
Ea
rly
bi
rd

Computer Science • 24(3) 2023 https://doi.org/10.7494/csci.2023.24.3.4831

Rafal Mucha
Bartosz Balis
Costin Grigoras
Jacek Kitowski

DATABASE REPLICATION FOR
DISCONNECTED OPERATIONS WITH QUASI
REAL-TIME SYNCHRONIZATION

Abstract Database replication is a way to improve system throughput or achieve high

availability. In most cases, the use of an active-active replica architecture is

efficient and easy to deploy. Such a system has CP properties (from the CAP

theorem: consistency, availability, and network-partition tolerance). Creat-

ing an AP (available and partition-tolerant) system requires the use of multi-

primary replication. Because of the many difficulties in its implementation, this

approach is not widely used; however, ALICE’s deployment of CCDB (exper-

iment conditions and calibration database) needs to be an AP system in two

locations. This necessity became the inspiration for examining the state-of-the-

art methods in this field and testing the available solutions. The tests that were

performed evaluated the performance of the chosen replication tools: Bucardo,

and EDB Replication Server; these showed that the tested tools could be suc-

cessfully used for the continuous synchronization of two independent database

instances.

Keywords multi-primary database replication, Bucardo, EDB Replication Server,

PostgreSQL, PostgresBDR, TPC, CAP theorem, continuous synchronization

Citation Computer Science 24(3) 2023: 401–420

Copyright © 2023 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

401

https://doi.org/10.7494/csci.2023.24.3.4831
https://creativecommons.org/licenses/by/4.0/


Ea
rly
bi
rd

402 Rafal Mucha, Bartosz Balis, Costin Grigoras, Jacek Kitowski

1. Introduction

Database replication is a widely adopted solution [27] for improving the availability,

reliability, and throughput of databases. The well-known CAP theorem [16] states

that, in distributed systems, one can achieve only two of the three desirable qualities:

consistency (C), availability (A), and tolerance to network partitions (P). Consis-

tency and network-partition tolerance (a CP system) can be achieved by blocking

write operations when a partition occurs, albeit at the cost of availability. Much

more challenging is to achieve an AP system where clients are allowed to write to

possibly partitioned systems at the cost of eventual consistency, wherein the system

may not be globally consistent at all times. Furthermore, replication should be fast

and lightweight – especially in soft real-time environments. The benchmarking of

databases is a mature topic. In particular, there are some benchmarks like TPC [18]

or YCSB [20] that are industry standards. However, there are no benchmarks that

are focused on multi-primary database replication. This article is concerned with

the problem of multi-primary replication. Apart from presenting the problem and

its solution, it examines and compares the selection of currently available tools for

multi-primary database replication; these are built by using different mechanisms,

architectures, and technologies. All of these variables impact their stability, speed,

and offered features. To compare the tools in a real-case scenario and experimentally

evaluate their properties, the deployment of CCDB [24] (the experiment condition and

calibration database) in the ALICE experiment [12] at CERN was used. To provide

the high availability of CCDB, two instances of it were deployed in two processing

centers.

1.1. Motivation and problem statement

In the upcoming Run 31, which was scheduled to start in 2022, the ALICE experiment

is going to change the data-filtering model. In previous runs, ALICE experiments have

used FPGAs [23] for basic reconstruction and filtering events in “online” processing.

When LHC was built, this was a sufficient method for handling such high data rates.

Almost a decade later, however, the current equipment is ready to process raw data

streams without filtering [22]. A farm of more than 500 machines was created and

backed with GPU accelerators; these will reconstruct, filter, and compress the data

stream from detectors. During the upgrade, a new database system was developed

to store the condition and calibration data of the experimental devices (CCDB [24]).

This data is used at every level of data processing – either in the “online” processing or,

later, in the “offline” grid processing of the results. The data in CCDB has millisecond

granularity, so it is crucial to propagate the changes throughout the machine farm

1The LHC work is organized into “runs.” LHC is used by all experiments (each one needs a
different beam setup, so each experiment needs to reserve time and specify the beam parameters).
The run takes a few years; after this, there is a planned break (a “long shutdown”) when each
experiment has access to detectors and upgrades or modifies its hardware for a new run. For now
(March 2022), it is the second long shutdown.



Ea
rly
bi
rd

Database replication for disconnected operations. . . 403

in time and efficiently so that the “online” reconstruction nodes have actual data to

work correctly. A way to achieve this is presented in Section 2. Being a critical part

of the data-processing system, CCDB must be deployed to achieve high availability

(HA), resilience, and network-partition tolerance. To enable HA, both the “online”

and “offline” processing nodes have their own instances of CCDB. Both instances

must be writable and should synchronize in quasi-real-time as long as there is a

connection between them. An important requirement is to prevent data loss in the

case of reconciliation conflicts; i.e., insert-insert conflicts (where rows with the same

key are simultaneously inserted into different database instances). Previous tests have

shown that the best choice for storing the CCDB database is PostgreSQL [36], as it

has a unique feature that allows one to create an index for time periods.

