Prequartär) . 142
C.5. triangulate . 142
C.6. extrude . 145
C.7. project . 147

D. Construction step definitions for the Hydrologic balance model 149
D.1. Calculate bounding box . 149
D.2. Clip DEM . 150
D.3. Clip BK50 . 150
D.4. Calculate aspect . 151
D.5. Calculate slope . 151
D.6. Calculate slope length . 152
D.7. Calculate avg height . 153
D.8. Calculate slope per hydrotope . 153
D.9. Calculate aspect per hydrotope . 154
D.10. Calculate maximal slope length per hydrotop 155
D.11. Calculate hydrotop area . 156
D.12. Lookup soil type . 156
D.13. Preprocess climate data . 157
D.14. Generate bwmhydro files . 159
D.15. Generate bwmuse files . 162
D.16. Generate bwmlayer files . 164
D.17. Run Bowahald . 171
D.18. Plotting results . 172
D.19. Summarise . 175

E. GeoHub User Manual . 177
E.1. Overview . 177
E.2. Project View . 179
E.3. Version View . 181
E.4. Operations View . 182
E.5. Executor View . 185
E.6. Executor configuration . 187
E.7. File Kind View . 188
E.8. Plugin View . 189
E.9. User View . 193
E.10. Graph View . 194
E.11. Graph Schedule View . 201

E.12. View mode . 203
E.13. Edit mode . 204
E.14. gOcad History Export tool . 205

IX

List of Figures

1.1. Version information of the used gOcad version 3
1.2. Input parameters for each of the construction steps 3
1.3. Intermediate and final results as visualised in gOcad 5
1.4. Two realisations of the described workflow. One surface is coloured grey, the

other one red . 6
1.5. Project settings dialog of gOcad . 6

3.1. Example subsurface model in GST Web [38] 17
3.2. Examplary subsurface model in gOcad . 18
3.3. A simple example workflow consisting of three construction steps shown as a

directed acyclic graph as generated by the dvc dag command on the command
line
The boxes represent nodes of the graph, while the * * * form edges. Each
node represents a construction step, while each edge represents a dependency
between these steps. According to the documentation, the visualization as-
sumes a top to bottom directionality. 25

4.1. Example construction steps . 30
4.2. Order and direction of construction steps is meaningful 30
4.3. Construction steps are not edges, as shown by the fact that a construction step

may require more than one input dataset . 31
4.4. A construction process cannot be represented as a tree, as shown by the fact

that the same Spatial context input dataset is used by several construction steps 31
4.5. Example construction hypergraph for a simplified geoscientific model construc-

tion . 34
4.6. Example construction hypergraph for a simplified geoscientific model construc-

tion . 38

5.1. Different software architectures . 42
5.2. GeoHub application structure

GeoHub uses a micro-service architecture that splits the presentation layer
and domain and data source layers between different services. Each part of
the domain layer is implemented by a different application. Extensions for
equality checking, metadata extraction and construction step execution are
provides as different services as part of the application backend. 46

5.3. Different data kinds stored by GeoHub . 54
5.4. Example construction hypergraph for a simplified geoscientific model construc-

tion . 57
5.5. Insert a single dataset

This sequence diagram shows how first the input datasets are written to the
corresponding datastorage location. Then, each affected construction step is
executed to generate the corresponding intermediate and output datasets . . 66

X List of Figures

5.6. State transition diagram for construction step states
The execution of a construction step always starts in the Scheduled state. As
soon as the executor starts executing a construction step, the state changes
to Started. Depending on the result of this execution, the state changes to
Completed if the execution was successful or to Failed if the execution was
aborted due to errors. 67

5.7. Load a dataset
This sequence diagram shows how datasets are loaded in two steps. The first
step loads the required metadata from the relational database system, while
the second step loads the actual geoscientific dataset from the file storage . . 68

5.8. Update a dataset
This sequence diagram shows that similar to a dataset creation first the input
datasets are written to the corresponding datastorage location. then, each af-
fected construction step is executed to produce the corresponding intermediate
and output datasets. The notable difference to a dataset creation is that only
a part of input datasets is needed. 69

5.9. Delete a dataset
This sequence diagram shows the multi step procedure used for performing a
hard delete operation. First, the references to all datasets to be deleted are
loaded from the relational database. In the next step, this data is removed
from the relational database. Finally, the corresponding data is removed from
the file storage. 70

5.10. Simultaneous access to a newly created dataset
This sequence diagram shows how GeoHub handles two simultaneous accesses
from Alice (creating a new dataset) and Bob (loading this dataset). The
sequence diagram splits the backend service into two instances to clarify which
operations belong to which user requests. 72

5.11. Simultaneous access to a deleted dataset
This sequence diagram shows how GeoHub processes two simultaneous ac-
cesses by Alice (hard deleting a dataset) and Bob (loading this dataset). The
sequence diagram splits the backend service into two instances to clarify which
operations belong to which user requests. 73

6.1. Database schema
Orange connections represent versioned dependencies between tables
black connection represent ordinary table dependencies 76

6.2. Example construction hypergraph . 82

7.1. A geometric representation of the tunnel surrounding the BHMZ block 90
7.2. Construction hypergraph for the BHMZ block model 91
7.3. A visualisation of the interpretations of both geophysical measurement 93
7.4. Overview map of the study area . 95
7.5. Construction hypergraph for the Kohlberg model 96
7.6. Calculated point distance between two realisations of the triangulate con-

struction step from the Kohlberg model . 98
7.7. Triangulation differences between two different realisations of the triangulate

construction step of the Kohlberg model . 98
7.8. Study area for the Leubsdorf dataset . 101
7.9. Study area for the Langenau dataset . 101
7.10. Construction hypergraph for the Hydrologic balance model 103
7.11. Median monthly evaporation per hydrotop for the Langenau dataset 104

List of Figures XI

8.1. Example construction hypergraph for a simplified geoscientific model construc-
tion . 111

E.2. Main View . 177
E.3. Settings drop down menu . 177
E.4. Change password dialog . 178
E.5. About GeoHub dialog . 178
E.6. Side panel . 179
E.7. Project View . 179
E.8. Create project . 180
E.9. Project Info Dialog . 180
E.10.Project Edit Dialog . 181
E.11.Delete project Dialog . 181
E.12.Version view . 182
E.13.Operations View . 182
E.14.Operations info dialog . 182
E.15.Operations edit dialog . 183
E.16.Operations delete dialog . 183
E.17.Operations create dialog . 184
E.18.Executor view . 185
E.19.Register executor dialog . 186
E.20.File Kind View . 188
E.21.Delete File Kind Dialog . 188
E.22.Create File Kind Dialog . 189
E.23.Plugin View . 190
E.24.Plugin Info Dialog . 190
E.25.Plugin Add Dialog . 190
E.26.User View . 193
E.27.Add user dialog . 194
E.28.Graph view (Overview) . 194
E.29.Graph legend . 195
E.30.Graph Export Panel . 195
E.31.Graph view with version slider . 195
E.32.Graph view (View mode) . 196
E.33.Node info dialog . 197
E.34.Edge info dialog . 197
E.35.Graph view (Edit mode) . 198
E.36.Graph edit bar . 198
E.37.Upload archive dialog . 199
E.38.Add node dialog . 199
E.39.Add edge dialog . 200
E.40.Edit node dialog . 200
E.41.Edit edge dialog . 200
E.42.Save changes dialog . 201
E.43.Discard changes dialog . 201
E.44.Graph Schedule View (Overview) . 202
E.45.Revision panel . 202
E.46.Graph Schedule View (View Mode) . 203
E.47.Node Info Dialog . 204
E.48.Edge Info Dialog . 204
E.49.Graph Schedule View (Edit Mode) . 205
E.50.Manage File dialog . 206

XII List of Figures

E.51.Save revision dialog . 206

XIII

List of Tables

1.1. Answers to question 1 and 3 . 2
1.2. Answers to question 2 and 4 . 2

5.1. Three Principal Layers according to Fowler [73] and Haffner [74] 41
5.2. Possibility to implement Requirements based on application architecture. (+

Possible, – Not Possible, 0 Not Relevant) . 45
5.3. Comparison of the different approaches based on our criteria (+ Positive, –

Negative, 0 Neutral) . 53
5.4. Chosen extension mechanisms per extension API 54
5.5. Example key value metadata schema . 55
5.6. Incidence matrix belonging to the example construction hypergraph shown in

figure 5.4 . 57
5.7. Required criteria per data kind (+ Required, – Not Required, 0 As Required,

x Avoid if Possible) . 62
5.8. Criteria per storage solution (+ Positive, – Negative, 0 Neutral) 62
5.9. Chosen Storage solutions for each data kind 63
5.10. Cases considered for concurrent data access patterns 70

7.1. Characteristic hydrologic values, according to BoWaHald 105
7.2. Annual statistical summary of characteristic hydrologic values per hydrotop

as produced for the Langenau dataset. All values are in 𝑚𝑚
𝑦𝑒𝑎𝑟 106

7.3. Yearly statically summary of observed precipitation All values are in 𝑚𝑚
𝑦𝑒𝑎𝑟 . . 106

List of Listings

1.1. Input points used for the example. This is the literal content of the points.xyz
file . 4

3.1. Example gOcad macro for performing a DSI interpolation of an imported point
set . 20

3.2. Example Python script for creating a GemPy model 22
3.3. Example data recorded by datalad run . 23

5.1. Example Dockerfile from one of the Docker containers used as part of the
case studies . 58

6.1. Example query to load all nodes and their generating construction steps be-
longing to a given construction hypergraph. Bind parameter 1 ($1) corre-
sponds to the entity ID of the construction hypergraph. 77

XIV List of Listings

6.2. A query to check if all enforced metadata keys are set for a given JSONB value.
Bind parameter 1 ($1) corresponds to the node entity ID of the dataset to be
checked, bind parameter 2 ($2) corresponds to the version of the construction
hypergraph, and bind parameter 3 ($3) represents the JSONB value containing
the attributes to be checked. For the CHECK constraint, bind parameter 3 is
replaced with the attribute column of the datasets table. 78

6.3. Equality check extension interface . 79
6.4. Example construction step description . 81

7.1. Excerpt from the text file with the first arrival times of the seismic measurement 92
7.2. List of files generated by a first run of the run bowahald construction step as

contained in the result TAR archive . 107
7.3. List of files generated by a second run of the run bowahald construction step

as contained in the result TAR archive . 107

A.1. Definition of the stacking construction step 125
A.2. Definition of the meshing construction step 126
A.3. Definition of the DC inversion construction step 127
A.4. Definition of the seismic inversion step . 128
A.5. Definition of the visualise BHMZ construction step 136
C.6. Definition of the xlsx -> csv construction step definition 140
C.7. Definition of the reproject to utm33 construction step 141
C.8. Definition of the extract (Quartär) construction step 142
C.9. Definition of the extract (Quartär) construction step 142
C.10.Definition of the triangulate construction step 144
C.11.Definition of the extrude construction step . 147
C.12.Definition of the project construction step. 149
D.13.Definition of the calculate bounding box construction step 150
D.14.Definition of the clip DEM construction step 150
D.15.Definition of the clip BK50 construction step 151
D.16.Definition of the calculate aspect construction step 151
D.17.Definition of the calculate slope construction step 152
D.18.Definition of the calculate slope construction step 152
D.19.Definition of the calculate avg height construction step 153
D.20.Definition of the calculate slop per hydrotop construction step 154
D.21.Definition of the calculate aspect per hydrotop construction step 155
D.22.Definition of the calculate maximal slope length per hydrotop construction step155
D.23.Definition of the calculate hydrotop area construction step 156
D.24.Definition of the lookup soil type construction step 157
D.25.Definition of the preprocess climate data construction step 159
D.26.Definition of the generate bwmhydro files construction step 162
D.27.Definition of the generate bwmuse files construction step 164
D.28.Definition of the generate bwmlayer files construction step 171
D.29.Definition of the run bowahald construction step 172
D.30.Definition of the plotting results construction step 175
D.31.Definition of the summarise construction step 177
E.32.Listing: Exemplary construction step definition 184
E.33.Exemplary executor configuration . 187
E.34.API definition for the Plugin interfaces . 193

XV

List of Algorithms

1. Construction step scheduling for the initial execution scenario 83

2. Construction step scheduling for the updated execution scenario 85

3. GeoHub executor main loop . 87

List of Definitions

2.1. Definition (Geoscientific Model) . 12
2.2. Definition (Reproducibility) . 12
2.3. Definition (Realisation) . 12

3.1. Definition (Reproducible Build) . 26

4.1. Definition (Datasets) . 31
4.2. Definition (Construction step) . 32
4.3. Definition (Construction process of a geoscientific model) 32
4.4. Definition (Directed Hypergraph) . 32
4.5. Definition (Construction hypergraph) . 32
4.6. Definition (Path) . 33
4.7. Definition (Input Dataset of the Construction Process) 33
4.8. Definition (Output Dataset of the Construction Process) 33
4.9. Definition (Reproducible construction hypergraphs) 35
4.10. Definition (Bitwise equality) . 35
4.11. Definition (Structural equality) . 36
4.12. Definition (Distance-based equality) . 36
4.13. Definition (Geological equality) . 36

5.1. Definition (Version) . 64
5.2. Definition (Revision) . 65

1

1. Introduction

As more computing power has become available in recent years, researchers are increasingly
turning to digital models to answer important questions. The International Journal of Ge-
omathematics [1] summarises the reasoning for the usage of digital models in their journal
scope as follows:

“As in many areas of science, mathematics has also gained an unprecedented importance in geo-
sciences. The complexity of the processes within the Earth, at its surface, and in the atmosphere
can only be described, modelled, mapped, and understood by means of modern mathematical
methodologies”

Digital models turn these mathematical descriptions into virtual representations. They are
easier to inspect and manipulate than their physical natural counterpart. However, they
make it difficult for others to reproduce research results based on such models. The ability
to reproduce the research results of others is one of the cornerstones of modern science. As
a result, some speak of a reproducibility crisis [2]–[5], as it has become difficult to reproduce
research results based on digital models. The main problem is that in addition to reproducing
the actual research, the underlying digital models must first be reproduced. However, this
raises several potential problems. Specifically, it requires the availability of the information
used to build these models. The data used to design the model is not the only factor that
can affect the result. Both the software used and computational environment can contribute
to variability too.

Geoscientific models come in a wide variety [6]. Common to all is the use of georeferenced
data to understand and model the inner workings of an earth system. Common examples
are:

• Three-dimensional subsurface models [7], [8]
• Reservoir models [9], [10]
• Geophysical inverse models [11]–[13]
• Hydrogeological flow models [14], [15]

Each of these models is built by combining various partially georeferenced input datasets
using domain-specific operations.

To understand how a particular model was constructed, we need to answer the following key
questions:

• What data were used to design a particular geoscientific model?
• How are these data combined into the geoscientific models?

Konkol et al. [5] tried to reproduce the results of 41 geoscientific publications. They already
limited their selection to publications where code and data were openly available and where
R [16] was used as the programming language. They state that they encountered serious
problems with the provided code in 22 publications, with anything that required a deeper un-
derstanding to solve was classified as a serious problem. In addition, at least five publications
contained system-dependent code, which means they could not run the provided code in their

2 1. Introduction

runtime environment. They were able to replicate 97 figures from 28 publications. Of these
97 figures, 46 figures contained differences at a deeper level. That is, they contained different
curves or other important features did not appear as expected. In our opinion, this study
highlights a major problem with the current way of publishing results, especially since the
study already limits the set of publications to a subset where it seemed possible to reproduce
anything at all.

1.1. Survey on Reproducibility and Automation for Geoscientific
Model Construction

To gather more evidence that reproducing geoscientific models is a real problem, we conducted
a small non-representative survey among participants at a conference about 3D subsurface
model construction. The participants work for various geological surveys and universities
across Europe. A total of 16 people participated in our survey. We asked the following
questions:

1. How important is reproducibility when creating geomodels?
2. How important is automation when creating geomodels?
3. Are you already using software to automate the creating of geomodels?
4. Do you already use software to test the reproducibility of self-made geomodels?

Table 1.1.: Answers to question 1 and 3

Question Important Not Important Did not answer

1 14 1 1
3 16 0 0

Table 1.2.: Answers to question 2 and 4

Question Looking for a solution Existing software Manual testing

2 8 0 3
4 8 8 0

Table 1.1 lists the responses on how important reproducibility and automation are to the
participants. Table 1.2 breaks down how many participants already use existing software in
the relevant area and who is looking for solutions.

Almost all participants agree that reproducibility is an important topic. Interestingly, most
participants who indicated that reproducibility is important were looking for a solution to
check their models. At least three participants appear to perform manual checks. Auto-
matic model construction is also considered important by all participants. About half of the
participants already use existing software in this area. Participants cite gOcad [17], ESRI
ArcGIS [18], GemPy [19], Python [20] and Microsoft Excel as possible solutions. We consider
the consensus about automation unsurprising at all, as our participants work regularly on
creating geoscientific models using the same methods repeatably. We assume that this might
not the case for applications, where geoscientific models are created as part of research, such
as testing out geological hypothesis by constructing complex subsurface models.

1.2. Motivating Example 3

Overall these results confirm our assumption that verifying the reproducibility of geoscientific
model construction is an unsolved problem that deserves to be addressed.

1.2. Motivating Example

Figure 1.1.: Version information of the used gOcad version

The solution to the outlined problem is anything but simple. In the context of this section,
we would like to present a small case study that shows how difficult it can be to provide a
workflow description that contains all relevant details in order for the construction process to
be reproducible. Our example refers to a discrete smooth interpolation (DSI) [21] using gOcad
[17]. This operation is commonly used to generate 3-D subsurface models. We document the
entire process with as much information as possible in the form of text and screenshots.

(a) Import the point set (b) Generate a new surface (c) Split the surface
(executed 5 times)

(d) Set interpolation control
points

(e) Set constraints on the
surface border

(f) Run the
interpolation on the

entire surface

Figure 1.2.: Input parameters for each of the construction steps

4 1. Introduction

424312.000000 5643124.000000 145.369995

425124.000000 5643812.000000 184.960007

424374.000000 5643688.000000 137.070007

424810.000000 5643124.000000 179.240005

424622.000000 5642124.000000 197.339996

424874.000000 5642686.000000 183.910004

425624.000000 5643186.000000 168.070007

424810.000000 5643624.000000 157.919998

424374.000000 5642812.000000 154.649994

425124.000000 5643312.000000 171.550003

425686.000000 5643626.000000 130.320007

425874.000000 5642186.000000 189.839996

425810.000000 5642622.000000 170.589996

424124.000000 5642186.000000 173.429993

425186.000000 5642124.000000 203.550003

425812.000000 5642874.000000 161.440002

425312.000000 5642374.000000 192.509995

424186.000000 5642624.000000 158.220001

425124.000000 5642812.000000 179.830002

425874.000000 5643936.000000 129.149994

Listing 1.1.: Input points used for the example. This is the literal content of the points.xyz file

We have performed all described steps with SKUA-GOCAD version 19. The exact version
information can be found in figure 1.1. Listing 1.1 contains the content of the file points.xyz,
which was used as the input for our example.

To build a triangulated surface based on this set of point, we performed the following con-
struction steps:

1. Import point file via File → Import → Horizon Interpertations → X Y Z (Figure 1.2a)
2. Generate a new surface via Surface → New → Points Medium plane (Figure 1.2b)
3. Split the surface into smaller triangle segments (5 times) Surface → Tools → Split →

All… (Figure 1.2c)
4. Add Control point to the surface via Surface → Constraints → Control Points → Set

Control Points (Figure 1.2d)
5. Add Border constraints to the surface via Surface → Constraints → Constraints on

Border → (Set on straight Line) All Borders (Figure 1.2e)
6. Run discrete smooth interpolation (DSI) via Surface → Interpolation → On Entire

Surface (Figure 1.2f)

Figures 1.3a, 1.3b, 1.3c, 1.3d contain the intermediate results after the corresponding con-
struction steps. Figure 1.3e contains the final surface after interpolation.

In order to check whether the described construction process is reproducible, we repeated all
steps in the currently existing gOcad instance. Figure 1.4 contains images of the two surfaces
in the same view. Figure 1.4a indicates that the two surfaces do not overlap perfectly. Figure
1.4b shows an example gap between the two surface realisations. This result shows that
even when using the exact same environment, the same construction steps, and the same
input data, it is not possible to reproduce the exact same result due to a non-deterministic
construction step.

As a second way to check the reproducibility of the construction steps, we tried to perform
the same construction steps on another computer with the same gOcad version. The first

1.2. Motivating Example 5

(a) Imported pointset (b) Points with surface

(c) Split surface (d) Surface with constraints

(e) Interpolated surface

Figure 1.3.: Intermediate and final results as visualised in gOcad

6 1. Introduction

(a) Joint view of the two surfaces. Alternating
between both is visible by changing colors

(b) Close up view on a border of both surface. A
gap between the two surfaces is clearly visible

(Z-scale: 3)

Figure 1.4.: Two realisations of the described workflow. One surface is coloured grey, the other one red

problem occurs as soon as we configure a new gOcad project. Figure 1.5 shows the project
settings dialog of gOcad. In this dialog we can make various settings for the general setup
of gOcad projects. Each of these settings has a major impact on how data is interpreted by
gOcad. We have not documented these settings above.

Figure 1.5.: Project settings dialog of gOcad

Overall, this example shows how easy it is to miss important input data even with extensive
documentation of the individual construction steps. Furthermore, it is shown that even if
all data are available, an attempt to reproduce the model can fail because the construction
process itself is not deterministic.

1.3. Previous Work 7

1.3. Previous Work

The current state of the art in reproducible geoscientific model construction comprises of
nothing more than comprehensive documentation of the work performed to construct the
model. This, in addition to providing the appropriate input data, may be sufficient to enable
third parties to reproduce a geoscientific model construction. As our small example has shown,
there is plenty of room for mistakes to happen. Such errors include missing data, incomplete
documentation of the performed construction steps, or different software versions.

In the field of geoscientific modelling there are many software solutions. Within this thesis,
we will present different solutions for the storage and construction of geoscientific models.
For each type of software, two typical examples are presented. As the previous example has
shown, it is necessary to have both components in order to reproduce the construction of a
geoscientific model construction. Such reproductions require access to the appropriate input
data and to a detailed description of the construction steps to be performed. None of the
presented software solutions supports all requirements in one package.

In addition to geoscientific software packages, we present work from different application
areas to show how a similar problem is solved in a different setting. These areas include ma-
chine learning, medical computing, and software development. Each of the software solutions
presented is specifically tailored to the application domain. While this specialisation makes
it difficult to reuse these software packages for geoscientific model construction, they can still
be used as inspiration for implementing a solution for geoscientific models.

1.4. Problem Description

Different sources define reproducibility in different ways [5], [22]. They all agree on the
following basic points regarding digital models:

• The initial set of data must be provided
• Repetitions with the same or a different software must produce the same result.

Consequently, this information must be available in some way to reproduce the construction
of a geoscientific model.

The usual approach to answering these questions is to write a report that includes all relevant
details on how the geoscientific model was constructed. This report may include references
to the published data and a detailed description of the methods used to create the model.
Depending on the author, this information may be incomplete. It usually contains every-
thing that seems relevant from the author’s point of view and may or may not contain all
information relevant to the actual reproduction of the models. As Konkol et al. [5] and our
small example in section 1.2 show, there is a high probability that important information is
missing.

In addition, written reports have the problem that it is difficult to verify that a given set of
instructions and data is actually sufficient to reproduce the construction of a model. In most
cases, one has to sit down and manually repeat the construction based on the given description.
Then, the results need to be compared. Such a manual reproduction is a cumbersome process
that is often not carried out.

A better solution provides an automatic indicator of whether a geoscientific model construc-
tion is reproducible. Such a solution must manage all the information required to ensure

8 1. Introduction

reproducibility. In addition, it is helpful to provide detailed information on the reason for
potential non-reproducibility.

With this thesis, we want to present a framework that is able to:

• Provide information about the provenance of a geoscientific model by showing the
corresponding input data

• Represent reproducible geoscientific model construction workflows in a generic way
• Manage all required data, including input data, information about the construction

workflow, and possible results for later comparison
• Verify the reproducibility of a stored construction workflows without the need for man-

ual reconstruction of the corresponding geoscientific model

1.5. Structure of this Thesis

This thesis consists of 8 chapters. The overall work presents a framework for describing repro-
ducible geoscientific construction processes based on construction hypergraphs. Furthermore,
a prototypical software implementing this framework is presented.

The Introduction (Chapter 1) provides a general overview of the research area. Furthermore,
the main research problem of this thesis is presented here. Finally, this is where the structure
of the work and the results are summarised.

In chapter 2, “Terms, Definitions and Requirements,” important terms and definitions are
introduced. In addition, the most important requirements for the to-be-developed framework
are presented.

In chapter 3 “Related Work” we present specific software packages, including several exam-
ples of established geoscientific data storage systems, geoscientific modelling software, and
experimentation management software. In addition, we present existing work for reproducible
software builds because the underlying problem is similar.

Chapter 4 “Concept” introduces the general idea of how to represent reproducible geosci-
entific model construction processes as hypergraphs. In addition, we present a mechanism
to verify that a geoscientific construction process described as a construction hypergraph is
reproducible.

Chapter 5 “Design” presents various ways in which our concept can be turned into a work-
ing software implementation. We examine various possible application structures, extension
mechanisms and solutions for storing data. Finally, we present a way to keep data stored
in different locations synchronised in order to always present a consistent view of the stored
data.

Chapter 6 “Implementation” contains details about the practical implementation of our pro-
totype. This chapter contains information about how the data is stored and how we auto-
matically check the reproducibility of construction processes.

In chapter 7 “Case Studies,” three examples of geoscientific construction processes based on
real use cases are presented. Each of the case studies was implemented using the prototype
software presented in the previous chapters. The first case study involves data analysis of
geophysical field measurements. The second case study presents a classical subsurface 3-D
model construction using gOcad. The final third case study deals with the construction of a
hydrological balance model.

1.6. Results Accomplished by this Thesis 9

The last chapter 8 “Conclusions” contains a summary of this work. In addition, several
possible improvements are described.

In addition to the main work, the Appendix contains additional information. Appendix A,
C, D contain detailed information on the individual construction step used in the three case
studies presented. Appendix B contains the instruction provided by LfULG Saxony as the
foundation for the second case study. Appendix E contains a user manual for the presented
prototype software.

1.6. Results Accomplished by this Thesis

As major contribution of this work, we present a framework to describe and record the
construction process of geoscientific models in a reproducible way. Our framework is designed
to:

• Describe how data are combined to build a complex geoscientific model
• Record the performed steps used to construct the model such that it is possible to

repeat them later
• Perform automated checks to ensure that the same result can be reproduced at a later

time
• Build a reproduction of a geoscientific model

Combined with a strict separation between data and methods, this allows the definition of
standardised workflows for the construction of well-specified geoscientific models based on
different data. This capability allows some degree of automation of the construction process,
as the same workflow can be repeated with different data.

With GeoHub, we provide a prototype implementation of the presented framework. We have
used this prototype to apply the presented framework to several real-world case studies.

11

2. Terms, Definitions and Requirements

2.1. Terms and Definitions

In the following section, a number of terms are introduced and defined to accurately describe
the outlined problem and our solution.

2.1.1. Geoscientific model

A model can be seen as a simplified description of a certain part of the real world. To achieve
this goal, the model abstracts and approximates certain facts.

Houlding [23] notes that geoscientist “wear many hats, e.g, geologist, hydrogeologist, geo-
physicist, environmental engineer, and geotechnical engineer.” Each of these groups has its
own area of expertise, and each group uses different types of models. Structural geologists
may build three-dimensional subsurface models to test specific geological theories or to visu-
alise subsurface structures. Such models are usually represented as geometries and topologies
[24]. Hydrogeologists build flow simulations, that show how a particular fluid, in most cases
water, propagates in a given environment. In addition to geometric information, such models
include physical parameters that control the fluid simulation. An environmental engineer
might be interested in models that describe what amount of precipitation will cause a signifi-
cant runoff in order to design an appropriate detention basin. Models used in this application
area typically include information about the structure of the surrounding terrain. A geotech-
nical engineer might be interested in whether or not a particular subsurface can support their
building. To answer these questions, they build simulations based on soil and rock properties.
Geophysicists, on the other hand, try to identify structures in the subsurface based on their
measurements. They parameterise geometric models to perform simulations. These results
are then compared with measured values to verify that the theoretical model can explain a
particular measurement.

A common theme of geoscientific models is their spatial and possibly temporal reference frame
[25]. In addition to these commonalities, geoscientific models vary widely. Some may involve
complex equations, others may be simplified black-box models, some may be built solely for
visualisation purposes only, and still others may serve as the basis for further calculations or
interpretations [23].

Others approach the definition of geoscientific models based on their use case, as in [26], slide
4:

“A model is a construct (of equations, relationships, imagined bodies, made of plastic etc…),
which has one or more (interesting) aspect(s) of reality. A model is always a simplification, it
depends on the fact that the aspect of reality that is to be modelled is mapped.”

In the context of this work, we focus on digital geoscientific models, which are digital repre-
sentations of geoscientific models.

For this work, we define a geoscientific model as follows:

12 2. Terms, Definitions and Requirements

Definition 2.1 (Geoscientific Model). A geoscientific model is a simplified description of a
real-world geoscientific system that contains all necessary information to represent the part
of reality under study.

We will explicitly not focus on any particular type of geoscientific model, such as three-
dimensional subsurface models. Our goal is to develop a general solution that applies to as
many different geoscientific models as possible.

2.1.2. Reproducibility

Reproducibility is defined by different sources in different, slightly inconsistent ways. The
Association for Computing Machinery (ACM) [27] lists the following definitions:

• The same result can be replicated by the original author using the same tools. This is
called Repeatability by the ACM.

• The same result can be replicated by others using the same tools. This is called Repli-
cability by the ACM.

• The same result can be replicated by others without using the same tools. This is called
Reproducibility by the ACM.

Plesser [22] points out that different authors and institutions use slightly different defini-
tions here. Claerbout and Karrenbach [28], for example, uses the terms Reproducibility and
Replicability with reverse meaning compared to the ACM.

A common criterion of all definitions is the statement that the same result can be achieved
by repeating the construction process. The various definitions differ in how the construction
process is repeated.

In the context of this work, we define reproducibility as follows:

Definition 2.2 (Reproducibility). A geoscientific model is reproducible if it is possible to
construct the same model with the same input data and a documented construction process.

This definition follows the definition of Reproducibility given by Claerbout and Karrenbach
[28] as an appropriate definition for geoscientific applications. It is consistent with the ACM
definition of Replicability. Using ACM Reproducibility definition would require the repli-
cation of the same process using different tools, which in turn requires scientific work by
those attempting to reproduce a model. Since we want to provide an automated process to
check whether a model meets our definition of Reproducibility, the ACM definition is not
appropriate.

2.1.3. Realisation

Definition 2.3 (Realisation). A Realisation describes the execution of a certain construc-
tion process with a specific set of input datasets.

2.2. Requirements 13

2.2. Requirements

In the following section we will break down our abstract goal of describing reproducible
construction processes for geoscientific models into concrete requirements.

The first question is the degree of reproducibility of construction processes of digital geosci-
entific models. What exactly should be reproducible, by whom, in which environment and
on which time scales?

We have already established that we want to make the entire process of building a geoscientific
model reproducible. This process starts with a set of input datasets and produces a final
geoscientific model. This goal, of course, requires that all information is stored to make
reproductions possible in the first place. Without this information, you cannot even attempt
to reproduce anything. We call this requirement Store Information.

Ideally, we would enable anyone to reproduce a given construction process without any pre-
condition. The use of digital geoscientific models limits the number of qualified people to
those who can work with a computer. Since we present our results as prototype software, we
must assume that people have access to our software. They must either interact with the
software to start a new reproduction of an existing construction process, or they must extract
the necessary information to perform the reproduction outside of our software. This limits
the user base to people who have expertise in using data management software. We refer to
this requirement as Skilled Personnel.

The geoscientific community has already developed numerous software packages to construct
geoscientific models. Well known examples include gOcad [17], GemPy [19], the RingMesh
framework [29], BoWaHald [30], ArcGIS [18] and many more. Replacing all this software pack-
ages to provide an integrated solution for reproducible geoscientific modelling workflows will
not work, especially since users are already familiar with these established tools. Therefore,
we need to be able to integrate these software packages into the representation of reproducible
construction processes. We call this requirement Integration of Other Software.

The combination of the requirements for integrating other software into a construction pro-
cess and the requirement that the construction process must be reproducible by different
people results in another hidden requirement. Different people may work and live in different
places. Therefore, it cannot be assumed that all people attempting to reproduce a construc-
tion process of a particular model have physical or virtual access to the same computer. Since
a construction process usually depends on a number of software packages, we need to provide
these software packages in some way so that people can reproduce a construction process.
There are two possible solutions here: Either require that all people attempting to reproduce
a specific construction process have access to the same environment that was used to con-
struct the initial realisation, or require that a construction process also include all necessary
information about the software environment used as part of the information stored. Using
the same environment for all reproductions creates a trust problem: Users must trust that the
provided environment will not manipulate the results, and the environment provided must
trust that users will not manipulate the environment to prevent future reproductions. Incor-
porating information about the used environment circumvents both problems and makes the
process more robust against losing access to a particular environment which contains exactly
the right versions of the required software. Thus, we require that a construction process can
be reproduced regardless in any computational environment independently of the installed
geoscientific software packages. A necessary constraint here is that the computational en-
vironment must be able to run any software required by the construction process. It is
explicitly not required that the computational environment of our software solution provides

14 2. Terms, Definitions and Requirements

the software required for the construction process. We call this requirement Computational

Environment Independence.

Both the construction processes and the datasets used as the basis for a particular construc-
tion process change over time. These changes are a common experience in scientific work
and can occur for a variety of reasons. A better understanding of the underlying natural
processes can employ an improved algorithm to interpret the measured data. Refined mea-
surements can result in higher quality data that can improve the overall geoscientific model.
Algorithmic improvements in numerical code used to process datasets can lead to a reduction
in errors in geoscientific models. Our framework should be able to account for any of these
time dependent changes to the construction process and datasets. Recording these changes
in terms of existing construction processes adds context to the change itself and can reveal
important details about the construction process itself. We assume that any description of
a geoscientific model construction process may evolve, and we need to record these changes.
This includes all information stored in relation to the construction process, such as relevant
data and metadata. We call this requirement Recording Changes.

Finally, we postulate the following basic requirements for our software:

Requirement 2.1 (Store Information). We must store all the information necessary to re-
produce a construction process at a later time.

Requirement 2.2 (Skilled Personnel). A construction process should be reproducible by
anyone who has some domain-specific knowledge.

Requirement 2.3 (Integration of Other Software). The construction process may include
other software packages

Requirement 2.4 (Computational Environment Independence). A reproducible construc-
tion process description must include information about the computational environment re-
quired for this particular construction process.

Requirement 2.5 (Recording Changes). Our framework must record changes to the con-
struction process over time.

15

3. Related Work

3.1. Overview

With GeoHub, we propose a framework for advanced documentation of how a digital geo-
scientific model was specified and realised with software that processes the given data and
metadata. While many established applications solve parts of the presented problem, there is,
no known solution for all requirements listed in the previous chapter. We decided to present
some established software packages, focusing on interesting features that could be useful for
the development of our solution. Some of them are related to geosciences, some are from
other research areas.

In section 3.2 we present solutions for storing geoscientific datasets in a database system.
These solutions serve as inspiration for the design of GeoHub’s data storage architecture.

In section 3.3 we present software that produces subsurface models. Geoscientists typically
use these software packages to build their models. We present them here to demonstrate
existing workflows and to show possible integration points in our new system.

In section 3.4, we present tools used in other research areas to describe data processing
workflows. We present these solutions to get ideas for the general design of our system.
However, due to minor and major differences in size, structure, and processing steps involved,
none of the existing solutions can meet all the previously mentioned requirements.

Last but not least, in section 3.5, we present work on reproducible software builds. This work
solves a similar problem in a different research area. Therefore, we can use these solutions to
problems occurring in both application areas as inspiration. At the same time, however, we
cannot take the actual applications because they do not work at all with geoscientific model
construction workflows.

3.2. Geoscientific Data Storage Systems

3.2.1. PostGIS and Similar Systems

PostGIS [31] is an extension of the well known database system PostgreSQL [32]. PostGIS
extends the data types inherently supported by PostgreSQL with data types specifically
suited for storing geometric and geographic information. The extension includes support for
storing points, lines, polygons, meshes, and grids in two and three dimensions. In addition,
GIS functions, such as calculating distances or intersecting geometries, are implemented using
custom operators and SQL functions. Similar extensions exist for other well-known database
systems, such as SpatiaLite [33] for SQLite or Oracle Spatial [34] for the Oracle database
system. We present PostGIS here as an exemplary representative, but most of the arguments
apply to similar extensions as well.

16 3. Related Work

Technically, PostGIS is an ordinary native PostgreSQL extension [35], that defines a set of
user-defined data types, functions, and operators. The advantage of this approach is that it
integrates well with PostgreSQL’s existing SQL interface, so it can be used by any tool that
works with PostgreSQL.

PostgreSQL and its extension PostGIS is a flexible database system that allows to store almost
any data. Thus, it is possible to model specific reproducible model construction processes such
that they can be stored in a PostgreSQL database. PostGIS provides support for geometric
datasets to facilitate the representation of such data. Other types of datasets might require
additional extensions or custom solutions. A solely database system based approach can
only handle the storage of all datasets involved. All information about how these data need
to be processed to build the final model must be stored as an explicit description. Since
these descriptions may reference external tools, the database itself cannot validate that they
are correct. Generalising this design into something that can be used to store reproducible
construction processes generally requires a lot of design work and the development of several
external auxiliary tools. These tools can then be used to check certain invariants of the
construction process, such as whether it works as designed and whether it is reproducible.
The resulting tools would use PostgreSQL and perhaps PostGIS internally for data storage,
while the logic for handling a reproducible construction process would be implemented outside
the database. The design and implementation of such an application might end up with a
similar solution to the one presented in this thesis.

• PostgreSQL with the PostGIS extension is a flexible database system that allows storing
geoscientific data

• As a flexible database system, PostgreSQL allows storing any information. This data
can contain information about the construction workflow and other required details.
The use of this information would require the development of an additional exten-
sion/software similar to GeoHub.

3.2.2. Geoscience in Space and Time (GST)

Geoscience in space and time (GST) [36] is a software suite to manage three-dimensional
subsurface geological models. GST is a commercial software suite developed by GiGa infosys-
tems. GST consists of a database service for managing subsurface models, a web application
for presenting subsurface models stored inside the database, and a desktop management ap-
plication for interacting with the database. At the time of writing, GST supports storage of
the following geometric types:

• Point sets based on several points in three-dimensional space
• Line sets based on several lines in 3D
• Triangulated surfaces in 3D
• Tetrahedral meshes in 3D
• Regular grids in 3D
• Stratigraphic grids in 3D
• Geological profiles in 3D

GST supports the storage of geometry metadata for each geometry type. For this purpose,
a key-value based system is used to represent arbitrary metadata schemes where the user
can specify any desired value. In addition, each geometry supports the storage of properties
within its primitive components. Point sets support storage of point-based property values,
line sets, triangulated surfaces, and tetrahedral meshes support storage of property values

3.2. Geoscientific Data Storage Systems 17

attached to their points and primitive elements. Cell-based property values are supported
for regular grids and stratigraphic grids.

There are several motivations for the multi-component setup:

• Provide a central platform for collaboration with others on the same model
• Archive subsurface models in a central location
• Presentation of subsurface models to a broad audience via a web interface

Each of these use cases results in its own workflow when using GST, which affects the func-
tionality provided by the platform. In order to work collaboratively on a model, it is necessary
for users to be able to check out, modify, and update small portions of the model simulta-
neously. This feature requires the database system to ensure that no conflicting updates
are allowed. GST solves this problem by implementing a checkout-based locking system [37],
that allows a specific model volume to be marked as under modification by a specific user.
To archive subsurface models, GST must process a large amount of data at once and store it
in a way that makes it available for a longer period of time. In addition, GST must be able
to import subsurface models from various sources and represent those models in its database
without loosing information. To display existing subsurface models via a web interface, GST
may need to load and render complex three-dimensional geometries in a performant manner.
Depending on the size of the displayed subsurface models, this may require downscaling the
model to a coarse resolution. Figure 3.1 shows an example of a geoscientific model visualised
in GST web.

Figure 3.1.: Example subsurface model in GST Web [38]

GST is implemented as a classic client-server application [39]. The database functionality is
provided by a central server, while the web interface and desktop management applications
are designed as client applications that control the state on the server. The server appli-
cation stores all data in a central location. Internally the data is stored in two different
locations. The actual geometric information of the subsurface models is stored in its own
file format directly on the hard disk. Metadata and associated information is stored in a

18 3. Related Work

relational database. This allows for high-performance access to potentially large subsurface
models while ensuring that there is no concurrent conflicting access to the data. Both client
applications can query the central server to obtain subsurface models. The web application
displays these models. The desktop client application allows further use of this data by saving
it to the local disk for later editing and uploading an updated version.

GST enables versioning of the data stored in its central database. This feature makes it
possible to track how a dataset evolves over time. Each version has a linked description,
where users can provide additional information about what has been changed since the last
version. This system is conceptually based on the commit system used by Git [40]. Describing
entire model-building processes in GST is nearly impossible. When only geometric data are
involved, strict guidelines are required to store every information in the database and provide
descriptions of any processing steps as part of the version descriptions. This approach fails
as soon as the model building process involves anything other than subsurface geometries,
since GST cannot represent anything else.

• GST does not store the complete construction workflow of geoscientific models, but
only the result of the construction

• There is no possibility to repeat a construction process because there is no information
describing such a process

3.3. Geoscientific Modelling Software

3.3.1. gOcad

Geological Object Computer Aided Design (gOcad) [17] is an established commercial appli-
cation suite specially designed to create complex subsurface three-dimensional models using
various input data via a graphical user interface. gOcad originally implemented an explicit
modelling approach, meaning that the user could manually constructs models based on differ-
ent geometry primitives. In more recent versions of gOcad, an implicit modelling approach
has been added via the new SKUA workflow [41]. Thus, it is possible to build coherent
models based on a set of input data in a more automatic way.

Figure 3.2.: Examplary subsurface model in gOcad

A classic use of gOcad starts with the initialisation of a new project. Thereby a set of files
is created on the local hard disk. Then, as a user, you can import various datasets, such
as geological cross-sections, borehole data, or seismic datasets. Based on these data, gOcad

3.3. Geoscientific Modelling Software 19

provides different workflows to construct a subsurface model. Some require more manual
work, such as the extraction of cross-section lines from georeferenced images. Others work
mainly automatically, such as the creation of a triangulated surface based on a set of points.
The information about each processing step is stored in the gOcad project files. The format
of these files is not documented and is version dependent. This means that it is difficult
to extract information from these files outside of the appropriate gOcad version. Figure
3.2 shows an example model produced by gOcad. gOcad supports the export of datasets
to different partially specified file formats, such as gOcad ASCII files [42] or even simple
CSV files [43]. These exports allow other programs to use models constructed with gOcad.
For example, GST (see section 3.2.2) uses such exported datasets to insert or update the
corresponding datasets in its central database. The export process focuses on the data and
excludes most of the metadata. As a result, the exported dataset contains only a fraction of
the information of the entire project. In particular, the entire processing history is lost as
part of the export.

In addition to the manual, point-and-click workflow described earlier, gOcad provides tools
to automate parts of the workflow via a macro pipeline. These descriptions can be exported
for later use. Listing 3.1 contains an example of a gOcad macro that performs a discrete
smooth interpolation (DSI) [21] based on an imported set of points. These macros can be
easily composed from the gOcad graphical user interface by selecting which already performed
construction steps should be part of the macro. A macro can be exported from there as a
Javascript file for later use. According to the gOcad documentation, it is possible to later
include normal Javascript statements in addition to the generated calls. The execution of a
macro is possible via the graphical user interface or by passing a command-line flag when
starting the application.

The use of recorded macros in gOcad allows later repetitions of the model construction. These
macros can be easily composed in gOcad itself based on the recorded edit history. It does
not allow the user to easily reason about the reproducibility of a construction workflow, since
there is no easy way to compare the results of different realisations. Moreover, this process
is highly dependent on the following factors:

• Different gOcad versions contain different functionality. Therefore, different versions
may not be able to perform the required actions to reproduce a result.

• The computational environment must provide the same input data in exactly the same
location as before. For example, see line 3 of listing 3.1, which explicitly specifies the
path of the point set to import. For each reproduction, a file with the same name must
exist in exactly the exact location.

• gOcad does not provide any tools to check the equality of two models.

20 3. Related Work

1 var skua = PDGM.require('skua');

2 skua.run('ImportXYZFile',

3 { 'File_name': ["/path/to/file.xyz"],

4 'category': "Horizons",

5 'cvn': "Domain=Default_depth",

6 'ignore_points_with_no_data_value': "false",

7 'no_data_value': -9999 },

8 { blocking: false, typed: true });

9 skua.run('TSurfCreateFromPlane',

10 { 'Clip_with_XYZ': "true",

11 'Clip_with_voxet': "false",

12 'Do_not_clip_Z': "true",

13 'name': "DGM",

14 'points': ["/gobj:file"],

15 'scale': 1.1,

16 'voxet': "none" },

17 { blocking: false, typed: true });

18 skua.run('TSurfSplitAll', { 'on': "/gobj:DGM" }, { blocking: false, typed: true });

19 skua.run('TSurfSplitAll', { 'on': "/gobj:DGM" }, { blocking: false, typed: true });

20 skua.run('TSurfSplitAll', { 'on': "/gobj:DGM" }, { blocking: false, typed: true });

21 skua.run('TSurfSplitAll', { 'on': "/gobj:DGM" }, { blocking: false, typed: true });

22 skua.run('TSurfSplitAll', { 'on': "/gobj:DGM" }, { blocking: false, typed: true });

23 skua.run('TSurfSetBOSLOnAllBorders',

24 { 'dir_shoot': [0., 0., 1.],

25 'force_direction': "true",

26 'on': "/gobj:DGM",

27 'optimize_shooting_direction': "true" },

28 { blocking: false, typed: true });

29 skua.run('TSurfSetFcp',

30 { 'control_points': ["/gobj:file"],

31 'dir_shoot': [0., 0., 1.],

32 'on': "/gobj:DGM",

33 'optimize_shooting_direction': "false" },

34 { blocking: false, typed: true });

35 skua.run('TSurfRunIsotropicDsiGeo',

36 { 'conjugate': "false",

37 'fitting_factor': 2.0,

38 'nbiter': 10,

39 'on': "/gobj:DGM",

40 'smooth': "false" },

41 { blocking: false, typed: true });

Listing 3.1.: Example gOcad macro for performing a DSI interpolation of an imported point set

3.3. Geoscientific Modelling Software 21

3.3.2. GemPy

GemPy [19] is an open-source software package for three-dimensional subsurface modelling.
It is distributed as a Python library. GemPy implements an implicit modelling workflow.

Listing 3.2 shows an example model construction Python script. Such a workflow can be
easily extended by using any Python library to perform additional actions, such as retrieving
files from remote sources, waiting until certain conditions are met, or anything else that can
be expressed by a Python script. This concept allows for a large number of use cases, but on
the other hand, it limits its use to a user group that can write Python scripts.

Representing the model as script makes it theoretical easy to repeat the model construction
later, since only the execution of the corresponding script has to be repeated. This concept
requires the storage of the construction script and all datasets used. Also, each script has
an implicit dependency on the environment that executes the script. A compatible Python
interpreter is required to execute the model construction script. The interpreter must have
access to the specific GemPy version used in order to execute GemPy related statements.
Any difference in the GemPy version between the original and the reproduced environment
may have an impact on the execution result, as it may change the implementation of certain
functions. These considerations also apply to any other Python dependency used by the
model construction script. In addition, each of the Python dependencies may have internal
dependencies on other libraries. All of these can affect the result of the computation. See
the Compatibility section of the NumPy project change log [44] for numerous examples of
incompatibilities between different versions.

In addition to these requirements for the runtime environment used to reproduce a construc-
tion process, it is necessary to check if a construction process is reproducible. In general,
every operation cannot be expected to produce deterministic results. GemPy does not have
an explicit API to compare produced models. Instead, it provides a comparison operator
implementation based on Python’s default operator implementation [45]. Since GemPy does
not provide specialised implementations, these are based on object identity instead of a
value-based approach. Such a definition of equality is not a good way to compare two model
instances. This implementation always results in two realisations not being equal because
they are represented by two different object instances.

GemPy is a software package for constructing subsurface models. It cannot be used as a
stand-alone tool to collaborate on the construction of geoscientific models. In conjunction
with version control systems such as Git [40] such collaboration becomes possible.

• GemPy allows construction processes to be described as scripts, such that the construc-
tion can be repeated

• GemPy is limited to a specific area of geoscientific model construction
• GemPy does not provide any good way to compare the results of two repetitions of the

construction process
• Changes in the software environment can lead to changed results
• GemPy does not provide a solution for managing data of any kind related to the con-

struction workflow

22 3. Related Work

1 """

2 Greenstone.

3 ===========

4 """

5

6 # Importing gempy

7 import gempy as gp

8

9 # Aux imports

10 import numpy as np

11 import matplotlib.pyplot as plt

12 import os

13

14 print(gp.__version__)

15

16 geo_model = gp.create_model('Greenstone')

17 data_path = 'https://raw.githubusercontent.com/cgre-aachen/gempy_data/master/'

18

19 # Importing the data from csv files and set extent and resolution

20 geo_model = gp.init_data(geo_model,

21 [696000, 747000, 6863000, 6930000, -20000, 200],

22 [50, 50, 50],

23 path_o=data_path +

24 "/data/input_data/tut_SandStone/SandStone_Foliations.csv",

25 path_i=data_path +

26 "/data/input_data/tut_SandStone/SandStone_Points.csv")

27

28 gp.map_stack_to_surfaces(geo_model, {"EarlyGranite_Series": "EarlyGranite",

29 "BIF_Series": ("SimpleMafic2", "SimpleBIF"),

30 "SimpleMafic_Series": "SimpleMafic1",

31 "Basement": "basement"})

32 geo_model.add_surface_values([2.61, 2.92, 3.1, 2.92, 2.61])

33 gp.set_interpolator(geo_model,

34 compile_theano=True,

35 theano_optimizer='fast_compile',

36 verbose=[])

37 gp.compute_model(geo_model, set_solutions=True)

38

39 # Display the model

40 gp.plot_3d(geo_model)

41

42 # Saving the model

43 # ~~~~~~~~~~~~~~~~

44 #

45 np.save('greenstone_ver', geo_model.solutions.vertices)

46 np.save('greenstone_edges', geo_model.solutions.edges)

47 gp.save_model(geo_model)

Listing 3.2.: Example Python script for creating a GemPy model

3.4. Experimentation Management Software 23

3.4. Experimentation Management Software

3.4.1. DataLad

DataLad [46] is a distributed data management platform that provides combined analysis code
and data management. The software originates from the field of computational neuroscience
and is developed as an open-source project. DataLad describes itself as a completely domain
independent general-purpose data management tool.

Technically, DataLad builds on the well-known version control system Git [40]. Like Git,
DataLad provides a command-line interface to interact with various datasets. In addition, it
uses git-annex [47] to store large files, that are otherwise not supported by Git itself. Using
a version control system as a foundation allows DataLad to easily track the evolution of a
dataset over time. Using Git as the primary layer allows DataLad to follow a distributed and
decentralised storage model where each node can hold all the data. The basic assumption
here is that each managed dataset is just a Git repository, where DataLad’s definition of a
dataset corresponds to our definition of a model.

DataLad allows users to track datasets and code simultaneously in the same Git repository.
It also provides an interface to record individual executed commands that process the data.
This information is recorded as part of Git’s commit messages. Listing 3.3 shows an example
of the recorded information. This information includes the command executed (as the cmd

field), a list of input and output files (as inputs and outputs), the current working directory
(as the pwd field), and some other internal information. DataLad can repeat the execution of
recorded commands by using the supplied datalad rerun command. This command allows
a single step to be repeated by specifying the concrete commit hash of the operation, to be
repeated. It can also repeat several steps in the correct order by specifying a commit range
as input. In this case, any command recorded within one of these commits will be executed
in the order of the commits. DataLad does not provide tools to compare the output of these
reproductions. It refers here to standard diffing tools, that only work well for textual data
with similar internal structure. Consequently, there is no easy way to check whether or not
a set of commands produces the same output on several runs. This circumvents the problem
of defining equality between different files representing scientific datasets.

{

"chain": [],

"cmd":

"convert -resize 400x400 feed_metadata/salt.jpg recordings/salt_small.jpg",

"dsid": "8e04afb0-af85-4070-be29-858d30d85017",

"exit": 0,

"extra_inputs": [],

"inputs": [

"recordings/longnow/.datalad/feed_metadata/salt.jpg"

],

"outputs": [

"recordings/salt_small.jpg"

],

"pwd": "."

}

Listing 3.3.: Example data recorded by datalad run

24 3. Related Work

Datalad only uses information about input and output data to check whether the correspond-
ing file exists when executing a command. This information are then used to provide helpful
error messages for missing input data or when a command would overwrite an output dataset.
This information is not used to identify the flow of data through a processing pipeline, al-
though this information could be extracted from the appropriate commit messages. An ideal
system could use this information to optimise the construction of updated models by skipping
operations that affect only unchanged datasets.

Furthermore, the documentation of DataLad [48, Ch. 7.2] states that DataLad does offer
possibilities to store both data and code. This may not be sufficient to reproduce the results
at a later time or with a different computer, because the same software environment must
be used for the reproduction as for the original realisation. The DataLad documentation
explicitly lists possible dependencies here:

• The operating system
• Exact versions of the installed software
• Configuration of the installed software

Later in the mentioned chapter, the documentation presents the datalad-containers ex-
tension as a solution to this problem. This extension allows the user to specify a container
image that should be used as an environment for executing commands. Containers are special
virtual machines that combine software and configuration in a compact unit. This approach
solves the presented problem by transforming the implicit dependency on the software envi-
ronment into an explicit one.