1.2. Objectives

The main objective of the research work that is described in this article is to de-

sign and experimentally evaluate a solution for the quasi-real-time synchronization

of independent database instances. The solution must satisfy the highly demanding

data rates of the ALICE experiment: the condition data will be written with a fre-

quency of 100 Hz (per measured parameter). The system must be highly available

(A) and tolerant to network partitions (P). Any inconsistencies that occur during

the partitioning must be reconciled after the connection has been restored. A par-

ticular research question of interest is this: “Could current multi-primary replication

solutions be used in the implementation of a highly available and soft real-time sys-

tem?” Due to time and resource limitations, the experiments were conducted for

a PostgreSQL-based solution; however, the solutions were conceptually designed in

a broader technology-agnostic scope. Other more precise questions of interest are

as follows: “What is the overhead that is caused by these tools?” “How fast is the

reconciliation process?” “How stable is the solution?” Answers to these questions

should allow one to choose the best option in the given use case. Answering other

questions (“How do these tools work?” What are their architectures, what databases

mechanisms do they use, and how?” should allow for a better understanding of the

limitations or potential problems and a more conscious choice of tools.

1.3. Research methodology

The methodology that was used to achieve the objectives consisted of two parts.

The first part was an evaluation of the tools for multi-primary replication using a

simplified case-study approach. The second part was building a solution for the multi-

primary PostgreSQL database connection as well as its experimental evaluation and

performance tuning.

1.3.1. Evaluation of database-replication tools

One of the parts of this work was to gather information about the available tools

for multi-primary replication. Their evaluation took multiple criteria into account,



Ea
rly
bi
rd

404 Rafal Mucha, Bartosz Balis, Costin Grigoras, Jacek Kitowski

such as whether the tools were still maintained, what the supported conflict-handling

strategies were, how they operated, or what the deployment architecture was.

Some of the tools are built into DBMS systems, while others are standalone.

The results of the evaluation consist of a short description of each tool that covers

the points that were mentioned earlier.

1.3.2. Database-replication performance

One of the main objects of concern is the performance of the database when working

with two primary replication configurations. In many cases, the database could fit

into the memory so that the read performance would not be affected by the replication

and an evaluation of the reading performance would not be needed. The plan for the

experimental evaluation consisted of the following steps:

• finding maximal insertion rate of database without replication tools;

• finding overhead that is caused by replication tools to PostgreSQL with active

replication and finding maximal stable insert rate when replication is active;

• measuring reconciliation time (how fast replicas reconcile after longer discon-

nection) – additionally, it should be verified whether databases are blocked by

reconciliation process.

To collect the experimental data, the databases were monitored during the tests.

Among the monitored parameters were the number of operations per second (fetch,

insert, read) and the number of inserted rows per second. There were some improve-

ments in the configurations following the documentation (within the scope that was

possible); however, the configuration could probably have been improved due to the

complexity of these tools. For the reproducibility, the crucial changes in the configu-

ration of PostgreSQL and the the used tools are given. During the tests, metrics like

the number of fetched, inserted, and returned rows from the database, the metrics

from the replication tools that showed the number of sent rows, and the reconcil-

ing time were measured. The tests were mainly carried out in Cyfronet by using

12 machines that were part of the Zeus supercomputer [11]. They were multi-core

nodes (12 physical cores with Hyper-Threading) with 24 GB RAM (enough to fit a

database in the memory) and a fast connection (Infiniband with an IPoIB network).

The Infiniband network was used to mimic the conditions in the target cluster.

1.4. Novelty of approach

Database benchmarking is a mature topic; for example, there are some well-known

benchmarks such as TPC [18] that are industry standards. However, there is a lack of

tests on multi-primary replication solutions. This work proposes simple yet compre-

hensive scenarios for testing multi-primary replication. Following these scenarios, two

tools were tested: Bucardo [6], and EDB Replication Server [3]. Another important

contribution was to review and describe the selected tools that support multi-primary

replication.



Ea
rly
bi
rd

Database replication for disconnected operations. . . 405

2. ALICE condition and calibration database system architecture

This section presents the deployment of CCDB [24] – experimental conditions and

calibration database in the ALICE [12] experiment at CERN. This is an essential

part of the newly deployed Run-3 software for “online” processing because it stores

and serves data that is a critical part of the whole experiment. Consequently, this

database must be highly available and resilient.

2.1. CCDB

CCDB is a database that stores data about experimental conditions; this data is

usually stored in the ROOT format [17]. Binary files are stored in local disks and

uploaded for resilient storage to selected grid storage services. Metadata like the

device path, validity, and path to file copies is held in the PostgreSQL database. The

deployment of CCDB is shown in Figure 1.

Figure 1. CCDB deployment

The first place where a CCDB instance runs is the “online” side – the processing

center that is directly connected to the experiment detectors where the synchronous

reconstruction runs. This processes the data stream from the detector, runs the

first reconstruction, and filters the data. This processing center consists of about

540 machines, which will run the software that uses the data from CCDB. Another

difficulty is the data’s update rate, which can reach about 100 Hz per parameter.

To efficiently handle the data distribution, CCDB supports work in proxy mode.

The data is distributed by a UDP multicast to all proxy instances immediately after

they have been uploaded to the main instances of CCDB in the cluster (which are



Ea
rly
bi
rd

406 Rafal Mucha, Bartosz Balis, Costin Grigoras, Jacek Kitowski

backed by PostgreSQL). The second CCDB instance runs on the “offline” side. This

instance serves the data for the “offline” grid processes that are running in many

HPC and HTC centers around the world. The grid processes could upload new data;

for example, new detector calibration. “Online” and “offline” sides are synchronized

by PostgreSQL databases, which store metadata about condition files (binaries are

stored locally and in CERN’s grid storage).