In addition, DataLad provides support for metadata extraction and aggregation [46]. Data-
Lad provides several built-in modules for extracting metadata. For example, DataLad pro-
vides a module for extracting metadata for images, that collects information based on the
embedded EXIF data [49]. In addition to the built-in modules, it is possible to provide
specially tailored extensions that provide additional metadata extraction capabilities. The
extracted metadata is then stored in a private DataLad folder as a JSON document. This ap-
proach allows the representation of arbitrarily complex metadata schemes. DataLad follows
the JSON-LD W3C Community Draft [50] for representing metadata as a JSON document.

• DataLad provides tools for recording construction processes, datasets used and associ-
ated metadata

• DataLad does not ensure that only datasets and programs contained in the current
repository are used, since datalad-containers is an optional dependency

• DataLad couples the code used to construct the model directly with the input datasets
used in the same repository.

• DataLad does not provide tools to check the equality of two datasets.

3.4.2. Data Version Control (DVC)

Data Version Control (DVC) [51] is a version control system for machine learning projects.
DVC is a command-line tool that allows you to record an entire data processing pipeline,
including data, code, and model definitions. The primary goal of DVC is to make machine
learning models shareable and reproducible, although the software can presumably be applied
in other application areas as well.

Technically, DVC is built on top of traditional version control systems such as Git [40] or
Mercurial [52]. This allows DVC to track a versioned state of the current working directory,

3.4. Experimentation Management Software 25

which contains code, training data, and additional information. Unlike DataLad, DCV im-
plements its own data storage mechanism for managing large binary files. This data is stored
in a remote location, such as Amazon’s S3 system [53] or any network storage system, and
is referenced by a unique identifier in the version control system. This approach essentially
mirrors the behaviour of Git LFS [54] in a way that is independent from the underlying
version control system. Just like the behaviour described, Git LFS uses an additional service
to store large binary data and only references this data later in the Git repository.

Figure 3.3.: A simple example workflow consisting of three construction steps shown as a directed acyclic
graph as generated by the dvc dag command on the command line

The boxes represent nodes of the graph, while the * * * form edges. Each node represents a construction
step, while each edge represents a dependency between these steps. According to the documentation, the

visualization assumes a top to bottom directionality.

In addition to files used as part of the machine learning workflows, DVC also enables the
recording of the workflows themselves. A workflow can consist of more than one step. DVC
records the workflow structure as a directed acyclic graph of workflow steps, where each node
represents a workflow step, and each edge represents a dependency between two workflow
steps. Figure 3.3 shows an example graph. According to the manual, DVC assumes that
edges are orientated from the top to the bottom. An edge pointing from the prepare workflow
step to the featurize workflow step can be read as the featurize workflow step, depending on
output of the prepare workflow step. Each workflow step is described as a command to be
executed. In addition, each workflow step can have an optional dependency on one or more
files.

Based on the recorded processing workflow, DVC provides a dvc repro command. This
command repeats the recorded processing steps using the current state of the working direc-
tory. However, it does not check whether the execution gives the same result as previous
executions.

In our view, DVC offers the most complete approach for the reproducible construction of a
model based on data, although there are some shortcomings.

In particular DVC does not enforce recorded dependencies between workflow steps and data.
Any workflow step can declare an explicit dependency on data by using the corresponding
DVC command line flag. Such referenced data can be a file that exists in the current working
directory at execution time or in any other folder on the current computer or even on the
Internet. DVC’s documentation [55] indicate that you should follow these rules:

• Read/write only from/to the specified dependencies and outputs (including parameter
files, metrics, and plots).

• Rewrite the output in its entirely. Do not append to or edit existing files.
• Stop reading and writing files when the command exits.

26 3. Related Work

Similarly to DataLad, the documentation also states that the code must be deterministic,
i.e. it must produce the same output for the same input to achieve a reproducible workflow.
In particular, it is recommended to avoid code that uses random numbers, time functions,
or hardware dependencies, but DVC does not provide automatic checks to detect such oper-
ations.

• DVC records how transformations are performed via workflow steps. These descriptions
contain little information about which applications were used as part of a workflow step.
DVC’s documentation [55] states that executed code may only work on certain operating
systems or require that certain software packages must be installed.

• The dvc repro command repeats the execution of a defined processing workflow, but
does not check whether the results match. This approach circumvents the problem of
defining equality between datasets. However, the user has no easy way to check whether
the provided description of the workflow is sufficient to reproduce a given result.

• DVC is designed for use in the context of machine learning. Therefore, the software
contains functionalities that are specifically tailored to this application area. This
includes features such as plotting result metrics of training runs. Another limitation is
that DVC lacks functionalities such as explicit metadata collection that may be useful
for a geoscientific applications.

• DVC couples versioning of data and workflow to the same time scale by storing every-
thing in the same underlying version control system. This makes it harder to understand
what changes have actually changed the data or the processing pipeline.

• As a command-line tool that executes self-written scripts as workflow steps, DVC is
only accessible to skilful personnel. Geologists may be overwhelmed to use its inter-
face to develop their workflow steps. For them a more suitable approach would be to
separate the definition of workflow steps from the actual workflow composition, such
that more computationally skilled individuals can devise step descriptions. Then, less
computationally proficient people can use these steps to represent their workflow.

3.5. Reproducible Software Builds

Software developers face a similar reproducibility problem as the applied science community.
The problem there is: “Was the provided binary artifact generated from the provided source
code, or is there a mismatch?” Answering this question is important for security-critical
applications, as any unidentified change to the software, or dependency in the build chain
[56], such as compilers, linkers or interpreters, can introduce backdoors or other security
related vulnerabilities.

The Reproducible Builds project aims at an independently verifiable path from source to
binary code and explicitly defines a reproducible software build as follows[57]:

Definition 3.1 (Reproducible Build). A build is reproducible if given the same source code,
build environment and build instructions, any party can recreate bit-by-bit identical copies
of all specified artifacts.

3.5. Reproducible Software Builds 27

Here the Reproducible Builds project specifies the “source code” as the starting point of the
build process. In addition, information about the build environment is required. It usually
includes exact information about the version of the operating system used and all tools
involved in the build process. Furthermore, each build process produces one or more artifacts,
which may include executable files, distribution packages, or file images, and excludes build
logs or similar output. Typically, these artifacts are compared at the bit level to determine if
they are equal. In addition, the Reproducible Builds project indicates that such information
must be provided on a case-by-case basis by the individual author who wishes to distribute
reproducible software builds.

Reproducible builds are monitored by some Linux distributions for their entire package ecosys-
tem. Examples are:

• Debian [58] states that 94.3% of packages can be built in a reproducible way for the
amd64 target.

• ArchLinux [59] states that 81.9% of packages can be built in a reproducible manner.
• NixOS [60] states that 100.0% of packages can be built in a reproducible way for the

x86_64-linux target.

All distributions listed track the percentage of packages that can be built reproducibly. These
numbers present the situation at the time of writing and may change in the future. The
reproducibility of the build process is checked by performing two independent builds and
comparing the results. Some monitoring systems also change various potential sources of
non-determinism between the two separate build processes. It includes things like changing
the build path, the build user, and the time of the build system.

There are various potential causes for non-reproducible build results. The Debian project has
detailed statistics about causes and how often they occurred based on Debian’s package list
[61]. Common causes for differences between two artifacts are:

• Mismatched directory or file paths embedded in the artifact
• Inconsistencies in the timestamps embedded in the artifact
• Non-matching values of environment variable values embedded in the artifact
• Non-deterministic code generation resulting in different artifacts

A common approach to avoid the first three issues is to define a standard build environment,
that is documented in detail. This includes information about the exact configuration of the
operating system and all installed software. In addition, the Debian project suggests several
workarounds in its documentation [62]:

1. Try to remove the information from the artifact in a postprocessing step using the
strip-nondeterminism command [63].

2. Try to modify the corresponding build tool that produces the non-reproducible infor-
mation so that it no longer generates any non-reproducible parts at all

3. Try to change the corresponding build tool that generates the non-reproducible infor-
mation to use other reproducible information instead.

4. Try modifying the corresponding build tool to respect special environment variables
developed by the Debian project for the use case of reproducible builds. These environ-
ment variables then contain a trimmed down version of the previous non-reproducible
information to make the build reproducible.

5. Try to modify the built environment such that it does not contain the non-reproducible
information

28 3. Related Work

Building software in a reproducible manner is similar to the problem of building reproducible
geoscientific models. Common problems identified by the above projects are likely to be
encountered in our research domain as well. Common workarounds provide us with a basis
for working around these problems, but not all can be readily applied to the task of building
geoscientific models. For example, most build tools involved in software building processes
are available for free, which is especially true for open source projects, such as those used by
the Linux distribution mentioned above. In this situation, it is easy to modify the software
used in such a way that reproducible results are produced, as suggested in workarounds 2 -
4. Geoscientific software is usually harder to modify. For example, it is near to impossible to
remove sources of non-determinism from gOcad because users generally do not have access
to the source code of a commercially distributed software package. Workaround 1 is also not
easily transferable due to the variety of file formats involved. Artifacts, which are produced
by software building processes are typically binary executable files or shared libraries. With
ELF [64] and Win32/PE [65], only two file formats describe exactly what information can be
recorded and where. For geoscientific models, there are a variety of fundamentally different
file formats, and all of them may contain non-deterministic information in different ways.
Therefore it seems hard to develop a tool that removes this information in a post-processing
step.

3.6. Summarised Releated Work

None of the presented software packages provides a complete solution to the problem of
describing reproducible geoscientific model constructions. However, each of the presented
packages solves some parts of the problem in a unique way. These solutions might be combined
to provide a more general solution.

Geoscientific data storage solutions such as PostGIS and GST specialise in storing different
types of geoscientific datasets. They lack the infrastructure to store information about the
processing steps applied to each dataset.

Geoscientific model construction software such as gOcad and GemPy specialise in compos-
ing specific geoscientific models. These software packages provide the ability to see what
construction steps have been performed. However, this information can not generally be
transferred to construction processes involving the use of several software packages.

Experimentation management software such as DataLad and DVC provide tools for record-
ing complex data processing pipelines. While both can describe a potentially reproducible
construction process, they lack essential features that ensure independence from a particular
computational environment and reproducibility of a construction process. Furthermore, these
software packages focus on different application areas and make different assumptions about
the data processing steps used and the datasets involved.

Last but not least, the existing infrastructure for providing reproducible software builds al-
ready solves the equivalent problem in another application area. Therefore, the knowledge
gained there can be useful here. These insights include in particular strategies for check-
ing reproducibility by repeating the corresponding process and strategies for circumventing
potential problems when comparing the output of two realisations due to non-deterministic
results.

29

4. Concept

The major objective of this thesis is the development of software to manage reproducible
construction processes for geoscientific models, taking into account the requirements spec-
ified in section 2.2. This chapter turns the abstract requirements into an implementable
algorithms.

As a key functionality, our application needs to represent the construction process of a geo-
scientific model in a algorithmic way. Section 4.1 presents a conceptual model of how such
construction processes can be described as hypergraphs. This approach satisfies requirements
2.2 Skilled Personnel, requirement 2.3 Integration of Other Software, and requirement
2.4 Computational environment independence.

A tool that enables reproducible construction of geoscientific models must be able to han-
dle various geoscientific data, as specified in requirements 2.1 Store Information and 2.5
Recording Changes. In section 4.2 we present some challenges and possible solutions for
how our application handles data.

We will use a simplified construction process of a geoscientific model as a motivating example
for both parts of this chapter. Our example workflow uses three different datasets to build
an abstract geoscientific model. A geologic cross-section is provided as an image, a set
of borehole data is provided as a file compromising a set of points, and a spatial context
containing information about the target coordinate system of our model. The construction
of the model involves three distinct operations. In the first step, the geologic cross-section is
digitised. Then, both the digitised cross-section and the borehole data are projected into the
target coordinate system. Finally, a triangulated surface is generated by a meshing operation.
We consider this triangulated surface as the result of our construction process.

4.1. Construction Hypergraphs

The fundamental unit of a construction process is a single construction step. In our abstract
model, each construction step is a transformation that converts a set of input datasets into a
single output dataset. There is a wide variety of construction steps. Given requirement 2.3,
Integration of Other Software, we assume that the construction steps are implemented by
using other software packages. A common theme of construction steps is the execution of a
processing operation, which can usually be described with a verb. Our example construction
workflow consists of three different construction steps:

• Digitise geological cross-sections
• Transform coordinates
• Compute a mesh of points and lines

Digitising a geologic cross section means to turn a geologic cross-section available as an
image into a line dataset in 3D space. Figure 4.1a contains a graphical representation of this
construction step. The green ellipse represents the input to this construction step, while the

30 4. Concept

Input dataset

Cross section

digitise

Output dataset

Digital cross section

(a) Digitising
geological cross

sections

transformation

Input dataset

Spatial context
Input dataset

Geoscientific dataset

Output dataset

Transformed dataset

(b) Coordinate transformation

meshing

Input dataset

Pointset

Input dataset

Lineset

Output dataset

Triangulated surface

(c) Meshing data

Figure 4.1.: Example construction steps

red ellipse represents the output. The operation itself is represented by the orange rectangle.
The arrows indicate in which direction the data flow through the process.

A coordinate transformation projects a spatial object from one coordinate reference system
to another reference system. This operation depends on two different types of input data.
It uses the specification of the target coordinate system and the spatially referenced dataset
itself. The result is a projected version of the spatially referenced input dataset. Figure 4.1b
contains a graphical representation of this construction step.

Meshing combines a set of point and a set of lines to form unified three-dimensional triangu-
lated surface. Figure 4.1c contains a graphical representation of this construction step.

The construction of a geoscientific model involves a sequence of construction steps. The fol-
lowing paragraphs contain example construction step sequences, highlighting essential char-
acteristics of construction processes.

Each construction step can depend on the results of previous construction steps. These
dependencies impose an inherent order of the construction steps. Figure 4.2a shows an
example sequence of two construction steps. It illustrates that a change in the order of
the construction steps involved leads to an corrupted construction process. The processed
input data and the generated output data would then no longer match the corresponding
construction steps.

Step 1

Intermediate dataset

produced by step 1

Step 2

̸=

Step 2

Intermediate dataset

produced by step 1

Step 1

?

?

(a) Construction steps are ordered

Step 1

Intermediate dataset

produced by step 1

Step 2

̸=

Step 1

Intermediate dataset

produced by step 2

Step 2

?

(b) Direction matters

Figure 4.2.: Order and direction of construction steps is meaningful

4.1. Construction Hypergraphs 31

A sequence of construction steps in a construction process must not only be ordered, but
it also has a direction. It is not possible to reverse the sequence of construction steps in
a construction process, for reasons similar to the order constraint. Figure 4.2b illustrates
this case graphically. We could correctly perform the first construction step of a reverse
construction process, given the correct input data. However, this is not true for the second
step in the reverse sequence, since it would now have to process incompatible input data
generated by the earlier second construction step.

A single construction step can use more than one dataset as input. A construction step needs
access to all input datasets simultaneously to perform the underlying data transformation.
This implies that the dependency between input data and output data is more complex than
a simple one-to-one dependency. Figure 4.3 illustrates this case graphically. Consequently,
construction steps cannot be represented as edges in a graph.

georeferencing

Input dataset

spatial reference
Input dataset

cross section

Output dataset

georeferenced cross section

̸=

Input dataset

spatial reference
Input dataset

cross section

Output dataset

georeferenced cross section

georeferencing

georeferencing

Figure 4.3.: Construction steps are not edges, as shown by the fact that a construction step may require
more than one input dataset

The concatenation of several construction steps, each of which accepts more than one input
dataset, provides another important insight. The dataset and construction steps involved in a
construction process cannot form a simple tree relationship because of their interdependencies.
Figure 4.4 illustrates this case graphically. For example, the spatial context dataset is used
as an input dataset for more than one construction step, whereas in a tree-like relationship
it could be used in only one construction step.

project

Input dataset

Borehole data

Input dataset

Spatial context

project

Intermediate dataset

Digital geologic profiles

Intermediate dataset

Projected borehole data

Intermediate dataset

Projected geologic profiles

!

Figure 4.4.: A construction process cannot be represented as a tree, as shown by the fact that the same
Spatial context input dataset is used by several construction steps

For this thesis we define dataset, construction step and construction process as follows:

32 4. Concept

Definition 4.1 (Datasets). We call a set of related data a dataset. These data are grouped
by a logical dependency. A dataset may consist of several parts, which are grouped into one
or more files.

Definition 4.2 (Construction step). We denote a construction step as a transformation
𝐹 ∶ (𝐷𝐼

1, … , 𝐷𝐼𝑛) → 𝐷𝑂 where 𝐷𝐼
𝑘 𝑘 = 1, … , 𝑛, 𝑛 ≥ 1, denotes the input datasets and 𝐷𝑂 the

output dataset.

Definition 4.3 (Construction process of a geoscientific model). We define a construction
process as a sequence of construction steps.

From the above observations, we derive the following facts about appropriate data structures
for representing construction processes:

• Construction steps are inherently ordered.
• Two successive construction steps have a well defined relationship to each other, where

the output of one step is used as input for another step. This implies a directed
dependency between datasets and construction steps and between different construction
steps.

• A construction step may have more than one input dataset and the input datasets
must be used together. This implies that all of the construction steps in a construction
process cannot form a simple sequence or graph.

• A single dataset can be used as input for two different construction steps. This means
that the totality of construction steps of a construction process cannot be described as
a tree.

Given these observations, a directed hypergraph is an appropriate data structure to represent
a construction process.

Definition 4.4 (Directed Hypergraph). We define a directed hypergraph 𝐻 as a pair 𝐻 =
(𝑉 , 𝐸) where 𝑉 = 𝑉0, … , 𝑉𝑗 is a set of vertices and 𝐸 = 𝐸0, … , 𝐸𝑘 a set of directed hyperedges.
A hyperedge 𝐸 connects a subset of vertices 𝑉𝑒 of 𝑉 that contains at least two vertices. A
directed hyperedge further divides the vertices in 𝑉𝑒 into head and tail vertices, where a
directed hyperedge points from the set of tail vertices to the set of head vertices.

For our use case, a complete hypergraph corresponds to a specific construction process of
a geoscientific model, a vertex corresponds to a dataset, and a hyperedge corresponds to a
construction step. Unlike general directed hypergraphs, construction hypergraphs are subject
to additional constraints. Since hyperedges represent construction steps, each hyperedge must
have one and only one head vertex and at least one tail vertex. Another practical constraint
is that the construction graph must be acyclic. Otherwise, a construction hypergraph with a
fixed number of construction steps cannot be guaranteed to yield a complete valid model in
a finite number of steps.

Definition 4.5 (Construction hypergraph). We define a construction hypergraph as an
acyclic directed hypergraph consisting only of hyperedges having one and only one head
vertex and at least one tail vertex.

We use 𝐸(𝑉𝑖1 ,…,𝑉𝑖𝑛)→𝑉𝑜 as notation for a hyperedge connecting the set (𝑉𝑖1 , … , 𝑉𝑖𝑛) of tail

vertices with the head vertex 𝑉𝑜. A hyperedge 𝐸 represents a construction step 𝐹 , such that

4.1. Construction Hypergraphs 33

𝐸 = 𝐸(𝑉𝑖1 ,…,𝑉𝑖𝑛)→𝑉𝑜 . This implies that each vertex 𝑉𝑖ℓ that is part of the tail vertex set

𝑉𝑖1 , … , 𝑉𝑖𝑛 corresponds to an input dataset 𝐷𝐼
𝑖ℓ of 𝐹 . The head vertex 𝑉𝑜 corresponds to the

output dataset of 𝐹 , such that 𝑉𝑜 = 𝐷𝑂.

Definition 4.6 (Path). We define a sequence of hyperedges to be a path if at least one
head vertex of a preceding hyperedge is an element of the set of tail vertices of the following
hyperedge.

The representation of a construction process as a construction hypergraph allows us to reason
about the structure of the construction process itself. We can infer dependencies between
different construction steps and datasets based on the structure of the construction hyper-
graph. We call two construction steps 𝐹𝑖 and 𝐹𝑗 independent if there is no path connecting
the output datasets 𝑖𝐷𝑂 and 𝑗𝐷𝑂. We say that the construction step 𝐹𝑖 depends on 𝐹𝑗 if
there is a path between 𝑗𝐷𝑂 and one of the 𝑛 input datasets 𝑖𝐷𝐼

𝑘 for 𝑘 = 1 … 𝑛 of 𝐹𝑖. We call
construction steps 𝐹𝑓 without dependencies, dependency-free. Their input datasets 𝑓𝐷𝐼

𝑘 are
input datasets of the construction hypergraph itself.

Definition 4.7 (Input Dataset of the Construction Process). A dataset is an input dataset
of the construction process if no construction step generates it as an output dataset.

At the other end of the construction process, there are construction steps 𝐹𝑜, which are
not used as dependencies of another construction step. We call these datasets the output
datasets of the construction hypergraph. Depending on the exact structure of the construction
hypergraph it may possess one or more output datasets.

Definition 4.8 (Output Dataset of the Construction Process). A dataset is an output
dataset of the construction process if no construction step uses it as an input dataset.

Any other dataset involved in the construction process is called an intermediate dataset.
Intermediate datasets are both, an output dataset 𝑙𝐷𝑂 of the construction step 𝐹𝑙, and an
input dataset 𝑙+1𝐷𝐼

𝑘 of the construction step 𝐹𝑙+1.

Figure 4.5 shows an example construction hypergraph. Oval nodes represent different datasets
𝐷𝑗, while rectangles represent different construction steps 𝐹𝑗. Dashed edges indicate that a
particular dataset 𝐷𝐼

𝑘 is used as input for a particular construction step, while solid edges
indicate that a construction step generates a dataset 𝐷𝑂

𝑘 . A hyperedge 𝐸𝑗 is visualised by
the construction step rectangle and all incoming and outgoing edges. Green nodes represent
the input datasets of the construction process, while the red node represents the datasets
generated by the construction process. Finally, yellow nodes represent intermediate datasets
generated and processed by the construction steps of the construction process.

The example construction hypergraph represents our example construction process. It con-
sists of 7 nodes representing the datasets used by the construction process. Borehole data,
Spatial context and Geological profile represent the input datasets, which are provided as
the basis for model construction. Digital geological profiles, Projected borehole data, and
Projected geological profiles are intermediate datasets generated and processed as part of the
construction process. Finally, the Triangulated surface dataset is the output dataset of our
construction process. It is generated by the specified sequence of construction steps applied
to the input datasets.

34 4. Concept

meshing

Output dataset

Triangulated surface

Intermediate dataset

Projected borehole data

Intermediate dataset

Projected geological profiles

project project

Input dataset

Borehole data

Input dataset

Spatial context

Intermediate dataset

Digital geological profiles

digitising

Input dataset

Geological profiles

Figure 4.5.: Example construction hypergraph for a simplified geoscientific model construction

The construction hypergraph contains four construction steps. The digitise, and meshing
construction step are performed once, while the project construction step is applied twice to
different input data.

4.1.1. Reproducibility Based on Construction Hypergraphs

A construction hypergraph contains an unique sequence of construction steps that are used
to construct a particular geoscientific model. In addition, it contains information about the
relationships between datasets and construction steps. We intend to use this information to
verify that a construction process is reproducible. An empirical method for checking repro-
ducibility is to repeat the construction process with the same input datasets and compare
all intermediate and output datasets produced by the repeated construction with the ini-
tially supplied datasets. If all intermediate and output datasets match the initially provided
datasets, we can be reasonably confident that the construction process produces the same
results and is therefore reproducible. This approach is inspired by the strategy used for
reproducible software builds as presented in section 3.5.

Performing such a verification requires the following steps:

1. Store any datasets generated or processed by the construction process
2. Repeat the construction process with the stored input datasets from step 1
3. Compare all intermediate and output dataset with their originally provided counter-

parts.

The first step, storing datasets, is necessary because these datasets are used in later steps of
the verification procedure. Input datasets are used as the basis for reproducing the result.

4.1. Construction Hypergraphs 35

They are identical across different realisations of the same construction process as each real-
isation is based on the same input datasets. Intermediate and output datasets are used to
compare the original construction results with the newly generated realisations. It is impos-
sible to repeat the construction without providing all input datasets. This, in turn, makes it
impossible to check that the same output datasets are generated. This fact implies that our
system must be able to store a possibly diverse amount of different datasets.

The second step, repeating the construction process, requires access to the corresponding
construction hypergraph, that encodes the structure of the construction process. Therefore,
our application must store the construction hypergraph together with the required datasets.
To enable the repetition of the process later without the need of human interaction, we
must record the entire process such that a computer can execute. Such a recording enables
the execution of a construction hypergraph, which requires each construction step to be
provided in a computer-executable format. In general, computers can execute any compiled
program or script written in a programming language compatible with the current execution
environment. Section 5.2 describes several designs for such a system in detail. As part of
our requirements, we stated that we must be able to use other programs in our construction
workflow. This means that these programs, and any program used to execute the construction
step description itself, must be available in the runtime environment to repeat a construction
step later. We call a construction step description self-contained if it includes all necessary
information about all programs used and a complete description of the actual actions to be
executed.

As the final third step of the verification procedure it is required to compare any produced
dataset with their originally provided counterpart. This requires defining equality between
geoscientific datasets. Section 4.1.2 discusses this problem in detail.

All in all we define reproducible construction hypergraphs as follows:

Definition 4.9 (Reproducible construction hypergraphs). We define the construction work-
flow to be reproducible if all generated intermediate and output datasets match their initial
counterpart. This can be defined as ∀𝑗 = 1 … 𝑛, 𝑗𝐷𝑂

𝑅0
= 𝑗𝐷𝑂

𝑅1
where 𝑅0 is the originally

provided realisation and 𝑅1 is the reproduced realisation of the output dataset 𝑗𝐷𝑂 of the 𝑗
step of the construction hypergraph.

4.1.2. Equality definitions

Using the information provided by the construction hypergraph, it is possible to repeat the
construction of the same geoscientific model with the same input data.

Definition 4.9 raises an important question: How should equality of geoscientific datasets be
reasonably and verifiably defined? A conclusive answer does not seem to exist [66]–[68], as
each specific use case has its own specific requirements. We describe four general approaches
to define equality of geoscientific datasets:

Definition 4.10 (Bitwise equality). We consider two datasets 𝐷𝑎 and 𝐷𝑏 as equal if:

• The number of files in 𝐷𝑎 and 𝐷𝑏 are equal
• For each file 𝑥𝑎 ∈ 𝐷𝑎 there is a file 𝑥𝑏 ∈ 𝐷𝑏 with the same name and size
• For each file 𝑥𝑎 ∈ 𝐷𝑎 the corresponding file 𝑥𝑏 ∈ 𝐷𝑏 consists of the same sequence of

bytes

36 4. Concept

Bitwise equality is independent of the data format used, since all data is represented as
files. It makes it possible to reason about equality without considering the details of specific
file formats. The definition of bitwise equality, in turn, can classify datasets as not equal,
that would otherwise be considered equal in many practically applications. One example
for which bitwise equality is well suited are images. It is reasonable to expect that images
representing the result of a complex construction process will be identical. On the other hand,
this approach fails as soon as a timestamp or other source of pseudo-randomness is included
in the resulting datasets.

Definition 4.11 (Structural equality). We consider two datasets 𝐷𝑎 and 𝐷𝑏 to be equal if
for each part 𝑃 𝑖𝑎 ∈ 𝐷𝑎 (as defined in definition 4.1) there exists an equal part 𝑃 𝑖

𝑏 ∈ 𝐷𝑏 for a
list of defined required parts 𝑃 𝑖.

The list of required parts depends on the specific format of the dataset and may include only
a specific part of the dataset. This definition allows to ignore parts of the dataset, which
are considered irrelevant or disturbing at this moment. A common example are timestamps
generated as part of the model construction process. It also removes the constraint that each
part must occur in the same order in both datasets 𝐷𝑎 and 𝐷𝑏. For triangulated surfaces, for
example, the definition of structural equality allows two datasets to be considered as equal
even if the triangles are stored in different order in the corresponding files.

Definition 4.12 (Distance-based equality). We consider two datasets 𝐷𝑎 and 𝐷𝑏 as equal
if |𝐷𝑎 − 𝐷𝑏| < 𝜖 for a given threshold 𝜖 ≥ 0 and a given distance metric | … |.

This definition is based on the established practice of comparing floating point numbers by
allowing a minimal difference. The commonly used equality definition considers two floating
point numbers to be equal if their difference is less than some small threshold. The distance-
based equality definition extends this approach to more complex datasets. Compared to
bitwise equality, this approach allows small differences between the resulting datasets by
choosing a threshold 𝜖 greater than zero. Similar to structural equality, the distance based
equality definition allows potentially irrelevant parts of the dataset, such as timestamps or
folder names, to be ignored by simply excluding them when defining the distance function.
Conversely, this approach to defining equality requires a distance function that is a specific
to a particular datasets format. This function must include and possibly exclude information
from the appropriate files. In addition, an appropriate value for 𝜖 must be chosen, which in
turn may depend on the actual datasets. Simulation results are a major example of using this
approach to define equality. Most mathematical models already provide a distance function
that is used in the underlying numerical simulation. We can apply the same function to
check whether two datasets generated by independent model realisations are considered to
be equal.

Definition 4.13 (Geological equality). We consider two datasets 𝐷𝑎 and 𝐷𝑏 to be equal if
they support the same geological interpretation.

4.2. Data Handling 37

Unlike the other three approaches, this definition is somewhat fuzzy. This fuzziness makes
it hard to impossible to perform an automatic check based on geological equality. It is
ongoing research [67]–[69] on how to transform this definition of equality into something
more suitable for automatic checking. We consider this approach to be of limited use for use
cases that require automatic equality checking. Geological equality may be useful with respect
to complex subsurface models consisting of many elements. For non-geological geoscientific
models, such as a hydrological balance model, this approach is not useful.

Deciding which equality definition is most appropriate in practice must be done on a case-
by-case basis. The following factors influence this decision:

• The software used to produce the dataset, as some software may introduce factors
such as timestamps or internal information into the produced datasets. In these cases,
bitwise equality will not work well.

• The application for which the geoscientific model is designed. Is the model built to
be used later as the basis for a numerical simulation, or is it intended to visualise
something? In the first case, the order and position of triangles matter. In the second
case, it may be acceptable to use completely different triangles as long as the model
looks the same. In the first case bitwise equality seems to apply, while for the second
case applying geological equality definition is sufficient.

4.1.3. Design Constraints

Overall this results in the following design constraints for our construction hypergraph, for
the implementation of concrete construction steps, and for the definition of equality used to
reason about reproducibility:

Design constraint 4.1 (Computer-Executable Construction Steps). Each design step must
be in a computer-executable form, either as a stand-alone program or as a description that
can be executed by a specific program.

Design constraint 4.2 (Self-Contained Construction Steps). Each construction step must
be self-contained. Requirement 2.4, “Computation environment independence” states, that
we cannot assume that we have access to the computer with which the model was originally
constructed.

Design constraint 4.3 (Customisable Equality Definition). There must be a way to cus-
tomise the equality definition for datasets formats. If there is no custom implementation,
the application can use the most restrictive bitwise equality to directly compare the output
dataset files.

4.2. Data Handling

In the previous section, we focused on construction processes that consist of construction
steps. Now, we will take a closer look at these datasets and the requirements they impose on
the design of our system. To illustrate the general workflow we will use our simple example
construction process.

Figure 4.6 contains the graphical representation of the corresponding construction hypergraph.
There you can see that the construction process starts with three different sets of input data:

38 4. Concept

meshing

Output dataset

Triangulated surface

Intermediate dataset

Projected borehole data

Intermediate dataset

Projected geological profiles

project project

Input dataset

Borehole data

Input dataset

Spatial context

Intermediate dataset

Digital geological profiles

digitizing

Input dataset

Geological profiles

Figure 4.6.: Example construction hypergraph for a simplified geoscientific model construction

1. Borehole data
2. Spatial context
3. Geological cross-section

We assume that the user provides these datasets. They represent the starting point from
which a construction process can be reproduced. Ideally, these data should be provided as
unprocessed as possible in order to include as many relevant construction steps as possible in
the reproducible construction process. Construction hypergraphs only provide information
about the reproducibility of the construction process they represent, not about other parts of
the process not represented by the construction hypergraph. This restriction is relevant for
cases where preprocessing steps are already applied to input datasets. For our example, we
would presume that both the borehole data and the geological cross-section data are taken
from an archive, which means both likely represent the result of some preprocessing work. On
the other hand, the spatial context represents a target parameter of the geoscientific model
to be constructed. This allows the user to communicate this choice as an explicit input.

To verify that the construction process is reproducible, we must repeat the construction
process using the same input datasets. To make these datasets available for these repetitions,
we need to store them.

Next, these input datasets are processed by different construction steps. Each construction
step is provided as a user-defined description using specialised programs. Consequently, we
need to provide the datasets for each construction step in the format provided by the user
as otherwise the construction step may fail due to an incompatible format of the provided
dataset.

Each executed construction step generates a result dataset. To check whether a construction
process is reproducible, we have to compare different realisations of these result datasets to

4.2. Data Handling 39

each other. Of course, this assumes that more than one realisation of a given result dataset
is available at the time of comparison. Similar to the input datasets, one solution here is
to store every dataset that is generated as a result of a construction step. This includes all
intermediate and output datasets of the construction process.

The datasets themselves do not necessarily contain all relevant information. Sometimes ad-
ditional information is provided as metadata. For example, the geological cross section input
dataset is likely to be provided as an image. Images usually do not contain information about
their spatial reference or orientation. Such information is usually provided by the user as
metadata. This means that our software must store metadata associated with each stored
dataset.

Our geological profile image is then used by the digitise construction step to result in a digital
geological profile that my contain a spatial reference and orientation. This means that the
construction steps need to have access to all metadata associated with their input datasets.
A reverse construction step that generates an image from a digital geological profile will
generate information about spatial location and orientation as metadata. This means that
our application must provide metadata associated with the input datasets to the construction
steps and apply the metadata generated by the construction steps to associate them with the
corresponding output dataset.

Storing metadata in conjunction with specific datasets raises another difficult problem: What
metadata is considered relevant? There is an ongoing debate about what metadata is rele-
vant to geoscientific data [70]–[72]. Based on these discussions and the different needs and
standards of different geoscientific domains, we decided to allow users to specify metadata
schemes that meet their specific needs.

Last but not least, allowing users to define their metadata schema for construction workflows,
has implications for all datasets that are part of this workflow. It explicitly includes interme-
diate and resulting datasets of the construction process. Now, if a user specifies that certain
metadata is required for all datasets, that metadata for the datasets automatically generated
as part of the construction process, must come from somewhere. Sometimes, the appropriate
metadata is already included in the actual dataset. To verify its existence, we need allow
users to automatically extract metadata as part of the construction process.

This results in the following design constraints for the data storage layer of our application:

Design constraint 4.4 (Store all Input Datasets). We need to store the user supplied
datasets because construction steps are also user supplied and assume that their input
datasets have certain properties

Design constraint 4.5 (Opaque Datasets). We cannot assume much about the size and
structure of datasets. We need to be able to handle small and large datasets.

Design constraint 4.6 (Store Metadata). We need to store metadata for each input dataset
provided by a user.

Design constraint 4.7 (Pass Metadata). Metadata must be passed as input to construc-
tion steps, along with the corresponding datasets, and construction steps need to propagate
metadata from their input data.

40 4. Concept

Design constraint 4.8 (Automatic Metadata Extraction). The construction process needs
to be able to automatically extract metadata from intermediate and result datasets of the
construction process.

Design constraint 4.9 (Metadata Schema Independence). The data storage layer needs
to permit different metadata schemes for different construction processes, since there is no
unique metadata schema for all geoscientific datasets.

41

5. Design

In this chapter, we explore various options for implementing an application for our proposed
concept. In section 5.1, we provide a general overview of possible application structures. In
section 5.2, we will then explore how the construction steps can be represented based on the
requirements and the design constraints outlined in the previous chapters. Finally, in section
5.3, we discuss how the data storage can be designed.

5.1. Application Structure

The goal of this thesis is to present a theoretical foundation and provide a concrete implemen-
tation of the theoretical ideas. In this chapter, we will present several possible application
architectures and evaluate them based on our requirements from chapter 2.2 and our design
constraints from chapter 4. We will also compare the presented architectures to the appli-
cations described in chapter 3. Each application must have a design that fits the tasks of
the application. As mentioned by Fowler [73, p. 5] it is important to note that no solution
can be used for all types of applications. Different applications require different application
designs depending on their requirements.

Table 5.1.: Three Principal Layers according to Fowler [73] and Haffner [74]

Layer Responsibilities

Presentation Provides an interface for users to interact with the application
Domain Implements logic for interaction and manipulation of data and application

state
Data Source Manages data and application state

Table 5.1 contains the classical three-layer approach for designing applications. Each layer
performs different tasks. There are various ways to implement applications based on this
principle. In this section, we will cover the following software architectures:

• Monolithic Desktop applications
• Client-Server architecture
• Micro-Service based architecture
• Fully distributed architecture

We will describe how they implement the three different principal layers, how this affects the
overall application design, and how the different approaches compare.

Monolithic Desktop applications implement all three fundamental layers within the same
application. Figure 5.1a shows a schematic overview of how the different application layers
interact with each other in this type of application. Applications that use this pattern are
self-contained, so they do not need to interact with other applications to provide their func-
tionality. An example of such an application from Chapter 3 is gOcad [17]. The presentation

42 5. Design

Data Source Domain layer Presentation

(a) Monolithic Desktop application

Data source Domain layer

Presentation

(b) Client-Server architecture

Domain layer

Domain layerDomain layer

Data source Data source Data source

Presentation

(c) Mirco service based architectures

Data source

Domain layer Presentation

Data source

Domain layer Presentation

Data source

Domain layer Presentation

(d) Fully distributed architecture

Figure 5.1.: Different software architectures

5.1. Application Structure 43

layer of desktop applications is usually tied to the frameworks provided by the platform on
which the application is to be deployed. There are also cross-platform frameworks, such as
QT [75] or electron.js [76], that provide abstraction across different desktop environments.
The data source layer of such applications typically interacts with file-based data sources. In
most cases, the domain layer is tightly coupled with the presentation and data source layers.
Since each instance of a monolithic desktop application is independent of other instances, it
is not easy to enable collaboration between different users. A common solution is to allow
different application instances to share files stored in the data source layer. However, this
approach usually assumes that only one instance is using the stored files at the same time.
This limitation make simultaneous collaboration difficult.

For Client-Server-based applications the three fundamental layers are distributed across
two separate applications. Figure 5.1b shows a schematic overview of how the different ap-
plication layers intact in this type of application. Examples of applications that use this
pattern from Chapter 3 include PostGIS [31] and GST [36]. In all designs, the presentation
layer runs as a different application than the data source layer. However, the domain layer
can be shared by both applications. The application running the presentation layer is usually
called the client, while the application running the data source layer is usually called the
server. There are several ways to deploy a presentation layer. So-called thick clients imple-
ment the presentation layer using platform-specific or cross-platform frameworks, similar to
monolithic desktop applications. Thick clients can also implement parts of the domain layer.
Thin clients, on the other hand, typically expose the presentation layer as an HTML-based
Web application. Thin clients typically provide only the presentation layer. There are several
approaches to storing data as part of the data source layer as part of the server application.
Commonly used approaches include relational or non-relational databases and file-based so-
lutions. Depending on the use case, both the client and server application can implement
parts of the domain layer. The communication between client and server application is done
via a well-defined API (Application Programming Interface). Such a communication API
can use different interfaces, for example, a network interface or file-based Unix sockets. A
well-defined standard like HTTP [77] or an application specific protocol can be used to com-
municate over these interfaces. The characteristic client-server architecture allows real-time
data exchange between multiple users, since several clients can interact with the same server
simultaneously. Since the server application knows about all connected clients, it can provide
mechanisms to synchronise the data modified by several clients simultaneously.

Compared to the other architectural patterns presented, the Micro-Service-based Ar-

chitecture is a relatively new addition to common software architectures. Similar to the
client-server architecture, micro-services distribute the presentation and the data source lay-
ers among different applications. However, instead of providing a monolithic server appli-
cation that handles the entire data source layer and large portions of the domain layer,
micro-services-based architectures divide these components into several smaller applications.
Figure 5.1c shows a schematic overview of how the different application layers interact with
each other in this type of application. According to the canonical pattern described by Fowler
[78], each backend application handles one task. They all communicate with the client appli-
cations through a central API. Both the data source and domain layers can consist of many
independent backend applications, each with a well-defined task. The presentation layer of
a micro-service-based architecture can be implemented similarly to client-server applications.
This means that either a thick-client application with platform-specific or cross-platform
frameworks or a thin-client deployed as an HTML-based Web application can be used as
the presentation layer. Splitting the server side of large applications has the theoretical
advantage of making it easy to scale a single component of the system without having to
duplicate the entire server-side of the application on several computers. Another advantage

44 5. Design

of micro-service-based architectures is that it is easy to split the service into several smaller
parts. This facilitates compliance with Conway’s Law [79], which states that any application
design is, by and large, a copy of the organisation’s communication structure. Micro-service-
based software architectures keep each service and its corresponding development team small,
resulting in a lower organisational overhead.

In a Fully distributed architecture, there is no clear separation between the client and
server parts of the application. Each instance of the application implements all three principal
layers. According to Unmesh [80], a system is considered as a distributed architecture as soon
as it consists of at least three separate instances. Each of these instances must provide the
same functionality and can interact with the other instances. Figure 5.1d shows a schematic
overview of how the different application layers interact with each other in this type of
application. Examples for applications from Chapter 3 include DataLad [46] and DVC [51].
Each instance of a distributed application is a client application and a server application at
the same time. To interact with other instances, a given instance must negotiate the global
application state with other instances. Once they agree on the current overall state of the
application, they can exchange data and interact with each other. A significant advantage of
fully distributed systems is that they can be easily scaled to handle a much larger load. All
that is required is to set up more instances of the same application. In addition, such systems
are generally considered to be highly fault-tolerant, since a single missing instance can easily
be replaced by one of the other instances. On the other hand, negotiating the current global
application state with other application instances usually involves complexity.

5.1.1. Choice of Application Architecture for GeoHub

In the following section, we will evaluate the presented architectures based on requirements
and design constraints. Table 5.2 contains an overview of which requirement can be satisfied
with which architectural pattern.

Requirement 2.1 Store Information requires the storage of various types of data. Combined
with design constraint 4.4 Store all Input Datasets, this places some requirements on our
data source layer. It means that our application must provide all the necessary datasets
required to reproduce the construction process when needed. An application architecture with
a data source managed in a central location, makes it easier to satisfy these requirements.
Client-Server or micro-service based applications can meet this requirement because both
approaches share the same central data source layer for different client applications.

Requirement 2.2 Skilled Personnel does not impose any direct requirements on the soft-
ware architecture of our application. We can argue here that a person with domain-specific
knowledge should be able to install or interact with any scientific application from their
domain.

Requirement 2.3 Integration of Other Software demands that our application interact
with a large number of other software. Since there is no standard API for this interaction, we
must create our own abstraction layer here. Much of this interaction occurs within the domain
layer where our software must evaluate construction hypergraphs to perform constructions
of geoscientific models. Monolithic desktop applications and client-server-based architectures
have a strict design of their domain layer, that makes it part of the application. Since we
want to control many different applications provided by our users, these designs do not fit
very well. On the other hand, micro-service based architectures assume that independent
applications provide the domain and data source layer. In our opinion, this is a much better
solution satisfy this requirement.

5.1. Application Structure 45

Requirement 2.4 Computational Environment Independence imposes some require-
ments on possible application structures. Since we cannot assume that the computer of the
person who constructed our geoscientific model is still available, we must at least move the
data source layer to a location that is under the control of our application. In all architectures,
that allow separation of the principal application layers between different applications, the
data source layer naturally resides in a central part of the application infrastructure. These
include client-server and micro-services-based architectures. For monolithic desktop applica-
tions, this requires additional functionality such as network share to move application data
to a central location. Fully distributed applications, by definition, have no central location to
for data storage. Depending on the application, all data may be distributed across some or
all instances of the application. On the one hand, this can make the application much more
resilient to data loss. On the other hand, it also makes it more complex to keep data in sync
between all application instances. In our opinion, this complexity is unnecessary for solving
the given task, and we do not consider a distributed application design to be appropriate for
our use case.

Requirement 2.5 Recording Changes also does not place direct requirements on the overall
software architecture. For the data storage layer of the application, it is necessary to allow
changes to the stored geoscientific models over time. This can be supported with all four
possible designs presented.

Table 5.2.: Possibility to implement Requirements based on application architecture. (+ Possible, – Not
Possible, 0 Not Relevant)

Requirement
Monolithic

Desktop
Client-
Server

Micro Service
Based

Fully
distributed

Store Information – + + +
Skilled Personnel 0 0 0 0
Integration of Other

Software

– – + –

Computation

Environment

Independence

– + + –

Recording Changes 0 0 0 0

We chose to implement our application with a micro-services-based architecture based on our
requirements. In addition, we chose to implement our user interface as a thin client based
on a single-page HTML application, as this makes the application independent of the client
environment.

Our domain layer consists of several parts. First, there are components that are responsible
for the executing construction steps. Due to the requirement 2.3 Integration of Other

Software, this component must interact with other software. In addition, the domain layer
provides functionality for comparing the results of construction processes. As described in
section 4.1.2, equality depends on the actual structure of the dataset. Therefore, the user
can provide custom equality definitions as described in design constraint 4.3 Customis-

able Equality Definition design constraint. Design constraint 4.8 Automatic Metadata

Extraction requires automatic extraction of metadata. Similar to the implementation of
equality functions, this component must provide a user-extensible mechanism for extracting
metadata, since we cannot assume much about data formats. In section 5.2 we present pos-
sible solutions for designing an extension mechanism, and we will identify a good solution

46 5. Design

for each use case. In addition, the domain layer must provide common functionality, such as
restricting access to stored data to authenticated users and forwarding information from the
data source layer to the presentation layer and vice versa.

Domain layer

❼ General Application

Logic

❼ Communication

Domain layer

❼ Metadata

Extraction

Domain layer

❼ Equality Checking

Domain layer

❼ Construction Step

Execution

Data source layer

❼ Geoscientific datasets

❼ Metadata

❼ Construction hypergraph

❼ User defined extensions

Presentation

❼ HTML user interface

Figure 5.2.: GeoHub application structure
GeoHub uses a micro-service architecture that splits the presentation layer and domain and data source

layers between different services. Each part of the domain layer is implemented by a different application.
Extensions for equality checking, metadata extraction and construction step execution are provides as

different services as part of the application backend.

Our data source layer needs to store different types of data, including our geoscientific
datasets, any existing metadata for those datasets, and the construction hypergraphs for
each construction workflow. Each type of data has different properties. Consequently, each
type of data must be handled differently. In addition, the data source layer must ensure that
all stored data is consistent at all times. This means that each of the other layers can only
access the data source layer in such a way that there is a consistent view from the stored data
of the different parts of the data source layer. Section 5.3 provides details about the actual
design of the data source layer.

This leads to the application structure shown in figure 5.2.

5.2. Extension Mechanisms 47

5.2. Extension Mechanisms

5.2.1. Overview

Our system must have several components where users can provide descriptions for performing
a particular action. We intend to use custom extensions to automatically extract metadata
from datasets, to check whether two datasets are considered to be equal, and to provide model-
specific construction steps. All of these components will be used by the backend components
of our service.

There are different strategies for implementing such an extension API (Application Program-
ming Interface). In the following section, we define the requirements for these extension API,
present some possible implementation variants, and compare them.

Each of our three use cases has slightly different requirements for such an extension system.

The metadata extraction API must take a dataset as argument and return a structured record
with all relevant metadata as response. We will refer to this extension API as the Metadata

Extraction API.

An API for comparing the equality of two datasets takes the two datasets as arguments and
returns a boolean value, indicating the equality of both datasets as a response. We will refer
to this extension API as the Dataset Equality API

An API for representing a construction step consumes a set of input datasets and their
corresponding metadata and produces an output dataset with its associated metadata. We
refer to this extension API as the Construction Step API.

Manero [81] lists four possible solutions for integrating extensions into an application:

1. A shared library based extension system via the Foreign Function Interface (FFI)
2. An Inter-process communication (IPC) based extension system
3. An extension system based on a scripting language
4. An extension system based on a WebAssembly Interface

We will evaluate these four extension systems based on the following criteria. The order of
the presented criteria corresponds to their importance for our system.

Requirement 5.1 (Security). GeoHub is designed to store potentially large amounts of data,
some of which is potentially confidential. Under no circumstances should a user-provided
extension allow users to bypass the applications (and operating system’s) established access
rules for stored data. This includes privilege escalation for user accounts, accessing data
without the proper permissions, or even manipulating data that cannot otherwise be accessed.
The most important question to answer here should be: “What could a malicious user do to
use the extension system to expand their otherwise limited privileges?”

Requirement 5.2 (Stability). Extensions, like any software, can misbehave. This includes
non-safety-critical problems such as memory leaks, extensive memory usage, or random aborts.
Of course, none of these behaviours is desired. An extension system needs to have built-in
measures to handle potentially misbehaving extensions before they can affect the stability of
the host application.

48 5. Design

Requirement 5.3 (Reusability). Some users may want to reuse other applications or parts
of their otherwise developed code bases as part of their extension. It is necessary to provide
users with a development environment they are familiar with to make extension development
as easy as possible. This includes the support of programming languages that users may
already be familiar with. Such a language choice must be combined with an extension API
that is designed to be used with existing applications or libraries.

Requirement 5.4 (Portability). The extension system should not impose any significant
barriers from the perspective of a potential user. This means that it should be as easy as
possible to build new extensions. Existing extensions should be as portable as possible in
terms of requirements for the runtime environment, the operating system and, more generally,
the hardware environment used. Or, to put it another way: “No extension should depend
on specific properties of the computational environment provided.”. This necessity is a direct
consequence of requirement 2.4 Computational Environment Independence.

Requirement 5.5 (Interoperability). The extension system should integrate easily with the
main application. It should be possible to seamlessly call functions provided by possible
extensions, get results back from the extensions, and transfer the corresponding data between
our application code and the extension implementation.

Requirement 5.6 (Performance). Since we want our system to handle potentially large
datasets, and each dataset might be processed by one or more user-provided extensions, the
performance of the user-provided extensions is an important consideration. No one likes
to wait for anything, so the extension system should allow users to write potentially fast
extensions. An important factor here is that it is possible to pass data to extension efficiently,
since for each request we need to pass a set of files to extract metadata. Another relevant
aspect in this context is that the tool or programming language used to develop extensions
must support the generation of efficient code in the first place.

5.2.2. A Shared Library Based Extension System

A shared library based extension system is a classical approach for extending applications
developed in a compiled language [82]. The extensions are provided by the user as a shared
library. These libraries are then loaded at runtime via dlopen [83, pp. 860–862] or similar
interfaces. Functions, defined as part of the extension API are then dynamically searched and
called via dlsym [83, pp. 862–865] or similar interfaces. Well-known examples of extension
systems based on this principle are the native extension system of PostgreSQL [84] and kernel
modules of the Linux kernel [85].

From the point of view of security (Requirement 5.1), an extension system based on shared
libraries must be considered problematic. Each extension is considered to be part of the
host application, which means that there are no barriers between the extension and the host
application. This means that all code of all extensions is executed in the same context of the
host application. Since our host application communicates with the client-side web interface
through a network interface, each extension can establish a network connection. Also, since
our host application stores data as part of the data source layer, any extension could access
and modify the same data. This, in turn, would mean that a malicious user could write an
extension that sends confidential datasets over the network or modifies or deletes valuable
datasets without the host application even noticing. A common workaround for this problem
is to restrict the registration of extensions to trusted users, as it is the case with PostgreSQL

5.2. Extension Mechanisms 49

or Linux. In our case, this would mean that only administrative users can register extensions,
since their access rights would already allow them to perform all of the above actions. Another
way to minimise this problem is to use existing sandbox mechanisms like Native Sandbox [86]
or Vx32 [87] to limit the actions an extension can perform. However, applying such mitigation
can significantly affect the performance of extensions.

As mentioned earlier, code loaded from shared libraries is considered part of the host applica-
tion. Roughly speaking, this means that if the extension leaks memory, the host application
also leaks that memory. If the extension allocates a large amount of memory, this is attributed
to the host application. All of this would not be a problem in itself, but shared libraries in
most cases contain code compiled into native machine code. For this reason, terminating a
misbehaving extension from the host application requires access to low-level machine details.
Freeing accidentally leaked resources is almost impossible there. In combination, this can
have a negative impact on the stability (Requirement 5.2) of the main application.

A shared library based extension system generally allows reuse of code (Requirement 5.2)
as long as the programming environment used by the existing code provides facilities for
building a shared library. This is true for most compiled languages such as C, C++, or
Fortran, but not for most languages that depend on an extensive language runtime, such as
Java or Python. Users therefore can develop extensions based on code in any language that
supports compilation to shared libraries. However, in most cases, this requires writing an
intermediate code layer to connect the existing code to the extension API. Consequently, it
is not possible to reuse entire applications, only libraries.

Reasoning about the portability (Requirement 5.4) of a shared library-based extension sys-
tem is a complex task. Shared libraries have different structures depending on the operating
system used. See, for example, the ELF specification [64] and the PE specification [65] for
Linux and Windows specific library formats. Furthermore, shared libraries target a specific
hardware platform such as AMD64 [88] or AARCH64 [89]. Moreover, a shared library may
depend on one of the extensions of the processor hardware platform to improve their perfor-
mance. Examples for AMD64 are AVX (Advanced Vector Extensions) or AVX2, an examples
for AARCH64 is SVE (Scalable Vector Extensions). As an additional dimension, there are
several calling conventions that describe how a symbol corresponding to a particular function
is named in a shared library and how that function must be called. These conventions are
referred to as ABI (Application Binary Interface). For example, they specify how a symbol
name specified in the source code should be converted to a symbol name that is part of the
final binary code, or what kind of values should be passed to a function in a particular CPU
register, and which CPU register is used by a function to return values. An ABI depends on
the processor architecture and the programming language used to develop the shared library
[90]. In addition, most ABIs depend on the actual compiler implementation [91], [92]. A
common choice to reduce this multidimensional compatibility matrix is to use an ABI based
on the C standard [93], since it describes a language- and compiler- independent ABI. A con-
sequence of such a design is that it limits the supported programming languages to languages
that provide an ABI based on the C standard. Overall, an extension system based on shared
libraries requires users to provide an extension that exactly matches several features of the
host application runtime environment. Moving the application installation to a new system
may change the requirements for extensions, as some of the above items may change. This
may result in incompatibilities with existing applications. This feature is in direct conflict
with the requirement 2.4 Computational Environment Independence

From the point of view of interoperability (Requirement 5.5), a shared library based exten-
sion system is easy to implement for a given platform. All major operating systems provide
an API for dynamically loading shared library. Therefore, implementing a abstraction layer

50 5. Design

based on these interfaces is possible as for example demonstrated by the Boost C++ library
[94].

The performance (Requirement 5.6) of an extension system based on shared libraries can
match the performance of the host application code because the extension is provided as a
compiled binary. However, security measures such as sandboxing the shared library may add
overhead by requiring additional code to be executed for certain operations.

5.2.3. Inter-Process Communication Based Extension System

One way to address the security aspects of an extension system based on shared libraries
is to move the extension to a separate process. This process can then run with limited ca-
pabilities using tools provided by the operating system, such as virtualisation, or advanced
sandboxing techniques. Consequently, the host application and the extension can no longer
integrate directly with each other. They must use an explicitly defined channel to communi-
cate with each other. This mechanism is called IPC (Inter-process communication) and can
use different interfaces. Common choices are network interfaces, file-based sockets, or simply
STDIN/OUT (Standard Input/Output Interface). Examples of extension systems based on
external applications are third-party cargo subcommands [95] and Pandoc filters [96]. There
are several ways to implement an extension system based on this principle. We present an
approach where the extension is wrapped in a Docker container [97], as this suggested by
Boettiger [98].

The security (Requirement 5.1) properties of an extension system based on external appli-
cations are superior to the properties of the approach based on shared libraries. The Docker
based approach in particular offers numerous advantages here, as it essentially packages each
extension application in its own separate virtual operating system. In addition, this ap-
proach allows to explicitly shares certain resources such as files or network sockets with the
extension.

Offloading extensions from the host application into separate applications improves the sta-

bility (Requirement 5.2) of the host application, as malfunctioning extensions can no longer
crash the host application. Furthermore, the Docker based solution has the additional benefit
of limiting the resources used by extension applications, such as main memory and CPU time.
This can further limit the impact of misbehaving extensions.

The Docker based approach makes it relatively easy to reuse existing applications (Require-
ment 5.3), because Docker images are designed to provide a runtime environment for almost
any Linux-supported software. However, since the extension application must somehow com-
municate with the main application, the extension itself or a proxy application must imple-
ment the communication protocol defined by the host application. Thus, it is usually not
possible to use existing software exclusively.

A Docker based extension system does not suffer from most of the system-specific portability

issues (Requirement 5.4) listed for the shared library based extension system. Since the host
application is not directly linked to the extension application, there is no need to consider
ABI, extension structure, or extension dependencies. This is accomplished by packaging
the extension into a Docker image. Extension dependencies on specific hardware platforms
remain because the extension is essentially deployed as a compiled application running in a
Linux virtual environment. Docker does not abstract the hardware itself.

5.2. Extension Mechanisms 51

An extension system based on external applications is more difficult to integrate into the
host application than the approach based on shared libraries (Requirement 5.5). The host ap-
plication must maintain the communication interface though which the extension application
can be controlled. In addition, a communication protocol must be implemented that enables
the use of all functionality provided by the extension application. In the case of a Docker
based approach, the communication interface is partially provided by the Docker API, which
allows controlling the environment of the external application.

Using external applications to implement an extension system has a larger impact on per-

formance than a shared library based extension system (Requirement 5.6). When switching
to another application, the operating system must perform a context switch. In addition,
it is no longer possible to share resources such as memory or file handles between the main
application and the extension application. All information needed by both applications must
be explicitly transported via IPC. This results in an additional performance overhead com-
pared to a shared library based system. Casalicchio and Perciballi [99] give an overview of
how large the performance overhead is when running applications in a Docker container com-
pared to running them natively. They conclude that CPU-bound workloads incur up to 10%
overhead and IO bound workloads include up to 30% overhead. These results can serve as
a lower bound for comparisons. However, the IPC mechanism used to control the extension
application probably causes additional overhead.

5.2.4. An Extension System Based on a Scripting Language

Developing an extension system based on scripting languages is a common choice. Languages
such as Lua [100], Python [101], or JavaScript [102] are often chosen. For example, gO-
cad, as one of the applications described in Chapter 3, provides a Python-based extension
mechanism.

Script languages are executed within an interpreter, which means they have access only to
the resources that the interpreter provides. Depending on the design and target audience of
a scripting language, this may allow restricted access to critical resources, or it may generally
allow access to all system resources. This property makes the security (Requirement 5.1) of
a script language based extension system dependent on the actual language choice. Typically,
common scripting languages such as Python or JavaScript allow by default access to various
system resources.

Depending on the actual implementation, it may be possible to control the execution of
extension code in detail. For example, some interpreters provide a feature that allows to
restrict the resource usage. In addition, most implementations provide an interface though
which the execution of running code can be interrupted. In conjunction with built-in resource
metering in the main application, this allows termination of extension implementations that
are not behaving correctly to ensure the stability of the main application (Requirement
5.2).

A scripting language based extension system allows users to reuse any code already written
in that specific language (Requirement 5.3). Depending on the language chosen, this may
include many relevant libraries. Unfortunately, most languages do not allow the reuse of code
written in languages other than the scripting language itself.

Scripting languages are designed to be portable across different operating systems and hard-
ware platforms (Requirement 5.4). These languages depend on an interpreter implementation
that translates the language itself or an intermediate representation into executable machine
code at runtime. Therefore, as long as a compatible interpreter is available, it is possible to

52 5. Design

execute the same code regardless of the hardware platform or operating system used. This
compatibility guarantee explicitly excludes platform-specific features and extensions.

The interoperability (Requirement 5.5) of a scripting language based extension system with
the host application depends on the actual language choice. Fortunately, for most languages
there exists some libraries that expose the actual language implementation behind a usable
API. For example, language implementations such as Lua [100] are explicitly designed for
integration into larger applications. On the other hand, JavaScript implementations such as
the V8 Engine [103] are designed for use in web browsers. Such a design makes integration
into different applications notoriously difficult.

Scripting languages are considered less performant than languages compiled to native code
[104] because the code is translated at runtime instead of translating it in advance ahead of
time and performing more complex optimisations there (Requirement 5.6).

5.2.5. An Extension System Based on a WebAssembly Interface

WebAssembly [105] (WASM) is an emerging technology originally developed as a compact
bytecode format for use in web browsers. In recent years, browser-independent runtimes
such as Wasmtime [106] and Wasmer [107] have been developed. They allow WebAssembly
bytecode to be executed outside of web browsers in a sandboxed environment. WASI [108], a
capability-based ABI design, enable interaction with system APIs. As with the shared library-
based approach, the host application calls specific functions of a user-supplied WebAssembly
binary.

From the point of view of security (Requirement 5.1), WASM-based interpreters are an
excellent solution. As the name implies, WASM is a technology with its roots in the web
development environment. Every part of this environment is concerned with the execution
of untrusted code. For example, any code executed by a web browser as part of a web page
must be considered untrusted code. With WASI, there is a fine-grained, capability-based
framework that allows bytecode interpreters to constrain the capabilities of code executed
within those interpreters. This framework makes it possible to restrict the capabilities of
extensions to pure computations only.

The WebAssembly code is executed by a runtime, similar to the scripting language based
solution. In addition, runtime systems usually provide the ability to control how many com-
putational resources an extension uses. See, for example, the Wasmer Metering Middleware
[109]. This functionality enables the termination of faulty extensions to ensure the stability

of the host application (Requirement 5.2).

An important motivation for the development the WebAssembly bytecode format was the
possibility to use this format as a compilation target for existing programming languages.
Consequently, this format can be used as a compilation target for existing compiled languages
such as C, C++, C#, Fortran, Rust, or Go. This allows reuse of code written in any of these
languages (Requirement 5.3). Similar to shared library-based extensions, it is only possible to
reuse code fragments. All these fragments must be integrated into the extension API defined
by the host application.

WebAssembly is designed to be portable across different operating systems and hardware
platforms, even when accessing system APIs via WASI. (Requirement 5.4)

From the point of view of interoperability with the host application (Requirement 5.5), a
system based on a WebAssembly interpreter is similarly complex to an extension approach
based on scripting languages. Standalone WebAssembly runtimes are provided as a library

5.2. Extension Mechanisms 53

that can be integrated into the host application. By using the functionality provided by these
runtime libraries, it is possible to parse, interpret and execute WebAssembly code as part
of the host application. Some technical work is required to pass the necessary data to the
extensions. This integration work requires converting data to and from the ABI defined by
the WebAssembly standard.

The Kripken team [110] claims that the performance of WASM-based bytecode (Require-
ment 5.6) is only up to two times slower than the same C code compiled into native optimised
machine code. In general, we expect some performance overhead with this approach, since
the extension system must translate the portable bytecode before executing it. However, we
expect this overhead to be less than the overhead caused by external application based and
scripting language based extension systems, based on the numbers cited.

5.2.6. Comparison

Table 5.3.: Comparison of the different approaches based on our criteria (+ Positive, – Negative, 0 Neutral)

shared library
based extension

system

Inter-process
communication based

extension system

Script language
based extension

system

WebAssembly
Interface based

extension system

Security BLOCKER + + +
Stability – + + +
Reusability + + 0 +
Portability – 0 + +
Interoperability + – 0 0
Performance + – 0 0

Table 5.3 gives an overview of our six criteria and our four extension systems. Overall, this
table does not give us a result that says: “This system is the best choice.” Each of the systems
presented has its strengths and weaknesses. Therefore, we have to decide on a case-by-case
basis which extension system is best suited for which use case in our application.

Based on our previous requirements list, we consider security and stability of the main
application as essential features. This rules out an extension system based on shared libraries
for all three extension APIs, as this approach has weaknesses in this respect.

The Metadata Extraction API and the Model Equality API must interact with datasets
in specific geoscientific file formats. However, both extension APIs require code written
explicitly for that specific task. This means that while users may want to reuse code, they
are unlikely to reuse entire applications. A scripting language based extension system and a
WebAssembly interface based extension system would allow this. We chose a WebAssembly
based extension system because it is likely to allow more code to be reused as code written
in multiple programming languages can be translated into WebAssembly bytecode. This is
illustrated by the higher Reusability rating of the WebAssembly based extension system in
table 5.3. Another potential advantage of using a WebAssembly based extension system is
that the extension can be used as part of the HTML single-page application and as part of
the various backend services.

Different requirements apply to the Construction Step API. The Requirement 2.3 Integra-

tion of Other Software explicitly states that it should be possible to reuse software. This
requirement means that an extension system based on inter-process communication is the

54 5. Design

only viable solution, since all other solutions do not allow the reuse of entire applications.
As discussed in section 5.2.3 one common solution to implement such a system uses Docker
images. These images allow software and all required dependencies to be combined into a
single environment definition.

Table 5.4 gives an overview of which extension mechanisms are chosen for which extension
API.

Table 5.4.: Chosen extension mechanisms per extension API

Extension API Chosen extension mechanism

Metadata Extraction API WebAssembly based
Dataset Equability API WebAssembly based
Construction Step API Inter-process based system (Docker)

5.3. Data Storage

5.3.1. Overview

In order to be able to repeat the construction process of a geoscientific model at a later point
in time, it is necessary to store various data required for the construction process. Figure 5.3
provides an overview of the different kinds of data stored by GeoHub. We need to keep the
following data:

• Geoscientific datasets processed and generated by the construction process
• Metadata for these geoscientific datasets
• An abstract representation of the construction hypergraph
• The environment for construction steps
• Implementation of user-defined equality definitions and metadata extractors

GeoHubGeoscientific datasets

Metadata

Construction hypergraph

Docker images

User defined extensions

Figure 5.3.: Different data kinds stored by GeoHub

Each type of data requires a different strategy to store it efficiently. In this section, we will
review different methods for storing this data. We will then evaluate each strategy based on
various criteria and select a reasonable approach for each kind of data.

Criterion 5.1 (Flexibility to store data of different sizes and structures). For all the dif-
ferent types of data listed above, it is important that our system can store and retrieve the
appropriated data. Depending on the exact nature of the data, this may require flexibility
to process fundamentally different data in terms of size and structure.

Criterion 5.2 (Added complexity). From the software architecture point of view, a pos-
sible solution should add as little complexity as possible to the overall system. Additional
complexity makes it more difficult to develop and maintain software.

5.3. Data Storage 55

Criterion 5.3 (Synchronisation guarantees). We design our system such that it can be
used by more than one user collaboratively. As consequence, we need to synchronise the
application state between different users. Any possible storage solution should make such
synchronisations as simple as possible.

5.3.2. Stored Data

5.3.2.1. Geoscientific Input and Intermediate Datasets

The design constraint 4.4 Store all input datasets directly implies that we need to store
geoscientific datasets that will be used as input to a construction step or that are produced
by a construction step. These are fundamental building blocks of geoscientific models.

A construction process may depend on different datasets stored in different file formats. Well
known examples include:

• Seismic measurement data, usually stored as “SEGY” [111]
• Remote sensing images (can be stored as GeoTiff [112], HDF5 [113])
• 3D geometric data (can be stored as GoCad ASCII file [42], VTK file [114])
• 2D geometric data (can be stored as ESRI Shapefile [115])
• Tabular data (can be stored as CSV [43], Excel File [116])

As a result, our application must store data that may differ fundamentally in size and struc-
ture. Design constraint 4.5 Opaque datasets explicitly states that we cannot assume any-
thing about size and structure of these datasets. We estimate that smaller datasets, such
as, the result of a small-scale geoelectric survey as presented in section 7.2, have a data size
in the order of several kilobytes. On the other hand, large-scale seismic surveys [117] can
quickly produce data in the order of several terabytes.

In addition to the different data formats and sizes, we also need to consider how our appli-
cation will use these data later. As shown in section 5.3.2.3, users can describe complete
construction processes involving external software programmes as a construction hypergraph
composed of construction steps. This means that the datasets must be provided in the
expected format for the corresponding steps of the construction process.

In summary, this means that criterion 5.1 flexibility to store data of different sizes and

structures is essential for storing geoscientific datasets.

5.3.2.2. Metadata Attached to Geoscientific Data

Table 5.5.: Example key value metadata schema

Key Value

Author Georg Semmler
Location 50.91°N, 13.33°E
Modified Tue, April 16 2020 16:43

Metadata is commonly referred to as data that describes other data. Common examples are
the author of a particular file, the date the file was last modified, or the location where a
record was recorded. A common theme here is that a subject such as author, modification

56 5. Design

date, or location is always combined with a concrete value. This inherent structure leads
directly to the natural representation of metadata as key-value pairs. Each key represents
the subject of the metadata, and each value represents the metadata itself. Table 5.5 contains
an example key-value set.

There are ongoing discussions about which metadata keys are important for which areas of
scientific research. Different competing standards list different sets of required metadata keys.
The following lists contain well-known examples:

• ISO 19115, Geographic Information – Metadata [118]
• ISO 19119, Geographic Information – Services [119]
• Inspire Guidelines [120]
• DCAT application profile for data portals in Europe [121]
• GeoDCAT-AP: A geospatial extension for the DCAT application profile for data portals

in Europe [122]
• USGIN Metadata Profile [123]

These standards describe which metadata must be stored for specific geoscientific datasets.
For this purpose, they define a list of required metadata keys. In addition, specifications can
be made for the structure of the associated values. For our example above, this could specify,
for example, that “Author” and “Modified” must be present, while “Location” is optional. In
addition, “Modified” must be a timestamp, while “Location” should represent a location in
the form of coordinates.

Based on the design constraint 4.6 Store Metadata , we want to store metadata as it is
provided by the user. Since we cannot know which metadata schema might be right for a
particular user, we need to provide a flexible solution that supports more than one schema.
This in turn means that the flexibility of the storage solution according to criterion 5.1 is
essential for storing metadata.

Should we store metadata in a different location than the geoscientific datasets, we must
ensure that both storage solutions are synchronised according to criterion 5.3.

The storage of metadata is an essential part of our application. For this reason, we can accept
additional complexity (Criterion 5.2) caused by additional data storage solutions.

5.3.2.3. Construction Hypergraph Representation

The data stored for the construction hypergraph differs from the geoscientific datasets and
their associated metadata in one crucial aspect: The format of the construction hypergraph
is defined by our application. In contrast, the format of the former two types of data can be
controlled by the user for the reasons described in the corresponding sections 5.3.2.1, 5.3.2.2.
This fact means that we know a lot of details about the structure of the construction hyper-
graph itself. Based on this knowledge about the structure of the construction hypergraph,
we can design the data format used such that the different parts of the application can use
it optimally. As described in section 4, a hypergraph is a data structure consisting of a set
of nodes connected by a set of hyperedges. A common representation of ordinary graphs are
incidence matrices. Given a directed acyclic graph 𝐺 with a set of nodes 𝑁 = {𝑁0, … , 𝑁𝑛}
and edges 𝐸 = {𝐸0, … , 𝐸𝑒} the corresponding incidence matrix 𝐴 = [𝑎𝑖𝑗] for 𝑖 ∈ 0, … , 𝑛 and
𝑗 ∈ 0, … , 𝑒 is defined as follows:

5.3. Data Storage 57

𝑎𝑖𝑗 =
⎧{
⎨{⎩

1, if 𝐸𝑗 = (𝑁𝑖, 𝑁𝑥) with 𝑥 ∈ 0, … , 𝑛
0, if 𝑁𝑖 ∉ 𝐸𝑗
−1, if 𝐸𝑗 = (𝑁𝑥, 𝑁𝑖) with 𝑥 ∈ 0, … , 𝑛

(5.1)

An additional constraint for regular graphs is that each column contains exactly two non-zero
entries. Also, one of the entries must be positive and represent the head of the edge, while
the other is negative and represent the tail of the edge. We can use this data structure to see
which edges a node belongs to by looking at the non-zero entries of the corresponding row of
the incidence matrix. Also, we can use this data structure to see which nodes are connected
by an edge by looking at the corresponding column of the incidence matrix.

meshing

Output dataset

Triangulated surface

Intermediate dataset

Projected borehole data

Intermediate dataset

Projected geological profiles

project project

Input dataset

Borehole data

Input dataset

Spatial context

Intermediate dataset

Digital geological profiles

digitising

Input dataset

Geological profiles

Figure 5.4.: Example construction hypergraph for a simplified geoscientific model construction

Table 5.6.: Incidence matrix belonging to the example construction hypergraph shown in figure 5.4

digitise project (1) project (2) meshing

Geological profiles -1 0 0 0
Digitised geological profiles 1 -1 0 0
Borehole data 0 0 -1 0
Spatial context 0 -1 -1 0
Projected borehole data 0 0 1 -1
Projected geological profiles 0 1 0 -1
Triangulated surface 0 0 0 1

We can easily generalise incidence matrices for acyclic directed hypergraphs by changing the
condition for non-zero entries to: Each column contains two or more non-zero entries, at least
one of which is positive and at least one of which is negative. Since we additionally require

58 5. Design

that each construction step (hyperedge in the construction graph) has exactly one result, we
can tighten this condition to require that each column contains exactly one positive value
and at least one negative value.

Figure 5.4 shows an example construction hypergraph. Table 5.6 contains the corresponding
incidence matrix.

An incidence matrix can describe the structure of a construction hypergraph. However, our
system must also store information about which geoscientific dataset is associated with a
given node and which construction steps correspond to a given edge in a given construction
hypergraph. In terms of data size, the representation of a construction graph is much smaller
than a single geoscientific dataset, consisting only of the incidence matrix and a small set of
references to the information stored elsewhere.

Since we can control the data structure used for construction hypergraphs, a possible data
storage solution does not require much flexibility in data size and storage (Criterion 5.1).
However, this component must work with the other parts of our system. Therefore, it is much
more important that a possible storage solution provides good support for synchronisation

as defined in criterion 5.3. Furthermore, to simplify the overall implementation, a storage
solution for this type of data should not add additional complexity (Criterion 5.2) to our
system. We should therefore prefer to use an existing data storage solution if possible.

5.3.2.4. Environment for Construction Steps

As described in section 5.2, we plan to use a Docker based system to execute construction
steps. This is necessary to meet the requirement 2.4 Computational Environment In-

dependence. Docker images provide a defined environment that can be used to execute
software.

1 FROM r-base

2

3 RUN apt update && \

4 DEBIAN_FRONTEND="noninteractive" apt install -y openjdk-11-jdk && \

5 ln -s /usr/lib/jvm/java-1.11.0-openjdk-amd64/ /usr/lib/jvm/default-java

6

7 RUN R -e "install.packages('xlsx')" && \

8 R -e "install.packages('zoo')" && \

9 R -e "install.packages('dplyr')" && \

10 R -e "install.packages('ggplot2')"

Listing 5.1.: Example Dockerfile from one of the Docker containers used as part of the case studies

Docker images are usually built with a Dockerfile as environment description in text form.
Listing 5.1 contains an example Dockerfile. Docker images are represented as file system
overlays [124], that can be used to combine multiple layers into a final image. Each layer is
created by executing a statement from the corresponding Dockerfile. Each layer is built on
top of all previous layers. Our example Dockerfile contains three statements, each of them
produces such a layer. The FROM statement defines a base layer. The two RUN statements both
create a new layer based on the result of the given command executed within the previous
layer. The Docker implementation defines the storage format of these images. Depending on
the software included in the produced image, the size of an image can quickly reach several
gigabytes.

5.3. Data Storage 59

Since the process of building a Docker is well described by Dockerfiles, it may seem rea-
sonable to save only the Dockerfile. These files are much smaller, with a size of a few
kilobytes. With this approach we would need to rebuild the Docker image each time that
particular container is used. There is a significant difference between this approach and the
approach of using stored Docker images directly. If only the Dockerfile is kept instead of
the already built Docker images, the time at which the image is built shifts from before it is
uploaded to the registry to each time a construction step dependent on that image is executed.
Commonly used statements in Dockerfiles install software, sometimes by downloading the
corresponding packages from the Internet. This is the case with both RUN statements in our
example Dockerfile. If we repeat the build process later, we may download a newer version
of the same software, leading to potential different model construction results. Another, even
worse result is that the build process might fail because the server hosting the software used
is no longer available. Both of these effects can result in construction processes that are
not reproducible. For this reason, we need to store the images themselves to achieve our
fundamental goal of providing reproducible construction processes.

A storage solution for storing Docker images does not need to be flexible according to
criterion 5.1, since Docker images have a single defined format. However, it must be syn-

chronised (Criterion 5.3) with the other parts of our application. Otherwise, a construction
step could refer to a Docker image that does not exist. Since the construction steps and their
environment are fundamental to our application, some additional complexity according to
criterion 5.2 caused by an independent storage solution is acceptable.

5.3.2.5. Implementation of User Defined Extensions

As already described by the design constraint 4.3 Customisable Equality Definition and
the design constraint 4.8 Automatic Metadata Extraction we need to deal with user-
defined extensions. Section 5.2 concludes that we will use a WebAssembly based extension
system for these use cases. These extensions need to be stored by the backend application
for later use.

The WebAssembly standard [105] describes two possible representations: Textual and Bi-
nary. It also states that the textual representation is intended for teaching and debugging
purposes, while the binary representation is intended for production use cases. Therefore, it
can be assumed that the extensions are provided as a file in the binary WebAssembly format.
WebAssembly code in binary form typically produces files ranging in size from kilobytes to
megabytes. This gives us a defined size and structure of data, that needs to be stored. Con-
sequently, we do not require flexibility according to criterion 5.1 in terms of data structure
and size.

Storing user-defined extensions is by no means the main goal of our application. As con-
sequence we want to avoid adding more complexity (Criterion 5.2) than necessary to the
overall system to store these type of data.

The outcome of geoscientific model constructions will depend on such extensions, as they pro-
vide definitions for equality and may extract necessary metadata for later usage. This means
that we must ensure that any concurrent access to the stored extensions is synchronised

according to criterion 5.3 using appropriate techniques either by the data storage solution
itself or by our application.

60 5. Design

5.3.3. Potential Solutions

5.3.3.1. Raw File Storage

We define a raw file storage as a storage solution that allows arbitrary data to be stored
as an opaque unit. Examples include the local file system, shared remote file systems, or
cloud-based solutions such as AWS S3 [53] and similar services. Each unit stored in a raw
file storage is identified by a unique identifier. This identifier can be used to access, modify,
or delete the corresponding unit. File systems use file paths as identifier, while cloud-based
solutions typically use specialised solutions such as Amazon’s distinct object identified [125].
We focus on using local file storage as a storage solution for our design. However, future
versions may replace the local file storage and use cloud-based solutions instead.

The raw file storage offers maximum flexibility in terms of the structure and size of the
stored data (Criterion 5.1).

Using the raw file system to store data does not add additional complexity according to
criterion 5.2 to our application, since a file system is already present in all environments.

File systems do not provide comprehensive guarantees for concurrent access to the same
data [126]. The details depend on the operating system, the file system used, and even the
underlying hardware. These dependencies make it difficult to develop an application that ab-
stracts across different environments. Consequently, the application itself must synchronise

concurrent accesses in a meaningful way according to criterion 5.3.

5.3.3.2. Relational Database Systems

Relational database systems are a popular choice for storing structured data. Implementa-
tions use interfaces based on dialects of the Structured Query Language (SQL) [127] to access
and manipulate stored data. Relational database systems offer several advantages compared
to raw file storage. One main advantage is the extensive guarantees for concurrent data
accesses [128]. Relational database systems are designed to store large amounts of structured
data. For concrete considerations, we focus on the open source database system PostgreSQL
[32], since it provides a well established mature SQL implementation for free.

PostgreSQL provides a flexible storage solution (Criterion 5.1). It is well suited in configu-
rations where the structure of the data is known in advance. In addition, PostgreSQL offers
data types such as JSONB [129] or HSTORE [130] for storing unstructured data. These types
assume a key-value based data structure, where keys and values are defined dynamically. In
our own experience [39], relational database systems provide good performance as long as
the stored information is accessed in small pieces. If larger contiguous chunks of data are
accessed, performance degrades.

Using a relational database system increases the overall complexity of the designed system
according to criterion 5.2. Using a PostgreSQL database to store data requires an additional
application as part of the application setup.

PostgreSQL provides extensive guarantees for synchronisation of data access. These guar-
antees apply to all data stored within the relational database system. However, as soon as
a relational database system is combined with other storage solutions, additional effort is
required to synchronise the data between the different solutions to fulfil criterion 5.3.

5.3. Data Storage 61

5.3.3.3. NoSQL Document Stores

The commonality of NoSQL document storage systems is not so much a standardised design
approach as a different design compared to relational databases. Consequently, different
implementations offer different features and trade-offs. In the following considerations, we
will focus on the open source document database MongoDB [131]. The MongoDB project
describes the database as a document-based database system. The term “Document” refers
to a data structure that contains a structured representation of information. A document-
based database system is a database system that addresses a set of such documents with a
unique key. MongoDB itself uses a document structure derived form JSON. This approach
enables the storage of structurally different documents in MongoDB.

MongoDB provides the flexibility to store data with unknown internal structure (Criterion
5.1). Each document can contain its own set of key-value pairs. The size of a document
stored in MongoDB is limited to 16 megabytes [132].

The use of MongoDB increases the overall complexity according to criterion 5.2 of the
planned system, since an additional component is added.

In theory, MongoDB provides guarantees for synchronisation of concurrent data accesses
according to criterion 5.3. Is practice, however, these guarantees have proven to be insufficient
on several occasions [133]–[136].

5.3.3.4. Neo4J

Neo4J [137] is the leading platform for managing graph-based datasets in a database. It
provides a custom query language called Cypher [138] for querying, filtering and modifying
graph-based datasets. In addition, Robinson et. al. [139, p. 54] show that it is possible to
store complex dependencies and even hypergraphs in a Neo4j database.

Neo4J is a specialised solution for storing graph-based datasets. This fact limits the flex-

ibility of storing arbitrary structured data to such graph-based data structures (Criterion
5.1).

As with previous database systems, adding Neo4J as additional component to our system
increases the overall complexity according to criterion 5.2.

As a database, Neo4j provides similar guarantees for concurrent data access as PostgreSQL
[139, p. 162]. These guarantees allow the synchronisation of concurrent access to data
stored in Neo4J. Similar to a PostgreSQL based storage solution additional synchronisation
according to criterion 5.3 may be required to keep data consistent between different storage
locations.

5.3.3.5. Docker Image Repository

Docker registries are specialised software that store immutable Docker image instances. There
are several open source implementations such as Gitlab’s Container Registry [140] or the self-
hosted Docker Hub’s version [141]. Docker registries use a name and version tag to identify
stored images. The image name and version tag allow the same environment to be started
again as long as the image is stored in the registry.

62 5. Design

Docker image repositories are designed for a single use case: Storing immutable instances of
existing Docker images. Unfortunately, this limits the flexibility according to criterion 5.1
for storing any other type of data, as it only supports the storage of Docker images.

Using a Docker image repository increases the overall complexity of the designed system
because it introduces another component (Criterion 5.2).

5.3.3.6. Comparison

Table 5.7 gives an overview of the different requirements for the data to be stored. Table 5.8
summarises how well the various solutions can meet specific requirements.

Table 5.7.: Required criteria per data kind (+ Required, – Not Required, 0 As Required, x Avoid if Possible)

flexibility complexity synchronisation

Geoscientific datasets + 0 +
Metadata + 0 +
Construction hypergraph – x +
Construction step environment – x +
User defined extensions – x +

Table 5.8.: Criteria per storage solution (+ Positive, – Negative, 0 Neutral)

flexibility complexity synchronisation

File Storage + 0 –
PostgreSQL + – +
MongoDB + – 0
Neo4J 0 – +
Docker registry – – 0

Storing geoscientific datasets requires a high degree of flexibility in terms of data structure
and size. Table 5.8 indicates that only the local file storage, PostgreSQL, and MongoDB
provide the required flexibility. MongoDB limits the maximum document size to 16 megabytes
[132], which is too small for general geoscientific datasets. Given previous experiences [39]
with storing large amounts of data outside of relational database systems, we choose file
storage as the solution for storing geoscientific datasets.

Metadata also need a flexible storage solution. However, unlike the geoscientific datasets
themselves, they only require flexibility in terms of structure, not data size. The relatively
small size makes MongoDB and PostgreSQL an excellent choice for storing this type of data.
We chose PostgreSQL as the data storage solution for metadata because it provides more
comprehensive guarantees of data correctness and synchronised data access than MongoDB.

Our application controls the data structure used by the construction hypergraph. Conse-
quently, our storage solution does not need to be flexible with respect to the stored data as
long as it supports the storage of the appropriate data structure. All storage solutions expect
Docker registries support storing the necessary data structures. Since we do not want to
add more complexity to our application than necessary, we will reuse one of the existing data
storage solutions here. Both PostgreSQL and the local file storage can store the required data
structures. The required amount of data required to be stored per construction hypergraph

5.3. Data Storage 63

is relatively small. We chose PostgreSQL as storage solution for the construction hypergraph,
following a similar reasoning as for the storage of metadata

Storing the user-defined environment to execute specific construction steps requires storing
Docker images. These images have a well-defined structure. Docker image registries provide
specialised software to store these images without re-implementing the needed data structures.
For this reason, using an existing Docker image registry implementation is a suitable solution
for storing Docker images.

User-defined extensions are provided in the binary WebAssembly format. Since we do not
want to add more complexity to our application than necessary, we will reuse one of the exist-
ing data storage solutions here. Docker image registries are designed to store docker images,
which means they cannot be used to store WebAssembly extensions. Both PostgreSQL and
the local file storage solution can store user-provided extensions as binary objects. Given the
potential size and the requirement to always load a full extension at once, we decided to reuse
the local file storage based on the same arguments for geoscientific datasets.

Table 5.9 summarises which storage solution is selected for which type of data.

Table 5.9.: Chosen Storage solutions for each data kind

Data Kind Storage Solution

Geoscientific dataset File Storage
Metadata PostgreSQL
Construction hypergraph PostgreSQL
Construction step environment Docker Image Registry
User defined extensions File Storage

5.3.4. Model Versioning

Requirement 2.5 Recording changes states that our geoscientific model may change over
time. In the context of this section, we want to evaluate which parts of the information stored
in our application can change over time in which ways. For this, we consider the same five
different types of data as used in the previous section:

• Geoscientific datasets
• Metadata for the geoscientific datasets
• Abstract representation of the construction hypergraph
• Environment for construction steps.
• Implementation of user-provided equality definitions and metadata extractors

We look at two different ways how information can change.

5.3.4.1. Construction Hypergraph Versioning

One axis of change is to change the construction process of the geoscientific model itself.
As long as users improve the geoscientific model itself, they will also change the methods
used to construct the model, for example, by replacing a naive mathematical inversion with
a more advanced implementation that produces better results. These changes translate di-
rectly into changes to specific construction steps, which might also modify the environment
and tools used in these steps in terms of stored information. The newer method may have

64 5. Design

different requirements, such as a newer Matlab version. Such different tooling requirements
for construction steps will result in an updated or wholly changed version of the correspond-
ing Docker image. As described in section 5.3.2.4, Docker repositories already include a
versioning mechanism that addresses different versions of the same image using an identifier.
This mechanism implies that each construction step must refer to a specific version of the
environment in which it is to be executed.

Another way to improve the geoscientific model is to better combine the available information.
An example would be a precipitation correction based on an additional data set of historical
precipitation data. This type of improvement changes the overall structure of the construction
graph. We chose to summarise both types of changes together as changes to the construction
process. We will refer to specific instances on this axis of changes as version. A version
concerns the construction hypergraph itself and the specific environments used to execute
the construction steps. Our relational database system stores references to both as part
of different tables. All stored information must be addressable by a version identifier that
allows tracking changes in information over time. We realise this identifier by a monotonically
increasing sequence of versions. In section 6.2.1.1 we present the exact integration into our
database schema.

Definition 5.1 (Version). A version tracks changes to the construction hypergraph, individ-
ual construction steps and the environment used by these construction steps.

5.3.4.2. Construction Hypergraph Realisation Versioning

We consider changes to the datasets used as the second axis of change for the construction
process. A prominent example is the replacement of an erroneous dataset with a corrected
version. These changes are different from changes to the construction graph itself, as they can
also affect outdated versions of the construction graph. For example, it is conceivable that
after viewing a constructed model, one may notice some errors and correct them later. Since
model construction can take some time, it is possible that other users have already continued
to evolve the construction process itself, for example, by adding more construction steps.
Changing the input dataset to a corrected version and then repeating the construction is a
simple way to correct an incorrect geoscientific model. The new realisation of the construction
process builds an entirely separate instance of the geoscientific model, including its own
reproduction check. This workflow is particular useful when a completely different set of
input data is used, as it allows the same construction process to be applied to different
situations. This approach can save significant time in cases where the same measurements
and subsequent complex modelling are applied to different study areas.

We will refer to specific instances on this axis of changes as revision. This axis of changes
concerns the geoscientific datasets and their associated metadata. A particular revision al-
ways refers to a specific version of the construction hypergraph. Nevertheless, a single version
of the construction hypergraph can be used to construct different revisions of the underlying
geoscientific model with changed input data. All information stored on geoscientific datasets
and their metadata must be labelled with both a version and a corresponding revision. Sim-
ilar to version, a monotonically increasing sequence is used to represent revisions and their
inherited order. Specific revisions can then be used to address metadata stored in the rela-
tional database or to look up references to geoscientific datasets stored in the file system by
appropriately tagging the corresponding reference in the relational database. We will present
the exact integration into our database schema in section 6.2.1.1.

5.3. Data Storage 65

Definition 5.2 (Revision). A revision tracks changes to datasets used to create construction
graph realisation. Each revision always refers to a particular realisation of a geoscientific
model of a known version of a particular construction hypergraph.

5.3.5. Transactional security

5.3.5.1. Transactional Safety for Non-Concurrent Accesses

As mentioned earlier, we need to provide mechanisms to ensure data integrity. These mecha-
nisms are important for cases where data is used together but stored in different data storage
solutions. In the context of this section, we will focus specifically on the interaction be-
tween data stored in the relational database system and data stored in the file system. This
primarily concerns the interaction between the construction hypergraph and the attached
geoscientific datasets. With respect to versioning of data, we will discuss revisions, as they
specifically change the dependency between the construction hypergraph and attached geo-
scientific datasets. However, the versions themselves are less relevant, as they only change
the data stored in the relational database. There, data consistency can be ensured by the
database system itself. For our examples, let’s assume that there are two users, Alice and
Bob. Both are working on the same construction process, on the same dataset at the same
time. It is assumed that Alice’s work starts a little bit earlier. Using these two users, we
will illustrate some concurrent access situations that can occur and that must be handled. In
principle, there are four possible basic operations that each user can perform:

1. Create a dataset
2. Load an existing dataset
3. Modify an existing dataset
4. Delete an existing dataset

Here, a dataset refers to a geoscientific dataset associated with a known version of the con-
struction hypergraph. Thus, each operation creates a new revision for a given construction
hypergraph with a stable version. Each operation can access data stored in the relational
database system or the file storage. Relational database systems provide extensive data
consistency guarantees [142]. File systems, on the other hand, generally do not provide con-
sistency guarantees [126], [143]. Since we plan to store data in both places, we need to ensure
they agree on the same application state. As shown by Semmler [39], a promising approach
is to use the relational database system as the central source of truth. This approach can be
briefly summarised as follows: If a file reference exists in the relational database system, it
is assumed to exist in the file storage as well. If it does not exist in the relational database
system, it does not exist at all for the system. This means that the main application must
ensure that only references to files that are actually written to the file store are inserted into
the relational database. In addition, the backend application must have exclusive control
over the file location, which explicitly means that no other application modifies this data.
In the following sections, we present a simplified sequence of operations for each possible
basic operation. We assume an access pattern to both storage locations, file system, and
relational database. Implementation details such as the actual payload of the operations are
intentionally omitted to simplify the presentation. As a general strategy, we use a copy-on-
write approach [144]. That is, we always write new data to a new location and never modify
existing data. An update would then look like writing the updated data to a new location
while leaving the old data in the old location. This approach ensures that references to stored
files never change and therefore cannot be invalidated by an operation.

66 5. Design

In the next subsections, we will present the exact sequence of actions for each basic operation.
After that we will focus on different combinations of simultaneous operations.

5.3.5.1.1. Create Operations

Storing a new construction process in GeoHub involves two steps:

1. Design the corresponding construction hypergraph
2. Creating a new realisation of the model by uploading a new set of input data

In the first step, several construction steps are combined into a construction hypergraph.
The backend application then stores this hypergraph in a new version. This operation only
involves the relational database system, since the construction hypergraph is stored there.
The hypergraph itself can be referenced via a newly created version identifier.

Alice

Alice

Backend

Backend

Relational Database

Relational Database

File Storage

File Storage

Construction Step Executor

Construction Step Executor

1 Upload input data!

2 Write dataset!

3 Write metadata!

4 Write file reference as new revision!

5 Return sucess

for each construction step

6 Construction step + input datasets

7 Execution log

8 Write execution log

9 Produced dataset

10 Write produced dataset

11 Write file reference

Figure 5.5.: Insert a single dataset
This sequence diagram shows how first the input datasets are written to the corresponding datastorage

location. Then, each affected construction step is executed to generate the corresponding intermediate and
output datasets

The second step includes other parts of our system. Figure 5.5 contains an example sequence
for creating a new realisation of the stored construction process. Our user Alice sends a set of
input datasets to the backend application (Step 1). This application now begins to distribute
the data to the various storage solutions. First, the actual geoscientific datasets are written to
the file storage (Step 2). Then, the backend application inserts the metadata and references
to the geoscientific datasets stored in the file system into the relational database system (Step
3). The backend application creates a new revision to reference this data later (Step 4). Now,
this stored data is available to other users. The backend application now reports the success
back to Alice (Step 5).

After that, the backend-application starts executing construction steps depending on the
provided input data. For this purpose, the construction step description and all associated

5.3. Data Storage 67

input data are sent to an executor (Step 6). The executor performs each action described in
the construction step description. In addition, any command line output generated during
the execution of the construction step is uploaded to the backend application and stored in
the relational database (Step 7 + 8). This command line log can be used later for debugging
purposes. The executor uploads the newly generated geoscientific dataset to the backend
application once the execution of the construction step is complete (Step 9). The storage of
this data follows a similar strategy as for the input datasets. The backend application first
stores the actual geoscientific datasets on the file system (Step 10). Then, the metadata and
references to the geoscientific datasets are inserted into the relational database system (Step
11). Finally, this data is appended to the old revision created in step 4 instead of using a
new revision. From this point on, the data becomes available to any user.

Scheduled Started Completed

Failed

Figure 5.6.: State transition diagram for construction step states
The execution of a construction step always starts in the Scheduled state. As soon as the executor starts

executing a construction step, the state changes to Started. Depending on the result of this execution, the
state changes to Completed if the execution was successful or to Failed if the execution was aborted due to

errors.

The backend application repeats this process for each construction step. This procedure
requires that each construction step is performed exactly once. Otherwise, this process would
generate duplicated data. We use the relational database system to ensure this, by keeping
track of the state of each construction step for a given revision of a construction hypergraph.
Figure 5.6 contains the state transition diagram for the various states of the construction
steps. This tracking includes the states Scheduled, to indicate that an operation is ready
to be executed, Started, to indicate that an execution has started, Completed, to indicate
that an construction step execution has been completed, and Failed to indicate that an
construction step execution has failed.

5.3.5.1.2. Load Operations

Figure 5.7 shows an example download procedure. Our user Alice requests an existing geo-
scientific model from the backend application (Step 1). The backend application receives
a request with information about which dataset at which version and revision is requested.
For both the revision and version a set of unique identifiers is used. The processing of a
download request is divided into two phases. First, all requested metadata and references
ot all attached datasets is loaded from the relational database system (Step 2 + 3). The
backend application then uses these references in step 4 to load the linked records from the
file storage. This data is returned to our user Alice in step 5 and 6. No stored data or version
or revision identifier are changed in this process. Since the files stored in the file storage are
supposed to be immutable once references are inserted into the relational database system,
we assume that this operation cannot fail for data consistency reasons. For a complete list of
potentially conflicting access patterns see section 5.3.5.1.5 on concurrent data access.

68 5. Design

Alice

Alice

Backend

Backend

Relational Database

Relational Database

File Storage

File Storage

Construction Step Executor

Construction Step Executor

1 Load dataset!

2 Load metadata!

3 Metadata

4 Load attached dataset!

5 Attached dataset

6 Return dataset

Figure 5.7.: Load a dataset
This sequence diagram shows how datasets are loaded in two steps. The first step loads the required

metadata from the relational database system, while the second step loads the actual geoscientific dataset
from the file storage

5.3.5.1.3. Update Operations

There are two different ways to update the data stored in our system. Alice could update
the structure of the construction hypergraph, or she could upload new input datasets for the
construction process and request to construct a new realisation of the stored geoscientific
model using the existing construction process and new data.

For the first update case, a list of changes to the construction hypergraph and some unique
identifiers, containing information about the construction graph to update, are sent to the
backend application. Since the construction hypergraph is versioned, the backend application
uses the provided information to create a new version of the construction hypergraph in the
relational database. Older versions of the hypergraph stored in the database are not changed
by this process. Instead, a new version of the construction hypergraph is created. The new
version identifier identifies this new database entry. This type of operation only occurs in the
relational database by appending new data, so the relational database system itself ensures
data integrity. Data stored in the file system is not affected by this operation, since this
operation does not affect file references or file storage. Since existing data, which is identified
by an existing version and revision identifier, is not changed, it remains accessible.

The second update case assumes that a new set of input data is sent to the backend application.
This data contains an updated version of a stored input dataset and a set of identifiers to
determine the correct construction workflow. Figure 5.8 shows an example of such an update
request. Conceptually, this involves the creation of a new realisation of the stored geoscientific
model. This means that the process used is very similar to the creation process described
in section 5.3.5.1.1. The only notable difference between an insertion request and an update
request is that the update request does not require a complete set of input datasets. Instead,
it can use data that has already been uploaded. At the end, the backend generates a new
revision of the stored geoscientific model. The new data becomes available incrementally
using the existing revision identifier.

5.3. Data Storage 69

Alice

Alice

Backend

Backend

Relational Database

Relational Database

File Storage

File Storage

Construction Step Executor

Construction Step Executor

1 Upload updated input data!

2 Write dataset!

3 Write metadata!

4 Write file reference as new revision!

5 Return sucess

for each construction step

6 Construction step + input datasets

7 Execution log

8 Write execution log

9 Produced dataset

10 Write produced dataset

11 Write file reference

Figure 5.8.: Update a dataset
This sequence diagram shows that similar to a dataset creation first the input datasets are written to the

corresponding datastorage location. then, each affected construction step is executed to produce the
corresponding intermediate and output datasets. The notable difference to a dataset creation is that only a

part of input datasets is needed.

5.3.5.1.4. Delete Operations

Depending on the use case, there are different delete operations. For example, let’s say that
Bob is a research assistant while Alice is an administrative user. Bob should be able to say
something like: “I do not need this construction workflow anymore, so I want to remove it!”
In theory, this could be done by actually deleting all the underlying data. Since our system
aims to provide a platform for reproducible models, this seems to be a less than optimal
solution, since this data would disappear in such a case. A better solution would be to mark
this data as deleted in the application so that an administrative user like Alice could recover
the data. To implement such a solution, the relational database needs to keep track of which
data is marked as deleted and which is not. This is accomplished by an adding an additional
field to the corresponding data tables. Data marked as deleted is not used by any other
operations. Thus, from the point of view of such operation, this data does not exist. A delete
operation affects only the relational database system, whose data integrity is guaranteed by
the relational database itself.

A second use case for deleting data comes from our administrative user Alice. She might be
required to remove data from the database because she is externally required to do so, e.g.,
by regulatory requirements to extract data or to free up hard disk space by removing unused
data. From a conceptual perspective, such hard deletions should be avoided at all costs in
a system intended to store reproducible geoscientific models. Since there are potential cases
where such an operation may be required, our conceptual transaction model must be able to
perform such an operation. Figure 5.9 shows an example sequence of a request, to remove
data from the system. In the first step the backend application receives a request to delete a
specific dataset or construction workflow in the first step. This request contains information
about which data at which version and revision is to be deleted. The backend application

70 5. Design

then queries the relational database system loading the references for all data that needs to be
removed from the file system (Step 2). Subsequent steps remove the corresponding references
(Step 4) and, if desired, the entire construction workflow from the relational database system.
Both operations should included in a database level transaction to ensure data integrity.
Removing these references prevents future request from accessing this data. The final step is
to remove all files from the previously loaded list from the file storage (Step 5). The backend
application must ensure that there is no ongoing read access to these files. If this is not the
case, it must postpone the actual deletion of these files until these requests are finished.

Alice

Alice

Backend

Backend

Relational Database

Relational Database

File Storage

File Storage

Construction Step Executor

Construction Step Executor

1 Delete data set

2 Load data references!

3 Data references

4 Delete data references!

5 Delete attached datasets!

6 Return success message

Figure 5.9.: Delete a dataset
This sequence diagram shows the multi step procedure used for performing a hard delete operation. First,

the references to all datasets to be deleted are loaded from the relational database. In the next step, this data
is removed from the relational database. Finally, the corresponding data is removed from the file storage.

5.3.5.1.5. Transactional Safety for Concurrent Data Accesses

This section will explain how GeoHub handles competing access patterns to the same datasets.
Table 5.10 provides a complete list of cases that can occur when two parties attempt to execute
an operation on the same dataset. For all cases, we assume that Alice’s request is received
by the backend application just before Bob’s request arrives, but Bob’s request arrives before
Alice’s request completes. In the next sections, we will classify these cases and present ways to
prevent data corruption in all of these cases. For modifying operations we assume operations
that create a new revision. For deleting operations we assume operations that remove all
data. In the simpler versions of those operations only need to access the relational database
system, so all potential integrity problems will be handled there.

Table 5.10.: Cases considered for concurrent data access patterns

Alice/Bob Create Load Modify Delete

Create 𝐶𝐴𝐶𝐵 𝐶𝐴⋆𝐵 𝐶𝐴⋆𝐵 𝐶𝐴⋆𝐵
Load ⋆𝐴𝐶𝐵 𝐿𝐴𝐿𝐵 𝐿𝐴𝑀𝐵 𝐿𝐴𝐷𝐵
Modify ⋆𝐴𝐶𝐵 𝑀𝐴𝐿𝐵 𝑀𝐴𝑀𝐵 𝑀𝐴𝐷𝐵
Delete ⋆𝐴𝐶𝐵 𝐷𝐴⋆𝐵 𝐷𝐴⋆𝐵 𝐷𝐴⋆𝐵

5.3. Data Storage 71

Case 𝐶𝐴𝐶𝐵

For the case 𝐶𝐴𝐶𝐵, Alice and Bob are trying to create a construction workflow. From a data
consistency perspective, it is perfectly fine to create two separate workflow instances. This
allows each request to be handled as described in paragraph 5.3.5.1.1 for a single operation.
A separate version and revision identifier can be used later to refer to both workflows.

Case 𝐶𝐴⋆𝐵

The case 𝐶𝐴⋆𝐵 describes situations where Alice creates a construction workflow realisation
and Bob tries to do something with that very realisation. As shown in Figure 5.5, each insert
request first writes data to the file storage and then publishes references to that data in the
relational database system. Figure 5.7 shows how a load request first obtains the necessary
data from the relational database system that contains dataset references, and then accesses
the file storage to load the actual datasets. Figure 5.10 shows how the backend application
might handle the situation described for a load request. Here, Bob’s read operation begins
before Alice’s write request is completed. Therefore, the relational database does not yet
contain information about the data Alice uploads to the system. As a result, the backend
application reports that no data corresponding to Bob’s request was found. If the request is
received from Bob while the backend application is running the construction workflow, the
backend application can only return access to fully written datasets. We assume that this case
is the same whether Bob is trying to load, update, or delete the record, since each of these
operations requires that the appropriate dataset reference stored in the relational database is
accessed first. These references are not available in the relational database system until the
corresponding data has been completely written to the file system.

Case ⋆𝐴𝐶𝐵

The case ⋆𝐴𝐶𝐵 describes a similar situation to the case 𝐶𝐴⋆𝐵 but with a slightly different
timing. Alice is trying to access datasets in the backend application before Bob has created
those datasets. From the backend perspective, this case is no different from other cases where
a user attempts to access a non existing dataset, resulting in a “dataset not found” error being
returned. Using similar reasoning as in the case 𝐶𝐴⋆𝐵, we assume here that this case is the
same regardless whether Alice attempts to load, update, or delete the dataset, since each
of these operations requires first accessing the appropriate file references in the relational
database system. These references are not found until Bob’s request is complete.

Case 𝐿𝐴𝐿𝐵

The case 𝐿𝐴𝐿𝐵 describes a situation where Alice and Bob try to load the same dataset. From
a data integrity perspective, such an operation is unproblematic because neither operation
modifies existing data. Therefore, we can handle each of these requests independently, as
described in paragraph 5.3.5.1.2.

Case 𝑀𝐴𝐿𝐵

The case 𝑀𝐴𝐿𝐵 describes a situation where Alice changes a dataset while Bob requests the
corresponding dataset. As shown in Figure 5.8, an update request first writes data to the
file storage and then publishes references to that data in the relational database system. In
contrast, Figure 5.7 shows that a load request performs these operations in reverse order. If
Bob requests the new revision of data that Alice is uploading, this operation order means

72 5. Design

Backend

Alice

Alice

Bob

Bob

Backend (Alice)

Backend (Alice)

Backend (Bob)

Backend (Bob)

Relational Database

Relational Database

File Storage

File Storage

Construction Step Executor

Construction Step Executor

1 Upload input data!

2 Load dataset!

3 Write dataset!

4 Try to load file reference!

5 Write metadata!

6 File references not found

7 Write file reference as new revision

8 Return data not found error

9 Return sucess

for each construction step

10 Construction step + input datasets

11 Execution log

12 Write execution log

13 Produced dataset

14 Write produced dataset

15 Write file reference

Figure 5.10.: Simultaneous access to a newly created dataset
This sequence diagram shows how GeoHub handles two simultaneous accesses from Alice (creating a new

dataset) and Bob (loading this dataset). The sequence diagram splits the backend service into two instances
to clarify which operations belong to which user requests.

5.3. Data Storage 73

that Bob’s request cannot see that data because Alice request has not been yet completed.
Therefore, this case is treated similarly to the case 𝐶𝐴⋆𝐵.

Case 𝐿𝐴𝑀𝐵

The case 𝐿𝐴𝑀𝐵 describes a similar situation where Bob starts an update after Alice has re-
quested a specific dataset in a particular revision. Depending on the exact revision requested,
either a “revision not found error” (for Bob’s new revision) or the data for the current revision
(for the last revision before Bob’s update) is returned. The first variant follows the reasoning
of the case ⋆𝐴𝐶𝐵. In contrast, the second variant is based on the “Copy on Write” strategy,
where the existing datasets are not changed, but a new dataset is written.

Backend

Alice

Alice

Bob

Bob

Backend (Alice)

Backend (Alice)

Backend (Bob)

Backend (Bob)

Relational Database

Relational Database

File Storage

File Storage

Server

Server

1 Delete dataset!

2 Load file references!

3 File references

4 Load dataset

5 Delete file references!

6 Load file references!

7 Delete attached data

8 File references not found

9 Return no data found error

10 Return success message

Figure 5.11.: Simultaneous access to a deleted dataset
This sequence diagram shows how GeoHub processes two simultaneous accesses by Alice (hard deleting a

dataset) and Bob (loading this dataset). The sequence diagram splits the backend service into two instances
to clarify which operations belong to which user requests.

Case 𝐷𝐴⋆𝐵

Case 𝐷𝐴⋆𝐵 describes a case where Alice deletes an existing dataset while Bob attempts
to load, modify, or delete the dataset. Figure 5.11 shows an example timeline of events
where Bob attempts to load an existing dataset. The request from Alice is received first.
The backend application then reads the required metadata from the relational database and
removes the references. This sequence of operations is wrapped in a database transaction
to ensure integrity. Therefore, at the time Bob’s request is received, the relational database
does not contain any references to the data. Bob’s request is then answered with a “no data
found” error. In the meantime, the remaining data can be removed from the file system
because the backend application has previously received a list of references to this data from
the relational database system. We assume that this case is the same whether Bob is trying
to load, modify, or delete the dataset because each of those operations accesses the metadata
first.