2.2. Architecture extensions

To increase the resilience and load balancing, the PostgreSQL database deployment

was extended as follows:

• Primary-replica replication – the database on each side is replicated by using the

built-in streaming replication on the secondary node. In the event of damage to

the primary node, the replica machine can be quickly promoted to the primary

role with minimal data loss (missing only what could not be written during this

transition period).

• Connection pooling – helps restrict the number of connections that are open

to the database; however, it has more functionality. The chosen Pgpool-II [10]

supports caching data, detecting the primary node in the streaming replication,

and calculating replication delay (if this is greater than a set value, it redirects

all selects to the primary node). Another feature is the detection of a primary

node and the redirection of the insert operation to the primary.

• Multi-primary replication – provides continuous synchronization of the “online”

and “offline” databases. After a connection between the two sides has been

(re)established, the two databases should be reconciled gently. This is performed

by Bucardo, which runs on the “online” primary node; this is an open-source tool

that supports multi-primary replication for PostgreSQL. As shown in Section 5, it

is robust enough to handle any expected write loads and successfully synchronize

both instances.

• Monitoring – all components of the deployment architecture need constant mon-

itoring. The metrics for PostgreSQL, Bucardo, and Pgpool-II are reported to

MonALISA [30]; this allows for monitoring the health of the services and alert-

ing the shifter crew in case of problems.

In summary, the proposed architecture should allow for continuous work even in

the case of hardware or software failure. It should also enable high data throughput

during a running experiment and later analysis. It should also continue working even

in the case of disconnecting the “online” and “offline” sides. The architecture that is

presented in Fig. 1 was designed by ALICE. The main contribution of this work to the

presented architecture was selecting, deploying, and testing a solution to synchronize

the “online” and “offline” instances as two primaries.



Ea
rly
bi
rd

Database replication for disconnected operations. . . 407

3. PostgreSQL multi-primary replication tools

PostgreSQL is a mature and popular database system. Over the years, numerous

projects have been developed that have tried to tackle the problem of multi-primary

replication. Due to the PostgreSQL architecture, two mechanisms have been used to

detect changes in the database. The first consists of triggers. During initialization,

the tool creates internal tables and triggers. Triggers are connected to each replicated

table and save the indexes of any affected rows to its internal tables. Later, the tool

reads the data from the internal tables and replicates the modifications. The second

mechanism, which is utilized to detect changes, consists of write-ahead logger (WAL)

plugins. A write-ahead logger is a mechanism that allows for persistent and consis-

tent work without the need of dumping a whole database after each write transaction.

Databases that use WAL can operate in the memory. The task of WAL is to persis-

tently store the logs of the operations that are performed on the data. Writing such

logs to a disk is a much lighter operation than writing down all of the modified data.

From the perspective of a multi-primary replication tool, it could also be used as a

source of data on modifications. Below, the three available tools for multi-primary

replication that belong to the PostgreSQL ecosystem are described; each has some

unique properties that have allowed it to survive on the market to this day.

3.1. Bucardo

Bucardo [7] is an open-source tool for logical replication; its available replication

modes are primary-replica (MS) or multi-primary (MM). This offers the best support

for PostgreSQL (MM and MS), but other databases can be used as copy targets. The

project was started in 2002 by Jon Jensen and Greg Sabino Mullane in Backcoun-

try [6]; it is still being developed and available under a BSD license [8] and is written

in Perl5 [37]. For marking modifications to propagate, it uses triggers and tracing

tables. Each trigger also sends a message to Bucardo’s control process – communi-

cating that a modification occurred, so the KID process should run. The tables can

be grouped into sync. Then, sync is synchronized by a KID process. In general, Bu-

cardo has a three-tier running architecture: Bucardo master control process (MCP),

Bucardo control processes (CTL), and KID. MCP monitors and manages all of the

other processes. CTL spawns and controls the KID processes. KID is a process that

does the real replication work; it connects to each database to read tracing tables and

check and resolve conflicts on primary keys. Then, it reads the actual data and tries

to propagate the changes to other databases. During the insertion of data to these,

exceptions can occur (such as violating unique constraints).

Custom codes can handle conflicts and exceptions automatically; these are func-

tions that receive the object that describes the current state of the KID or CTL

process and can try to resolve conflicts or the source of an exception. In general, such

an attempt to reconcile scripts allows for a lot of elasticity in invoking compensation

actions. Before using the default conflict strategy for the table, conflict custom codes

that are associated with a given table are generally invoked. If they do not resolve the



Ea
rly
bi
rd

408 Rafal Mucha, Bartosz Balis, Costin Grigoras, Jacek Kitowski

conflicts, then the default strategy is used. As shown, Bucardo is a sophisticated tool;

it has many options to configure multi-primary replication in a maximally automated

and data loss-free way. However, the downside of Bucardo is that it is a single point

of failure in the system.

Figure 2. Bucardo running scheme, source [19]

3.2. EDB replication server

EDB xDB (cross-database) Replication Server [3] is another replication system. xDB

Replication Server supports two different replication models: single-primary (primary-

to-secondary) replication, and multi-primary replication. In the single-primary repli-

cation mode, it supports PostgreSQL, Advanced Server, Oracle, and Microsoft SQL

Server. For multi-primary replication, xDB Replication Server supports configura-

tions that consist of PostgreSQL database servers and EDB PostgreSQL advanced

servers. An illustration of the multi-primary configuration is presented in Figure 3.

For storing and propagating information about updates in databases, it uses processes

that are spawned by each database instance and writes the data to Kafka [29] streams.

ZooKeeper [26] manages the configuration. For custom reconciliation handlers, it uses

functions that are stored in the database. After adding a function to the database,

it must also be added to the configuration as a conflict resolver for a given table. In

terms of the mechanisms that are used to detect changes, xDB can utilize both the

trigger and write-ahead logger. The application has CLI and GUI.

In summary, EDB Replication Server is mature and even more sophisticated than

Bucardo. It supports both WAL and trigger-based replication, allows adding custom

codes, and has multiple default strategies to resolve conflicts. The documentation

is of a good quality. The only downside is that one needs sudo to install the EDB

replication server on Linux systems.



Ea
rly
bi
rd

Database replication for disconnected operations. . . 409

Figure 3. Running scheme of EDB Replication Server

for multi-primary replication, source [3]

3.3. PostgresBDR

Generally, there are two tools under the BDR name: BDR [2] Version 2 (which is

open-source but no longer maintained), and Version 3 (developed and offered by

2ndquadrant [4]), which is part of EDB [9]. It offers multi-primary logical replication.

It is not an external application like Bucardo or xDB but is a PostgreSQL plugin.

Thanks to being a plugin, it has access to a write-ahead logger and uses it to propagate

information about modifications to other databases. Like Bucardo, it has two different

modes for handling exceptions that occur in multi-primary mode. It can be predefined

like last-write-win or by a user’s custom code. Due to using such an architecture, this

replication is lighter (it does not require additional writes on a disk like in the case

of trigger-based tools) and faster (as it can propagate new data just after receiving it

without any delay to other databases).

4. Related works

The performance of popular databases was measured and presented in [14] by compar-

ing the work parameters of four DBMSes: PostgreSQL [36], MongoDB [15], Redis [21],

and InfluxDB [34]. The test case in the paper was environmental monitoring, early

warning, and decision-support systems (which are unique and difficult to compare

with our use case). Furthermore, it does not evaluate the performance of replicated



Ea
rly
bi
rd

410 Rafal Mucha, Bartosz Balis, Costin Grigoras, Jacek Kitowski

databases (which is a must for such systems) if the network and the amount of col-

lected information are to grow.

Kolonko’s thesis [28] contained a ranking list of the most popular database sys-

tems and evaluated about 15 of the most popular papers that examined database

performance. On this basis, he proposed the most common subset of benchmarks;

this can be beneficial for preparing test scenarios that will be the most representative.

It contained discussions of other papers that were evaluated, including actively point-

ing out any gaps or faults in the methodology or justifications of the databases that

were used for the tests. The testing part of the thesis contained two databases: Ora-

cle, and MongoDB. Unfortunately, it did not compare the performance of replicated

databases.

Another group of articles about database benchmarking are those that describe

and use TPC. TPC is a group of market-standard benchmarks for testing database

performance. Among them are those that test OLTP (such as TPC-C, which isde-

scribed in detail here [25]). [18] contained a comparison of TPC-C and TPC-E – a new

complementary benchmark to TPC-C that was introduced in 2007. In general, these

benchmarks simulate some practical use cases. They are available as specifications,

not as ready programs – so, they must be implemented by each tester. It improves

portability, but it makes tests difficult and expensive [33]. Because of this (and be-

cause it does not provide an exact scenario for testing database replication), these

benchmarks are not very useful in this work.

Cooper et al. [20] presented Yahoo! Cloud Serving Benchmark (YCSB). This is

a benchmark that was designed for testing NoSQL databases like BigTable, PNUTS,

Cassandra, or HBase rather than typical SQL databases. However, these tests con-

tain sharded MySQL. Later, YCSB evolved, and some forks have appeared [35]. The

authors of an article are testing different aspects that were missed by the original

framework, focusing instead on key value stores. In summary, YCSB benchmarks are

easier to use and closer to those that are tested in this work than TPC-like bench-

marks; however, they do not measure the reconciliation time in case of disconnection.

Another example of benchmarking is presented in [13]. The study demonstrated

a synthetic benchmark created by Facebook with the aim of comparing MySQL with

HBase. The benchmark was designed to simulate production traffic from Facebook

while avoiding the use of real traffic. However, despite such efforts, there is still no

standard benchmark that can reliably and clearly compare different databases.

Moiz et al. [31] discussed the available tools for database replication. This article

discussed open-source and commercial ones; however, it has rather limited descriptions

and does not contain any performance check.

Another important work is [32]; it described a problem that was similar to AL-

ICE that occurs during the creation system for ITER. The main problem was the

implementation of multi-primary replication. This paper discussed the replication

tools for PostgreSQL and for some other replication systems; however, it again lacks



Ea
rly
bi
rd

Database replication for disconnected operations. . . 411

a comparison of performance tests. The paper concluded that the best option for

these was the PostgresBDR database.

5. Multi-primary replication performance

This section presents the results of the performance tests that compared Bucardo and

xDB. CCDB was used to create the test scenarios. The first was a measurement of the

differences in the PostgreSQL configuration, and the next test showed the overheads

that were caused by adding tools to a database. The third test scenario contained

measurements that ran with a limit-close insert rate for a longer period of time. In the

final test scenario, the replica reconciliation time was measured. These tests together

should allow us to determine the impact that is caused by using the evaluated tools,

what their limitations are, and which tool is better.

5.1. Test environment

The test was run in the isolated part of the Zeus HPC cluster of the Cyfronet Com-

puting Center. The machines had the following specifications:

• Processors: Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz * 2;

• RAM: 24 GB;

• Disk: HDD GJ0120CAGSP HP 120-GB;

• Infiniband card: Mellanox Technologies MT26438 [ConnectX VPI PCIe 2.0

5GT/s – IB QDR / 10GigE Virtualization+].