74 5. Design

Case 𝐿𝐴𝐷𝐵

Case 𝐿𝐴𝐷𝐵 describes the variant where Alice tries to load a record while Bob removes it.
Since the backend application receives Alice’s request slightly earlier than Bob’s, it will load
the data. After receiving Bob’s request, the backend application could go ahead and start
deleting the corresponding dataset, but that might conflict with Alice’s load request. The
backend application could remove files that are required to complete Alice’s request. As a
result, the backend application must sort the operations accordingly. In the first step, all
information can be removed from the relational database system because Alice’s request has
already loaded it. After this step, the dataset are not longer available for future request.
Next, the backend application must ensure that Alice’s request is completed before removing
the stored files from the file storage. Once the request from Alice is complete, the backend
application removes the attached files from the file storage.

Case 𝑀𝐴𝐷𝐵

Case 𝑀𝐴𝐷𝐵 describes the variant where Alice tries to update a dataset while Bob removes
it. Since the backend application receives Alice’s request slightly earlier than Bob’s, it starts
the update operation as described in the paragraph 5.3.5.1.3. If the backend application
now removes the dataset as described in paragraph 5.3.5.1.4, the two operations collide with
each other. Alice’s request inserts new data, while Bob’s request has already deleted the
parent version of the dataset. This result in a defective dataset being left behind. So instead
of deleting directly, the backend application must first mark the dataset as inaccessible, for
example, by using the corresponding is_deleted flag described in paragraph 5.3.5.1.4. This
flag ensures that no other operation can access or modify the current dataset anymore. After
that, the delete operation is postponed until Alice’s update is complete. Once this is the case,
the backend application uses the delete operation described in paragraph 5.3.5.1.4.

Case 𝑀𝐴𝑀𝐵

The case 𝑀𝐴𝑀𝐵 describes the case where both Alice and Bob try to modify the same dataset.
From a data integrity perspective, this case is quite simple to solve. The backend application
first receives a request from Alice to update a particular dataset, and then receives a similar
request from Bob, but with different data. Since the request from Alice arrives first, it will
get a new revision first. Then the update sequence shown in figure 5.8 is used to update the
dataset. Bob’s request will be processed in the same way, but his update gets a later/newer
revision identifier. Since both requests append only new data, besides incrementing some
conceptual revision counter, they cannot interact with each other. The revision identifier
can be incremented using existing sequence mechanisms in the relational database system.
As a result, the system has two new revisions that were uploaded independently by different
people. This approach can be problematic from an organisational perspective, where revisions
represent a linear history like a timeline. Each revision is an improved version of the previous
revision. From a technical perspective, such behaviour is acceptable because the data is in
a consistent state. From an organisational perspective, a mechanism beyond this to avoid
duplicate/colliding updates is desirable. As described by Le [145], locks are an established
solution for this problem.

75

6. Implementation

6.1. General Application Structure

The GeoHub prototype presented in this thesis consists of three separate application parts:

• A server application that provides the central application state
• An HTML single page web application that serves as a user interface
• One or more Executor applications for executing construction steps.

The server application is written in Rust [146]. It uses a PostgreSQL [32] database as a
relational database to store metadata. Geoscientific datasets are stored as files in a directory
controlled by the application.

The HTML single page web application is developed using HTML [147] and ClojureScript
[148]. It is used to provide a user interface such that users can easily interact with the software.
The user interface provides graphical tools to create and modify construction hypergraphs,
schedule new realisations by uploading new datasets, and review existing realisations by
downloading the generated datasets.

The Executor application is written in Rust [146]. It executes user-supplied descriptions of
construction steps in user-defined environments. A GeoHub server instance can provide con-
struction steps to several independent Executors, while an Executor can execute construction
steps provided by different Geohub instances. Each Executor can be run on a different com-
puter to better utilise computing power. An executor uses Docker [97] internally to deploy
custom environments and execute construction steps.

In this chapter, we will discuss the implementation of specific GeoHub components. In sec-
tion 6.2, we introduce the relational database schema and our extension APIs for extracting
metadata and comparing datasets. In section 6.3, we present how users can define construc-
tion steps, how the GeoHub server schedules a set of construction steps for execution, and
how GeoHub executors run these construction steps.

6.2. Data Storage

6.2.1. Database

Figure 6.1 contains an overview of GeoHub’s database schema for storing data in the relational
database. Large parts of the database schema follow database design best practices, so we will
not discuss them in detail. Instead, we will focus on the cornerstones of the implementation.

7
6

6
.

Im
p
lem

en
ta

tio
n

operation states

operation state id UUID

edge id UUID NOT NULL

version INTEGER NOT NULL

start revision INTEGER

as revision INTEGER NOT NULL

scheduled by UUID NOT NULL

state EXECUTION STATE NOT NULL

scheduled TIMESTAMPTZ NOT NULL

started at TIMESTAMPTZ

finished TIMESTAMPTZ

executor UUID

log TEXT

reproduction state REPRODUCTION STATE NOT NULL

reproduction of INTEGER

hyperedges

edge id UUID

version INT4RANGE GENERATED

name TEXT NOT NULL

description TEXT

project UUID NOT NULL

to node UUID NOT NULL

operation UUID NOT NULL

version start INTEGER NOT NULL

version end INTEGER

nodes

node id UUID

version INT4RANGE GENERATED

name TEXT NOT NULL

description TEXT

project UUID NOT NULL

version start INTEGER NOT NULL

version end INTEGER

enforced attributes TEXT[] NOT NULL

file kind UUID NOT NULL

projects

project id UUID

version INT4RANGE GENERATED

name TEXT NOT NULL

description TEXT

enforced node attributes TEXT[] NOT NULL

owner UUID NOT NULL

version start INTEGER NOT NULL

version end INTEGER

versions

version id INTEGER

subject TEXT NOT NULL

description TEXT

commit date TIMESTAMPTZ NOT NULL

commiter UUID NOT NULL

operations

operation id UUID

version INT4RANGE GENERATED

name TEXT NOT NULL

description TEXT

yaml TEXT NOT NULL

version start INTEGER NOT NULL

version end INTEGER

node to edge

node id UUID

edge id UUID

version INT4RANGE GENERATED

version start INTEGER NOT NULL

version end INTEGER

datasets

node id UUID

version INTEGER

revision INT4RANGE GENERATED

dataset id UUID UNIQUE NOT NULL

start revision INTEGER NOT NULL

end revision INTEGER

attributes JSONB NOT NULL

stored files

file id UUID

dataset id UUID NOT NULL

name TEXT NOT NULL

path TEXT NOT NULL

revisions

revision id INTEGER

subject TEXT NOT NULL

description TEXT

commit date TIMESTAMPTZ NOT NULL

commiter UUID NOT NULL

dependent operations

parent operation UUID

dependent operation UUID

file kinds

file kind id UUID

version INT4RANGE GENERATED

name TEXT NOT NULL

description TEXT

extensions TEXT[] NOT NULL

equability check plugin UUID

metadata extraction plugin UUID

version start INTEGER NOT NULL

version end INTEGER

file kind plugins

file kind plugin id UUID

name TEXT NOT NULL

description TEXT

wasm path TEXT NOT NULL

created by UUID NOT NULL

created at TIMESTAMPTZ NOT NULL

equality check api BOOLEAN NOT NULL

metadata extraction api BOOLEAN NOT NULL

user rights

user id UUID

project id UUID

role ACCESS RIGHTS NOT NULL

users

user id UUID

username TEXT NOT NULL

secret BYTEA NOT NULL

role ACCESS RIGHTS NOT NULL

sessions

session id UUID

user id UUID NOT NULL

last seen TIMESTAMPTZ NOT NULL

is valid BOOLEAN NOT NULL

executors

executor id UUID

name TEXT NOT NULL

running BOOLEAN NOT NULL

last connction TIMESTAMPTZ

executor token BYTEA NOT NULL

Figure 6.1.: Database schema
Orange connections represent versioned dependencies between tables

black connection represent ordinary table dependencies

6.2. Data Storage 77

6.2.1.1. Construction hypergraphs and versioning

GeoHub records a construction graph using five tables:

• projects which contains a list of existing construction hypergraphs
• nodes which contains a list of nodes for all construction hypergraphs
• hyperedges which contains a list of hyperedges for all construction hypergraphs
• operations which contains a list of construction steps that can be shared between

different construction hypergraphs

GeoHub uses versions and revisions to track all parts that may change over time. In particular,
a version describes how a construction workflow changes over time. A revision records a
realisation generated by a particular set of input datasets and a specific construction workflow
version. To update each component of the construction hypergraph independently, we need
to track a version for each database entity. We decide to implement this using the following
scheme: Each entity keeps track of which version it was updated and up to which version it is
considered a valid entry. This information is stored in the version_start and version_end

columns of the corresponding tables. Both columns are foreign keys of the corresponding
table that refer to the versions table. When an entity is “updated,” a new table entry is
created. The version_end value of the old entity is updated to match the version_start

entry of the new entry. Deleting an entry simply sets the corresponding version_end value.
This approach allows us to update individual entries independently, while making it possible
to exactly reference a specific version of the construction hypergraph.

We use the int4range PostgreSQL type in combination with the generated columns feature to
ensure data consistency. The int4range type describes an interval of integers. The generated
column feature allows to always generate the content of a column based on a predefined
expression. For our use case, we generate the version column of the corresponding tables
based on the version_start and version_end values. Since the version column is always
not null, we can use it as primary key in combination with the corresponding entry ID. We
enforce that the version intervals for a given entity ID do not overlap by using an additional
check constraint. This ensures a unique entry per entity ID and version.

To ensure the consistency of construction graphs, we introduce a customised database relation.
We describe a dependency between two versioned entities as a versioned dependency.
Each dependency must ensure that a matching entry with the corresponding entity ID and
an overlapping version range exists. Such dependencies are indicated by orange lines in figure
6.1. This definition constrains the matching entries in the corresponding tables via ON clauses
in SQL join statements, as shown in listing 6.1. GeoHub uses a CHECK constraint to ensure
that a matching entity is always present for versioned dependencies.

SELECT nodes.*, hyperedges.*

FROM nodes

INNER JOIN hyperedges ON hyperedges.to_node = nodes.node_id

AND hyperedges.version @> nodes.version

WHERE nodes.project_id = $1;

Listing 6.1.: Example query to load all nodes and their generating construction steps belonging to a given
construction hypergraph. Bind parameter 1 ($1) corresponds to the entity ID of the construction

hypergraph.

78 6. Implementation

6.2.1.2. Datasets and Metadata Schemas

In the section 5.3, we discussed in detail possible designs for storing metadata for datasets
used as part of the construction process. We chose to represent this metadata as key-value
types in our schema. The datasets table records metadata as key-value pairs for a particular
dataset associated with a particular construction hypergraph node with a specific version and
data revision. This table contains an attribute column of type JSONB for the purpose of
storing metadata. JSONB is PostgreSQL’s improved implementation of a JSON [149] data
type that allows the storage of arbitrary key-value pairs.

As mentioned earlier, there may be an institutional requirement to store certain metadata.
The database schema shown in figure 6.1 provides support to enforce these requirements.
Users can specify a set of required attributes via the enforced_node_attributes and the
enforced_attributes columns of the projects and the nodes table. Both columns are of
the type TEXT [], so they can contain zero, one, or more required attributes. Listing 6.2
contains a query for checking whether a JSONB key-value store contains all the required keys
for a particular node of a specific construction hypergraph version. GeoHub uses a similar
query as part of a CHECK constraint attached to the attributes column of the datasets

table. This approach ensures that all required metadata is present in the database.

SELECT $3 ?& (nodes.enforced_attributes || projects.enforced_node_attributes)

FROM nodes INNER JOIN projects ON nodes.project = projects.project_id

AND nodes.version @> $2 AND projects.version @> $2

WHERE nodes.node_id = $1

Listing 6.2.: A query to check if all enforced metadata keys are set for a given JSONB value. Bind parameter 1
($1) corresponds to the node entity ID of the dataset to be checked, bind parameter 2 ($2) corresponds to

the version of the construction hypergraph, and bind parameter 3 ($3) represents the JSONB value containing
the attributes to be checked. For the CHECK constraint, bind parameter 3 is replaced with the attribute

column of the datasets table.

6.2.2. User-provided Data-processing Extensions

GeoHub defines extension points such that users can provide custom implementations for per-
forming equality checks between two datasets or to extract metadata from existing datasets.
These extension mechanisms are required because the functions they provide depend on the
exact internal structure of the datasets provided. Unfortunately, this structure is not known
to GeoHub. In the section 5.2 we have chosen an extension system based on WebAssembly
(WASM) [105]. In this section, we will give an overview of the implementation of such an
extension system. We will use the equality check plugin extension API as an example. The
same system, but with a different API, is also used by the metadata extraction extension
API.

Our extension system consists of the following parts:

• A software solution for the execution of WebAssembly based extensions
• An interface definition for transferring data between the host application and each

extension

The WASM standard [105] specifies a textual and a binary representation for WASM byte-
code. Both are intermediate representations and both require additional software to translate
the provided WASM bytecode into actual machine code. This translation can be done us-
ing an interpreter-based solution, a just-in-time compiler, or an ahead-of-time compiler to

6.2. Data Storage 79

translate the intermediate representation into machine code. In an interpreter-based solution,
each instruction of the bytecode representation is directly translated into machine code at
runtime. This approach leads to a simple implementation at the expense of execution speed.
On the other hand, a just-in-time compiler adds additional optimisations by analysing the
runtime behaviour of the executed code, but this leads to translation overhead since addi-
tional work is required. Finally, an ahead-of-time compiler performs an optimised translation
in a separate step before the code can be executed. This approach leads to improved runtime
performance, as more time can be spent on optimisation at the expense of more time spent
on the translation itself. Fortunately, existing software packages provide implementations for
all three approaches. For example, a popular solution from the Rust ecosystem is provided by
the library wasmer [107]. GeoHub uses this library to execute WebAssembly extensions.

GeoHub defines an interface for extensions such that there is a known way to invoke user-
provided functionality. The design of such an interface must be based on the use case of the
extension. We focus here on the plugin interface for equality checking extension API. See
appendix E for details about the metadata extraction extension API. Extensions need access
to datasets to check the equality between two datasets. An equality check will either return
the result that both datasets are equal or not, so a boolean value. In addition, there is a
possibility that an error occurred during the execution of the extension. For example, that
one of the datasets does not match an expected format. An extension must be able to pass
an appropriate error message to the host application. Listing 6.3 contains a simplified version
of an interface definition for this use case.

1

2 enum result_tag { Ok, Error };

3

4 struct check_equability_result {

5 result_tag kind;

6 union {

7 bool equality_check;

8 char* error_message;

9

10 } result;

11 };

12

13 struct file {

14 char* file_name;

15 unsigned char* data;

16 };

17

18 struct dataset {

19 int file_count;

20 file* files;

21 };

22

23 check_equality_result check_equality(

24 dataset dataset1,

25 dataset dataset2

26);

Listing 6.3.: Equality check extension interface

80 6. Implementation

The WebAssembly standard contains several restrictions regarding to the ABI of functions
called from outside the WebAssembly environment. In particular, only the following types
may be passed through this interface:

• Integers (either 32 or 64 bit wide)
• Floating-point numbers (either 32 or 64 bit wide)

These requirements further limits the ability to pass information to extensions. We worked
around this limitation in GeoHub by writing data directly to the private memory area used
by the WebAssembly extension and passing references to that data as pointers via a 32-bit
integer through the ABI. This approach works because the WebAssembly standard defines the
size of the pointer type as a 32-bit integer. Also, the memory area used by the WebAssembly
extension is controlled exclusively by our WebAssembly runtime. This allows us to access
and manipulate this memory area while the extension is not yet running.

6.3. Operation Executor

GeoHub executes user-defined construction steps in a user-defined environment. Section 5.2
describes general strategies for implementing such a feature. There, we decided to use a
Docker-based approach.

To implement the execution of construction step in GeoHub, the following three components
are used:

• A generic construction step description that allows the user to describe a construction
step with all necessary details.

• Functionality that decides which specific construction steps are executed next and which
construction step can be executed. This functionality is provided by the GeoHub back-
end application.

• Functionality to execute a construction step. This functionality is provided by the
GeoHub Executor tool

The following subsections provide details on the implementation of each component.

6.3.1. Construction Step Descriptions

In order to execute arbitrary construction steps, GeoHub needs a lot of information:

• Which datasets are used as input for the construction step
• What environment should be used for the execution of the construction step
• Where to place the input datasets in this environment
• What exactly should be done as part of this particular construction step
• What is the expected outcome of the current construction step

All this information is provided by the user creating the construction step. Information
about which datasets are used as input for a particular construction step is embedded in
the structure of the construction hypergraph. A construction step is represented there by
a hyperedge, which points from the input datasets to the single output dataset. All other
information listed above must be specified as part of the construction step definition.

We decided to design a way to describe this information with a single input structure. Var-
ious formats for describing continuous integration workflows description formats inspire the

6.3. Operation Executor 81

format used. The exact format is based on YAML [150] . Listing 6.4 contains an example
construction step definition. See appendix A, C, D for more examples. Appendix E.4.1
contains a specification of the exact format.

1 image: git.informatik.tu-freiberg.de:5050/semmlerg/bhmz_dc:latest

2 input_path: "/home/matlab/"

3 operation:

4 - command: |

5 mkdir bhmz/data_BERT

6 mv RZ01.dat bhmz/data_BERT/RZ01.dat

7 mv RZ02.dat bhmz/data_BERT/RZ02.dat

8 cd bhmz && matlab -nosplash -nodesktop -r "drive_stack_data"

9 displayName: Stack data

10 output:

11 - file: /home/matlab/bhmz/RZstack.dat

Listing 6.4.: Example construction step description

Each environment used to execute a construction step must provide all the software needed
for that particular construction step. We chose to provide these environments using Docker
images. These images allow users to bundle their software using preexisting tooling. On the
other hand, this limits the environments used as construction steps to Linux. With a Docker
image, it is possible to regenerate the same environment over and over again by launching a
new image instance each time the environment is needed. Users can specify the Docker image
that provides their environment in the definition of the construction step. Listing 6.4 includes
this specification on line 1 using the image: key. Future GeoHub releases may extend this
definition to allow different types of environments here, for example, to allow the use of other
operating systems.

The construction step executor and the user-defined environment must agree on where the
input datasets of a construction step is located. This problem can be solved either by conven-
tion, such that the executor always places the input records in the same location. Or it can be
solved by specification, where a path is specified as part of the definition of the construction
step. If the path is not specified, the definition of the construction step definition is simpler,
but it may result in data being stored in locations that are not accessible to the construction
step itself. We have allowed both variants by making the corresponding construction step
definition entry optional. The input_path: key on line 2 allows the user to specify a path
within the construction step run time environment where the input datasets should be placed.
If this key is not specified, the executor places the data in the /tmp directory.

Given the environment and the required input datasets, the construction step executor needs
to know what actions to perform. Inspired by continuous integration setups, we decided to
represent this information in the form of a user-supplied shell script. Listing 6.4 contains an
example script at lines 3 - 9. The operation: key specifies a list of command blocks. Each
of the command blocks contain a shell script block. Each block is executed in a single pass.
This layout allows the construction step to be internally structured and provides additional
context for failed executions. Future GeoHub releases may extend this functionality to allow
script processors other than shell scripts. This functionality would allow to use various
scripting languages, such as Python or R, directly instead of manually calling the appropriate
interpreter as part of the construction step definition.

Last but not least, the executor needs information about what to expect as a result after
the execution of the construction step within the provided environment. This information

82 6. Implementation

is explicitly represented in the definition of the construction step by listing files that are
considered to be the output dataset of the construction step. The example shown in listing
6.4 contains this definition in lines 10 - 11. The output: key allows the user to specify a
list of files with an absolute path. The executor will attempt to download each file after the
execution of the construction step is completed.

6.3.2. Construction Step Scheduling

meshing

Output dataset

Triangulated surface

Intermediate dataset

Projected borehole data

Intermediate dataset

Projected geological profiles

project project

Input dataset

Borehole data

Input dataset

Spatial context

Intermediate dataset

Digital geological profiles

digitising

Input dataset

Geological profiles

Figure 6.2.: Example construction hypergraph

Before a certain construction step is executed, GeoHub has to decide which construction
steps must be executed in which order. This step is called construction step scheduling and
is implemented as part of the GeoHub server. The result of the scheduling is an ordered list
of construction steps that contains dependencies between the individual construction steps.
This list is stored in the operation_states table in the relational database system, which
acts as a persistent queue. The various executors use this information to determine which
construction step needs to be executed next by querying this table for scheduled construction
steps without dependencies or for those where the dependencies have already been executed.

We will look at the following two scenarios to better understand how scheduling construction
steps is implemented in GeoHub. Our first scenario starts with a given construction hyper-
graph. A user provides a complete set of the input dataset such that each input node of the
construction hypergraph has a matching dataset. We call this scenario initial execution.
The second scenario assumes that there is already an existing realisation of a particular con-
struction hypergraph. Therefore, only a subset of the input datasets is provided to generate
a changed or updated realisation of the same geoscientific model. We call this scenario up-

dated execution. Figure 6.2 contains a simple example construction hypergraph that we
will use to illustrate the general process for both scenarios. The goal for both scenarios is to
obtain a list of construction steps that need to be executed in the specified order.

6.3. Operation Executor 83

Algorithm 1: Construction step scheduling for the initial execution scenario
Input : hypergraph
Output: scheduled construction steps

1 visitedNodes = []
2 scheduleList = []
3

4 forall inputDataset in hypergraph do

5 scheduleSubGraph(hypergraph, inputDataset, NULL, visitedNodes, scheduleList)
6 end

7

8 Fn scheduleSubGraph(hypergraph, node, lastEdge, out visitedNodes, out

scheduleList)
9 forall hyperedge in hypergraph.outgoingHyperedges(Node) do

10 if hyperedge ∈ scheduleList then

11 if lastEdge != null then

12 scheduleList[hyperedge].addDependency(lastEdge)
13 else

14 scheduleList.addEntry(hyperedge, lastEdge)
15

16 visitedNodes.markVisited(node)
17 nextNode = hyperedge.output
18

19 if nextNode ∉ visitedNodes then

20 scheduleSubGraph(
hypergraph,
nextNode,
hyperedge,
visitedNodes,
scheduleList
)

21 end

22 return

For the initial execution scenario, we assume that a complete set of input datasets is
provided. In the case of our example construction graph, this means that the Geological
profiles, Spatial context, and the Borehole data datasets are provided by a user. To compute
the resulting list of construction step that needs to be executed, we iterate over all input
datasets in the construction hypergraph. For each dataset, we obtain the construction steps
corresponding to outgoing hyperedge from the construction hypergraph. These construction
steps use the dataset as input dataset. Then, for each construction step, we check whether or
not we have already included this step in the list of scheduled construction steps. Otherwise,
we include the construction step and continue with the dataset that represents the output
dataset of the construction step. Here we record a dependency on the previous construction
step and find all construction steps that use this dataset as input. For these construction
steps, we repeat the same procedure as for the previous ones, with the small difference that
we add the recorded dependency to the list of scheduled construction steps. We repeat this
until we get an output dataset of the construction hypergraph. Algorithm 1 contains a more
formal representation of this procedure.

84 6. Implementation

Applying this algorithm to our example construction hypergraph, starts the iteration at the
Borehole data input dataset. From there, we visit the project construction step. This step
is included as the first entry to our list of scheduled construction steps. This construction
step generates the Projected borehole data dataset, which in turn is used by the meshing
construction step. Since the meshing construction step is not yet included in the list of
scheduled construction step, we add the meshing operation as the second entry. We also add
the information that this construction step can only be performed after the project step has
been completed. Since the meshing operation generates the output dataset of the construction
hypergraph, we continue with the second input dataset, Spatial context. This dataset is the
input dataset of two construction steps, project and project. The first construction step is
already included in the list of scheduled construction step, while the second is still missing.
Therefore, we add the second project construction step to our list of scheduled construction
steps. This construction step generates the Projected geological profiles dataset, that will be
used as input for the meshing construction step. The meshing construction step is already
part of our list of scheduled construction steps, but this entry does not include the information
that the meshing step cannot be performed until after the second project step. Therefore, we
add this dependency to the existing meshing entry in the list of scheduled construction steps.
Last but not least, we look at the Geological profiles dataset. This dataset is used as input by
the digitise construction step. Since this construction step is not yet included in the list of
scheduled construction steps, we add it to our list. The digitise construction step generates
the Digital geological profiles dataset which is used as input dataset by the second project step.
This construction step is already included in the list of scheduled construction steps but the
dependency on the digitise step is missing. Therefore, we add this dependency information
to the existing entry. At this point we reached the end of our algorithm as we processed all
input datasets. The list of scheduled construction steps now contains the following entries:
project, meshing (depending on project and project, project (depending on digitize),
digitize.

In the updated execution scenario, things are different. In this scenario, only a part of the
input datasets are provided. We could now load any missing dataset from a previous execu-
tion and use the same scheduling strategy as for the initial execution scenario. However,
this strategy would require the execution of more construction steps than strictly necessary,
missing a good opportunity for optimisations. Instead, we used a slightly modified version of
the scheduling algorithm for the initial execution case described earlier. This version of the
scheduling algorithm does not iterate over all the input datasets of the construction hyper-
graph, but instead relies on a list of modified input datasets. The other part of the algorithm
remains the same. Algorithm 2 contains a formal description of this modified variant. It can
be observed that the algorithm is the same as for the initial execution scenario when the
list of modifiedNodes contains all input datasets of the construction hypergraph

We now apply our modified algorithm to our example construction hypergraph and assuming
that the Borehole data dataset has been modified. We start with the modified dataset Bore-
hole data. From there, we follow the dependency of the input dataset to the construction
step project. This step will be the first entry in our list of scheduled construction steps. The
project construction step generates the Projected borehole data dataset, which is then used
as an input dataset by the meshing construction step. Therefore, we include the meshing
step as the second entry in the list of scheduled construction steps. We also record that
the execution of the meshing construction step depends on the earlier project step. Finally,
the meshing construction step generates an output dataset of the construction hypergraph.
We have finished the scheduling process because we have reached an output dataset and the
list of modified input datasets is now empty. The schedule list now contains two entries:
project and meshing (depending on project). Under the strategy described in the initial

6.3. Operation Executor 85

Algorithm 2: Construction step scheduling for the updated execution scenario
Input : hypergraph
Input : modifiedNodes
Output: scheduled construction steps

1 visitedNodes = []
2 scheduleList = []
3

4 forall inputDataset in modifiedNodes do

5 scheduleSubGraph(hypergraph, inputDataset, NULL, visitedNodes, scheduleList)
6 end

7

8 Fn scheduleSubGraph(hypergraph, node, lastEdge, out visitedNodes, out

scheduleList)
9 forall hyperedge in hypergraph.outgoingHyperedges(Node) do

10 if hyperedge ∈ scheduleList then

11 if lastEdge != null then

12 scheduleList[hyperedge].addDependency(lastEdge)
13 else

14 scheduleList.addEntry(hyperedge, lastEdge)
15

16 visitedNodes.markVisited(node)
17 nextNode = hyperedge.output
18

19 if nextNode ∉ visitedNodes then

20 scheduleSubGraph(
hypergraph,
nextNode,
hyperedge,
visitedNodes,
scheduleList
)

21 end

22 return

execution scenario, the resulting schedule list would contain four entries. Thus, we reduced
the computational effort required to compute an updated realisation of the described geosci-
entific model has been reduced by two construction step in this example case. For the general
case, the reduction depends on the exact structure of the construction hypergraph and the
set of provided input dataset and will therefore vary.

6.3.3. Construction Step Execution

The final component to automatically execute geoscientific model construction processes via
construction hypergraph executions is the construction step execution functionality. This
functionality is implemented outside of the GeoHub Server application to distribute the com-
putational workload across multiple machines. The GeoHub Executor application provides
this functionality. The implementation was inspired by Gitlabs CI Runner [151].

A GeoHub Server instance can offer construction steps for execution to multiple GeoHub

86 6. Implementation

Executors. A GeoHub Executor can contact more than one GeoHub Server to obtain con-
struction steps for execution. In this way, available computing resources can be used effi-
ciently. GeoHub Executor uses an HTTP API to communicate with each configured GeoHub
Server instance. A GeoHub Executor always initiates communication. This approach has
the major advantage that no additional network configuration is required for computers run-
ning a GeoHub Executor instance. In particular, it is not necessary for a computer running
GeoHub Executor to have a publicly accessible or even stable IP address. It is required that
a GeoHub Executor installation can connect to the configured GeoHub Server instance via
HTTP requests.

Each executor must be explicitly registered with a Geohub Server instance. As part of this
process, the server and the executor generate a shared secret that is then used in any future
communication to ensure that the executor is allowed to access certain information. Appendix
E.5 contains detailed information about registering an executor with a server instance.

Each GeoHub Executor periodically queries GeoHub Server instance for construction steps
that need to be executed. The GeoHub Server instance uses these requests to update the
last_seen field of the executors table and performs a search in the operation_states

table to find a construction step to execute. The response from the server instance contains
either the information that there is no construction step waiting for execution. In this case,
the executor pauses and tries again to get a construction step at a later time. When a
construction step needs to be executed, all relevant information about the construction step
is sent to the executor. This information includes the definition of the construction step, a list
of references to the input datasets, and an identifier that allows the server to identify which
construction step execution is executed by the executor later on. The executor then loads
each required dataset from the server instance. In a next step, the executor starts a new
Docker container instance based on the image: information provided by the construction
step definition. This assumes that the executor has access to the local Docker installation
and to the corresponding Docker registry that provides the image in question. After starting
the Docker container, the executor uploads each input dataset into the container instance in
the configured input_path. The next step is to execute each command block as a shell script
within the Docker container. All command-line output generated by these commands is sent
to the GeoHub Server instance as an execution log. After the execution of the commands
is completed, the executor downloads all the files specified in the output: section of the
construction step definition from the Docker container. Then, the container is stopped and
removed from the executor’s system. Finally, the executor uploads the output files to the
server to finish the execution. Any error is reported to the server, and the execution of
the respective construction step will be marked as failed. Algorithm 3 contains a simplified
version of the executor’s main loop.

6.3. Operation Executor 87

Algorithm 3: GeoHub executor main loop
Input : serversToContact
Input : pollPeriod
Input : dockerHandle

1 repeat

2 foundOp = false
3 forall server in serversToContact do

4 nextOp = server.fetchNextOp()
5 if nextOp then

6 foundOp = true
7

8 files = []
9 forall fileRef in nextOp.files do

10 files.push(fileRef.fetch())
11 end

12

13 image = dockerHandle.fetchImage(nextOp.image)
14 container = dockerHandle.startContainer(image)
15

16 forall file in files do

17 container.uploadIntoPath(nextOp.inputPath, file)
18 end

19

20 forall command in nextOp.commands do

21 container.executeCommand(”sh -c ”̈ + command + ” ”̈)
22 end

23

24 results = []
25 forall output in nextOp.output do

26 results.push(container.fetchFile(output))
27 end

28

29 container.stopAndRemove()
30 server.uploadResult(results)
31 end

32 if not foundOp then

33 sleep pollPeriod
34 until forever

89

7. Case Studies

7.1. Overview

Within this chapter, we will present three case studies to demonstrate the strengths and
weaknesses of the implemented prototype. Each case study is based on a model construction
process from a different area of geoscientific research. We present the following case studies:

• Analysis and interpretation of a geophysical measurement campaign
• Construction of a three-dimensional subsurface model with gOcad, including several

pre-processing steps
• Development of a hydrologic balance model for the catchment area of a small stream.

Within the scope of this chapter, we aim to show that the provided prototype can solve the
outlined problem while working in different application areas with diverse model construc-
tion methods. Therefore, we focus on presenting critical parts of the construction process
implementation with GeoHub rather than discussing the scientific basis of each construction
process.

For each case study, we first present the provided datasets and instructions. Then, the
implementation of the construction process in GeoHub is described. In the next section, the
reproducibility of the construction process is discussed. In the following section, possible
improvements to the implemented construction process are described. In the last section, we
try to give some general recommendations for the use of GeoHub in the described application
area.

7.2. Geophysical Model of the BHMZ block

7.2.1. Provided Data and Initial Situation

The first case study uses data from two geophysical measurement campaigns to construct a
unified interpretation of the BHMZ (Biohydrometallurgischen Zentrum) block in the mine
“Reiche Zeche” in Freiberg. The case study is based on the tomographic seismic measure-
ments performed by Sebastian Winter [152] and the tomographic geoelectric measurements
performed by Daniel Pötschke [153], as part of their master theses. The necessary construc-
tion steps for processing and interpreting the individual measurements were provided by
the Seismic and Electromagnetic Working Group of the Department of Geophysics at TU
Bergakademie Freiberg, as well as instructions for using the tools and performing the model
construction. The objective of this study was to investigate the internal structure of a rock
formation in the mine “Reiche Zeche” in Freiberg and to gain a better understanding of its
internal composition. The rock formation is located underground and has an extension of
about 35 × 13 meters. A tunnel surrounds the rock formation in approximately one plane. A
combined visualisation of the measurement interpretations in a unified reference frame will
be generated as a final model.

90 7. Case Studies

A total of four different input datasets was provided. Two files contain the measurement
results for the geoelectric measurement, one geometry file representing a laser scan of the
tunnel geometry, and one file containing the pre-processed measurement results of the seismic
measurements. In addition, the Geoelectric Working Group provided several Matlab [154]
scripts for processing and interpreting the geoelectric measurement results [155]. These scripts
generate a three-dimensional resistivity distribution by solving an inverse problem. The
Seismic Working Group also provided code for processing the seismic measurements that
generates a two-dimensional velocity distribution. A Python script converts the results and
combines both distributions into a unified model. This script was developed as part of the
implementation of this case study.

Both working groups provided internally developed code to process the data. The geoelectric
working group made the code available through an existing Git repository. This repository
contained a working continuous integration setup based on Docker.

Figure 7.1.: A geometric representation of the tunnel surrounding the BHMZ block

7.2.2. Construction Process Description

Figure 7.2 shows a graphical representation of the construction hypergraph used for the
implementation of this case study. The construction hypergraph consists of nine nodes repre-
senting datasets, four of which are input datasets, and one is the output dataset representing
the combined visualisation. Five construction steps are required to perform the necessary
construction work. Appendix A contains a detailed description of each construction step.

The construction process requires four different input datasets:

1. A geometric representation of the tunnel surrounding the BHMZ block as an STL
geometry file [156]. See figure 7.1 for an image of the corresponding geometry.

7.2. Geophysical Model of the BHMZ block 91

Input dataset

Measurement 1

Input dataset

Measurement 2

stacking

Intermediate dataset

Stacked Data

Input dataset

Tunnel Mesh

meshing

Intermediate dataset

Domain Mesh

DC inversion

Intermediate dataset

DC inversion result

Input dataset

Picks

Seismic inversion

Intermediate dataset

Seismic inversion result

visualise BHMZ

Output dataset

Visualisation

Figure 7.2.: Construction hypergraph for the BHMZ block model

92 7. Case Studies

2. A text file containing the first arrival times for the seismic measurement in a space-
separated format. See listing 7.1 for an excerpt from this file. The file contains the
following columns:

• Source ID: Numerical identifier of the seismic source
• Receiver ID: Numerical identifier of the seismic receiver
• Travel time in nanoseconds, where -1000 represents a no data value
• X coordinate of the source location
• Y coordinate of the source location
• X coordinate of the receiver location
• Y coordinate of the receiver location

3. Two .DAT files with the measurement results of the geoelectric measurements as Matlab
matrices as provided by the geoelectric working group.

The construction progress generates a single output dataset. This result represents the uni-
fied visualisation of all measurement results. The visualisation is provided in the form of a
Paraview Python script that sets up the Paraview view to display all results in the correct
location. Figure 7.3 contains an image of this visualisation.

101 5 -1000 3.082000 2.087000 7.462000 2.768000

101 6 -1000 3.082000 2.087000 8.570000 3.025000

101 7 553 3.082000 2.087000 9.889000 3.295000

101 8 1029 3.082000 2.087000 11.118000 3.431000

101 9 1183 3.082000 2.087000 12.439000 3.658000

101 10 1152 3.082000 2.087000 13.540000 3.577000

Listing 7.1.: Excerpt from the text file with the first arrival times of the seismic measurement

7.2.3. Reproducibility

All five construction steps of the presented construction hypergraph are reproducible using
the bitwise equality definition. This result means that independent realisations of the con-
struction process with the same input datasets generates identical results at the byte level.

7.2.4. Identified Problems and Construction Process Improvements

By implementing this construction process in GeoHub, we noticed several issues and oppor-
tunities to improve the construction process.

When implementing the unified visualisation of all measurement results, we found that the
geoelectric measurements misses information about their coordinate reference system with
respect to the original laser scan of the tunnel. While the geoelectric working group provided
a dataset containing transformed version of the tunnel geometry, it was difficult to unify
both the seismic and the geoelectric inversion results into one unified visualisation. By
calculating the required transformation between the seismic and geoelectric measurements
points, we were able to reconstruct an approximate version of the required coordinate system
transformation. However, we were unable to reconstruct the exact transformation. The
measurement points used by the geoelectric model were slightly shifted by an unknown, non-
constant offset. In the corresponding master thesis, this shift is justified to solve numerical
instabilities due to singularities in the inversion model. Unfortunately, the exact values of

7.2. Geophysical Model of the BHMZ block 93

(a) Three-dimensional representation of the result including the tetrahedral DC-inversion mesh, the
regular seismic inversion mesh, the tunnel (blue geometry) and the plot line (white line)

(b) Ploted seismic velocity and electric resistivity values along a line through the model

Figure 7.3.: A visualisation of the interpretations of both geophysical measurement

94 7. Case Studies

the shifts are not documented. Since both datasets are primarily used for methodological
research, this issue is probably not relevant for the daily work of both working groups. The
implementing of the construction process in GeoHub helped us to identify this inconsistency.
This result shows that implementing construction processes in GeoHub can prevent such data
inconsistencies from occurring in the first place.

The current construction process implementation is tailored to this specific dataset. This is
partly due to the included scripts, which expect only certain datasets as input, and partly due
to the general structure of the construction process, which hard-codes some assumptions, such
as the reverse-engineered version of the coordinate system transformation. For a practical
application of the implemented construction process, it may be helpful to generalise all parts
of the construction process in such a way that it can be easily reused in similar measurement
setups. Such generalisation requires improving the code used as part of the construction steps
in order not to assume certain properties of the measurement by replacing hard coded values.
An example of this is the hard coded transformation in the visualise BHMZ construction
step Appendix A.5.

7.2.5. Recommendations

Scientists at the Department of Geophysics at TU Bergakademie Freiberg are researching
methods for the efficient interpretation of measurement results. In doing so, they focus on
the processing of the data and may ignore this documentation of the provenance of the
input datasets. While this is fine for method-based research, it can limit further use of the
data. A system like GeoHub could help by enforcing standards for what information needs
to be minimally collected. Since both working groups are developing their own software,
it should not be difficult for them to provide the software as a construction step. One
working group has already organised its code in a Git repository and is testing changes
via a Docker-based continuous integration setup. Generating the appropriate environment
can then be easily integrated into their overall software development workflow as another
build step as part of the continuous integration setup. Such a setup can easily be used to
automatically build a Docker image based on a specific software release. This image can then
be used as the basis for definition of construction steps. Since the software used in possible
construction steps is developed internally, it is easy to provide any necessary interface to
allow the software to run as part of a construction step. We assume that this potential user
group will be able to compose their own construction processes, including custom operations
and environments. Such a defined construction process can then be used as documentation
for existing approaches to processing certain types of measurements.

7.3. Three-Dimensional Subsurface Model of the Kolhberg Region

7.3.1. Provided Data and Initial Situation

The second case study presented implements a classical explicit three-dimensional subsurface
model construction process, including data pre-processing. The presented model [157] was
constructed in the context of the planning of a bypass road south of Pirna/Saxony. The
Geological Survey of Saxony provided all datasets used to construct this model, as well as
detailed instructions on how to combine the datasets into a final three-dimensional subsurface
model. See Appendix B for the original instructions. The model has a size of about 3km ×
1.3 km. Figure 7.4 shows an overview map of the study area.

7.3. Three-Dimensional Subsurface Model of the Kolhberg Region 95

Study area

Legend

Map data: © OpenStreetMap contributors, SRTM | Map Style: © OpenTopoMap (CC-BY-SA)

Figure 7.4.: Overview map of the study area

7.3.2. Construction Process Description

Figure 7.5 shows a graphical representation of the construction hypergraph used to implement
this case study. The model construction process consists of 14 datasets and seven construction
steps. Of these 14 datasets, seven are provided as input datasets, three are generated as
output datasets, and the other four are intermediate datasets. The following seven datasets
are provided as input datasets:

1. A Microsoft Excel file with information about Boreholes in the area of interest.
2. Digital elevation model as XYZ file.
3. An empty gOcad project that is used to document general gOcad project settings.
4. An ESRI shapefile containing a cross-section path
5. An ESRI shapefile containing the potential bypass route
6. An ESRI shapefile containing the boundaries of the study area
7. An ESRI geodatabase archive containing a geological map of the study area.

The construction process generates three output datasets:

1. Two CSV files containing the borehole data projected to the UTM33 coordinate refer-
ence system

2. A set of gOcad ASCII files representing the extruded “Streckenachse”
3. A set of gOcad ASCII files containing the outlines of the geological map, which are

projected onto the surface of the terrain

The construction process includes several pre-processing steps. These steps prepare the pro-
vided data for later use. Subsequently, the datasets are combined into a final subsurface

96 7. Case Studies

Intermediate dataset

DEM as triangulated surface
project

Intermediate dataset

Geological Map
(Quartär)

Intermediate dataset

Geological Map
(Prequartär)

extract extract

Input dataset

Study area

Input dataset

Geological Map
(Geodatabase)

triangulate

Input dataset

Empty gOcad project

Input dataset

DEM Pointsets as XYZ

Input dataset

Streckenachse
(UTM)

extrude

Output dataset

Extruded Streckenachse

Output dataset

Projected geological map

Input dataset

Linien Längsschnitt

Input dataset

Boreholes as Excel File
(GK5)

xls → csv

Intermediate dataset

Boreholes as CSV
(GK5)

reproject to UTM33

Output dataset

Boreholes as CSV
(UTM33)

Figure 7.5.: Construction hypergraph for the Kohlberg model

7.3. Three-Dimensional Subsurface Model of the Kolhberg Region 97

model using gOcad [17]. We decided to deviate from the instructions for all pre-processing
steps here, due to the fact that these steps are much easier to implement using Q-GIS [158]
instead of ArcGIS [18]. Q-GIS supports scripting and running in a Docker container. Con-
struction steps using gOcad were implemented using gOcad’s macro support. This feature
allows the scripts used as part of the construction step to be easily recorded within gOcad.
Information about gOcad macros corresponding to any action in an existing gOcad project
is available as part of the gOcad project files. This information can be extracted later, either
manually or in an automated way. Our GeoHub prototype, provides a helper tool to extract
all construction steps performed within a user-specified session and combines those construc-
tion steps as a construction hypergraph. This construction hypergraph description can then
be imported into GeoHub. Combined with the original input datasets, this construction hy-
pergraph can be used to easily repeat existing gOcad projects and verify whether they are
reproducible. See appendix E for details on how to use the corresponding tool.

We refrain from a detailed discussion of individual construction steps. See appendix C for
details on specific construction steps.

7.3.3. Reproducibility

Of the seven construction steps involved in the construction process of the Kohlberg
model, three construction steps are reproducible using the bitwise equality definition. The
triangulate, extrude and extract construction steps are not reproducible according to
the bitwise equality definition.

The triangulate construction step generates a triangulated surface based on a set of point.
Appendix C.5 presents the construction step in detail. This construction step performs the
following three gOcad operations in the given order:

1. Merge the provided separate pointsets of the digital elevation model into one combined
pointset

2. Perform a Delaunay triangulation based on the merged pointsets
3. Simplify the triangulated surface with gOcad’s decimate operation

Running the triangulation construction step several times and comparing the results, we
found that each run generates a triangulated surface with a different number of vertices and
triangles. One example run produced 38,902 vertices and 77,222 triangles, while another run
produced only 38,822 vertices and 77,062 triangles. Figure 7.6 shows the triangulated surface
generated by the triangulation construction step. The figure shows the calculated distance
to the nearest point in the other realisation. The distance appears to be close to zero for large
portions of the triangulated surface, but there are a few locations where a larger distance is
observed. Visual inspection of these areas revealed relatively large triangles at these locations.
Figure 7.7 shows the triangulation of one of the locations with large distance values for both
realisations. The triangulation displayed in these images are different.

Further investigation has shown that the decimate operation introduces these differences.
We used a customised version of the triangulate construction step that skips the final
decimate operation to check whether it continues to produce different files. Upon inspection, it
appeared that these files contained descriptions of exactly the same geometries, unlike before.
Only the order of triangles and vertices in the file changed. Consequently, triangulated
surfaces generated with the modified triangulate construction step could be considered
equal according to the structural equality definition.

98 7. Case Studies

Figure 7.6.: Calculated point distance between two realisations of the triangulate construction step from
the Kohlberg model

(a) Realisation A (b) Realisation B

Figure 7.7.: Triangulation differences between two different realisations of the triangulate construction step
of the Kohlberg model

7.3. Three-Dimensional Subsurface Model of the Kolhberg Region 99

Depending on the intended use of the final model, the output of different realisations of the
original triangulate construction step (including the decimate operation) could be consid-
ered equal based on a distance based equality definition. Since the described surfaces are
nearly identical, we can determine the distance used in approach by using the maximum
distance of any point of the reproduction to the original surface. If this value is less than a
certain reasonable threshold, the surfaces are considered equal. This definition is only useful
if the triangulation has no influence on further construction steps.

The extrude construction step generates several output files containing different geometries.
See Appendix C.6 for a detailed description of this construction step. One of the generated
geometries is a triangulated surface. Similarly to what we have already described for the
triangulate construction step, the generated result contains the same geometry, only the
order of triangles changed in some realisations. These datasets could be considered equal
according to the structural equality definition.

The extract construction steps extract parts of a geological map given as Geodatabase.
Appendix C.3, C.4 contains detailed descriptions of these construction steps. On the first
look these steps appear to be reproducible according to the technical equality definition. This
is no longer the case as soon as the two realisation used to check the reproducibility were
created on different days. This result suggests some sort of dependency onto the execution
date of the construction step. Each of these construction steps generate a ESRI Shapefile
[115]. A Shapefile consists of multiple separate files in different formats. The mismatch
appears between the DBF [159] files of two realisations. The specification of this file format
requires to embed the date of the last update as byte 1-3 in the generated file, which is causing
the difference. We can consider such datasets as equal according to the structural equality
definition. In addition it might be possible to modify the corresponding construction step in
such a way that they always set the execution date to a fixed value.

7.3.4. Identified Problems and Construction Process Improvements

By implementing this model construction process using GeoHub, we noticed several issues
and opportunities for improvements.

The first minor problem we noticed was that the instructions for constructing the model
provided by the Geological Survey of Saxony were incomplete. The instructions were missing
important details, such as the configuration of the gOcad project that serves as the basis for
the model construction. These settings include several options that can affect the outcome
of the modelling process. For example, the definition of the direction of the Z-axis influences
the result of many gOcad operations.

A major issue with this case study is the behaviour of certain gOcad operations. We have
shown that the gOcad decimate operation can produce different triangulation’s for the same
input dataset. Further experiments have shown that other operations can also produce differ-
ent results on repeated runs using the same input dataset. These includes well-known major
gOcad operations such as the discrete smooth interpolation algorithm [21], where different
realisations result in slightly shifted point coordinates at the edge of the interpolation do-
main. It seems possible to define a specialised interpretation of equality for all these cases,
which may be useful for certain model applications. In our opinion, this is a fundamental
problem. Therefore, we suggest to systematically classify the operations provided by gOcad
as reproducible or not, given the presented definition of equality.

In addition to these problems, we identified a potential for improvement in the way construc-
tion steps are defined in our prototype. As it is currently implemented, a construction step

100 7. Case Studies

contains a shell script that describes the specific details. While this is sufficient to perform
all required operations, additional code may be required to implement certain operations. In
particular, gOcad operations require some additional setup at the beginning and a special
command to “close” gOcad at the end of the script. A future version of GeoHub could add
support for custom command steps that specify a script processor to automatically perform
these steps at the beginning and end of the user provided scripts.

7.3.5. Recommendations

Members of the geomodelling community are experts in building complex geometric represen-
tations of the subsurface. These people have advanced skills in working with well-known tools
such as gOcad. These tools provide simple interfaces for capturing and automating certain
operations. It is relatively easy to extract the information needed to compose new construc-
tion steps. Composing a construction steps requires two components: A Docker image of
the environment in which the construction step is executed and the shell script to describe
the construction step itself. The first part is challenging and requires technical knowledge
of operating systems and software. Fortunately, this part only needs to be performed once
per application. The second part can be done simply by recording the required steps as a
macro via the provided interface of the corresponding software. On this basis, we assume
that the more technical skilled part of the geomodelling community will be able to compose
their own construction step definitions. Tools such as the gOcad History Import Tool pre-
sented in Appendix E can further simplify the composition of construction hypergraphs for
specific software packages such gOcad. In addition, they enable non-technical users to build
complex construction hypergraphs. They would primarily work in their familiar environment
to construct such models and only later export them to GeoHub.

All users should be able to combine existing construction steps into a construction hypergraph
that describes how a particular model was built. This simply requires mapping the existing
construction description to a construction hypergraph by formalising the construction steps
and their inputs. A proven reproducible construction process appears to be an essential
feature for projects like the nuclear waste deposit or even planning a major bypass road.

7.4. Hydrologic Balance Model of a Saxonian Stream

7.4.1. Provided Data and Initial Situation

This case study is based on an exercise required to complete the syllabus “Wasser-
haushalt/Wasserhaushaltsmodellierung” at the TU Bergakademie Freiberg. In this lecture,
students are required to calculate a hydrologic balance model using the BoWaHald software
package [30] for a study area of their own choice. This exercise includes the following
steps:

1. Subdivision of the study area into smaller parts, called Hydrotopes. This subdivision
groups together areas with similar properties. This includes properties like land cover,
land use, soil structure, and terrain information.

2. Collecting the required data for each hydrotop. This data include the following infor-
mation:

• Climatic data
• Land cover and land use

7.4. Hydrologic Balance Model of a Saxonian Stream 101

Study Area

Legend

Map data: © OpenStreetMap contributors, SRTM | Map Style: © OpenTopoMap (CC-BY-SA)

Figure 7.8.: Study area for the Leubsdorf dataset

Study Area

Legend

Map data: © OpenStreetMap contributors, SRTM | Map Style: © OpenTopoMap (CC-BY-SA)

Figure 7.9.: Study area for the Langenau dataset

102 7. Case Studies

• Soil structure
• Terrain information

3. Based on these data, generate the corresponding hydrotop files with BoWaHald. At
least three files per hydrotop must be filled with information:

• A hydrotop file with general topographic information (such as location, height,
area) for each hydrotop

• A soil layer definition file that describes the different soil layers per hydrotop
• A land-use file with a description of the land use and land cover per hydrotop.

4. In addition, climate data must be pre-processed to fit the required format of a Microsoft
EXCEL table.

5. Calculate a hydrologic balance model for each hydrotop with BoWaHald
6. Summarise the calculated models to provide general statements about the hydrologic

balance of the study area.

The work done as part of these steps can be divided into two categories: Some of the work
is guided by scientific decisions that influence how the actual model should be constrained.
Examples of this type of work include deciding how the study area should be subdivided into
hydrotopes or what land use should be assumed for a particular hydrotop. The other part of
the work involved in calculating such a hydrologic balance requires a lot of manual, repetitive
data transformations. Examples include any kind of data processing to get the data into a
format accepted by BoWaHald. Since this second type of work is very time-consuming, it
lends itself well to automation. Therefore, this case study shows how the tedious steps can
be automated for a well-defined workflow.

In this case study a generalised version of this model construction process is implemented.
It aims to automate the repetitive steps of model construction while allowing the user to
actively influence key parameters of the model. Furthermore, this case study aims to present
a unified workflow that allows the same model construction process to be repeated in any
study area in Saxony.

The construction process was evaluated with two different model realisations: One describes
a small stream near the village of Leubsdorf/Saxony, the other dataset describes meadows
and fields in the vicinity of Langenau (a village near Freiberg). Figure 7.8 and figure 7.9
show an overview of the respective study area. The Leubsdorf dataset contains 19 different
hydrotopes. The Langenau dataset contains five different hydrotropes. For both datasets,
the model is calculated for the time period from 1.11.1990 to 31.10.2020.

7.4.2. Construction Process Description

Figure 7.10 shows a graphical representation of the construction hypergraph used to imple-
ment this case study. The construction process for this model consists of 25 datasets and
19 construction steps. Of these 25 datasets, six are provided as input datasets, and two are
generated as output datasets. All of the construction steps in this construction hypergraph
are designed to be used with different datasets. This design allows the same model construc-
tion process to be applied to different datasets to evaluate the underlying model construction
process in other geographic areas. This feature is currently limited to areas in Saxony because
the input dataset needed to determine the soil type information is only available there in the
required format.

The following six datasets must be provided as input datasets:

7.4. Hydrologic Balance Model of a Saxonian Stream 103

Input dataset

Hydrotopes

calculate bounding box

Intermediate dataset

Bounding box

Input dataset

STRM (DEM)

clip DEM

Intermediate dataset

Clipped DEM

calculate slope

Intermediate dataset

Slope
calculate slope lenght

Intermediate dataset

Aspect

calculate aspect

Intermediate dataset

Slope length

calculate slope per hydrotope

Intermediate dataset

Hydrotopes with height

calculate AVG height

Intermediate dataset

Hydrotopes with slope

calculate aspect per hydrotope

Intermediate dataset

Hydrotopes with aspect

calculate slope length per hydrotope

Intermediate dataset

Hydrotopes with slope length

calculate hydrotope area

Intermediate dataset

Hydrotopes with area

lookup soil type

Intermediate dataset

Hydrotopes with soil

generate bwmhydro files

Intermediate dataset

bwmhydro
Intermediate dataset

bwmlayer

generate bwmlayer

Input dataset

BK50 Legend

Intermediate dataset

bwmuse

Input dataset

BK50

clip BK50

Inter mediate dataset

Clipped BK50

generate bwmuse files

Input dataset

DWD climate data

preprocess climadata

Intermediate dataset

Preprocessed climate data

Input dataset

bwmcor
run BoWaHald

Intermediate dataset

BoWaHald output
summarise plotting results

Output dataset

Summary
Output dataset

Plots

Figure 7.10.: Construction hypergraph for the Hydrologic balance model

104 7. Case Studies

1. A copy of the soil map BK50 from the Geological Survey of Saxony [160] as ESRI
shapefile

2. The legend of the soil map BK50 from the Geological Survey of Saxony as Microsoft
Excel file

3. Climate data of the study area as a CSV file as provided by the German Meteorological
Service (DWD)

4. An ESRI shapefile containing the outlines of any hydrotop as polygons.
5. A Shuttle Radar Topography Mission (SRTM) raster tile for the study area, as provided

by NASA [161]
6. A BoWaHald [30] precipitation correction file that describes how climate data must be

adjusted.