The machines were connected to the Infiniband network (with IPoIB on top).

5.2. System under testing

The system under testing consisted of two instances of PostgreSQL 13.2. Their con-

figuration was modified (e.g., synchronous commit was turned off) to get higher insert

performance at the cost of the possibility of losing a small amount of data in the case

of a power-down. When using the default settings, the insert rate was unsatisfactory.

If the default configuration was used, the tests would be limited by the performance

of the disk. This is discussed in detail below.

In the test scenarios, the two databases were synchronized using Bucardo and

xDB Replication Server. Both tools used triggers that saved modified indexes in the

database. The advantage of xDB is that it does not create additional databases and

users (as Bucardo does); instead, the instructions describe how to create a user with

sufficient rights in the system.

For the insert tests, benchmark programs were prepared that used CCDB’s Java

code. The logs were sent to the MonALISA service (whose instance was deployed on

Cyfronet). An overview of the system is presented in Figure 4.



Ea
rly
bi
rd

412 Rafal Mucha, Bartosz Balis, Costin Grigoras, Jacek Kitowski

Figure 4. Architecture of system to test replication. Inserters that are based on CCDB

code insert objects to PostgeSQL. Insert rate is reported to MonALISA instance. Database

instances are synchronized using Bucardo or xDB, whose instance is on Node 4b. MonALISA

also gathers metrics from PostgreSQL instances.

5.2.1. PostgreSQL

Crucial for write performance was the setting of the write-ahead logger. The following

values were experimentally determined as a suitable trade-off between resilience and

performance (synchronous commit = off, wal writer delay = 100 ms). In general, the

performance difference between the synchronous and asynchronous commits was the

greatest because of slow disks. While the maximum insert rate that databases can

handle is about 80 Hz with synchronous commit, turning this off allows one to achieve

an insert rate of 1.5–2.5 kHz.

5.2.2. Bucardo

For Bucardo, one of the parameters that could affect performance is persistent KID

and CTL (Bucardo sync options: kidsalive=false stayalive=false). After this param-

eter was disabled, the database was more stable during long-running tests.

5.2.3. EDB replication server

The EDB replication server’s configuration was close to default; it did not contain

conflict handling codes, was configured to use triggers, and was scheduled to run every

second (the shortest possible interval). An improvement was to increase the limit of

the working memory to 16 GB (JVM options: -Xms4096m -Xmx16384m).

5.3. Measured metrics

The metrics were collected using the MonALISA monitoring system. Logs from in-

serter programs were sent every second and were aggregated into two-minute windows,

while the system metrics were gathered every 30 seconds.



Ea
rly
bi
rd

Database replication for disconnected operations. . . 413

• Number of insert transactions served in the database – write operations were the

most critical; since the CCDB’s database could fit in the memory, read operations

were not critical and should not have influenced the database’s performance.

• Reconcile time (in selected tests) – the time it takes a tool to reconcile two

databases after a longer disconnection.

• Number of fetched/returned/inserted/deleted rows – to check which tool gener-

ates a higher OPS load for the database.

5.4. Tests

5.4.1. PostgreSQL configuration

The first test measured the impact of changing the synchronous commit option; it

was changed to off due to the limited insert performance when using the default

configuration. In numbers, it allows one to reach about a 1750 Hz insert rate against

about 80 Hz when using the default settings. Since turning off the synchronous commit

option is safe for consistency and can only lead to small data losses in the event of

power outages, this option is acceptable as a production configuration in the ALICE

experiment.

5.4.2. Insert to database

This test shows the overhead that was caused by the triggers that were added by

the replication tools. The compared configurations were a vanilla PostgreSQL, Post-

greSQL with initialized Bucardo, and PostgreSQL with initialized xDB. The time to

insert N objects was compared (where N was 10k, 100k, and 1M), and each test was

repeated three times. Initially, the database was empty. The results are presented in

Figure 5.

Figure 5. Average insert rate depending on number of inserted objects and replication tool.

Each test was run three times. During test, replication was not active to show overhead

caused by triggers added by replication tools.



Ea
rly
bi
rd

414 Rafal Mucha, Bartosz Balis, Costin Grigoras, Jacek Kitowski

As can be seen, an overhead is visible; however, it was not significant. Bucardo

seemed to perform better than xDB for all of the tested cases.

5.4.3. Reconcile after disconnection

The test evaluated the speed at which a given tool reconciled the two databases. At

first, the database contained ten million objects.

The test scenario was as follows:

• turn off replication tool;

• run VACUUM operation2 and then insert one million objects to both instances

(inserters run first VACUUM operation to prevent it from running later);

• turn on inserters to both databases with small insert rate (about 50 Hz);

• turn on replication tool – monitor total time for reconciling and impact on

database performance.

Figure 6. Rate of insert (left) and return (right) operations in database while doing reconcil-

iation using Bucardo (upper) and xDB (down). Red lines are results of Node 4b (which runs

Bucardo/xDB), while blue lines are results of Node 5a. As can be seen, tools had different

load characteristics.

2VACUUM is a garbage-collection operation. “VACUUM causes a substantial increase in I/O
traffic, which might cause poor performance for other active sessions” following the PostgreSQL
documentation [1]. Then, it was executed manually in order to reduce the possibility that this
operation would be fired during the tests.



Ea
rly
bi
rd

Database replication for disconnected operations. . . 415

The results were as follows: Bucardo reconciled two databases with 1M new

objects in each in about 200 seconds, while the same operation took about 500 seconds

for xDB. As one can see, the performance of Bucardo was significantly better (about

2.5x times) than that of xDB.

Figure 6 presents the load of the database system during the test. The behavior

of both tools was quite different; xDB continuously synchronized small packets of rows

with each other, while Bucardo read the indexes of the rows to first synchronize and

then exchange all of the data at the maximum speed. On the one hand, it was a much

more efficient method, but on the other hand, the maximal load that was generated by

the tool could not be controlled nor restricted to the database throughput (e.g., 50%).

5.4.4. Reconcile after disconnection – different numbers of objects to reconcile

The next test was similar to the previous one. The reconciliation times vs. the number

of objects to reconcile (10k, 100k, 1kk) were measured. The results are presented in

Figures 7 and 8.

Figure 7. Bucardo – reconciliation performance vs. number of reconciled objects

Figure 8. xDB – reconciliation performance vs. number of reconciled objects



Ea
rly
bi
rd

416 Rafal Mucha, Bartosz Balis, Costin Grigoras, Jacek Kitowski

As can be seen, the best results were for 200k objects in both cases. In conclu-

sion, it was more efficient to run the reconciliation in real-time for a greater amount

of information less frequently than it was for lesser information in smaller batches.

Additionally, the tools suffered a little in their performance during the replication of

too many objects; the optimal value was between 2k and 20k objects.

5.4.5. Continuous work with higher near-limit load

The objective of this test was to find the maximum possible insert rate of continuously

synchronized databases. For Bucardo, the experimentally found value was 500 Hz (two

inserters – each with a 250 Hz insert rate). When the insert rate was about 600–700

Hz, the tool became unstable: after a few minutes of work, the replication was locked

(apparently because of going into an infinite-retry loop). During the locking, there

were an increasing number of fetched and returned rows from the database (blocking

normal work) such that the inserter was affected – the insert rate dropped below

50 Hz. It turns out that xDB was able to run the system smoothly with a 1000 Hz

insert rate (2 * 500 Hz); this was an impressive result. On the other hand, Bucardo

started to throttle (lock) several minutes after the start when faced with such a load.

Insert rates that were greater than 500 Hz were not stable with xDB, and the insert

rate was throttled.

5.5. Conclusion

As the experiment showed, Bucardo was lighter and reconciled the databases faster; on

the other hand, xDB was much better in continuous synchronization. Judging by the

current evaluation, however, Bucardo could be a better choice. Finally, Bucardo was

also used to reconcile the CCDB databases in ALICE. The choice will be reevaluated

after several months of work in the production environment – especially when it will

be faced with a real load.

6. Summary and future work

Multi-primary replication has been shown to be a challenging and important problem.

By its nature, there is no solution that will work correctly out-of-the-box despite the

fact that the problem has been known for many years. The minimal configuration that

must be provided is a conflict-resolution strategy that allows us to manage conflicts

in order to keep the database consistent.

The main contribution of this work is the testing of multi-primary replication

tools. In the literature, no standard test method can be found to benchmark multi-

primary replication. Consequently, test scenarios were created using the CCDB

database as a system under test that covered different aspects of multi-primary repli-

cation. Thanks to this method, CCDB could be easily adopted to a different database

to test another tool. The created test scenarios covered several important aspects:

(1) the overhead that was caused by using the replication tool; (2) the batch replica-

tion of multiple objects (simulating a longer disconnection); and (3) checking whether



Ea
rly
bi
rd

Database replication for disconnected operations. . . 417

the tool could steadily handle a high insert rate during continuous synchronization

(a mode of operation that is characteristic of the quasi-real-time synchronization of

databases). All of these showed overheads, which could be expected when applying a

multi-primary replication tool to a system with continuous synchronization.

Possible directions to continue the research that is presented in this work are as

follows:

• Test extensions can be performed in two possible ways: the first is to extend

existing test scenarios by reconciliation tests with conflicts and comparisons of

other tools (the test may include a geographical distribution of nodes to increase

the communication overhead), and the second is to prepare new (or expand ex-

isting) test scenarios, which allows for the testing of cloud services (such as Azure

CosmosDB [5]).

• Another possible way to tackle the problem of benchmarking multi-primary repli-

cation can be done by writing benchmark scenarios that are similar to TPC

or writing a generic benchmark engine for evaluating multi-primary replication.

Later steps in this approach will be to adopt benchmarks for databases and run

tests on them.

6.1. Summary

Summing up, the answer to the question that was stated in the objectives of this work

is as follows: existing multi-primary replication tools can be applied to highly available

soft-realtime systems. The main objective of this work – the design and experimental

evaluation of a solution to synchronize two database instances – was successfully

realized. In addition, it was experimentally proven that the proposed solution can

handle a load that is ten-times higher than that which is required by ALICE’s CCDB

use case. Using the designed solution, tests were conducted that concluded that

the overhead that is caused by multi-primary replication tools is significant but not

disruptive.

This work also has a significant practical impact. The architecture that was

proposed in Section 2 was successfully implemented and deployed as part of the ALICE

O2 system; so, it will be critical in future ALICE runs (which will likely lead to new

discoveries in physics).

Acknowledgements

RM, BB, and JK were partly supported by the Polish Ministry of Education and

Science (Agreement Nr. 2022/WK/1) and by the funds of the Polish Ministry of

Education and Science assigned to AGH University of Science and Technology.