30

60

90

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Month

E
T

R
 [
m

m
/m

o
n
th

]

Hydrotop

0_Siedlung_metdata_korr_0_Siedlung_0_Siedlung

1_Wiese_GGn_metdata_korr_1_Wiese_GGn_1_Wiese_GGn

2_Wiese_BBn_metdata_korr_2_Wiese_BBn_2_Wiese_BBn

3_Feld_BBn_metdata_korr_3_Feld_BBn_3_Feld_BBn

4_Wiese_GG-SS_metdata_korr_4_Wiese_GG-SS_4_Wiese_GG-SS

Median Real Evaporation

Figure 7.11.: Median monthly evaporation per hydrotop for the Langenau dataset

7.4. Hydrologic Balance Model of a Saxonian Stream 105

The construction process generates two output datasets:

1. Five plots showing the monthly median of characteristic hydrologic values per hydro-
top. Figure 7.11 shows an example plot for the median monthly evaporation from the
Langenau dataset.

2. A statistical summary with the minimum, median and maximum values of characteristic
hydrological values per hydrotop. Table 7.2 contains an example result for the Langenau
dataset. Table 7.1 contains a description of the relevant values.

The construction process was verified with both the Leubsdorf and Langenau datasets. Ap-
pendix D contains a detailed description of all construction steps. The general structure
of the construction steps was provided by domain experts, in this case as content of the
corresponding university lecture.

Table 7.1.: Characteristic hydrologic values, according to BoWaHald

hydrologic
value long variant meaning

ETR real
evaporation

Actual amount of water that evaporates in given period of time

ETP potential
evaporation

Theoretical maximum amount of water that will evaporate in a
given period of time assuming that this amount of water is
available

RO surface
runoff

Amount of water flowing off at the surface

RU subsurface
runoff

Amount of water reaching the bottom of the modelled soil layer
sequence

P precipitation Amount of water that rains or snows on the modelled area

1
0
6

7
.

C
a
se

S
tu

d
ies

Table 7.2.: Annual statistical summary of characteristic hydrologic values per hydrotop as produced for the Langenau dataset. All values are in 𝑚𝑚
𝑦𝑒𝑎𝑟

Hydrotop 𝐸𝑇 𝑅𝑚𝑖𝑛 𝐸𝑇 𝑅𝑚𝑒𝑑𝑖𝑎𝑛 𝐸𝑇 𝑅𝑚𝑎𝑥 𝐸𝑇 𝑃𝑚𝑖𝑛 𝐸𝑇 𝑃𝑚𝑒𝑑𝑖𝑎𝑛 𝐸𝑇 𝑃𝑚𝑎𝑥 𝑅𝑂𝑚𝑖𝑛 𝑅𝑂𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑂𝑚𝑎𝑥 𝑅𝑈𝑚𝑖𝑛 𝑅𝑈𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑈𝑚𝑎𝑥
Siedlung 194 345 370 364 453 530 330 653 1336 0 36 82
Wiese
GGn

490 633 710 549 683 803 0 4 134 86 407 766

Wiese
BBn

516 660 744 572 710 836 0 0 109 67 379 766

Feld
BBn

434 544 625 479 594 701 44 123 417 111 351 599

Wiese
GG-SS

471 620 697 549 683 803 0 5 144 100 420 763

Table 7.3.: Yearly statically summary of observed precipitation All values are in 𝑚𝑚
𝑦𝑒𝑎𝑟

𝑃𝑚𝑖𝑛 𝑃𝑚𝑒𝑑𝑖𝑎𝑛 𝑃𝑚𝑎𝑥
643 1037 1463

7.4. Hydrologic Balance Model of a Saxonian Stream 107

7.4.3. Reproducibility

Ten of the 19 construction steps of this model construction process are reproducible ac-
cording to the bitwise equality definition. The following nine construction steps are not
reproducible:

• calculate bounding box

• calculate AVG height

• calculate slope per hydrotop

• calculate aspect per hydrotop

• calculate slope lenght per hydrotop

• calculate hydrotop area

• lookup soil type

• clip BK50

• run bowahald

The first eight construction steps in this list generate a ESRI Shapefile [115]. As already
outlined in the previous case study the DBF [159] file format, which is used to store parts
of the data, requires to embed the date of the last update as part of the file. This in turn
changes the result of these construction steps depending on the execution date. It seems to
be reasonable to use the structural equality definition for all of these construction steps.

The run bowahald construction step cannot be successfully reproduced using bitwise equality.
Listing 7.2 and Listing 7.3 contain a portion of the file list in the TAR archive that is the
output of the run bowahald construction step. It can be seen that the list of files is different,
but all names follow the same general structure. The underlying problem is that BoWaHald
inserts the execution timestamp into all output file names as the first part of the file name.

1 2021-11-23_10-07__0_Wald_PPn_N_metdata_korr_0_Wald_PPn_N_0_Wald_PPn_N_false_false.xls

2 2021-11-23_10-08__1_Wiese_BBn_S_metdata_korr_1_Wiese_BBn_S_1_Wiese_BBn_S_false_false.xls

3 2021-11-23_10-08__2_Wiese_BBn_N_metdata_korr_2_Wiese_BBn_N_2_Wiese_BBn_N_false_false.xls

4 2021-11-23_10-08__3_Feld_GG-SS_N_metdata_korr_3_Feld_GG-SS_N_3_Feld_GG-SS_N_false_false.xls

5 2021-11-23_10-08__4_Aue_GGn_metdata_korr_4_Aue_GGn_4_Aue_GGn_false_false.xls

6 2021-11-23_10-08__5_Wald_GGn_N_metdata_korr_5_Wald_GGn_N_5_Wald_GGn_N_false_false.xls

7 …

Listing 7.2.: List of files generated by a first run of the run bowahald construction step as contained in the
result TAR archive

1 2021-11-23_10-12__0_Wald_PPn_N_metdata_korr_0_Wald_PPn_N_0_Wald_PPn_N_false_false.xls

2 2021-11-23_10-13__1_Wiese_BBn_S_metdata_korr_1_Wiese_BBn_S_1_Wiese_BBn_S_false_false.xls

3 2021-11-23_10-13__2_Wiese_BBn_N_metdata_korr_2_Wiese_BBn_N_2_Wiese_BBn_N_false_false.xls

4 2021-11-23_10-13__3_Feld_GG-SS_N_metdata_korr_3_Feld_GG-SS_N_3_Feld_GG-SS_N_false_false.xls

5 2021-11-23_10-13__4_Aue_GGn_metdata_korr_4_Aue_GGn_4_Aue_GGn_false_false.xls

6 2021-11-23_10-13__5_Wald_GGn_N_metdata_korr_5_Wald_GGn_N_5_Wald_GGn_N_false_false.xls

7 …

Listing 7.3.: List of files generated by a second run of the run bowahald construction step as contained in
the result TAR archive

If we match the corresponding files by name, ignoring the included timestamp, we can com-
pare the contents of each file. This comparison shows a difference in a single spreadsheet cell
for each pair of files. On closer inspection, this cell does not contain a simulation result, but
the name of the result file. This result, in turn, means that the difference is also caused by
a timestamp contained in the result file name. Again, it is reasonable to consider the results
as equal according to a suitable structural equality definition. We define equality between a
set of BoWaHald result files as follows:

108 7. Case Studies

Two result file sets 𝐷𝑎, and 𝐷𝑏 are equal

• If they contain the same number of files
• For each file 𝐹𝑎 in 𝐷𝑎, there is a matching file 𝐹𝑏 in the data set 𝐷𝑏, without consider-

ation of the timestamp at the beginning of each file name
• Each file 𝐹𝑏 is identical to the corresponding file 𝐹𝑎, expect for the single spreadsheet

cell that contains the file name

Using this definition of equality for the BoWaHald result files, the entire model construction
process is reproducible.

7.4.4. Identified Problems and Construction Process Improvements

Although the presented construction graph implements the construction process for calculat-
ing a hydrologic balance model as thought in the lecture “Wasserhaushalt/Wasserhaushaltsmodellierung,”
there is always room for improvement. We identified several minor and more major oppor-
tunities for improvement for the case study presented.

The generate bwmlayer file construction step presented in appendix D.16 contains an
explicit lookup table for soil properties based on “Bodenkundliche Kartieranleitung (5. Au-
flage)” [162]. These values could be provided as an additional input dataset for the construc-
tion process. Using an additional input dataset for this information would make it easier to
provide modified values for specific soil properties. In addition, this change would allow users
to modify soil properties simply by modifying an input dataset, rather than modifying the
construction step itself.

As described in the previous section, the construction process is not reproducible using the
bitwise equality definition because BoWaHald itself embeds execution timestamps at various
locations. BoWaHald could be improved to omit the timestamp or use a general placeholder
for the stricter bitwise equality definition. Alternatively, this problem could be circumvented
in the definition of the run bowahald construction step by manually setting the execution
environment time to a fixed value as part of the construction step script.

7.4.5. Recommendations

This case study serves two purposes: It demonstrates that reproducibility is possible out-
side the realm of subsurface modelling, and it illustrates how workflow automation can sig-
nificantly reduce the amount of work required to build a new model based on a existing
construction process.

We recommend the use of a predefined construction process for this user group, namely
persons who want to calculate a hydrological balance model. To build such a predefined
construction process, it seems reasonable for an expert from the scientific field to work with
knowledgeable GeoHub users to define and implement the general workflow. This construc-
tion process can then be reused by almost any other user, as they only need to provide a set
of input files as documented by the people who originally created the construction process.
In addition, the automated solution presented in this case study dramatically reduces the
time and effort required to construct a hydrologic balance model. We estimate that the time
required to construct a hydrologic balance model is reduced from about one work week to
about half a day. Finally, automation eliminates several potential sources of mistakes, such
unit conversions or implicit dependencies between multiple input values.

7.5. Lessons Learned 109

7.5. Lessons Learned

During the implementing of our three case studies, we gained experience in how real-world
construction processes work and how GeoHub can be used in different environments. In the
context of this subsection, we would like to provide some general advice on the usage of
GeoHub.

We have worked with a variety of people who use the software in different ways to implement
the presented construction processes. In general, speaking, we see the following user groups
for GeoHub:

• Administrative users
• Construction step designers
• Construction process designers
• Construction process users

An administrative user is responsible for running GeoHub as a service. This work includes
setting up the required environment, updating all parts regularly, and performing investiga-
tions in case of feedback from other users. This group of users does not need much knowledge
about constructing geoscientific models. Instead, they need advanced knowledge in system
administration.

Construction step designers define new construction steps from scratch. Therefore, members
of this user group need a thorough understanding of the software and its dependencies that
they use for their construction step. In addition, knowledge of how to build Docker images
is required to define the runtime environment for executing specific construction steps.

Construction process designers use existing definitions of construction step to construct a new
construction hypergraph. First, members of this user group must have a deep understanding
of the actual construction process. Next, they must be able to answer questions about what
data should be combined by which construction step. Finally, they bring the necessary
expertise to construct a scientifically sound model.

Construction process users use existing construction processes to generate new realisations
of the constructed model by providing a new set of input data. Members of this group do
not need to know exactly how a particular model is designed. Instead, they are interested in
the results generated by some predefined construction process.

In practice, there is no such clear distinction between users. One and the same user can be
a member of several of the defined user groups. This group membership can even depend on
concrete construction processes. For example, a user could provide construction steps that
are used in construction process A, so that they would belong to the group of construction
step designers. The same user could use construction process B only to create new realisations
without caring about the details of the construction process implementation.

In addition to the different user groups, we gathered some experience about the actual oper-
ation of the software. The current prototype consists of two main components:

• One backend server
• One or more construction step executors

Each component has its own requirements for the environment. For example, the backend
server requires access to the network to provide the graphical user interface. In addition,
write access to a local directory is required to store all provided datasets, as well access to a
PostgreSQL database.

110 7. Case Studies

A construction step executor does not need write access to a database or local directory.
However, it does need network access to interact with the backend server and any used
Docker image repository. In addition, a local Docker runtime must be provided to execute
construction step definitions. Finally, adequate computing power must be provided to ex-
ecute construction steps. The exact amount of computing power required depends on the
construction steps themselves. More complex construction steps require more computing
power.

Provision of detailed instructions for running a GeoHub service in a production environment
remains the subject of future work.

Finally we have gathered some experience about reproducibility of geoscientific construction
steps. We have seen examples of reproducible construction steps and we have seen examples
of construction steps which produce different results according to some definitions of equality.
The most common cause of non-reproducibility that was encountered during the implementa-
tion of the presented cases studies was some form of timestamp embedding. Such embedded
time information causes bitwise equality to consider two realisations generated at different
times as unequal. It seems to be reasonable to consider datasets with such embedded time
information as equal for practical applications, as the time information does not change any
other of the stored information. This can be achieved either by a suitable structural equal-
ity definition or by adjusting the corresponding construction steps such that a predefined
timestamp is used in place of the actual execution timestamp. Another two construction
steps generated results where the order of elements stored in the generated files changed.
While this does not change the represented data, it does change the files representing those
data. Again these data could be considered equal according to a suitable structural equability
definition. Changing the construction step to not produce these non-deterministic ordering
seems to be harder in these cases, as that would require modifying proprietary software.
Finally, we encountered two cases of construction steps, that produced different results for
the same input. Depending on the actual use case of the geoscientific model this might be
problematic.

111

8. Conclusions

8.1. Summary

In this thesis, we have shown that geoscientific construction processes represented as hyper-
graphs can be easily repeated. By comparing different realisations of the same construction
process, we are able to evaluate the reproducibility of the construction process itself. Figure
8.1 shows an example of a hypergraph representing the construction of a simplified geoscien-
tific model.

meshing

Output dataset

Triangulated surface

Intermediate dataset

Projected borehole data

Intermediate dataset

Projected geological profiles

project project

Input dataset

Borehole data

Input dataset

Spatial context

Intermediate dataset

Digital geological profiles

digitising

Input dataset

Geological profiles

Figure 8.1.: Example construction hypergraph for a simplified geoscientific model construction

Our construction hypergraphs represent the dependencies between datasets and construction
steps as directed hypergraphs. The construction steps are represented as hyperedges and the
datasets are represented as nodes of the construction hypergraph. The construction hyper-
graph contains dependencies between different construction steps as explicit information.

In order to verify the reproducibility of a construction process, we have presented a software-
independent format for describing construction steps. This format allows us to repeat con-
struction steps, which in turn allows us to repeat an entire construction process. By com-
paring the results of different realisations of the same construction process, we can draw
conclusions about the reproducibility of the overall process. By comparing specific intermedi-
ate or output datasets generated by a non-reproducible construction process, we can attribute
the non-reproducibility to specific construction steps.

112 8. Conclusions

In order to be able to compare different datasets, we have introduced different definitions of
dataset equality for different use cases. Bitwise equality enables the comparison of datasets
regardless of their data format by comparing them at the byte level. Structural equality allows
comparing datasets based on their internal structure. Distance-based equality definitions
allow small differences to be included in the comparison. Finally, the geological equality
definition allow two datasets to be considered as equal if they support the same geological
interpretation.

In addition to the conceptual framework for representing construction processes of geosci-
entific models as construction hypergraphs, we present a prototype implementation of this
concept. For this prototype, we explore different ways to implement components of the
software and finally decide on a particular architecture.

Finally, we used the developed prototype to demonstrate the concept using several case stud-
ies. These case studies include a geophysical inversion, the construction of thee-dimensional
subsurface model using gOcad, and the calculation of a hydrologic balance model. These
examples demonstrate that our prototype can be used with a variety of other software while
providing helpful insights into the reproducibility of these construction processes.

As with all software prototypes, nothing is ever finished. As part of the next section we
present a number of possible improvements for GeoHub.

8.2. Outlook

8.2.1. Parametric Model Construction Process

GeoHub allows the description of a specific process for the construction of a geoscientific
model to include any detail necessary to repeat the construction. With such a construction
process, users can verify that the construction process is reproducible. They can also repeat
the same construction process for different datasets to automate time-consuming tasks. Some
of these construction process can have adjustable parameters. The hydrologic balance model
construction process presented in section 7.4 is an example of such a construction process.
The presented construction process is specifically configured to calculate a hydrologic balance
model for the period between 1.11.1990 and 31.10.2020. It may be helpful to allow users to
efficiently customise this time period.

Theoretically, this could already be implemented today by using another input dataset. How-
ever, we believe that it is semantically the wrong place to include information that affects
the entire construction process as an ordinary input dataset. Instead, a better approach to
handle such information would be to parameterise the entire construction process with this
information. For example, the implementation of such a feature could introduce a construc-
tion process wide variable. These would need to be configured for each construction process
realisation and would be stored as part of the realisation. Each configured construction pro-
cess variable could then be passed as an environment variable into the runtime environment
of each construction step during the construction process execution.

8.2.2. Pull and Push Nodes

There are various solutions for storing geoscientific models. They are specialised for specific
use cases and may already contain large amounts of datasets. Examples include databases for
borehole logs and subsurface models provided by geological surveys, climate data provided

8.2. Outlook 113

by the various meteorological surveys, or Earth observation data provided by space agencies.
These data sources are well established. It would be beneficial for any new application to
integrate these existing data sources. Such a integration is especially meaningful for GeoHub,
as it can provide automated construction processes to build models based on datasets.

An important functionality for integration with these data sources is the ability to automat-
ically fetch data from a defined source or write it to a defined destination. In this context,
this means fetching data from one of the data storage solutions via a defined API to use it
as an input dataset for a construction process, or writing an output dataset to one of the
existing storage solutions. Support for both can be integrated into GeoHub’s concept of input
or output datasets by including different types of data nodes in the construction hypergraph.
GeoHub fetches an input dataset from a remote location according to a defined procedure
for pull input nodes. For push output nodes, the resulting output dataset is written to a
specified remote location.

This alone would better integrate GeoHub into existing setups. With the additional im-
provement of providing an external API to trigger construction process executions or allow
GeoHub to wait for dataset changes on one of the pull input nodes, these enhanced input
and output node definitions could largely automate data processing for use cases where the
same construction process need to be executed over and over again for continuously updated
data.

8.2.3. Parallelize Single Construction Steps

The current GeoHub prototype assumes that a dataset consists of a defined set of files.
Each construction step is then defined to consume several datasets and produce a single
dataset. This assumption is not always true, as several steps of the hydrologic balance case
study demonstrate. This is particularly evident for the generate bwmhydro files(Appendix
D.14), generate bwmuse files (Appendix D.15), generate bwmlayer files (Appendix
D.16), and run bowahald (Appendix D.17) construction steps. These construction steps
operate on datasets containing a variable number of files, depending on the contents of
the specific input datasets. They emulate the handling of a dynamic number of files per
input/output dataset by using a TAR archive. Such an archive can contain several files
in a single archive represented as file. This additional step requires that the definitions of
these construction steps contain certain amount of code that handles the (un)packing of these
archives and possibly the repetition of an operation for each file contained in these archives.

GeoHub could more effectively support such use cases by allowing construction hypergraphs
to signal that a node represents not just a single dataset, but a collection of datasets of the
same type that may contain a variable number of entries. This concept would require different
types of construction step definitions. Those that support only a single dataset input/output
node, those that have either a dataset collection as input or output, and those that have
both a dataset collection as input and output. At least for the last new type of construction
step, it appears to be possible to execute the construction step per entry in the input dataset
collection. This means that for an input dataset collection with 𝑛 entries, the construction
step is executed 𝑛 times to generate an output collection with 𝑛 entries.

8.2.4. Provable Model Construction Process Attestation

A reproducible construction process can be essential and even required for certain use cases.
GeoHub provides a way to describe construction processes in a reproducible manner. There is

114 8. Conclusions

no way to confirm that no person has later maliciously modified any part of the construction
process implementation. Depending on the use case, there may be considerable interest in
changing the results subsequently, whether due to personal opinions, outside pressure, or even
political influence. Again, a motivating example is the search for a nuclear waste deposit side.
It must be presumed that any decision on the location of the deposit side will be challenged
in court. In such a situation, it might be important to show not only how a particular model
was build, but also that the presented realisation is consistent with the realisation that the
decision was based on.

Modern cryptography offers tools which might be helpful here. Cryptographic hash functions
are designed to provide a unique, non-guessable mapping from a corpus of data to a fixed-
size value. This value can then be used to identify that specific data corpus. Applied to
GeoHub, this means that we could implement a system that systematically hashes all relevant
information for a given construction process realisation. This hash can then be published,
for example as part of a final report on some important decisions. Since this information is
public from that moment on, it can be used as evidence in a subsequent dispute to prove
that the specific construction process realisation has not been changed since the time of the
publication.

Cryptographic signature methods can be used to prove that a specific person, who has a
cryptographic secret, has signed a specific set of data. In combination with the hash procedure
described earlier, this can be used to prove that a specific person signed a construction process
realisation at a specific time. This signature can also be published as part of the final report
and later used as proof that this person or institution signed this realisation. It is important
to note that the signature should contain all relevant data, including the hash value mentioned
above. The general guidelines for keeping cryptographic key material secret must be followed
in this case.

Our general proposal is to provide a multi-stage procedure for both the hash and signature
scheme. Each dataset 𝐷𝑖 that is part of the construction process realisation 𝑊𝑖 should have
a separate hash value that depends at least on the following information:

• The exact content of all files of the dataset
• The definition of the construction steps of the incoming hyperedge
• The construction step environment of the incoming hyperedge
• Each hash value of the direct input datasets of the construction step corresponding to

an incoming hyperedge

For the input datasets of the construction process, only the first bullet point applies. Any
other dataset requires additional information about the incoming hyperedge to later confirm
the correct version of the full construction process. It is important to only include information
that will be available later such that a third party can independently verify these hash
values from datasets, construction step descriptions, and construction step environments
downloaded from a GeoHub instance. This means that at least a minimal implementation
of the underlying hash scheme should be available as public code. Since a third party can
use all available information to independently build a new realisation of the same model and
compare the generated hash values, it seems essential to allow only bitwise equality in this
context. According to the scheme suggested above, any other definition of equality would
alter the recorded hash values. The exact amount of information contained in the hashes and
the exact implementation of the suggested scheme should be done by a person educated in
cryptography.

115

References

[1] Springer Berlin Heidelberg, “GEM - International Journal on Geomathematics”, Scope
[Online]. Available: https://link.springer.com/journal/13137; [Accessed: Aug. 02,
2022]

[2] M. J. Steventon, C. A.-L. Jackson, M. Hall, M. T. Ireland, M. Munafo, and K. J.
Roberts, “Reproducibility in Subsurface Geoscience”, Earth Science, Systems and
Society, 2022, doi: 10.3389/esss.2022.10051.

[3] C. Collberg, G. Moraila, A. Shankaran, Z. Shi, and A. M. Warren, “Measuring
Reproducibility in Computer Systems Research”, 2014 [Online]. Available: http:
//reproducibility.cs.arizona.edu/tr.pdf. [Accessed: Aug. 11, 2022]

[4] M. Baker, “1,500 scientists lift the lid on reproducibility”, Nature News, May 2016,
doi: 10.1038/533452a.

[5] M. Konkol, C. Kray, and M. Pfeiffer, “Computational reproducibility in geoscien-
tific papers: Insights from a series of studies with geoscientists and a reproduction
study”, International Journal of Geographical Information Science, Aug. 2018, doi:
10.1080/13658816.2018.1508687.

[6] G. Caumon, “Geological objects and physical parameter fields in the subsurface: A
review”, in Handbook of Mathematical Geosciences, Springer, Cham, 2018 [Online].
Available: https://link.springer.com/content/pdf/10.1007/978-3-319-78999-6.pdf.
[Accessed: Aug. 11, 2022]

[7] C. A.-L. Jackson and A. Rotevatn, “3D seismic analysis of the structure and evolution
of a salt-influenced normal fault zone: A test of competing fault growth models”,
Journal of Structural Geology, Sep. 2013, doi: 10.1016/j.jsg.2013.06.012.

[8] S. Perrouty, M. D. Lindsay, M. W. Jessell, L. Aillères, R. Martin, and Y. Bourassa,
“3D modeling of the Ashanti Belt, southwest Ghana: Evidence for a litho-stratigraphic
control on gold occurrences within the Birimian Sefwi Group”, Ore Geology Reviews,
Dec. 2014, doi: 10.1016/j.oregeorev.2014.05.011.

[9] M. J. Fetkovich, “Decline Curve Analysis Using Type Curves”, in Fall Meeting of the
Society of Petroleum Engineers of AIME, Sep. 1973, doi: 10.2118/4629-MS.

[10] D. S. Oliver and Y. Chen, “Recent progress on reservoir history matching: A review”,
Computational Geosciences, Jan. 2011, doi: 10.1007/s10596-010-9194-2.

[11] M. Bosch, T. Mukerji, and E. F. Gonzalez, “Seismic inversion for reservoir properties
combining statistical rock physics and geostatistics: A review”, GEOPHYSICS, Sep.
2010, doi: 10.1190/1.3478209.

[12] M. Moorkamp, B. Heincke, M. Jegen, R. W. Hobbs, and A. W. Roberts, “Joint In-
version in Hydrocarbon Exploration”, in Integrated Imaging of the Earth, American
Geophysical Union (AGU), 2016.

[13] P. K. Fullagar, N. A. Hughes, and J. Paine, “Drilling-constrained 3D gravity interpre-
tation”, Exploration Geophysics, 2000, doi: 10.1071/eg00017.

https://link.springer.com/journal/13137;
https://doi.org/10.3389/esss.2022.10051
http://reproducibility.cs.arizona.edu/tr.pdf
http://reproducibility.cs.arizona.edu/tr.pdf
https://doi.org/10.1038/533452a
https://doi.org/10.1080/13658816.2018.1508687
https://link.springer.com/content/pdf/10.1007/978-3-319-78999-6.pdf
https://doi.org/10.1016/j.jsg.2013.06.012
https://doi.org/10.1016/j.oregeorev.2014.05.011
https://doi.org/10.2118/4629-MS
https://doi.org/10.1007/s10596-010-9194-2
https://doi.org/10.1190/1.3478209
https://doi.org/10.1071/eg00017

116 References

[14] P. Krause, D. P. Boyle, and F. Bäse, “Comparison of different efficiency criteria
for hydrological model assessment”, in Advances in Geosciences, Dec. 2005, doi:
10.5194/adgeo-5-89-2005.

[15] H. J. Henriksen, L. Troldborg, P. Nyegaard, T. O. Sonnenborg, J. C. Refsgaard, and
B. Madsen, “Methodology for construction, calibration and validation of a national hy-
drological model for Denmark”, Journal of Hydrology, Sep. 2003, doi: 10.1016/S0022-
1694(03)00186-0.

[16] R Core Team, R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing, 2021 [Online]. Available: https:
//www.R-project.org/. [Accessed: Aug. 11, 2022]

[17] J.-L. Mallet, P. Jacquemin, and N. Cheimanoff, “GOCAD project: Geometric mod-
eling of complex geological surfaces”, in 1989 SEG Annual Meeting, 1989, doi:
10.1190/1.1889515.

[18] “ArcGIS Desktop”. Environmental Systems Research Institute, Redlands, CA, 2022
[Online]. Available: https://www.esri.com/en-us/arcgis/products/index

[19] M. de la Varga, A. Schaaf, and F. Wellmann, “GemPy 1.0: Open-source stochastic
geological modeling and inversion”, Geoscientific Model Development, vol. 12, Jan.
2019, doi: 10.5194/gmd-12-1-2019.

[20] G. van Rossum, “Python Reference Manual”, Centrum voor Wiskunde en Informatica
(CWI), Amsterdam, CS-R9525, May 1995 [Online]. Available: https://ir.cwi.nl/pub/
5008/05008D.pdf. [Accessed: Aug. 11, 2022]

[21] J.-L. Mallet, “Discrete smooth interpolation”, ACM Transactions on Graphics, Apr.
1989, doi: 10.1145/62054.62057.

[22] H. E. Plesser, “Reproducibility vs. Replicability: A Brief History of a Confused Termi-
nology”, Frontiers in Neuroinformatics, vol. 11, 2018, doi: 10.3389/fninf.2017.00076.

[23] S. Houlding, 3D Geoscience Modeling: Computer Techniques for Geological Charac-
terization. Springer Science & Business Media, 1994.

[24] F. Wellmann and G. Caumon, “3-D Structural geological models: Concepts, methods,
and uncertainties”, in Advances in Geophysics, C. Schmelzbach, Ed. Elsevier, 2018.

[25] A. Bokulich and N. Oreskes, “Models in Geosciences”, in Springer Handbook of Model-
Based Science, L. Magnani and T. Bertolotti, Eds. Cham: Springer International
Publishing, 2017.

[26] H.-J. Götze, “TiPot – Towards the Integrative Interpretation of Potential Field Data
by 3D Modelling & Visualization”. Freiberg, Oct. 2020 [Online]. Available: https:
//tu-freiberg.de/sites/default/files/media/iamg-student-chapter-34575/slides_20201
015.pdf. [Accessed: Aug. 11, 2022]

[27] “Artifact Review and Badging”. Aug. 2020 [Online]. Available: https://www.acm.or
g/publications/policies/artifact-review-and-badging-current. [Accessed: Aug. 11,
2022]

[28] J. F. Claerbout and M. Karrenbach, “Electronic documents give reproducible re-
search a new meaning”, SEG technical program expanded abstracts 1992, 1992, doi:
10.1190/1.1822162.

[29] J. Pellerin et al., “RINGMesh: A programming library for developing mesh-
based geomodeling applications”, Computers & Geosciences, Jul. 2017, doi:
10.1016/j.cageo.2017.03.005.

https://doi.org/10.5194/adgeo-5-89-2005
https://doi.org/10.1016/S0022-1694(03)00186-0
https://doi.org/10.1016/S0022-1694(03)00186-0
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1190/1.1889515
https://www.esri.com/en-us/arcgis/products/index
https://doi.org/10.5194/gmd-12-1-2019
https://ir.cwi.nl/pub/5008/05008D.pdf
https://ir.cwi.nl/pub/5008/05008D.pdf
https://doi.org/10.1145/62054.62057
https://doi.org/10.3389/fninf.2017.00076
https://tu-freiberg.de/sites/default/files/media/iamg-student-chapter-34575/slides_20201015.pdf
https://tu-freiberg.de/sites/default/files/media/iamg-student-chapter-34575/slides_20201015.pdf
https://tu-freiberg.de/sites/default/files/media/iamg-student-chapter-34575/slides_20201015.pdf
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1190/1.1822162
https://doi.org/10.1016/j.cageo.2017.03.005

References 117

[30] V. Dunger, “Entwicklung und Anwendung des Modells BOWAHALD zur Quan-
tifizierung des Wasserhaushaltes oberflächengesicherter Deponien und Halden”, Ha-
bilitation, TU Bergakademie Freiberg, Freiberg, 2007 [Online]. Available: https:
//doi.org/10.23689/fidgeo-668. [Accessed: Aug. 11, 2022]

[31] PostGIS project, “PostGIS - Spatial and Geographic objects for PostgreSQL”. 2022
[Online]. Available: http://postgis.net/. [Accessed: Sep. 30, 2022]

[32] PostgreSQL project, “PostgreSQL”. 2022 [Online]. Available: https://www.postgres
ql.org/. [Accessed: Sep. 30, 2022]

[33] A. Furieri, “SpatiaLite”. Feb. 2021 [Online]. Available: https://www.gaia-gis.it/fossi
l/libspatialite/index. [Accessed: Nov. 03, 2022]

[34] Oracle Corporation, “Oracle Spatial and Graph”. Jan. 2019 [Online]. Available:
https://www.oracle.com/de/database/spatial/. [Accessed: Nov. 03, 2022]

[35] “Chapter 38. Extending SQL”, PostgreSQL Documentation. Sep. 2021 [Online]. Avail-
able: https://www.postgresql.org/docs/14/extend.html. [Accessed: Nov. 04, 2021]

[36] P. Gabriel and J. Gietzel, “Geosciences in Space and Time”. Giga Infosystems,
Freiberg, 2022 [Online]. Available: http://giga-infosystems.com/information. [Ac-
cessed: Sep. 30, 2022]

[37] J. Gietzel, “Eine datenbankbasierte Verwaltung begrenzungsfreier und hoch
aufgelöster CAD-Modelle”, {{MSc Thesis}}, Technische Univesität Bergakedemie
Freiberg, 2011.

[38] Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, “Geomodel Mit-
tleres Erzgebirge (Rohsa 3.1)”. Apr. 2022 [Online]. Available: https://www.umwelt.s
achsen.de/umwelt/infosysteme/gst3/webgui/gui2.php?viewHash=22b40023bf64ff493
87596dc18c7f3d7. [Accessed: Apr. 08, 2022]

[39] G. Semmler, “A database system for large, dynamically expanding three dimensional
geomodels”, {{MSc Thesis}}, Technische Univesität Bergakedemie Freiberg, 2017.

[40] S. Chacon and B. Straub, Pro Git. Apress, 2014 [Online]. Available: https://github
.com/progit/progit2/releases/download/2.1.223/progit.pdf

[41] J.-L. Mallet, Elements of mathematical sedimentary geology: The GeoChron model.
EAGE publications, 2014.

[42] P. Bourke, “GoCad: ASCII file data formats”. Apr. 2008 [Online]. Available: http:
//paulbourke.net/dataformats/gocad/gocad.pdf. [Accessed: Jul. 14, 2022]

[43] Y. Shafranovich, “Common format and MIME type for comma-separated values (CSV)
files”, Oct. 2005, doi: 10.17487/RFC4180.

[44] “Release notes — NumPy v1.22 Manual”. 2022 [Online]. Available: https://numpy.or
g/doc/stable/release.html. [Accessed: Jan. 20, 2022]

[45] “6. Expressions — Python 3.10.0 documentation”. 2021 [Online]. Available: https:
//docs.python.org/3/reference/expressions.html#comparisons. [Accessed: Nov. 05,
2021]

[46] Y. Halchenko et al., “DataLad: Distributed system for joint management of code,
data, and their relationship”, The Journal of Open Source Software, Jul. 2021, doi:
10.21105/joss.03262.

[47] J. Hess, “Git-annex”. Jun. 2022 [Online]. Available: https://git-annex.branchable.c
om/. [Accessed: Jul. 14, 2022]

[48] A. S. Wagner et al., “The DataLad handbook”, Zenodo, Apr. 2022, doi: 10.5281/zen-
odo.6463273.

https://doi.org/10.23689/fidgeo-668
https://doi.org/10.23689/fidgeo-668
http://postgis.net/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.gaia-gis.it/fossil/libspatialite/index
https://www.gaia-gis.it/fossil/libspatialite/index
https://www.oracle.com/de/database/spatial/
https://www.postgresql.org/docs/14/extend.html
http://giga-infosystems.com/information
https://www.umwelt.sachsen.de/umwelt/infosysteme/gst3/webgui/gui2.php?viewHash=22b40023bf64ff49387596dc18c7f3d7
https://www.umwelt.sachsen.de/umwelt/infosysteme/gst3/webgui/gui2.php?viewHash=22b40023bf64ff49387596dc18c7f3d7
https://www.umwelt.sachsen.de/umwelt/infosysteme/gst3/webgui/gui2.php?viewHash=22b40023bf64ff49387596dc18c7f3d7
https://github.com/progit/progit2/releases/download/2.1.223/progit.pdf
https://github.com/progit/progit2/releases/download/2.1.223/progit.pdf
http://paulbourke.net/dataformats/gocad/gocad.pdf
http://paulbourke.net/dataformats/gocad/gocad.pdf
https://doi.org/10.17487/RFC4180
https://numpy.org/doc/stable/release.html
https://numpy.org/doc/stable/release.html
https://docs.python.org/3/reference/expressions.html#comparisons
https://docs.python.org/3/reference/expressions.html#comparisons
https://doi.org/10.21105/joss.03262
https://git-annex.branchable.com/
https://git-annex.branchable.com/
https://doi.org/10.5281/zenodo.6463273
https://doi.org/10.5281/zenodo.6463273

118 References

[49] Japan Electronics and Information Technology Industries Association, “Exchangeable
image file format for digital still cameras: EXIF version 2.2”. JEITA CP-3451, Apr.
2002 [Online]. Available: https://web.archive.org/web/20131019050323/http:
//www.exif.org/Exif2-2.PDF. [Accessed: Sep. 30, 2022]

[50] Benjamin Young and JSON-LD Working Group, Eds., “JSON-LD 1.1”. May 2020
[Online]. Available: https://w3c.github.io/json-ld-syntax/. [Accessed: Nov. 02, 2021]

[51] Ruslan Kuprieiev, skshetry, Paweł Redzyński, Dmitry Petrov, and Peter Rowlands,
“DVC”. Iterative, Oct. 2021 [Online]. Available: https://github.com/iterative/dvc.
[Accessed: Oct. 07, 2021]

[52] Olivia Mackall, “Mercurial SCM”. Jul. 2022 [Online]. Available: https://www.mercur
ial-scm.org/. [Accessed: Jul. 14, 2022]

[53] “Cloud Object Storage | Store & Retrieve Data Anywhere | Amazon Simple Storage
Service (S3)”. Amazon, 2021 [Online]. Available: https://aws.amazon.com/s3/.
[Accessed: Jun. 16, 2021]

[54] “Git Large File Storage”. GitHub Inc., 2021 [Online]. Available: https://git-lfs.github
.com/. [Accessed: Oct. 07, 2021]

[55] “DVC Command Reference (run)”. 2022 [Online]. Available: https://dvc.org/doc/co
mmand-reference/run. [Accessed: Jan. 21, 2022]

[56] K. Thompson, “Reflections on trusting trust”, Communications of the ACM, Aug.
1984, doi: 10.1145/358198.358210.

[57] C. Lamb, H. Levsen, M. Rizzolo, and V. Cascadian, “Reproducible Builds”. 2021
[Online]. Available: https://reproducible-builds.org/docs/definition/. [Accessed: Oct.
28, 2021]

[58] “Overview of various statistics about reproducible builds”. 2021 [Online]. Available:
https://tests.reproducible-builds.org/debian/reproducible.html. [Accessed: Oct. 29,
2021]

[59] “Reproducible archlinux ?!”. 2021 [Online]. Available: https://tests.reproducible-
builds.org/archlinux/archlinux.html. [Accessed: Oct. 29, 2021]

[60] “Is NixOS Reproducible?”. 2021 [Online]. Available: https://r13y.com/. [Accessed:
Oct. 29, 2021]

[61] “Known issues related to reproducible builds”. 2021 [Online]. Available: https://tests.
reproducible-builds.org/debian/index_issues.html. [Accessed: Oct. 29, 2021]

[62] “ReproducibleBuilds/StandardEnvironmentVariables - Debian Wiki”. 2021 [Online].
Available: https://wiki.debian.org/ReproducibleBuilds/StandardEnvironmentVariab
les#Checklist. [Accessed: Oct. 29, 2021]

[63] C. Lamb, A. Ayer, H. Levsen, M. Rizzolo, and M. Herbert, “Reproducible Builds /
strip-nondeterminism”. Debian, 2022 [Online]. Available: https://salsa.debian.org/r
eproducible-builds/strip-nondeterminism. [Accessed: Jan. 21, 2022]

[64] Executable and linking format (ELF) specification. TIS Commitee; Tool Interface
Standard (TIS) Committee, 1995 [Online]. Available: https://refspecs.linuxfoundati
on.org/elf/elf.pdf

[65] A. Singh, “Portable Executable File Format”, Identifying Malicious Code Through
Reverse Engineering, Jan. 2009, doi: 10.1007/978-0-387-89468-3.

[66] J. W. Hunt and M. D. MacIlroy, “An algorithm for differential file comparison”,
Computing science technical report, vol. 41, 1975 [Online]. Available: https:
//www.cs.dartmouth.edu/~doug/diff.pdf. [Accessed: Oct. 01, 2022]

https://web.archive.org/web/20131019050323/http://www.exif.org/Exif2-2.PDF
https://web.archive.org/web/20131019050323/http://www.exif.org/Exif2-2.PDF
https://w3c.github.io/json-ld-syntax/
https://github.com/iterative/dvc
https://www.mercurial-scm.org/
https://www.mercurial-scm.org/
https://aws.amazon.com/s3/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://dvc.org/doc/command-reference/run
https://dvc.org/doc/command-reference/run
https://doi.org/10.1145/358198.358210
https://reproducible-builds.org/docs/definition/
https://tests.reproducible-builds.org/debian/reproducible.html
https://tests.reproducible-builds.org/archlinux/archlinux.html
https://tests.reproducible-builds.org/archlinux/archlinux.html
https://r13y.com/
https://tests.reproducible-builds.org/debian/index_issues.html
https://tests.reproducible-builds.org/debian/index_issues.html
https://wiki.debian.org/ReproducibleBuilds/StandardEnvironmentVariables#Checklist
https://wiki.debian.org/ReproducibleBuilds/StandardEnvironmentVariables#Checklist
https://salsa.debian.org/reproducible-builds/strip-nondeterminism
https://salsa.debian.org/reproducible-builds/strip-nondeterminism
https://refspecs.linuxfoundation.org/elf/elf.pdf
https://refspecs.linuxfoundation.org/elf/elf.pdf
https://doi.org/10.1007/978-0-387-89468-3
https://www.cs.dartmouth.edu/~doug/diff.pdf
https://www.cs.dartmouth.edu/~doug/diff.pdf

References 119

[67] A. Schaaf, M. de la Varga, F. Wellmann, and C. E. Bond, “Constraining stochas-
tic 3-D structural geological models with topology information using approximate
Bayesian computation in GemPy 2.1”, Geoscientific Model Development, Jun. 2021,
doi: 10.5194/gmd-14-3899-2021.

[68] S. T. Thiele, M. W. Jessell, M. Lindsay, J. F. Wellmann, and E. Pakyuz-Charrier,
“The topology of geology 2: Topological uncertainty”, Journal of Structural Geology,
Oct. 2016, doi: 10.1016/j.jsg.2016.08.010.

[69] S. T. Thiele, M. W. Jessell, M. Lindsay, V. Ogarko, J. F. Wellmann, and E. Pakyuz-
Charrier, “The topology of geology 1: Topological analysis”, Journal of Structural
Geology, Oct. 2016, doi: 10.1016/j.jsg.2016.08.009.

[70] M. Sen and T. Duffy, “GeoSciML: Development of a generic GeoScience Markup Lan-
guage”, Computers & Geosciences, Nov. 2005, doi: 10.1016/j.cageo.2004.12.003.

[71] A. Shaon et al., “Long-term sustainability of spatial data infrastructures: A metadata
framework and principles of geo-archiving.”, in Proceedings of the 8th International
Conference on Digital Preservation, iPRES 2011, Singapore, November 1-4, 2011,
2011, doi: 11353/10.294224.

[72] X. Specka et al., “The BonaRes metadata schema for geospatial soil-agricultural re-
search data – Merging INSPIRE and DataCite metadata schemes”, Computers &
Geosciences, Nov. 2019, doi: 10.1016/j.cageo.2019.07.005.

[73] M. Fowler, Patterns of Enterprise Application Architecture, 1st edition. Boston:
Addison-Wesley Professional, 2002.

[74] E. G. Haffner, Informatik für Dummies, Das Lehrbuch. Weinheim: Wiley VCH, 2017.

[75] T. Q. Company, “Qt | Cross-platform software development for embedded & desktop”.
[Online]. Available: https://www.qt.io. [Accessed: Mar. 16, 2021]

[76] “Electron | Build cross-platform desktop apps with JavaScript, HTML, and CSS.”.
[Online]. Available: https://www.electronjs.org/. [Accessed: Mar. 16, 2021]

[77] R. Fielding et al., “RFC 2616, hypertext transfer protocol – HTTP/1.1”, Jun. 1999,
doi: 10.17487/RFC2616.

[78] M. Fowler, “Microservices”, martinfowler.com. Mar. 2014 [Online]. Available: https:
//martinfowler.com/articles/microservices.html. [Accessed: Feb. 16, 2021]

[79] M. E. Conway, “How do committees invent?”, Datamation, Apr. 1968 [Online]. Avail-
able: http://www.melconway.com/research/committees.html. [Accessed: Oct. 01,
2022]

[80] U. Joshi, “Patterns of Distributed Systems”, martinfowler.com. Aug. 2020 [Online].
Available: https://martinfowler.com/articles/patterns-of-distributed-systems/.
[Accessed: Mar. 17, 2021]

[81] M. O. Manero, “Plugins in Rust: The Technologies”. May 2021 [Online]. Available:
https://nullderef.com/blog/plugin-tech/. [Accessed: Jun. 01, 2021]

[82] D. M. Beazley, B. D. Ward, and I. R. Cooke, “The inside story on shared li-
braries and dynamic loading”, Computing in Science Engineering, Sep. 2001, doi:
10.1109/5992.947112.

[83] M. Kerrisk, The Linux Programming Interface: A Linux and UNIX System Program-
ming Handbook, 1st edition. San Francisco: No Starch Press, 2010.

[84] “PostgreSQL: Documentation: 12: 37.10. C-Language Functions”. [Online]. Available:
https://www.postgresql.org/docs/current/xfunc-c.html. [Accessed: Jul. 30, 2020]

https://doi.org/10.5194/gmd-14-3899-2021
https://doi.org/10.1016/j.jsg.2016.08.010
https://doi.org/10.1016/j.jsg.2016.08.009
https://doi.org/10.1016/j.cageo.2004.12.003
https://doi.org/11353/10.294224
https://doi.org/10.1016/j.cageo.2019.07.005
https://www.qt.io
https://www.electronjs.org/
https://doi.org/10.17487/RFC2616
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://www.melconway.com/research/committees.html
https://martinfowler.com/articles/patterns-of-distributed-systems/
https://nullderef.com/blog/plugin-tech/
https://doi.org/10.1109/5992.947112
https://www.postgresql.org/docs/current/xfunc-c.html

120 References

[85] “Kernel modules — The Linux Kernel documentation”. [Online]. Available: https://
linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html. [Accessed:
Jul. 30, 2020]

[86] B. Yee et al., “Native Client: A Sandbox for Portable, Untrusted X86 Native
Code”, in 2009 30th IEEE Symposium on Security and Privacy, May 2009, doi:
10.1109/SP.2009.25.

[87] B. Ford and R. Cox, “Vx32: Lightweight, User-level Sandboxing on the X86”, in
ATC’08: USENIX 2008 Annual Technical Conference, Jun. 2008 [Online]. Available:
https://www.usenix.org/legacy/event/usenix08/tech/full_papers/ford/ford_html/.
[Accessed: Jun. 01, 2021]

[88] “AMD64 ArchitectureProgrammer’s Manual”, Advanced Micro Devices, Oct. 2020
[Online]. Available: https://www.amd.com/system/files/TechDocs/24592.pdf.
[Accessed: Apr. 14, 2021]

[89] D. Seal and D. Jagger, ARM Architecture Reference Manual, Second. Addison-Wesley
Professional, 2001.

[90] H. J. Lu, M. Matz, M. Grikar, J. Hubička, A. Jaeger, and M. Mitchell, Eds., “System
V Application Binary Interface AMD64 Architecture Processor Supplement (With
LP64 and ILP32 Programming Models) Version 1.0”. Dec. 2018 [Online]. Available:
https://gitlab.com/x86-psABIs/x86-64-ABI. [Accessed: Oct. 01, 2022]

[91] J. MacCall, R. Smith, J. Merrill, T. Honermann, M. Herrick, and R. Anguiano, “Ita-
nium C++ ABI”. 2021 [Online]. Available: https://itanium-cxx-abi.github.io/cxx-
abi/abi.html. [Accessed: Jul. 30, 2020]

[92] M. Ilseman, B. Wilson, and J. Holdsworth, “Swift ABI Stability Manifesto”, 2020
[Online]. Available: https://github.com/apple/swift/blob/143fcdf44c8ef6fb433b9b87
5dbec18acfccee0c/docs/ABIStabilityManifesto.md. [Accessed: Jul. 30, 2020]

[93] ISO Central Secretary, Ed., “Information technology — Programming languages — C”,
International Organization for Standardization, Geneva, CH, Standard ISO/IEC TR
9899:2018, Jun. 2018 [Online]. Available: https://www.iso.org/standard/74528.html

[94] R. T. Forti, A. Polukhin, and K. Morgenstern, “Chapter 12. Boost.DLL - 1.75.0”.
[Online]. Available: https://www.boost.org/doc/libs/1_75_0/doc/html/boost_dll.h
tml. [Accessed: Apr. 14, 2021]

[95] “Third Party Cargo Subcommands”, GitHub. [Online]. Available: https://github.com
/rust-lang/cargo/wiki/Third-party-cargo-subcommands. [Accessed: Jul. 30, 2020]

[96] J. MacFarlane, “Pandoc filters”. [Online]. Available: https://pandoc.org/filters.html.
[Accessed: Jul. 30, 2020]

[97] “Docker”. Docker Inc., Palo Alto, CA, Jun. 2022 [Online]. Available: https://www.
docker.com/. [Accessed: Jul. 15, 2022]

[98] C. Boettiger, “An introduction to Docker for reproducible research”, ACM SIGOPS
Operating Systems Review, Jan. 2015, doi: 10.1145/2723872.2723882.

[99] E. Casalicchio and V. Perciballi, “Measuring Docker Performance: What a Mess!!!”,
in Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering Companion, Apr. 2017, doi: 10.1145/3053600.3053605.

[100] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes Filho, “The Implementation of
Lua 5.0.”, Journal of Universal Computer Science, 2005, doi: 10.3217/jucs-011-07-
1159.

[101] “The Python Language Reference — Python 3.10.0a7 documentation”. [Online]. Avail-
able: https://docs.python.org/dev/reference/index.html. [Accessed: Apr. 19, 2021]

https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html
https://doi.org/10.1109/SP.2009.25
https://www.usenix.org/legacy/event/usenix08/tech/full_papers/ford/ford_html/
https://www.amd.com/system/files/TechDocs/24592.pdf
https://gitlab.com/x86-psABIs/x86-64-ABI
https://itanium-cxx-abi.github.io/cxx-abi/abi.html
https://itanium-cxx-abi.github.io/cxx-abi/abi.html
https://github.com/apple/swift/blob/143fcdf44c8ef6fb433b9b875dbec18acfccee0c/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/143fcdf44c8ef6fb433b9b875dbec18acfccee0c/docs/ABIStabilityManifesto.md
https://www.iso.org/standard/74528.html
https://www.boost.org/doc/libs/1_75_0/doc/html/boost_dll.html
https://www.boost.org/doc/libs/1_75_0/doc/html/boost_dll.html
https://github.com/rust-lang/cargo/wiki/Third-party-cargo-subcommands
https://github.com/rust-lang/cargo/wiki/Third-party-cargo-subcommands
https://pandoc.org/filters.html
https://www.docker.com/
https://www.docker.com/
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/3053600.3053605
https://doi.org/10.3217/jucs-011-07-1159
https://doi.org/10.3217/jucs-011-07-1159
https://docs.python.org/dev/reference/index.html

References 121

[102] J. Harband and K. Smith, Eds., “ECMAScript® 2020 language specification”, ECMA
International, Geneva, Jun. 2020 [Online]. Available: https://www.ecma-internatio
nal.org/wp-content/uploads/ECMA-262.pdf. [Accessed: Oct. 02, 2022]

[103] L. Bak, “V8 JavaScript engine”. Google Inc., Jan. 2022 [Online]. Available: https:
//v8.dev/. [Accessed: Jul. 15, 2022]

[104] “Which programming language is fastest? | Computer Language Benchmarks Game”.
[Online]. Available: https://benchmarksgame-team.pages.debian.net/benchmarksga
me/. [Accessed: Apr. 19, 2021]

[105] A. Rossberg, Ed., “WebAssembly Core Specification Version 2.0”, W3C, Apr. 2022
[Online]. Available: https://www.w3.org/TR/wasm-core-2/. [Accessed: Oct. 02,
2022]

[106] A. Crichton and D. Gohman, “Wasmtime — a small and efficient runtime for We-
bAssembly & WASI”. [Online]. Available: https://wasmtime.dev/. [Accessed: Jun.
08, 2021]

[107] “Wasmer - The Universal WebAssembly Runtime”. [Online]. Available: https://wasm
er.io/. [Accessed: Jun. 08, 2021]

[108] P. Hickey et al., “WASI: WebAssembly System Interface”, Dec. 2020, doi: 10.5281/zen-
odo.4323447.

[109] “Wasmer_middlewares::metering - Rust”. [Online]. Available: https://docs.rs/wasm
er-middlewares/2.0.0-rc1/wasmer_middlewares/metering/index.html. [Accessed:
Jun. 08, 2021]

[110] “WasmBoxC: Simple, Easy, and Fast VM-less Sandboxing”. [Online]. Available: https:
//kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html. [Accessed: Jul. 28,
2020]

[111] R. Hagelund, S. A. Levin, and SEG Technical Standards Committee, Eds., SEG-
Y revision 2.0 Data Exchange format. Society of Exploration Geophysicists, 2017
[Online]. Available: https://seg.org/Portals/0/SEG/News%20and%20Resources/Tec
hnical%20Standards/seg_y_rev2_0-mar2017.pdf. [Accessed: Oct. 02, 2022]

[112] M. Ruth et al., “Geotiff format specification geotiff revision 1.0”, vol. 1, Dec. 2000
[Online]. Available: http://geotiff.maptools.org/spec/geotiffhome.html. [Accessed:
Oct. 02, 2022]

[113] M. Folk, A. Cheng, and K. Yates, “HDF5: A file format and I/O library for high
performance computing applications”, in Proceedings of supercomputing, Nov. 1999.

[114] Kitware, Ed., “VTK File Formats Specification”. 2021 [Online]. Available: https:
//kitware.github.io/vtk-examples/site/VTKFileFormats/. [Accessed: Jul. 02, 2021]

[115] ESRI, Ed., “ESRI Shapefile Technical Description”, p. 34, Jul. 1998 [Online]. Avail-
able: https://www.esri.com/Library/Whitepapers/Pdfs/Shapefile.pdf/. [Accessed:
Oct. 02, 2022]

[116] ECMA, ECMA-376: Office Open XML file formats. Geneva, Switzerland: ECMA
(European Association for Standardizing Information and Communication Systems),
2016 [Online]. Available: http://www.ecma-international.org/publications/standards
/Ecma-376.htm. [Accessed: Oct. 02, 2022]

[117] “Disclosing all Volve data - Disclosing all Volve data - equinor.com”. [Online]. Avail-
able: https://www.equinor.com/en/news/14jun2018-disclosing-volve-data.html.
[Accessed: Feb. 04, 2021]

https://www.ecma-international.org/wp-content/uploads/ECMA-262.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-262.pdf
https://v8.dev/
https://v8.dev/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://www.w3.org/TR/wasm-core-2/
https://wasmtime.dev/
https://wasmer.io/
https://wasmer.io/
https://doi.org/10.5281/zenodo.4323447
https://doi.org/10.5281/zenodo.4323447
https://docs.rs/wasmer-middlewares/2.0.0-rc1/wasmer_middlewares/metering/index.html
https://docs.rs/wasmer-middlewares/2.0.0-rc1/wasmer_middlewares/metering/index.html
https://kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html
https://kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html
https://seg.org/Portals/0/SEG/News%20and%20Resources/Technical%20Standards/seg_y_rev2_0-mar2017.pdf
https://seg.org/Portals/0/SEG/News%20and%20Resources/Technical%20Standards/seg_y_rev2_0-mar2017.pdf
http://geotiff.maptools.org/spec/geotiffhome.html
https://kitware.github.io/vtk-examples/site/VTKFileFormats/
https://kitware.github.io/vtk-examples/site/VTKFileFormats/
https://www.esri.com/Library/Whitepapers/Pdfs/Shapefile.pdf/
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.ecma-international.org/publications/standards/Ecma-376.htm
https://www.equinor.com/en/news/14jun2018-disclosing-volve-data.html

122 References

[118] ISO Central Secretary, Ed., “Geographic information — Metadata”, International
Organization for Standardization, Geneva, CH, ISO 19115-1, 2014 [Online]. Available:
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/37
/53798.html. [Accessed: Jul. 09, 2021]

[119] ISO Central Secretary, Ed., “Geographic information — Services”, International Or-
ganization for Standardization, Geneva, CH, Standard ISO 19119:2016, 2016 [Online].
Available: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/stan
dard/05/92/59221.html. [Accessed: Jul. 09, 2021]

[120] European Commission, Ed., “Technical Guidance for the implementation of INSPIRE
dataset and service metadata based on ISO/TS 19139:2007”, Mar. 2017 [Online].
Available: https://inspire.ec.europa.eu/id/document/tg/metadata-iso19139. [Ac-
cessed: Jul. 09, 2021]

[121] European Commission, Ed., “DCAT application profile for data portals in Europe.
Version 1.1”, European Commission, 2015 [Online]. Available: https://joinup.ec.eu
ropa.eu/collection/semantic-interoperability-community-semic/solution/dcat-
application-profile-data-portals-europe/release/11. [Accessed: Jul. 09, 2021]

[122] European Commission, Ed., “GeoDCAT-AP: A geospatial extension for the DCAT
application profile for data portals in Europe”, European Commission, Standard, 2016
[Online]. Available: https://joinup.ec.europa.eu/collection/semantic-interoperability-
community-semic/solution/geodcat-application-profile-data-portals-europe/release/1
01. [Accessed: Jul. 09, 2021]

[123] Arizona Geological Survey, Ed., “USGIN Metadata Profile: Use of ISO metadata
specifications to describe geoscience information resources”, USGIN Standards and
Protocols Drafting Team, Standard 1.3, Jun. 2018 [Online]. Available: https://usgin.
github.io/usginspecs/USGIN_ISO_Metadata.htm. [Accessed: Jul. 09, 2021]

[124] “Use the OverlayFS storage driver”, Docker Documentation. Feb. 2022 [Online]. Avail-
able: https://docs.docker.com/storage/storagedriver/overlayfs-driver/. [Accessed:
Feb. 11, 2022]

[125] “ObjectIdentifier - Amazon Simple Storage Service”. 2020 [Online]. Available: https://
docs.aws.amazon.com/AmazonS3/latest/API/API_ObjectIdentifier.html. [Accessed:
Jun. 22, 2021]

[126] D. Luu, “Files are fraught with peril”. 2019 [Online]. Available: https://danluu.com
/deconstruct-files/. [Accessed: Aug. 04, 2020]

[127] ISO Central Secretary, Ed., “Information technology database languages — SQL”,
International Organization for Standardization, Geneva, CH, ISO/IEC 9075-15:2019,
Jun. 2019 [Online]. Available: https://www.iso.org/standard/67382.html. [Accessed:
Oct. 02, 2022]

[128] M. Stonebraker and G. Kemnitz, “The POSTGRES next generation database manage-
ment system”, Communications of the ACM, Oct. 1991, doi: 10.1145/125223.125262.

[129] “8.14. JSON Types”, PostgreSQL Documentation. May 2021 [Online]. Available:
https://www.postgresql.org/docs/13/datatype-json.html. [Accessed: Jul. 13, 2021]

[130] “F.16. hstore”, PostgreSQL Documentation. Feb. 2022 [Online]. Available: https:
//www.postgresql.org/docs/14/hstore.html. [Accessed: Feb. 24, 2022]

[131] “MongoDB”. 2021 [Online]. Available: https://www.mongodb.com. [Accessed: Jul.
13, 2021]

[132] “Documents”, MongoDB Manual. [Online]. Available: https://docs.mongodb.com/m
anual/core/document/. [Accessed: Feb. 24, 2022]

https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/37/53798.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/37/53798.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/92/59221.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/92/59221.html
https://inspire.ec.europa.eu/id/document/tg/metadata-iso19139
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/dcat-application-profile-data-portals-europe/release/11
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/dcat-application-profile-data-portals-europe/release/11
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/dcat-application-profile-data-portals-europe/release/11
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/geodcat-application-profile-data-portals-europe/release/101
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/geodcat-application-profile-data-portals-europe/release/101
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/geodcat-application-profile-data-portals-europe/release/101
https://usgin.github.io/usginspecs/USGIN_ISO_Metadata.htm
https://usgin.github.io/usginspecs/USGIN_ISO_Metadata.htm
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ObjectIdentifier.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ObjectIdentifier.html
https://danluu.com/deconstruct-files/
https://danluu.com/deconstruct-files/
https://www.iso.org/standard/67382.html
https://doi.org/10.1145/125223.125262
https://www.postgresql.org/docs/13/datatype-json.html
https://www.postgresql.org/docs/14/hstore.html
https://www.postgresql.org/docs/14/hstore.html
https://www.mongodb.com
https://docs.mongodb.com/manual/core/document/
https://docs.mongodb.com/manual/core/document/

References 123

[133] K. Kingsbury, “Jepsen: MongoDB 4.2.6”, May 2020 [Online]. Available: https://jeps
en.io/analyses/mongodb-4.2.6. [Accessed: Aug. 17, 2020]

[134] K. Patella, “Jepsen: MongoDB 3.6.4”, Oct. 2018 [Online]. Available: https://jepsen.i
o/analyses/mongodb-3-6-4. [Accessed: Jul. 13, 2021]

[135] K. Kingsbury, “Jepsen: MongoDB 3.4.0-Rc3”, Feb. 2017 [Online]. Available: http:
//jepsen.io/analyses/mongodb-3-4-0-rc3. [Accessed: Jul. 13, 2021]

[136] K. Kingsbury, “Jepsen: MongoDB stale reads”, Apr. 2015 [Online]. Available: https:
//aphyr.com/posts/322-jepsen-mongodb-stale-reads. [Accessed: Jul. 13, 2021]

[137] “Neo4j”. 2021 [Online]. Available: https://neo4j.com/. [Accessed: Jul. 14, 2021]

[138] “The Neo4j Cypher Manual v4.3”, Neo4j Cypher Manual. 2021 [Online]. Available:
https://neo4j.com/docs/cypher-manual/4.3/. [Accessed: Jul. 14, 2021]

[139] I. Robinson, J. Webber, and E. Eifrem, Graph Databases: New Opportunities for
Connected Data (English Edition). O’Reilly Media, 2015.

[140] “GitLab Container Registry | GitLab”. [Online]. Available: https://docs.gitlab.com/
ee/user/packages/container_registry/. [Accessed: Jul. 15, 2021]

[141] “Docker Hub registry”, Docker Documentation. Jul. 2021 [Online]. Available: https:
//docs.docker.com/registry/deploying/. [Accessed: Jul. 15, 2021]

[142] D. R. K. Ports and K. Grittner, “Serializable snapshot isolation in PostgreSQL”, Pro-
ceedings of the VLDB Endowment, Aug. 2012, doi: 10.14778/2367502.2367523.

[143] D. Luu, “Filesystem error handling”. [Online]. Available: https://danluu.com/filesys
tem-errors/. [Accessed: Aug. 04, 2020]

[144] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and M. Shellenbaum, “The zettabyte
file system”, Proceedings of the USENIX Conference on File and Storage Technologies,
2003 [Online]. Available: https://www.cs.hmc.edu/~rhodes/courses/cs134/fa20/readi
ngs/The%20Zettabyte%20File%20System.pdf. [Accessed: Oct. 02, 2022]

[145] H. H. Le, “Spatio-temporal Information System for the Geosciences: Concepts, Data
models,Software, and Applications”, PhD thesis, Technische Univesität Bergakedemie
Freiberg, 2014.

[146] G. Hoare et al., “The Rust Programming Language”. The Rust Programming Lan-
guage, Nov. 2021 [Online]. Available: https://github.com/rust-lang/rust. [Accessed:
Oct. 07, 2022]

[147] I. Hickson, S. Pieters, A. van Kesteren, P. Jägenstedt, D. Denicola, and T. Berners-
Lee, Eds., “HTML Living Standard”, WHATWG, 7.10.22 [Online]. Available: https:
//html.spec.whatwg.org/. [Accessed: Oct. 07, 2022]

[148] R. Hickey, D. Nolen, M. Fikes, A. N. Monteiro, and B. Ashworth, “Clo-
jure/clojurescript”. Clojure, Dec. 2021 [Online]. Available: https://github.com/c
lojure/clojurescript. [Accessed: Dec. 06, 2021]

[149] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format”, Dec.
2017, doi: 10.17487/RFC8259.

[150] O. Ben-Kiki, C. Evans, and I. döt Net, “YAML ain’t markup language (YAML) (tm)
version 1.2”, YAML.org, 1.10.21 [Online]. Available: https://yaml.org/spec/1.2.2/.
[Accessed: Oct. 07, 2022]

[151] K. Trzciński, T. Maczukin, S. Azzopardi, P. Pombeiro, A. Caiazza, and G. N. Georgiev,
“Gitlab runner”. 2021 [Online]. Available: https://gitlab.com/gitlab-org/gitlab-
runner. [Accessed: Dec. 09, 2021]

https://jepsen.io/analyses/mongodb-4.2.6
https://jepsen.io/analyses/mongodb-4.2.6
https://jepsen.io/analyses/mongodb-3-6-4
https://jepsen.io/analyses/mongodb-3-6-4
http://jepsen.io/analyses/mongodb-3-4-0-rc3
http://jepsen.io/analyses/mongodb-3-4-0-rc3
https://aphyr.com/posts/322-jepsen-mongodb-stale-reads
https://aphyr.com/posts/322-jepsen-mongodb-stale-reads
https://neo4j.com/
https://neo4j.com/docs/cypher-manual/4.3/
https://docs.gitlab.com/ee/user/packages/container_registry/
https://docs.gitlab.com/ee/user/packages/container_registry/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://doi.org/10.14778/2367502.2367523
https://danluu.com/filesystem-errors/
https://danluu.com/filesystem-errors/
https://www.cs.hmc.edu/~rhodes/courses/cs134/fa20/readings/The%20Zettabyte%20File%20System.pdf
https://www.cs.hmc.edu/~rhodes/courses/cs134/fa20/readings/The%20Zettabyte%20File%20System.pdf
https://github.com/rust-lang/rust
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://github.com/clojure/clojurescript
https://github.com/clojure/clojurescript
https://doi.org/10.17487/RFC8259
https://yaml.org/spec/1.2.2/
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner

124 References

[152] S. Winter, “Seismische Tomographie am BHMZ Versuchsstand des Lehr- und
Forschungsbergwerks ”Reiche Zeche””, {MSc Thesis}, Technische Univesität
Bergakedemie Freiberg, Freiberg, 2016.

[153] D. Pötschke, “Geoelektrische Tomographie an einem Erzgang im Bergwerk Reiche
Zeche (Freiberg)”, {MSc Thesis}, Technische Univesität Bergakedemie Freiberg, 2017.

[154] C. Moler, “MATLAB”. The MathWorks Inc., Natick, Massachusetts, 15.9.22 [Online].
Available: https://www.mathworks.com/products/matlab.html. [Accessed: Oct. 07,
2022]

[155] M. Scheunert, L. Bräunig, G. Semmler, R. Gootjes, and J. Blechta, “Abschlussbericht
der Nachwuchsforschergruppe GEOSax”, Apr. 2021.

[156] L. Roscoe, “Stereolithography interface specification”, America-3D Systems Inc.

[157] Landesamt für Umwelt, Landwirtschaft und Geologie Sachsen, Ed., “Subsurface Model
for the road bypass near Pirna/Saxony”. 2021 [Online]. Available: https://www.um
welt.sachsen.de/umwelt/infosysteme/gst3/webgui/gui2.php?viewHash=08766d82261
86d1fc1db6d5689edc2c9&filter=true. [Accessed: Nov. 15, 2021]

[158] QGIS Development Team, “QGIS geographic information system”. QGIS, 15.07.22
[Online]. Available: https://github.com/qgis/QGIS. [Accessed: Aug. 19, 2022]

[159] “dBASE .DBF File Structure”. [Online]. Available: http://www.dbase.com/Knowle
dgebase/INT/db7_file_fmt.htm. [Accessed: Nov. 25, 2022]

[160] A. Bräunig, “Bodenkarte 1 : 50.000”. Sächsisches Landesamt für Umwelt, Land-
wirtschaft und Geologie, 2021 [Online]. Available: http://www.boden.sachsen.de
/digitale-bodenkarte-1-50-000-19474.html. [Accessed: Nov. 19, 2021]

[161] Earth Resources Observation And Science (EROS) Center and U.S. Geological Survey,
Eds., “Shuttle radar topography mission (SRTM) 1 arc-second global”, 2017, doi:
10.5066/f7pr7tft.

[162] H. Sponagel et al., Bodenkundliche Kartieranleitung, 5th edition. Hannover: Bunde-
sanstalt für Geowissenschaften und Rohstoffe, 2005.

[163] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator with
built-in pre- and post-processing facilities”, International Journal for Numerical Meth-
ods in Engineering, Sep. 2009, doi: 10.1002/nme.2579.

[164] “XDMF Model and Format - XdmfWeb”. 2021 [Online]. Available: https://xdmf.org
/index.php/XDMF_Model_and_Format. [Accessed: Nov. 12, 2021]

[165] D. Temirkhodjaev, “Xlsx2csv”. Nov. 2021 [Online]. Available: https://github.com/d
ilshod/xlsx2csv. [Accessed: Nov. 16, 2021]

[166] “ESRI Arc Geodatabase (file-based)”. Jun. 2020 [Online]. Available: https://www.lo
c.gov/preservation/digital/formats/fdd/fdd000294.shtml#useful. [Accessed: Nov. 16,
2021]

https://www.mathworks.com/products/matlab.html
https://www.umwelt.sachsen.de/umwelt/infosysteme/gst3/webgui/gui2.php?viewHash=08766d8226186d1fc1db6d5689edc2c9&filter=true
https://www.umwelt.sachsen.de/umwelt/infosysteme/gst3/webgui/gui2.php?viewHash=08766d8226186d1fc1db6d5689edc2c9&filter=true
https://www.umwelt.sachsen.de/umwelt/infosysteme/gst3/webgui/gui2.php?viewHash=08766d8226186d1fc1db6d5689edc2c9&filter=true
https://github.com/qgis/QGIS
http://www.dbase.com/Knowledgebase/INT/db7_file_fmt.htm
http://www.dbase.com/Knowledgebase/INT/db7_file_fmt.htm
http://www.boden.sachsen.de/digitale-bodenkarte-1-50-000-19474.html
http://www.boden.sachsen.de/digitale-bodenkarte-1-50-000-19474.html
https://doi.org/10.5066/f7pr7tft
https://doi.org/10.1002/nme.2579
https://xdmf.org/index.php/XDMF_Model_and_Format
https://xdmf.org/index.php/XDMF_Model_and_Format
https://github.com/dilshod/xlsx2csv
https://github.com/dilshod/xlsx2csv
https://www.loc.gov/preservation/digital/formats/fdd/fdd000294.shtml#useful
https://www.loc.gov/preservation/digital/formats/fdd/fdd000294.shtml#useful

125

Appendix

A. Construction Steps for the BHMZ model

A.1. stacking

The stacking operation transforms two measurement files, named RZ01.dat and RZ02.dat

provided in an application specific matlab matrix dat format into a combined stacked matlab
matrix dat file. Listing A.1 contains the construction step definition as used by the case
study presented in section 7.2. It is based on use case specific matlab code provided by the
geoelectric working group of the department of geophysics at TU Bergakademie Freibeg. The
script performed as part of this construction step consists the following operations:

1. Create a required input directory (Line 5)
2. Move the input files RZ01.dat and RZ02.datinto the created directory, so that the

stacking matlab script can correctly read the corresponding data. (Line 6-7)
3. Execute the actual matlab stacking script. This script is provided by the software

environment, that is based on the code provided by the geoelectric working group.
(Line 8)

1 image: local-registry:5000/bhmz_dc:latest

2 input_path: "/home/matlab/"

3 operation:

4 - command: |

5 mkdir bhmz/data_BERT

6 mv RZ01.dat bhmz/data_BERT/RZ01.dat

7 mv RZ02.dat bhmz/data_BERT/RZ02.dat

8 cd bhmz && matlab -nosplash -nodesktop -r "drive_stack_data"

9 displayName: Stack data

10 output:

11 - file: /home/matlab/bhmz/RZstack.dat

Listing A.1.: Definition of the stacking construction step

A.2. meshing

The meshing operation creates a tetrahedral mesh, which is later used for the inversion of
the geoelectric measurement results. The inversion mesh is based on the mesh describing
the tunnel and the measurement data, that contain number and location of the measurement
points. This construction step takes a tunnel mesh description as tunnel_mesh.stl file in
the common geometry format STL [156] and the stacked measurement data as RZstack.dat
as Matlab matrix dat file as input. It produces a tetrahedral mesh based on this input as
GMSH [163] geometry. This file format consists of two related files. Listing A.2 contains the

126 Appendix

construction step definition as used by the case study presented in section 7.2. The script
performed as part of this construction step consists of the following operations:

1. Create a required input directory (Line 5)
2. Move the tunnel mesh file to the correct location, so that the corresponding matlab

script can access the data (Line 6)
3. Create another required input directory (Line 7)
4. Move the stacked measurement data to the correct location, so that the corresponding

matlab script can access the data (Line 8)
5. Run the meshing operation by executing the corresponding matlab script. This script

is provided by the software environment, that is based on the code provided by the
geoelectric working group (Line 11)

6. Move the created tetrahedral mesh to the output location. (Line 12-23)

1 image: local-registry:5000/bhmz_dc:latest

2 input_path: "/home/matlab"

3 operation:

4 - command: |

5 mkdir bhmz/mesh

6 mv tunnel_mesh.stl bhmz/mesh/

7 mkdir bhmz/data_BERT

8 mv RZstack.dat bhmz/data_BERT/

9 displayName: Copy data

10 - command: |

11 cd bhmz && matlab -nosplash -nodesktop -r "create_mesh"

12 mv /home/matlab/gy-apps/+meshing/vol_in_fs.geo /home/matlab/bhmz/mesh.geo

13 mv /home/matlab/gy-apps/+meshing/vol_in_fs.msh /home/matlab/bhmz/mesh.msh

14 output:

15 - file: /home/matlab/bhmz/mesh.geo

16 - file: /home/matlab/bhmz/mesh.msh

Listing A.2.: Definition of the meshing construction step

A.3. DC inversion

The DC inversion operation solves a inverse problem based on a tetrahedral mesh used for the
numeric computation and a stacked measurement file used to constrain the problem. This
construction step takes a tetrahedral mesh mesh.geo/mesh.msh in GMSH format and the
stacked measurements RZstack.dat in Matlab’s matrix dat format. It produces a complex
dataset in the XDMF format [164] containing the inversion results for different sensitivity
values. This file format is designed as output for numerical computations and can represent
different kinds of geometries. Listing A.3 contains the construction step definition as used
by the case study presented in section 7.2. The script performed as part of this construction
step consists of the following operations:

1. Create a required input directory (Line 5)
2. Move the stacked measurement data to the right location, so that the matlab script can

access the data later on (Line 6)
3. Create another required input directory (Line 7)
4. Move the tetrahedral inversion mesh to the right location, so that the matlab script

can access the mesh later on (Line 8)

Appendix 127

5. Increase the limit for the maximal number of open files to prevent a crash (Line 11)
6. Run the inversion by executing a matlab script provided by the environment. This

script is provided by the geoelectric working group (Line 12)

1 image: local-registry:5000/bhmz_dc:latest

2 input_path: "/home/matlab/"

3 operation:

4 - command: |

5 mkdir bhmz/data_BERT

6 mv RZstack.dat bhmz/data_BERT/RZstack.dat

7 mkdir bhmz/mesh

8 mv mesh.msh bhmz/mesh/mesh.msh

9 displayName: Copy data

10 - command: |

11 ulimit -n 10000

12 cd bhmz && matlab -nosplash -nodesktop -r "drive_bhmz"

13 displayName: Run inversion

14 output:

15 - file: /home/matlab/bhmz/bhmz_3D.xdmf

16 - file: /home/matlab/bhmz/bhmz_3D_1.vtu

17 - file: /home/matlab/bhmz/bhmz_3D_2.vtu

18 - file: /home/matlab/bhmz/bhmz_3D_3.vtu

19 - file: /home/matlab/bhmz/bhmz_3D_4.vtu

20 - file: /home/matlab/bhmz/bhmz_3D_5.vtu

21 - file: /home/matlab/bhmz/bhmz_3D_6.vtu

22 - file: /home/matlab/bhmz/bhmz_3D_7.vtu

23 - file: /home/matlab/bhmz/bhmz_3D_8.vtu

24 - file: /home/matlab/bhmz/bhmz_3D_9.vtu

25 - file: /home/matlab/bhmz/bhmz_3D_10.vtu

26 - file: /home/matlab/bhmz/bhmz_3D_11.vtu

27 - file: /home/matlab/bhmz/bhmz_3D_12.vtu

28 - file: /home/matlab/bhmz/bhmz_3D_13.vtu

29 - file: /home/matlab/bhmz/bhmz_3D_14.vtu

Listing A.3.: Definition of the DC inversion construction step

A.4. seismic inversion

The seismic inversion operation solves a inverse problem based on a regular grid and observed
seismic travel times through the rock formation. The inversion is performed by a python
translation of a matlab script provided by the seismic working group at the department of
geophysics at TU Bergakademie Freiberg. This construction step takes a text file picks.txt

containing the observed travel times between different measurement locations as input. It
produces multiple grid geometries stored in Paraview’s VTK format [114] as result. Listing
A.4 contains the construction step definition as used by the case study presented in section 7.2.
The script performed as part of this construction step consists of the following operations:

1. Perform the seismic inversion by calling the python script provided by the software
environment. This script is based on a matlab script provided by the seismic working
group at the department of geophysics at TU Bergakademie Freiberg. (Line 5)

128 Appendix

1 image: local-registry:5000/geosax-bhmz-seismic-python

2 input_path: "/"

3 operation:

4 - command: |

5 python Seismic\ Tomographie.py --picks /picks.txt

6 displayName: Run the inversion

7 output:

8 - file: /image_1000000.0.vti

9 - file: /image_439397.0560760795.vti

10 - file: /image_193069.77288832495.vti

11 - file: /image_84834.28982440726.vti

12 - file: /image_37275.93720314938.vti

13 - file: /image_16378.937069540647.vti

14 - file: /image_7196.856730011521.vti

15 - file: /image_3162.2776601683795.vti

16 - file: /image_1389.4954943731375.vti

17 - file: /image_610.5402296585327.vti

18 - file: /image_268.2695795279727.vti

19 - file: /image_117.87686347935866.vti

20 - file: /image_51.794746792312125.vti

21 - file: /image_22.758459260747887.vti

22 - file: /image_10.0.vti

Listing A.4.: Definition of the seismic inversion step

A.5. visualise BHMZ

The visualise BHMZ operation is the final construction step of the BHMZ model workflow.
It combines the output produced by the seismic inversion and the DC inversion construction
step into a unified visualisation. This is done by using a Paraview functionality, which allows
to describe a visualisation as python script. This construction step creates the corresponding
python script based on the provided inputs. This was developed as part the implementation
of the case study presented in section 7.2. This construction step takes a XDMF geome-
try (bhmz_3D.xdmf) containing the geoelectric inversion result, a number of VTK grid files
(image_*.vti) and the tunnel geometry (tunnel_mesh.stl) as STL input. It produces a
Paraview visualisation script, which allows to present a unified visualisation in Paraview us-
ing the provided input files. Listing A.5 contains the construction step definition as used by
the case study presented in section 7.2. The script performed as part of this construction
step consists of the following operations:

1. Definition of the visualisation script. This script references all input files assuming
they are located inside of the same directory as the script. Additionally it sets up the
Paraview view port in such a way, that it shows the results at the right location. As of
this it needs to apply different transformations to different parts of the input geometry.
(Line 6-233)

Appendix 129

1 image: alpine:latest

2 input_path: "/"

3 operation:

4 - command: |

5 cat << EOF > /bhmz_visualisation.py

6 # state file generated using paraview version 5.7.0

7

8 # --

9 # setup views used in the visualization

10 # --

11

12 # trace generated using paraview version 5.7.0

13 #

14 # To ensure correct image size when batch processing, please search

15 # for and uncomment the line

16

17 #### import the simple module from the paraview

18 from paraview.simple import *

19 import os

20

21 script_path = os.path.dirname(os.path.abspath(__file__))

22 #### disable automatic camera reset on 'Show'

23 paraview.simple._DisableFirstRenderCameraReset()

24

25 # Create a new 'Line Chart View'

26 lineChartView1 = CreateView('XYChartView')

27 lineChartView1.ViewSize = [1601, 1873]

28 lineChartView1.LegendPosition = [1506, 1814]

29 lineChartView1.LeftAxisTitle = 'v (m/s)'

30 lineChartView1.RightAxisTitle = '$\\rho$ (Ω m)'

31 lineChartView1.LeftAxisRangeMinimum = 5340.0

32 lineChartView1.LeftAxisRangeMaximum = 5880.0

33 lineChartView1.BottomAxisTitle = 'x (m)'

34 lineChartView1.BottomAxisRangeMaximum = 38.0

35 lineChartView1.RightAxisRangeMaximum = 0.011600000000000001

36 lineChartView1.TopAxisRangeMaximum = 6.66

37

38

39 # Create a new 'Render View'

40 renderView1 = CreateView("RenderView")

41 renderView1.CenterOfRotation = [

42 18.264817256598004,

43 7.145154959697277,

44 2.6588124866578147,

45]

46 renderView1.StereoType = "Crystal Eyes"

47 renderView1.CameraPosition = [

48 -7.686134444102471,

49 12.29685262218834,

130 Appendix

50 86.37064174318

51]

52 renderView1.CameraFocalPoint = [

53 18.264817256597993,

54 7.145154959697269,

55 2.6588124866578324,

56]

57 renderView1.CameraViewUp = [

58 0.8702899506852618,

59 0.4281717056944392,

60 0.24344279036143018

61]

62 renderView1.CameraFocalDisk = 1.0

63 renderView1.CameraParallelScale = 22.72257617910356

64 renderView1.Background = [0.32, 0.34, 0.43]

65

66

67 # --

68 # setup view layouts

69 # --

70

71 # create new layout object 'Layout #1'

72 layout1 = CreateLayout(name='Layout #1')

73 layout1.SplitHorizontal(0, 0.500000)

74 layout1.AssignView(1, renderView1)

75 layout1.AssignView(2, lineChartView1)

76

77 # --

78 # restore active view

79 SetActiveView(renderView1)

80 # --

81

82 # --

83 # setup the data processing pipelines

84 # --

85

86 # create a new 'STL Reader'

87 tunnel_meshvtk = STLReader(

88 FileNames=["%s/tunnel_mesh.stl" % script_path],

89 guiName="Tunnel"

90)

91

92 # create a new 'XML Image Data Reader'

93 image_ = XMLImageDataReader(

94 FileName=[

95 "%s/image_1000000.0.vti" % script_path,

96 "%s/image_439397.0560760795.vti" % script_path,

97 "%s/image_193069.77288832495.vti" % script_path,

98 "%s/image_84834.28982440726.vti" % script_path,

99 "%s/image_37275.93720314938.vti" % script_path,

100 "%s/image_7196.856730011521.vti" % script_path,

Appendix 131

101 "%s/image_16378.937069540647.vti" % script_path,

102 "%s/image_3162.2776601683795.vti" % script_path,

103 "%s/image_1389.4954943731375.vti" % script_path,

104 "%s/image_610.5402296585327.vti" % script_path,

105 "%s/image_268.2695795279727.vti" % script_path,

106 "%s/image_117.87686347935866.vti" % script_path,

107 "%s/image_51.794746792312125.vti" % script_path,

108 "%s/image_22.758459260747887.vti" % script_path,

109 "%s/image_10.0.vti" % script_path,

110],

111 guiName="Seismic inversion result",

112)

113

114 transform1 = Transform(

115 Input=image_,

116 guiName="Rotated seismic inversion result"

117)

118 transform1.Transform = "Transform"

119

120 # init the 'Transform' selected for 'Transform'

121 transform1.Transform.Translate = [0.0, 0.0, 3.5]

122 transform1.Transform.Rotate = [-15.0, 0.0, 0.0]

123

124

125 image_.CellArrayStatus = ["v"]

126 image_ = transform1

127

128 # create a new 'Xdmf3ReaderS'

129 bhmz_3D1xdmf = Xdmf3ReaderS(

130 FileName=["%s/bhmz_3D.xdmf" % script_path],

131 guiName="DC inversion result",

132)

133

134 # create a new 'Extract Cells By Region'

135 extractCellsByRegion1 = ExtractCellsByRegion(

136 Input=bhmz_3D1xdmf,

137 guiName="Clipped DC inversion result"

138)

139 extractCellsByRegion1.IntersectWith = "Plane"

140

141 # init the 'Plane' selected for 'IntersectWith'

142 extractCellsByRegion1.IntersectWith.Origin = [

143 340.166259765625,

144 -32.744140625,

145 2.65869140625,

146]

147 extractCellsByRegion1.IntersectWith.Normal = [0.0, 0.0, 1.0]

148

149 # create a new 'Plot Over Line'

150 plotOverLine1 = PlotOverLine(

151 registrationName='PlotOverLine1',

132 Appendix

152 Input=transform1,

153 Source='Line'

154)

155

156 # init the 'Line' selected for 'Source'

157 plotOverLine1.Source.Point1 = [0.0, 4.8, 2.3]

158 plotOverLine1.Source.Point2 = [36.0, 7.6, 2.3]

159

160 # create a new 'Plot Over Line'

161 plotOverLine2 = PlotOverLine(

162 registrationName='PlotOverLine2',

163 Input=bhmz_3D1xdmf,

164 Source='Line'

165)

166

167 # init the 'Line' selected for 'Source'

168 plotOverLine2.Source.Point1 = [0.0, 4.8, 2.3]

169 plotOverLine2.Source.Point2 = [36.0, 7.6, 2.3]

170

171 # --

172 # setup the visualization in view 'lineChartView1'

173 # --

174

175 # show data from plotOverLine1

176 plotOverLine1Display = Show(

177 plotOverLine1,

178 lineChartView1,

179 'XYChartRepresentation'

180)

181

182 # trace defaults for the display properties.

183 plotOverLine1Display.CompositeDataSetIndex = [0]

184 plotOverLine1Display.XArrayName = 'arc_length'

185 plotOverLine1Display.SeriesVisibility = ['v']

186 plotOverLine1Display.SeriesLabel = [

187 'arc_length', 'arc_length', 'v', 'v',

188 'vtkValidPointMask', 'vtkValidPointMask', 'Points_X',

189 'Points_X', 'Points_Y', 'Points_Y', 'Points_Z',

190 'Points_Z', 'Points_Magnitude', 'Points_Magnitude'

191]

192 plotOverLine1Display.SeriesColor = [

193 'arc_length', '0', '0', '0',

194 'v', '0.89', '0.10', '0.11',

195 'vtkValidPointMask', '0.22', '0.49', '0.72',

196 'Points_X', '0.30', '0.69', '0.29',

197 'Points_Y', '0.6', '0.31', '0.64',

198 'Points_Z', '1', '0.50', '0',

199 'Points_Magnitude', '0.65', '0.34', '0.16'

200]

201 plotOverLine1Display.SeriesPlotCorner = [

202 'Points_Magnitude', '0',

Appendix 133

203 'Points_X', '0',

204 'Points_Y', '0',

205 'Points_Z', '0',

206 'arc_length', '0',

207 'v', '0',

208 'vtkValidPointMask', '0'

209]

210

211 # show data from plotOverLine2

212 plotOverLine2Display = Show(

213 plotOverLine2,

214 lineChartView1,

215 'XYChartRepresentation'

216)

217

218 # trace defaults for the display properties.

219 plotOverLine2Display.CompositeDataSetIndex = [0]

220 plotOverLine2Display.XArrayName = 'arc_length'

221 plotOverLine2Display.SeriesVisibility = ['u']

222 plotOverLine2Display.SeriesLabel = [

223 'arc_length', 'arc_length', 'u', '$\\rho$',

224 'vtkValidPointMask', 'vtkValidPointMask', 'Points_X',

225 'Points_X', 'Points_Y', 'Points_Y', 'Points_Z',

226 'Points_Z', 'Points_Magnitude', 'Points_Magnitude'

227]

228 plotOverLine2Display.SeriesColor = [

229 'arc_length', '0', '0', '0',

230 'u', '0.3333333333333333', '0', '1',

231 'vtkValidPointMask', '0.22', '0.49', '0.72',

232 'Points_X', '0.30', '0.69', '0.29',

233 'Points_Y', '0.6', '0.31', '0.64',

234 'Points_Z', '1', '0.50', '0',

235 'Points_Magnitude', '0.65', '0.34', '0.16'

236]

237 plotOverLine2Display.SeriesPlotCorner = [

238 'Points_Magnitude', '0',

239 'Points_X', '0',

240 'Points_Y', '0',

241 'Points_Z', '0',

242 'arc_length', '0',

243 'u', '1',

244 'vtkValidPointMask', '0'

245]

246

247

248 # --

249 # setup the visualization in view 'renderView1'

250 # --

251

252 # show data from tunnel_meshvtk

253 tunnel_meshvtkDisplay = Show(tunnel_meshvtk, renderView1)

134 Appendix

254

255 # trace defaults for the display properties.

256 tunnel_meshvtkDisplay.Representation = "Surface"

257

258 # show data from extractCellsByRegion1

259 extractCellsByRegion1Display = Show(extractCellsByRegion1, renderView1)

260

261 # get color transfer function/color map for 'u'

262 uLUT = GetColorTransferFunction("u")

263 uLUT.RGBPoints = [

264 5.659940960356391e-09,

265 0.231373,

266 0.298039,

267 0.752941,

268 0.0003293811915883703,

269 0.865003,

270 0.865003,

271 0.865003,

272 12.95422935485838,

273 0.705882,

274 0.0156863,

275 0.14902,

276]

277 uLUT.UseLogScale = 1

278 uLUT.ColorSpace = 'RGB'

279 uLUT.ScalarRangeInitialized = 1.0

280

281 # get opacity transfer function/opacity map for 'u'

282 uPWF = GetOpacityTransferFunction("u")

283 uPWF.Points = [

284 5.65994096035638e-09,

285 0.0,

286 0.5,

287 0.0,

288 12.954229354858398,

289 1.0,

290 0.5,

291 0.0

292]

293 uPWF.ScalarRangeInitialized = 1

294

295 # trace defaults for the display properties.

296 extractCellsByRegion1Display.Representation = "Surface"

297 extractCellsByRegion1Display.ColorArrayName = ["CELLS", "u"]

298 extractCellsByRegion1Display.LookupTable = uLUT

299 extractCellsByRegion1Display.SelectScaleArray = "u"

300

301

302 # show data from image_

303 image_Display = Show(image_, renderView1)

304 image_Display.Opacity = 0.7

Appendix 135

305

306 # get color transfer function/color map for 'v'

307 vLUT = GetColorTransferFunction("v")

308 vLUT.AutomaticRescaleRangeMode = "Never"

309 vLUT.RGBPoints = [

310 3645.8730641588027,

311 0.231373,

312 0.298039,

313 0.752941,

314 5322.936532079401,

315 0.865003,

316 0.865003,

317 0.865003,

318 7000.0,

319 0.705882,

320 0.0156863,

321 0.14902,

322]

323 vLUT.ScalarRangeInitialized = 1.0

324

325 # get opacity transfer function/opacity map for 'v'

326 vPWF = GetOpacityTransferFunction("v")

327 vPWF.Points = [3645.8730641588027, 0.0, 0.5, 0.0, 7000.0, 1.0, 0.5, 0.0]

328 vPWF.ScalarRangeInitialized = 1

329

330 # trace defaults for the display properties.

331 image_Display.Representation = "Surface"

332 image_Display.ColorArrayName = ["CELLS", "v"]

333 image_Display.LookupTable = vLUT

334 image_Display.ScalarOpacityFunction = vPWF

335

336 # setup the color legend parameters for each legend in this view

337

338 # get color legend/bar for uLUT in view renderView1

339 uLUTColorBar = GetScalarBar(uLUT, renderView1)

340 uLUTColorBar.Title = "$\\rho$"

341 uLUTColorBar.ComponentTitle = "(Ω m)"

342 uLUTColorBar.HorizontalTitle = 1

343

344 # set color bar visibility

345 uLUTColorBar.Visibility = 1

346

347 # get color legend/bar for vLUT in view renderView1

348 vLUTColorBar = GetScalarBar(vLUT, renderView1)

349 vLUTColorBar.WindowLocation = "UpperRightCorner"

350 vLUTColorBar.Title = "v"

351 vLUTColorBar.ComponentTitle = "(m/s)"

352 vLUTColorBar.HorizontalTitle = 1

353

354 # set color bar visibility

355 vLUTColorBar.Visibility = 1

136 Appendix

356

357 # show color legend

358 extractCellsByRegion1Display.SetScalarBarVisibility(renderView1, True)

359

360 # show color legend

361 image_Display.SetScalarBarVisibility(renderView1, True)

362

363 # --

364 # finally, restore active source

365 SetActiveSource(plotOverLine1)

366 # --

367 EOF

368 displayName: Create a visualisation file

369 output:

370 - file: /image_1000000.0.vti

371 - file: /image_439397.0560760795.vti

372 - file: /image_193069.77288832495.vti

373 - file: /image_84834.28982440726.vti

374 - file: /image_37275.93720314938.vti

375 - file: /image_16378.937069540647.vti

376 - file: /image_7196.856730011521.vti

377 - file: /image_3162.2776601683795.vti

378 - file: /image_1389.4954943731375.vti

379 - file: /image_610.5402296585327.vti

380 - file: /image_268.2695795279727.vti

381 - file: /image_117.87686347935866.vti

382 - file: /image_51.794746792312125.vti

383 - file: /image_22.758459260747887.vti

384 - file: /image_10.0.vti

385 - file: /bhmz_3D.xdmf

386 - file: /bhmz_visualisation.py

387 - file: /tunnel_mesh.stl

Listing A.5.: Definition of the visualise BHMZ construction step

B. Provided manual for the Kohlberg dataset

B.1. 3D-Modell Kohlberg

B.1.1. Eingangsdaten

• Bohrungsdaten in DHDN3_GK5 EPSG 31469: Stammdaten, Schichtdaten
• Kartendaten in ETRS1989 UTM33N EPSG 25833: aus Blatt Pirna: L5148 Quartär,

L5148 Präquartär
• DGM in ETRS1989 UTM33N EPSG 25833:
• Profilschnitt: Längsschnitt aus Bodengutachten Baugrund Dresden

Appendix 137

B.1.2. Bohrungsdaten vorbereiten

B.1.2.1. Mit ArcGIS

• Koordinatentransformation der Bohrungsdaten aus GK5 in UTM 33
• Koordinatensystem des Datenrahmens auf DHDN3_GK5 EPSG 31469
• Tabellen als XY-Daten einlesen Stammdaten.xlsx, Schichtdaten.xlsx
• Tabellen-Daten exportieren –> Schichtdaten_GK5.shp, Stammdaten_GK5.shp
• Als Layer einfügen
• Datenrahmen umprojizieren auf ETRS1989 UTM33N EPSG 25833
• Daten exportieren, KS des Datenrahmens verwenden! –> Schichtdaten_UTM33.shp,

Stammdaten_UTM33.shp
• Als Layer einfgügen –>ja
• ASCII-Export der transformierten Daten
• ArcToolbox –> Spatial Statistic Tools –> Dienstprogramme –>Feature Attribut

nach ASCII exportieren–>Alle auswählen –> Trennzeichen Semikolon –> Feldnamen
hinzufügen –> Schichtdaten_UTM33.txt; Stammdaten_UTM33.txt

B.1.2.2. Mit EXCEL

• Evtl. IDNr vergeben (für doppelte Bohrungsnummern)
• Koordinaten kontrollieren (Prüfung der Stellenanzahl)
• Leerzeilen entfernen
• Als CSV oder Tab-Text speichern
• Schichtdaten_UTM33_korr.txt; Stammdaten_UTM33_korr.txt

B.1.2.3. Mit Editor

Kommas durch Punkt ersetzen Schichtdaten_UTM33_korr_punkt.txt; Stammdaten_-
UTM33_korr_punkt.txt

B.1.3. Gocad

• Import der Stammdaten und Schichtdaten:
• File –> Import –> Well data –> Well locations –> column-based file
• File –> Import –> Well data –> Well markers –> column-based file

B.1.4. DGM-Daten vorbereiten:

• Webbrowser
• geodaten.sachsen.de –> Höhen- und Stadtmodelle –> DGM2 –> Daten herunterladen
• Kachel 4205640 (Pirna) –> Entpacken
• Von den entpackten XYZ-Dateien folgende behalten:
• 334245642dgm2.xyz; 33426542dgm2.xyz; 334245644dgm2.xyz; 334565644dgm2.xyz

138 Appendix

B.1.5. Gocad

• Import der Punktdaten:
• Import –> Horizon Interpretations –> PointsSets –> XYZ

– File name: 334245642dgm2.xyz | 33426542dgm2.xyz | 334245644dgm2.xyz |
334565644dgm2.xyz

• PointsSets zusammenführen:
• PoinsSet –> New –> From PointsSet

– Name: DGM2_Kohlberg
– PointsSet: 334245642dgm2 | 33426542dgm2 | 334245644dgm2 | 334565644dgm2

• PointsSet –> Tools –> Parts –> Merge All
• Surface berechnen:
• Surface –> New –> From Points –>Object Points

– PointsSet: DGM2_Kohlberg
– Name: ts_DGM2_Kohlberg

• Triangulation dezimieren:
• Surface –> Tools –> Decimate

– Tolerance: 0.5
– Convergence: 0.5
– Keep borders

B.2. Kartendaten vorbereiten

B.2.1. Mit ArcGIS

• L5148 Quartär, L5148 Präquartär, Gebietsgrenze_2021.shp importieren
• Zuschneiden der Kartendaten auf das Untersuchungsgebiet:
• ArcToolbox–> Analysis Tools–> Überlagerung –> Intersect –> Quartaer_zugeschnit-

ten, Praequartaer_zugeschnitten
• Export der zugeschnittenen Kartendaten in Shapefile:
• Toolbox –> Conversion Tools –> In Geodatabase –> Feature Class in Feature Class

– Eingabe: L5148_Pirna.gdb/Praequartaer_zugeschnitten (L5148_Pirna.gdb/Quartaer_-
zugeschnitten)

– Ausgabe: lin_Praequartaer (lin_Qaurtaer)

B.2.2. Gocad

• Kartendaten importieren:

• Import –> Cultural Data –> ArcView Shape File

– lin_Praequartaer.shp
– lin_Quartaer.shp

• Curve –> Tools –> Densify

– Curve: lin_Praequartaer lin_Quartaer

Appendix 139

– Maximum Lenght: 15

• Curve –> Tools –> Project –> Vertically on Surface

– Source objects: lin_Praequartaer lin_Quartaer
– Target objects: ts_DGM2_Kohlberg

B.3. Schnittdaten importieren:

B.3.1. Gocad

• Shapefile importieren
• Import –> Cultural Data –> ArcView Shape File

– Streckenachse_UTM.shp
– Linien_Laengsschnitt.shp
– Gebietsgrenze.shp

• Curve –> Property –> Set constant -

– Object: Streckenachse_UTM
– Property: Z
– Value: 210

• Surface –> New –> Curves and Expansion Vector (Tube)

– Name: ts_Laengsschnitt
– Curves: Streckenachse_UTM
– Dir: X:0 Y:0 Z:-90
– Advanced - Select number of levels: 1

• Curve –> New –> from Intersections –> With Surfaces

– Name: Laengsschnitt_GOK
– Surfaces: ts_DGM2_Kohlberg ts_Laengsschnitt

• Curve –> Tools –> Move or Rotate

– Objects: Linien_Laengsschnitt
– o Rotate
– Origin: X:424987.7 Y:5643829.7 Z:0
– Dir Axis: X:366.328 Y:-102.97 Z:0
– Angle: 90
– o Translate
– Dir Translation: X:19.86 Y:68.29 Z:131

• Curve –> Tools –> Densify

– Curve: Linien_Laengsschnitt
– Maximum Lenght: 15

• Curve –> Tools –> Move or Rotate

– Objects: Linien_Laengsschnitt ts_Laengsschnitt
– o Rotate
– Origin: X:425374.5 Y:5643803.7 Z:0
– Dir Axis: X:-367.85 Y:95.20 Z:0

140 Appendix

– Angle: -90

• Curve –> Tools –>- Project –> Vertically on Surface

– Source objects: Linien_Laengsschnitt
– Target objects: ts_Laengsschnitt

• Curve –> Tools –> Move or Rotate

– Objects: Linien_Laengsschnitt ts_Laengsschnitt
– o Rotate
– Origin: X:425374.5 Y:5643803.7 Z:0
– Dir Axis: X:-367.85 Y:95.20 Z:0
– Angle: 90

C. Construction Steps for the Kohlberg model

C.1. xlsx -> csv

The xlsx -> csv operation transforms a borehole export given as Microsoft Excel files into
CSV files used for later processing. It expects a Stammdaten_GK5.xlsx and a Schichdaten_-

GK5.xlsx file as input and produces two CSV files (Stammdaten_GK5.csv and Schichdaten_-

GK5.csv). Listing C.6 contains the construction step definition as used by the case study
presented in section 7.3. The construction step uses the xlsx2csv [165] to perform the format
conversation. The script performed as part of this construction step consists of the following
operations:

1. Convert the Stammdaten_GK5.xlsx file into CSV format (Line 5)
2. Convert the Schichtdaten_GK5.xlsx file into CSV format (Line 6)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 xlsx2csv -i /tmp/input/Stammdaten_GK5.xlsx /tmp/input/Stammdaten_GK5.csv

6 xlsx2csv -i /tmp/input/Schichtdaten_GK5.xlsx /tmp/input/Schichtdaten_GK5.csv

7 output:

8 - file:

9 /tmp/input/Stammdaten_GK5.csv

10 - file:

11 /tmp/input/Schichtdaten_GK5.csv

Listing C.6.: Definition of the xlsx -> csv construction step definition

C.2. reproject to utm33

The reproject to utm33 operation transforms a set of borehole data given as CSV files from
the Gauss-Krüger 5 (EPSG:31469) projection into the UTM33 projection (EPSG:25833). It
expects two input files (Schichtdaten_GK5.csv and Stammdaten_GK5.csv) and produces
two output files (Schichtdaten_UTM33.csv and Stammdaten_UTM33.csv). The coordinate
system transformation is applied via the ogr2ogr tool provided by Q-GIS [158]. Listing C.7

Appendix 141

contains the construction step definition as used by the case study presented in section 7.3.
The script performed as part of this construction step consists of the following operations:

1. Reproject Stammdaten_GK5.csv from Gaus-Krüger 5 to UTM33 (Line 5 - 8)
2. Reproject Schichtdaten_GK5.csv from Gaus-Krüger 5 to UTM33 (Line 9 - 12)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 ogr2ogr -s_srs EPSG:31469 -t_srs EPSG:25833 -oo X_POSSIBLE_NAMES=RECHTS \

6 -oo Y_POSSIBLE_NAMES=HOCH -f "CSV" /tmp/input/Stammdaten_UTM33.csv \

7 -lco GEOMETRY=AS_XY -oo KEEP_GEOM_COLUMNS=NO \

8 /tmp/input/Stammdaten_GK5.csv

9 ogr2ogr -s_srs EPSG:31469 -t_srs EPSG:25833 -oo X_POSSIBLE_NAMES=RECHTS \

10 -oo Y_POSSIBLE_NAMES=HOCH -f "CSV" /tmp/input/Schichtdaten_UTM33.csv \

11 -lco GEOMETRY=AS_XY -oo KEEP_GEOM_COLUMNS=NO \

12 /tmp/input/Schichtdaten_GK5.csv

13 output:

14 - file:

15 /tmp/input/Stammdaten_UTM33.csv

16 - file:

17 /tmp/input/Schichtdaten_UTM33.csv

Listing C.7.: Definition of the reproject to utm33 construction step

C.3. extract (Quartär)

The extract (Quartär) operation extracts a specific layer from a geological map and clips it to
the study area. It expects a zipped geodatabase [166] (L5148_Pirna.gdb.zip) and a shape
file defining the extends of the study area (Gebietsgrenze_2021.shp) as input and produces
a shape file as output (L5148_lin_Quartaer.shp) as output. For the data extraction the
ogr2ogr tool provided by Q-GIS [158] is used. Listing C.8 contains the construction step
definition as used by the case study presented in section 7.3. The script performed as part
of this construction step consists of the following operations:

1. Unpack the zipped geodatabase (Line 5)
2. Use ogr2ogr to clip and extract the necessary layer provided by the geodatabase archive.

(Line 6 - 7)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 unzip /tmp/input/L5148_Pirna.gdb.zip -d /tmp/input

6 ogr2ogr -f "ESRI Shapefile" -clipdst /tmp/input/Gebietsgrenze_2021.shp \

7 /tmp/input/L5148_Pirna.shp /tmp/input/L5148_Pirna.gdb

8 output:

9 - file:

10 /tmp/input/L5148_Pirna.shp/L5148_lin_Quartaer.shp

142 Appendix

11 - file:

12 /tmp/input/L5148_Pirna.shp/L5148_lin_Quartaer.prj

13 - file:

14 /tmp/input/L5148_Pirna.shp/L5148_lin_Quartaer.dbf

15 - file:

16 /tmp/input/L5148_Pirna.shp/L5148_lin_Quartaer.shx

Listing C.8.: Definition of the extract (Quartär) construction step

C.4. extract (Prequartär)

The extract (Prequartär) operation extracts a specific layer from a geological map and clips
it to the study area. This construction step is almost identical with the construction step
descried in the previous section. The main difference is that it exports a different layer from
the geological map. It expects a zipped geodatabase [166] (L5148_Pirna.gdb.zip) and a
shape file defining the extends of the study area (Gebietsgrenze_2021.shp) as input and
produces a shape file as output (L5148_lin_Quartaer.shp) as output. For the data extrac-
tion the ogr2ogr tool provided by Q-GIS [158] is used. Listing C.9 contains the construction
step definition as used by the case study presented in section 7.3. The script performed as
part of this construction step consists of the following operations:

1. Unpack the zipped geodatabase (Line 5)
2. Use ogr2ogr to clip and extract the necessary layer provided by the geodatabase archive.