References

[1] PostgresSQL - official documentation, https://www.postgresql.org/docs, Ac-

cessed Aug 17, 2021.

https://www.postgresql.org/docs


Ea
rly
bi
rd

418 Rafal Mucha, Bartosz Balis, Costin Grigoras, Jacek Kitowski

[2] BDR 1.0.7 Documentation, http://bdr- project.org/docs/stable/, Accessed

March 30, 2021.

[3] EDB Replication Server (6.2) Official Documentation, Accessed March 30, 2021.

https://www.enterprisedb.com/edb-docs/static/docs/eprs/6.2/EDB Postgres

Replication Server Users Guide v6.2.pdf.

[4] 2ndquadrant - official page, https://www.2ndquadrant.com/en, Accessed May

25, 2021.

[5] Azure Cosmos DB – conflicts handling documentation, Accessed May 25, 2021.

https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-manage-conflicts.

[6] Backcountry company page, https://backcountry.com, Accessed May 25, 2021.

[7] Bucardo - official page, https://bucardo.org/Bucardo, Accessed May 25, 2021.

[8] Bucardo repository page, https://github.com/bucardo/bucardo, Accessed May

25, 2021.

[9] EnterpriseDB – official page, Accessed May 25, 2021. https : / /

www.enterprisedb.com.

[10] Pgpool-II - official page, https://www.pgpool.net, Accessed May 25, 2021.

[11] Zeus supercomputer page in ACK Cyfronet, Accessed May 25, 2021. https:

//www.cyfronet.krakow.pl/13385,artykul,superkomputer zeus.html.

[12] ALICE experiment page, https://alice-collaboration.web.cern.ch, Accessed Oc-

tober 22, 2020.

[13] Armstrong T.G., Ponnekanti V., Borthakur D., Callaghan M.: Linkbench: a

database benchmark based on the facebook social graph. In: Proceedings of

the 2013 ACM SIGMOD International Conference on Management of Data,

pp. 1185–1196, 2013.

[14] Balis B., Bubak M., Harezlak D., Nowakowski P., Pawlik M., Wilk B.: Towards an

operational database for real-time environmental monitoring and early warning

systems. In: ICCS, pp. 2250–2259, 2017.

[15] Boicea A., Radulescu F., Agapin L.I.: MongoDB vs Oracle–database comparison.

In: 2012 third international conference on emerging intelligent data and web

technologies, pp. 330–335, IEEE, 2012.

[16] Brewer E.A.: Towards robust distributed systems. In: PODC, vol. 7, pp. 343477–

343502, Portland, OR, 2000.

[17] Brun R., Rademakers F.: ROOT - an object oriented data analysis framework,

Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 389(1-2), pp. 81–86,

1997.

[18] Chen S., Ailamaki A., Athanassoulis M., Gibbons P.B., Johnson R., Pandis I.,

Stoica R.: TPC-E vs. TPC-C: Characterizing the new TPC-E benchmark via an

I/O comparison study, ACM Sigmod Record, vol. 39(3), pp. 5–10, 2011.

[19] Christensen D.: Bucardo presentation 1, https : / /bucardo.org/Bucardo/

presentations/2015-Choosing-Logical-Replication.pdf, Accessed March 30, 2021.

http://bdr-project.org/docs/stable/
https://www.enterprisedb.com/edb-docs/static/docs/eprs/6.2/EDB_Postgres_Replication_Server_Users_Guide_v6.2.pdf
https://www.enterprisedb.com/edb-docs/static/docs/eprs/6.2/EDB_Postgres_Replication_Server_Users_Guide_v6.2.pdf
https://www.enterprisedb.com/edb-docs/static/docs/eprs/6.2/EDB_Postgres_Replication_Server_Users_Guide_v6.2.pdf
https://www.2ndquadrant.com/en
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-manage-conflicts
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-manage-conflicts
https://backcountry.com
https://bucardo.org/Bucardo
https://github.com/bucardo/bucardo
https://www.enterprisedb.com
https://www.enterprisedb.com
https://www.enterprisedb.com
https://www.pgpool.net
https://www.cyfronet.krakow.pl/13385,artykul,superkomputer_zeus.html
https://www.cyfronet.krakow.pl/13385,artykul,superkomputer_zeus.html
https://www.cyfronet.krakow.pl/13385,artykul,superkomputer_zeus.html
https://alice-collaboration.web.cern.ch
https://bucardo.org/Bucardo/presentations/2015-Choosing-Logical-Replication.pdf
https://bucardo.org/Bucardo/presentations/2015-Choosing-Logical-Replication.pdf


Ea
rly
bi
rd

Database replication for disconnected operations. . . 419

[20] Cooper B.F., Silberstein A., Tam E., Ramakrishnan R., Sears R.: Benchmarking

cloud serving systems with YCSB. In: Proceedings of the 1st ACM symposium

on Cloud computing, pp. 143–154, 2010.

[21] Da Silva M.D., Tavares H.L.: Redis Essentials, Packt Publishing Ltd, 2015.

[22] Eulisse G., Konopka P., Krzewicki M., Richter M., Rohr D., Wenzel S.: Evolution

of the ALICE Software Framework for Run 3. In: EPJ Web of Conferences, vol.

214, p. 05010, EDP Sciences, 2019.

[23] Grastveit G., Helstrup H., Lindenstruth V., Loizides C., Roehrich D., Skaali B.,

Steinbeck T., Stock R., Tilsner H., Ullaland K., et al.: FPGA co-processor for

the ALICE high level trigger, arXiv preprint physics/0306017, 2003.