(Line 6 - 7)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 unzip /tmp/input/L5148_Pirna.gdb.zip -d /tmp/input

6 ogr2ogr -f "ESRI Shapefile" -clipdst /tmp/input/Gebietsgrenze_2021.shp \

7 /tmp/input/L5148_Pirna.shp /tmp/input/L5148_Pirna.gdb

8 output:

9 - file:

10 /tmp/input/L5148_Pirna.shp/L5148_lin_Praequartaer.shp

11 - file:

12 /tmp/input/L5148_Pirna.shp/L5148_lin_Praequartaer.prj

13 - file:

14 /tmp/input/L5148_Pirna.shp/L5148_lin_Praequartaer.dbf

15 - file:

16 /tmp/input/L5148_Pirna.shp/L5148_lin_Praequartaer.shx

Listing C.9.: Definition of the extract (Quartär) construction step

C.5. triangulate

The triangulate operation triangulates a given pointset to produce a triangulate surface. This
operation expects 4 xyz files (334265644_dgm2.xyz, 334265642_dgm2.xyz, 334245642_-

dgm2.xyz and 334245644_dgm2.xyz) and an zipped empty gOcad project as input. It pro-
duce a triangulated surface as gOcad ASCII file [42]. Listing C.10 contains the construction

Appendix 143

step definition as used by the case study presented in section 7.3. The script performed as
part of this construction step consists of the following operations:

1. Definition of the gOcad Macro to perform the actual construction step (Line 5 - 65)
2. Starting a X-Server in background (required to execute gOcad) (Line 67)
3. Wait 5 seconds for the X-Server to start (Line 68)
4. Unpack the zipped empty gOcad project for later use (Line 69)
5. Execute the gOcad macro defined earlier via gOcad’s command line interface (Line 70

- 71)

The gOcad macro defined in Line 5 - 65 performs the following operations:

1. Import the digital elevation model from the provided XYZ files (334265644_dgm2.xyz,
334265642_dgm2.xyz, 334245642_dgm2.xyz and 334245644_dgm2.xyz) (Line 7 - 18)

2. Create a merged pointset from the four imported files (Line 19 - 34)
3. Create a triangulate surface from the pointset (Line 35 - 42)
4. “Decimate” (Simplify) the triangulation of the created triangulated surface (Line 43 -

49)
5. Export the triangulated surface as GoCad ASCII file (Line 50 - 55)
6. Export the merged pointset as GoCad ASCII file (Line 56 - 61)
7. “Close” GoCad at this point by sending a SIG_KILL to the corresponding process (Line

63 - 64)

1 image: local-registry:5000/gocad-docker-image

2 input_path: "/tmp/gocad"

3 operation:

4 - command: |

5 cat > /tmp/gocad/mesh_dgm2.js << EOF

6 var skua = PDGM.require('skua');

7 skua.run('ImportXYZFile', {

8 'File_name':[

9 "/tmp/gocad/334265644_dgm2.xyz",

10 "/tmp/gocad/334265642_dgm2.xyz",

11 "/tmp/gocad/334245644_dgm2.xyz",

12 "/tmp/gocad/334245642_dgm2.xyz"

13],

14 'category':"Horizons",

15 'cvn':"Domain=Default_depth",

16 'ignore_points_with_no_data_value':"false",

17 'no_data_value':-9999

18 },{ blocking:false, typed:true });

19 skua.run('VSetCreateFromAtomicGroup', {

20 'copy_properties':"false",

21 'dissociate_vertices':"true",

22 'merge_parts':"false",

23 'name':"DGM2_Kohlberg",

24 'points':[

25 "/gobj:334245642_dgm2",

26 "/gobj:334245644_dgm2",

27 "/gobj:334265642_dgm2",

28 "/gobj:334265644_dgm2"

29],

144 Appendix

30 'region':"everywhere"

31 },{ blocking:false, typed:true });

32 skua.run('VSetMergeAllSubVSets', {

33 'on':"/gobj:DGM2_Kohlberg"

34 },{ blocking:false, typed:true });

35 skua.run('TSurfCreateFromAtomicGroup', {

36 'copy_properties':"true",

37 'dissociate_vertices':"true",

38 'name':"ts_DGM2_Kohlberg",

39 'normal':[0.,0.,1.],

40 'points':"/gobj:DGM2_Kohlberg",

41 'use_normal':"false"

42 },{ blocking:false, typed:true });

43 skua.run('TSurfDecimate',{

44 'convergence':0.5,

45 'keep_borders':"true",

46 'length_unit':"Z unit",

47 'on':"/gobj:ts_DGM2_Kohlberg",

48 'tolerance':0.5

49 },{ blocking:false, typed:true });

50 skua.run('GObjSaveAs',{

51 'file':"/tmp/ts_DGM2_Kohlberg.ts",

52 'filter':"none",

53 'on':"/gobj:ts_DGM2_Kohlberg",

54 'pattern':"*"

55 },{ blocking:false, typed:true });

56 skua.run('GObjSaveAs',{

57 'file':"/tmp/DGM2_Kohlberg.ps",

58 'filter':"none",

59 'on':"/gobj:DGM2_Kohlberg",

60 'pattern':"*"

61 },{ blocking:false, typed:true });

62

63 var kill_gocad = "kill -9 $PPID";

64 var ok = skua.System.command(kill_gocad);

65 EOF

66 - command: |

67 screen -d -m X -config /opt/dummy.conf

68 sleep 5

69 unzip /tmp/gocad/empty_project.sprj.zip -d /tmp/gocad/

70 /opt/Paradigm/SKUA-GOCAD-19/bin/SKUA -run-js-script /tmp/gocad/mesh_dgm2.js \

71 /tmp/gocad/empty_project.sprj

72 output:

73 - file:

74 /tmp/ts_DGM2_Kohlberg.ts

75 - file:

76 /tmp/DGM2_Kohlberg.ps

Listing C.10.: Definition of the triangulate construction step

Appendix 145

C.6. extrude

The extrude operation imports and extrudes several shape files into corresponding geometries.
It requires 4 different datasets as input:

• A shape file for the extends of the study area (Gebietsgrenze_2021.shp)
• A shape file representing a geological cross section (Linien_Laengsschnitt.shp)
• A shape file representing a potential tunnel route (Streckenachse_UTM.shp)
• A zipped empty gOcad project to carry over the initial gOcad project setup (empty_-

project.sprj.zip)

This operation produces several files as output:

• A triangulated surface surrounding the plane of the cross section in gOcad’s ASCII
format (ts_Laengsschnitt.ts)

• A multiline representing the different layers of the geological cross section in gOcad’s
ASCII format (pl_Linen_Laengsschnitt.pl)

• A multiline representing the potential tunnel route in gOcad’s ASCII format (pl_-
Steckachse_UTM.pl)

• A multiline representing the extends of the study area in gOcad’s ASCII format (pl_-
Gebietsgrenze_2021.pl)

Listing C.11 contains the construction step definition as used by the case study presented in
section 7.3. The script performed as part of this construction step consists of the following
operations:

1. Definition of the gOcad Macro (Line 5 - 62)
2. Starting a X-Server in background (required to execute gOcad) (Line 64)
3. Wait 5 seconds for the X-Server to start (Line 65)
4. Unpack the zipped empty gOcad project for later use (Line 66)
5. Execute the gOcad macro defined earlier via gOcad’s command line interface (Line 67

- 69)

The GoCad macro defined in Line 5 - 63 performs the following operations:

1. Import the geological cross section and the potential rail way tunnel route from the
provided shape files (Line 8 - 14)

2. Import the extends of the study area from the corresponding shape file (Line 15 - 18)
3. Move the rail way tunnel route to a constant depth of 210 m (Line 19 - 24)
4. Create a triangulated surface by extending the rail way tunnel by 90 m in z direction

(Line 25 - 34)
5. Save the tube geometry of the railway tunnel created in the previous step as gOcad

ASCII file (Line 35 - 40)
6. Save the planed road as polyline as gOcad ASCII file (Line 41 - 46)
7. Save the geological cross section as gOcad ASCII file (Line 47 - 52)
8. Save the extends of the study area as gOcad ASCII file (Line 53 - 58)
9. “Close” gOcad at this point by sending a SIG_KILL to the corresponding process (Line

60 - 61)

146 Appendix

1 image: local-registry:5000/gocad-docker-image

2 input_path: "/tmp/gocad"

3 operation:

4 - command: |

5 cat > /tmp/gocad/extrude_streckenachse.js << EOF

6 var skua = PDGM.require('skua');

7

8 skua.run('ShapeImport', {

9 'File_name':[

10 "/tmp/gocad/Linien_Laengsschnitt.shp",

11 "/tmp/gocad/Streckenachse_UTM.shp"

12],

13 'cvn':"Domain=Default_depth"

14 },{ blocking:false, typed:true });

15 skua.run('ShapeImport', {

16 'File_name':"/tmp/gocad/Gebietsgrenze_2021.shp",

17 'cvn':"Domain=Default_depth"

18 },{ blocking:false, typed:true });

19 skua.run('PropertySetValue', {

20 'on':"/gobj:Streckenachse_UTM",

21 'property':"/Z",

22 'region':"everywhere",

23 'value':"value=210&unit=m&kind=Depth"

24 },{ blocking:false, typed:true });

25 skua.run('TSurfCreateFromTube', {

26 'curves':"/gobj:Streckenachse_UTM",

27 'dissociate_vertices':"true",

28 'expansion':[0.,0.,-90],

29 'name':"ts_Laengsschnitt",

30 'number_of_levels':1,

31 'seal_ends':"false",

32 'select_number_of_levels':"true",

33 'two_ways':"false"

34 },{ blocking:false, typed:true });

35 skua.run('GObjSaveAs', {

36 'file':"/tmp/ts_Laengsschnitt.ts",

37 'filter':"none",

38 'on':"/gobj:ts_Laengsschnitt",

39 'pattern':"*"

40 },{ blocking:false, typed:true });

41 skua.run('GObjSaveAs', {

42 'file':"/tmp/pl_Streckenachse_UTM.pl",

43 'filter':"none",

44 'on':"/gobj:Streckenachse_UTM",

45 'pattern':"*"

46 },{ blocking:false, typed:true });

47 skua.run('GObjSaveAs', {

48 'file':"/tmp/pl_Linien_Laengsschnitt.pl",

49 'filter':"none",

Appendix 147

50 'on':"/gobj:Linien_Laengsschnitt",

51 'pattern':"*"

52 },{ blocking:false, typed:true });

53 skua.run('GObjSaveAs', {

54 'file':"/tmp/pl_Gebietsgrenze_2021.pl",

55 'filter':"none",

56 'on':"/gobj:Gebietsgrenze_2021",

57 'pattern':"*"

58 },{ blocking:false, typed:true });

59

60 var kill_gocad = "kill -9 $PPID";

61 var ok = skua.System.command(kill_gocad);

62 EOF

63 - command: |

64 screen -d -m X -config /opt/dummy.conf

65 sleep 5

66 unzip /tmp/gocad/empty_project.sprj.zip -d /tmp/gocad/

67 /opt/Paradigm/SKUA-GOCAD-19/bin/SKUA \

68 -run-js-script /tmp/gocad/extrude_streckenachse.js \

69 /tmp/gocad/empty_project.sprj

70 output:

71 - file:

72 /tmp/ts_Laengsschnitt.ts

73 - file:

74 /tmp/pl_Streckenachse_UTM.pl

75 - file:

76 /tmp/pl_Gebietsgrenze_2021.pl

77 - file:

78 /tmp/pl_Linien_Laengsschnitt.pl

Listing C.11.: Definition of the extrude construction step

C.7. project

The project operation projects the geological maps on top of the triangulated surface repre-
senting the digital elevation model. It requires 4 input datasets:

• A zipped empty gOcad project to carry over the initial gOcad project setup (empty_-
project.sprj.zip)

• The digital elevation model as triangulated surface in gOcad’s ASCII format (ts_-
DGM2_Kohlberg.ts)

• The Quartär and Prequartär layer of the geological map as shape file (L5148_lin_-
Quartaer.shp and L5148_lin_Praequartaer.shp)

This operation produces two gOcad ASCII files as output (pl_lin_Praequartaer.pl and
pl_lin_Quartaer.pl), which contain the corresponding projected geological map. Listing
C.12 contains the construction step definition as used by the case study presented in sec-
tion 7.3. The script performed as part of this construction step consists of the following
operations:

1. Definition of the gOcad Macro (Line 5 - 45)

148 Appendix

2. Starting a X-Server in background (required to execute gOcad) (Line 47)
3. Wait 5 seconds for the X-Server to start (Line 48)
4. Unpack the zipped empty gOcad project for later use (Line 49)
5. Execute the gOcad macro defined earlier via gOcad’s command line interface (Line 50

- 52)

The gOcad macro defined in Line 5 - 63 performs the following operations:

1. Import the digital elevation model from the provided gOcad ASCII file (Line 7 - 10)
2. Import the geological map as multiline geometry from the provided shape files (Line 11

- 17)
3. Project both multiline geometries onto the digital elevation model (Line 18 - 27)
4. Export both projected multiline geometries as gOcad ASCII file (Line 30 - 41)
5. “Close” gOcad at this point by sending a SIG_KILL to the corresponding process (Line

43 - 44)

1 image: local-registry:5000/gocad-docker-image

2 input_path: "/tmp/gocad"

3 operation:

4 - command: |

5 cat > /tmp/gocad/project_map_to_dem.js << EOF

6 var skua = PDGM.require('skua');

7 skua.run('NewGObjLoad',{

8 'File_names':"/tmp/gocad/ts_DGM2_Kohlberg.ts",

9 'coordinate_system_name':"Default_depth"

10 },{ blocking:false, typed:true });

11 skua.run('ShapeImport',{

12 'File_name':[

13 "/tmp/gocad/L5148_lin_Quartaer.shp",

14 "/tmp/gocad/L5148_lin_Praequartaer.shp"

15],

16 'cvn':"Domain=Default_depth"

17 },{ blocking:false, typed:true });

18 skua.run('MapPointsOnPoints', {

19 'distance_max':100.0,

20 'length_unit':"Z unit",

21 'map_control_nodes':"true",

22 'targets':"/gobj:ts_DGM2_Kohlberg",

23 'to_map':[

24 "/gobj:L5148_lin_Praequartaer",

25 "/gobj:L5148_lin_Quartaer"

26],

27 'use_distance_max':"false"

28 },{ blocking:false, typed:true });

29

30 skua.run('GObjSaveAs',{

31 'file':"/tmp/pl_lin_Praequartaer.pl",

32 'filter':"none",

33 'on':"/gobj:L5148_lin_Praequartaer",

34 'pattern':"*"

35 },{ blocking:false, typed:true });

Appendix 149

36 skua.run('GObjSaveAs',{

37 'file':"/tmp/pl_lin_Quartaer.pl",

38 'filter':"none",

39 'on':"/gobj:L5148_lin_Quartaer",

40 'pattern':"*"

41 },{ blocking:false, typed:true });

42

43 var kill_gocad = "kill -9 $PPID";

44 var ok = skua.System.command(kill_gocad);

45 EOF

46 - command: |

47 screen -d -m X -config /opt/dummy.conf

48 sleep 5

49 unzip /tmp/gocad/empty_project.sprj.zip -d /tmp/gocad/

50 /opt/Paradigm/SKUA-GOCAD-19/bin/SKUA \

51 -run-js-script /tmp/gocad/project_map_to_dem.js \

52 /tmp/gocad/empty_project.sprj

53 output:

54 - file:

55 /tmp/pl_lin_Praequartaer.pl

56 - file:

57 /tmp/pl_lin_Quartaer.pl

Listing C.12.: Definition of the project construction step.

D. Construction step definitions for the Hydrologic balance model

D.1. Calculate bounding box

The calculate bounding box construction step calculates the bounding box of a given hy-
drotop shape file. This construction step expects a hydrotop shape file (Hydrotope.shp) as
single input dataset and produces the outline of the bounding box represented as shape file
(bbox.shp). It uses the qgis_process tool provided by Q-GIS [158] to calculate the bound-
ing box for the provided hydrotop shape file. Listing D.13 contains the construction step
definition as used by the case study presented in section 7.4. The script performed as part
of this construction step consists of the following operations:

1. Call qgis_process to extract the bounding box of the given hydrotop shape file (Line
5 - 6)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 qgis_process run qgis:polygonfromlayerextent \

6 --INPUT=/tmp/input/Hydrotope.shp --OUTPUT=/tmp/bbox.shp

7 output:

8 - file:

9 /tmp/bbox.shp

150 Appendix

10 - file:

11 /tmp/bbox.cpg

12 - file:

13 /tmp/bbox.dbf

14 - file:

15 /tmp/bbox.prj

16 - file:

17 /tmp/bbox.shx

Listing D.13.: Definition of the calculate bounding box construction step

D.2. Clip DEM

The clip DEM construction step clips a provided raster dataset, representing a digital eleva-
tion grid, to the extends of a given bounding box. This construction step expects as input
datasets a georeferenced raster in HGT format (N50E013.hgt), representing a digital eleva-
tion grid and a shape file representing a bounding box (bbox.shp). It produces a clipped
version of the input raster grid dem.tif stored as TIF. The processing is done via gdalwarp,
which is provided by Q-GIS [158]. Listing D.14 contains the construction step definition
as used by the case study presented in section 7.4. The script performed as part of this
construction step consists of the following operations:

1. Call gdalwrap to clip the provided raster dataset to the outline provided by the bound-
ing box shapefile. (Line 5 - 6)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 gdalwarp -cutline /tmp/input/bbox.shp -t_srs EPSG:32633 \

6 /tmp/input/*.hgt /tmp/dem.tif

7 output:

8 - file:

9 /tmp/dem.tif

Listing D.14.: Definition of the clip DEM construction step

D.3. Clip BK50

The clip BK50 construction step clips a provided shape file, representing a soil map, to the
extends of a given bounding box. This construction step expects two shape files as input
datasets. One represents the soil map (BK50.shp) which is clipped by the outline provided
by the other one (bbox.shp). The construction step produces a clipped version of the input
raster grid dem.tif stored as TIF. The processing is done via ogr2ogr, which is provided by
Q-GIS [158]. Listing D.15 contains the construction step definition as used by the case study
presented in section 7.4. The script performed as part of this construction step consists of
the following operations:

1. Call ogr2ogr to clip the provided vector layer to the outline provided by the bounding
box shapefile. (Line 5 - 6)

Appendix 151

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 ogr2ogr -clipsrc /tmp/input/bbox.shp /tmp/bk50_clip.shp /tmp/input/BK50.shp

6 output:

7 - file:

8 /tmp/bk50_clip.shp

9 - file:

10 /tmp/bk50_clip.shx

11 - file:

12 /tmp/bk50_clip.prj

13 - file:

14 /tmp/bk50_clip.dbf

Listing D.15.: Definition of the clip BK50 construction step

D.4. Calculate aspect

The calculate aspect construction step calculates the slope aspect in degree based given digital
elevation raster grid. This construction step expects a digital elevation raster grid as TIF
(dem.tif) as input dataset and produces aspect raster grid as TIF (aspect.tif as output.
The processing is done via gdaldem, which is provided by Q-GIS [158]. Listing D.16 contains
the construction step definition as used by the case study presented in section 7.4. The script
performed as part of this construction step consists of the following operations:

1. Call gdaldem to calculate the slope aspect based on a given digital elevation grid. (Line
5)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 gdaldem aspect /tmp/input/dem.tif /tmp/aspect.tif -of GTiff -b 1

6 output:

7 - file:

8 /tmp/aspect.tif

Listing D.16.: Definition of the calculate aspect construction step

D.5. Calculate slope

The calculate slope construction step calculates the slope in percent based on given digital
elevation raster grid. This construction step expects a digital elevation raster grid as TIF
(dem.tif) as input dataset and produces slope raster grid as TIF (slope.tif as output. The
processing is done via gdaldem, which is provided by Q-GIS [158]. Listing D.17 contains the
construction step definition as used by the case study presented in section 7.4. The script
performed as part of this construction step consists of the following operations:

152 Appendix

1. Call gdaldem to calculate the slope based on a given digital elevation grid. (Line 5)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 gdaldem slope /tmp/input/dem.tif /tmp/slope.tif -of GTiff -b 1 -s 1.0 -p

6 output:

7 - file:

8 /tmp/slope.tif

Listing D.17.: Definition of the calculate slope construction step

D.6. Calculate slope length

The calculate slope length construction step calculates the length of a slope in meter based on
given digital elevation raster grid for each raster grid point. This construction step expects a
digital elevation raster grid as TIF (dem.tif) as input dataset and produces slope raster grid
as SAGA grid (slope_length.sgrd) as output. The processing is done via qgis_process,
which is provided by Q-GIS [158]. Listing D.18 contains the construction step definition
as used by the case study presented in section 7.4. The script performed as part of this
construction step consists of the following operations:

1. Call qgis_process to calculate the slope length based on a given digital elevation grid.
(Line 5 - 6)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 qgis_process run saga:slopelength --DEM=/tmp/input/dem.tif \

6 --LENGTH=/tmp/slope_length

7 output:

8 - file:

9 /tmp/slope_length.mgrd

10 - file:

11 /tmp/slope_length.prj

12 - file:

13 /tmp/slope_length.sdat

14 - file:

15 /tmp/slope_length.sdat.aux.xml

16 - file:

17 /tmp/slope_length.sgrd

Listing D.18.: Definition of the calculate slope construction step

Appendix 153

D.7. Calculate avg height

The calculate avg height construction step calculates the average height per hydrotop given
in a shape file. This construction step expects a digital elevation grid as TIF (dem.tif) and a
hydrotop shape file (Hydrotope.shp) as input dataset. It produces a shape file (hydrotope_-
with_height.shp) containing any information already present in the hydrotop shape file with
an additional height property containing the average height per shape file geometry. The
processing is done via the qgis_process, which is provided by Q-GIS [158]. Listing D.19
contains the construction step definition as used by the case study presented in section 7.4.
The script performed as part of this construction step consists of the following operations:

1. Call qgis_process to calculate the average height per hydrotop (Line 5 - 10)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 qgis_process run native:zonalstatisticsfb \

6 --INPUT=/tmp/input/Hydrotope.shp \

7 --INPUT_RASTER=/tmp/input/dem.tif \

8 --OUTPUT=/tmp/hydrotope_with_height.shp \

9 --RASTER_BAND=1 --STATISTICS=2 \

10 --COLUMN_PREFIX=height_

11 output:

12 - file:

13 /tmp/hydrotope_with_height.shp

14 - file:

15 /tmp/hydrotope_with_height.shx

16 - file:

17 /tmp/hydrotope_with_height.prj

18 - file:

19 /tmp/hydrotope_with_height.dbf

20 - file:

21 /tmp/hydrotope_with_height.cpg

Listing D.19.: Definition of the calculate avg height construction step

D.8. Calculate slope per hydrotope

The calculate slope per hydrotope construction step calculates the average slope per hydrotop
given in a shape file. This construction step expects a slope grid as TIF (dem.tif) and a
hydrotop shape file (hydrotope_with_height.shp) as input dataset. It produces a shape
file (hydrotope_with_slope.shp) containing any information already present in the hydro-
top shape file with an additional slope property containing the average slope per shape file
geometry. The processing is done via the qgis_process, which is provided by Q-GIS [158].
Listing D.20 contains the construction step definition as used by the case study presented in
section 7.4. The script performed as part of this construction step consists of the following
operations:

1. Call qgis_process to calculate the average slope per hydrotop (Line 5 - 10)

154 Appendix

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 qgis_process run native:zonalstatisticsfb \

6 --INPUT=/tmp/input/hydrotope_with_height.shp \

7 --INPUT_RASTER=/tmp/input/slope.tif \

8 --OUTPUT=/tmp/hydrotope_with_slope.shp \

9 --RASTER_BAND=1 --STATISTICS=2 \

10 --COLUMN_PREFIX=slope_

11 output:

12 - file:

13 /tmp/hydrotope_with_slope.shp

14 - file:

15 /tmp/hydrotope_with_slope.shx

16 - file:

17 /tmp/hydrotope_with_slope.prj

18 - file:

19 /tmp/hydrotope_with_slope.dbf

20 - file:

21 /tmp/hydrotope_with_slope.cpg

Listing D.20.: Definition of the calculate slop per hydrotop construction step

D.9. Calculate aspect per hydrotope

The calculate aspect per hydrotope construction step calculates the average slope aspect per
hydrotop given in a shape file. This construction step expects a slope grid as TIF (dem.tif)
and a hydrotop shape file (hydrotope_with_slope.shp) as input dataset. It produces a
shape file (hydrotope_with_aspect.shp) containing any information already present in the
hydrotop shape file with an additional aspect property containing the average slope aspect
per shape file geometry. The processing is done via the qgis_process, which is provided by
Q-GIS [158]. Listing D.21 contains the construction step definition as used by the case study
presented in section 7.4. The script performed as part of this construction step consists of
the following operations:

1. Call qgis_process to calculate the average slope aspect per hydrotop (Line 5 - 10)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 qgis_process run native:zonalstatisticsfb \

6 --INPUT=/tmp/input/hydrotope_with_slope.shp \

7 --INPUT_RASTER=/tmp/input/aspect.tif \

8 --OUTPUT=/tmp/hydrotope_with_aspect.shp \

9 --RASTER_BAND=1 --STATISTICS=2 \

10 --COLUMN_PREFIX=aspect_

11 output:

Appendix 155

12 - file:

13 /tmp/hydrotope_with_aspect.shp

14 - file:

15 /tmp/hydrotope_with_aspect.shx

16 - file:

17 /tmp/hydrotope_with_aspect.prj

18 - file:

19 /tmp/hydrotope_with_aspect.dbf

20 - file:

21 /tmp/hydrotope_with_aspect.cpg

Listing D.21.: Definition of the calculate aspect per hydrotop construction step

D.10. Calculate maximal slope length per hydrotop

The calculate maximal slope length per hydrotop construction step calculates the maximal
slope length occurring per hydrotop given in a shape file. This construction step expects a
slope grid as TIF (dem.tif) and a hydrotop shape file (hydrotope_with_aspect.shp) as
input dataset. It produces a shape file (hydrotope_with_slope_length.shp) containing
any information already present in the hydrotop shape file with an additional slope_length
property containing the maximal slope length per shape file geometry. The processing is
done via the qgis_process, which is provided by Q-GIS [158]. Listing D.22 contains the
construction step definition as used by the case study presented in section 7.4. The script
performed as part of this construction step consists of the following operations:

1. Call qgis_process to calculate the maximal slope length per hydrotop (Line 5 - 10)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 qgis_process run native:zonalstatisticsfb \

6 --INPUT=/tmp/input/hydrotope_with_aspect.shp \

7 --INPUT_RASTER=/tmp/input/slope_length.sdat \

8 --OUTPUT=/tmp/hydrotop_with_slope_length.shp \

9 --RASTER_BAND=1 --STATISTICS=6 \

10 --COLUMN_PREFIX=slope_length_

11 output:

12 - file:

13 /tmp/hydrotop_with_slope_length.shp

14 - file:

15 /tmp/hydrotop_with_slope_length.shx

16 - file:

17 /tmp/hydrotop_with_slope_length.prj

18 - file:

19 /tmp/hydrotop_with_slope_length.dbf

20 - file:

21 /tmp/hydrotop_with_slope_length.cpg

Listing D.22.: Definition of the calculate maximal slope length per hydrotop construction step

156 Appendix

D.11. Calculate hydrotop area

The calculate hydrotop area construction step calculates the area of any hydrotop provided
in the input dataset in hectare. It expects a hydrotop shape file (hydrotope_with_slope_-
length.shp) as single input dataset and produces a shape file (hydrotope_with_area.shp)
containing any information already present in the input dataset with an additional property
area containing the hydrotop size in hectare added. The processing is done via qgis_-

process, which is provided by Q-GIS [158]. Listing D.23 contains the construction step
definition as used by the case study presented in section 7.4. The script performed as part
of this construction step consists of the following operations:

1. Call qgis_process to calculate the hydrotop area (Line 5 - 10)

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 qgis_process run native:fieldcalculator \

6 --FIELD_NAME='area' --FIELD_PRECISION='4' \

7 --FORMULA='$area / (100.0*100.0)' \

8 --INPUT=/tmp/input/hydrotop_with_slope_length.shp \

9 --OUTPUT=/tmp/hydrotope_with_area.shp \

10 --FIELD_TYPE='0' --FIELD_LENGTH='5'

11 output:

12 - file:

13 /tmp/hydrotope_with_area.shp

14 - file:

15 /tmp/hydrotope_with_area.shx

16 - file:

17 /tmp/hydrotope_with_area.prj

18 - file:

19 /tmp/hydrotope_with_area.dbf

20 - file:

21 /tmp/hydrotope_with_area.cpg

Listing D.23.: Definition of the calculate hydrotop area construction step

D.12. Lookup soil type

The lookup soil type construction step determines the prevailing soil kind per hydrotop, by
doing a spatial join between the different input datasets. This construction step expects
two input datasets, one shape file that contains a soil type map (bk50_clip.shp) and one
that contains information about the hydrotopes (hydrotope_with_area.shp). It produces
a shape file (hydrotopes_joined_with_bk50.shp) containing all information present in the
input hydrotop dataset with additional properties coming from the soil map. The processing
is done via qgis_process, which is provided by Q-GIS [158]. Listing D.24 contains the
construction step definition as used by the case study presented in section 7.4. The script
performed as part of this construction step consists of the following operations:

1. Call qgis_process to perform a spatial join to lookup the prevailing soil type per
hydrotop (Line 5 - 9)

Appendix 157

1 image: local-registry:5000/qgis-processing-image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 qgis_process run native:joinattributesbylocation \

6 --INPUT=/tmp/input/hydrotope_with_area.shp \

7 --JOIN=/tmp/input/bk50_clip.shp --METHOD=2 \

8 --OUTPUT=/tmp/hydrotopes_joined_with_bk50.shp \

9 --PREDICATE=0 --JOIN_FIELDS='LEG_NR_12' --PREFIX='BK50_'

10 output:

11 - file:

12 /tmp/hydrotopes_joined_with_bk50.shp

13 - file:

14 /tmp/hydrotopes_joined_with_bk50.shx

15 - file:

16 /tmp/hydrotopes_joined_with_bk50.prj

17 - file:

18 /tmp/hydrotopes_joined_with_bk50.dbf

19 - file:

20 /tmp/hydrotopes_joined_with_bk50.cpg

Listing D.24.: Definition of the lookup soil type construction step

D.13. Preprocess climate data

The preprocess climate data construction step converts climate data as provided by the
German meteorological survey (DWD) into the format expected by BoWaHald [30]. The
construction step expects a variable number of CSV files as input and will produce a single
Microsoft Excel file as output dataset (metdata.xls). The construction step extracts all
required parameters from the provided CSV files by looking at the different files in their
provided order. This means the construction step will first try to gather all parameters from
the first file (according to an order based on the file name). Missing values will be filled with
information from the second file and so on. The script will extract any required parameter for
the time period between 1.11.1990 and 31.10.2020. The processing is done by a self written
R-Script. Listing D.25 contains the construction step definition as used by the case study
presented in section 7.4. The script performed as part of this construction step consists of
the following operations:

1. Definition of the R script used to perform the processing (Line 5 - 77)
2. Execute the R script defined in step 1 (Line 79)

158 Appendix

1 image: local-registry:5000/wasserhaushalt_r_processing_image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 cat > /tmp/preprocess_metdata.R << 'EOF'

6 library(dplyr)

7 library(zoo)

8 library(xlsx)

9

10 path.to.csv <- "/tmp/input"

11 files<-list.files(path.to.csv, pattern = "*.csv")

12 print(files) ## list all files in path

13

14 result = data.frame(

15 MESS_DATUM = integer(),

16 RS = numeric(),

17 TMK = numeric(),

18 UPM = numeric(),

19 FM = numeric(),

20 SDK = numeric()

21)

22

23

24 for(i in 1:length(files)) {

25 print(files[i])

26 df <- read.csv(paste0(path.to.csv,"/",files[i]), sep = ";")

27

28 if ('RS' %in% names(df)) {

29 result <- result %>% full_join(df, by = "MESS_DATUM") %>%

30 mutate(RS = coalesce(RS.x, RS.y)) %>%

31 select(MESS_DATUM, RS, TMK, UPM, FM, SDK)

32

33 } else {

34 result <- result %>% full_join(df, by = "MESS_DATUM") %>%

35 mutate(

36 RS = coalesce(RS, RSK),

37 TMK = coalesce(TMK.x, na_if(TMK.y, -999)),

38 UPM = coalesce(UPM.x, na_if(UPM.y, -999)),

39 FM = coalesce(FM.x, na_if(FM.y, -999)),

40 SDK = coalesce(SDK.x, na_if(SDK.y, -999))

41) %>%

42 select(MESS_DATUM, RS, TMK, UPM, FM, SDK)

43 }

44 }

45

46 # cleanup data

47

48 result <- result %>% arrange(MESS_DATUM) %>%

49 # Verbleibende Lücken per Interpolation schließen

Appendix 159

50 # (Maximale per Interpolation zu schließende Lückengröße: 20 Tage)

51 mutate(

52 MESS_DATUM = as.Date(strptime(MESS_DATUM, "%Y%m%d")),

53 RS = na.approx(RS, maxgap = 20, rule = 2),

54 TMK = na.approx(TMK, maxgap = 20, rule = 2),

55 UPM = na.approx(UPM, maxgap = 20, rule = 2),

56 FM = na.approx(FM, maxgap = 20, rule = 2),

57 SDK = na.approx(SDK, maxgap = 20, rule = 2)

58) %>%

59 # Kein Sonnenschein wenn Sonnenschein NA

60 mutate(SDK = replace(SDK, is.na(SDK), 0)) %>%

61 # Nur die für den Untersuchungszeitraum notwendigen Daten exportieren

62 filter(MESS_DATUM > "1990-11-01" & MESS_DATUM <= "2020-10-31") %>%

63 mutate(

64 DAT = MESS_DATUM,

65 T = TMK,

66 TF = ifelse(lead(TMK) >= 0 | is.na(lead(TMK)), 1, -1),

67 RLF = UPM,

68 RG = 0.0,

69 SSD = SDK,

70 VW = FM,

71 P = RS

72) %>%

73 select(DAT, T, TF, RLF, RG, SSD, VW, P)

74

75 write.xlsx(result, '/tmp/metdata.xls', row.names = FALSE)

76

77 EOF

78 - command: |

79 R --no-save < /tmp/preprocess_metdata.R

80 output:

81 - file:

82 /tmp/metdata.xls

Listing D.25.: Definition of the preprocess climate data construction step

D.14. Generate bwmhydro files

The generate bwmhydro files construction step generates for a bwmhydro file as expected by
BoWaHald [30] for each hydrotop present in the provided hydrotop shape file. This construc-
tion step expects the aggregated hydrotop shape file as single input dataset (hydrotopes_-
joined_with_bk50.shp) and produces a TAR archive containing a compatible bwmhydro
file for each hydrotop present in the hydrotop shapefile. The processing is done based on the
attributes present in the hydrotop shape file with the help of a self written python script.
Listing D.26 contains the construction step definition as used by the case study presented in
section 7.4. The script performed as part of this construction step consists of the following
operations:

1. Create the output directory (Line 5)
2. Definition of the python script used to perform the processing (Line 7 - 91)

160 Appendix

3. Execute the python script defined in step 2 (Line 94)
4. Create a TAR archive containing all created bwmhydro files. It is important here to

explicitly set a sorting order and a timestamp because otherwise the tar command may
introduce non-reproducible behaviour. (Line 95)

1 image: local-registry:5000/wasserhaushalt_python_processing_image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 mkdir /tmp/out

6 - command: |

7 cat > /tmp/convert_to_bwmhydro.py << EOF

8 #!/usr/bin/env python3

9

10 import geopandas as gpd

11 import pandas as pd

12 from math import ceil, isnan

13

14 def bowa_hydrotop_template(layer):

15

16 height = round(layer[1]['height_mea'], 1)

17 aspect = layer[1]['aspect_mea']

18 slope_length = round(layer[1]['slope_leng'], -1)

19 center = layer[1]['geometry'].centroid

20 deg = int(center.y)

21 mins = int(60 * (center.y - deg))

22 use = layer[1]['Nutzung']

23

24

25 exposure_target = aspect / 22.5

26 if exposure_target < 1:

27 exposure = "Nord"

28 elif exposure_target < 3:

29 exposure = "Nordost"

30 elif exposure_target < 5:

31 exposure = "Ost"

32 elif exposure_target < 7:

33 exposure = "Südost"

34 elif exposure_target < 9:

35 exposure = "Süd"

36 elif exposure_target < 11:

37 exposure = "Südwest"

38 elif exposure_target < 13:

39 exposure = "West"

40 elif exposure_target < 15:

41 exposure = "Nordwest"

42 else:

43 exposure = "Nord"

44

45 if use == "Landwirtschaftlich-Ackerbaulich":

46 land_use = "Ackerland (Getreide, Hackfrüchte...)"

Appendix 161

47 elif use == "Wald (ggf. mit Unterholz und Gras)" or use == "Sträucher":

48 land_use = "Baum- und Buschbewuchs ggf. mit Gras"

49 elif use == "Dauergrünland (Wiese, Weide)":

50 land_use = "Gras-/Krautbewuchs (Wiese, Weide)"

51 elif use == "Gewässer":

52 land_use = "Gewässer"

53 elif use == "Ortschaft, versiegelte Fläche":

54 land_use = "Bebauung (teil- bzw. vollversiegelt)"

55 else:

56 land_use = "ohne Bewuchs"

57

58 template = """<?xml version="1.0" encoding="UTF-8"?>

59 <hydroipitation>

60 <version>0.2</version>

61 <data>

62 <deg>{deg}</deg>

63 <min>{min}</min>

64 <height>{height}</height>

65 <length>{slope_length}</length>

66 <exposure>{exposure}</exposure>

67 <use>{land_use}</use>

68 <eva>2500</eva>

69 </data>

70 </hydroipitation>""".format(

71 height = height,

72 slope_length = slope_length,

73 exposure = exposure,

74 deg = deg,

75 min = mins,

76 land_use = land_use

77)

78 return template

79

80 shapefile = gpd.read_file("/tmp/input/hydrotopes_joined_with_bk50.shp")

81 shapefile = shapefile.to_crs('EPSG:4326') # to wgs 84

82

83 for row in shapefile.iterrows():

84 id = row[0]

85 name = row[1]['Name']

86 bwmhydro_file_name = f'/tmp/out/{id}_{name}.bwmhydro'

87 with open(bwmhydro_file_name, 'w') as bwmhydro_file:

88 bwmhydro = bowa_hydrotop_template(row)

89 bwmhydro_file.write(bwmhydro)

90

91 EOF

92

93 - command: |

94 python /tmp/convert_to_bwmhydro.py

95 tar --sort=name --mtime='UTC 2021-12-31' -cf /tmp/bwmhydro.tar /tmp/out/*

96 output:

97 - file:

162 Appendix

98 /tmp/bwmhydro.tar

Listing D.26.: Definition of the generate bwmhydro files construction step

D.15. Generate bwmuse files

The generate bwmhydro files construction step generates for a bwmuse file as expected by
BoWaHald [30] for each hydrotop present in the provided hydrotop shape file. This construc-
tion step expects the aggregated hydrotop shape file as single input dataset (hydrotopes_-
joined_with_bk50.shp) and produces a TAR archive containing a compatible bwmuse file
for each hydrotop present in the hydrotop shapefile. The processing is done based on the
attributes present in the hydrotop shape file with the help of a self written python script.
Listing D.27 contains the construction step definition as used by the case study presented in
section 7.4. The script performed as part of this construction step consists of the following
operations:

1. Create the output directory (Line 5)
2. Definition of the python script used to perform the processing (Line 7 - 91)
3. Execute the python script defined in step 2 (Line 94)
4. Create a TAR archive containing all created bwmuse files. It is important here to

explicitly set a sorting order and a timestamp because otherwise the tar command
may introduce non-reproducible behaviour. (Line 95)

1 image: local-registry:5000/wasserhaushalt_python_processing_image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 mkdir /tmp/out

6 - command: |

7 cat > /tmp/convert_to_bwmuse.py << EOF

8 #!/usr/bin/env python3

9

10 import geopandas as gpd

11 import pandas as pd

12 from math import ceil, isnan

13

14 def bowa_landuse_template(layer):

15 use = layer[1]['Nutzung']

16 sub_use = layer[1].get('Nutzung2') or 'unbekannt'

17 kc = layer[1].get('Bestandskoeffizient') or 0

18 coverage = layer[1].get('Deckungsgrad') or 0

19 rootdepth = layer[1].get('Wurzeltiefe') or 0

20 rootthickness = layer[1].get('Wurzeldichte') or 0

21 dev = layer[1].get('Entwicklung') or 'unbekannt'

22 form = layer[1].get('Wuchsform') or 'unbekannt'

23 structure = layer[1].get('Structure') or 'unbekannt'

24 damage = layer[1].get('Schadklasse') or 'unbekannt'

25 sealing = layer[1].get('Versieglun') or 0

26 if isnan(sealing):

27 sealing = 0

Appendix 163

28

29

30 template = """<?xml version="1.0" encoding="UTF-8"?>

31 <landuse>

32 <version>0.2</version>

33 <data>

34 <use>{use}</use>

35 <use2>{sub_use}</use2>

36 <kc>{kc}</kc>

37 <coverage>{coverage}</coverage>

38 <rootdepth>{rootdepth}</rootdepth>

39 <rootthickness>{rootthickness}</rootthickness>

40 <dev>{dev}</dev>

41 <form>{form}</form>

42 <structure>{structure}</structure>

43 <damage>{damage}</damage>

44 <sealing>{sealing}</sealing>

45 </data>

46 </landuse>""".format(

47 use = use,

48 sub_use = sub_use,

49 kc = kc, coverage = coverage,

50 rootdepth = rootdepth,

51 rootthickness = rootthickness,

52 dev = dev,

53 form = form,

54 structure = structure,

55 damage = damage,

56 sealing = sealing

57)

58

59 return template

60

61

62 shapefile = gpd.read_file("/tmp/input/hydrotopes_joined_with_bk50.shp")

63 shapefile = shapefile.to_crs('EPSG:4326') # to wgs 84

64

65 for row in shapefile.iterrows():

66 id = row[0]

67 name = row[1]['Name']

68 bwmuse_file_name = f'/tmp/out/{id}_{name}.bwmuse'

69 with open(bwmuse_file_name, 'w') as bwmuse_file:

70 bwmuse = bowa_landuse_template(row)

71 bwmuse_file.write(bwmuse)

72

73 EOF

74

75 - command: |

76 python /tmp/convert_to_bwmuse.py

77 tar --sort=name --mtime='UTC 2021-12-31' -cf /tmp/bwmuse.tar /tmp/out/*

78 output:

164 Appendix

79 - file:

80 /tmp/bwmuse.tar

Listing D.27.: Definition of the generate bwmuse files construction step

D.16. Generate bwmlayer files

The generate bwmlayer files construction step generates for a bwmlayer file as expected
by BoWaHald [30] for each hydrotop present in the provided hydrotop shape file. This
construction step expects the aggregated hydrotop shape file (hydrotopes_joined_with_-
bk50.shp) and the corresponding legend for the soil map as Microsoft Excel file (BK50_-
legend.xlsx) as input. It produces a TAR archive containing a compatible bwmlayer file
for each hydrotop present in the hydrotop shapefile. The processing is done based on the
attributes present in the hydrotop shape file and the soil map legend by a self written python
script. Listing D.28 contains the construction step definition as used by the case study
presented in section 7.4. The script performed as part of this construction step consists of
the following operations:

1. Create the output directory (Line 5)
2. Definition of the python script used to perform the processing (Line 7 - 91)
3. Execute the python script defined in step 2 (Line 94)
4. Create a TAR archive containing all created bwmlayer files. It is important here to

explicitly set a sorting order and a timestamp because otherwise the tar command
may introduce non-reproducible behaviour. (Line 95)

1 image: local-registry:5000/wasserhaushalt_python_processing_image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 mkdir /tmp/out

6 - command: |

7 cat > /tmp/convert_to_bwmlayers.py << EOF

8 #!/usr/bin/env python3

9

10 import geopandas as gpd

11 import pandas as pd

12 from math import ceil, isnan

13

14 KA5_LOOKUP = {

15 "Ss": {

16 "kftemp": [4.3403E-05,3.9352E-05,2.662E-05],

17 "tab70": [36,32,27,9,7,7,14,11,10,5,4,3],

18 "tab72": [0,0,-1,-2,-3,0,1,3,4,5,0,3,6,9,12]

19 },

20 "Sl2": {

21 "kftemp": [1.8634E-05,1.1343E-05,6.0185E-06],

22 "tab70": [23,18,13,20,18,17,28,25,23,8,7,6],

23 "tab72": [0,0,1,2,3,0,2,3,4,6,0,3,6,9,13],

24 },

25 "Sl3": {

Appendix 165

26 "kftemp": [1.1343E-05,7.5231E-06,3.3565E-06],

27 "tab72": [0,1,2,3,4,0,1,3,4,6,0,3,5,9,12],

28 "tab70": [18,15,10,22,18,17,34,27,25,12,9,8]

29 },

30 "Sl4": {

31 "kftemp": [1.2269E-05,4.8611E-06,2.4306E-06],

32 "tab70": [18,12,8,22,18,15,36,30,26,14,12,11],

33 "tab72": [0,2,2,3,4,0,2,4,5,6,0,3,7,11,14]

34 },

35 "Slu": {

36 "kftemp": [6.9444E-06,3.2407E-06,1.5046E-06],

37 "tab70": [14,10,7,23,21,19,38,33,30,15,12,11],

38 "tab72": [0,2,3,4,6,0,1,2,4,6,0,2,5,8,11],

39 },

40 "St2": {

41 "kftemp": [2.0718E-05,1.3657E-05,7.8704E-06],

42 "tab70": [24,20,15,18,16,13,26,22,18,8,6,5],

43 "tab72": [0,0,0,1,1,0,3,4,5,7,0,5,7,11,15],

44 },

45 "St3": {

46 "kftemp": [1.3194E-05,4.8611E-06,2.7778E-06],

47 "tab70": [18,14,9,18,15,12,35,30,26,17,15,14],

48 "tab72": [0,1,2,3,4,0,2,4,6,9,0,2,5,10,14],

49 },

50 "Su2": {

51 "kftemp": [2.0139E-05,1.4699E-05,7.6389E-06],

52 "tab70": [24,21,15,20,18,17,26,23,21,6,5,4],

53 "tab72": [0,0,0,-1,-2,0,2,3,4,6,0,3,6,9,13],

54 },

55 "Su3": {

56 "kftemp": [1.0185E-05,6.8287E-06,3.588E-06],

57 "tab70": [17,14,10,25,21,20,35,29,26,10,8,6],

58 "tab72": [0,1,1,2,2,0,1,3,3,4,0,2,6,8,11],

59 },

60 "Su4": {

61 "kftemp": [6.713E-06,4.3981E-06,1.9676E-06],

62 "tab70": [14,11,8,27,23,21,39,32,28,12,9,7],

63 "tab72": [0,2,3,4,6,0,1,2,3,4,0,2,4,8,11],

64 },

65 "Ls2": {

66 "kftemp": [6.1343E-06,2.662E-06,1.1574E-06],

67 "tab70": [13,9,6,21,16,14,40,34,31,19,18,17],

68 "tab72": [0,2,3,4,5,0,1,3,5,8,0,3,6,11,14],

69 },

70 "Ls3": {

71 "kftemp": [8.5648E-06,2.662E-06,1.2731E-06],

72 "tab70": [15,9,6,21,16,14,39,33,30,18,17,16],

73 "tab72": [0,1,2,3,4,0,1,3,5,8,0,3,6,11,14],

74 },

75 "Ls4": {

76 "kftemp": [7.8704E-06,4.1667E-06,1.2731E-06],

166 Appendix

77 "tab70": [15,11,7,20,16,13,39,32,28,19,16,15],

78 "tab72": [0,1,2,3,3,0,2,4,6,8,0,4,6,12,15],

79 },

80 "Lt2": {

81 "kftemp": [3.8194E-06,1.5046E-06,6.9444E-07],

82 "tab70": [11,7,5,18,14,11,42,36,32,24,22,21],

83 "tab72": [0,2,3,5,6,0,3,5,8,10,0,5,8,13,15],

84 },

85 "Lt3": {

86 "kftemp": [2.3148E-06,8.1019E-07,3.4722E-07],

87 "tab70": [8,5,3,17,12,10,45,39,35,28,27,25],

88 "tab72": [0,1,2,4,7,0,2,4,8,11,0,5,6,12,15],

89 },

90 "Lts": {

91 "kftemp": [3.588E-06,1.1574E-06,8.1019E-07],

92 "tab70": [10,6,5,17,14,11,44,37,31,27,23,20],

93 "tab72": [0,1,2,5,6,0,3,5,7,9,0,3,7,13,15],

94 },

95 "Lu": {

96 "kftemp": [5.2083E-06,1.8519E-06,6.9444E-07],

97 "tab70": [12,7,4,21,17,15,41,36,33,20,19,18],

98 "tab72": [0,2,3,6,7,0,3,5,7,8,0,6,7,13,14],

99 },

100 "Uu": {

101 "kftemp": [3.7037E-06,1.5046E-06,2.3148E-07],

102 "tab70": [10,7,3,30,26,23,43,38,35,13,12,12],

103 "tab72": [0,2,3,5,9,0,1,2,3,4,0,2,4,8,11]

104 },

105 "Uls": {

106 "kftemp": [5.6713E-06,2.3148E-06,8.1019E-07],

107 "tab70": [13,8,5,24,22,21,39,35,33,15,13,12],

108 "tab72": [0,2,3,4,8,0,3,4,4,7,0,4,7,10,15],

109 },

110 "Us": {

111 "kftemp": [4.2824E-06,2.5463E-06,5.787E-07],

112 "tab70": [11,9,4,28,25,22,41,35,32,13,10,10],

113 "tab72": [0,2,3,5,8,0,1,2,3,4,0,2,4,7,10],

114 },

115 "Ut2": {

116 "kftemp": [3.7037E-06,1.3889E-06,2.3148E-07],

117 "tab70": [10,6,3,28,26,23,40,37,35,12,11,12],

118 "tab72": [0,2,4,6,8,0,1,1,2,4,0,2,4,7,12]

119 },

120 "Ut3": {

121 "kftemp": [4.7454E-06,1.3889E-06,3.4722E-07],

122 "tab70": [11,6,3,26,25,23,39,37,35,13,12,12],

123 "tab72": [0,2,4,6,8,0,1,1,2,4,0,2,3,8,12],

124 },

125 "Ut4": {

126 "kftemp": [5.2083E-06,1.5046E-06,3.4722E-07],

127 "tab70": [12,7,3,23,21,19,39,37,35,16,16,16],

Appendix 167

128 "tab72": [0,2,4,6,7,0,2,3,4,6,0,4,6,9,13],

129 },

130 "Tt": {

131 "kftemp": [4.6296E-07,3.4722E-07,2.3148E-07],

132 "tab70": [4,3,2,15,13,12,51,43,35,36,30,23],

133 "tab72": [0,1,2,4,8,0,2,4,5,7,0,5,6,9,11],

134 },

135 "Tl": {

136 "kftemp": [9.2593E-07,6.9444E-07,2.3148E-07],

137 "tab70": [5,4,3,15,13,11,48,41,35,33,28,24],

138 "tab72": [0,1,2,3,7,0,2,4,6,8,0,5,6,11,13],

139 },

140 "Tu2": {

141 "kftemp": [9.2593E-07,3.4722E-07,2.3148E-07],

142 "tab70": [5,4,3,16,12,10,47,42,36,31,30,26],

143 "tab72": [0,1,2,3,7,0,1,3,5,8,0,5,6,10,13]

144 },

145 "Tu3": {

146 "kftemp": [2.0833E-06,1.0417E-06,3.4722E-07],

147 "tab70": [8,6,3,17,13,10,45,38,35,28,25,25],

148 "tab72": [0,2,2,3,6,0,2,4,7,9,0,6,8,12,14],

149 },

150 "Tu4": {

151 "kftemp": [3.8194E-06,1.3889E-06,3.4722E-07],

152 "tab70": [10,6,3,19,17,16,41,37,35,22,20,19],

153 "tab72": [0,1,3,4,6,0,3,5,6,8,0,5,8,11,15],

154 },

155 "Ts2": {

156 "kftemp": [9.2593E-07,5.787E-07,3.4722E-07],

157 "tab70": [5,4,3,16,13,12,47,39,34,31,26,22],

158 "tab72": [0,1,2,3,7,0,2,4,6,8,0,6,7,12,14]

159 },

160 "Ts3": {

161 "kftemp": [1.7361E-06,1.2731E-06,9.2593E-07],

162 "tab70": [7,6,5,16,13,11,45,37,32,29,24,21],

163 "tab72": [0,2,3,4,5,0,2,5,7,9,0,5,6,12,14],

164 },

165 "Ts4": {

166 "kftemp": [5.9028E-06,4.3981E-06,9.2593E-07],

167 "tab70": [13,10,6,17,14,11,43,32,30,26,18,19],

168 "tab72": [0,2,3,4,5,0,2,4,7,9,0,4,6,11,14],

169 },

170 "fS": {

171 "kftemp": [4.7454E-05,3.4722E-05,2.3148E-05],

172 "tab70": [34,31,23,10,9,8,16,14,12,6,5,4],

173 "tab72": [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

174 },

175 "fSms": {

176 "kftemp": [4.7454E-05,3.4722E-05,2.3148E-05],

177 "tab70": [34,31,23,10,9,8,16,14,12,6,5,4],

178 "tab72": [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

168 Appendix

179 },

180 "fSgs": {

181 "kftemp": [4.7454E-05,3.4722E-05,2.3148E-05],

182 "tab70": [34,31,23,10,9,8,16,14,12,6,5,4],

183 "tab72": [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

184 },

185 "mS": {

186 "kftemp": [7.8125E-05,5.6713E-05,2.8935E-05],

187 "tab70": [36,32,26,9,6,5,14,10,8,5,4,3],

188 "tab72": [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

189 },

190 "mSfs": {

191 "kftemp": [7.8125E-05,5.6713E-05,2.8935E-05],

192 "tab70": [36,32,26,9,6,5,14,10,8,5,4,3],

193 "tab72": [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

194 },

195 "mSgs": {

196 "kftemp": [7.8125E-05,5.6713E-05,2.8935E-05],

197 "tab70": [36,32,26,9,6,5,14,10,8,5,4,3],

198 "tab72": [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

199 },

200 "gS": {

201 "kftemp": [2.4306E-04,9.6644E-05,3.8773E-05],

202 "tab70": [38,33,29,8,5,4,12,8,6,4,3,2],

203 "tab72": [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

204 },

205 }

206

207 def bowa_layer_template(id, size, grad, soil_kind, humus):

208 size = int(round(size * 1000, 0)) # size is in mm

209 id += 1 # bowa starts at 1

210 ts = ceil(size / 100) # we use 1 "layer" per 100mm

211

212 h = 1

213 if humus == "h0" or humus == "h1":

214 h = 1

215 elif humus == "h2":

216 h = 2

217 elif humus == "h3":

218 h = 3

219 elif humus == "h4":

220 h = 4

221 else:

222 h = 5

223

224 n = 2 # mittel

225

226 ka5 = KA5_LOOKUP[soil_kind]

227

228 # calculation copied from bowa

229 t0lki = n-1

Appendix 169

230 t2lki = h-1

231 t0nfki = 3+n-1

232 t2nfki = 5+h-1

233 t0fki = 6+n-1

234 t2fki = 10+h-1

235 t0twi = 9+n-1

236

237 kf = ka5["kftemp"][n-1]

238

239 fk1 = ka5["tab70"][t0fki] + ka5["tab72"][t2fki]

240 lk1 = ka5["tab70"][t0lki] + ka5["tab72"][t2lki]

241 nfk = ka5["tab70"][t0nfki] + ka5["tab72"][t2nfki]

242 pwp = fk1 - nfk

243 sat = fk1 + lk1

244 ksh = 0

245

246 if (kf <= 2.5E-10):

247 ksh = 2200

248 if (kf > 2.5E-10):

249 ksh = 2100

250 if (kf > 7.5E-10):