[24] Grigoras C.: CCDB Conditions DB for Run 3, Accessed May 25,

2021. https : / / docs.google.com/presentation / d / 1RMIzqHL1JnDhwmqGj

yTmxqjNb54hNoJwvFIgtldR6g/edit#slide=id.g25765cf80e 0 3.

[25] Hsu W.W., Smith A.J., Young H.C.: Characteristics of production database

workloads and the TPC benchmarks, IBM Systems Journal, vol. 40(3), pp. 781–

802, 2001.

[26] Hunt P., Konar M., Junqueira F.P., Reed B.: ZooKeeper: Wait-free Coordination

for Internet-scale Systems. In: USENIX annual technical conference, vol. 8, 2010.

[27] Kemme B., Jiménez-Peris R., Patiño-Mart́ınez M.: Database replication, Synthe-

sis Lectures on Data Management, vol. 5(1), pp. 1–153, 2010.

[28] Kolonko K.: Performance comparison of the most popular relational and non-

relational database management systems, 2018.

[29] Kreps J., Narkhede N., Rao J., et al.: Kafka: A distributed messaging system for

log processing. In: Proceedings of the NetDB, vol. 11, pp. 1–7, 2011.

[30] Legrand I., Cirstoiu C., Grigoras C., Voicu R., Toarta M., Dobre C., Newman

H.: MonALISA: An agent based, dynamic service system to monitor, control and

optimize grid based applications, CERN, 2005.

[31] Moiz S.A., Sailaja P., Venkataswamy G., Pal S.N.: Database replication: A sur-

vey of open source and commercial tools, International Journal of Computer

Applications, vol. 13(6), pp. 1–8, 2011.

[32] Nakanishi H., Yamanaka K., Tokunaga S., Ozeki T., Homma Y., Ohtsu H., Ishii

Y., Nakajima N., Yamamoto T., Emoto M., Ohsuna M., Ito T., Imazu S., Nono-

mura M., Yoshida M., Ogawa H., Maeno H., Aoyagi M., Yokota M., Inoue T.,

Nakamura O., Abe S., Urushidani S.: Design for the distributed data locator

service for multi-site data repositories, Fusion Engineering and Design, vol. 165,

p. 112197, 2021. doi: https://doi.org/10.1016/j.fusengdes.2020.112197.

[33] Nambiar R., Poess M.: Keeping the TPC relevant!, Proceedings of the VLDB

Endowment, vol. 6(11), pp. 1186–1187, 2013.

[34] Naqvi S.N.Z., Yfantidou S., Zimányi E.: Time series databases and influxdb,

Studienarbeit, Université Libre de Bruxelles, p. 12, 2017.

[35] Reniers V., Van Landuyt D., Rafique A., Joosen W.: On the state of nosql

benchmarks. In: Proceedings of the 8th ACM/SPEC on International Conference

on Performance Engineering Companion, pp. 107–112, 2017.

https://docs.google.com/presentation/d/1RMIzqHL1JnDhwmqGj_yTmxqjNb54hNoJwvFIgtldR6g/edit#slide=id.g25765cf80e_0_3
https://docs.google.com/presentation/d/1RMIzqHL1JnDhwmqGj_yTmxqjNb54hNoJwvFIgtldR6g/edit#slide=id.g25765cf80e_0_3
https://docs.google.com/presentation/d/1RMIzqHL1JnDhwmqGj_yTmxqjNb54hNoJwvFIgtldR6g/edit#slide=id.g25765cf80e_0_3
https://www.sciencedirect.com/science/article/pii/S0920379620307456
https://www.sciencedirect.com/science/article/pii/S0920379620307456
https://doi.org/https://doi.org/10.1016/j.fusengdes.2020.112197


Ea
rly
bi
rd

420 Rafal Mucha, Bartosz Balis, Costin Grigoras, Jacek Kitowski

[36] Stonebraker M., Rowe L.A.: The design of POSTGRES, ACM Sigmod Record,

vol. 15(2), pp. 340–355, 1986.

[37] Wall L., et al.: The Perl programming language, 1994.

Affiliations

Rafal Mucha
AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow,
mucharafal44@gmail.com; CERN, Geneva, rafal.mucha@cern.ch

Bartosz Balis
AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow,
balis@agh.edu.pl

Costin Grigoras
CERN, Geneva, grigoras@cern.ch

Jacek Kitowski
AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow,
kito@agh.edu.pl

Received: 06.05.2022

Revised: 07.07.2022

Accepted: 07.07.2022

rafal.mucha@cern.ch
balis@agh.edu.pl
grigoras@cern.ch
kito@agh.edu.pl

	Introduction
	Motivation and problem statement
	Objectives
	Research methodology
	Evaluation of database-replication tools
	Database-replication performance

	Novelty of approach

	ALICE condition and calibration database system architecture
	CCDB
	Architecture extensions

	PostgreSQL multi-primary replication tools
	Bucardo
	EDB replication server
	PostgresBDR

	Related works
	Multi-primary replication performance
	Test environment
	System under testing
	PostgreSQL
	Bucardo
	EDB replication server

	Measured metrics
	Tests
	PostgreSQL configuration
	Insert to database
	Reconcile after disconnection
	Reconcile after disconnection – different numbers of objects to reconcile
	Continuous work with higher near-limit load

	Conclusion

	Summary and future work
	Summary