251 ksh = 1800

252 if (kf > 2.5E-09):

253 ksh = 1500

254 if (kf > 7.5E-09):

255 ksh = 1300

256 if (kf > 2.5E-08):

257 ksh = 1100

258 if (kf > 7.5E-08):

259 ksh = 1000

260 if (kf > 2.5E-07):

261 ksh = 900

262 if (kf > 7.5E-07):

263 ksh = 800

264 if (kf > 2.5E-06):

265 ksh = 700

266 if (kf > 7.5E-06):

267 ksh = 600

268 if (kf > 2.5E-05):

269 ksh = 500

270 if (kf > 7.5E-05):

271 ksh = 400

272 if (kf > 2.5E-04):

273 ksh = 300

274 if (kf > 7.5E-04):

275 ksh = 200

276

277

278 template = """ <layer>

279 <id>{id}</id>

280 <bez>{layer_kind}</bez>

170 Appendix

281 <dicke>{size}</dicke>

282 <ts>{ts}</ts>

283 <kf>{kf}</kf>

284 <swg>{swg}</swg>

285 <fk>{fk}</fk>

286 <pwp>{pwp}</pwp>

287 <awg>{awg}</awg>

288 <ksh>{ksh}</ksh>

289 <grad>{grad}</grad>

290 <drain>false</drain>

291 </layer>""".format(

292 id = id,

293 layer_kind = soil_kind,

294 size = size,

295 grad = grad,

296 ts = ts,

297 kf=kf,

298 swg = sat,

299 fk = fk1,

300 pwp = pwp,

301 awg = fk1,

302 ksh = ksh

303)

304 return template

305

306 def process_bowa_soil_file(layer, bk50_legend):

307 bk50_entry = layer[1]['BK50_LEG_N']

308 slope = layer[1]['slope_mean']

309

310 layers = bk50_legend[bk50_legend['LEG_NR'] == bk50_entry]

311 out = """<?xml version="1.0" encoding="UTF-8"?>

312 <soil>

313 <version>0.4</version>"""

314

315 for id, layer in enumerate(layers.iterrows()):

316 name = layer[1]["BOTYP"]

317 size = layer[1]["UTIEF"]- layer[1]["OTIEF"]

318 soil_kind = layer[1]["BOART"]

319 humus = layer[1]["Humus"]

320 out += "\n" + bowa_layer_template(id, size, slope, soil_kind, humus)

321

322 out += "\n</soil>"

323 return out

324

325 shapefile = gpd.read_file("/tmp/input/hydrotopes_joined_with_bk50.shp")

326 shapefile = shapefile.to_crs('EPSG:4326') # to wgs 84

327 bk50_legend = pd.read_excel(

328 "/tmp/input/BK50_LBF_202005225.xlsx",

329 sheet_name="Horizont"

330)

331

Appendix 171

332 for row in shapefile.iterrows():

333 id = row[0]

334 name = row[1]['Name']

335 area = row[1]['area']

336 bwmlayers_file_name = f'/tmp/out/{id}_{name}.bwmlayers'

337 with open(bwmlayers_file_name, 'w') as bwmlayers_file:

338 bwmlayers = process_bowa_soil_file(row, bk50_legend)

339 bwmlayers_file.write(bwmlayers)

340

341 EOF

342

343 - command: |

344 python /tmp/convert_to_bwmlayers.py

345 tar --sort=name --mtime='UTC 2021-12-31' -cf /tmp/bwmlayers.tar /tmp/out/*

346 output:

347 - file:

348 /tmp/bwmlayers.tar

Listing D.28.: Definition of the generate bwmlayer files construction step

D.17. Run Bowahald

The run bowahald construction step calculates the hydrologic balance models for each hydro-
top based on the provided inputs. This construction step expects 5 different input datasets:

• A bwmcor file korr.bwmcor containing information about how the precipitation data
should be corrected

• A Microsoft Execl file metdata.xls containing aggregated climate data for the model
time period in a BoWaHald compatible format

• A TAR archive containing a bwmhydro file per hydrotop (bwmhydro.tar)
• A TAR archive containing a bwmuse file per hydrotop (bwmuse.tar)
• A TAR archive containing a bwmlayers file per hydrotop (bwmlayers)

This construction step produces a TAR archive, that contains the BoWaHald simulation re-
sults as Microsoft Excel file per hydrotop. The data processing performed by this construction
step is done by BoWaHald [30]. Listing D.29 contains the construction step definition as used
by the case study presented in section 7.4. The script performed as part of this construction
step consists of the following operations:

1. Unpack the provided TAR archives (Line 5 - 7)
2. Create a output directory (Line 8)
3. Loop over the hydrotopes and run BoWaHald for each hydrotop (Line 9 - 21)
4. Create a TAR archive based on the simulation output of all hydrotops. It is impor-

tant here to explicitly set a sorting order and a timestamp because otherwise the tar

command may introduce non-reproducible behaviour. (Line 22)

172 Appendix

1 image: local-registry:5000/bowahald

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 (cd /tmp/input && tar -xf bwmuse.tar)

6 (cd /tmp/input && tar -xf bwmlayers.tar)

7 (cd /tmp/input && tar -xf bwmhydro.tar)

8 mkdir /tmp/out

9 for f in /tmp/input/tmp/out/*.bwmhydro

10 do

11 filename="${f%.*}"

12 echo "($filename.bwmhydro, $filename.bwmlayers, $filename.bwmuse)"

13

14 java -jar /bowahald.jar \

15 --hydro-file "$filename.bwmhydro" \

16 --met-file /tmp/input/metdata.xls \

17 --corr-file /tmp/input/korr.bwmcor \

18 --use-file "$filename.bwmuse" \

19 --soil-file "$filename.bwmlayers" \

20 --itter true --output /tmp/out

21 done

22 tar --sort=name --mtime='UTC 2021-12-31' -cf /tmp/results.tar /tmp/out/*

23 output:

24 - file:

25 /tmp/results.tar

Listing D.29.: Definition of the run bowahald construction step

D.18. Plotting results

The plotting results construction step post-processes the BoWaHald simulation results to
create some summary plots. It expects a TAR archive containing BoWaHald simulation
results as input and produces several plots as PNG images as output. The plot creating is
done by a self written R script. Listing D.30 contains the construction step definition as used
by section 7.4. The script performed as part of this construction step consists of the following
operations:

1. Unpack the TAR archive, that contains a Microsoft Excel file per hydrotop (Line 5)
2. Create a output directory (Line 6)
3. Define the R scripted used to create the plots (Line 8 - 109)
4. Execute the previously defined R script (Line 111)

Appendix 173

1 image: local-registry:5000/wasserhaushalt_r_processing_image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 (cd /tmp/input && tar -xf results.tar)

6 mkdir /tmp/out

7 - command: |

8 cat > /tmp/generate_summary_plots.R << 'EOF'

9

10 options(java.parameters = "-Xmx8g")

11 library(xlsx)

12 library(dplyr)

13 library(ggplot2)

14

15 input_path <- "/tmp/input/tmp/out"

16 output_path <- "/tmp/out"

17 all_result_files <- list.files(path = input_path, pattern = "*.xls")

18

19 results <- lapply(all_result_files, function(i) {

20 r <- strsplit(i, split = "_")

21 r <- r[[1]]

22 r <- tail(head(r, -2), -3)

23

24 WHB_Monat <- read.xlsx(

25 paste(input_path, i, sep = "/"), "WHB (komplett) Monat"

26)

27 WHB_Monat <- WHB_Monat[, c(1, 2, 3, 5, 10, 13)]

28 WHB_Monat$hydrotop <- paste(r, collapse = "_")

29 WHB_Monat

30 })

31

32 results <- do.call("rbind.data.frame", results)

33

34 order_index <- function(i) {

35 r <- strsplit(i, split = "_")

36 return(as.integer(r[[1]][1]))

37 }

38 hydrotopes <- unique(results$hydrotop)

39 order <- order(sapply(hydrotopes, order_index))

40 hydrotopes <- hydrotopes[order]

41

42 results$hydrotop <- factor(results$hydrotop, levels = hydrotopes)

43 results$month <- as.integer(format(results$DAT, "%m"))

44 names(results)[2] <- "P"

45 names(results)[3] <- "ETR"

46 names(results)[4] <- "ETP"

47 names(results)[5] <- "RO"

48 names(results)[6] <- "RU"

49

174 Appendix

50 generate_median_plot <- function(data, name, plot_title, ylab_title, var) {

51 ggplot(

52 data, aes(x = month, y = {{ var }}, group = hydrotop, color = hydrotop)

53) +

54 xlab("Month") +

55 ylab(ylab_title) +

56 scale_x_continuous(

57 labels = c(

58 "JAN", "FEB", "MAR", "APR", "MAY", "JUN",

59 "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"

60),

61 breaks = c(1:12)

62) +

63 theme_bw() +

64 theme(legend.position = "bottom", legend.box = "vertical") +

65 theme(legend.margin = margin()) +

66 theme(plot.title = element_text(size = 14, hjust = 0.5)) +

67 ggtitle(plot_title) +

68 stat_summary(fun = median, geom = "line") +

69 stat_summary(fun = median, geom = "point") +

70 guides(color = guide_legend(ncol = 1)) +

71 labs(color = "Hydrotop")

72

73 ggsave(paste(output_path, name, sep = "/"),

74 height = 7 + length(unique(results$hydrotop)) * 0.2)

75 }

76

77 generate_median_plot(results, "etp.png",

78 "Median Potential Evaporation", "ETP [mm/month]", ETP)

79 generate_median_plot(results, "etr.png",

80 "Median Real Evaporation", "ETR [mm/month]", ETR)

81 generate_median_plot(results, "ro.png",

82 "Median Run Off", "RO [mm/month]", RO)

83 generate_median_plot(results, "ru.png",

84 "Median Undeground Drain", "RU [mm/month]", RU)

85

86

87 results %>%

88 group_by(month) %>%

89 summarise(P = median(P)) %>%

90 ggplot(aes(x = month, y = P)) +

91 xlab("Month") +

92 ylab("P [mm/month]") +

93 scale_x_continuous(

94 labels = c(

95 "JAN", "FEB", "MAR", "APR", "MAY", "JUN",

96 "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"

97),

98 breaks = c(1:12)

99) +

100 theme_bw() +

Appendix 175

101 theme(legend.position = "bottom", legend.box = "vertical") +

102 theme(legend.margin = margin()) +

103 theme(plot.title = element_text(size = 14, hjust = 0.5)) +

104 ggtitle("Median Percipation") +

105 geom_line() +

106 geom_point()

107

108 ggsave(paste(output_path, "percipation.png", sep = "/"))

109 EOF

110 - command: |

111 R --no-save < /tmp/generate_summary_plots.R

112 output:

113 - file:

114 /tmp/out/etp.png

115 - file:

116 /tmp/out/etr.png

117 - file:

118 /tmp/out/ro.png

119 - file:

120 /tmp/out/ru.png

121 - file:

122 /tmp/out/percipation.png

Listing D.30.: Definition of the plotting results construction step

D.19. Summarise

The summarise construction step generate a short summary based on the BoWaHald simu-
lation results. It expects a TAR archive containing a Microsoft Excel file per hydrotop with
the corresponding simulation results as input. The construction step produces a CSV file
containing some summary statistic as output. The processing is performed by a self written
R script. Listing D.31 contains the definition of the construction step as used by the case
study presented in section 7.4. The script performed as part of this construction step consists
of the following operations:

1. Unpack the TAR archive, that contains a Microsoft Excel file per hydrotop (Line 5)
2. Create a output directory (Line 6)
3. Define the R scripted used to create the summary statistics (Line 8 - 46)
4. Execute the previously defined R script (Line 48)

176 Appendix

1 image: local-registry:5000/wasserhaushalt_r_processing_image

2 input_path: "/tmp/input"

3 operation:

4 - command: |

5 (cd /tmp/input && tar -xf results.tar)

6 mkdir /tmp/out

7 - command: |

8 cat > /tmp/generate_summary.R << 'EOF'

9 options(java.parameters = "-Xmx8g")

10 library(xlsx)

11 library(dplyr)

12

13 input_path = "/tmp/input/tmp/out"

14 all_result_files <- list.files(path = input_path, pattern = "*.xls")

15

16 results = lapply(all_result_files, function(i) {

17 r = strsplit(i, split = "_")

18 r = r[[1]]

19 r = tail(head(r,-2), -3)

20

21 WHB_Jahr = read.xlsx(paste(input_path, i, sep="/"), "WHB (komplett) Jahr")

22 WHB_Jahr = WHB_Jahr[,c(1,2,3,5,10,13)]

23 WHB_Jahr$hydrotop = paste(r, collapse = "_")

24 WHB_Jahr

25 })

26

27 results <- do.call("rbind.data.frame", results)

28 results$hydrotop <- as.factor(results$hydrotop)

29 results$year <- as.integer(format(results$DAT, "%Y"))

30 names(results)[2] <- "P"

31 names(results)[3] <- "ETR"

32 names(results)[4] <- "ETP"

33 names(results)[5] <- "RO"

34 names(results)[6] <- "RU"

35

36 summary_results <- results %>% group_by(hydrotop) %>% summarise(

37 min_P = min(P), median_P = median(P), max_P = max(P),

38 min_ETR = min(ETR), median_ETR = median(ETR), max_ETR = max(ETR),

39 min_ETP = min(ETP), median_ETP = median(ETP), max_ETP = max(ETP),

40 min_RO = min(RO), median_RO = median(RO), max_RO = max(RO),

41 min_RU = min(RU), median_RU = median(RU), max_RU = max(RU),

42)

43

44 write.csv(summary_results, "/tmp/out/summary.csv")

45

46 EOF

47 - command: |

48 R --no-save < /tmp/generate_summary.R

49 output:

Appendix 177

50 - file:

51 /tmp/out/summary.csv

Listing D.31.: Definition of the summarise construction step

E. GeoHub User Manual

This guide aims to give a short overview over all functionality provided by GeoHub

E.1. Overview

Figure E.2.: Main View

Figure E.2 shows the application main screen after a successful login.

There are main 4 components of the application visible here:

1. Logout button, which logs out the current user
2. Settings drop down menu. See section E.1.1 for details
3. Side panel to choose different main views. See section E.1.2 for details.
4. Main view, dependent on side panel option chosen. See section E.2 for details.

E.1.1. Settings drop down menu

Figure E.3.: Settings drop down menu

178 Appendix

The setting drop down menu offers several options:

1. A logout button to logout the current user
2. An option to change the password of the current user. This opens the dialog shown in

figure E.4
3. An option to show information about the current software version. This opens the

dialog shown in figure E.5

Figure E.4.: Change password dialog

Figure E.4 show the dialog used to change a user password. The dialog has 3 mandatory fields
numbered with 1-3 in the picture. Text field 1 needs to be filed with the current password,
while text field 2 and 3 should contain the new password. The Close Button (4) allows to
cancel the password change, while the OK button (5) submits the change.

Figure E.5.: About GeoHub dialog

Figure E.5 show the “About GeoHub” dialog which displays information about the currently
used GeoHub version. Field 1 contains information about the used software version and from
which git revision the software was build. Field 2 contains the build date, field 3 contains the
target platform. Field 4 contains the server token, which can be used to register additional
executors. See section E.5 for details. Button 5 and 6 can be used to close the dialog.

E.1.2. Side panel

Figure E.6 shows the GeoHub side panel. This control panel allows you to switch between
the different main views. There are the following options available:

1. Project view, see section E.2 for details
2. Version view, see section E.3 for details
3. Operation view, see section E.4 for details
4. File Kind view, see section E.7 for details
5. Plugin view, see section E.8 for details
6. User view, see section E.9 for details. This view is only available for administrative

users.
7. Executor view, see section E.5 for details

Appendix 179

Figure E.6.: Side panel

E.2. Project View

Figure E.7.: Project View

Figure E.7 gives you an overview over the project view page. A project is GeoHubs basic
unit to address a complete construction workflow. This view gives you the ability to manage
existing projects or create new projects. Table 1 in that figure lists all projects currently
visible for the logged in user. The Name column of the table contains the project name,
the Owner column the name of the user that created this project and the Version column
lists subject and time of the last change to this project. Button 2 allows you to create new
projects. This will open the “Create Project” dialog shown in figure E.8. Button 3 will open
the corresponding construction graph for the given project. This view is explained in detail in
section E.10. Button 4 will open the project information dialog shown in figure E.9. Button
5 will open the modify project dialog shown in figure E.10. Button 6 will open the delete
project dialog shown in figure E.11.

Figure E.8 shows the dialog used to create new projects. The text field 1 allows you to specify
the name of the newly created project. This field is required. Text field 2 allows you to specify
an optional description. The content of this text field is interpreted as markdown. Text field
3 allows you to specify a set of required metadata keys. Metadata values for keys specified
here are required for any dataset uploaded later into this project. Keys are separated by ,.
Text field 4 allows you to set the subject of the version used to create the new project. This
field is required. Text field 5 allows you to specify an optional description for this version.
The content of this text field is interpreted as markdown. Button 6 allows you to cancel this
operation, while button 7 creates the new project.

Figure E.9 shows the project info dialog that shows some details about a specific project.

https://daringfireball.net/projects/markdown/basics
https://daringfireball.net/projects/markdown/basics

180 Appendix

Figure E.8.: Create project

Figure E.9.: Project Info Dialog

Appendix 181

Field 1 contains the name of the project, Field 2 the corresponding description interpreted
as markdown. Field 3 shows the list of required metadata keys. Button 4 and 5 are used to
close the dialog.

Figure E.10.: Project Edit Dialog

Figure E.10 shows the edit project dialog. This dialog allows to modify existing projects. It
contains the same fields and controls as the create project dialog shown in figure E.8. These
fields contain the current value as initial value.

Figure E.11.: Delete project Dialog

Figure E.11 shows the delete project dialog used to delete an existing project. Text field 1
allows you to set the subject of the version used to delete the project. This field is required.
Text field 2 allows you to specify an optional description for this version. Button 3 allows
you to cancel this operation, while button 4 submits the delete request.

E.3. Version View

Figure E.12 shows the version view page. A version is the central unit of editor time in
GeoHub and tracks how stored entities evolve over time. Table 1 just listed all versions
stored in the database to give users an overview. The Subject column contains the subject
of the corresponding version, the Commit Date column contains information about when a
version was applied to the stored data and the Commiter column specifies who has committed
the version.

https://daringfireball.net/projects/markdown/basics

182 Appendix

Figure E.12.: Version view

Figure E.13.: Operations View

E.4. Operations View

Figure E.13 shows the operation view page. An operation in GeoHub is defined as reusable
construction step. Operations can be shared between different construction graphs and
projects. Table 1 lists all available operations. The Name column contains the operation
name, the Version column contains subject and date of the last change to this operation.
Button 2 opens the operation information dialog shown in figure E.14. Button 3 allows you
to edit an existing operation via the operations edit dialog shown in figure E.15. Button 4
allows you to delete an existing operation by opening the dialog shown in figure E.16. Button
5 allows you to create new operations using the “Create Operations” dialog shown in figure
E.17.

Figure E.14.: Operations info dialog

Figure E.14 shows the Operations info dialog that contains a summary of information about a

Appendix 183

given operation. Field 1 contains the name of the current view operation. Field 2 contains an
optional description interpreted as markdown. Field 3 contains the operation step description
in the yaml format described in section E.4.1. Button 4 and 5 can be used to close the
dialog.

Figure E.15.: Operations edit dialog

Figure E.15 show the Operations edit dialog that allows to edit an existing operation. Text
field 1 allows to change the name of the operation. This text field must not be empty. Text
field 2 allows to change the description for the current operation. The text is interpreted as
markdown. Text field 3 contains the operation step specification in the yaml format described
in section E.4.1. This field must not be empty and the content must follow the described
format. Text field 4 allows to specify the version subject associated with the corresponding
change. This field is required. Text field 5 allows to provide an optional version description.
Button 6 allows to cancel the edit operation, while button 7 saves the changes.

Figure E.16.: Operations delete dialog

Figure E.16 shows the delete operation dialog used to delete an existing operation. Text
field 1 allows you to set the subject of the version used to delete the operation. This field is
required. Text field 2 allows you to specify an optional description for this version. Button
3 allows you to cancel this operation, while button 4 submits the delete request.

Figure E.17 shows the create operation dialog used to create a new operation. Text field 1
allows to specify the name of the new operation. This field is required. Text field 2 allows to
provide an optional description. The text is interpreted as markdown. Text field 3 allows to
specify the operation step specification in the yaml format described in section E.4.1. This
field must not be empty and the content must follow the described format. Text field 4 allows
to specify the subject of the version used to create this operation. This field is required. Text
field 5 allow to provide an optional version description. Button 6 allows to close the dialog
without creating a new operation. Button 7 creates a new operation using the details specified
in text field 1-5.

https://daringfireball.net/projects/markdown/basics
https://daringfireball.net/projects/markdown/basics
https://daringfireball.net/projects/markdown/basics

184 Appendix

Figure E.17.: Operations create dialog

E.4.1. Construction step specification yaml format

Construction steps are specified by a yaml document. Yaml documents consist of key-value
pairs of various types.

1 image: python:3.9

2 input_path: /path/to/write/input

3 operation:

4 - command: |

5 echo "Foo"

6 /my/super/command

7 displayName: Some step description

8 enviroment:

9 FOO: BAR

10 - command: |

11 echo "Bar"

12 /annother/command

13 output:

14 - file: /path/to/file1

15 - file: /path/to/file2

16 - stdout: SomeName.ext

17 - metadata: metadata_file.json

Listing E.32.: Listing: Exemplary construction step definition

Listing E.32 contains a complete exemplary construction step specification. Each specification
consists of 4 required keys:

• image which specifies which docker image is used by this operation step. The value
needs to be a string following dockers image syntax. This field is required

• input_path specifies where the operation step executor will place input datasets inside
the image provided to the operation. This field is required and the value is required to
be a string.

• operation specifies which commands should be executed as part of this operation. This
field is required. It accepts a list of nested key value structure to describe the actual
commands:

http://yaml.org/
https://docs.docker.com/engine/reference/builder/#from

Appendix 185

– command specifies the actual commands that should be executed as part of this
construction step. This field is required and accepts a string value. The value will
be passed as it is to the sh binary available inside of the docker binary, so that
it’s executed as shell script there.

– displayName is an optional identifier for the given command. It’s indented to be
used to group parts of the operation log later on. This field is optional.

– enviroment allows to specify a list of optional environment variables that should
be set during executing inside of the container. Variables are defined as key value
list, where each key corresponds to the variable name and each value corresponds
to the variable value.

• output specifies which files are used as output of the current operation. It accepts a
nested key value list as argument:

– file specifies that the file located at the location specified by the string value is
treated as operation output. The executor will attempt to download the corre-
sponding file after the command execution is finished. If the file does not exist the
operation fails. output is allowed to have multiple file entries.

– stdout specifies that the command line output of all commands listed above are
interpreted as operation result. The specified string value defines a file name that
should be used to store the corresponding file later on.

– metadata specifies which file contains additional metadata for the generated
dataset. This file is assumed to contain a single JSON object. Any top level key
is treated as metadata key, while values are treated as metadata values.

E.5. Executor View

Figure E.18.: Executor view

Figure E.18 shows the executor view page. Executors are GeoHubs basic unit to actually
run operation steps on. They can be distributed over multiple different systems as long it’s
possible to send HTTP requests to the main server system from there. This page can be
used to register and manage operation step executors. Table 1 lists all registered executors.
The Executor ID column lists the corresponding executor id, the Name column the name of
the executor as specified on registering the corresponding executor. Last connection lists
the time the corresponding executor last reach out to the server. Button 2 allows to remove
existing executors. Button 3 allows to register new executors by opening the corresponding
dialog shown in figure E.19.

Figure E.19 shows the register executor dialog that gives the necessary instruction to register
a new executor. The following steps are required:

186 Appendix

Figure E.19.: Register executor dialog

1. Get a copy of geohub_executor compiled for your operating system or compile it on
your own based on the source code in geohub_distributed_executor.

2. You need to install docker onto the system that you want to use for running geohub_-

executor. geohub_executor must be executed with user rights that allow to start and
manage docker container instances.

3. Register a new executor by running geohub_executor -c /path/to/your/config/location.toml

register " $URL_TO_GEOHUB "your-executor-name" $SERVER_TOKEN on the system
you want to run geohub executor. There are a few configurable values here:

• /path/to/your/config/location.toml specifies the path to a location that can
be used from geohub_executor to store some basic configuration. See section E.6
for details about this configuration file.

• $URL_TO_GEOHUB needs to be replaced by the an URL pointing to the corresponding
GeoHub server installation. If you copy the command from the register executor
dialog this will automatically be filled with the correct URL for that sever.

• your-executor-name allows you to specify a name for the given executor. This
can later be used to identify the executor in Table 1 of the executor view page.

• $SERVER_TOKEN specifies a “secret” server token used to initially authenticate the
new executor against the server. This token can currently only be obtained by
accessing the register executor dialog. If you copy the command from there the
token will already be pre-filled.

4. Start the executor by running geohub_executor -c /path/to/your/config/location.toml

run where /path/to/your/config/location.toml specifies the location of the config
file as used by step 3. After this the executor will reach out for the GeoHub server
periodically and ask for new operations to execute. Optional debugging output can
be accessed by setting the RUST_LOG environment variable according to the syntax
specified here before starting the executor.

https://docs.docker.com/get-docker/
https://docs.rs/env_logger/0.9.0/env_logger/#enabling-logging

Appendix 187

E.6. Executor configuration

1 [[remotes]]

2 server_connection = "http://geohub.something.org"

3 executor_name = "my fancy runner"

4 executor_token = "13d70b3e-200b-4f9b-b816-7980b251120f"

5 executor_id = "f6af6023-882a-409f-bcc4-cc968438a1e6"

6

7 [remotes.executor_config.credentials."dockerregistry.something.org:5050"]

8 username = "john"

9 password = "my-secret"

10

11 [remotes.timeout]

12 secs = 14400

13 nanos = 0

14

15 [poll_time]

16 secs = 10

17 nanos = 0

Listing E.33.: Exemplary executor configuration

Listing E.33 contains an exemplary executor configuration. This configuration file format is
based on the toml format, which allows you to specify nested key value pairs in a structured
manner.

A single executor can execute operations from multiple GeoHub instances. Each configura-
tion for a GeoHub instance is grouped under a remotes entry. remotes.server_connection
specifies the GeoHub remote url. remotes.executor_name specifies the name of the executor
as listed in Table 1 of the corresponding executor view. remotes.executor_token contains
the secret executor token used to authenticate the executor against the corresponding server.
This token should be kept secret as is allows to access possibly confidential information on the
corresponding GeoHub server. remotes.executor_id contains the corresponding executor
id as also shown in Table 1 of the executor view. These 4 configurations are generated by
registering a new executor using the workflow detailed under the register executor dialog. All
4 entries are required. Additionally it’s possible to store several information to authenticate
the runner against different docker repositories. This can by done by creating a correspond-
ing remotes.executor_config.credentials."dockerregistry.something.org:5050" en-
try, where dockerregistry.something.org:5050 specifies the URL of the corresponding
docker registry. The username field allows you to specify the corresponding user name used
to log into that registry, while password contains the corresponding password. There infor-
mation are optional. Their usage depends on what docker images are used as part of different
operations. The corresponding credentials should kept secret. remotes.timeout allows you
to specify the maximal amount of time a whole operation can use before the executor consid-
ers the operation stuck and stops the job. If this amount of time is exceeded for a specific job
the contain will be shut down and the operation will be marked as failed. This configuration
is optional, by default operations are allowed to run up to 20 minutes.

poll_time allows you to specify the time interval used to contact the server if no operation
was found previously. Smaller times lead to faster execution of scheduled operations but will
increase the load on the corresponding server.

https://toml.io/en/

188 Appendix

E.7. File Kind View

Figure E.20.: File Kind View

Figure E.20 shows the file kind view. This view allows to manage the different kind of files
accepted by GeoHub. Table 1 lists the currently registered file kinds. Button 2 allows to
remove the corresponding file kind by using the dialog shown in figure E.21. Button 3 allows
to register now file kinds by using the dialog shown in figure E.22.

Figure E.21.: Delete File Kind Dialog

Figure E.21 shows the delete file kind dialog. Text field 1 allows you to set the subject of the
version used to delete the project. This field is required. Text field 2 allows you to specify
an optional description for this version. Button 3 allows you to cancel this operation, while
button 4 submits the delete request.

Figure E.22 shows the create file kind dialog. This dialog allows to register new file kinds.
Text field 1 allows to set the name of the new file kind. This field is required. Text field 2
allows to specify an optional description. Text field 3 allows you to list accepted file extensions.
These are separated by ,. Drop down menu 4 and 5 allow you to specify which file kind plugin
should be used for comparing datasets (drop down menu 4) and extracting metadata (drop
down menu 5). Text field 6 allows you to provide the required version subject. Text field
7 accepts an optional version description. Button 8 cancels the file kind creation. Button 9
creates a new file kind based on the provided input.

Appendix 189

Figure E.22.: Create File Kind Dialog

E.8. Plugin View

Figure E.23 shows the plugin view, which is used to manage file type specific extensions.
These extensions are provided as WASM binaries. Table 1 contains an overview of currently
registered plugins. Button 2 allows to remove the corresponding plugin, if it is not used by
any file kind. Button 3 displays additional information about the corresponding plugin by
showing the plugin info dialog shown in figure E.24. Button 4 allows to add a new plugin via
the add plugin dialog shown in figure E.25.

Figure E.24 shows additional information about specific plugins. Field 1 contains the name of
the plugin. Field 2 contains an optional description rendered as markdown. Field 3 specifies
which users created this plugin. Field 4 contains the creation data. Button 5 allows to
download the WASM binary for this plugin. Button 6 and Button 7 close this dialog.

Figure E.25 shows the dialog used to add new plugins. Field 1 allows to specify the name
of the plugin. Field 2 allows to specify an optional description. The content of this field is
rendered as markdown by other dialogues. Button 3 allows to select a plugin WASM binary.
A provided plugin must implement either the metadata extraction API (Listing E.34 lines
111-119) or the equality check API (Listing E.34 lines 100-109). Plugins implementing both
APIs are accepted as well. Button 3 aborts the current plugin creation. Button 5 uploads
the plugin to the server.

https://daringfireball.net/projects/markdown/basics
https://daringfireball.net/projects/markdown/basics

190 Appendix

Figure E.23.: Plugin View

Figure E.24.: Plugin Info Dialog

Figure E.25.: Plugin Add Dialog

Appendix 191

1 struct filehandler_t {

2 int id;

3 };

4

5 // String struct

6 struct string_t {

7 char *text;

8 unsigned int len;

9 };

10

11 // Bytes for the bytestream of our file

12 struct bytes_t {

13 unsigned char *bytes;

14 unsigned int len;

15 };

16

17 // Data-Struct for the metadata we want to extract

18 struct data_t {

19 string_t key;

20 string_t value;

21 };

22

23 // File-Struct containing the name of the file and the content

24 struct file_t {

25 string_t name;

26 bytes_t content;

27 };

28

29 // Struct for the file slice

30 struct wasm_file_slice {

31 file_t *file;

32 unsigned int len;

33 };

34

35 // Struct for handling multiple files

36 struct files_t {

37 wasm_file_slice files;

38 };

39

40 // Struct fo the data slice

41 struct data_slice_t {

42 data_t *data;

43 unsigned int len;

44 };

45

46 // Metadata struct

47 struct metadata_t {

48 data_slice_t data_slice;

49 };

192 Appendix

50

51 // Our parse_files function has two possible return-values:

52 // An Error or a positive file return result

53 // The "positive" response containing the files and the metadata

54 struct parse_file_response_t {

55 metadata_t metadata;

56 };

57

58 // The "negative" result containing an error message

59 struct parse_file_error_t {

60 string_t msg;

61 };

62

63 // The load_files function has two possible return-Values:

64 // An Error or a positive file return result

65 // The "negative" result containing an error message

66 struct compare_files_error_t {

67 string_t msg;

68 };

69

70 // The "positive" result containing the files

71 struct load_file_response_t {

72 files_t files;

73 };

74

75 // Result-Tag as enum

76 enum result_tag : uint8_t { Ok = 1, Err = 0 };

77

78 // Struct that gets returned from the parse_files function

79 struct __attribute__((packed)) parse_files_result_t {

80 int free;

81 int layout;

82 result_tag tag;

83 union {

84 struct parse_file_error_t *err_ptr;

85 struct parse_file_response_t *ok_ptr;

86 } data;

87 };

88

89 // Struct that gets returned from the check_quality function

90 struct __attribute__((packed)) compare_files_result_t {

91 int free;

92 int layout;

93 result_tag tag;

94 union {

95 bool *ok_ptr;

96 struct compare_files_error_t *err_ptr;

97 } data;

98 };

99

100 // Method to create a new handler

Appendix 193

101 extern "C" filehandler_t *__geohub_new_equality_check_plugin(void);

102

103 // Method to compare two datasets

104 extern "C" compare_files_result_t *

105 __geohub_check_equality(filehandler_t *handler, files_t *files_a,

106 files_t *files_b);

107

108 // Method to destroy the handler

109 extern "C" void __geohub_destroy_equality_check_plugin(filehandler_t *handler);

110

111 // Method to create a new handler

112 extern "C" filehandler_t *__geohub_new_file_handler(void);

113

114 // Method to destroy the handler

115 extern "C" void __geohub_destroy_file_handler(filehandler_t *handler);

116

117 // Method for the parsing of the files = read out metadata

118 extern "C" parse_files_result_t *__geohub_parse_files(filehandler_t *handler,

119 files_t *files);

Listing E.34.: API definition for the Plugin interfaces

E.9. User View

Figure E.26.: User View

Figure E.26 shows the user view. This view allows to manage currently registered users. It
is only shown for users with the role ADMIN. Table 1 contains a list of current users. Button
2 allows you to add new users via the add user dialog shown in figure E.27.

Figure E.27 shows the add user dialog. This dialog allows to add new users. Text field 1
allows to set the name of the user, Text field 2 allows to specify an initial password. Text

194 Appendix

Figure E.27.: Add user dialog

field 3 allows to specify the user role. This needs to be one of ADMIN (to specify that this
user is an administrator), WRITE (to specify that this user is allowed to create and modify
construction graphs) or READ. Note these roles are not strictly enforced everywhere.

E.10. Graph View

Figure E.28.: Graph view (Overview)

Figure E.28 contains a overview over the graph view. This view is one of the main views
of the GeoHub frontend. It is used to construct, manipulate and interact with construction
graphs. This image gives an overview over the different functionality available here. The
main part of the page is occupied by the construction graph itself (marked by number 1 in
the picture). This part will be explained in detail in section E.10.1. Button 2 allows you to
open the legend shown in figure E.29 for the current construction graph. Button 2 allows you
to download the current version of the construction graph. Button 4 allows you to expand
the version slider shown in figure E.31. Button 5 switches to the Graph schedule view, which
allows you to trigger actual runs of the construction graph. This view is explained in detail
in section E.11. Button 6 allows you to switch in edit mode. See section E.10.2 for details.

Appendix 195

Figure E.29.: Graph legend

Figure E.29 shows the graph legend, which tries to provide some information about the
colours and shapes used by the graph view. Button 1 allows you to close the legend. The
block 2 contains information about the various entities used in the graph view.

Figure E.30.: Graph Export Panel

Figure E.30 shows the graph export panel. It allows you to export the currently shown
graph version. Button 1 allows you to close the panel. Link 2 allows you to download the
currently shown graph version as JSON. This format is designed to be used to move existing
construction graph definitions to other instances. Link 3 allows you to download the currently
shown graph version as PlantUML file. This can be used to generate a printable version of
the graph by using PlantUML.

Figure E.31.: Graph view with version slider

Figure E.31 shows the graph view with expanded version slider. The version slider (1) can

https://plantuml.com/

196 Appendix

be used to manipulate at which version a construction graph should be viewed. The floating
label 2 shows the version subject of the currently displayed version. The slider 3 allows you
to manipulate the currently shown version by moving the slider left (into the past) or right
(newer versions). Button 4 allows you to collapse the version slider. Generally it is only
possible to edit the last version of a construction graph, therefore the edit button (Button 5
in figure E.28) will only show up if the slider is moved to the position on the right side.

E.10.1. View mode

Figure E.32.: Graph view (View mode)

Figure E.32 gives you an overview over the view mode of the construction graph. This mode
can be used to get an overview over the current construction graph. It cannot be used to
manipulate the graph in any way. For this you need to enable the edit mode by using the
edit Button (Button 5 in figure E.28). The graph view displays the construction hypergraph
using different kind of edges and nodes. Each circle corresponds to a dataset (or node) in
the construction hypergraph. There are different kind of nodes. Yellow nodes with dashed
boarder like Node 1 represent input datasets. These are only consumed by operations. Light
green nodes without boarder like node 2 represent intermediate datasets. These are produced
by operations and consumed by operations. Dark green nodes with dashed boarder like node
3 represent output datasets. Those are only produced by operations. Clicking on any of those
nodes will open the Node info dialog as shown in figure E.33. The text displayed next to
each dataset shows the name of the corresponding dataset.

Operations (or hyperedges) of the construction hypergraph are displayed by squares like
square 4. Clicking on any of those will open the Edge info dialog as shown in figure E.34.
Datasets and operations are connected by arrows, which indicate their dependencies. Red
arrows always point from a consumed dataset to an operation, while blue arrows point always
from a operation to an produced dataset. Each operation can have multiple red arrows
pointing to itself, but only one blue arrow starting at this operation. The text displayed next
to each hyperedge shows the name of the corresponding hyperedge.

Appendix 197

Figure E.33.: Node info dialog

Figure E.33 shows the node info dialog that displays some information about nodes in con-
struction hypergraphs. Field 1 displays the name of the corresponding node, field 2 displays
an optional description interpreted as markdown. Field 3 contains the file kind set for this
specific node, field 4 contains a list of node specific required metadata keys. Button 5 and 6
allow to close the dialog.

Figure E.34.: Edge info dialog

Figure E.34 shows the edge info dialog that displays some information about hyperedges in
the construction hypergraph. Field 1 displays the name of the corresponding hyperedge, field
2 displays an optional description interpreted as markdown. Field 3 displays the operation
step specification of the associated operation. Button 4 allows to expand and collapse the
corresponding specification. Button 5 and 6 allow to close the dialog.

E.10.2. Edit mode

Figure E.35 shows the graph view in edit mode. You can recognise the edit mode by the
edit bar (1). This toolbar is shown in detail in figure E.36. Button 2 allows you to exist edit
mode and switch back to view mode. If there are any unsaved changes the discard changes
dialog shown in figure E.43 is shown. Similarly to view mode clicking on any dataset (3) or
operation (4) will open the corresponding edit dialog.

Figure E.36 shows the graph edit bar, that allows you to edit the construction graph. Button
1 allows you to add new datasets (nodes) to the construction graph by opening the add node

https://daringfireball.net/projects/markdown/basics
https://daringfireball.net/projects/markdown/basics

198 Appendix

Figure E.35.: Graph view (Edit mode)

Figure E.36.: Graph edit bar

dialog shown in figure E.38.

Button 2 allows you to add new operations or add another input dataset to existing operations.
By clicking this button a mode is enabled that allows you to start dragging between different
nodes or operations displayed in the construction graph. If the drag starts at a dataset (node)
and is released above another dataset (node) a new hyperedge is created by opening the create
edge dialog shown in figure E.39. If the drag starts at a dataset (node) and ends above an
existing hyperedge the dataset is added as additional input dataset for this hyperedge. Any
other input is dismissed. The add edge mode can be existed by either successfully completing
an operation as specified above or by using the cancel button that appears in place of button
1-3.

Button 3 allows you to remove datasets (nodes) and hyperedges by just clicking on the
corresponding element. This mode can be exited by either clicking on the element you want
to remove or by using the cancel button appearing in place of button 1-3.

Button 4 allows to upload an existing construction graph in ZIP format, as it can be down-
loaded via the graph export panel. This option is only available for otherwise empty con-
struction graphs. It will open the dialog shown in figure E.37.

Button 5 allows you to save all changes that you’ve done so far (since the last save or since
you started editing). It will open the save changes dialog shown in figure E.42. If this button
is greyed out there are no changes to save yet.

Button 6 allows you to undo the last change you made to the construction graph. This option
is available till you save the changes. If the button is greyed out there are no changes to undo
yet.

Button 7 allows you to redo the last change you’ve undone. If this button is greyed out there
is no change that could be redone yet.

Appendix 199

Figure E.37.: Upload archive dialog

Figure E.37 shows the upload archive dialog. It can be used to upload archived construction
graphs in JSON format to an empty project. These files can be exported via the Graph
Export panel. The file picker 1 can be used to select an existing JSON archive. This field is
required. Text field 2 allows to specify the version subject used to import the archived crate.
This field is required. Text field 3 allows to specify an optional description. Button 4 allows
to close the dialog without performing any action. Button 5 submits the archive and triggers
the import.

Figure E.38.: Add node dialog

Figure E.38 shows the add node dialog, which allows to add new datasets (nodes) to a
construction graph. Text field 1 specifies the name of the dataset. This field is required.
Text field 2 allows to provide an optional description. The content of this field is interpreted
as markdown. Field 3 allows to add a dataset specific list of required metadata keys. The
keys are separated by ,. Dropdown menu 4 allows to select the file kind for this dataset.
Button 5 allows to close the dialog without adding a new dataset. Button 6 adds a new
dataset based on the information provided in text field 1 and 2.

Figure E.39 shows the add edge dialog, which allows to add a new hyperedge to a construction
graph. A hyperedge consumes a set of input datasets to produce a output dataset by using a
specified operation. Text field 1 allows you to specify the name of this hyperedge. This field
is required. Text field 2 allows you to provide an optional description. The content of this
field is interpreted as markdown. Dropdown menu 3 allows you to select a operation, which
should be associated with this hyperedge. Button 4 allows to close the dialog discarding any
input, so that no new hyperedge is added. Button 5 adds a new hyperedge based on the
input in text field 1 and 2 and drop down menu 3 to the construction graph.

https://daringfireball.net/projects/markdown/basics
https://daringfireball.net/projects/markdown/basics

200 Appendix

Figure E.39.: Add edge dialog

Figure E.40.: Edit node dialog

Figure E.40 shows to edit node dialog, which allows you to change existing datasets (nodes).
Text field 1 allows to change the name. This field is required not to be empty. Text field 2
allows you to change the description of an node. This field is optional. The content of this
text field is interpreted as markdown. Field 3 allows to add a dataset specific list of required
metadata keys. The keys are separated by ,. Dropdown menu 4 allows to select the file kind
for this dataset. Button 5 allows you to close the dialog discarding any change. Button 6
closes the dialog and applies the change to the displayed construction graph.

Figure E.41.: Edit edge dialog

Figure E.41 shows the edit edge dialog, which allows you to change existing hyperedges. Text
field 1 allows to change the name of the hyperedge. This field is required not to be empty.
Text field 2 allows you to change the description of the hyperedge. This field is optional
and the content is interpreted as markdown. Drop down list 3 allows you to change the
associated operation. Button 4 closes the dialog discarding any changed value. Button 5

https://daringfireball.net/projects/markdown/basics
https://daringfireball.net/projects/markdown/basics

Appendix 201

closes the dialog and applies the changes to the displayed construction graph.

Figure E.42.: Save changes dialog

Figure E.42 shows the save changes dialog. This dialog is used to upload a set of changes for
a specific construction graph to the GeoHub server and associate the changeset with a given
version. Text field 1 allows you to specify the subject of the associated version. This field is
required. Text field 2 allows you to provide an optional description. The content of this field
is interpreted as markdown. Button 3 closes the dialog without saving any changes. This
brings you back into edit mode without loosing any change, but also without uploading the
changes to the server. Button 4 submits the changeset to the server.

Figure E.43.: Discard changes dialog

Figure E.43 shows the discard changes dialog. This dialog is shown every time you try to
exist edit mode while there are unsaved changes. The dialog itself displays the number of
unsaved changes. Button 1 allows you to close the dialog without discarding any changes and
without leaving the edit mode. This gives you the possibility to save those changes. Button
2 allows you to discard any existing changes.

E.11. Graph Schedule View

Figure E.44 shows an overview over the graph schedule view. This view is used to manage
executions of construction graphs. Similarly to the Graph view the main component of this
view is occupied by the construction graph itself (1). This view is described in detail in
section E.12. Button 2 again allows you to expand the version slider described in section
E.10 figure E.31. Button 3 expands the revision panel showing different realisations of the
construction graph. Figure E.45 shows this panel in detail. Button 4 opens the legend
described in section E.10 figure E.29. Button 5 opens the Graph Export view as described in
figure E.30. This allows to download the shown revision of the construction graph, including
all attached datasets. Button 6 allows you to switch back to the graph view, to edit the
structure of the construction graph. Button 7 switches to the edit mode described in section
E.13.

Figure E.45 shows the revision panel. It contains a list of revisions (1) that are available
for the current version of the construction graph. An revisions represents an execution of
the construction hypergraph with a specific set of input data. The blue revision (3) is the
currently selected revision, while the grey ones (like 4) are other available revisions. Clicking
on any revision will switch the displayed revision. For each revision the corresponding subject,
the user who scheduled the graph execution and the time of creation is listed. Button 2 allows
to collapse the revision panel.

https://daringfireball.net/projects/markdown/basics

202 Appendix

Figure E.44.: Graph Schedule View (Overview)

Figure E.45.: Revision panel

Appendix 203

E.12. View mode

Figure E.46.: Graph Schedule View (View Mode)

Figure E.46 shows the view mode of the graph schedule view. This mode allows you to in-
spect existing revisions of a construction hypergraph. Similarly to the graph mode clicking
on any dataset (node) (1) or hyperedge (2 - 6) will open the corresponding info dialog, which
contains more detailed information about the specific entity. The colour of the hyperedges
represent the state of the underlying operation. Light green (3,6) indicates that the operation
was successful. Red (6) indicates a failure to execute the construction step. Checkout the ex-
ecution log shown in the corresponding info dialog for more details about this failure. Orange
(4) indicates that the operation is waiting to be executed. Olive (5) indicates that the opera-
tion is currently executed by one of the executors. A red outline (3) indicates that GeoHub
failed to reproduce this operation. Checkout the difference between the output datasets to
understand why this happened. GeoHub offers a download of the original generated datasets
and the reproducing realisation for such cases. A green outline (6) indicates that a opera-
tion was reproduced successfully. See figure E.29 contains an summary of this colours and
their meaning. Text near to a dataset or hyperedge represent the name of the corresponding
entity.

Figure E.47 shows the node info dialog. This dialog displays details about datasets for a
concrete realisation of the construction graph. The information in area 1 correspond to
what is shown in the ordinary node info dialog described in figure E.33. Field 2 lists all
attached files for this dataset. Each file can be downloaded by clicking the corresponding
link. For images a preview is shown. The table 3 contains a list of metadata keys and their
corresponding values. Button 4 and 5 closes the dialog.

Figure E.48 shows the edge info dialog. This dialog displays details about hyperedges for a
concrete realisation of the construction graph. Field 1 contains the name of the hyperedge,
Field 2 contains an optional description interpreted as markdown. Field 3 contains the
name and the step specification of the associated operation. The step specification can be
expanded/collapse using button 7. Field 4 contain the execution state for the hyperedge. This
field indicates if the underlying operation was already executed by an operation executor and

https://daringfireball.net/projects/markdown/basics

204 Appendix

Figure E.47.: Node Info Dialog

Figure E.48.: Edge Info Dialog

if this execution was successful. Field 5 contains the reproduction state of the underlying
operation. This field indicates the underlying operation was already executed twice and both
runs yield the same result or not. Field 6 contains the execution log, which contains any
output emitted by the commands specified in the operation step specification. Button 8
expands/collapses the log view. Button 9 allows to rerun this specific operation (and any
depend part of the construction graph) by scheduling a new revision using the same data as
the currently viewed revision. Button 10 and 11 closes the dialog.

E.13. Edit mode

Figure E.49 shows the edit mode of the graph schedule view. This mode allows you to trigger
new realisations of the construction graph by attaching concrete data to each input dataset.
Similarly to the graph edit mode describe in section E.10.2 a bottom bar (1) contains a number
of available operations. Clicking on any input dataset, recognisable by the circular nodes with
dashed boarder (like 2), opens the manage file dialog shown in figure E.50. Clicking on any
other dataset (node) or hyperedge opens the corresponding info dialog as described in section
E.12.

Button 3 closes the edit mode and switches back to the view mode. Similarly to the graph
edit mode described in section E.10.2 this will open the discard changes dialog shown in figure
E.43 if there are any unsaved changes left.

Button 4 allows to upload all changes to the server. This will show the save revision dialog
shown in figure E.51 to confirm uploading. If the button is greyed out there are no changes
that can be uploaded.

Appendix 205

Figure E.49.: Graph Schedule View (Edit Mode)

Button 5 allows to undo an edit to the construction graph, while button 6 allows to redo the
last previously undone change. Greyed out buttons indicate that no change is available that
can be undone or redone.

Figure E.50 shows the manage file dialog. This dialog can be used to control which data
are attached to a input node at a specific revision. The fields in the area 1 match the
corresponding fields in the node info dialog described in figure E.33. The manage file element
allows you to attach new files via the Browse button (2) or to remove individual files via
the trash bin button (3). The browse file dialog automatically restricts the selection to files
matching the given file kind. Text field 4 allows you to set the corresponding metadata
value for a required metadata key. The dialog automatically contains a separate field for
each required key. Button 5 allows you to add other metadata keys based on the input in
the text field left of the button. This will create a new text field similar to text field 4 to
input the corresponding value. Button 6 allows to discard all changes and close the dialog
afterwards. Button 7 applies the changes to the displayed construction graph and closes the
dialog afterwards.

Figure E.51 shows the save revision dialog. This dialog is used to upload a set of changes as
new revision to the server so that a new realisation of the construction graph is created from
the changed input datasets. Text field 1 allows you to specify a revision subject. This field
is required. Text field 2 allows you to specify an optional description. The content of this
text field is interpreted as markdown. Button 3 allows you to cancel the submission. This
brings you back to the edit mode without loosing any data, but also without uploading any
data. Button 4 submits a new revision based on the changes specified earlier in edit mode
and the revision information entered into the corresponding text fields. Depending on the
size of data which needs to be uploaded a dialog showing the upload process may show up.

E.14. gOcad History Export tool

The gOcad history export tool is a small command line program to generate construction
hypergraphs based on existing gOcad/Skua sessions. It provides the following feature sets:

https://daringfireball.net/projects/markdown/basics

206 Appendix

Figure E.50.: Manage File dialog

Figure E.51.: Save revision dialog

Appendix 207

• List existing sessions in a given gOcad project
• Export a given session a graphical construction hypergraph representation via Plantuml
• Export a given session as GeoHub compatible construction hypergraph. This generates

a ZIP archive in the format accepted by the the Upload functionality in the Graph Edit
view. See figure E.37 for details on how to import the generated archive.

Checkout the command line help of the gOcad history export tool for details on how to
perform each of these operations.

https://plantuml.com/

	Introduction
	Survey on Reproducibility and Automation for Geoscientific Model Construction
	Motivating Example
	Previous Work
	Problem Description
	Structure of this Thesis
	Results Accomplished by this Thesis

	Terms, Definitions and Requirements
	Terms and Definitions
	Geoscientific model
	Reproducibility
	Realisation

	Requirements

	Related Work
	Overview
	Geoscientific Data Storage Systems
	PostGIS and Similar Systems
	Geoscience in Space and Time (GST)

	Geoscientific Modelling Software
	gOcad
	GemPy

	Experimentation Management Software
	DataLad
	Data Version Control (DVC)

	Reproducible Software Builds
	Summarised Releated Work

	Concept
	Construction Hypergraphs
	Reproducibility Based on Construction Hypergraphs
	Equality definitions
	Design Constraints

	Data Handling

	Design
	Application Structure
	Choice of Application Architecture for GeoHub

	Extension Mechanisms
	Overview
	A Shared Library Based Extension System
	Inter-Process Communication Based Extension System
	An Extension System Based on a Scripting Language
	An Extension System Based on a WebAssembly Interface
	Comparison

	Data Storage
	Overview
	Stored Data
	Potential Solutions
	Model Versioning
	Transactional security

	Implementation
	General Application Structure
	Data Storage
	Database
	User-provided Data-processing Extensions

	Operation Executor
	Construction Step Descriptions
	Construction Step Scheduling
	Construction Step Execution

	Case Studies
	Overview
	Geophysical Model of the BHMZ block
	Provided Data and Initial Situation
	Construction Process Description
	Reproducibility
	Identified Problems and Construction Process Improvements
	Recommendations

	Three-Dimensional Subsurface Model of the Kolhberg Region
	Provided Data and Initial Situation
	Construction Process Description
	Reproducibility
	Identified Problems and Construction Process Improvements
	Recommendations

	Hydrologic Balance Model of a Saxonian Stream
	Provided Data and Initial Situation
	Construction Process Description
	Reproducibility
	Identified Problems and Construction Process Improvements
	Recommendations

	Lessons Learned

	Conclusions
	Summary
	Outlook
	Parametric Model Construction Process
	Pull and Push Nodes
	Parallelize Single Construction Steps
	Provable Model Construction Process Attestation

	References
	Appendix
	Construction Steps for the BHMZ model
	stacking
	meshing
	DC inversion
	seismic inversion
	visualise BHMZ

	Provided manual for the Kohlberg dataset
	3D-Modell Kohlberg
	Kartendaten vorbereiten
	Schnittdaten importieren:

	Construction Steps for the Kohlberg model
	xlsx -> csv
	reproject to utm33
	extract (Quartär)
	extract (Prequartär)
	triangulate
	extrude
	project

	Construction step definitions for the Hydrologic balance model
	Calculate bounding box
	Clip DEM
	Clip BK50
	Calculate aspect
	Calculate slope
	Calculate slope length
	Calculate avg height
	Calculate slope per hydrotope
	Calculate aspect per hydrotope
	Calculate maximal slope length per hydrotop
	Calculate hydrotop area
	Lookup soil type
	Preprocess climate data
	Generate bwmhydro files
	Generate bwmuse files
	Generate bwmlayer files
	Run Bowahald
	Plotting results
	Summarise

	GeoHub User Manual
	Overview
	Project View
	Version View
	Operations View
	Executor View
	Executor configuration
	File Kind View
	Plugin View
	User View
	Graph View
	Graph Schedule View
	View mode
	Edit mode
	gOcad History Export tool

